xref: /titanic_51/usr/src/uts/i86pc/io/pcplusmp/apic_introp.c (revision f34a71784df3fbc5d1227a7b6201fd318ad1667e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * apic_introp.c:
28  *	Has code for Advanced DDI interrupt framework support.
29  */
30 
31 #include <sys/cpuvar.h>
32 #include <sys/psm.h>
33 #include <sys/archsystm.h>
34 #include <sys/apic.h>
35 #include <sys/sunddi.h>
36 #include <sys/ddi_impldefs.h>
37 #include <sys/mach_intr.h>
38 #include <sys/sysmacros.h>
39 #include <sys/trap.h>
40 #include <sys/pci.h>
41 #include <sys/pci_intr_lib.h>
42 
43 extern struct av_head autovect[];
44 
45 /*
46  *	Local Function Prototypes
47  */
48 apic_irq_t	*apic_find_irq(dev_info_t *, struct intrspec *, int);
49 
50 /*
51  * MSI support flag:
52  * reflects whether MSI is supported at APIC level
53  * it can also be patched through /etc/system
54  *
55  *  0 = default value - don't know and need to call apic_check_msi_support()
56  *      to find out then set it accordingly
57  *  1 = supported
58  * -1 = not supported
59  */
60 int	apic_support_msi = 0;
61 
62 /* Multiple vector support for MSI */
63 int	apic_multi_msi_enable = 1;
64 
65 /* Multiple vector support for MSI-X */
66 int	apic_msix_enable = 1;
67 
68 /*
69  * apic_pci_msi_enable_vector:
70  *	Set the address/data fields in the MSI/X capability structure
71  *	XXX: MSI-X support
72  */
73 /* ARGSUSED */
74 void
75 apic_pci_msi_enable_vector(apic_irq_t *irq_ptr, int type, int inum, int vector,
76     int count, int target_apic_id)
77 {
78 	uint64_t		msi_addr, msi_data;
79 	ushort_t		msi_ctrl;
80 	dev_info_t		*dip = irq_ptr->airq_dip;
81 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
82 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(dip);
83 #if !defined(__xpv)
84 	msi_regs_t		msi_regs;
85 #endif	/* ! __xpv */
86 
87 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n"
88 	    "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip,
89 	    ddi_driver_name(dip), inum, vector, target_apic_id));
90 
91 	ASSERT((handle != NULL) && (cap_ptr != 0));
92 
93 #if !defined(__xpv)
94 	msi_regs.mr_data = vector;
95 	msi_regs.mr_addr = target_apic_id;
96 
97 	apic_vt_ops->apic_intrr_alloc_entry(irq_ptr);
98 	apic_vt_ops->apic_intrr_map_entry(irq_ptr, (void *)&msi_regs);
99 	apic_vt_ops->apic_intrr_record_msi(irq_ptr, &msi_regs);
100 
101 	/* MSI Address */
102 	msi_addr = msi_regs.mr_addr;
103 
104 	/* MSI Data: MSI is edge triggered according to spec */
105 	msi_data = msi_regs.mr_data;
106 #else
107 	/* MSI Address */
108 	msi_addr = (MSI_ADDR_HDR |
109 	    (target_apic_id << MSI_ADDR_DEST_SHIFT));
110 	msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
111 	    (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT));
112 
113 	/* MSI Data: MSI is edge triggered according to spec */
114 	msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector);
115 #endif	/* ! __xpv */
116 
117 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx "
118 	    "data=0x%lx\n", (long)msi_addr, (long)msi_data));
119 
120 	if (type == DDI_INTR_TYPE_MSI) {
121 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
122 
123 		/* Set the bits to inform how many MSIs are enabled */
124 		msi_ctrl |= ((highbit(count) -1) << PCI_MSI_MME_SHIFT);
125 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
126 
127 		pci_config_put32(handle,
128 		    cap_ptr + PCI_MSI_ADDR_OFFSET, msi_addr);
129 
130 		if (msi_ctrl &  PCI_MSI_64BIT_MASK) {
131 			pci_config_put32(handle,
132 			    cap_ptr + PCI_MSI_ADDR_OFFSET + 4, msi_addr >> 32);
133 			pci_config_put16(handle,
134 			    cap_ptr + PCI_MSI_64BIT_DATA, msi_data);
135 		} else {
136 			pci_config_put16(handle,
137 			    cap_ptr + PCI_MSI_32BIT_DATA, msi_data);
138 		}
139 
140 	} else if (type == DDI_INTR_TYPE_MSIX) {
141 		uintptr_t	off;
142 		ddi_intr_msix_t	*msix_p = i_ddi_get_msix(dip);
143 
144 		/* Offset into the "inum"th entry in the MSI-X table */
145 		off = (uintptr_t)msix_p->msix_tbl_addr +
146 		    (inum  * PCI_MSIX_VECTOR_SIZE);
147 
148 		ddi_put32(msix_p->msix_tbl_hdl,
149 		    (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), msi_data);
150 		ddi_put64(msix_p->msix_tbl_hdl,
151 		    (uint64_t *)(off + PCI_MSIX_LOWER_ADDR_OFFSET), msi_addr);
152 	}
153 }
154 
155 
156 /*
157  * This function returns the no. of vectors available for the pri.
