xref: /titanic_51/usr/src/uts/common/xen/io/xdf.h (revision ee56d0c81901bbe996dc0aa42265e53824979adf)
1843e1988Sjohnlev /*
2843e1988Sjohnlev  * CDDL HEADER START
3843e1988Sjohnlev  *
4843e1988Sjohnlev  * The contents of this file are subject to the terms of the
5843e1988Sjohnlev  * Common Development and Distribution License (the "License").
6843e1988Sjohnlev  * You may not use this file except in compliance with the License.
7843e1988Sjohnlev  *
8843e1988Sjohnlev  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9843e1988Sjohnlev  * or http://www.opensolaris.org/os/licensing.
10843e1988Sjohnlev  * See the License for the specific language governing permissions
11843e1988Sjohnlev  * and limitations under the License.
12843e1988Sjohnlev  *
13843e1988Sjohnlev  * When distributing Covered Code, include this CDDL HEADER in each
14843e1988Sjohnlev  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15843e1988Sjohnlev  * If applicable, add the following below this CDDL HEADER, with the
16843e1988Sjohnlev  * fields enclosed by brackets "[]" replaced with your own identifying
17843e1988Sjohnlev  * information: Portions Copyright [yyyy] [name of copyright owner]
18843e1988Sjohnlev  *
19843e1988Sjohnlev  * CDDL HEADER END
20843e1988Sjohnlev  */
21843e1988Sjohnlev 
22843e1988Sjohnlev /*
237f0b8309SEdward Pilatowicz  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24843e1988Sjohnlev  * Use is subject to license terms.
25843e1988Sjohnlev  */
26843e1988Sjohnlev 
27843e1988Sjohnlev 
28843e1988Sjohnlev #ifndef _SYS_XDF_H
29843e1988Sjohnlev #define	_SYS_XDF_H
30843e1988Sjohnlev 
317f0b8309SEdward Pilatowicz #include <sys/ddi.h>
327f0b8309SEdward Pilatowicz #include <sys/sunddi.h>
337f0b8309SEdward Pilatowicz #include <sys/cmlb.h>
347f0b8309SEdward Pilatowicz #include <sys/dkio.h>
357f0b8309SEdward Pilatowicz 
367f0b8309SEdward Pilatowicz #include <sys/gnttab.h>
377f0b8309SEdward Pilatowicz #include <xen/sys/xendev.h>
387f0b8309SEdward Pilatowicz 
39843e1988Sjohnlev #ifdef __cplusplus
40843e1988Sjohnlev extern "C" {
41843e1988Sjohnlev #endif
42843e1988Sjohnlev 
43843e1988Sjohnlev 
44843e1988Sjohnlev /*
45843e1988Sjohnlev  * VBDs have standard 512 byte blocks
46843e1988Sjohnlev  * A single blkif_request can transfer up to 11 pages of data, 1 page/segment
47843e1988Sjohnlev  */
48843e1988Sjohnlev #define	XB_BSIZE	DEV_BSIZE
49843e1988Sjohnlev #define	XB_BMASK	(XB_BSIZE - 1)
50843e1988Sjohnlev #define	XB_BSHIFT	9
5165908c77Syu, larry liu - Sun Microsystems - Beijing China #define	XB_DTOB(bn, vdp)	((bn) * (vdp)->xdf_xdev_secsize)
52843e1988Sjohnlev 
53843e1988Sjohnlev #define	XB_MAX_SEGLEN	(8 * XB_BSIZE)
54843e1988Sjohnlev #define	XB_SEGOFFSET	(XB_MAX_SEGLEN - 1)
55843e1988Sjohnlev #define	XB_MAX_XFER	(XB_MAX_SEGLEN * BLKIF_MAX_SEGMENTS_PER_REQUEST)
56843e1988Sjohnlev #define	XB_MAXPHYS	(XB_MAX_XFER * BLKIF_RING_SIZE)
57843e1988Sjohnlev 
58*ee56d0c8SMark Johnson /* Number of sectors per segement */
59*ee56d0c8SMark Johnson #define	XB_NUM_SECTORS_PER_SEG	(PAGESIZE / XB_BSIZE)
60*ee56d0c8SMark Johnson /* sectors are number 0 through XB_NUM_SECTORS_PER_SEG - 1 */
61*ee56d0c8SMark Johnson #define	XB_LAST_SECTOR_IN_SEG	(XB_NUM_SECTORS_PER_SEG - 1)
62*ee56d0c8SMark Johnson 
6306bbe1e0Sedp 
6406bbe1e0Sedp /*
6506bbe1e0Sedp  * Slice for absolute disk transaction.
