1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Portions Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2009, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 /* 31 * Intel IOMMU implementation 32 * This file contains Intel IOMMU code exported 33 * to the rest of the system and code that deals 34 * with the Intel IOMMU as a whole. 35 */ 36 37 #include <sys/conf.h> 38 #include <sys/modctl.h> 39 #include <sys/pci.h> 40 #include <sys/pci_impl.h> 41 #include <sys/sysmacros.h> 42 #include <sys/ddi.h> 43 #include <sys/ddidmareq.h> 44 #include <sys/ddi_impldefs.h> 45 #include <sys/ddifm.h> 46 #include <sys/sunndi.h> 47 #include <sys/debug.h> 48 #include <sys/fm/protocol.h> 49 #include <sys/note.h> 50 #include <sys/apic.h> 51 #include <vm/hat_i86.h> 52 #include <sys/smp_impldefs.h> 53 #include <sys/spl.h> 54 #include <sys/archsystm.h> 55 #include <sys/x86_archext.h> 56 #include <sys/rootnex.h> 57 #include <sys/avl.h> 58 #include <sys/bootconf.h> 59 #include <sys/bootinfo.h> 60 #include <sys/atomic.h> 61 #include <sys/immu.h> 62 /* ########################### Globals and tunables ######################## */ 63 /* 64 * Global switches (boolean) that can be toggled either via boot options 65 * or via /etc/system or kmdb 66 */ 67 68 /* Various features */ 69 boolean_t immu_enable = B_FALSE; 70 boolean_t immu_dvma_enable = B_TRUE; 71 72 /* accessed in other files so not static */ 73 boolean_t immu_gfxdvma_enable = B_TRUE; 74 boolean_t immu_intrmap_enable = B_FALSE; 75 boolean_t immu_qinv_enable = B_FALSE; 76 77 /* various quirks that need working around */ 78 79 /* XXX We always map page 0 read/write for now */ 80 boolean_t immu_quirk_usbpage0 = B_TRUE; 81 boolean_t immu_quirk_usbrmrr = B_TRUE; 82 boolean_t immu_quirk_usbfullpa; 83 boolean_t immu_quirk_mobile4; 84 85 /* debug messages */ 86 boolean_t immu_dmar_print; 87 88 /* Tunables */ 89 int64_t immu_flush_gran = 5; 90 91 /* ############ END OPTIONS section ################ */ 92 93 /* 94 * Global used internally by Intel IOMMU code 95 */ 96 dev_info_t *root_devinfo; 97 kmutex_t immu_lock; 98 list_t immu_list; 99 void *immu_pgtable_cache; 100 boolean_t immu_setup; 101 boolean_t immu_running; 102 boolean_t immu_quiesced; 103 104 /* ######################## END Globals and tunables ###################### */ 105 /* Globals used only in this file */ 106 static char **black_array; 107 static uint_t nblacks; 108 /* ###################### Utility routines ############################# */ 109 110 /* 111 * Check if the device has mobile 4 chipset 112 */ 113 static int 114 check_mobile4(dev_info_t *dip, void *arg) 115 { 116 _NOTE(ARGUNUSED(arg)); 117 int vendor, device; 118 int *ip = (int *)arg; 119 120 ASSERT(arg); 121 122 vendor = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 123 "vendor-id", -1); 124 device = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 125 "device-id", -1); 126 127 if (vendor == 0x8086 && device == 0x2a40) { 128 *ip = B_TRUE; 129 ddi_err(DER_NOTE, dip, "IMMU: Mobile 4 chipset detected. " 130 "Force setting IOMMU write buffer"); 131 return (DDI_WALK_TERMINATE); 132 } else { 133 return (DDI_WALK_CONTINUE); 134 } 135 } 136 137 static void 138 map_bios_rsvd_mem(dev_info_t *dip) 139 { 140 struct memlist *mp; 141 int e; 142 143 memlist_read_lock(); 144 145 mp = bios_rsvd; 146 while (mp != NULL) { 147 memrng_t mrng = {0}; 148 149 ddi_err(DER_LOG, dip, "IMMU: Mapping BIOS rsvd range " 150 "[0x%" PRIx64 " - 0x%"PRIx64 "]\n", mp->ml_address, 151 mp->ml_address + mp->ml_size); 152 153 mrng.mrng_start = IMMU_ROUNDOWN(mp->ml_address); 154 mrng.mrng_npages = IMMU_ROUNDUP(mp->ml_size) / IMMU_PAGESIZE; 155 156 e = immu_dvma_map(NULL, NULL, &mrng, 0, dip, IMMU_FLAGS_MEMRNG); 157 ASSERT(e == DDI_DMA_MAPPED || e == DDI_DMA_USE_PHYSICAL); 158 159 mp = mp->ml_next; 160 } 161 162 memlist_read_unlock(); 163 } 164 165 166 /* 167 * Check if the driver requests physical mapping 168 */ 169 /*ARGSUSED*/ 170 static void 171 check_physical(dev_info_t *dip, void *arg) 172 { 173 char *val; 174 175 /* 176 * Check for the DVMA unity mapping property on the device 177 */ 178 val = NULL; 179 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 180 DDI_PROP_DONTPASS, DDI_DVMA_MAPTYPE_PROP, &val) == DDI_SUCCESS) { 181 ASSERT(val); 182 if (strcmp(val, DDI_DVMA_MAPTYPE_UNITY) != 0) { 183 ddi_err(DER_WARN, dip, "%s value \"%s\" is not valid", 184 DDI_DVMA_MAPTYPE_PROP, val); 185 } else { 186 int e; 187 188 ddi_err(DER_NOTE, dip, 189 "Using unity DVMA mapping for device"); 190 e = immu_dvma_map(NULL, NULL, NULL, 0, dip, 191 IMMU_FLAGS_UNITY); 192 /* for unity mode, map will return USE_PHYSICAL */ 193 ASSERT(e == DDI_DMA_USE_PHYSICAL); 194 } 195 ddi_prop_free(val); 196 } 197 } 198 199 /* 200 * Check if the device is USB controller 201 */ 202 /*ARGSUSED*/ 203 static void 204 check_usb(dev_info_t *dip, void *arg) 205 { 206 const char *drv = ddi_driver_name(dip); 207 208 if (drv == NULL || 209 (strcmp(drv, "uhci") != 0 && strcmp(drv, "ohci") != 0 && 210 strcmp(drv, "ehci") != 0)) { 211 return; 212 } 213 214 /* This must come first since it does unity mapping */ 215 if (immu_quirk_usbfullpa == B_TRUE) { 216 int e; 217 ddi_err(DER_NOTE, dip, "Applying USB FULL PA quirk"); 218 e = immu_dvma_map(NULL, NULL, NULL, 0, dip, IMMU_FLAGS_UNITY); 219 /* for unity mode, map will return USE_PHYSICAL */ 220 ASSERT(e == DDI_DMA_USE_PHYSICAL); 221 } 222 223 if (immu_quirk_usbrmrr == B_TRUE) { 224 ddi_err(DER_LOG, dip, "Applying USB RMRR quirk"); 225 map_bios_rsvd_mem(dip); 226 } 227 } 228 229 /* 230 * Check if the device is a LPC device 231 */ 232 /*ARGSUSED*/ 233 static void 234 check_lpc(dev_info_t *dip, void *arg) 235 { 236 immu_devi_t *immu_devi; 237 238 immu_devi = immu_devi_get(dip); 239 ASSERT(immu_devi); 240 if (immu_devi->imd_lpc == B_TRUE) { 241 ddi_err(DER_LOG, dip, "IMMU: Found LPC device"); 242 /* This will put the immu_devi on the LPC "specials" list */ 243 (void) immu_dvma_get_immu(dip, IMMU_FLAGS_SLEEP); 244 } 245 } 246 247 /* 248 * Check if the device is a GFX device 249 */ 250 /*ARGSUSED*/ 251 static void 252 check_gfx(dev_info_t *dip, void *arg) 253 { 254 immu_devi_t *immu_devi; 255 int e; 256 257 immu_devi = immu_devi_get(dip); 258 ASSERT(immu_devi); 259 if (immu_devi->imd_display == B_TRUE) { 260 ddi_err(DER_LOG, dip, "IMMU: Found GFX device"); 261 /* This will put the immu_devi on the GFX "specials" list */ 262 (void) immu_dvma_get_immu(dip, IMMU_FLAGS_SLEEP); 263 e = immu_dvma_map(NULL, NULL, NULL, 0, dip, IMMU_FLAGS_UNITY); 264 /* for unity mode, map will return USE_PHYSICAL */ 265 ASSERT(e == DDI_DMA_USE_PHYSICAL); 266 } 267 } 268 269 static void 270 walk_tree(int (*f)(dev_info_t *, void *), void *arg) 271 { 272 int count; 273 274 ndi_devi_enter(root_devinfo, &count); 275 ddi_walk_devs(ddi_get_child(root_devinfo), f, arg); 276 ndi_devi_exit(root_devinfo, count); 277 } 278 279 static int 280 