158  * dip is not used at this moment.  If we really don't need that,
159  * it will be removed.
160  */
161 /*ARGSUSED*/
162 int
163 apic_navail_vector(dev_info_t *dip, int pri)
164 {
165 	int	lowest, highest, i, navail, count;
166 
167 	DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n",
168 	    (void *)dip, pri));
169 
170 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
171 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
172 	navail = count = 0;
173 
174 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
175 		lowest -= APIC_VECTOR_PER_IPL;
176 
177 	/* It has to be contiguous */
178 	for (i = lowest; i < highest; i++) {
179 		count = 0;
180 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
181 		    (i < highest)) {
182 			if (APIC_CHECK_RESERVE_VECTORS(i))
183 				break;
184 			count++;
185 			i++;
186 		}
187 		if (count > navail)
188 			navail = count;
189 	}
190 	return (navail);
191 }
192 
193 /*
194  * Finds "count" contiguous MSI vectors starting at the proper alignment
195  * at "pri".
196  * Caller needs to make sure that count has to be power of 2 and should not
197  * be < 1.
198  */
199 uchar_t
200 apic_find_multi_vectors(int pri, int count)
201 {
202 	int	lowest, highest, i, navail, start, msibits;
203 
204 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n",
205 	    pri, count));
206 
207 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
208 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
209 	navail = 0;
210 
211 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
212 		lowest -= APIC_VECTOR_PER_IPL;
213 
214 	/*
215 	 * msibits is the no. of lower order message data bits for the
216 	 * allocated MSI vectors and is used to calculate the aligned
217 	 * starting vector
218 	 */
219 	msibits = count - 1;
220 
221 	/* It has to be contiguous */
222 	for (i = lowest; i < highest; i++) {
223 		navail = 0;
224 
225 		/*
226 		 * starting vector has to be aligned accordingly for
227 		 * multiple MSIs
228 		 */
229 		if (msibits)
230 			i = (i + msibits) & ~msibits;
231 		start = i;
232 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
233 		    (i < highest)) {
234 			if (APIC_CHECK_RESERVE_VECTORS(i))
235 				break;
236 			navail++;
237 			if (navail >= count)
238 				return (start);
239 			i++;
240 		}
241 	}
242 	return (0);
243 }
244 
245 
246 /*
247  * It finds the apic_irq_t associates with the dip, ispec and type.
248  */
249 apic_irq_t *
250 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type)
251 {
252 	apic_irq_t	*irqp;
253 	int i;
254 
255 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x "
256 	    "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec,
257 	    ispec->intrspec_pri, type));
258 
259 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
260 		if ((irqp = apic_irq_table[i]) == NULL)
261 			continue;
262 		if ((irqp->airq_dip == dip) &&
263 		    (irqp->airq_origirq == ispec->intrspec_vec) &&
264 		    (irqp->airq_ipl == ispec->intrspec_pri)) {
265 			if (type == DDI_INTR_TYPE_MSI) {
266 				if (irqp->airq_mps_intr_index == MSI_INDEX)
267 					return (irqp);
268 			} else if (type == DDI_INTR_TYPE_MSIX) {
269 				if (irqp->airq_mps_intr_index == MSIX_INDEX)
270 					return (irqp);
271 			} else
272 				return (irqp);
273 		}
274 	}
275 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n"));
276 	return (NULL);
277 }
278 
279 
280 #if !defined(__xpv)
281 
282 /*
283  * This function will return the pending bit of the irqp.
284  * It either comes from the IRR register of the APIC or the RDT
285  * entry of the I/O APIC.
