xref: /titanic_51/usr/src/uts/common/vm/vm_page.c (revision 447e4a639cd3f814fbae624e7188d5adaa83f841)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - physical page management.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/errno.h>
51 #include <sys/time.h>
52 #include <sys/vnode.h>
53 #include <sys/vm.h>
54 #include <sys/vtrace.h>
55 #include <sys/swap.h>
56 #include <sys/cmn_err.h>
57 #include <sys/tuneable.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cpuvar.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/tnf_probe.h>
63 #include <sys/condvar_impl.h>
64 #include <sys/mem_config.h>
65 #include <sys/mem_cage.h>
66 #include <sys/kmem.h>
67 #include <sys/atomic.h>
68 #include <sys/strlog.h>
69 #include <sys/mman.h>
70 #include <sys/ontrap.h>
71 #include <sys/lgrp.h>
72 #include <sys/vfs.h>
73 
74 #include <vm/hat.h>
75 #include <vm/anon.h>
76 #include <vm/page.h>
77 #include <vm/seg.h>
78 #include <vm/pvn.h>
79 #include <vm/seg_kmem.h>
80 #include <vm/vm_dep.h>
81 
82 #include <fs/fs_subr.h>
83 
84 static int nopageage = 0;
85 
86 static pgcnt_t max_page_get;	/* max page_get request size in pages */
87 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
88 
89 /*
90  * freemem_lock protects all freemem variables:
91  * availrmem. Also this lock protects the globals which track the
92  * availrmem changes for accurate kernel footprint calculation.
93  * See below for an explanation of these
94  * globals.
95  */
96 kmutex_t freemem_lock;
97 pgcnt_t availrmem;
98 pgcnt_t availrmem_initial;
99 
100 /*
101  * These globals track availrmem changes to get a more accurate
102  * estimate of tke kernel size. Historically pp_kernel is used for
103  * kernel size and is based on availrmem. But availrmem is adjusted for
104  * locked pages in the system not just for kernel locked pages.
105  * These new counters will track the pages locked through segvn and
106  * by explicit user locking.
107  *
108  * segvn_pages_locked : This keeps track on a global basis how many pages
109  * are currently locked because of I/O.
110  *
111  * pages_locked : How many pages are locked becuase of user specified
112  * locking through mlock or plock.
113  *
114  * pages_useclaim,pages_claimed : These two variables track the
115  * cliam adjustments because of the protection changes on a segvn segment.
116  *
117  * All these globals are protected by the same lock which protects availrmem.
118  */
119 pgcnt_t segvn_pages_locked;
120 pgcnt_t pages_locked;
121 pgcnt_t pages_useclaim;
122 pgcnt_t pages_claimed;
123 
124 
125 /*
126  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
127  */
128 static kmutex_t	new_freemem_lock;
129 static uint_t	freemem_wait;	/* someone waiting for freemem */
130 static kcondvar_t freemem_cv;
131 
132 /*
133  * The logical page free list is maintained as two lists, the 'free'
134  * and the 'cache' lists.
135  * The free list contains those pages that should be reused first.
136  *
137  * The implementation of the lists is machine dependent.
138  * page_get_freelist(), page_get_cachelist(),
139  * page_list_sub(), and page_list_add()
140  * form the interface to the machine dependent implementation.
141  *
142  * Pages with p_free set are on the cache list.
143  * Pages with p_free and p_age set are on the free list,
144  *
145  * A page may be locked while on either list.
146  */
147 
148 /*
149  * free list accounting stuff.
150  *
151  *
152  * Spread out the value for the number of pages on the
153  * page free and page cache lists.  If there is just one
154  * value, then it must be under just one lock.
155  * The lock contention and cache traffic are a real bother.
156  *
157  * When we acquire and then drop a single pcf lock
158  * we can start in the middle of the array of pcf structures.
159  * If we acquire more than one pcf lock at a time, we need to
160  * start at the front to avoid deadlocking.
161  *
162  * pcf_count holds the number of pages in each pool.
163  *
164  * pcf_block is set when page_create_get_something() has asked the
165  * PSM page freelist and page cachelist routines without specifying
166  * a color and nothing came back.  This is used to block anything
167  * else from moving pages from one list to the other while the
168  * lists are searched again.  If a page is freeed while pcf_block is
169  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
170  * of clearning pcf_block, doing the wakeups, etc.
171  */
172 
173 #if NCPU <= 4
174 #define	PAD	1
175 #define	PCF_FANOUT	4
176 static	uint_t	pcf_mask = PCF_FANOUT - 1;
177 #else
178 #define	PAD	9
179 #ifdef sun4v
180 #define	PCF_FANOUT	32
181 #else
182 #define	PCF_FANOUT	128
183 #endif
184 static	uint_t	pcf_mask = PCF_FANOUT - 1;
185 #endif
186 
187 struct pcf {
188 	uint_t		pcf_touch;	/* just to help the cache */
189 	uint_t		pcf_count;	/* page count */
190 	kmutex_t	pcf_lock;	/* protects the structure */
191 	uint_t		pcf_wait;	/* number of waiters */
192 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
193 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
194 	uint_t		pcf_fill[PAD];	/* to line up on the caches */
195 };
196 
197 static struct	pcf	pcf[PCF_FANOUT];
198 #define	PCF_INDEX()	((CPU->cpu_id) & (pcf_mask))
199 
200 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
201 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
202 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
203 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
204 
205 #define	PAGE_LOCK_MAXIMUM \
206 	((1 << (sizeof (((page_t *)0)->p_lckcnt) * NBBY)) - 1)
207 
208 #ifdef VM_STATS
209 
210 /*
211  * No locks, but so what, they are only statistics.
212  */
213 
214 static struct page_tcnt {
215 	int	pc_free_cache;		/* free's into cache list */
216 	int	pc_free_dontneed;	/* free's with dontneed */
217 	int	pc_free_pageout;	/* free's from pageout */
218 	int	pc_free_free;		/* free's into free list */
219 	int	pc_free_pages;		/* free's into large page free list */
220 	int	pc_destroy_pages;	/* large page destroy's */
221 	int	pc_get_cache;		/* get's from cache list */
222 	int	pc_get_free;		/* get's from free list */
223 	int	pc_reclaim;		/* reclaim's */
224 	int	pc_abortfree;		/* abort's of free pages */
225 	int	pc_find_hit;		/* find's that find page */
226 	int	pc_find_miss;		/* find's that don't find page */
227 	int	pc_destroy_free;	/* # of free pages destroyed */
228 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
229 	int	pc_find_hashlen[PC_HASH_CNT+1];
230 	int	pc_addclaim_pages;
231 	int	pc_subclaim_pages;
232 	int	pc_free_replacement_page[2];
233 	int	pc_try_demote_pages[6];
234 	int	pc_demote_pages[2];
235 } pagecnt;
236 
237 uint_t	hashin_count;
238 uint_t	hashin_not_held;
239 uint_t	hashin_already;
240 
241 uint_t	hashout_count;
242 uint_t	hashout_not_held;
243 
244 uint_t	page_create_count;
245 uint_t	page_create_not_enough;
246 uint_t	page_create_not_enough_again;
247 uint_t	page_create_zero;
248 uint_t	page_create_hashout;
249 uint_t	page_create_page_lock_failed;
250 uint_t	page_create_trylock_failed;
251 uint_t	page_create_found_one;
252 uint_t	page_create_hashin_failed;
253 uint_t	page_create_dropped_phm;
254 
255 uint_t	page_create_new;
256 uint_t	page_create_exists;
257 uint_t	page_create_putbacks;
258 uint_t	page_create_overshoot;
259 
260 uint_t	page_reclaim_zero;
261 uint_t	page_reclaim_zero_locked;
262 
263 uint_t	page_rename_exists;
264 uint_t	page_rename_count;
265 
266 uint_t	page_lookup_cnt[20];
267 uint_t	page_lookup_nowait_cnt[10];
268 uint_t	page_find_cnt;
269 uint_t	page_exists_cnt;
270 uint_t	page_exists_forreal_cnt;
271 uint_t	page_lookup_dev_cnt;
272 uint_t	get_cachelist_cnt;
273 uint_t	page_create_cnt[10];
274 uint_t	alloc_pages[8];
275 uint_t	page_exphcontg[19];
276 uint_t  page_create_large_cnt[10];
277 
278 /*
279  * Collects statistics.
280  */
281 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
282 	uint_t	mylen = 0; \
283 			\
284 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
285 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
286 			break; \
287 	} \
288 	if ((pp) != NULL) \
289 		pagecnt.pc_find_hit++; \
290 	else \
291 		pagecnt.pc_find_miss++; \
292 	if (mylen > PC_HASH_CNT) \
293 		mylen = PC_HASH_CNT; \
294 	pagecnt.pc_find_hashlen[mylen]++; \
295 }
296 
297 #else	/* VM_STATS */
298 
299 /*
300  * Don't collect statistics
301  */
302 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
303 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
304 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
305 			break; \
306 	} \
307 }
308 
309 #endif	/* VM_STATS */
310 
311 
312 
313 #ifdef DEBUG
314 #define	MEMSEG_SEARCH_STATS
315 #endif
316 
317 #ifdef MEMSEG_SEARCH_STATS
318 struct memseg_stats {
319     uint_t nsearch;
320     uint_t nlastwon;
321     uint_t nhashwon;
322     uint_t nnotfound;
323 } memseg_stats;
324 
325 #define	MEMSEG_STAT_INCR(v) \
326 	atomic_add_32(&memseg_stats.v, 1)
327 #else
328 #define	MEMSEG_STAT_INCR(x)
329 #endif
330 
331 struct memseg *memsegs;		/* list of memory segments */
332 
333 
334 static void page_init_mem_config(void);
335 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
336 static void page_do_hashout(page_t *);
337 
338 static void page_demote_vp_pages(page_t *);
339 
340 /*
341  * vm subsystem related initialization
342  */
343 void
344 vm_init(void)
345 {
346 	boolean_t callb_vm_cpr(void *, int);
347 
348 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
349 	page_init_mem_config();
350 	page_retire_init();
351 }
352 
353 /*
354  * This function is called at startup and when memory is added or deleted.
355  */
356 void
357 init_pages_pp_maximum()
358 {
359 	static pgcnt_t p_min;
360 	static pgcnt_t pages_pp_maximum_startup;
361 	static pgcnt_t avrmem_delta;
362 	static int init_done;
363 	static int user_set;	/* true if set in /etc/system */
364 
365 	if (init_done == 0) {
366 
367 		/* If the user specified a value, save it */
368 		if (pages_pp_maximum != 0) {
369 			user_set = 1;
370 			pages_pp_maximum_startup = pages_pp_maximum;
371 		}
372 
373 		/*
374 		 * Setting of pages_pp_maximum is based first time
375 		 * on the value of availrmem just after the start-up
376 		 * allocations. To preserve this relationship at run
377 		 * time, use a delta from availrmem_initial.
378 		 */
379 		ASSERT(availrmem_initial >= availrmem);
380 		avrmem_delta = availrmem_initial - availrmem;
381 
382 		/* The allowable floor of pages_pp_maximum */
383 		p_min = tune.t_minarmem + 100;
384 
385 		/* Make sure we don't come through here again. */
386 		init_done = 1;
387 	}
388 	/*
389 	 * Determine pages_pp_maximum, the number of currently available
390 	 * pages (availrmem) that can't be `locked'. If not set by
391 	 * the user, we set it to 4% of the currently available memory
392 	 * plus 4MB.
393 	 * But we also insist that it be greater than tune.t_minarmem;
394 	 * otherwise a process could lock down a lot of memory, get swapped
395 	 * out, and never have enough to get swapped back in.
396 	 */
397 	if (user_set)
398 		pages_pp_maximum = pages_pp_maximum_startup;
399 	else
400 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
401 		    + btop(4 * 1024 * 1024);
402 
403 	if (pages_pp_maximum <= p_min) {
404 		pages_pp_maximum = p_min;
405 	}
406 }
407 
408 void
409 set_max_page_get(pgcnt_t target_total_pages)
410 {
411 	max_page_get = target_total_pages / 2;
412 }
413 
414 static pgcnt_t pending_delete;
415 
416 /*ARGSUSED*/
417 static void
418 page_mem_config_post_add(
419 	void *arg,
420 	pgcnt_t delta_pages)
421 {
422 	set_max_page_get(total_pages - pending_delete);
423 	init_pages_pp_maximum();
424 }
425 
426 /*ARGSUSED*/
427 static int
428 page_mem_config_pre_del(
429 	void *arg,
430 	pgcnt_t delta_pages)
431 {
432 	pgcnt_t nv;
433 
434 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
435 	set_max_page_get(total_pages - nv);
436 	return (0);
437 }
438 
439 /*ARGSUSED*/
440 static void
441 page_mem_config_post_del(
442 	void *arg,
443 	pgcnt_t delta_pages,
444 	int cancelled)
445 {
446 	pgcnt_t nv;
447 
448 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
449 	set_max_page_get(total_pages - nv);
450 	if (!cancelled)
451 		init_pages_pp_maximum();
452 }
453 
454 static kphysm_setup_vector_t page_mem_config_vec = {
455 	KPHYSM_SETUP_VECTOR_VERSION,
456 	page_mem_config_post_add,
457 	page_mem_config_pre_del,
458 	page_mem_config_post_del,
459 };
460 
461 static void
462 page_init_mem_config(void)
463 {
464 	int ret;
465 
466 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
467 	ASSERT(ret == 0);
468 }
469 
470 /*
471  * Evenly spread out the PCF counters for large free pages
472  */
473 static void
474 page_free_large_ctr(pgcnt_t npages)
475 {
476 	static struct pcf	*p = pcf;
477 	pgcnt_t			lump;
478 
479 	freemem += npages;
480 
481 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
482 
483 	while (npages > 0) {
484 
485 		ASSERT(!p->pcf_block);
486 
487 		if (lump < npages) {
488 			p->pcf_count += (uint_t)lump;
489 			npages -= lump;
490 		} else {
491 			p->pcf_count += (uint_t)npages;
492 			npages = 0;
493 		}
494 
495 		ASSERT(!p->pcf_wait);
496 
497 		if (++p > &pcf[PCF_FANOUT - 1])
498 			p = pcf;
499 	}
500 
501 	ASSERT(npages == 0);
502 }
503 
504 /*
505  * Add a physical chunk of memory to the system freee lists during startup.
506  * Platform specific startup() allocates the memory for the page structs.
507  *
508  * num	- number of page structures
509  * base - page number (pfn) to be associated with the first page.
510  *
511  * Since we are doing this during startup (ie. single threaded), we will
512  * use shortcut routines to avoid any locking overhead while putting all
513  * these pages on the freelists.
514  *
515  * NOTE: Any changes performed to page_free(), must also be performed to
516  *	 add_physmem() since this is how we initialize all page_t's at
517  *	 boot time.
518  */
519 void
520 add_physmem(
521 	page_t	*pp,
522 	pgcnt_t	num,
523 	pfn_t	pnum)
524 {
525 	page_t	*root = NULL;
526 	uint_t	szc = page_num_pagesizes() - 1;
527 	pgcnt_t	large = page_get_pagecnt(szc);
528 	pgcnt_t	cnt = 0;
529 
530 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
531 		"add_physmem:pp %p num %lu", pp, num);
532 
533 	/*
534 	 * Arbitrarily limit the max page_get request
535 	 * to 1/2 of the page structs we have.
536 	 */
537 	total_pages += num;
538 	set_max_page_get(total_pages);
539 
540 	/*
541 	 * The physical space for the pages array
542 	 * representing ram pages has already been
543 	 * allocated.  Here we initialize each lock
544 	 * in the page structure, and put each on
545 	 * the free list
546 	 */
547 	for (; num; pp++, pnum++, num--) {
548 
549 		/*
550 		 * this needs to fill in the page number
551 		 * and do any other arch specific initialization
552 		 */
553 		add_physmem_cb(pp, pnum);
554 
555 		/*
556 		 * Initialize the page lock as unlocked, since nobody
557 		 * can see or access this page yet.
558 		 */
559 		pp->p_selock = 0;
560 
561 		/*
562 		 * Initialize IO lock
563 		 */
564 		page_iolock_init(pp);
565 
566 		/*
567 		 * initialize other fields in the page_t
568 		 */
569 		PP_SETFREE(pp);
570 		page_clr_all_props(pp);
571 		PP_SETAGED(pp);
572 		pp->p_offset = (u_offset_t)-1;
573 		pp->p_next = pp;
574 		pp->p_prev = pp;
575 
576 		/*
577 		 * Simple case: System doesn't support large pages.
578 		 */
579 		if (szc == 0) {
580 			pp->p_szc = 0;
581 			page_free_at_startup(pp);
582 			continue;
583 		}
584 
585 		/*
586 		 * Handle unaligned pages, we collect them up onto
587 		 * the root page until we have a full large page.
588 		 */
589 		if (!IS_P2ALIGNED(pnum, large)) {
590 
591 			/*
592 			 * If not in a large page,
593 			 * just free as small page.
594 			 */
595 			if (root == NULL) {
596 				pp->p_szc = 0;
597 				page_free_at_startup(pp);
598 				continue;
599 			}
600 
601 			/*
602 			 * Link a constituent page into the large page.
603 			 */
604 			pp->p_szc = szc;
605 			page_list_concat(&root, &pp);
606 
607 			/*
608 			 * When large page is fully formed, free it.
609 			 */
610 			if (++cnt == large) {
611 				page_free_large_ctr(cnt);
612 				page_list_add_pages(root, PG_LIST_ISINIT);
613 				root = NULL;
614 				cnt = 0;
615 			}
616 			continue;
617 		}
618 
619 		/*
620 		 * At this point we have a page number which
621 		 * is aligned. We assert that we aren't already
622 		 * in a different large page.
623 		 */
624 		ASSERT(IS_P2ALIGNED(pnum, large));
625 		ASSERT(root == NULL && cnt == 0);
626 
627 		/*
628 		 * If insufficient number of pages left to form
629 		 * a large page, just free the small page.
630 		 */
631 		if (num < large) {
632 			pp->p_szc = 0;
633 			page_free_at_startup(pp);
634 			continue;
635 		}
636 
637 		/*
638 		 * Otherwise start a new large page.
639 		 */
640 		pp->p_szc = szc;
641 		cnt++;
642 		root = pp;
643 	}
644 	ASSERT(root == NULL && cnt == 0);
645 }
646 
647 /*
648  * Find a page representing the specified [vp, offset].
649  * If we find the page but it is intransit coming in,
650  * it will have an "exclusive" lock and we wait for
651  * the i/o to complete.  A page found on the free list
652  * is always reclaimed and then locked.  On success, the page
653  * is locked, its data is valid and it isn't on the free
654  * list, while a NULL is returned if the page doesn't exist.