check_pre_setup_quirks(dev_info_t *dip, void *arg) 281 { 282 /* just 1 check right now */ 283 return (check_mobile4(dip, arg)); 284 } 285 286 static int 287 check_pre_startup_quirks(dev_info_t *dip, void *arg) 288 { 289 if (immu_devi_set(dip, IMMU_FLAGS_SLEEP) != DDI_SUCCESS) { 290 ddi_err(DER_PANIC, dip, "Failed to get immu_devi"); 291 } 292 293 check_gfx(dip, arg); 294 295 check_lpc(dip, arg); 296 297 check_usb(dip, arg); 298 299 check_physical(dip, arg); 300 301 return (DDI_WALK_CONTINUE); 302 } 303 304 static void 305 pre_setup_quirks(void) 306 { 307 walk_tree(check_pre_setup_quirks, &immu_quirk_mobile4); 308 } 309 310 static void 311 pre_startup_quirks(void) 312 { 313 walk_tree(check_pre_startup_quirks, NULL); 314 315 immu_dmar_rmrr_map(); 316 } 317 318 /* 319 * get_bootopt() 320 * check a boot option (always a boolean) 321 */ 322 static void 323 get_bootopt(char *bopt, boolean_t *kvar) 324 { 325 char *val = NULL; 326 327 ASSERT(bopt); 328 ASSERT(kvar); 329 330 /* 331 * All boot options set at the GRUB menu become 332 * properties on the rootnex. 333 */ 334 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, root_devinfo, 335 DDI_PROP_DONTPASS, bopt, &val) == DDI_SUCCESS) { 336 ASSERT(val); 337 if (strcmp(val, "true") == 0) { 338 *kvar = B_TRUE; 339 } else if (strcmp(val, "false") == 0) { 340 *kvar = B_FALSE; 341 } else { 342 ddi_err(DER_WARN, NULL, "boot option %s=\"%s\" ", 343 "is not set to true or false. Ignoring option.", 344 bopt, val); 345 } 346 ddi_prop_free(val); 347 } 348 } 349 350 static void 351 get_tunables(char *bopt, int64_t *ivar) 352 { 353 int64_t *iarray; 354 uint_t n; 355 356 /* 357 * Check the rootnex.conf property 358 * Fake up a dev_t since searching the global 359 * property list needs it 360 */ 361 if (ddi_prop_lookup_int64_array( 362 makedevice(ddi_name_to_major("rootnex"), 0), root_devinfo, 363 DDI_PROP_DONTPASS | DDI_PROP_ROOTNEX_GLOBAL, bopt, 364 &iarray, &n) != DDI_PROP_SUCCESS) { 365 return; 366 } 367 368 if (n != 1) { 369 ddi_err(DER_WARN, NULL, "More than one value specified for " 370 "%s property. Ignoring and using default", 371 "immu-flush-gran"); 372 ddi_prop_free(iarray); 373 return; 374 } 375 376 if (iarray[0] < 0) { 377 ddi_err(DER_WARN, NULL, "Negative value specified for " 378 "%s property. Inoring and Using default value", 379 "immu-flush-gran"); 380 ddi_prop_free(iarray); 381 return; 382 } 383 384 *ivar = iarray[0]; 385 386 ddi_prop_free(iarray); 387 } 388 389 static void 390 read_boot_options(void) 391 { 392 /* enable/disable options */ 393 get_bootopt("immu-enable", &immu_enable); 394 get_bootopt("immu-dvma-enable", &immu_dvma_enable); 395 get_bootopt("immu-gfxdvma-enable", &immu_gfxdvma_enable); 396 get_bootopt("immu-intrmap-enable", &immu_intrmap_enable); 397 get_bootopt("immu-qinv-enable", &immu_qinv_enable); 398 399 /* workaround switches */ 400 get_bootopt("immu-quirk-usbpage0", &immu_quirk_usbpage0); 401 get_bootopt("immu-quirk-usbfullpa", &immu_quirk_usbfullpa); 402 get_bootopt("immu-quirk-usbrmrr", &immu_quirk_usbrmrr); 403 404 /* debug printing */ 405 get_bootopt("immu-dmar-print", &immu_dmar_print); 406 407 /* get tunables */ 408 get_tunables("immu-flush-gran", &immu_flush_gran); 409 } 410 411 /* 412 * Note, this will not catch hardware not enumerated 413 * in early boot 414 */ 415 static boolean_t 416 blacklisted_driver(void) 417 { 418 char **strptr; 419 int i; 420 major_t maj; 421 422 ASSERT((black_array == NULL) ^ (nblacks != 0)); 423 424 /* need at least 2 strings */ 425 if (nblacks < 2) { 426 return (B_FALSE); 427 } 428 429 for (i = 0; nblacks - i > 1; i++) { 430 strptr = &black_array[i]; 431 if (strcmp(*strptr++, "DRIVER") == 0) { 432 if ((maj = ddi_name_to_major(*strptr++)) 433 != DDI_MAJOR_T_NONE) { 434 /* is there hardware bound to this drvr */ 435 if (devnamesp[maj].dn_head != NULL) { 436 return (B_TRUE); 437 } 438 } 439 i += 1; /* for loop adds 1, so add only 1 here */ 440 } 441 } 442 443 return (B_FALSE); 444 } 445 446 static boolean_t 447 blacklisted_smbios(void) 448 { 449 id_t smid; 450 smbios_hdl_t *smhdl; 451 smbios_info_t sminf; 452 smbios_system_t smsys; 453 char *mfg, *product, *version; 454 char **strptr; 455 int i; 456 457 ASSERT((black_array == NULL) ^ (nblacks != 0)); 458 459 /* need at least 4 strings for this setting */ 460 if (nblacks < 4) { 461 return (B_FALSE); 462 } 463 464 smhdl = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 465 if (smhdl == NULL || 466 (smid = smbios_info_system(smhdl, &smsys)) == SMB_ERR || 467 smbios_info_common(smhdl, smid, &sminf) == SMB_ERR) { 468 return (B_FALSE); 469 } 470 471 mfg = (char *)sminf.smbi_manufacturer; 472 product = (char *)sminf.smbi_product; 473 version = (char *)sminf.smbi_version; 474 475 ddi_err(DER_CONT, NULL, "?System SMBIOS information:\n"); 476 ddi_err(DER_CONT, NULL, "?Manufacturer = <%s>\n", mfg); 477 ddi_err(DER_CONT, NULL, "?Product = <%s>\n", product); 478 ddi_err(DER_CONT, NULL, "?Version = <%s>\n", version); 479 480 for (i = 0; nblacks - i > 3; i++) { 481 strptr = &black_array[i]; 482 if (strcmp(*strptr++, "SMBIOS") == 0) { 483 if (strcmp(*strptr++, mfg) == 0 && 484 ((char *)strptr == '\0' || 485 strcmp(*strptr++, product) == 0) && 486 ((char *)strptr == '\0' || 487 strcmp(*strptr++, version) == 0)) { 488 return (B_TRUE); 489 } 490 i += 3; 491 } 492 } 493 494 return (B_FALSE); 495 } 496 497 static boolean_t 498 blacklisted_acpi(void) 499 { 500 ASSERT((black_array == NULL) ^ (nblacks != 0)); 501 if (nblacks == 0) { 502 return (B_FALSE); 503 } 504 505 return (immu_dmar_blacklisted(black_array, nblacks)); 506 } 507 508 /* 509 * Check if system is blacklisted by Intel IOMMU driver 510 * i.e. should Intel IOMMU be disabled on this system 511 * Currently a system can be blacklistd based on the 512 * following bases: 513 * 514 * 1. DMAR ACPI table information. 515 * This information includes things like 516 * manufacturer and revision number. If rootnex.conf 517 * has matching info set in its blacklist property 518 * then Intel IOMMu will be disabled 519 * 520 * 2. SMBIOS information 521 * 522 * 3. Driver installed - useful if a particular 523 * driver or hardware is toxic if Intel IOMMU 524 * is turned on. 525 */ 526 527 static void 528 blacklist_setup(void) 529 { 530 char **string_array; 531 uint_t nstrings; 532 533 /* 534 * Check the rootnex.conf blacklist property. 535 * Fake up a dev_t since searching the global 536 * property list needs it 537 */ 538 if (ddi_prop_lookup_string_array( 539 makedevice(ddi_name_to_major("rootnex"), 0), root_devinfo, 540 DDI_PROP_DONTPASS | DDI_PROP_ROOTNEX_GLOBAL, "immu-blacklist", 541 &string_array, &nstrings) != DDI_PROP_SUCCESS) { 542 return; 543 } 544 545 /* smallest blacklist criteria works with multiples of 2 */ 546 if (nstrings % 2 != 0) { 547 ddi_err(DER_WARN, NULL, "Invalid IOMMU blacklist " 548 "rootnex.conf: number of strings must be a " 549 "multiple of 2"); 550 ddi_prop_free(string_array); 551 return; 552 } 553 554 black_array = string_array; 555 nblacks = nstrings; 556 } 557 558 static void 559 blacklist_destroy(void) 560 { 561 if (black_array) { 562 ddi_prop_free(black_array); 563 black_array = NULL; 564 nblacks = 0; 565 } 566 567 ASSERT(black_array == NULL); 568 ASSERT(nblacks == 0); 569 } 570 571 572 /* 573 * Now set all the fields in the order they are defined 574 * We do this only as a defensive-coding practice, it is 575 * not a correctness issue. 