286  * For the IRR to work, it needs to be to its binding CPU
287  */
288 static int
289 apic_get_pending(apic_irq_t *irqp, int type)
290 {
291 	int			bit, index, irr, pending;
292 	int			intin_no;
293 	int			apic_ix;
294 
295 	DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x "
296 	    "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND,
297 	    type));
298 
299 	/* need to get on the bound cpu */
300 	mutex_enter(&cpu_lock);
301 	affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND);
302 
303 	index = irqp->airq_vector / 32;
304 	bit = irqp->airq_vector % 32;
305 	irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
306 
307 	affinity_clear();
308 	mutex_exit(&cpu_lock);
309 
310 	pending = (irr & (1 << bit)) ? 1 : 0;
311 	if (!pending && (type == DDI_INTR_TYPE_FIXED)) {
312 		/* check I/O APIC for fixed interrupt */
313 		intin_no = irqp->airq_intin_no;
314 		apic_ix = irqp->airq_ioapicindex;
315 		pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no) &
316 		    AV_PENDING) ? 1 : 0;
317 	}
318 	return (pending);
319 }
320 
321 
322 /*
323  * This function will clear the mask for the interrupt on the I/O APIC
324  */
325 static void
326 apic_clear_mask(apic_irq_t *irqp)
327 {
328 	int			intin_no;
329 	ulong_t			iflag;
330 	int32_t			rdt_entry;
331 	int 			apic_ix;
332 
333 	DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n",
334 	    (void *)irqp));
335 
336 	intin_no = irqp->airq_intin_no;
337 	apic_ix = irqp->airq_ioapicindex;
338 
339 	iflag = intr_clear();
340 	lock_set(&apic_ioapic_lock);
341 
342 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no);
343 
344 	/* clear mask */
345 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no,
346 	    ((~AV_MASK) & rdt_entry));
347 
348 	lock_clear(&apic_ioapic_lock);
349 	intr_restore(iflag);
350 }
351 
352 
353 /*
354  * This function will mask the interrupt on the I/O APIC
355  */
356 static void
357 apic_set_mask(apic_irq_t *irqp)
358 {
359 	int			intin_no;
360 	int 			apic_ix;
361 	ulong_t			iflag;
362 	int32_t			rdt_entry;
363 
364 	DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp));
365 
366 	intin_no = irqp->airq_intin_no;
367 	apic_ix = irqp->airq_ioapicindex;
368 
369 	iflag = intr_clear();
370 
371 	lock_set(&apic_ioapic_lock);
372 
373 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no);
374 
375 	/* mask it */
376 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no,
377 	    (AV_MASK | rdt_entry));
378 
379 	lock_clear(&apic_ioapic_lock);
380 	intr_restore(iflag);
381 }
382 
383 #endif	/* ! __xpv */
384 
385 void
386 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
387 {
388 	int i;
389 	apic_irq_t *irqptr;
390 	struct intrspec ispec;
391 
392 	DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x "
393 	    "count: %x pri: %x type: %x\n",
394 	    (void *)dip, inum, count, pri, type));
395 
396 	/* for MSI/X only */
397 	if (!DDI_INTR_IS_MSI_OR_MSIX(type))
398 		return;
399 
400 	for (i = 0; i < count; i++) {
401 		DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x "
402 		    "pri=0x%x count=0x%x\n", inum, pri, count));
403 		ispec.intrspec_vec = inum + i;
404 		ispec.intrspec_pri = pri;
405 		if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) {
406 			DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: "
407 			    "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() "
408 			    "failed\n", (void *)dip, inum, pri));
409 			continue;
410 		}
411 		irqptr->airq_mps_intr_index = FREE_INDEX;
412 		apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ;
413 	}
414 }
415 
416 
417 /*
418  * check whether the system supports MSI
419  *
420  * If PCI-E capability is found, then this must be a PCI-E system.
421  * Since MSI is required for PCI-E system, it returns PSM_SUCCESS
422  * to indicate this system supports MSI.
423  */
424 int
425 apic_check_msi_support()
426 {
427 	dev_info_t *cdip;
428 	char dev_type[16];
429 	int dev_len;
430 
431 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n"));
432 
433 	/*
434 	 * check whether the first level children of root_node have
435 	 * PCI-E capability
436 	 */
437 	for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL;
438 	    cdip = ddi_get_next_sibling(cdip)) {
439 
440 		DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p,"
441 		    " driver: %s, binding: %s, nodename: %s\n", (void *)cdip,
442 		    ddi_driver_name(cdip), ddi_binding_name(cdip),
443 		    ddi_node_name(cdip)));
444 		dev_len = sizeof (dev_type);
445 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
446 		    "device_type", (caddr_t)dev_type, &dev_len)
447 		    != DDI_PROP_SUCCESS)
448 			continue;
449 		if (strcmp(dev_type, "pciex") == 0)
450 			return (PSM_SUCCESS);
451 	}
452 
453 	/* MSI is not supported on this system */
454 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' "
455 	    "device_type found\n"));
456 	return (PSM_FAILURE);
457 }
458 
459 /*
460  * apic_pci_msi_unconfigure:
461  *
462  * This and next two interfaces are copied from pci_intr_lib.c
463  * Do ensure that these two files stay in sync.