655  */
656 page_t *
657 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
658 {
659 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
660 }
661 
662 /*
663  * Find a page representing the specified [vp, offset].
664  * We either return the one we found or, if passed in,
665  * create one with identity of [vp, offset] of the
666  * pre-allocated page. If we find exsisting page but it is
667  * intransit coming in, it will have an "exclusive" lock
668  * and we wait for the i/o to complete.  A page found on
669  * the free list is always reclaimed and then locked.
670  * On success, the page is locked, its data is valid and
671  * it isn't on the free list, while a NULL is returned
672  * if the page doesn't exist and newpp is NULL;
673  */
674 page_t *
675 page_lookup_create(
676 	vnode_t *vp,
677 	u_offset_t off,
678 	se_t se,
679 	page_t *newpp,
680 	spgcnt_t *nrelocp,
681 	int flags)
682 {
683 	page_t		*pp;
684 	kmutex_t	*phm;
685 	ulong_t		index;
686 	uint_t		hash_locked;
687 	uint_t		es;
688 
689 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
690 	VM_STAT_ADD(page_lookup_cnt[0]);
691 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
692 
693 	/*
694 	 * Acquire the appropriate page hash lock since
695 	 * we have to search the hash list.  Pages that
696 	 * hash to this list can't change identity while
697 	 * this lock is held.
698 	 */
699 	hash_locked = 0;
700 	index = PAGE_HASH_FUNC(vp, off);
701 	phm = NULL;
702 top:
703 	PAGE_HASH_SEARCH(index, pp, vp, off);
704 	if (pp != NULL) {
705 		VM_STAT_ADD(page_lookup_cnt[1]);
706 		es = (newpp != NULL) ? 1 : 0;
707 		es |= flags;
708 		if (!hash_locked) {
709 			VM_STAT_ADD(page_lookup_cnt[2]);
710 			if (!page_try_reclaim_lock(pp, se, es)) {
711 				/*
712 				 * On a miss, acquire the phm.  Then
713 				 * next time, page_lock() will be called,
714 				 * causing a wait if the page is busy.
715 				 * just looping with page_trylock() would
716 				 * get pretty boring.
717 				 */
718 				VM_STAT_ADD(page_lookup_cnt[3]);
719 				phm = PAGE_HASH_MUTEX(index);
720 				mutex_enter(phm);
721 				hash_locked = 1;
722 				goto top;
723 			}
724 		} else {
725 			VM_STAT_ADD(page_lookup_cnt[4]);
726 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
727 				VM_STAT_ADD(page_lookup_cnt[5]);
728 				goto top;
729 			}
730 		}
731 
732 		/*
733 		 * Since `pp' is locked it can not change identity now.
734 		 * Reconfirm we locked the correct page.
735 		 *
736 		 * Both the p_vnode and p_offset *must* be cast volatile
737 		 * to force a reload of their values: The PAGE_HASH_SEARCH
738 		 * macro will have stuffed p_vnode and p_offset into
739 		 * registers before calling page_trylock(); another thread,
740 		 * actually holding the hash lock, could have changed the
741 		 * page's identity in memory, but our registers would not
742 		 * be changed, fooling the reconfirmation.  If the hash
743 		 * lock was held during the search, the casting would
744 		 * not be needed.
745 		 */
746 		VM_STAT_ADD(page_lookup_cnt[6]);
747 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
748 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
749 			VM_STAT_ADD(page_lookup_cnt[7]);
750 			if (hash_locked) {
751 				panic("page_lookup_create: lost page %p",
752 				    (void *)pp);
753 				/*NOTREACHED*/
754 			}
755 			page_unlock(pp);
756 			phm = PAGE_HASH_MUTEX(index);
757 			mutex_enter(phm);
758 			hash_locked = 1;
759 			goto top;
760 		}
761 
762 		/*
763 		 * If page_trylock() was called, then pp may still be on
764 		 * the cachelist (can't be on the free list, it would not
765 		 * have been found in the search).  If it is on the
766 		 * cachelist it must be pulled now. To pull the page from
767 		 * the cachelist, it must be exclusively locked.
768 		 *
769 		 * The other big difference between page_trylock() and
770 		 * page_lock(), is that page_lock() will pull the
771 		 * page from whatever free list (the cache list in this
772 		 * case) the page is on.  If page_trylock() was used
773 		 * above, then we have to do the reclaim ourselves.
774 		 */
775 		if ((!hash_locked) && (PP_ISFREE(pp))) {
776 			ASSERT(PP_ISAGED(pp) == 0);
777 			VM_STAT_ADD(page_lookup_cnt[8]);
778 
779 			/*
780 			 * page_relcaim will insure that we
781 			 * have this page exclusively
782 			 */
783 
784 			if (!page_reclaim(pp, NULL)) {
785 				/*
786 				 * Page_reclaim dropped whatever lock
787 				 * we held.
788 				 */
789 				VM_STAT_ADD(page_lookup_cnt[9]);
790 				phm = PAGE_HASH_MUTEX(index);
791 				mutex_enter(phm);
792 				hash_locked = 1;
793 				goto top;
794 			} else if (se == SE_SHARED && newpp == NULL) {
795 				VM_STAT_ADD(page_lookup_cnt[10]);
796 				page_downgrade(pp);
797 			}
798 		}
799 
800 		if (hash_locked) {
801 			mutex_exit(phm);
802 		}
803 
804 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
805 		    PAGE_EXCL(pp) && nrelocp != NULL) {
806 			ASSERT(nrelocp != NULL);
807 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
808 			    NULL);
809 			if (*nrelocp > 0) {
810 				VM_STAT_COND_ADD(*nrelocp == 1,
811 				    page_lookup_cnt[11]);
812 				VM_STAT_COND_ADD(*nrelocp > 1,
813 				    page_lookup_cnt[12]);
814 				pp = newpp;
815 				se = SE_EXCL;
816 			} else {
817 				if (se == SE_SHARED) {
818 					page_downgrade(pp);
819 				}
820 				VM_STAT_ADD(page_lookup_cnt[13]);
821 			}
822 		} else if (newpp != NULL && nrelocp != NULL) {
823 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
824 				page_downgrade(pp);
825 			}
826 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
827 			    page_lookup_cnt[14]);
828 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
829 			    page_lookup_cnt[15]);
830 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
831 			    page_lookup_cnt[16]);
832 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
833 			se = SE_EXCL;
834 		}
835 	} else if (!hash_locked) {
836 		VM_STAT_ADD(page_lookup_cnt[17]);
837 		phm = PAGE_HASH_MUTEX(index);
838 		mutex_enter(phm);
839 		hash_locked = 1;
840 		goto top;
841 	} else if (newpp != NULL) {
842 		/*
843 		 * If we have a preallocated page then
844 		 * insert it now and basically behave like
845 		 * page_create.
846 		 */
847 		VM_STAT_ADD(page_lookup_cnt[18]);
848 		/*
849 		 * Since we hold the page hash mutex and
850 		 * just searched for this page, page_hashin
851 		 * had better not fail.  If it does, that
852 		 * means some thread did not follow the
853 		 * page hash mutex rules.  Panic now and
854 		 * get it over with.  As usual, go down
855 		 * holding all the locks.
856 		 */
857 		ASSERT(MUTEX_HELD(phm));
858 		if (!page_hashin(newpp, vp, off, phm)) {
859 			ASSERT(MUTEX_HELD(phm));
860 			panic("page_lookup_create: hashin failed %p %p %llx %p",
861 			    (void *)newpp, (void *)vp, off, (void *)phm);
862 			/*NOTREACHED*/
863 		}
864 		ASSERT(MUTEX_HELD(phm));
865 		mutex_exit(phm);
866 		phm = NULL;
867 		page_set_props(newpp, P_REF);
868 		page_io_lock(newpp);
869 		pp = newpp;
870 		se = SE_EXCL;
871 	} else {
872 		VM_STAT_ADD(page_lookup_cnt[19]);
873 		mutex_exit(phm);
874 	}
875 
876 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
877 
878 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
879 
880 	return (pp);
881 }
882 
883 /*
884  * Search the hash list for the page representing the
885  * specified [vp, offset] and return it locked.  Skip
886  * free pages and pages that cannot be locked as requested.
887  * Used while attempting to kluster pages.
888  */
889 page_t *
890 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
891 {
892 	page_t		*pp;
893 	kmutex_t	*phm;
894 	ulong_t		index;
895 	uint_t		locked;
896 
897 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
898 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
899 
900 	index = PAGE_HASH_FUNC(vp, off);
901 	PAGE_HASH_SEARCH(index, pp, vp, off);
902 	locked = 0;
903 	if (pp == NULL) {
904 top:
905 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
906 		locked = 1;
907 		phm = PAGE_HASH_MUTEX(index);
908 		mutex_enter(phm);
909 		PAGE_HASH_SEARCH(index, pp, vp, off);
910 	}
911 
912 	if (pp == NULL || PP_ISFREE(pp)) {
913 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
914 		pp = NULL;
915 	} else {
916 		if (!page_trylock(pp, se)) {
917 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
918 			pp = NULL;
919 		} else {
920 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
921 			/*
922 			 * See the comment in page_lookup()
923 			 */
924 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
925 			    ((u_offset_t)(pp->p_offset) != off)) {
926 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
927 				if (locked) {
928 					panic("page_lookup_nowait %p",
929 					    (void *)pp);
930 					/*NOTREACHED*/
931 				}
932 				page_unlock(pp);
933 				goto top;
934 			}
935 			if (PP_ISFREE(pp)) {
936 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
937 				page_unlock(pp);
938 				pp = NULL;
939 			}
940 		}
941 	}
942 	if (locked) {
943 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
944 		mutex_exit(phm);
945 	}
946 
947 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
948 
949 	return (pp);
950 }
951 
952 /*
953  * Search the hash list for a page with the specified [vp, off]
954  * that is known to exist and is already locked.  This routine
955  * is typically used by segment SOFTUNLOCK routines.
956  */
957 page_t *
958 page_find(vnode_t *vp, u_offset_t off)
959 {
960 	page_t		*pp;
961 	kmutex_t	*phm;
962 	ulong_t		index;
963 
964 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
965 	VM_STAT_ADD(page_find_cnt);
966 
967 	index = PAGE_HASH_FUNC(vp, off);
968 	phm = PAGE_HASH_MUTEX(index);
969 
970 	mutex_enter(phm);
971 	PAGE_HASH_SEARCH(index, pp, vp, off);
972 	mutex_exit(phm);
973 
974 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
975 	return (pp);
976 }
977 
978 /*
979  * Determine whether a page with the specified [vp, off]
980  * currently exists in the system.  Obviously this should
981  * only be considered as a hint since nothing prevents the
982  * page from disappearing or appearing immediately after
983  * the return from this routine. Subsequently, we don't
984  * even bother to lock the list.
985  */
986 page_t *
987 page_exists(vnode_t *vp, u_offset_t off)
988 {
989 	page_t	*pp;
990 	ulong_t		index;
991 
992 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
993 	VM_STAT_ADD(page_exists_cnt);
994 
995 	index = PAGE_HASH_FUNC(vp, off);
996 	PAGE_HASH_SEARCH(index, pp, vp, off);
997 
998 	return (pp);
999 }
1000 
1001 /*
1002  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1003  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1004  * with these pages locked SHARED. If necessary reclaim pages from
1005  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1006  *
1007  * If we fail to lock pages still return 1 if pages exist and contiguous.
1008  * But in this case return value is just a hint. ppa array won't be filled.
1009  * Caller should initialize ppa[0] as NULL to distinguish return value.
1010  *
1011  * Returns 0 if pages don't exist or not physically contiguous.
1012  *
1013  * This routine doesn't work for anonymous(swapfs) pages.
1014  */
1015 int
1016 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1017 {
1018 	pgcnt_t pages;
1019 	pfn_t pfn;
1020 	page_t *rootpp;
1021 	pgcnt_t i;
1022 	pgcnt_t j;
1023 	u_offset_t save_off = off;
1024 	ulong_t index;
1025 	kmutex_t *phm;
1026 	page_t *pp;
1027 	uint_t pszc;
1028 	int loopcnt = 0;
1029 
1030 	ASSERT(szc != 0);
1031 	ASSERT(vp != NULL);
1032 	ASSERT(!IS_SWAPFSVP(vp));
1033 	ASSERT(vp != &kvp);
1034 
1035 again:
1036 	if (++loopcnt > 3) {
1037 		VM_STAT_ADD(page_exphcontg[0]);
1038 		return (0);
1039 	}
1040 
1041 	index = PAGE_HASH_FUNC(vp, off);
1042 	phm = PAGE_HASH_MUTEX(index);
1043 
1044 	mutex_enter(phm);
1045 	PAGE_HASH_SEARCH(index, pp, vp, off);
1046 	mutex_exit(phm);
1047 
1048 	VM_STAT_ADD(page_exphcontg[1]);
1049 
1050 	if (pp == NULL) {
1051 		VM_STAT_ADD(page_exphcontg[2]);
1052 		return (0);
1053 	}
1054 
1055 	pages = page_get_pagecnt(szc);
1056 	rootpp = pp;
1057 	pfn = rootpp->p_pagenum;
1058 
1059 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1060 		VM_STAT_ADD(page_exphcontg[3]);
1061 		if (!page_trylock(pp, SE_SHARED)) {
1062 			VM_STAT_ADD(page_exphcontg[4]);
1063 			return (1);
1064 		}
1065 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1066 		    pp->p_offset != off) {
1067 			VM_STAT_ADD(page_exphcontg[5]);
1068 			page_unlock(pp);
1069 			off = save_off;
1070 			goto again;
1071 		}
1072 		/*
1073 		 * szc was non zero and vnode and offset matched after we
1074 		 * locked the page it means it can't become free on us.
1075 		 */
1076 		ASSERT(!PP_ISFREE(pp));
1077 		if (!IS_P2ALIGNED(pfn, pages)) {
1078 			page_unlock(pp);
1079 			return (0);
1080 		}
1081 		ppa[0] = pp;
1082 		pp++;
1083 		off += PAGESIZE;
1084 		pfn++;
1085 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1086 			if (!page_trylock(pp, SE_SHARED)) {
1087 				VM_STAT_ADD(page_exphcontg[6]);
1088 				pp--;
1089 				while (i-- > 0) {
1090 					page_unlock(pp);
1091 					pp--;
1092 				}
1093 				ppa[0] = NULL;
1094 				return (1);
1095 			}
1096 			if (pp->p_szc != pszc) {
1097 				VM_STAT_ADD(page_exphcontg[7]);
1098 				page_unlock(pp);
1099 				pp--;
1100 				while (i-- > 0) {
1101 					page_unlock(pp);
1102 					pp--;
1103 				}
1104 				ppa[0] = NULL;
1105 				off = save_off;
1106 				goto again;
1107 			}
1108 			/*
1109 			 * szc the same as for previous already locked pages
1110 			 * with right identity. Since this page had correct
1111 			 * szc after we locked it can't get freed or destroyed
1112 			 * and therefore must have the expected identity.
1113 			 */
1114 			ASSERT(!PP_ISFREE(pp));
1115 			if (pp->p_vnode != vp ||
1116 			    pp->p_offset != off) {
1117 				panic("page_exists_physcontig: "
1118 				    "large page identity doesn't match");
1119 			}
1120 			ppa[i] = pp;
1121 			ASSERT(pp->p_pagenum == pfn);
1122 		}
1123 		VM_STAT_ADD(page_exphcontg[8]);
1124 		ppa[pages] = NULL;
1125 		return (1);
1126 	} else if (pszc >= szc) {
1127 		VM_STAT_ADD(page_exphcontg[9]);
1128 		if (!IS_P2ALIGNED(pfn, pages)) {
1129 			return (0);
1130 		}
1131 		return (1);
1132 	}
1133 
1134 	if (!IS_P2ALIGNED(pfn, pages)) {
1135 		VM_STAT_ADD(page_exphcontg[10]);
1136 		return (0);
1137 	}
1138 
1139 	if (page_numtomemseg_nolock(pfn) !=
1140 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1141 		VM_STAT_ADD(page_exphcontg[11]);
1142 		return (0);
1143 	}
1144 
1145 	/*
1146 	 * We loop up 4 times across pages to promote page size.
1147 	 * We're extra cautious to promote page size atomically with respect
1148 	 * to everybody else.  But we can probably optimize into 1 loop if
1149 	 * this becomes an issue.
1150 	 */
1151 
1152 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1153 		ASSERT(pp->p_pagenum == pfn);
1154 		if (!page_trylock(pp, SE_EXCL)) {
1155 			VM_STAT_ADD(page_exphcontg[12]);
1156 			break;
1157 		}
1158 		if (pp->p_vnode != vp ||
1159 		    pp->p_offset != off) {
1160 			VM_STAT_ADD(page_exphcontg[13]);
1161 			page_unlock(pp);
1162 			break;
1163 		}
1164 		if (pp->p_szc >= szc) {
1165 			ASSERT(i == 0);
1166 			page_unlock(pp);
1167 			off = save_off;
1168 			goto again;
1169 		}
1170 	}
1171 
1172 	if (i != pages) {
1173 		VM_STAT_ADD(page_exphcontg[14]);
1174 		--pp;
1175 		while (i-- > 0) {
1176 			page_unlock(pp);
1177 			--pp;
1178 		}
1179 		return (0);
1180 	}
1181 
1182 	pp = rootpp;
1183 	for (i = 0; i < pages; i++, pp++) {
1184 		if (PP_ISFREE(pp)) {
1185 			VM_STAT_ADD(page_exphcontg[15]);
1186 			ASSERT(!PP_ISAGED(pp));
1187 			ASSERT(pp->p_szc == 0);
1188 			if (!page_reclaim(pp, NULL)) {
1189 				break;
1190 			}
1191 		} else {
1192 			ASSERT(pp->p_szc < szc);
1193 			VM_STAT_ADD(page_exphcontg[16]);
1194 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1195 		}
1196 	}
1197 	if (i < pages) {
1198 		VM_STAT_ADD(page_exphcontg[17]);
1199 		/*
1200 		 * page_reclaim failed because we were out of memory.
1201 		 * drop the rest of the locks and return because this page
1202 		 * must be already reallocated anyway.