6606bbe1e0Sedp  *
6706bbe1e0Sedp  * Hack Alert.  XB_SLICE_NONE is a magic value that can be written into the
6806bbe1e0Sedp  * b_private field of buf structures passed to xdf_strategy().  When present
6906bbe1e0Sedp  * it indicates that the I/O is using an absolute offset.  (ie, the I/O is
7006bbe1e0Sedp  * not bound to any one partition.)  This magic value is currently used by
7106bbe1e0Sedp  * the pv_cmdk driver.  This hack is shamelessly stolen from the sun4v vdc
7206bbe1e0Sedp  * driver, another virtual disk device driver.  (Although in the case of
7306bbe1e0Sedp  * vdc the hack is less egregious since it is self contained within the
7406bbe1e0Sedp  * vdc driver, where as here it is used as an interface between the pv_cmdk
7506bbe1e0Sedp  * driver and the xdf driver.)
7606bbe1e0Sedp  */
7706bbe1e0Sedp #define	XB_SLICE_NONE		0xFF
7806bbe1e0Sedp 
79843e1988Sjohnlev /*
80843e1988Sjohnlev  * blkif status
81843e1988Sjohnlev  */
827f0b8309SEdward Pilatowicz typedef enum xdf_state {
83843e1988Sjohnlev 	/*
84843e1988Sjohnlev 	 * initial state
85843e1988Sjohnlev 	 */
867f0b8309SEdward Pilatowicz 	XD_UNKNOWN = 0,
87843e1988Sjohnlev 	/*
88843e1988Sjohnlev 	 * ring and evtchn alloced, xenbus state changed to
89843e1988Sjohnlev 	 * XenbusStateInitialised, wait for backend to connect
90843e1988Sjohnlev 	 */
917f0b8309SEdward Pilatowicz 	XD_INIT = 1,
92843e1988Sjohnlev 	/*
937f0b8309SEdward Pilatowicz 	 * backend and frontend xenbus state has changed to
947f0b8309SEdward Pilatowicz 	 * XenbusStateConnected.  IO is now allowed, but we are not still
957f0b8309SEdward Pilatowicz 	 * fully initialized.
96843e1988Sjohnlev 	 */
977f0b8309SEdward Pilatowicz 	XD_CONNECTED = 2,
987f0b8309SEdward Pilatowicz 	/*
997f0b8309SEdward Pilatowicz 	 * We're fully initialized and allowing regular IO.
1007f0b8309SEdward Pilatowicz 	 */
1017f0b8309SEdward Pilatowicz 	XD_READY = 3,
102843e1988Sjohnlev 	/*
103843e1988Sjohnlev 	 * vbd interface close request received from backend, no more I/O
104843e1988Sjohnlev 	 * requestis allowed to be put into ring buffer, while interrupt handler
105843e1988Sjohnlev 	 * is allowed to run to finish any outstanding I/O request, disconnect
106843e1988Sjohnlev 	 * process is kicked off by changing xenbus state to XenbusStateClosed
107843e1988Sjohnlev 	 */
1087f0b8309SEdward Pilatowicz 	XD_CLOSING = 4,
109843e1988Sjohnlev 	/*
110843e1988Sjohnlev 	 * disconnection process finished, both backend and frontend's
111843e1988Sjohnlev 	 * xenbus state has been changed to XenbusStateClosed, can be detached
112843e1988Sjohnlev 	 */
1137f0b8309SEdward Pilatowicz 	XD_CLOSED = 5,
114843e1988Sjohnlev 	/*
1157f0b8309SEdward Pilatowicz 	 * We're either being suspended or resuming from a suspend.  If we're
1167f0b8309SEdward Pilatowicz 	 * in the process of suspending, we block all new IO, but but allow
1177f0b8309SEdward Pilatowicz 	 * existing IO to drain.