464  * These needed to be copied over here to avoid a deadlock situation on
465  * certain mp systems that use MSI interrupts.
466  *
467  * IMPORTANT regards next three interfaces:
468  * i) are called only for MSI/X interrupts.
469  * ii) called with interrupts disabled, and must not block
470  */
471 void
472 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum)
473 {
474 	ushort_t		msi_ctrl;
475 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
476 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
477 
478 	ASSERT((handle != NULL) && (cap_ptr != 0));
479 
480 	if (type == DDI_INTR_TYPE_MSI) {
481 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
482 		msi_ctrl &= (~PCI_MSI_MME_MASK);
483 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
484 		pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0);
485 
486 		if (msi_ctrl &  PCI_MSI_64BIT_MASK) {
487 			pci_config_put16(handle,
488 			    cap_ptr + PCI_MSI_64BIT_DATA, 0);
489 			pci_config_put32(handle,
490 			    cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0);
491 		} else {
492 			pci_config_put16(handle,
493 			    cap_ptr + PCI_MSI_32BIT_DATA, 0);
494 		}
495 
496 	} else if (type == DDI_INTR_TYPE_MSIX) {
497 		uintptr_t	off;
498 		uint32_t	mask;
499 		ddi_intr_msix_t	*msix_p = i_ddi_get_msix(rdip);
500 
501 		/* Offset into "inum"th entry in the MSI-X table & mask it */
502 		off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
503 		    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
504 
505 		mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
506 
507 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1));
508 
509 		/* Offset into the "inum"th entry in the MSI-X table */
510 		off = (uintptr_t)msix_p->msix_tbl_addr +
511 		    (inum * PCI_MSIX_VECTOR_SIZE);
512 
513 		/* Reset the "data" and "addr" bits */
514 		ddi_put32(msix_p->msix_tbl_hdl,
515 		    (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0);
516 		ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0);
517 	}
518 }
519 
520 
521 /*
522  * apic_pci_msi_enable_mode:
523  */
524 void
525 apic_pci_msi_enable_mode(dev_info_t *rdip, int type, int inum)
526 {
527 	ushort_t		msi_ctrl;
528 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
529 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
530 
531 	ASSERT((handle != NULL) && (cap_ptr != 0));
532 
533 	if (type == DDI_INTR_TYPE_MSI) {
534 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
535 		if ((msi_ctrl & PCI_MSI_ENABLE_BIT))
536 			return;
537 
538 		msi_ctrl |= PCI_MSI_ENABLE_BIT;
539 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
540 
541 	} else if (type == DDI_INTR_TYPE_MSIX) {
542 		uintptr_t	off;
543 		uint32_t	mask;
544 		ddi_intr_msix_t	*msix_p;
545 
546 		msix_p = i_ddi_get_msix(rdip);
547 
548 		/* Offset into "inum"th entry in the MSI-X table & clear mask */
549 		off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
550 		    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
551 
552 		mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
553 
554 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask & ~1));
555 
556 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
557 
558 		if (!(msi_ctrl & PCI_MSIX_ENABLE_BIT)) {
559 			msi_ctrl |= PCI_MSIX_ENABLE_BIT;
560 			pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
561 			    msi_ctrl);
562 		}
563 	}
564 }
565 
566 /*
567  * apic_pci_msi_disable_mode:
568  */
569 void
570 apic_pci_msi_disable_mode(dev_info_t *rdip, int type)
571 {
572 	ushort_t		msi_ctrl;