1203 		 */
1204 		pp = rootpp;
1205 		for (j = 0; j < pages; j++, pp++) {
1206 			if (j != i) {
1207 				page_unlock(pp);
1208 			}
1209 		}
1210 		return (0);
1211 	}
1212 
1213 	off = save_off;
1214 	pp = rootpp;
1215 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1216 		ASSERT(PAGE_EXCL(pp));
1217 		ASSERT(!PP_ISFREE(pp));
1218 		ASSERT(!hat_page_is_mapped(pp));
1219 		ASSERT(pp->p_vnode == vp);
1220 		ASSERT(pp->p_offset == off);
1221 		pp->p_szc = szc;
1222 	}
1223 	pp = rootpp;
1224 	for (i = 0; i < pages; i++, pp++) {
1225 		if (ppa == NULL) {
1226 			page_unlock(pp);
1227 		} else {
1228 			ppa[i] = pp;
1229 			page_downgrade(ppa[i]);
1230 		}
1231 	}
1232 	if (ppa != NULL) {
1233 		ppa[pages] = NULL;
1234 	}
1235 	VM_STAT_ADD(page_exphcontg[18]);
1236 	ASSERT(vp->v_pages != NULL);
1237 	return (1);
1238 }
1239 
1240 /*
1241  * Determine whether a page with the specified [vp, off]
1242  * currently exists in the system and if so return its
1243  * size code. Obviously this should only be considered as
1244  * a hint since nothing prevents the page from disappearing
1245  * or appearing immediately after the return from this routine.
1246  */
1247 int
1248 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1249 {
1250 	page_t		*pp;
1251 	kmutex_t	*phm;
1252 	ulong_t		index;
1253 	int		rc = 0;
1254 
1255 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1256 	ASSERT(szc != NULL);
1257 	VM_STAT_ADD(page_exists_forreal_cnt);
1258 
1259 	index = PAGE_HASH_FUNC(vp, off);
1260 	phm = PAGE_HASH_MUTEX(index);
1261 
1262 	mutex_enter(phm);
1263 	PAGE_HASH_SEARCH(index, pp, vp, off);
1264 	if (pp != NULL) {
1265 		*szc = pp->p_szc;
1266 		rc = 1;
1267 	}
1268 	mutex_exit(phm);
1269 	return (rc);
1270 }
1271 
1272 /* wakeup threads waiting for pages in page_create_get_something() */
1273 void
1274 wakeup_pcgs(void)
1275 {
1276 	if (!CV_HAS_WAITERS(&pcgs_cv))
1277 		return;
1278 	cv_broadcast(&pcgs_cv);
1279 }
1280 
1281 /*
1282  * 'freemem' is used all over the kernel as an indication of how many
1283  * pages are free (either on the cache list or on the free page list)
1284  * in the system.  In very few places is a really accurate 'freemem'
1285  * needed.  To avoid contention of the lock protecting a the
1286  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1287  * sets freemem to the total of all NCPU buckets.  It is called from
1288  * clock() on each TICK.
1289  */
1290 void
1291 set_freemem()
1292 {
1293 	struct pcf	*p;
1294 	ulong_t		t;
1295 	uint_t		i;
1296 
1297 	t = 0;
1298 	p = pcf;
1299 	for (i = 0;  i < PCF_FANOUT; i++) {
1300 		t += p->pcf_count;
1301 		p++;
1302 	}
1303 	freemem = t;
1304 
1305 	/*
1306 	 * Don't worry about grabbing mutex.  It's not that
1307 	 * critical if we miss a tick or two.  This is
1308 	 * where we wakeup possible delayers in
1309 	 * page_create_get_something().
1310 	 */
1311 	wakeup_pcgs();
1312 }
1313 
1314 ulong_t
1315 get_freemem()
1316 {
1317 	struct pcf	*p;
1318 	ulong_t		t;
1319 	uint_t		i;
1320 
1321 	t = 0;
1322 	p = pcf;
1323 	for (i = 0; i < PCF_FANOUT; i++) {
1324 		t += p->pcf_count;
1325 		p++;
1326 	}
1327 	/*
1328 	 * We just calculated it, might as well set it.
1329 	 */
1330 	freemem = t;
1331 	return (t);
1332 }
1333 
1334 /*
1335  * Acquire all of the page cache & free (pcf) locks.
1336  */
1337 void
1338 pcf_acquire_all()
1339 {
1340 	struct pcf	*p;
1341 	uint_t		i;
1342 
1343 	p = pcf;
1344 	for (i = 0; i < PCF_FANOUT; i++) {
1345 		p->pcf_touch = 1;
1346 		mutex_enter(&p->pcf_lock);
1347 		p++;
1348 	}
1349 }
1350 
1351 /*
1352  * Release all the pcf_locks.
1353  */
1354 void
1355 pcf_release_all()
1356 {
1357 	struct pcf	*p;
1358 	uint_t		i;
1359 
1360 	p = pcf;
1361 	for (i = 0; i < PCF_FANOUT; i++) {
1362 		mutex_exit(&p->pcf_lock);
1363 		p++;
1364 	}
1365 }
1366 
1367 /*
1368  * Inform the VM system that we need some pages freed up.
1369  * Calls must be symmetric, e.g.:
1370  *
1371  *	page_needfree(100);
1372  *	wait a bit;
1373  *	page_needfree(-100);
1374  */
1375 void
1376 page_needfree(spgcnt_t npages)
1377 {
1378 	mutex_enter(&new_freemem_lock);
1379 	needfree += npages;
1380 	mutex_exit(&new_freemem_lock);
1381 }
1382 
1383 /*
1384  * Throttle for page_create(): try to prevent freemem from dropping
1385  * below throttlefree.  We can't provide a 100% guarantee because
1386  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1387  * nibble away at the freelist.  However, we can block all PG_WAIT
1388  * allocations until memory becomes available.  The motivation is
1389  * that several things can fall apart when there's no free memory:
1390  *
1391  * (1) If pageout() needs memory to push a page, the system deadlocks.
1392  *
1393  * (2) By (broken) specification, timeout(9F) can neither fail nor
1394  *     block, so it has no choice but to panic the system if it
1395  *     cannot allocate a callout structure.
1396  *
1397  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1398  *     it panics if it cannot allocate a callback structure.
1399  *
1400  * (4) Untold numbers of third-party drivers have not yet been hardened
1401  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1402  *     success and panic the system with a data fault on failure.
1403  *     (The long-term solution to this particular problem is to ship
1404  *     hostile fault-injecting DEBUG kernels with the DDK.)
1405  *
1406  * It is theoretically impossible to guarantee success of non-blocking
1407  * allocations, but in practice, this throttle is very hard to break.
1408  */
1409 static int
1410 page_create_throttle(pgcnt_t npages, int flags)
1411 {
1412 	ulong_t	fm;
1413 	uint_t	i;
1414 	pgcnt_t tf;	/* effective value of throttlefree */
1415 
1416 	/*
1417 	 * Never deny pages when:
1418 	 * - it's a thread that cannot block [NOMEMWAIT()]
1419 	 * - the allocation cannot block and must not fail
1420 	 * - the allocation cannot block and is pageout dispensated
1421 	 */
1422 	if (NOMEMWAIT() ||
1423 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1424 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1425 		return (1);
1426 
1427 	/*
1428 	 * If the allocation can't block, we look favorably upon it
1429 	 * unless we're below pageout_reserve.  In that case we fail
1430 	 * the allocation because we want to make sure there are a few
1431 	 * pages available for pageout.
1432 	 */
1433 	if ((flags & PG_WAIT) == 0)
1434 		return (freemem >= npages + pageout_reserve);
1435 
1436 	/* Calculate the effective throttlefree value */
1437 	tf = throttlefree -
1438 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1439 
1440 	cv_signal(&proc_pageout->p_cv);
1441 
1442 	while (freemem < npages + tf) {
1443 		pcf_acquire_all();
1444 		mutex_enter(&new_freemem_lock);
1445 		fm = 0;
1446 		for (i = 0; i < PCF_FANOUT; i++) {
1447 			fm += pcf[i].pcf_count;
1448 			pcf[i].pcf_wait++;
1449 			mutex_exit(&pcf[i].pcf_lock);
1450 		}
1451 		freemem = fm;
1452 		needfree += npages;
1453 		freemem_wait++;
1454 		cv_wait(&freemem_cv, &new_freemem_lock);
1455 		freemem_wait--;
1456 		needfree -= npages;
1457 		mutex_exit(&new_freemem_lock);
1458 	}
1459 	return (1);
1460 }
1461 
1462 /*
1463  * page_create_wait() is called to either coalecse pages from the
1464  * different pcf buckets or to wait because there simply are not
1465  * enough pages to satisfy the caller's request.
1466  *
1467  * Sadly, this is called from platform/vm/vm_machdep.c
1468  */
1469 int
1470 page_create_wait(size_t npages, uint_t flags)
1471 {
1472 	pgcnt_t		total;
1473 	uint_t		i;
1474 	struct pcf	*p;
1475 
1476 	/*
1477 	 * Wait until there are enough free pages to satisfy our
1478 	 * entire request.
1479 	 * We set needfree += npages before prodding pageout, to make sure
1480 	 * it does real work when npages > lotsfree > freemem.
1481 	 */
1482 	VM_STAT_ADD(page_create_not_enough);
1483 
1484 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1485 checkagain:
1486 	if ((flags & PG_NORELOC) &&
1487 	    kcage_freemem < kcage_throttlefree + npages)
1488 		(void) kcage_create_throttle(npages, flags);
1489 
1490 	if (freemem < npages + throttlefree)
1491 		if (!page_create_throttle(npages, flags))
1492 			return (0);
1493 
1494 	/*
1495 	 * Since page_create_va() looked at every
1496 	 * bucket, assume we are going to have to wait.
1497 	 * Get all of the pcf locks.
1498 	 */
1499 	total = 0;
1500 	p = pcf;
1501 	for (i = 0; i < PCF_FANOUT; i++) {
1502 		p->pcf_touch = 1;
1503 		mutex_enter(&p->pcf_lock);
1504 		total += p->pcf_count;
1505 		if (total >= npages) {
1506 			/*
1507 			 * Wow!  There are enough pages laying around
1508 			 * to satisfy the request.  Do the accounting,
1509 			 * drop the locks we acquired, and go back.
1510 			 *
1511 			 * freemem is not protected by any lock. So,
1512 			 * we cannot have any assertion containing
1513 			 * freemem.
1514 			 */
1515 			freemem -= npages;
1516 
1517 			while (p >= pcf) {
1518 				if (p->pcf_count <= npages) {
1519 					npages -= p->pcf_count;
1520 					p->pcf_count = 0;
1521 				} else {
1522 					p->pcf_count -= (uint_t)npages;
1523 					npages = 0;
1524 				}
1525 				mutex_exit(&p->pcf_lock);
1526 				p--;
1527 			}
1528 			ASSERT(npages == 0);
1529 			return (1);
1530 		}
1531 		p++;
1532 	}
1533 
1534 	/*
1535 	 * All of the pcf locks are held, there are not enough pages
1536 	 * to satisfy the request (npages < total).
1537 	 * Be sure to acquire the new_freemem_lock before dropping
1538 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1539 	 * The order is always pcf_lock then new_freemem_lock.
1540 	 *
1541 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1542 	 *
1543 	 * If the caller does not want to wait, return now.
1544 	 * Else turn the pageout daemon loose to find something
1545 	 * and wait till it does.
1546 	 *
1547 	 */
1548 	freemem = total;
1549 
1550 	if ((flags & PG_WAIT) == 0) {
1551 		pcf_release_all();
1552 
1553 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1554 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1555 		return (0);
1556 	}
1557 
1558 	ASSERT(proc_pageout != NULL);
1559 	cv_signal(&proc_pageout->p_cv);
1560 
1561 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1562 	    "page_create_sleep_start: freemem %ld needfree %ld",
1563 	    freemem, needfree);
1564 
1565 	/*
1566 	 * We are going to wait.
1567 	 * We currently hold all of the pcf_locks,
1568 	 * get the new_freemem_lock (it protects freemem_wait),
1569 	 * before dropping the pcf_locks.
1570 	 */
1571 	mutex_enter(&new_freemem_lock);
1572 
1573 	p = pcf;
1574 	for (i = 0; i < PCF_FANOUT; i++) {
1575 		p->pcf_wait++;
1576 		mutex_exit(&p->pcf_lock);
1577 		p++;
1578 	}
1579 
1580 	needfree += npages;
1581 	freemem_wait++;
1582 
1583 	cv_wait(&freemem_cv, &new_freemem_lock);
1584 
1585 	freemem_wait--;
1586 	needfree -= npages;
1587 
1588 	mutex_exit(&new_freemem_lock);
1589 
1590 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1591 	    "page_create_sleep_end: freemem %ld needfree %ld",
1592 	    freemem, needfree);
1593 
1594 	VM_STAT_ADD(page_create_not_enough_again);
1595 	goto checkagain;
1596 }
1597 
1598 /*
1599  * A routine to do the opposite of page_create_wait().
1600  */
1601 void
1602 page_create_putback(spgcnt_t npages)
1603 {
1604 	struct pcf	*p;
1605 	pgcnt_t		lump;
1606 	uint_t		*which;
1607 
1608 	/*
1609 	 * When a contiguous lump is broken up, we have to
1610 	 * deal with lots of pages (min 64) so lets spread
1611 	 * the wealth around.
1612 	 */
1613 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
1614 	freemem += npages;
1615 
1616 	for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) {
1617 		which = &p->pcf_count;
1618 
1619 		mutex_enter(&p->pcf_lock);
1620 
1621 		if (p->pcf_block) {
1622 			which = &p->pcf_reserve;
1623 		}
1624 
1625 		if (lump < npages) {
1626 			*which += (uint_t)lump;
1627 			npages -= lump;
1628 		} else {
1629 			*which += (uint_t)npages;
1630 			npages = 0;
1631 		}
1632 
1633 		if (p->pcf_wait) {
1634 			mutex_enter(&new_freemem_lock);
1635 			/*
1636 			 * Check to see if some other thread
1637 			 * is actually waiting.  Another bucket
1638 			 * may have woken it up by now.  If there
1639 			 * are no waiters, then set our pcf_wait
1640 			 * count to zero to avoid coming in here
1641 			 * next time.
1642 			 */
1643 			if (freemem_wait) {
1644 				if (npages > 1) {
1645 					cv_broadcast(&freemem_cv);
1646 				} else {
1647 					cv_signal(&freemem_cv);
1648 				}
1649 				p->pcf_wait--;
1650 			} else {
1651 				p->pcf_wait = 0;
1652 			}
1653 			mutex_exit(&new_freemem_lock);
1654 		}
1655 		mutex_exit(&p->pcf_lock);
1656 	}
1657 	ASSERT(npages == 0);
1658 }
1659 
1660 /*
1661  * A helper routine for page_create_get_something.
1662  * The indenting got to deep down there.
1663  * Unblock the pcf counters.  Any pages freed after
1664  * pcf_block got set are moved to pcf_count and
1665  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1666  */
1667 static void
1668 pcgs_unblock(void)
1669 {
1670 	int		i;
1671 	struct pcf	*p;
1672 
1673 	/* Update freemem while we're here. */
1674 	freemem = 0;
1675 	p = pcf;
1676 	for (i = 0; i < PCF_FANOUT; i++) {
1677 		mutex_enter(&p->pcf_lock);
1678 		ASSERT(p->pcf_count == 0);
1679 		p->pcf_count = p->pcf_reserve;
1680 		p->pcf_block = 0;
1681 		freemem += p->pcf_count;
1682 		if (p->pcf_wait) {
1683 			mutex_enter(&new_freemem_lock);
1684 			if (freemem_wait) {
1685 				if (p->pcf_reserve > 1) {
1686 					cv_broadcast(&freemem_cv);
1687 					p->pcf_wait = 0;
1688 				} else {
1689 					cv_signal(&freemem_cv);
1690 					p->pcf_wait--;
1691 				}
1692 			} else {
1693 				p->pcf_wait = 0;
1694 			}
1695 			mutex_exit(&new_freemem_lock);
1696 		}
1697 		p->pcf_reserve = 0;
1698 		mutex_exit(&p->pcf_lock);
1699 		p++;
1700 	}
1701 }
1702 
1703 /*
1704  * Called from page_create_va() when both the cache and free lists
1705  * have been checked once.
1706  *
1707  * Either returns a page or panics since the accounting was done
1708  * way before we got here.
1709  *
1710  * We don't come here often, so leave the accounting on permanently.
1711  */
1712 
1713 #define	MAX_PCGS	100
1714 
1715 #ifdef	DEBUG
1716 #define	PCGS_TRIES	100
1717 #else	/* DEBUG */
1718 #define	PCGS_TRIES	10
1719 #endif	/* DEBUG */
1720 
1721 #ifdef	VM_STATS
1722 uint_t	pcgs_counts[PCGS_TRIES];
1723 uint_t	pcgs_too_many;
1724 uint_t	pcgs_entered;
1725 uint_t	pcgs_entered_noreloc;
1726 uint_t	pcgs_locked;
1727 uint_t	pcgs_cagelocked;
1728 #endif	/* VM_STATS */
1729 
1730 static page_t *
1731 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1732     caddr_t vaddr, uint_t flags)
1733 {
1734 	uint_t		count;
1735 	page_t		*pp;
1736 	uint_t		locked, i;
1737 	struct	pcf	*p;
1738 	lgrp_t		*lgrp;
1739 	int		cagelocked = 0;
1740 
1741 	VM_STAT_ADD(pcgs_entered);
1742 
1743 	/*
1744 	 * Tap any reserve freelists: if we fail now, we'll die
1745 	 * since the page(s) we're looking for have already been
1746 	 * accounted for.
1747 	 */
1748 	flags |= PG_PANIC;
1749 
1750 	if ((flags & PG_NORELOC) != 0) {
1751 		VM_STAT_ADD(pcgs_entered_noreloc);
1752 		/*
1753 		 * Requests for free pages from critical threads
1754 		 * such as pageout still won't throttle here, but
1755 		 * we must try again, to give the cageout thread
1756 		 * another chance to catch up. Since we already
1757 		 * accounted for the pages, we had better get them
1758 		 * this time.
1759 		 *
1760 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1761 		 * to serialize access to the freelists. This implements a
1762 		 * turnstile-type synchornization to avoid starvation of
1763 		 * critical requests for PG_NORELOC memory by non-critical
1764 		 * threads: all non-critical threads must acquire a 'ticket'
1765 		 * before passing through, which entails making sure
1766 		 * kcage_freemem won't fall below minfree prior to grabbing
1767 		 * pages from the freelists.
1768 		 */
1769 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1770 			mutex_enter(&pcgs_cagelock);
1771 			cagelocked = 1;
1772 			VM_STAT_ADD(pcgs_cagelocked);
1773 		}
1774 	}
1775 
1776 	/*
1777 	 * Time to get serious.
1778 	 * We failed to get a `correctly colored' page from both the
1779 	 * free and cache lists.
1780 	 * We escalate in stage.
1781 	 *
1782 	 * First try both lists without worring about color.