118843e1988Sjohnlev 	 */
1197f0b8309SEdward Pilatowicz 	XD_SUSPEND = 6
1207f0b8309SEdward Pilatowicz } xdf_state_t;
121843e1988Sjohnlev 
122843e1988Sjohnlev /*
123551bc2a6Smrj  * 16 partitions + fdisk
124843e1988Sjohnlev  */
125843e1988Sjohnlev #define	XDF_PSHIFT	6
126843e1988Sjohnlev #define	XDF_PMASK	((1 << XDF_PSHIFT) - 1)
127843e1988Sjohnlev #define	XDF_PEXT	(1 << XDF_PSHIFT)
128843e1988Sjohnlev #define	XDF_MINOR(i, m) (((i) << XDF_PSHIFT) | (m))
129843e1988Sjohnlev #define	XDF_INST(m)	((m) >> XDF_PSHIFT)
130843e1988Sjohnlev #define	XDF_PART(m)	((m) & XDF_PMASK)
131843e1988Sjohnlev 
132843e1988Sjohnlev /*
133843e1988Sjohnlev  * one blkif_request_t will have one corresponding ge_slot_t
134843e1988Sjohnlev  * where we save those grant table refs used in this blkif_request_t
135843e1988Sjohnlev  *
136843e1988Sjohnlev  * the id of this ge_slot_t will also be put into 'id' field in
137843e1988Sjohnlev  * each blkif_request_t when sent out to the ring buffer.
138843e1988Sjohnlev  */
139843e1988Sjohnlev typedef struct ge_slot {
1407f0b8309SEdward Pilatowicz 	list_node_t	gs_vreq_link;
1417f0b8309SEdward Pilatowicz 	struct v_req	*gs_vreq;
1427f0b8309SEdward Pilatowicz 	domid_t		gs_oeid;
1437f0b8309SEdward Pilatowicz 	int		gs_isread;
1447f0b8309SEdward Pilatowicz 	grant_ref_t	gs_ghead;
1457f0b8309SEdward Pilatowicz 	int		gs_ngrefs;
1467f0b8309SEdward Pilatowicz 	grant_ref_t	gs_ge[BLKIF_MAX_SEGMENTS_PER_REQUEST];
147843e1988Sjohnlev } ge_slot_t;
148843e1988Sjohnlev 
149843e1988Sjohnlev /*
150843e1988Sjohnlev  * vbd I/O request
151843e1988Sjohnlev  *
152843e1988Sjohnlev  * An instance of this structure is bound to each buf passed to
153843e1988Sjohnlev  * the driver's strategy by setting the pointer into bp->av_back.
154843e1988Sjohnlev  * The id of this vreq will also be put into 'id' field in each
155843e1988Sjohnlev  * blkif_request_t when sent out to the ring buffer for one DMA
156843e1988Sjohnlev  * window of this buf.
157843e1988Sjohnlev  *
158843e1988Sjohnlev  * Vreq mainly contains DMA information for this buf. In one vreq/buf,
159843e1988Sjohnlev  * there could be more than one DMA window, each of which will be
160843e1988Sjohnlev  * mapped to one blkif_request_t/ge_slot_t. Ge_slot_t contains all grant
161843e1988Sjohnlev  * table entry information for this buf. The ge_slot_t for current DMA
162843e1988Sjohnlev  * window is pointed to by v_gs in vreq.
163843e1988Sjohnlev  *
164843e1988Sjohnlev  * So, grant table entries will only be alloc'ed when the DMA window is
165843e1988Sjohnlev  * about to be transferred via blkif_request_t to the ring buffer. And
166843e1988Sjohnlev  * they will be freed right after the blkif_response_t is seen. By this
167843e1988Sjohnlev  * means, we can make use of grant table entries more efficiently.
168843e1988Sjohnlev  */
169843e1988Sjohnlev typedef struct v_req {
170843e1988Sjohnlev 	list_node_t	v_link;
1717f0b8309SEdward Pilatowicz 	list_t		v_gs;
172843e1988Sjohnlev 	int		v_status;
173843e1988Sjohnlev 	buf_t		*v_buf;
174843e1988Sjohnlev 	uint_t		v_ndmacs;
175843e1988Sjohnlev 	uint_t		v_dmaw;
176843e1988Sjohnlev 	uint_t		v_ndmaws;
177843e1988Sjohnlev 	uint_t		v_nslots;
178843e1988Sjohnlev 	uint64_t	v_blkno;
179843e1988Sjohnlev 	ddi_dma_handle_t v_memdmahdl;
1807f0b8309SEdward Pilatowicz 	ddi_acc_handle_t v_align;
1817f0b8309SEdward Pilatowicz 	ddi_dma_handle_t v_dmahdl;
1827f0b8309SEdward Pilatowicz 	ddi_dma_cookie_t v_dmac;
1837f0b8309SEdward Pilatowicz 	caddr_t		v_abuf;
184843e1988Sjohnlev 	uint8_t		v_flush_diskcache;
1857f0b8309SEdward Pilatowicz 	boolean_t	v_runq;
186843e1988Sjohnlev } v_req_t;
187843e1988Sjohnlev 
188843e1988Sjohnlev /*
189843e1988Sjohnlev  * Status set and checked in vreq->v_status by vreq_setup()
190843e1988Sjohnlev  *
191843e1988Sjohnlev  * These flags will help us to continue the vreq setup work from last failure
192551bc2a6Smrj  * point, instead of starting from scratch after each failure.