576 */ 577 static void * 578 immu_state_alloc(int seg, void *dmar_unit) 579 { 580 immu_t *immu; 581 582 dmar_unit = immu_dmar_walk_units(seg, dmar_unit); 583 if (dmar_unit == NULL) { 584 /* No more IOMMUs in this segment */ 585 return (NULL); 586 } 587 588 immu = kmem_zalloc(sizeof (immu_t), KM_SLEEP); 589 590 mutex_init(&(immu->immu_lock), NULL, MUTEX_DRIVER, NULL); 591 592 mutex_enter(&(immu->immu_lock)); 593 594 immu->immu_dmar_unit = dmar_unit; 595 immu->immu_name = ddi_strdup(immu_dmar_unit_name(dmar_unit), 596 KM_SLEEP); 597 immu->immu_dip = immu_dmar_unit_dip(dmar_unit); 598 599 /* 600 * the immu_intr_lock mutex is grabbed by the IOMMU 601 * unit's interrupt handler so we need to use an 602 * interrupt cookie for the mutex 603 */ 604 mutex_init(&(immu->immu_intr_lock), NULL, MUTEX_DRIVER, 605 (void *)ipltospl(IMMU_INTR_IPL)); 606 607 /* IOMMU regs related */ 608 mutex_init(&(immu->immu_regs_lock), NULL, MUTEX_DEFAULT, NULL); 609 cv_init(&(immu->immu_regs_cv), NULL, CV_DEFAULT, NULL); 610 immu->immu_regs_busy = B_FALSE; 611 612 /* DVMA related */ 613 immu->immu_dvma_coherent = B_FALSE; 614 615 /* DVMA context related */ 616 rw_init(&(immu->immu_ctx_rwlock), NULL, RW_DEFAULT, NULL); 617 618 /* DVMA domain related */ 619 list_create(&(immu->immu_domain_list), sizeof (domain_t), 620 offsetof(domain_t, dom_immu_node)); 621 622 /* DVMA special device lists */ 623 immu->immu_dvma_gfx_only = B_FALSE; 624 list_create(&(immu->immu_dvma_lpc_list), sizeof (immu_devi_t), 625 offsetof(immu_devi_t, imd_spc_node)); 626 list_create(&(immu->immu_dvma_gfx_list), sizeof (immu_devi_t), 627 offsetof(immu_devi_t, imd_spc_node)); 628 629 /* interrupt remapping related */ 630 mutex_init(&(immu->immu_intrmap_lock), NULL, MUTEX_DEFAULT, NULL); 631 632 /* qinv related */ 633 mutex_init(&(immu->immu_qinv_lock), NULL, MUTEX_DEFAULT, NULL); 634 635 /* 636 * insert this immu unit into the system-wide list 637 */ 638 list_insert_tail(&immu_list, immu); 639 640 mutex_exit(&(immu->immu_lock)); 641 642 ddi_err(DER_LOG, immu->immu_dip, "IMMU: unit setup"); 643 644 immu_dmar_set_immu(dmar_unit, immu); 645 646 return (dmar_unit); 647 } 648 649 static void 650 immu_subsystems_setup(void) 651 { 652 int seg; 653 void *unit_hdl; 654 655 ddi_err(DER_VERB, NULL, 656 "Creating state structures for Intel IOMMU units\n"); 657 658 ASSERT(immu_setup == B_FALSE); 659 ASSERT(immu_running == B_FALSE); 660 661 mutex_init(&immu_lock, NULL, MUTEX_DEFAULT, NULL); 662 list_create(&immu_list, sizeof (immu_t), offsetof(immu_t, immu_node)); 663 664 mutex_enter(&immu_lock); 665 666 ASSERT(immu_pgtable_cache == NULL); 667 668 immu_pgtable_cache = kmem_cache_create("immu_pgtable_cache", 669 sizeof (pgtable_t), 0, 670 pgtable_ctor, pgtable_dtor, NULL, NULL, NULL, 0); 671 672 unit_hdl = NULL; 673 for (seg = 0; seg < IMMU_MAXSEG; seg++) { 674 while (unit_hdl = immu_state_alloc(seg, unit_hdl)) { 675 ; 676 } 677 } 678 679 