1783 	 *
1784 	 * Then, grab all page accounting locks (ie. pcf[]) and
1785 	 * steal any pages that they have and set the pcf_block flag to
1786 	 * stop deletions from the lists.  This will help because
1787 	 * a page can get added to the free list while we are looking
1788 	 * at the cache list, then another page could be added to the cache
1789 	 * list allowing the page on the free list to be removed as we
1790 	 * move from looking at the cache list to the free list. This
1791 	 * could happen over and over. We would never find the page
1792 	 * we have accounted for.
1793 	 *
1794 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1795 	 * They are not tracked separately in the pcf bins, so it is
1796 	 * impossible to know when doing pcf accounting if the available
1797 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1798 	 * it is quite easy to end up here even if the global (relocatable)
1799 	 * page pool has plenty of free pages but the noreloc pool is empty.
1800 	 *
1801 	 * When the noreloc pool is empty (or low), additional noreloc pages
1802 	 * are created by converting pages from the global page pool. This
1803 	 * process will stall during pcf accounting if the pcf bins are
1804 	 * already locked. Such is the case when a noreloc allocation is
1805 	 * looping here in page_create_get_something waiting for more noreloc
1806 	 * pages to appear.
1807 	 *
1808 	 * Short of adding a new field to the pcf bins to accurately track
1809 	 * the number of free noreloc pages, we instead do not grab the
1810 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1811 	 * allocating a noreloc page. This allows noreloc allocations to
1812 	 * loop without blocking global page pool allocations.
1813 	 *
1814 	 * NOTE: the behaviour of page_create_get_something has not changed
1815 	 * for the case of global page pool allocations.
1816 	 */
1817 
1818 	flags &= ~PG_MATCH_COLOR;
1819 	locked = 0;
1820 #ifndef __sparc
1821 	/*
1822 	 * page_create_get_something may be called because 4g memory may be
1823 	 * depleted. Set flags to allow for relocation of base page below
1824 	 * 4g if necessary.
1825 	 */
1826 	if (physmax4g)
1827 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1828 #endif
1829 
1830 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1831 
1832 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1833 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1834 		    flags, lgrp);
1835 		if (pp == NULL) {
1836 			pp = page_get_cachelist(vp, off, seg, vaddr,
1837 				flags, lgrp);
1838 		}
1839 		if (pp == NULL) {
1840 			/*
1841 			 * Serialize.  Don't fight with other pcgs().
1842 			 */
1843 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1844 				mutex_enter(&pcgs_lock);
1845 				VM_STAT_ADD(pcgs_locked);
1846 				locked = 1;
1847 				p = pcf;
1848 				for (i = 0; i < PCF_FANOUT; i++) {
1849 					mutex_enter(&p->pcf_lock);
1850 					ASSERT(p->pcf_block == 0);
1851 					p->pcf_block = 1;
1852 					p->pcf_reserve = p->pcf_count;
1853 					p->pcf_count = 0;
1854 					mutex_exit(&p->pcf_lock);
1855 					p++;
1856 				}
1857 				freemem = 0;
1858 			}
1859 
1860 			if (count) {
1861 				/*
1862 				 * Since page_free() puts pages on
1863 				 * a list then accounts for it, we
1864 				 * just have to wait for page_free()
1865 				 * to unlock any page it was working
1866 				 * with. The page_lock()-page_reclaim()
1867 				 * path falls in the same boat.
1868 				 *
1869 				 * We don't need to check on the
1870 				 * PG_WAIT flag, we have already
1871 				 * accounted for the page we are
1872 				 * looking for in page_create_va().
1873 				 *
1874 				 * We just wait a moment to let any
1875 				 * locked pages on the lists free up,
1876 				 * then continue around and try again.
1877 				 *
1878 				 * Will be awakened by set_freemem().
1879 				 */
1880 				mutex_enter(&pcgs_wait_lock);
1881 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1882 				mutex_exit(&pcgs_wait_lock);
1883 			}
1884 		} else {
1885 #ifdef VM_STATS
1886 			if (count >= PCGS_TRIES) {
1887 				VM_STAT_ADD(pcgs_too_many);
1888 			} else {
1889 				VM_STAT_ADD(pcgs_counts[count]);
1890 			}
1891 #endif
1892 			if (locked) {
1893 				pcgs_unblock();
1894 				mutex_exit(&pcgs_lock);
1895 			}
1896 			if (cagelocked)
1897 				mutex_exit(&pcgs_cagelock);
1898 			return (pp);
1899 		}
1900 	}
1901 	/*
1902 	 * we go down holding the pcf locks.
1903 	 */
1904 	panic("no %spage found %d",
1905 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1906 	/*NOTREACHED*/
1907 }
1908 
1909 /*
1910  * Create enough pages for "bytes" worth of data starting at
1911  * "off" in "vp".
1912  *
1913  *	Where flag must be one of:
1914  *
1915  *		PG_EXCL:	Exclusive create (fail if any page already
1916  *				exists in the page cache) which does not
1917  *				wait for memory to become available.
1918  *
1919  *		PG_WAIT:	Non-exclusive create which can wait for
1920  *				memory to become available.
1921  *
1922  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1923  *				(Not Supported)
1924  *
1925  * A doubly linked list of pages is returned to the caller.  Each page
1926  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1927  * lock.
1928  *
1929  * Unable to change the parameters to page_create() in a minor release,
1930  * we renamed page_create() to page_create_va(), changed all known calls
1931  * from page_create() to page_create_va(), and created this wrapper.
1932  *
1933  * Upon a major release, we should break compatibility by deleting this
1934  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1935  *
1936  * NOTE: There is a copy of this interface as page_create_io() in
1937  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1938  *	 there.
1939  */
1940 page_t *
1941 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1942 {
1943 	caddr_t random_vaddr;
1944 	struct seg kseg;
1945 
1946 #ifdef DEBUG
1947 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1948 	    (void *)caller());
1949 #endif
1950 
1951 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1952 	    (uintptr_t)(off >> PAGESHIFT));
1953 	kseg.s_as = &kas;
1954 
1955 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1956 }
1957 
1958 #ifdef DEBUG
1959 uint32_t pg_alloc_pgs_mtbf = 0;
1960 #endif
1961 
1962 /*
1963  * Used for large page support. It will attempt to allocate
1964  * a large page(s) off the freelist.
1965  *
1966  * Returns non zero on failure.
1967  */
1968 int
1969 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1970     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz)
1971 {
1972 	pgcnt_t		npgs, curnpgs, totpgs;
1973 	size_t		pgsz;
1974 	page_t		*pplist = NULL, *pp;
1975 	int		err = 0;
1976 	lgrp_t		*lgrp;
1977 
1978 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
1979 
1980 	VM_STAT_ADD(alloc_pages[0]);
1981 
1982 #ifdef DEBUG
1983 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
1984 		return (ENOMEM);
1985 	}
1986 #endif
1987 
1988 	pgsz = page_get_pagesize(szc);
1989 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
1990 
1991 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
1992 	/*
1993 	 * One must be NULL but not both.
1994 	 * And one must be non NULL but not both.
1995 	 */
1996 	ASSERT(basepp != NULL || ppa != NULL);
1997 	ASSERT(basepp == NULL || ppa == NULL);
1998 
1999 	(void) page_create_wait(npgs, PG_WAIT);
2000 
2001 	while (npgs && szc) {
2002 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2003 		pp = page_get_freelist(vp, 0, seg, addr, pgsz, 0, lgrp);
2004 		if (pp != NULL) {
2005 			VM_STAT_ADD(alloc_pages[1]);
2006 			page_list_concat(&pplist, &pp);
2007 			ASSERT(npgs >= curnpgs);
2008 			npgs -= curnpgs;
2009 		} else if (anypgsz) {
2010 			VM_STAT_ADD(alloc_pages[2]);
2011 			szc--;
2012 			pgsz = page_get_pagesize(szc);
2013 			curnpgs = pgsz >> PAGESHIFT;
2014 		} else {
2015 			VM_STAT_ADD(alloc_pages[3]);
2016 			ASSERT(npgs == totpgs);
2017 			page_create_putback(npgs);
2018 			return (ENOMEM);
2019 		}
2020 	}
2021 	if (szc == 0) {
2022 		VM_STAT_ADD(alloc_pages[4]);
2023 		ASSERT(npgs != 0);
2024 		page_create_putback(npgs);
2025 		err = ENOMEM;
2026 	} else if (basepp != NULL) {
2027 		ASSERT(npgs == 0);
2028 		ASSERT(ppa == NULL);
2029 		*basepp = pplist;
2030 	}
2031 
2032 	npgs = totpgs - npgs;
2033 	pp = pplist;
2034 
2035 	/*
2036 	 * Clear the free and age bits. Also if we were passed in a ppa then
2037 	 * fill it in with all the constituent pages from the large page. But
2038 	 * if we failed to allocate all the pages just free what we got.
2039 	 */
2040 	while (npgs != 0) {
2041 		ASSERT(PP_ISFREE(pp));
2042 		ASSERT(PP_ISAGED(pp));
2043 		if (ppa != NULL || err != 0) {
2044 			if (err == 0) {
2045 				VM_STAT_ADD(alloc_pages[5]);
2046 				PP_CLRFREE(pp);
2047 				PP_CLRAGED(pp);
2048 				page_sub(&pplist, pp);
2049 				*ppa++ = pp;
2050 				npgs--;
2051 			} else {
2052 				VM_STAT_ADD(alloc_pages[6]);
2053 				ASSERT(pp->p_szc != 0);
2054 				curnpgs = page_get_pagecnt(pp->p_szc);
2055 				page_list_break(&pp, &pplist, curnpgs);
2056 				page_list_add_pages(pp, 0);
2057 				page_create_putback(curnpgs);
2058 				ASSERT(npgs >= curnpgs);
2059 				npgs -= curnpgs;
2060 			}
2061 			pp = pplist;
2062 		} else {
2063 			VM_STAT_ADD(alloc_pages[7]);
2064 			PP_CLRFREE(pp);
2065 			PP_CLRAGED(pp);
2066 			pp = pp->p_next;
2067 			npgs--;
2068 		}
2069 	}
2070 	return (err);
2071 }
2072 
2073 /*
2074  * Get a single large page off of the freelists, and set it up for use.
2075  * Number of bytes requested must be a supported page size.
2076  *
2077  * Note that this call may fail even if there is sufficient
2078  * memory available or PG_WAIT is set, so the caller must
2079  * be willing to fallback on page_create_va(), block and retry,
2080  * or fail the requester.
2081  */
2082 page_t *
2083 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2084     struct seg *seg, caddr_t vaddr, void *arg)
2085 {
2086 	pgcnt_t		npages, pcftotal;
2087 	page_t		*pp;
2088 	page_t		*rootpp;
2089 	lgrp_t		*lgrp;
2090 	uint_t		enough;
2091 	uint_t		pcf_index;
2092 	uint_t		i;
2093 	struct pcf	*p;
2094 	struct pcf	*q;
2095 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2096 
2097 	ASSERT(vp != NULL);
2098 
2099 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2100 		    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2101 	/* but no others */
2102 
2103 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2104 
2105 	npages = btop(bytes);
2106 
2107 	if (!kcage_on || panicstr) {
2108 		/*
2109 		 * Cage is OFF, or we are single threaded in
2110 		 * panic, so make everything a RELOC request.
2111 		 */
2112 		flags &= ~PG_NORELOC;
2113 	}
2114 
2115 	/*
2116 	 * Make sure there's adequate physical memory available.
2117 	 * Note: PG_WAIT is ignored here.
2118 	 */
2119 	if (freemem <= throttlefree + npages) {
2120 		VM_STAT_ADD(page_create_large_cnt[1]);
2121 		return (NULL);
2122 	}
2123 
2124 	/*
2125 	 * If cage is on, dampen draw from cage when available
2126 	 * cage space is low.
2127 	 */
2128 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2129 	    kcage_freemem < kcage_throttlefree + npages) {
2130 
2131 		/*
2132 		 * The cage is on, the caller wants PG_NORELOC
2133 		 * pages and available cage memory is very low.
2134 		 * Call kcage_create_throttle() to attempt to
2135 		 * control demand on the cage.
2136 		 */
2137 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2138 			VM_STAT_ADD(page_create_large_cnt[2]);
2139 			return (NULL);
2140 		}
2141 	}
2142 
2143 	enough = 0;
2144 	pcf_index = PCF_INDEX();
2145 	p = &pcf[pcf_index];
2146 	p->pcf_touch = 1;
2147 	q = &pcf[PCF_FANOUT];
2148 	for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2149 		if (p->pcf_count > npages) {
2150 			/*
2151 			 * a good one to try.
2152 			 */
2153 			mutex_enter(&p->pcf_lock);
2154 			if (p->pcf_count > npages) {
2155 				p->pcf_count -= (uint_t)npages;
2156 				/*
2157 				 * freemem is not protected by any lock.
2158 				 * Thus, we cannot have any assertion
2159 				 * containing freemem here.
2160 				 */
2161 				freemem -= npages;
2162 				enough = 1;
2163 				mutex_exit(&p->pcf_lock);
2164 				break;
2165 			}
2166 			mutex_exit(&p->pcf_lock);
2167 		}
2168 		pcftotal += p->pcf_count;
2169 		p++;
2170 		if (p >= q) {
2171 			p = pcf;
2172 		}
2173 		p->pcf_touch = 1;
2174 	}
2175 
2176 	if (!enough) {
2177 		/* If there isn't enough memory available, give up. */
2178 		if (pcftotal < npages) {
2179 			VM_STAT_ADD(page_create_large_cnt[3]);
2180 			return (NULL);
2181 		}
2182 
2183 		/* try to collect pages from several pcf bins */
2184 		for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2185 			p->pcf_touch = 1;
2186 			mutex_enter(&p->pcf_lock);
2187 			pcftotal += p->pcf_count;
2188 			if (pcftotal >= npages) {
2189 				/*
2190 				 * Wow!  There are enough pages laying around
2191 				 * to satisfy the request.  Do the accounting,
2192 				 * drop the locks we acquired, and go back.
2193 				 *
2194 				 * freemem is not protected by any lock. So,
2195 				 * we cannot have any assertion containing
2196 				 * freemem.
2197 				 */
2198 				pgcnt_t	tpages = npages;
2199 				freemem -= npages;
2200 				while (p >= pcf) {
2201 					if (p->pcf_count <= tpages) {
2202 						tpages -= p->pcf_count;
2203 						p->pcf_count = 0;
2204 					} else {
2205 						p->pcf_count -= (uint_t)tpages;
2206 						tpages = 0;
2207 					}
2208 					mutex_exit(&p->pcf_lock);
2209 					p--;
2210 				}
2211 				ASSERT(tpages == 0);
2212 				break;
2213 			}
2214 			p++;
2215 		}
2216 		if (i == PCF_FANOUT) {
2217 			/* failed to collect pages - release the locks */
2218 			while (--p >= pcf) {
2219 				mutex_exit(&p->pcf_lock);
2220 			}
2221 			VM_STAT_ADD(page_create_large_cnt[4]);
2222 			return (NULL);
2223 		}
2224 	}
2225 
2226 	/*
2227 	 * This is where this function behaves fundamentally differently
2228 	 * than page_create_va(); since we're intending to map the page
2229 	 * with a single TTE, we have to get it as a physically contiguous
2230 	 * hardware pagesize chunk.  If we can't, we fail.
2231 	 */
2232 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2233 		LGRP_EXISTS(lgrp_table[*lgrpid]))
2234 		lgrp = lgrp_table[*lgrpid];
2235 	else
2236 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2237 
2238 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2239 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2240 		page_create_putback(npages);
2241 		VM_STAT_ADD(page_create_large_cnt[5]);
2242 		return (NULL);
2243 	}
2244 
2245 	/*
2246 	 * if we got the page with the wrong mtype give it back this is a
2247 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2248 	 * inside "if" and the workaround becomes just a nop
2249 	 */
2250 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2251 		page_list_add_pages(rootpp, 0);
2252 		page_create_putback(npages);
2253 		VM_STAT_ADD(page_create_large_cnt[6]);
2254 		return (NULL);
2255 	}
2256 
2257 	/*
2258 	 * If satisfying this request has left us with too little
2259 	 * memory, start the wheels turning to get some back.  The
2260 	 * first clause of the test prevents waking up the pageout
2261 	 * daemon in situations where it would decide that there's
2262 	 * nothing to do.
2263 	 */
2264 	if (nscan < desscan && freemem < minfree) {
2265 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2266 		    "pageout_cv_signal:freemem %ld", freemem);
2267 		cv_signal(&proc_pageout->p_cv);
2268 	}
2269 
2270 	pp = rootpp;
2271 	while (npages--) {
2272 		ASSERT(PAGE_EXCL(pp));
2273 		ASSERT(pp->p_vnode == NULL);
2274 		ASSERT(!hat_page_is_mapped(pp));
2275 		PP_CLRFREE(pp);
2276 		PP_CLRAGED(pp);
2277 		if (!page_hashin(pp, vp, off, NULL))
2278 			panic("page_create_large: hashin failed: page %p",
2279 			    (void *)pp);
2280 		page_io_lock(pp);
2281 		off += PAGESIZE;
2282 		pp = pp->p_next;
2283 	}
2284 
2285 	VM_STAT_ADD(page_create_large_cnt[0]);
2286 	return (rootpp);
2287 }
2288 
2289 page_t *
2290 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2291     struct seg *seg, caddr_t vaddr)
2292 {
2293 	page_t		*plist = NULL;
2294 	pgcnt_t		npages;
2295 	pgcnt_t		found_on_free = 0;
2296 	pgcnt_t		pages_req;
2297 	page_t		*npp = NULL;
2298 	uint_t		enough;
2299 	uint_t		i;
2300 	uint_t		pcf_index;
2301 	struct pcf	*p;
2302 	struct pcf	*q;
2303 	lgrp_t		*lgrp;
2304 
2305 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2306 		"page_create_start:vp %p off %llx bytes %lu flags %x",
2307 		vp, off, bytes, flags);
2308 
2309 	ASSERT(bytes != 0 && vp != NULL);
2310 
2311 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2312 		panic("page_create: invalid flags");
2313 		/*NOTREACHED*/
2314 	}
2315 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2316 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2317 	    /* but no others */
2318 
2319 	pages_req = npages = btopr(bytes);
2320 	/*
2321 	 * Try to see whether request is too large to *ever* be
2322 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2323 	 * decide to limit maximum size requests to max_page_get.
2324 	 */
2325 	if (npages >= max_page_get) {
2326 		if ((flags & PG_WAIT) == 0) {
2327 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2328 			    "page_create_toobig:vp %p off %llx npages "
2329 			    "%lu max_page_get %lu",
2330 			    vp, off, npages, max_page_get);
2331 			return (NULL);
2332 		} else {
2333 			cmn_err(CE_WARN,
2334 			    "Request for too much kernel memory "
2335 			    "(%lu bytes), will hang forever", bytes);
2336 			for (;;)
2337 				delay(1000000000);
2338 		}
2339 	}
2340 
2341 	if (!kcage_on || panicstr) {
2342 		/*
2343 		 * Cage is OFF, or we are single threaded in
2344 		 * panic, so make everything a RELOC request.