573 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
574 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
575 
576 	ASSERT((handle != NULL) && (cap_ptr != 0));
577 
578 	if (type == DDI_INTR_TYPE_MSI) {
579 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
580 		if (!(msi_ctrl & PCI_MSI_ENABLE_BIT))
581 			return;
582 
583 		msi_ctrl &= ~PCI_MSI_ENABLE_BIT;	/* MSI disable */
584 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
585 
586 	} else if (type == DDI_INTR_TYPE_MSIX) {
587 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
588 		if (msi_ctrl & PCI_MSIX_ENABLE_BIT) {
589 			msi_ctrl &= ~PCI_MSIX_ENABLE_BIT;
590 			pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
591 			    msi_ctrl);
592 		}
593 	}
594 }
595 
596 #if !defined(__xpv)
597 
598 static int
599 apic_set_cpu(uint32_t vector, int cpu, int *result)
600 {
601 	apic_irq_t *irqp;
602 	ulong_t iflag;
603 	int ret;
604 
605 	DDI_INTR_IMPLDBG((CE_CONT, "APIC_SET_CPU\n"));
606 
607 	/* Convert the vector to the irq using vector_to_irq table. */
608 	mutex_enter(&airq_mutex);
609 	irqp = apic_irq_table[apic_vector_to_irq[vector]];
610 	mutex_exit(&airq_mutex);
611 
612 	if (irqp == NULL) {
613 		*result = ENXIO;
614 		return (PSM_FAILURE);
615 	}
616 
617 	/* Fail if this is an MSI intr and is part of a group. */
618 	if ((irqp->airq_mps_intr_index == MSI_INDEX) &&
619 	    (irqp->airq_intin_no > 1)) {
620 		*result = ENXIO;
621 		return (PSM_FAILURE);
622 	}
623 
624 	iflag = intr_clear();
625 	lock_set(&apic_ioapic_lock);
626 
627 	ret = apic_rebind_all(irqp, cpu);
628 
629 	lock_clear(&apic_ioapic_lock);
630 	intr_restore(iflag);
631 
632 	if (ret) {
633 		*result = EIO;
634 		return (PSM_FAILURE);
635 	}
636 	*result = 0;
637 	return (PSM_SUCCESS);
638 }
639 
640 static int
641 apic_grp_set_cpu(uint32_t vector, int new_cpu, int *result)
642 {
643 	dev_info_t *orig_dip;
644 	uint32_t orig_cpu;
645 	ulong_t iflag;
646 	apic_irq_t *irqps[PCI_MSI_MAX_INTRS];
647 	int i;
648 	int cap_ptr;
649 	int msi_mask_off;
650 	ushort_t msi_ctrl;
651 	uint32_t msi_pvm;
652 	ddi_acc_handle_t handle;
653 	int num_vectors = 0;
654 
655 	DDI_INTR_IMPLDBG((CE_CONT, "APIC_GRP_SET_CPU\n"));
656 
657 	/*
658 	 * Take mutex to insure that table doesn't change out from underneath
659 	 * us while we're playing with it.
660 	 */
661 	mutex_enter(&airq_mutex);
662 	irqps[0] = apic_irq_table[apic_vector_to_irq[vector]];
663 	orig_cpu = irqps[0]->airq_temp_cpu;
664 	orig_dip = irqps[0]->airq_dip;
665 	num_vectors = irqps[0]->airq_intin_no;
666 
667 	/* A "group" of 1 */
668 	if (num_vectors == 1) {
669 		mutex_exit(&airq_mutex);
670 		return (apic_set_cpu(vector, new_cpu, result));
671 	}
672 
673 	*result = ENXIO;
674 
675 	if (irqps[0]->airq_mps_intr_index != MSI_INDEX) {
676 		mutex_exit(&airq_mutex);
677 		DDI_INTR_IMPLDBG((CE_CONT, "set_grp: intr not MSI\n"));
678 		goto set_grp_intr_done;
679 	}
680 	if ((num_vectors < 1) || ((num_vectors - 1) & vector)) {
681 		mutex_exit(&airq_mutex);
682 		DDI_INTR_IMPLDBG((CE_CONT,
683 		    "set_grp: base vec not part of a grp or not aligned: "
684 		    "vec:0x%x, num_vec:0x%x\n", vector, num_vectors));
685 		goto set_grp_intr_done;
686 	}
687 	DDI_INTR_IMPLDBG((CE_CONT, "set_grp: num intrs in grp: %d\n",
688 	    num_vectors));
689 
690 	ASSERT((num_vectors + vector) < APIC_MAX_VECTOR);
691 
692 	*result = EIO;
693 
694 	/*
695 	 * All IRQ entries in the table for the given device will be not
696 	 * shared.  Since they are not shared, the dip in the table will
697 	 * be true to the device of interest.