193843e1988Sjohnlev  */
194843e1988Sjohnlev #define	VREQ_INIT		0x0
195843e1988Sjohnlev #define	VREQ_INIT_DONE		0x1
196843e1988Sjohnlev #define	VREQ_DMAHDL_ALLOCED	0x2
197843e1988Sjohnlev #define	VREQ_MEMDMAHDL_ALLOCED	0x3
198843e1988Sjohnlev #define	VREQ_DMAMEM_ALLOCED	0x4
199843e1988Sjohnlev #define	VREQ_DMABUF_BOUND	0x5
200843e1988Sjohnlev #define	VREQ_GS_ALLOCED		0x6
201843e1988Sjohnlev #define	VREQ_DMAWIN_DONE	0x7
202843e1988Sjohnlev 
203843e1988Sjohnlev /*
204843e1988Sjohnlev  * virtual block device per-instance softstate
205843e1988Sjohnlev  */
206843e1988Sjohnlev typedef struct xdf {
207843e1988Sjohnlev 	dev_info_t	*xdf_dip;
2087f0b8309SEdward Pilatowicz 	char		*xdf_addr;
20906bbe1e0Sedp 	ddi_iblock_cookie_t xdf_ibc; /* mutex iblock cookie */
210843e1988Sjohnlev 	domid_t		xdf_peer; /* otherend's dom ID */
211843e1988Sjohnlev 	xendev_ring_t	*xdf_xb_ring; /* I/O ring buffer */
212843e1988Sjohnlev 	ddi_acc_handle_t xdf_xb_ring_hdl; /* access handler for ring buffer */
213843e1988Sjohnlev 	list_t		xdf_vreq_act; /* active vreq list */
214843e1988Sjohnlev 	buf_t		*xdf_f_act; /* active buf list head */
215843e1988Sjohnlev 	buf_t		*xdf_l_act; /* active buf list tail */
2167f0b8309SEdward Pilatowicz 	buf_t		*xdf_i_act; /* active buf list index */
2177f0b8309SEdward Pilatowicz 	xdf_state_t	xdf_state; /* status of this virtual disk */
2187f0b8309SEdward Pilatowicz 	boolean_t	xdf_suspending;
219843e1988Sjohnlev 	ulong_t		xdf_vd_open[OTYPCNT];
220843e1988Sjohnlev 	ulong_t		xdf_vd_lyropen[XDF_PEXT];
2217f0b8309SEdward Pilatowicz 	ulong_t		xdf_connect_req;
2222de7185cSEdward Pilatowicz 	kthread_t	*xdf_connect_thread;
223843e1988Sjohnlev 	ulong_t		xdf_vd_exclopen;
22406bbe1e0Sedp 	kmutex_t	xdf_iostat_lk; /* muxes lock for the iostat ptr */
225843e1988Sjohnlev 	kmutex_t	xdf_dev_lk; /* mutex lock for I/O path */
226843e1988Sjohnlev 	kmutex_t	xdf_cb_lk; /* mutex lock for event handling path */
227843e1988Sjohnlev 	kcondvar_t	xdf_dev_cv; /* cv used in I/O path */
2287f0b8309SEdward Pilatowicz 	uint_t		xdf_dinfo; /* disk info from backend xenstore */
229843e1988Sjohnlev 	diskaddr_t	xdf_xdev_nblocks; /* total size in block */
23065908c77Syu, larry liu - Sun Microsystems - Beijing China 	uint_t		xdf_xdev_secsize; /* disk blksize from backend */
23106bbe1e0Sedp 	cmlb_geom_t	xdf_pgeom;
2327f0b8309SEdward Pilatowicz 	boolean_t	xdf_pgeom_set;
2337f0b8309SEdward Pilatowicz 	boolean_t	xdf_pgeom_fixed;
234843e1988Sjohnlev 	kstat_t		*xdf_xdev_iostat;
235843e1988Sjohnlev 	cmlb_handle_t	xdf_vd_lbl;
236843e1988Sjohnlev 	ddi_softintr_t	xdf_softintr_id;
237843e1988Sjohnlev 	timeout_id_t	xdf_timeout_id;