2345 		 */
2346 		flags &= ~PG_NORELOC;
2347 	}
2348 
2349 	if (freemem <= throttlefree + npages)
2350 		if (!page_create_throttle(npages, flags))
2351 			return (NULL);
2352 
2353 	/*
2354 	 * If cage is on, dampen draw from cage when available
2355 	 * cage space is low.
2356 	 */
2357 	if ((flags & PG_NORELOC) &&
2358 		kcage_freemem < kcage_throttlefree + npages) {
2359 
2360 		/*
2361 		 * The cage is on, the caller wants PG_NORELOC
2362 		 * pages and available cage memory is very low.
2363 		 * Call kcage_create_throttle() to attempt to
2364 		 * control demand on the cage.
2365 		 */
2366 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2367 			return (NULL);
2368 	}
2369 
2370 	VM_STAT_ADD(page_create_cnt[0]);
2371 
2372 	enough = 0;
2373 	pcf_index = PCF_INDEX();
2374 
2375 	p = &pcf[pcf_index];
2376 	p->pcf_touch = 1;
2377 	q = &pcf[PCF_FANOUT];
2378 	for (i = 0; i < PCF_FANOUT; i++) {
2379 		if (p->pcf_count > npages) {
2380 			/*
2381 			 * a good one to try.
2382 			 */
2383 			mutex_enter(&p->pcf_lock);
2384 			if (p->pcf_count > npages) {
2385 				p->pcf_count -= (uint_t)npages;
2386 				/*
2387 				 * freemem is not protected by any lock.
2388 				 * Thus, we cannot have any assertion
2389 				 * containing freemem here.
2390 				 */
2391 				freemem -= npages;
2392 				enough = 1;
2393 				mutex_exit(&p->pcf_lock);
2394 				break;
2395 			}
2396 			mutex_exit(&p->pcf_lock);
2397 		}
2398 		p++;
2399 		if (p >= q) {
2400 			p = pcf;
2401 		}
2402 		p->pcf_touch = 1;
2403 	}
2404 
2405 	if (!enough) {
2406 		/*
2407 		 * Have to look harder.  If npages is greater than
2408 		 * one, then we might have to coalecse the counters.
2409 		 *
2410 		 * Go wait.  We come back having accounted
2411 		 * for the memory.
2412 		 */
2413 		VM_STAT_ADD(page_create_cnt[1]);
2414 		if (!page_create_wait(npages, flags)) {
2415 			VM_STAT_ADD(page_create_cnt[2]);
2416 			return (NULL);
2417 		}
2418 	}
2419 
2420 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2421 		"page_create_success:vp %p off %llx", vp, off);
2422 
2423 	/*
2424 	 * If satisfying this request has left us with too little
2425 	 * memory, start the wheels turning to get some back.  The
2426 	 * first clause of the test prevents waking up the pageout
2427 	 * daemon in situations where it would decide that there's
2428 	 * nothing to do.
2429 	 */
2430 	if (nscan < desscan && freemem < minfree) {
2431 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2432 			"pageout_cv_signal:freemem %ld", freemem);
2433 		cv_signal(&proc_pageout->p_cv);
2434 	}
2435 
2436 	/*
2437 	 * Loop around collecting the requested number of pages.
2438 	 * Most of the time, we have to `create' a new page. With
2439 	 * this in mind, pull the page off the free list before
2440 	 * getting the hash lock.  This will minimize the hash
2441 	 * lock hold time, nesting, and the like.  If it turns
2442 	 * out we don't need the page, we put it back at the end.
2443 	 */
2444 	while (npages--) {
2445 		page_t		*pp;
2446 		kmutex_t	*phm = NULL;
2447 		ulong_t		index;
2448 
2449 		index = PAGE_HASH_FUNC(vp, off);
2450 top:
2451 		ASSERT(phm == NULL);
2452 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2453 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2454 
2455 		if (npp == NULL) {
2456 			/*
2457 			 * Try to get a page from the freelist (ie,
2458 			 * a page with no [vp, off] tag).  If that
2459 			 * fails, use the cachelist.
2460 			 *
2461 			 * During the first attempt at both the free
2462 			 * and cache lists we try for the correct color.
2463 			 */
2464 			/*
2465 			 * XXXX-how do we deal with virtual indexed
2466 			 * caches and and colors?
2467 			 */
2468 			VM_STAT_ADD(page_create_cnt[4]);
2469 			/*
2470 			 * Get lgroup to allocate next page of shared memory
2471 			 * from and use it to specify where to allocate
2472 			 * the physical memory
2473 			 */
2474 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2475 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2476 			    flags | PG_MATCH_COLOR, lgrp);
2477 			if (npp == NULL) {
2478 				npp = page_get_cachelist(vp, off, seg,
2479 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2480 				if (npp == NULL) {
2481 					npp = page_create_get_something(vp,
2482 					    off, seg, vaddr,
2483 					    flags & ~PG_MATCH_COLOR);
2484 				}
2485 
2486 				if (PP_ISAGED(npp) == 0) {
2487 					/*
2488 					 * Since this page came from the
2489 					 * cachelist, we must destroy the
2490 					 * old vnode association.
2491 					 */
2492 					page_hashout(npp, NULL);
2493 				}
2494 			}
2495 		}
2496 
2497 		/*
2498 		 * We own this page!
2499 		 */
2500 		ASSERT(PAGE_EXCL(npp));
2501 		ASSERT(npp->p_vnode == NULL);
2502 		ASSERT(!hat_page_is_mapped(npp));
2503 		PP_CLRFREE(npp);
2504 		PP_CLRAGED(npp);
2505 
2506 		/*
2507 		 * Here we have a page in our hot little mits and are
2508 		 * just waiting to stuff it on the appropriate lists.
2509 		 * Get the mutex and check to see if it really does
2510 		 * not exist.
2511 		 */
2512 		phm = PAGE_HASH_MUTEX(index);
2513 		mutex_enter(phm);
2514 		PAGE_HASH_SEARCH(index, pp, vp, off);
2515 		if (pp == NULL) {
2516 			VM_STAT_ADD(page_create_new);
2517 			pp = npp;
2518 			npp = NULL;
2519 			if (!page_hashin(pp, vp, off, phm)) {
2520 				/*
2521 				 * Since we hold the page hash mutex and
2522 				 * just searched for this page, page_hashin
2523 				 * had better not fail.  If it does, that
2524 				 * means somethread did not follow the
2525 				 * page hash mutex rules.  Panic now and
2526 				 * get it over with.  As usual, go down
2527 				 * holding all the locks.
2528 				 */
2529 				ASSERT(MUTEX_HELD(phm));
2530 				panic("page_create: "
2531 				    "hashin failed %p %p %llx %p",
2532 				    (void *)pp, (void *)vp, off, (void *)phm);
2533 				/*NOTREACHED*/
2534 			}
2535 			ASSERT(MUTEX_HELD(phm));
2536 			mutex_exit(phm);
2537 			phm = NULL;
2538 
2539 			/*
2540 			 * Hat layer locking need not be done to set
2541 			 * the following bits since the page is not hashed
2542 			 * and was on the free list (i.e., had no mappings).
2543 			 *
2544 			 * Set the reference bit to protect
2545 			 * against immediate pageout
2546 			 *
2547 			 * XXXmh modify freelist code to set reference
2548 			 * bit so we don't have to do it here.
2549 			 */
2550 			page_set_props(pp, P_REF);
2551 			found_on_free++;
2552 		} else {
2553 			VM_STAT_ADD(page_create_exists);
2554 			if (flags & PG_EXCL) {
2555 				/*
2556 				 * Found an existing page, and the caller
2557 				 * wanted all new pages.  Undo all of the work
2558 				 * we have done.
2559 				 */
2560 				mutex_exit(phm);
2561 				phm = NULL;
2562 				while (plist != NULL) {
2563 					pp = plist;
2564 					page_sub(&plist, pp);
2565 					page_io_unlock(pp);
2566 					/* large pages should not end up here */
2567 					ASSERT(pp->p_szc == 0);
2568 					/*LINTED: constant in conditional ctx*/
2569 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2570 				}
2571 				VM_STAT_ADD(page_create_found_one);
2572 				goto fail;
2573 			}
2574 			ASSERT(flags & PG_WAIT);
2575 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2576 				/*
2577 				 * Start all over again if we blocked trying
2578 				 * to lock the page.
2579 				 */
2580 				mutex_exit(phm);
2581 				VM_STAT_ADD(page_create_page_lock_failed);
2582 				phm = NULL;
2583 				goto top;
2584 			}
2585 			mutex_exit(phm);
2586 			phm = NULL;
2587 
2588 			if (PP_ISFREE(pp)) {
2589 				ASSERT(PP_ISAGED(pp) == 0);
2590 				VM_STAT_ADD(pagecnt.pc_get_cache);
2591 				page_list_sub(pp, PG_CACHE_LIST);
2592 				PP_CLRFREE(pp);
2593 				found_on_free++;
2594 			}
2595 		}
2596 
2597 		/*
2598 		 * Got a page!  It is locked.  Acquire the i/o
2599 		 * lock since we are going to use the p_next and
2600 		 * p_prev fields to link the requested pages together.
2601 		 */
2602 		page_io_lock(pp);
2603 		page_add(&plist, pp);
2604 		plist = plist->p_next;
2605 		off += PAGESIZE;
2606 		vaddr += PAGESIZE;
2607 	}
2608 
2609 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2610 fail:
2611 	if (npp != NULL) {
2612 		/*
2613 		 * Did not need this page after all.
2614 		 * Put it back on the free list.
2615 		 */
2616 		VM_STAT_ADD(page_create_putbacks);
2617 		PP_SETFREE(npp);
2618 		PP_SETAGED(npp);
2619 		npp->p_offset = (u_offset_t)-1;
2620 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2621 		page_unlock(npp);
2622 
2623 	}
2624 
2625 	ASSERT(pages_req >= found_on_free);
2626 
2627 	{
2628 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2629 
2630 		if (overshoot) {
2631 			VM_STAT_ADD(page_create_overshoot);
2632 			p = &pcf[pcf_index];
2633 			p->pcf_touch = 1;
2634 			mutex_enter(&p->pcf_lock);
2635 			if (p->pcf_block) {
2636 				p->pcf_reserve += overshoot;
2637 			} else {
2638 				p->pcf_count += overshoot;
2639 				if (p->pcf_wait) {
2640 					mutex_enter(&new_freemem_lock);
2641 					if (freemem_wait) {
2642 						cv_signal(&freemem_cv);
2643 						p->pcf_wait--;
2644 					} else {
2645 						p->pcf_wait = 0;
2646 					}
2647 					mutex_exit(&new_freemem_lock);
2648 				}
2649 			}
2650 			mutex_exit(&p->pcf_lock);
2651 			/* freemem is approximate, so this test OK */
2652 			if (!p->pcf_block)
2653 				freemem += overshoot;
2654 		}
2655 	}
2656 
2657 	return (plist);
2658 }
2659 
2660 /*
2661  * One or more constituent pages of this large page has been marked
2662  * toxic. Simply demote the large page to PAGESIZE pages and let
2663  * page_free() handle it. This routine should only be called by
2664  * large page free routines (page_free_pages() and page_destroy_pages().
2665  * All pages are locked SE_EXCL and have already been marked free.
2666  */
2667 static void
2668 page_free_toxic_pages(page_t *rootpp)
2669 {
2670 	page_t	*tpp;
2671 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2672 	uint_t	szc = rootpp->p_szc;
2673 
2674 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2675 		ASSERT(tpp->p_szc == szc);
2676 		ASSERT((PAGE_EXCL(tpp) &&
2677 		    !page_iolock_assert(tpp)) || panicstr);
2678 		tpp->p_szc = 0;
2679 	}
2680 
2681 	while (rootpp != NULL) {
2682 		tpp = rootpp;
2683 		page_sub(&rootpp, tpp);
2684 		ASSERT(PP_ISFREE(tpp));
2685 		PP_CLRFREE(tpp);
2686 		page_free(tpp, 1);
2687 	}
2688 }
2689 
2690 /*
2691  * Put page on the "free" list.
2692  * The free list is really two lists maintained by
2693  * the PSM of whatever machine we happen to be on.
2694  */
2695 void
2696 page_free(page_t *pp, int dontneed)
2697 {
2698 	struct pcf	*p;
2699 	uint_t		pcf_index;
2700 
2701 	ASSERT((PAGE_EXCL(pp) &&
2702 	    !page_iolock_assert(pp)) || panicstr);
2703 
2704 	if (PP_ISFREE(pp)) {
2705 		panic("page_free: page %p is free", (void *)pp);
2706 	}
2707 
2708 	if (pp->p_szc != 0) {
2709 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2710 		    pp->p_vnode == &kvp) {
2711 			panic("page_free: anon or kernel "
2712 			    "or no vnode large page %p", (void *)pp);
2713 		}
2714 		page_demote_vp_pages(pp);
2715 		ASSERT(pp->p_szc == 0);
2716 	}
2717 
2718 	/*
2719 	 * The page_struct_lock need not be acquired to examine these
2720 	 * fields since the page has an "exclusive" lock.
2721 	 */
2722 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
2723 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d",
2724 		    pp, page_pptonum(pp), pp->p_lckcnt, pp->p_cowcnt);
2725 		/*NOTREACHED*/
2726 	}
2727 
2728 	ASSERT(!hat_page_getshare(pp));
2729 
2730 	PP_SETFREE(pp);
2731 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2732 	    !hat_ismod(pp));
2733 	page_clr_all_props(pp);
2734 	ASSERT(!hat_page_getshare(pp));
2735 
2736 	/*
2737 	 * Now we add the page to the head of the free list.
2738 	 * But if this page is associated with a paged vnode
2739 	 * then we adjust the head forward so that the page is
2740 	 * effectively at the end of the list.
2741 	 */
2742 	if (pp->p_vnode == NULL) {
2743 		/*
2744 		 * Page has no identity, put it on the free list.
2745 		 */
2746 		PP_SETAGED(pp);
2747 		pp->p_offset = (u_offset_t)-1;
2748 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2749 		VM_STAT_ADD(pagecnt.pc_free_free);
2750 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2751 		    "page_free_free:pp %p", pp);
2752 	} else {
2753 		PP_CLRAGED(pp);
2754 
2755 		if (!dontneed || nopageage) {
2756 			/* move it to the tail of the list */
2757 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2758 
2759 			VM_STAT_ADD(pagecnt.pc_free_cache);
2760 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2761 			    "page_free_cache_tail:pp %p", pp);
2762 		} else {
2763 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2764 
2765 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2766 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2767 			    "page_free_cache_head:pp %p", pp);
2768 		}
2769 	}
2770 	page_unlock(pp);
2771 
2772 	/*
2773 	 * Now do the `freemem' accounting.
2774 	 */
2775 	pcf_index = PCF_INDEX();
2776 	p = &pcf[pcf_index];
2777 	p->pcf_touch = 1;
2778 
2779 	mutex_enter(&p->pcf_lock);
2780 	if (p->pcf_block) {
2781 		p->pcf_reserve += 1;
2782 	} else {
2783 		p->pcf_count += 1;
2784 		if (p->pcf_wait) {
2785 			mutex_enter(&new_freemem_lock);
2786 			/*
2787 			 * Check to see if some other thread
2788 			 * is actually waiting.  Another bucket
2789 			 * may have woken it up by now.  If there
2790 			 * are no waiters, then set our pcf_wait
2791 			 * count to zero to avoid coming in here
2792 			 * next time.  Also, since only one page
2793 			 * was put on the free list, just wake
2794 			 * up one waiter.
2795 			 */
2796 			if (freemem_wait) {
2797 				cv_signal(&freemem_cv);
2798 				p->pcf_wait--;
2799 			} else {
2800 				p->pcf_wait = 0;
2801 			}
2802 			mutex_exit(&new_freemem_lock);
2803 		}
2804 	}
2805 	mutex_exit(&p->pcf_lock);
2806 
2807 	/* freemem is approximate, so this test OK */
2808 	if (!p->pcf_block)
2809 		freemem += 1;
2810 }
2811 
2812 /*
2813  * Put page on the "free" list during intial startup.
2814  * This happens during initial single threaded execution.
2815  */
2816 void
2817 page_free_at_startup(page_t *pp)
2818 {
2819 	struct pcf	*p;
2820 	uint_t		pcf_index;
2821 
2822 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2823 	VM_STAT_ADD(pagecnt.pc_free_free);
2824 
2825 	/*
2826 	 * Now do the `freemem' accounting.
2827 	 */
2828 	pcf_index = PCF_INDEX();
2829 	p = &pcf[pcf_index];
2830 	p->pcf_touch = 1;
2831 
2832 	ASSERT(p->pcf_block == 0);
2833 	ASSERT(p->pcf_wait == 0);
2834 	p->pcf_count += 1;
2835 
2836 	/* freemem is approximate, so this is OK */
2837 	freemem += 1;
2838 }
2839 
2840 void
2841 page_free_pages(page_t *pp)
2842 {
2843 	page_t	*tpp, *rootpp = NULL;
2844 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2845 	pgcnt_t	i;
2846 	uint_t	szc = pp->p_szc;
2847 
2848 	VM_STAT_ADD(pagecnt.pc_free_pages);
2849 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2850 	    "page_free_free:pp %p", pp);
2851 
2852 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2853 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2854 		panic("page_free_pages: not root page %p", (void *)pp);
2855 		/*NOTREACHED*/
2856 	}
2857 
2858 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2859 		ASSERT((PAGE_EXCL(tpp) &&
2860 		    !page_iolock_assert(tpp)) || panicstr);
2861 		if (PP_ISFREE(tpp)) {
2862 			panic("page_free_pages: page %p is free", (void *)tpp);
2863 			/*NOTREACHED*/
2864 		}
2865 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2866 		    tpp->p_cowcnt != 0) {
2867 			panic("page_free_pages %p", (void *)tpp);
2868 			/*NOTREACHED*/
2869 		}
2870 
2871 		ASSERT(!hat_page_getshare(tpp));
2872 		ASSERT(tpp->p_vnode == NULL);
2873 		ASSERT(tpp->p_szc == szc);
2874 
2875 		PP_SETFREE(tpp);
2876 		page_clr_all_props(tpp);
2877 		PP_SETAGED(tpp);
2878 		tpp->p_offset = (u_offset_t)-1;
2879 		ASSERT(tpp->p_next == tpp);
2880 		ASSERT(tpp->p_prev == tpp);
2881 		page_list_concat(&rootpp, &tpp);
2882 	}
2883 	ASSERT(rootpp == pp);
2884 
2885 	page_list_add_pages(rootpp, 0);
2886 	page_create_putback(pgcnt);
2887 }
2888 
2889 int free_pages = 1;
2890 
2891 /*
2892  * This routine attempts to return pages to the cachelist via page_release().