698 	 */
699 	for (i = 1; i < num_vectors; i++) {
700 		irqps[i] = apic_irq_table[apic_vector_to_irq[vector + i]];
701 		if (irqps[i] == NULL) {
702 			mutex_exit(&airq_mutex);
703 			goto set_grp_intr_done;
704 		}
705 #ifdef DEBUG
706 		/* Sanity check: CPU and dip is the same for all entries. */
707 		if ((irqps[i]->airq_dip != orig_dip) ||
708 		    (irqps[i]->airq_temp_cpu != orig_cpu)) {
709 			mutex_exit(&airq_mutex);
710 			DDI_INTR_IMPLDBG((CE_CONT,
711 			    "set_grp: cpu or dip for vec 0x%x difft than for "
712 			    "vec 0x%x\n", vector, vector + i));
713 			DDI_INTR_IMPLDBG((CE_CONT,
714 			    "  cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
715 			    irqps[i]->airq_temp_cpu, (void *)orig_dip,
716 			    (void *)irqps[i]->airq_dip));
717 			goto set_grp_intr_done;
718 		}
719 #endif /* DEBUG */
720 	}
721 	mutex_exit(&airq_mutex);
722 
723 	cap_ptr = i_ddi_get_msi_msix_cap_ptr(orig_dip);
724 	handle = i_ddi_get_pci_config_handle(orig_dip);
725 	msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
726 
727 	/* MSI Per vector masking is supported. */
728 	if (msi_ctrl & PCI_MSI_PVM_MASK) {
729 		if (msi_ctrl &  PCI_MSI_64BIT_MASK)
730 			msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
731 		else
732 			msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
733 		msi_pvm = pci_config_get32(handle, msi_mask_off);
734 		pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
735 		DDI_INTR_IMPLDBG((CE_CONT,
736 		    "set_grp: pvm supported.  Mask set to 0x%x\n",
737 		    pci_config_get32(handle, msi_mask_off)));
738 	}
739 
740 	iflag = intr_clear();
741 	lock_set(&apic_ioapic_lock);
742 
743 	/*
744 	 * Do the first rebind and check for errors.  Apic_rebind_all returns
745 	 * an error if the CPU is not accepting interrupts.  If the first one
746 	 * succeeds they all will.
747 	 */
748 	if (apic_rebind_all(irqps[0], new_cpu))
749 		(void) apic_rebind_all(irqps[0], orig_cpu);
750 	else {
751 		for (i = 1; i < num_vectors; i++)
752 			(void) apic_rebind_all(irqps[i], new_cpu);
753 		*result = 0;	/* SUCCESS */
754 	}
755 
756 	lock_clear(&apic_ioapic_lock);
757 	intr_restore(iflag);
758 
759 	/* Reenable vectors if per vector masking is supported. */
760 	if (msi_ctrl & PCI_MSI_PVM_MASK) {
761 		pci_config_put32(handle, msi_mask_off, msi_pvm);
762 		DDI_INTR_IMPLDBG((CE_CONT,
763 		    "set_grp: pvm supported.  Mask restored to 0x%x\n",
764 		    pci_config_get32(handle, msi_mask_off)));
765 	}
766 
767 set_grp_intr_done:
768 	if (*result != 0)
769 		return (PSM_FAILURE);
770 
771 	return (PSM_SUCCESS);
772 }
773 
774 #endif	/* !__xpv */
775 
776 int
777 apic_get_vector_intr_info(int vecirq, apic_get_intr_t *intr_params_p)
778 {
779 	struct autovec *av_dev;
780 	uchar_t irqno;
781 	int i;
782 	apic_irq_t *irq_p;
783 
784 	/* Sanity check the vector/irq argument. */
785 	ASSERT((vecirq >= 0) || (vecirq <= APIC_MAX_VECTOR));
786 
787 	mutex_enter(&airq_mutex);
788 
789 	/*
790 	 * Convert the vecirq arg to an irq using vector_to_irq table
791 	 * if the arg is a vector.  Pass thru if already an irq.
792 	 */
793 	if ((intr_params_p->avgi_req_flags & PSMGI_INTRBY_FLAGS) ==
794 	    PSMGI_INTRBY_VEC)
795 		irqno = apic_vector_to_irq[vecirq];
796 	else
797 		irqno = vecirq;
798 
799 	irq_p = apic_irq_table[irqno];
800 
801 	if ((irq_p == NULL) ||
802 	    (irq_p->airq_temp_cpu == IRQ_UNBOUND) ||
803 	    (irq_p->airq_temp_cpu == IRQ_UNINIT)) {
804 		mutex_exit(&airq_mutex);
805 		return (PSM_FAILURE);
806 	}
807 
808 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
809 
810 		/* Get the (temp) cpu from apic_irq table, indexed by irq. */
811 		intr_params_p->avgi_cpu_id = irq_p->airq_temp_cpu;
812 
813 		/* Return user bound info for intrd. */
814 		if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
815 			intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
816 			intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
817 		}
818 	}
819 
820 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
821 		intr_params_p->avgi_vector = irq_p->airq_vector;
822 
823 	if (intr_params_p->avgi_req_flags &
824 	    (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
825 		/* Get number of devices from apic_irq table shared field. */
826 		intr_params_p->avgi_num_devs = irq_p->airq_share;
827 
828 	if (intr_params_p->avgi_req_flags &  PSMGI_REQ_GET_DEVS) {
829 
830 		intr_params_p->avgi_req_flags  |= PSMGI_REQ_NUM_DEVS;
831 
832 		/* Some devices have NULL dip.  Don't count these. */
833 		if (intr_params_p->avgi_num_devs > 0) {
834 			for (i = 0, av_dev = autovect[irqno].avh_link;
835 			    av_dev; av_dev = av_dev->av_link)
836 				if (av_dev->av_vector && av_dev->av_dip)
837 					i++;
838 			intr_params_p->avgi_num_devs =
839 			    MIN(intr_params_p->avgi_num_devs, i);
840 		}
841 
842 		/* There are no viable dips to return. */
843 		if (intr_params_p->avgi_num_devs == 0)
844 			intr_params_p->avgi_dip_list = NULL;
845 
846 		else {	/* Return list of dips */
847 
848 			/* Allocate space in array for that number of devs. */
849 			intr_params_p->avgi_dip_list = kmem_zalloc(
850 			    intr_params_p->avgi_num_devs *
851 			    sizeof (dev_info_t *),
852 			    KM_SLEEP);
853 
854 			/*
855 			 * Loop through the device list of the autovec table
856 			 * filling in the dip array.