immu_regs_setup(&immu_list); /* subsequent code needs this first */ 680 immu_dvma_setup(&immu_list); 681 immu_intrmap_setup(&immu_list); 682 immu_qinv_setup(&immu_list); 683 684 mutex_exit(&immu_lock); 685 } 686 687 /* 688 * immu_subsystems_startup() 689 * startup all units that were setup 690 */ 691 static void 692 immu_subsystems_startup(void) 693 { 694 immu_t *immu; 695 696 mutex_enter(&immu_lock); 697 698 ASSERT(immu_setup == B_TRUE); 699 ASSERT(immu_running == B_FALSE); 700 701 immu_dmar_startup(); 702 703 immu = list_head(&immu_list); 704 for (; immu; immu = list_next(&immu_list, immu)) { 705 706 mutex_enter(&(immu->immu_lock)); 707 708 immu_intr_register(immu); 709 immu_dvma_startup(immu); 710 immu_intrmap_startup(immu); 711 immu_qinv_startup(immu); 712 713 /* 714 * Set IOMMU unit's regs to do 715 * the actual startup. This will 716 * set immu->immu_running field 717 * if the unit is successfully 718 * started 719 */ 720 immu_regs_startup(immu); 721 722 mutex_exit(&(immu->immu_lock)); 723 } 724 725 mutex_exit(&immu_lock); 726 } 727 728 /* ################## Intel IOMMU internal interfaces ###################### */ 729 730 /* 731 * Internal interfaces for IOMMU code (i.e. not exported to rootnex 732 * or rest of system) 733 */ 734 735 /* 736 * ddip can be NULL, in which case we walk up until we find the root dip 737 * NOTE: We never visit the root dip since its not a hardware node 738 */ 739 int 740 immu_walk_ancestor( 741 dev_info_t *rdip, 742 dev_info_t *ddip, 743 int (*func)(dev_info_t *, void *arg), 744 void *arg, 745 int *lvlp, 746 immu_flags_t immu_flags) 747 { 748 dev_info_t *pdip; 749 int level; 750 int error = DDI_SUCCESS; 751 752 ASSERT(root_devinfo); 753 ASSERT(rdip); 754 ASSERT(rdip != root_devinfo); 755 ASSERT(func); 756 757 /* ddip and immu can be NULL */ 758 759 /* Hold rdip so that branch is not detached */ 760 ndi_hold_devi(rdip); 761 for (pdip = rdip, level = 1; pdip && pdip != root_devinfo; 762 pdip = ddi_get_parent(pdip), level++) { 763 764 if (immu_devi_set(pdip, immu_flags) != DDI_SUCCESS) { 765 error = DDI_FAILURE; 766 break; 767 } 768 if (func(pdip, arg) == DDI_WALK_TERMINATE) { 769 break; 770 } 771 if (immu_flags & IMMU_FLAGS_DONTPASS) { 772 break; 773 } 774 if (pdip == ddip) { 775 break; 776 } 777 } 778 779 ndi_rele_devi(rdip); 780 781 if (lvlp) 782 *lvlp = level; 783 784 return (error); 785 } 786 787 /* ######################## Intel IOMMU entry points ####################### */ 788 /* 789 * immu_init() 790 * called from rootnex_attach(). setup but don't startup the Intel IOMMU 791 * This is the first function called in Intel IOMMU code 792 */ 793 void 794 immu_init(void) 795 { 796 char *phony_reg = "A thing of beauty is a joy forever"; 797 798 /* Set some global shorthands that are needed by all of IOMMU code */ 799 ASSERT(root_devinfo == NULL); 800 root_devinfo = ddi_root_node(); 801 802 /* 803 * Intel IOMMU only supported only if MMU(CPU) page size is == 804 * IOMMU pages size. 805 */ 806 /*LINTED*/ 807 if (MMU_PAGESIZE != IMMU_PAGESIZE) { 808 ddi_err(DER_WARN, NULL, 809 "MMU page size (%d) is not equal to\n" 810 "IOMMU page size (%d). " 811 "Disabling Intel IOMMU. ", 812 MMU_PAGESIZE, IMMU_PAGESIZE); 813 immu_enable = B_FALSE; 814 return; 815 } 816 817 /* 818 * retrieve the Intel IOMMU boot options. 819 * Do this before parsing immu ACPI table 820 * as a boot option could potentially affect 821 * ACPI parsing. 