2893  * It does not *have* to be successful in all cases, since the pageout scanner
2894  * will catch any pages it misses.  It does need to be fast and not introduce
2895  * too much overhead.
2896  *
2897  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2898  * don't lock and retry.  This is ok, since the page scanner will eventually
2899  * find any page we miss in free_vp_pages().
2900  */
2901 void
2902 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2903 {
2904 	page_t *pp;
2905 	u_offset_t eoff;
2906 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2907 
2908 	eoff = off + len;
2909 
2910 	if (free_pages == 0)
2911 		return;
2912 	if (swap_in_range(vp, off, len))
2913 		return;
2914 
2915 	for (; off < eoff; off += PAGESIZE) {
2916 
2917 		/*
2918 		 * find the page using a fast, but inexact search. It'll be OK
2919 		 * if a few pages slip through the cracks here.
2920 		 */
2921 		pp = page_exists(vp, off);
2922 
2923 		/*
2924 		 * If we didn't find the page (it may not exist), the page
2925 		 * is free, looks still in use (shared), or we can't lock it,
2926 		 * just give up.
2927 		 */
2928 		if (pp == NULL ||
2929 		    PP_ISFREE(pp) ||
2930 		    page_share_cnt(pp) > 0 ||
2931 		    !page_trylock(pp, SE_EXCL))
2932 			continue;
2933 
2934 		/*
2935 		 * Once we have locked pp, verify that it's still the
2936 		 * correct page and not already free
2937 		 */
2938 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2939 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2940 			page_unlock(pp);
2941 			continue;
2942 		}
2943 
2944 		/*
2945 		 * try to release the page...
2946 		 */
2947 		(void) page_release(pp, 1);
2948 	}
2949 }
2950 
2951 /*
2952  * Reclaim the given page from the free list.
2953  * Returns 1 on success or 0 on failure.
2954  *
2955  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2956  * If `lock' is non-null, it will be dropped and re-acquired if
2957  * the routine must wait while freemem is 0.
2958  *
2959  * As it turns out, boot_getpages() does this.  It picks a page,
2960  * based on where OBP mapped in some address, gets its pfn, searches
2961  * the memsegs, locks the page, then pulls it off the free list!
2962  */
2963 int
2964 page_reclaim(page_t *pp, kmutex_t *lock)
2965 {
2966 	struct pcf	*p;
2967 	uint_t		pcf_index;
2968 	struct cpu	*cpup;
2969 	uint_t		i;
2970 	pgcnt_t		npgs, need;
2971 	pgcnt_t		collected = 0;
2972 
2973 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2974 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2975 
2976 	npgs = page_get_pagecnt(pp->p_szc);
2977 
2978 	/*
2979 	 * If `freemem' is 0, we cannot reclaim this page from the
2980 	 * freelist, so release every lock we might hold: the page,
2981 	 * and the `lock' before blocking.
2982 	 *
2983 	 * The only way `freemem' can become 0 while there are pages
2984 	 * marked free (have their p->p_free bit set) is when the
2985 	 * system is low on memory and doing a page_create().  In
2986 	 * order to guarantee that once page_create() starts acquiring
2987 	 * pages it will be able to get all that it needs since `freemem'
2988 	 * was decreased by the requested amount.  So, we need to release
2989 	 * this page, and let page_create() have it.
2990 	 *
2991 	 * Since `freemem' being zero is not supposed to happen, just
2992 	 * use the usual hash stuff as a starting point.  If that bucket
2993 	 * is empty, then assume the worst, and start at the beginning
2994 	 * of the pcf array.  If we always start at the beginning
2995 	 * when acquiring more than one pcf lock, there won't be any
2996 	 * deadlock problems.
2997 	 */
2998 
2999 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
3000 
3001 	if (freemem <= throttlefree && !page_create_throttle(npgs, 0)) {
3002 		pcf_acquire_all();
3003 		goto page_reclaim_nomem;
3004 	}
3005 
3006 	pcf_index = PCF_INDEX();
3007 	p = &pcf[pcf_index];
3008 	p->pcf_touch = 1;
3009 	mutex_enter(&p->pcf_lock);
3010 	if (p->pcf_count >= npgs) {
3011 		collected = npgs;
3012 		p->pcf_count -= npgs;
3013 	}
3014 	mutex_exit(&p->pcf_lock);
3015 	need = npgs - collected;
3016 
3017 	if (need > 0) {
3018 		VM_STAT_ADD(page_reclaim_zero);
3019 		/*
3020 		 * Check again. Its possible that some other thread
3021 		 * could have been right behind us, and added one
3022 		 * to a list somewhere.  Acquire each of the pcf locks
3023 		 * until we find a page.
3024 		 */
3025 		p = pcf;
3026 		for (i = 0; i < PCF_FANOUT; i++) {
3027 			p->pcf_touch = 1;
3028 			mutex_enter(&p->pcf_lock);
3029 			if (p->pcf_count) {
3030 				if (p->pcf_count >= need) {
3031 					p->pcf_count -= need;
3032 					collected += need;
3033 					need = 0;
3034 					break;
3035 				} else if (p->pcf_count) {
3036 					collected += p->pcf_count;
3037 					need -= p->pcf_count;
3038 					p->pcf_count = 0;
3039 				}
3040 			}
3041 			p++;
3042 		}
3043 
3044 		if (need > 0) {
3045 page_reclaim_nomem:
3046 			/*
3047 			 * We really can't have page `pp'.
3048 			 * Time for the no-memory dance with
3049 			 * page_free().  This is just like
3050 			 * page_create_wait().  Plus the added
3051 			 * attraction of releasing whatever mutex
3052 			 * we held when we were called with in `lock'.
3053 			 * Page_unlock() will wakeup any thread
3054 			 * waiting around for this page.
3055 			 */
3056 			if (lock) {
3057 				VM_STAT_ADD(page_reclaim_zero_locked);
3058 				mutex_exit(lock);
3059 			}
3060 			page_unlock(pp);
3061 
3062 			/*
3063 			 * get this before we drop all the pcf locks.
3064 			 */
3065 			mutex_enter(&new_freemem_lock);
3066 
3067 			p = pcf;
3068 			p->pcf_count += collected;
3069 			for (i = 0; i < PCF_FANOUT; i++) {
3070 				p->pcf_wait++;
3071 				mutex_exit(&p->pcf_lock);
3072 				p++;
3073 			}
3074 
3075 			freemem_wait++;
3076 			cv_wait(&freemem_cv, &new_freemem_lock);
3077 			freemem_wait--;
3078 
3079 			mutex_exit(&new_freemem_lock);
3080 
3081 			if (lock) {
3082 				mutex_enter(lock);
3083 			}
3084 			return (0);
3085 		}
3086 
3087 		/*
3088 		 * We beat the PCF bins over the head until
3089 		 * we got the memory that we wanted.
3090 		 * The pcf accounting has been done,
3091 		 * though none of the pcf_wait flags have been set,
3092 		 * drop the locks and continue on.
3093 		 */
3094 		ASSERT(collected == npgs);
3095 		while (p >= pcf) {
3096 			mutex_exit(&p->pcf_lock);
3097 			p--;
3098 		}
3099 	}
3100 
3101 	/*
3102 	 * freemem is not protected by any lock. Thus, we cannot
3103 	 * have any assertion containing freemem here.
3104 	 */
3105 	freemem -= npgs;
3106 
3107 	VM_STAT_ADD(pagecnt.pc_reclaim);
3108 	if (PP_ISAGED(pp)) {
3109 		if (npgs > 1) {
3110 			page_list_sub_pages(pp, pp->p_szc);
3111 		} else {
3112 			page_list_sub(pp, PG_FREE_LIST);
3113 		}
3114 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3115 		    "page_reclaim_free:pp %p", pp);
3116 	} else {
3117 		ASSERT(npgs == 1);
3118 		page_list_sub(pp, PG_CACHE_LIST);
3119 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3120 		    "page_reclaim_cache:pp %p", pp);
3121 	}
3122 
3123 	/*
3124 	 * clear the p_free & p_age bits since this page is no longer
3125 	 * on the free list.  Notice that there was a brief time where
3126 	 * a page is marked as free, but is not on the list.
3127 	 *
3128 	 * Set the reference bit to protect against immediate pageout.
3129 	 */
3130 	for (i = 0; i < npgs; i++, pp++) {
3131 		PP_CLRFREE(pp);
3132 		PP_CLRAGED(pp);
3133 		page_set_props(pp, P_REF);
3134 	}
3135 
3136 	CPU_STATS_ENTER_K();
3137 	cpup = CPU;	/* get cpup now that CPU cannot change */
3138 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3139 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3140 	CPU_STATS_EXIT_K();
3141 
3142 	return (1);
3143 }
3144 
3145 
3146 
3147 /*
3148  * Destroy identity of the page and put it back on
3149  * the page free list.  Assumes that the caller has
3150  * acquired the "exclusive" lock on the page.
3151  */
3152 void
3153 page_destroy(page_t *pp, int dontfree)
3154 {
3155 	ASSERT((PAGE_EXCL(pp) &&
3156 	    !page_iolock_assert(pp)) || panicstr);
3157 
3158 	if (pp->p_szc != 0) {
3159 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3160 		    pp->p_vnode == &kvp) {
3161 			panic("page_destroy: anon or kernel or no vnode "
3162 			    "large page %p", (void *)pp);
3163 		}
3164 		page_demote_vp_pages(pp);
3165 		ASSERT(pp->p_szc == 0);
3166 	}
3167 
3168 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3169 
3170 	/*
3171 	 * Unload translations, if any, then hash out the
3172 	 * page to erase its identity.
3173 	 */
3174 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3175 	page_hashout(pp, NULL);
3176 
3177 	if (!dontfree) {
3178 		/*
3179 		 * Acquire the "freemem_lock" for availrmem.
3180 		 * The page_struct_lock need not be acquired for lckcnt
3181 		 * and cowcnt since the page has an "exclusive" lock.
3182 		 */
3183 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3184 			mutex_enter(&freemem_lock);
3185 			if (pp->p_lckcnt != 0) {
3186 				availrmem++;
3187 				pp->p_lckcnt = 0;
3188 			}
3189 			if (pp->p_cowcnt != 0) {
3190 				availrmem += pp->p_cowcnt;
3191 				pp->p_cowcnt = 0;
3192 			}
3193 			mutex_exit(&freemem_lock);
3194 		}
3195 		/*
3196 		 * Put the page on the "free" list.
3197 		 */
3198 		page_free(pp, 0);
3199 	}
3200 }
3201 
3202 void
3203 page_destroy_pages(page_t *pp)
3204 {
3205 
3206 	page_t	*tpp, *rootpp = NULL;
3207 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3208 	pgcnt_t	i, pglcks = 0;
3209 	uint_t	szc = pp->p_szc;
3210 
3211 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3212 
3213 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3214 
3215 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3216 
3217 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3218 		panic("page_destroy_pages: not root page %p", (void *)pp);
3219 		/*NOTREACHED*/
3220 	}
3221 
3222 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3223 		ASSERT((PAGE_EXCL(tpp) &&
3224 		    !page_iolock_assert(tpp)) || panicstr);
3225 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3226 		page_hashout(tpp, NULL);
3227 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3228 		if (tpp->p_lckcnt != 0) {
3229 			pglcks++;
3230 			tpp->p_lckcnt = 0;
3231 		} else if (tpp->p_cowcnt != 0) {
3232 			pglcks += tpp->p_cowcnt;
3233 			tpp->p_cowcnt = 0;
3234 		}
3235 		ASSERT(!hat_page_getshare(tpp));
3236 		ASSERT(tpp->p_vnode == NULL);
3237 		ASSERT(tpp->p_szc == szc);
3238 
3239 		PP_SETFREE(tpp);
3240 		page_clr_all_props(tpp);
3241 		PP_SETAGED(tpp);
3242 		ASSERT(tpp->p_next == tpp);
3243 		ASSERT(tpp->p_prev == tpp);
3244 		page_list_concat(&rootpp, &tpp);
3245 	}
3246 
3247 	ASSERT(rootpp == pp);
3248 	if (pglcks != 0) {
3249 		mutex_enter(&freemem_lock);
3250 		availrmem += pglcks;
3251 		mutex_exit(&freemem_lock);
3252 	}
3253 
3254 	page_list_add_pages(rootpp, 0);
3255 	page_create_putback(pgcnt);
3256 }
3257 
3258 /*
3259  * Similar to page_destroy(), but destroys pages which are
3260  * locked and known to be on the page free list.  Since
3261  * the page is known to be free and locked, no one can access
3262  * it.
3263  *
3264  * Also, the number of free pages does not change.
3265  */
3266 void
3267 page_destroy_free(page_t *pp)
3268 {
3269 	ASSERT(PAGE_EXCL(pp));
3270 	ASSERT(PP_ISFREE(pp));
3271 	ASSERT(pp->p_vnode);
3272 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3273 	ASSERT(!hat_page_is_mapped(pp));
3274 	ASSERT(PP_ISAGED(pp) == 0);
3275 	ASSERT(pp->p_szc == 0);
3276 
3277 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3278 	page_list_sub(pp, PG_CACHE_LIST);
3279 
3280 	page_hashout(pp, NULL);
3281 	ASSERT(pp->p_vnode == NULL);
3282 	ASSERT(pp->p_offset == (u_offset_t)-1);
3283 	ASSERT(pp->p_hash == NULL);
3284 
3285 	PP_SETAGED(pp);
3286 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3287 	page_unlock(pp);
3288 
3289 	mutex_enter(&new_freemem_lock);
3290 	if (freemem_wait) {
3291 		cv_signal(&freemem_cv);
3292 	}
3293 	mutex_exit(&new_freemem_lock);
3294 }
3295 
3296 /*
3297  * Rename the page "opp" to have an identity specified
3298  * by [vp, off].  If a page already exists with this name
3299  * it is locked and destroyed.  Note that the page's
3300  * translations are not unloaded during the rename.
3301  *
3302  * This routine is used by the anon layer to "steal" the
3303  * original page and is not unlike destroying a page and
3304  * creating a new page using the same page frame.
3305  *
3306  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3307  * caller 2 tries to rename B to A.
3308  */
3309 void
3310 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3311 {
3312 	page_t		*pp;
3313 	int		olckcnt = 0;
3314 	int		ocowcnt = 0;
3315 	kmutex_t	*phm;
3316 	ulong_t		index;
3317 
3318 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3319 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3320 	ASSERT(PP_ISFREE(opp) == 0);
3321 
3322 	VM_STAT_ADD(page_rename_count);
3323 
3324 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3325 		"page rename:pp %p vp %p off %llx", opp, vp, off);
3326 
3327 	/*
3328 	 * CacheFS may call page_rename for a large NFS page
3329 	 * when both CacheFS and NFS mount points are used
3330 	 * by applications. Demote this large page before
3331 	 * renaming it, to ensure that there are no "partial"
3332 	 * large pages left lying around.
3333 	 */
3334 	if (opp->p_szc != 0) {
3335 		vnode_t *ovp = opp->p_vnode;
3336 		ASSERT(ovp != NULL);
3337 		ASSERT(!IS_SWAPFSVP(ovp));
3338 		ASSERT(ovp != &kvp);
3339 		page_demote_vp_pages(opp);
3340 		ASSERT(opp->p_szc == 0);
3341 	}
3342 
3343 	page_hashout(opp, NULL);
3344 	PP_CLRAGED(opp);
3345 
3346 	/*
3347 	 * Acquire the appropriate page hash lock, since
3348 	 * we're going to rename the page.
3349 	 */
3350 	index = PAGE_HASH_FUNC(vp, off);
3351 	phm = PAGE_HASH_MUTEX(index);
3352 	mutex_enter(phm);
3353 top:
3354 	/*
3355 	 * Look for an existing page with this name and destroy it if found.
3356 	 * By holding the page hash lock all the way to the page_hashin()
3357 	 * call, we are assured that no page can be created with this
3358 	 * identity.  In the case when the phm lock is dropped to undo any
3359 	 * hat layer mappings, the existing page is held with an "exclusive"
3360 	 * lock, again preventing another page from being created with
3361 	 * this identity.
3362 	 */
3363 	PAGE_HASH_SEARCH(index, pp, vp, off);
3364 	if (pp != NULL) {
3365 		VM_STAT_ADD(page_rename_exists);
3366 
3367 		/*
3368 		 * As it turns out, this is one of only two places where
3369 		 * page_lock() needs to hold the passed in lock in the
3370 		 * successful case.  In all of the others, the lock could
3371 		 * be dropped as soon as the attempt is made to lock
3372 		 * the page.  It is tempting to add yet another arguement,
3373 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3374 		 */
3375 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3376 			/*
3377 			 * Went to sleep because the page could not
3378 			 * be locked.  We were woken up when the page
3379 			 * was unlocked, or when the page was destroyed.
3380 			 * In either case, `phm' was dropped while we
3381 			 * slept.  Hence we should not just roar through
3382 			 * this loop.
3383 			 */
3384 			goto top;
3385 		}
3386 
3387 		/*
3388 		 * If an existing page is a large page, then demote
3389 		 * it to ensure that no "partial" large pages are
3390 		 * "created" after page_rename. An existing page
3391 		 * can be a CacheFS page, and can't belong to swapfs.
3392 		 */
3393 		if (hat_page_is_mapped(pp)) {
3394 			/*
3395 			 * Unload translations.  Since we hold the
3396 			 * exclusive lock on this page, the page
3397 			 * can not be changed while we drop phm.
3398 			 * This is also not a lock protocol violation,
3399 			 * but rather the proper way to do things.
3400 			 */
3401 			mutex_exit(phm);
3402 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3403 			if (pp->p_szc != 0) {
3404 				ASSERT(!IS_SWAPFSVP(vp));
3405 				ASSERT(vp != &kvp);
3406 				page_demote_vp_pages(pp);
3407 				ASSERT(pp->p_szc == 0);
3408 			}
3409 			mutex_enter(phm);
3410 		} else if (pp->p_szc != 0) {
3411 			ASSERT(!IS_SWAPFSVP(vp));
3412 			ASSERT(vp != &kvp);
3413 			mutex_exit(phm);
3414 			page_demote_vp_pages(pp);
3415 			ASSERT(pp->p_szc == 0);
3416 			mutex_enter(phm);
3417 		}
3418 		page_hashout(pp, phm);
3419 	}
3420 	/*
3421 	 * Hash in the page with the new identity.
3422 	 */
3423 	if (!page_hashin(opp, vp, off, phm)) {
3424 		/*
3425 		 * We were holding phm while we searched for [vp, off]
3426 		 * and only dropped phm if we found and locked a page.