857 			 *
858 			 * Note that the autovect table may have some special
859 			 * entries which contain NULL dips.  These will be
860 			 * ignored.
861 			 */
862 			for (i = 0, av_dev = autovect[irqno].avh_link;
863 			    av_dev; av_dev = av_dev->av_link)
864 				if (av_dev->av_vector && av_dev->av_dip)
865 					intr_params_p->avgi_dip_list[i++] =
866 					    av_dev->av_dip;
867 		}
868 	}
869 
870 	mutex_exit(&airq_mutex);
871 
872 	return (PSM_SUCCESS);
873 }
874 
875 
876 #if !defined(__xpv)
877 
878 /*
879  * This function provides external interface to the nexus for all
880  * functionalities related to the new DDI interrupt framework.
881  *
882  * Input:
883  * dip     - pointer to the dev_info structure of the requested device
884  * hdlp    - pointer to the internal interrupt handle structure for the
885  *	     requested interrupt
886  * intr_op - opcode for this call
887  * result  - pointer to the integer that will hold the result to be
888  *	     passed back if return value is PSM_SUCCESS
889  *
890  * Output:
891  * return value is either PSM_SUCCESS or PSM_FAILURE
892  */
893 int
894 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
895     psm_intr_op_t intr_op, int *result)
896 {
897 	int		cap;
898 	int		count_vec;
899 	int		old_priority;
900 	int		new_priority;
901 	int		new_cpu;
902 	apic_irq_t	*irqp;
903 	struct intrspec *ispec, intr_spec;
904 
905 	DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p "
906 	    "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op));
907 
908 	ispec = &intr_spec;
909 	ispec->intrspec_pri = hdlp->ih_pri;
910 	ispec->intrspec_vec = hdlp->ih_inum;
911 	ispec->intrspec_func = hdlp->ih_cb_func;
912 
913 	switch (intr_op) {
914 	case PSM_INTR_OP_CHECK_MSI:
915 		/*
916 		 * Check MSI/X is supported or not at APIC level and
917 		 * masked off the MSI/X bits in hdlp->ih_type if not
918 		 * supported before return.  If MSI/X is supported,
919 		 * leave the ih_type unchanged and return.
920 		 *
921 		 * hdlp->ih_type passed in from the nexus has all the
922 		 * interrupt types supported by the device.
923 		 */
924 		if (apic_support_msi == 0) {
925 			/*
926 			 * if apic_support_msi is not set, call
927 			 * apic_check_msi_support() to check whether msi
928 			 * is supported first
929 			 */
930 			if (apic_check_msi_support() == PSM_SUCCESS)
931 				apic_support_msi = 1;
932 			else
933 				apic_support_msi = -1;
934 		}
935 		if (apic_support_msi == 1) {
936 			if (apic_msix_enable)
937 				*result = hdlp->ih_type;
938 			else
939 				*result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
940 		} else
941 			*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
942 			    DDI_INTR_TYPE_MSIX);
943 		break;
944 	case PSM_INTR_OP_ALLOC_VECTORS:
945 		if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
946 			*result = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
947 			    hdlp->ih_scratch1, hdlp->ih_pri,
948 			    (int)(uintptr_t)hdlp->ih_scratch2);
949 		else
950 			*result = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
951 			    hdlp->ih_scratch1, hdlp->ih_pri,
952 			    (int)(uintptr_t)hdlp->ih_scratch2);
953 		break;
954 	case PSM_INTR_OP_FREE_VECTORS:
955 		apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
956 		    hdlp->ih_pri, hdlp->ih_type);
957 		break;
958 	case PSM_INTR_OP_NAVAIL_VECTORS:
959 		*result = apic_navail_vector(dip, hdlp->ih_pri);
960 		break;
961 	case PSM_INTR_OP_XLATE_VECTOR:
962 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
963 		*result = apic_introp_xlate(dip, ispec, hdlp->ih_type);
964 		break;
965 	case PSM_INTR_OP_GET_PENDING:
966 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
967 			return (PSM_FAILURE);
968 		*result = apic_get_pending(irqp, hdlp->ih_type);
969 		break;
970 	case PSM_INTR_OP_CLEAR_MASK:
971 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
972 			return (PSM_FAILURE);
973 		irqp = apic_find_irq(dip, ispec, hdlp->ih_type);
974 		if (irqp == NULL)
975 			return (PSM_FAILURE);
976 		apic_clear_mask(irqp);
977 		break;
978 	case PSM_INTR_OP_SET_MASK:
979 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
980 			return (PSM_FAILURE);
981 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
982 			return (PSM_FAILURE);
983 		apic_set_mask(irqp);
984 		break;
985 	case PSM_INTR_OP_GET_CAP:
986 		cap = DDI_INTR_FLAG_PENDING;
987 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
988 			cap |= DDI_INTR_FLAG_MASKABLE;
989 		*result = cap;
990 		break;
991 	case PSM_INTR_OP_GET_SHARED:
992 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
993 			return (PSM_FAILURE);
994 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
995 			return (PSM_FAILURE);
996 		*result = irqp->airq_share ? 1: 0;
997 		break;
998 	case PSM_INTR_OP_SET_PRI:
999 		old_priority = hdlp->ih_pri;	/* save old value */
1000 		new_priority = *(int *)result;	/* try the new value */
1001 
1002 		/* First, check if "hdlp->ih_scratch1" vectors exist? */
1003 		if (apic_navail_vector(dip, new_priority) < hdlp->ih_scratch1)
1004 			return (PSM_FAILURE);
1005 
1006 		/* Now allocate the vectors */
1007 		if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
1008 			count_vec = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
1009 			    hdlp->ih_scratch1, new_priority,
1010 			    DDI_INTR_ALLOC_STRICT);
1011 		else
1012 			count_vec = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
1013 			    hdlp->ih_scratch1, new_priority,
1014 			    DDI_INTR_ALLOC_STRICT);
1015 
1016 		/* Did we get new vectors? */
1017 		if (!count_vec)
1018 			return (PSM_FAILURE);
1019 
1020 		/* Finally, free the previously allocated vectors */
1021 		apic_free_vectors(dip, hdlp->ih_inum, count_vec,
1022 		    old_priority, hdlp->ih_type);
1023 		hdlp->ih_pri = new_priority; /* set the new value */
1024 		break;
1025 	case PSM_INTR_OP_SET_CPU:
1026 	case PSM_INTR_OP_GRP_SET_CPU:
1027 		/*
1028 		 * The interrupt handle given here has been allocated
1029 		 * specifically for this command, and ih_private carries
1030 		 * a CPU value.
1031 		 */
1032 		new_cpu = (int)(intptr_t)hdlp->ih_private;
1033 		if (!apic_cpu_in_range(new_cpu)) {
1034 			DDI_INTR_IMPLDBG((CE_CONT,
1035 			    "[grp_]set_cpu: cpu out of range: %d\n", new_cpu));
1036 			*result = EINVAL;
1037 			return (PSM_FAILURE);
1038 		}
1039 		if (intr_op == PSM_INTR_OP_SET_CPU) {
1040 			if (apic_set_cpu(hdlp->ih_vector, new_cpu, result) !=
1041 			    PSM_SUCCESS)
1042 				return (PSM_FAILURE);
1043 		} else {
1044 			if (apic_grp_set_cpu(hdlp->ih_vector, new_cpu,
1045 			    result) != PSM_SUCCESS)
1046 				return (PSM_FAILURE);
1047 		}
1048 		break;
1049 	case PSM_INTR_OP_GET_INTR:
1050 		/*
1051 		 * The interrupt handle given here has been allocated
1052 		 * specifically for this command, and ih_private carries
1053 		 * a pointer to a apic_get_intr_t.
1054 		 */
1055 		if (apic_get_vector_intr_info(
1056 		    hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS)
1057 			return (PSM_FAILURE);
1058 		break;
1059 	case PSM_INTR_OP_APIC_TYPE:
1060 		hdlp->ih_private = apic_get_apic_type();
1061 		hdlp->ih_ver = apic_get_apic_version();
1062 		break;
1063 	case PSM_INTR_OP_SET_CAP:
1064 	default:
1065 		return (PSM_FAILURE);
1066 	}
1067 	return (PSM_SUCCESS);
1068 }
1069 #endif	/* !__xpv */
1070