822 */ 823 ddi_err(DER_CONT, NULL, "?Reading Intel IOMMU boot options\n"); 824 read_boot_options(); 825 826 /* 827 * Check the IOMMU enable boot-option first. 828 * This is so that we can skip parsing the ACPI table 829 * if necessary because that may cause problems in 830 * systems with buggy BIOS or ACPI tables 831 */ 832 if (immu_enable == B_FALSE) { 833 return; 834 } 835 836 /* 837 * Next, check if the system even has an Intel IOMMU 838 * We use the presence or absence of the IOMMU ACPI 839 * table to detect Intel IOMMU. 840 */ 841 if (immu_dmar_setup() != DDI_SUCCESS) { 842 immu_enable = B_FALSE; 843 return; 844 } 845 846 /* 847 * Check blacklists 848 */ 849 blacklist_setup(); 850 851 if (blacklisted_smbios() == B_TRUE) { 852 blacklist_destroy(); 853 immu_enable = B_FALSE; 854 return; 855 } 856 857 if (blacklisted_driver() == B_TRUE) { 858 blacklist_destroy(); 859 immu_enable = B_FALSE; 860 return; 861 } 862 863 /* 864 * Read the "raw" DMAR ACPI table to get information 865 * and convert into a form we can use. 866 */ 867 if (immu_dmar_parse() != DDI_SUCCESS) { 868 blacklist_destroy(); 869 immu_enable = B_FALSE; 870 return; 871 } 872 873 /* 874 * now that we have processed the ACPI table 875 * check if we need to blacklist this system 876 * based on ACPI info 877 */ 878 if (blacklisted_acpi() == B_TRUE) { 879 immu_dmar_destroy(); 880 blacklist_destroy(); 881 immu_enable = B_FALSE; 882 return; 883 } 884 885 blacklist_destroy(); 886 887 /* 888 * Check if system has HW quirks. 889 */ 890 pre_setup_quirks(); 891 892 /* Now do the rest of the setup */ 893 immu_subsystems_setup(); 894 895 /* 896 * Now that the IMMU is setup, create a phony 897 * reg prop so that suspend/resume works 898 */ 899 if (ddi_prop_update_byte_array(DDI_DEV_T_NONE, root_devinfo, "reg", 900 (uchar_t *)phony_reg, strlen(phony_reg) + 1) != DDI_PROP_SUCCESS) { 901 ddi_err(DER_PANIC, NULL, "Failed to create reg prop for " 902 "rootnex node"); 903 /*NOTREACHED*/ 904 } 905 906 immu_setup = B_TRUE; 907 } 908 909 /* 910 * immu_startup() 911 * called directly by boot code to startup 912 * all units of the IOMMU 913 */ 914 void 915 immu_startup(void) 916 { 917 /* 918 * If IOMMU is disabled, do nothing 919 */ 920 if (immu_enable == B_FALSE) { 921 return; 922 } 923 924 if (immu_setup == B_FALSE) { 925 ddi_err(DER_WARN, NULL, "Intel IOMMU not setup, " 926 "skipping IOMU startup"); 927 return; 928 } 929 930 pre_startup_quirks(); 931 932 ddi_err(DER_CONT, NULL, 933 "?Starting Intel IOMMU (dmar) units...\n"); 934 935 immu_subsystems_startup(); 936 937 immu_running = B_TRUE; 938 } 939 940 /* 941 * immu_map_sgl() 942 * called from rootnex_coredma_bindhdl() when Intel 943 * IOMMU is enabled to build DVMA cookies and map them. 944 */ 945 int 946 immu_map_sgl(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 947 int prealloc_count, dev_info_t *rdip) 948 { 949 if (immu_running == B_FALSE) { 950 return (DDI_DMA_USE_PHYSICAL); 951 } 952 953 return (immu_dvma_map(hp, dmareq, NULL, prealloc_count, rdip, 954 IMMU_FLAGS_DMAHDL)); 955 } 956 957 /* 958 * immu_unmap_sgl() 959 * called from rootnex_coredma_unbindhdl(), to unmap DVMA 960 * cookies and free them 961 */ 962 int 963 immu_unmap_sgl(ddi_dma_impl_t *hp, dev_info_t *rdip) 964 { 965 if (immu_running == B_FALSE) { 966 return (DDI_DMA_USE_PHYSICAL); 967 } 968 969 return (immu_dvma_unmap(hp, rdip)); 970 } 971 972 /* 973 * Hook to notify IOMMU code of device tree changes 974 */ 975 void 976 immu_device_tree_changed(void) 