238843e1988Sjohnlev 	struct gnttab_free_callback xdf_gnt_callback;
2397f0b8309SEdward Pilatowicz 	boolean_t	xdf_feature_barrier;
2407f0b8309SEdward Pilatowicz 	boolean_t	xdf_flush_supported;
2417f0b8309SEdward Pilatowicz 	boolean_t	xdf_media_req_supported;
2427f0b8309SEdward Pilatowicz 	boolean_t	xdf_wce;
2437f0b8309SEdward Pilatowicz 	boolean_t	xdf_cmbl_reattach;
244843e1988Sjohnlev 	char		*xdf_flush_mem;
245843e1988Sjohnlev 	char		*xdf_cache_flush_block;
246551bc2a6Smrj 	int		xdf_evtchn;
2477f0b8309SEdward Pilatowicz 	enum dkio_state	xdf_mstate;
2487f0b8309SEdward Pilatowicz 	kcondvar_t	xdf_mstate_cv;
2497f0b8309SEdward Pilatowicz 	kcondvar_t	xdf_hp_status_cv;
2507f0b8309SEdward Pilatowicz 	struct buf	*xdf_ready_bp;
2517f0b8309SEdward Pilatowicz 	ddi_taskq_t	*xdf_ready_tq;
2527f0b8309SEdward Pilatowicz 	kthread_t	*xdf_ready_tq_thread;
2537f0b8309SEdward Pilatowicz 	struct buf	*xdf_ready_tq_bp;
254843e1988Sjohnlev #ifdef	DEBUG
255843e1988Sjohnlev 	int		xdf_dmacallback_num;
2567f0b8309SEdward Pilatowicz 	kthread_t	*xdf_oe_change_thread;
257843e1988Sjohnlev #endif
258843e1988Sjohnlev } xdf_t;
259843e1988Sjohnlev 
260843e1988Sjohnlev /*
261843e1988Sjohnlev  * VBD I/O requests must be aligned on a 512-byte boundary and specify
262843e1988Sjohnlev  * a transfer size which is a mutiple of 512-bytes
263843e1988Sjohnlev  */
264843e1988Sjohnlev #define	ALIGNED_XFER(bp) \
265843e1988Sjohnlev 	((((uintptr_t)((bp)->b_un.b_addr) & XB_BMASK) == 0) && \
266843e1988Sjohnlev 	(((bp)->b_bcount & XB_BMASK) == 0))
267843e1988Sjohnlev 
268843e1988Sjohnlev #define	U_INVAL(u)	(((u)->uio_loffset & (offset_t)(XB_BMASK)) || \
269843e1988Sjohnlev 	((u)->uio_iov->iov_len & (offset_t)(XB_BMASK)))
270843e1988Sjohnlev 
271843e1988Sjohnlev /* wrap pa_to_ma() for xdf to run in dom0 */
272843e1988Sjohnlev #define	PATOMA(addr)	(DOMAIN_IS_INITDOMAIN(xen_info) ? addr : pa_to_ma(addr))
273843e1988Sjohnlev 
2747f0b8309SEdward Pilatowicz #define	XD_IS_RO(vbd)	VOID2BOOLEAN((vbd)->xdf_dinfo & VDISK_READONLY)
2757f0b8309SEdward Pilatowicz #define	XD_IS_CD(vbd)	VOID2BOOLEAN((vbd)->xdf_dinfo & VDISK_CDROM)
2767f0b8309SEdward Pilatowicz #define	XD_IS_RM(vbd)	VOID2BOOLEAN((vbd)->xdf_dinfo & VDISK_REMOVABLE)
2777f0b8309SEdward Pilatowicz #define	IS_READ(bp)	VOID2BOOLEAN((bp)->b_flags & B_READ)
2787f0b8309SEdward Pilatowicz #define	IS_ERROR(bp)	VOID2BOOLEAN((bp)->b_flags & B_ERROR)
279843e1988Sjohnlev 
280843e1988Sjohnlev #define	XDF_UPDATE_IO_STAT(vdp, bp)					\
2817f0b8309SEdward Pilatowicz 	{								\
282843e1988Sjohnlev 		kstat_io_t *kip = KSTAT_IO_PTR((vdp)->xdf_xdev_iostat);	\