3427 		 * If we can't create this page now, then some thing
3428 		 * is really broken.
3429 		 */
3430 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3431 		/*NOTREACHED*/
3432 	}
3433 
3434 	ASSERT(MUTEX_HELD(phm));
3435 	mutex_exit(phm);
3436 
3437 	/*
3438 	 * Now that we have dropped phm, lets get around to finishing up
3439 	 * with pp.
3440 	 */
3441 	if (pp != NULL) {
3442 		ASSERT(!hat_page_is_mapped(pp));
3443 		/* for now large pages should not end up here */
3444 		ASSERT(pp->p_szc == 0);
3445 		/*
3446 		 * Save the locks for transfer to the new page and then
3447 		 * clear them so page_free doesn't think they're important.
3448 		 * The page_struct_lock need not be acquired for lckcnt and
3449 		 * cowcnt since the page has an "exclusive" lock.
3450 		 */
3451 		olckcnt = pp->p_lckcnt;
3452 		ocowcnt = pp->p_cowcnt;
3453 		pp->p_lckcnt = pp->p_cowcnt = 0;
3454 
3455 		/*
3456 		 * Put the page on the "free" list after we drop
3457 		 * the lock.  The less work under the lock the better.
3458 		 */
3459 		/*LINTED: constant in conditional context*/
3460 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3461 	}
3462 
3463 	/*
3464 	 * Transfer the lock count from the old page (if any).
3465 	 * The page_struct_lock need not be acquired for lckcnt and
3466 	 * cowcnt since the page has an "exclusive" lock.
3467 	 */
3468 	opp->p_lckcnt += olckcnt;
3469 	opp->p_cowcnt += ocowcnt;
3470 }
3471 
3472 /*
3473  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3474  *
3475  * Pages are normally inserted at the start of a vnode's v_pages list.
3476  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3477  * This can happen when a modified page is relocated for DR.
3478  *
3479  * Returns 1 on success and 0 on failure.
3480  */
3481 static int
3482 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3483 {
3484 	page_t		**listp;
3485 	page_t		*tp;
3486 	ulong_t		index;
3487 
3488 	ASSERT(PAGE_EXCL(pp));
3489 	ASSERT(vp != NULL);
3490 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3491 
3492 	/*
3493 	 * Be sure to set these up before the page is inserted on the hash
3494 	 * list.  As soon as the page is placed on the list some other
3495 	 * thread might get confused and wonder how this page could
3496 	 * possibly hash to this list.
3497 	 */
3498 	pp->p_vnode = vp;
3499 	pp->p_offset = offset;
3500 
3501 	/*
3502 	 * record if this page is on a swap vnode
3503 	 */
3504 	if ((vp->v_flag & VISSWAP) != 0)
3505 		PP_SETSWAP(pp);
3506 
3507 	index = PAGE_HASH_FUNC(vp, offset);
3508 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3509 	listp = &page_hash[index];
3510 
3511 	/*
3512 	 * If this page is already hashed in, fail this attempt to add it.
3513 	 */
3514 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3515 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3516 			pp->p_vnode = NULL;
3517 			pp->p_offset = (u_offset_t)(-1);
3518 			return (0);
3519 		}
3520 	}
3521 	pp->p_hash = *listp;
3522 	*listp = pp;
3523 
3524 	/*
3525 	 * Add the page to the vnode's list of pages
3526 	 */
3527 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3528 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3529 	else
3530 		listp = &vp->v_pages;
3531 
3532 	page_vpadd(listp, pp);
3533 
3534 	return (1);
3535 }
3536 
3537 /*
3538  * Add page `pp' to both the hash and vp chains for [vp, offset].
3539  *
3540  * Returns 1 on success and 0 on failure.
3541  * If hold is passed in, it is not dropped.
3542  */
3543 int
3544 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3545 {
3546 	kmutex_t	*phm = NULL;
3547 	kmutex_t	*vphm;
3548 	int		rc;
3549 
3550 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3551 
3552 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3553 		"page_hashin:pp %p vp %p offset %llx",
3554 		pp, vp, offset);
3555 
3556 	VM_STAT_ADD(hashin_count);
3557 
3558 	if (hold != NULL)
3559 		phm = hold;
3560 	else {
3561 		VM_STAT_ADD(hashin_not_held);
3562 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3563 		mutex_enter(phm);
3564 	}
3565 
3566 	vphm = page_vnode_mutex(vp);
3567 	mutex_enter(vphm);
3568 	rc = page_do_hashin(pp, vp, offset);
3569 	mutex_exit(vphm);
3570 	if (hold == NULL)
3571 		mutex_exit(phm);
3572 	if (rc == 0)
3573 		VM_STAT_ADD(hashin_already);
3574 	return (rc);
3575 }
3576 
3577 /*
3578  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3579  * All mutexes must be held
3580  */
3581 static void
3582 page_do_hashout(page_t *pp)
3583 {
3584 	page_t	**hpp;
3585 	page_t	*hp;
3586 	vnode_t	*vp = pp->p_vnode;
3587 
3588 	ASSERT(vp != NULL);
3589 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3590 
3591 	/*
3592 	 * First, take pp off of its hash chain.
3593 	 */
3594 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3595 
3596 	for (;;) {
3597 		hp = *hpp;
3598 		if (hp == pp)
3599 			break;
3600 		if (hp == NULL) {
3601 			panic("page_do_hashout");
3602 			/*NOTREACHED*/
3603 		}
3604 		hpp = &hp->p_hash;
3605 	}
3606 	*hpp = pp->p_hash;
3607 
3608 	/*
3609 	 * Now remove it from its associated vnode.
3610 	 */
3611 	if (vp->v_pages)
3612 		page_vpsub(&vp->v_pages, pp);
3613 
3614 	pp->p_hash = NULL;
3615 	page_clr_all_props(pp);
3616 	PP_CLRSWAP(pp);
3617 	pp->p_vnode = NULL;
3618 	pp->p_offset = (u_offset_t)-1;
3619 }
3620 
3621 /*
3622  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3623  *
3624  * When `phm' is non-NULL it contains the address of the mutex protecting the
3625  * hash list pp is on.  It is not dropped.
3626  */
3627 void
3628 page_hashout(page_t *pp, kmutex_t *phm)
3629 {
3630 	vnode_t		*vp;
3631 	ulong_t		index;
3632 	kmutex_t	*nphm;
3633 	kmutex_t	*vphm;
3634 	kmutex_t	*sep;
3635 
3636 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3637 	ASSERT(pp->p_vnode != NULL);
3638 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3639 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3640 
3641 	vp = pp->p_vnode;
3642 
3643 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3644 		"page_hashout:pp %p vp %p", pp, vp);
3645 
3646 	/* Kernel probe */
3647 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3648 	    tnf_opaque, vnode, vp,
3649 	    tnf_offset, offset, pp->p_offset);
3650 
3651 	/*
3652 	 *
3653 	 */
3654 	VM_STAT_ADD(hashout_count);
3655 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3656 	if (phm == NULL) {
3657 		VM_STAT_ADD(hashout_not_held);
3658 		nphm = PAGE_HASH_MUTEX(index);
3659 		mutex_enter(nphm);
3660 	}
3661 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3662 
3663 
3664 	/*
3665 	 * grab page vnode mutex and remove it...
3666 	 */
3667 	vphm = page_vnode_mutex(vp);
3668 	mutex_enter(vphm);
3669 
3670 	page_do_hashout(pp);
3671 
3672 	mutex_exit(vphm);
3673 	if (phm == NULL)
3674 		mutex_exit(nphm);
3675 
3676 	/*
3677 	 * Wake up processes waiting for this page.  The page's
3678 	 * identity has been changed, and is probably not the
3679 	 * desired page any longer.
3680 	 */
3681 	sep = page_se_mutex(pp);
3682 	mutex_enter(sep);
3683 	pp->p_selock &= ~SE_EWANTED;
3684 	if (CV_HAS_WAITERS(&pp->p_cv))
3685 		cv_broadcast(&pp->p_cv);
3686 	mutex_exit(sep);
3687 }
3688 
3689 /*
3690  * Add the page to the front of a linked list of pages
3691  * using the p_next & p_prev pointers for the list.
3692  * The caller is responsible for protecting the list pointers.
3693  */
3694 void
3695 page_add(page_t **ppp, page_t *pp)
3696 {
3697 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3698 
3699 	page_add_common(ppp, pp);
3700 }
3701 
3702 
3703 
3704 /*
3705  *  Common code for page_add() and mach_page_add()
3706  */
3707 void
3708 page_add_common(page_t **ppp, page_t *pp)
3709 {
3710 	if (*ppp == NULL) {
3711 		pp->p_next = pp->p_prev = pp;
3712 	} else {
3713 		pp->p_next = *ppp;
3714 		pp->p_prev = (*ppp)->p_prev;
3715 		(*ppp)->p_prev = pp;
3716 		pp->p_prev->p_next = pp;
3717 	}
3718 	*ppp = pp;
3719 }
3720 
3721 
3722 /*
3723  * Remove this page from a linked list of pages
3724  * using the p_next & p_prev pointers for the list.
3725  *
3726  * The caller is responsible for protecting the list pointers.
3727  */
3728 void
3729 page_sub(page_t **ppp, page_t *pp)
3730 {
3731 	ASSERT((PP_ISFREE(pp)) ? 1 :
3732 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3733 
3734 	if (*ppp == NULL || pp == NULL) {
3735 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3736 		    (void *)pp, (void *)(*ppp));
3737 		/*NOTREACHED*/
3738 	}
3739 
3740 	page_sub_common(ppp, pp);
3741 }
3742 
3743 
3744 /*
3745  *  Common code for page_sub() and mach_page_sub()
3746  */
3747 void
3748 page_sub_common(page_t **ppp, page_t *pp)
3749 {
3750 	if (*ppp == pp)
3751 		*ppp = pp->p_next;		/* go to next page */
3752 
3753 	if (*ppp == pp)
3754 		*ppp = NULL;			/* page list is gone */
3755 	else {
3756 		pp->p_prev->p_next = pp->p_next;
3757 		pp->p_next->p_prev = pp->p_prev;
3758 	}
3759 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3760 }
3761 
3762 
3763 /*
3764  * Break page list cppp into two lists with npages in the first list.
3765  * The tail is returned in nppp.
3766  */
3767 void
3768 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3769 {
3770 	page_t *s1pp = *oppp;
3771 	page_t *s2pp;
3772 	page_t *e1pp, *e2pp;
3773 	long n = 0;
3774 
3775 	if (s1pp == NULL) {
3776 		*nppp = NULL;
3777 		return;
3778 	}
3779 	if (npages == 0) {
3780 		*nppp = s1pp;
3781 		*oppp = NULL;
3782 		return;
3783 	}
3784 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3785 		s2pp = s2pp->p_next;
3786 	}
3787 	/* Fix head and tail of new lists */
3788 	e1pp = s2pp->p_prev;
3789 	e2pp = s1pp->p_prev;
3790 	s1pp->p_prev = e1pp;
3791 	e1pp->p_next = s1pp;
3792 	s2pp->p_prev = e2pp;
3793 	e2pp->p_next = s2pp;
3794 
3795 	/* second list empty */
3796 	if (s2pp == s1pp) {
3797 		*oppp = s1pp;
3798 		*nppp = NULL;
3799 	} else {
3800 		*oppp = s1pp;
3801 		*nppp = s2pp;
3802 	}
3803 }
3804 
3805 /*
3806  * Concatenate page list nppp onto the end of list ppp.
3807  */
3808 void
3809 page_list_concat(page_t **ppp, page_t **nppp)
3810 {
3811 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3812 
3813 	if (*nppp == NULL) {
3814 		return;
3815 	}
3816 	if (*ppp == NULL) {
3817 		*ppp = *nppp;
3818 		return;
3819 	}
3820 	s1pp = *ppp;
3821 	e1pp =  s1pp->p_prev;
3822 	s2pp = *nppp;
3823 	e2pp = s2pp->p_prev;
3824 	s1pp->p_prev = e2pp;
3825 	e2pp->p_next = s1pp;
3826 	e1pp->p_next = s2pp;
3827 	s2pp->p_prev = e1pp;
3828 }
3829 
3830 /*
3831  * return the next page in the page list
3832  */
3833 page_t *
3834 page_list_next(page_t *pp)
3835 {
3836 	return (pp->p_next);
3837 }
3838 
3839 
3840 /*
3841  * Add the page to the front of the linked list of pages
3842  * using p_vpnext/p_vpprev pointers for the list.
3843  *
3844  * The caller is responsible for protecting the lists.
3845  */
3846 void
3847 page_vpadd(page_t **ppp, page_t *pp)
3848 {
3849 	if (*ppp == NULL) {
3850 		pp->p_vpnext = pp->p_vpprev = pp;
3851 	} else {
3852 		pp->p_vpnext = *ppp;
3853 		pp->p_vpprev = (*ppp)->p_vpprev;
3854 		(*ppp)->p_vpprev = pp;
3855 		pp->p_vpprev->p_vpnext = pp;
3856 	}
3857 	*ppp = pp;
3858 }
3859 
3860 /*
3861  * Remove this page from the linked list of pages
3862  * using p_vpnext/p_vpprev pointers for the list.
3863  *
3864  * The caller is responsible for protecting the lists.
3865  */
3866 void
3867 page_vpsub(page_t **ppp, page_t *pp)
3868 {
3869 	if (*ppp == NULL || pp == NULL) {
3870 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3871 		    (void *)pp, (void *)(*ppp));
3872 		/*NOTREACHED*/
3873 	}
3874 
3875 	if (*ppp == pp)
3876 		*ppp = pp->p_vpnext;		/* go to next page */
3877 
3878 	if (*ppp == pp)
3879 		*ppp = NULL;			/* page list is gone */
3880 	else {
3881 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3882 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3883 	}
3884 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3885 }
3886 
3887 /*
3888  * Lock a physical page into memory "long term".  Used to support "lock
3889  * in memory" functions.  Accepts the page to be locked, and a cow variable
3890  * to indicate whether a the lock will travel to the new page during
3891  * a potential copy-on-write.
3892  */
3893 int
3894 page_pp_lock(
3895 	page_t *pp,			/* page to be locked */
3896 	int cow,			/* cow lock */
3897 	int kernel)			/* must succeed -- ignore checking */
3898 {
3899 	int r = 0;			/* result -- assume failure */
3900 
3901 	ASSERT(PAGE_LOCKED(pp));
3902 
3903 	page_struct_lock(pp);
3904 	/*
3905 	 * Acquire the "freemem_lock" for availrmem.
3906 	 */
3907 	if (cow) {
3908 		mutex_enter(&freemem_lock);
3909 		if ((availrmem > pages_pp_maximum) &&
3910 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3911 			availrmem--;
3912 			pages_locked++;
3913 			mutex_exit(&freemem_lock);
3914 			r = 1;
3915 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3916 				cmn_err(CE_WARN,
3917 				    "COW lock limit reached on pfn 0x%lx",
3918 				    page_pptonum(pp));
3919 			}
3920 		} else
3921 			mutex_exit(&freemem_lock);
3922 	} else {
3923 		if (pp->p_lckcnt) {
3924 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3925 				r = 1;
3926 				if (++pp->p_lckcnt ==
3927 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3928 					cmn_err(CE_WARN, "Page lock limit "
3929 					    "reached on pfn 0x%lx",
3930 					    page_pptonum(pp));
3931 				}
3932 			}
3933 		} else {
3934 			if (kernel) {
3935 				/* availrmem accounting done by caller */
3936 				++pp->p_lckcnt;
3937 				r = 1;
3938 			} else {
3939 				mutex_enter(&freemem_lock);
3940 				if (availrmem > pages_pp_maximum) {
3941 					availrmem--;
3942 					pages_locked++;
3943 					++pp->p_lckcnt;
3944 					r = 1;
3945 				}
3946 				mutex_exit(&freemem_lock);
3947 			}
3948 		}
3949 	}
3950 	page_struct_unlock(pp);
3951 	return (r);
3952 }
3953 
3954 /*
3955  * Decommit a lock on a physical page frame.  Account for cow locks if
3956  * appropriate.
3957  */
3958 void
3959 page_pp_unlock(
3960 	page_t *pp,			/* page to be unlocked */
3961 	int cow,			/* expect cow lock */
3962 	int kernel)			/* this was a kernel lock */
3963 {
3964 	ASSERT(PAGE_LOCKED(pp));
3965 
3966 	page_struct_lock(pp);
3967 	/*
3968 	 * Acquire the "freemem_lock" for availrmem.
3969 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3970 	 * could be called to unlock even if nothing is locked. This could
3971 	 * happen if locked file pages were truncated (removing the lock)
3972 	 * and the file was grown again and new pages faulted in; the new
3973 	 * pages are unlocked but the segment still thinks they're locked.
3974 	 */
3975 	if (cow) {
3976 		if (pp->p_cowcnt) {
3977 			mutex_enter(&freemem_lock);
3978 			pp->p_cowcnt--;
3979 			availrmem++;
3980 			pages_locked--;
3981 			mutex_exit(&freemem_lock);
3982 		}
3983 	} else {
3984 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3985 			if (!kernel) {
3986 				mutex_enter(&freemem_lock);
3987 				availrmem++;
3988 				pages_locked--;
3989 				mutex_exit(&freemem_lock);
3990 			}
3991 		}
3992 	}
3993 	page_struct_unlock(pp);
3994 }
3995 
3996 /*
3997  * This routine reserves availrmem for npages;
3998  * 	flags: KM_NOSLEEP or KM_SLEEP
3999  * 	returns 1 on success or 0 on failure
4000  */
4001 int
4002 page_resv(pgcnt_t npages, uint_t flags)
4003 {
4004 	mutex_enter(&freemem_lock);
4005 	while (availrmem < tune.t_minarmem + npages) {
4006 		if (flags & KM_NOSLEEP) {
4007 			mutex_exit(&freemem_lock);
4008 			return (0);
4009 		}
4010 		mutex_exit(&freemem_lock);
4011 		page_needfree(npages);
4012 		kmem_reap();
4013 		delay(hz >> 2);
4014 		page_needfree(-(spgcnt_t)npages);
4015 		mutex_enter(&freemem_lock);
4016 	}
4017 	availrmem -= npages;
4018 	mutex_exit(&freemem_lock);
4019 	return (1);
4020 }
4021 
4022 /*
4023  * This routine unreserves availrmem for npages;
4024  */
4025 void
4026 page_unresv(pgcnt_t npages)
4027 {
4028 	mutex_enter(&freemem_lock);
4029 	availrmem += npages;
4030 	mutex_exit(&freemem_lock);
4031 }
4032 
4033 /*
4034  * See Statement at the beginning of segvn_lockop() regarding
4035  * the way we handle cowcnts and lckcnts.