977 { 978 if (immu_setup == B_FALSE) { 979 return; 980 } 981 982 ddi_err(DER_WARN, NULL, "Intel IOMMU currently " 983 "does not use device tree updates"); 984 } 985 986 /* 987 * Hook to notify IOMMU code of memory changes 988 */ 989 void 990 immu_physmem_update(uint64_t addr, uint64_t size) 991 { 992 if (immu_setup == B_FALSE) { 993 return; 994 } 995 immu_dvma_physmem_update(addr, size); 996 } 997 998 /* 999 * immu_quiesce() 1000 * quiesce all units that are running 1001 */ 1002 int 1003 immu_quiesce(void) 1004 { 1005 immu_t *immu; 1006 int ret = DDI_SUCCESS; 1007 1008 mutex_enter(&immu_lock); 1009 1010 if (immu_running == B_FALSE) 1011 return (DDI_SUCCESS); 1012 1013 ASSERT(immu_setup == B_TRUE); 1014 1015 immu = list_head(&immu_list); 1016 for (; immu; immu = list_next(&immu_list, immu)) { 1017 1018 /* if immu is not running, we dont quiesce */ 1019 if (immu->immu_regs_running == B_FALSE) 1020 continue; 1021 1022 /* flush caches */ 1023 rw_enter(&(immu->immu_ctx_rwlock), RW_WRITER); 1024 immu_regs_context_flush(immu, 0, 0, 0, CONTEXT_GLOBAL); 1025 rw_exit(&(immu->immu_ctx_rwlock)); 1026 immu_regs_iotlb_flush(immu, 0, 0, 0, 0, IOTLB_GLOBAL); 1027 immu_regs_wbf_flush(immu); 1028 1029 mutex_enter(&(immu->immu_lock)); 1030 1031 /* 1032 * Set IOMMU unit's regs to do 1033 * the actual shutdown. 1034 */ 1035 immu_regs_shutdown(immu); 1036 immu_regs_suspend(immu); 1037 1038 /* if immu is still running, we failed */ 1039 if (immu->immu_regs_running == B_TRUE) 1040 ret = DDI_FAILURE; 1041 else 1042 immu->immu_regs_quiesced = B_TRUE; 1043 1044 mutex_exit(&(immu->immu_lock)); 1045 } 1046 mutex_exit(&immu_lock); 1047 1048 if (ret == DDI_SUCCESS) { 1049 immu_running = B_FALSE; 1050 immu_quiesced = B_TRUE; 1051 } 1052 1053 return (ret); 1054 } 1055 1056 /* 1057 * immu_unquiesce() 1058 * unquiesce all units 1059 */ 1060 int 1061 immu_unquiesce(void) 1062 { 1063 immu_t *immu; 1064 int ret = DDI_SUCCESS; 1065 1066 mutex_enter(&immu_lock); 1067 1068 if (immu_quiesced == B_FALSE) 1069 return (DDI_SUCCESS); 1070 1071 ASSERT(immu_setup == B_TRUE); 1072 ASSERT(immu_running == B_FALSE); 1073 1074 immu = list_head(&immu_list); 1075 for (; immu; immu = list_next(&immu_list, immu)) { 1076 1077 mutex_enter(&(immu->immu_lock)); 1078 1079 /* if immu was not quiesced, i.e was not running before */ 1080 if (immu->immu_regs_quiesced == B_FALSE) { 1081 mutex_exit(&(immu->immu_lock)); 1082 continue; 1083 } 1084 1085 if (immu_regs_resume(immu) != DDI_SUCCESS) { 1086 ret = DDI_FAILURE; 1087 mutex_exit(&(immu->immu_lock)); 1088 continue; 1089 } 1090 1091 /* flush caches before unquiesce */ 1092 rw_enter(&(immu->immu_ctx_rwlock), RW_WRITER); 1093 immu_regs_context_flush(immu, 0, 0, 0, CONTEXT_GLOBAL); 1094 rw_exit(&(immu->immu_ctx_rwlock)); 1095 immu_regs_iotlb_flush(immu, 0, 0, 0, 0, IOTLB_GLOBAL); 1096 1097 /* 1098 * Set IOMMU unit's regs to do 1099 * the actual startup. This will 1100 * set immu->immu_regs_running field 1101 * if the unit is successfully 1102 * started 1103 */ 1104 immu_regs_startup(immu); 1105 1106 if (immu->immu_regs_running == B_FALSE) { 1107 ret = DDI_FAILURE; 1108 } else { 1109 immu_quiesced = B_TRUE; 1110 immu_running = B_TRUE; 1111 immu->immu_regs_quiesced = B_FALSE; 1112 } 1113 1114 mutex_exit(&(immu->immu_lock)); 1115 } 1116 1117 mutex_exit(&immu_lock); 1118 1119 return (ret); 1120 } 1121 1122 /* ############## END Intel IOMMU entry points ################## */ 1123