283843e1988Sjohnlev 		size_t n_done = (bp)->b_bcount - (bp)->b_resid;		\
284843e1988Sjohnlev 		if ((bp)->b_flags & B_READ) {				\
285843e1988Sjohnlev 			kip->reads++;					\
286843e1988Sjohnlev 			kip->nread += n_done;				\
287843e1988Sjohnlev 		} else {                                                \
288843e1988Sjohnlev 			kip->writes++;					\
289843e1988Sjohnlev 			kip->nwritten += n_done;			\
290843e1988Sjohnlev 		}							\
291843e1988Sjohnlev 	}
292843e1988Sjohnlev 
293843e1988Sjohnlev #ifdef DEBUG
2947f0b8309SEdward Pilatowicz #define	DPRINTF(flag, args)	{if (xdf_debug & (flag)) prom_printf args; }
295843e1988Sjohnlev #define	SETDMACBON(vbd)		{(vbd)->xdf_dmacallback_num++; }
296843e1988Sjohnlev #define	SETDMACBOFF(vbd)	{(vbd)->xdf_dmacallback_num--; }
297843e1988Sjohnlev #define	ISDMACBON(vbd)		((vbd)->xdf_dmacallback_num > 0)
298843e1988Sjohnlev #else
299843e1988Sjohnlev #define	DPRINTF(flag, args)
300843e1988Sjohnlev #define	SETDMACBON(vbd)
301843e1988Sjohnlev #define	SETDMACBOFF(vbd)
302843e1988Sjohnlev #define	ISDMACBON(vbd)
303843e1988Sjohnlev #endif /* DEBUG */
304843e1988Sjohnlev 
305843e1988Sjohnlev #define	DDI_DBG		0x1
306843e1988Sjohnlev #define	DMA_DBG		0x2
307843e1988Sjohnlev #define	INTR_DBG	0x8
308843e1988Sjohnlev #define	IO_DBG		0x10
309843e1988Sjohnlev #define	IOCTL_DBG	0x20
310843e1988Sjohnlev #define	SUSRES_DBG	0x40
311843e1988Sjohnlev #define	LBL_DBG		0x80
312843e1988Sjohnlev 
31306bbe1e0Sedp #if defined(XPV_HVM_DRIVER)
3147f0b8309SEdward Pilatowicz extern int xdf_lb_getinfo(dev_info_t *, int, void *, void *);
3157f0b8309SEdward Pilatowicz extern int xdf_lb_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, size_t,
3167f0b8309SEdward Pilatowicz     void *);
3177f0b8309SEdward Pilatowicz extern void xdfmin(struct buf *bp);
3187f0b8309SEdward Pilatowicz extern dev_info_t *xdf_hvm_hold(const char *);
3197f0b8309SEdward Pilatowicz extern boolean_t xdf_hvm_connect(dev_info_t *);
32006bbe1e0Sedp extern int xdf_hvm_setpgeom(dev_info_t *, cmlb_geom_t *);
32106bbe1e0Sedp extern int xdf_kstat_create(dev_info_t *, char *, int);
32206bbe1e0Sedp extern void xdf_kstat_delete(dev_info_t *);
3237f0b8309SEdward Pilatowicz extern boolean_t xdf_is_cd(dev_info_t *);
3247f0b8309SEdward Pilatowicz extern boolean_t xdf_is_rm(dev_info_t *);
3257f0b8309SEdward Pilatowicz extern boolean_t xdf_media_req_supported(dev_info_t *);
32606bbe1e0Sedp #endif /* XPV_HVM_DRIVER */
32706bbe1e0Sedp 
328843e1988Sjohnlev #ifdef __cplusplus
329843e1988Sjohnlev }
330843e1988Sjohnlev #endif
331843e1988Sjohnlev 
332843e1988Sjohnlev #endif	/* _SYS_XDF_H */
333