4036  *
4037  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4038  * that breaks COW has PROT_WRITE.
4039  *
4040  * Note that, we may also break COW in case we are softlocking
4041  * on read access during physio;
4042  * in this softlock case, the vpage may not have PROT_WRITE.
4043  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4044  * if the vpage doesn't have PROT_WRITE.
4045  *
4046  * This routine is never called if we are stealing a page
4047  * in anon_private.
4048  *
4049  * The caller subtracted from availrmem for read only mapping.
4050  * if lckcnt is 1 increment availrmem.
4051  */
4052 void
4053 page_pp_useclaim(
4054 	page_t *opp,		/* original page frame losing lock */
4055 	page_t *npp,		/* new page frame gaining lock */
4056 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
4057 {
4058 	int payback = 0;
4059 
4060 	ASSERT(PAGE_LOCKED(opp));
4061 	ASSERT(PAGE_LOCKED(npp));
4062 
4063 	page_struct_lock(opp);
4064 
4065 	ASSERT(npp->p_cowcnt == 0);
4066 	ASSERT(npp->p_lckcnt == 0);
4067 
4068 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4069 	if ((write_perm && opp->p_cowcnt != 0) ||
4070 	    (!write_perm && opp->p_lckcnt != 0)) {
4071 
4072 		if (write_perm) {
4073 			npp->p_cowcnt++;
4074 			ASSERT(opp->p_cowcnt != 0);
4075 			opp->p_cowcnt--;
4076 		} else {
4077 
4078 			ASSERT(opp->p_lckcnt != 0);
4079 
4080 			/*
4081 			 * We didn't need availrmem decremented if p_lckcnt on
4082 			 * original page is 1. Here, we are unlocking
4083 			 * read-only copy belonging to original page and
4084 			 * are locking a copy belonging to new page.
4085 			 */
4086 			if (opp->p_lckcnt == 1)
4087 				payback = 1;
4088 
4089 			npp->p_lckcnt++;
4090 			opp->p_lckcnt--;
4091 		}
4092 	}
4093 	if (payback) {
4094 		mutex_enter(&freemem_lock);
4095 		availrmem++;
4096 		pages_useclaim--;
4097 		mutex_exit(&freemem_lock);
4098 	}
4099 	page_struct_unlock(opp);
4100 }
4101 
4102 /*
4103  * Simple claim adjust functions -- used to support changes in
4104  * claims due to changes in access permissions.  Used by segvn_setprot().
4105  */
4106 int
4107 page_addclaim(page_t *pp)
4108 {
4109 	int r = 0;			/* result */
4110 
4111 	ASSERT(PAGE_LOCKED(pp));
4112 
4113 	page_struct_lock(pp);
4114 	ASSERT(pp->p_lckcnt != 0);
4115 
4116 	if (pp->p_lckcnt == 1) {
4117 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4118 			--pp->p_lckcnt;
4119 			r = 1;
4120 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4121 				cmn_err(CE_WARN,
4122 				    "COW lock limit reached on pfn 0x%lx",
4123 				    page_pptonum(pp));
4124 			}
4125 		}
4126 	} else {
4127 		mutex_enter(&freemem_lock);
4128 		if ((availrmem > pages_pp_maximum) &&
4129 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4130 			--availrmem;
4131 			++pages_claimed;
4132 			mutex_exit(&freemem_lock);
4133 			--pp->p_lckcnt;
4134 			r = 1;
4135 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4136 				cmn_err(CE_WARN,
4137 				    "COW lock limit reached on pfn 0x%lx",
4138 				    page_pptonum(pp));
4139 			}
4140 		} else
4141 			mutex_exit(&freemem_lock);
4142 	}
4143 	page_struct_unlock(pp);
4144 	return (r);
4145 }
4146 
4147 int
4148 page_subclaim(page_t *pp)
4149 {
4150 	int r = 0;
4151 
4152 	ASSERT(PAGE_LOCKED(pp));
4153 
4154 	page_struct_lock(pp);
4155 	ASSERT(pp->p_cowcnt != 0);
4156 
4157 	if (pp->p_lckcnt) {
4158 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4159 			r = 1;
4160 			/*
4161 			 * for availrmem
4162 			 */
4163 			mutex_enter(&freemem_lock);
4164 			availrmem++;
4165 			pages_claimed--;
4166 			mutex_exit(&freemem_lock);
4167 
4168 			pp->p_cowcnt--;
4169 
4170 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4171 				cmn_err(CE_WARN,
4172 				    "Page lock limit reached on pfn 0x%lx",
4173 				    page_pptonum(pp));
4174 			}
4175 		}
4176 	} else {
4177 		r = 1;
4178 		pp->p_cowcnt--;
4179 		pp->p_lckcnt++;
4180 	}
4181 	page_struct_unlock(pp);
4182 	return (r);
4183 }
4184 
4185 int
4186 page_addclaim_pages(page_t  **ppa)
4187 {
4188 
4189 	pgcnt_t	lckpgs = 0, pg_idx;
4190 
4191 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4192 
4193 	mutex_enter(&page_llock);
4194 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4195 
4196 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4197 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4198 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4199 			mutex_exit(&page_llock);
4200 			return (0);
4201 		}
4202 		if (ppa[pg_idx]->p_lckcnt > 1)
4203 			lckpgs++;
4204 	}
4205 
4206 	if (lckpgs != 0) {
4207 		mutex_enter(&freemem_lock);
4208 		if (availrmem >= pages_pp_maximum + lckpgs) {
4209 			availrmem -= lckpgs;
4210 			pages_claimed += lckpgs;
4211 		} else {
4212 			mutex_exit(&freemem_lock);
4213 			mutex_exit(&page_llock);
4214 			return (0);
4215 		}
4216 		mutex_exit(&freemem_lock);
4217 	}
4218 
4219 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4220 		ppa[pg_idx]->p_lckcnt--;
4221 		ppa[pg_idx]->p_cowcnt++;
4222 	}
4223 	mutex_exit(&page_llock);
4224 	return (1);
4225 }
4226 
4227 int
4228 page_subclaim_pages(page_t  **ppa)
4229 {
4230 	pgcnt_t	ulckpgs = 0, pg_idx;
4231 
4232 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4233 
4234 	mutex_enter(&page_llock);
4235 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4236 
4237 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4238 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4239 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4240 			mutex_exit(&page_llock);
4241 			return (0);
4242 		}
4243 		if (ppa[pg_idx]->p_lckcnt != 0)
4244 			ulckpgs++;
4245 	}
4246 
4247 	if (ulckpgs != 0) {
4248 		mutex_enter(&freemem_lock);
4249 		availrmem += ulckpgs;
4250 		pages_claimed -= ulckpgs;
4251 		mutex_exit(&freemem_lock);
4252 	}
4253 
4254 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4255 		ppa[pg_idx]->p_cowcnt--;
4256 		ppa[pg_idx]->p_lckcnt++;
4257 
4258 	}
4259 	mutex_exit(&page_llock);
4260 	return (1);
4261 }
4262 
4263 page_t *
4264 page_numtopp(pfn_t pfnum, se_t se)
4265 {
4266 	page_t *pp;
4267 
4268 retry:
4269 	pp = page_numtopp_nolock(pfnum);
4270 	if (pp == NULL) {
4271 		return ((page_t *)NULL);
4272 	}
4273 
4274 	/*
4275 	 * Acquire the appropriate lock on the page.
4276 	 */
4277 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4278 		if (page_pptonum(pp) != pfnum)
4279 			goto retry;
4280 		continue;
4281 	}
4282 
4283 	if (page_pptonum(pp) != pfnum) {
4284 		page_unlock(pp);
4285 		goto retry;
4286 	}
4287 
4288 	return (pp);
4289 }
4290 
4291 page_t *
4292 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4293 {
4294 	page_t *pp;
4295 
4296 retry:
4297 	pp = page_numtopp_nolock(pfnum);
4298 	if (pp == NULL) {
4299 		return ((page_t *)NULL);
4300 	}
4301 
4302 	/*
4303 	 * Acquire the appropriate lock on the page.
4304 	 */
4305 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4306 		if (page_pptonum(pp) != pfnum)
4307 			goto retry;
4308 		continue;
4309 	}
4310 
4311 	if (page_pptonum(pp) != pfnum) {
4312 		page_unlock(pp);
4313 		goto retry;
4314 	}
4315 
4316 	return (pp);
4317 }
4318 
4319 /*
4320  * This routine is like page_numtopp, but will only return page structs
4321  * for pages which are ok for loading into hardware using the page struct.
4322  */
4323 page_t *
4324 page_numtopp_nowait(pfn_t pfnum, se_t se)
4325 {
4326 	page_t *pp;
4327 
4328 retry:
4329 	pp = page_numtopp_nolock(pfnum);
4330 	if (pp == NULL) {
4331 		return ((page_t *)NULL);
4332 	}
4333 
4334 	/*
4335 	 * Try to acquire the appropriate lock on the page.
4336 	 */
4337 	if (PP_ISFREE(pp))
4338 		pp = NULL;
4339 	else {
4340 		if (!page_trylock(pp, se))
4341 			pp = NULL;
4342 		else {
4343 			if (page_pptonum(pp) != pfnum) {
4344 				page_unlock(pp);
4345 				goto retry;
4346 			}
4347 			if (PP_ISFREE(pp)) {
4348 				page_unlock(pp);
4349 				pp = NULL;
4350 			}
4351 		}
4352 	}
4353 	return (pp);
4354 }
4355 
4356 /*
4357  * Returns a count of dirty pages that are in the process
4358  * of being written out.  If 'cleanit' is set, try to push the page.
4359  */
4360 pgcnt_t
4361 page_busy(int cleanit)
4362 {
4363 	page_t *page0 = page_first();
4364 	page_t *pp = page0;
4365 	pgcnt_t nppbusy = 0;
4366 	u_offset_t off;
4367 
4368 	do {
4369 		vnode_t *vp = pp->p_vnode;
4370 
4371 		/*
4372 		 * A page is a candidate for syncing if it is:
4373 		 *
4374 		 * (a)	On neither the freelist nor the cachelist
4375 		 * (b)	Hashed onto a vnode
4376 		 * (c)	Not a kernel page
4377 		 * (d)	Dirty
4378 		 * (e)	Not part of a swapfile
4379 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4380 		 *	v_vfsp pointer.
4381 		 * (g)	Backed by a filesystem which doesn't have a
4382 		 *	stubbed-out sync operation
4383 		 */
4384 		if (!PP_ISFREE(pp) && vp != NULL && vp != &kvp &&
4385 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4386 		    vfs_can_sync(vp->v_vfsp)) {
4387 			nppbusy++;
4388 			vfs_syncprogress();
4389 
4390 			if (!cleanit)
4391 				continue;
4392 			if (!page_trylock(pp, SE_EXCL))
4393 				continue;
4394 
4395 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4396 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4397 			    !(hat_pagesync(pp,
4398 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4399 				page_unlock(pp);
4400 				continue;
4401 			}
4402 			off = pp->p_offset;
4403 			VN_HOLD(vp);
4404 			page_unlock(pp);
4405 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4406 			    B_ASYNC | B_FREE, kcred);
4407 			VN_RELE(vp);
4408 		}
4409 	} while ((pp = page_next(pp)) != page0);
4410 
4411 	return (nppbusy);
4412 }
4413 
4414 void page_invalidate_pages(void);
4415 
4416 /*
4417  * callback handler to vm sub-system
4418  *
4419  * callers make sure no recursive entries to this func.
4420  */
4421 /*ARGSUSED*/
4422 boolean_t
4423 callb_vm_cpr(void *arg, int code)
4424 {
4425 	if (code == CB_CODE_CPR_CHKPT)
4426 		page_invalidate_pages();
4427 	return (B_TRUE);
4428 }
4429 
4430 /*
4431  * Invalidate all pages of the system.
4432  * It shouldn't be called until all user page activities are all stopped.
4433  */
4434 void
4435 page_invalidate_pages()
4436 {
4437 	page_t *pp;
4438 	page_t *page0;
4439 	pgcnt_t nbusypages;
4440 	int retry = 0;
4441 	const int MAXRETRIES = 4;
4442 #if defined(__sparc)
4443 	extern struct vnode prom_ppages;
4444 #endif /* __sparc */
4445 
4446 top:
4447 	/*
4448 	 * Flush dirty pages and destory the clean ones.
4449 	 */
4450 	nbusypages = 0;
4451 
4452 	pp = page0 = page_first();
4453 	do {
4454 		struct vnode	*vp;
4455 		u_offset_t	offset;
4456 		int		mod;
4457 
4458 		/*
4459 		 * skip the page if it has no vnode or the page associated
4460 		 * with the kernel vnode or prom allocated kernel mem.
4461 		 */
4462 #if defined(__sparc)
4463 		if ((vp = pp->p_vnode) == NULL || vp == &kvp ||
4464 		    vp == &prom_ppages)
4465 #else /* x86 doesn't have prom or prom_ppage */
4466 		if ((vp = pp->p_vnode) == NULL || vp == &kvp)
4467 #endif /* __sparc */
4468 			continue;
4469 
4470 		/*
4471 		 * skip the page which is already free invalidated.
4472 		 */
4473 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4474 			continue;
4475 
4476 		/*
4477 		 * skip pages that are already locked or can't be "exclusively"
4478 		 * locked or are already free.  After we lock the page, check
4479 		 * the free and age bits again to be sure it's not destroied
4480 		 * yet.
4481 		 * To achieve max. parallelization, we use page_trylock instead
4482 		 * of page_lock so that we don't get block on individual pages
4483 		 * while we have thousands of other pages to process.
4484 		 */
4485 		if (!page_trylock(pp, SE_EXCL)) {
4486 			nbusypages++;
4487 			continue;
4488 		} else if (PP_ISFREE(pp)) {
4489 			if (!PP_ISAGED(pp)) {
4490 				page_destroy_free(pp);
4491 			} else {
4492 				page_unlock(pp);
4493 			}
4494 			continue;
4495 		}
4496 		/*
4497 		 * Is this page involved in some I/O? shared?
4498 		 *
4499 		 * The page_struct_lock need not be acquired to
4500 		 * examine these fields since the page has an
4501 		 * "exclusive" lock.
4502 		 */
4503 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4504 			page_unlock(pp);
4505 			continue;
4506 		}
4507 
4508 		if (vp->v_type == VCHR) {
4509 			panic("vp->v_type == VCHR");
4510 			/*NOTREACHED*/
4511 		}
4512 
4513 		if (!page_try_demote_pages(pp)) {
4514 			page_unlock(pp);
4515 			continue;
4516 		}
4517 
4518 		/*
4519 		 * Check the modified bit. Leave the bits alone in hardware
4520 		 * (they will be modified if we do the putpage).
4521 		 */
4522 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4523 			& P_MOD);
4524 		if (mod) {
4525 			offset = pp->p_offset;
4526 			/*
4527 			 * Hold the vnode before releasing the page lock
4528 			 * to prevent it from being freed and re-used by
4529 			 * some other thread.
4530 			 */
4531 			VN_HOLD(vp);
4532 			page_unlock(pp);
4533 			/*
4534 			 * No error return is checked here. Callers such as
4535 			 * cpr deals with the dirty pages at the dump time
4536 			 * if this putpage fails.
4537 			 */
4538 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4539 			    kcred);
4540 			VN_RELE(vp);
4541 		} else {
4542 			page_destroy(pp, 0);
4543 		}
4544 	} while ((pp = page_next(pp)) != page0);
4545 	if (nbusypages && retry++ < MAXRETRIES) {
4546 		delay(1);
4547 		goto top;
4548 	}
4549 }
4550 
4551 /*
4552  * Replace the page "old" with the page "new" on the page hash and vnode lists
4553  *
4554  * the replacemnt must be done in place, ie the equivalent sequence:
4555  *
4556  *	vp = old->p_vnode;
4557  *	off = old->p_offset;
4558  *	page_do_hashout(old)
4559  *	page_do_hashin(new, vp, off)
4560  *
4561  * doesn't work, since
4562  *  1) if old is the only page on the vnode, the v_pages list has a window
4563  *     where it looks empty. This will break file system assumptions.
4564  * and
4565  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4566  */
4567 static void
4568 page_do_relocate_hash(page_t *new, page_t *old)
4569 {
4570 	page_t	**hash_list;
4571 	vnode_t	*vp = old->p_vnode;
4572 	kmutex_t *sep;
4573 
4574 	ASSERT(PAGE_EXCL(old));
4575 	ASSERT(PAGE_EXCL(new));
4576 	ASSERT(vp != NULL);
4577 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4578 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4579 
4580 	/*
4581 	 * First find old page on the page hash list
4582 	 */
4583 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4584 
4585 	for (;;) {
4586 		if (*hash_list == old)
4587 			break;
4588 		if (*hash_list == NULL) {
4589 			panic("page_do_hashout");
4590 			/*NOTREACHED*/
4591 		}
4592 		hash_list = &(*hash_list)->p_hash;
4593 	}
4594 
4595 	/*
4596 	 * update new and replace old with new on the page hash list
4597 	 */
4598 	new->p_vnode = old->p_vnode;
4599 	new->p_offset = old->p_offset;
4600 	new->p_hash = old->p_hash;
4601 	*hash_list = new;
4602 
4603 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4604 		PP_SETSWAP(new);
4605 
4606 	/*
4607 	 * replace old with new on the vnode's page list
4608 	 */
4609 	if (old->p_vpnext == old) {
4610 		new->p_vpnext = new;
4611 		new->p_vpprev = new;
4612 	} else {
4613 		new->p_vpnext = old->p_vpnext;
4614 		new->p_vpprev = old->p_vpprev;
4615 		new->p_vpnext->p_vpprev = new;
4616 		new->p_vpprev->p_vpnext = new;
4617 	}
4618 	if (vp->v_pages == old)
4619 		vp->v_pages = new;
4620 
4621 	/*
4622 	 * clear out the old page
4623 	 */
4624 	old->p_hash = NULL;
4625 	old->p_vpnext = NULL;
4626 	old->p_vpprev = NULL;
4627 	old->p_vnode = NULL;
4628 	PP_CLRSWAP(old);
4629 	old->p_offset = (u_offset_t)-1;
4630 	page_clr_all_props(old);
4631 
4632 	/*
4633 	 * Wake up processes waiting for this page.  The page's
4634 	 * identity has been changed, and is probably not the
4635 	 * desired page any longer.
4636 	 */
4637 	sep = page_se_mutex(old);
4638 	mutex_enter(sep);
4639 	old->p_selock &= ~SE_EWANTED;
4640 	if (CV_HAS_WAITERS(&old->p_cv))
4641 		cv_broadcast(&old->p_cv);
4642 	mutex_exit(sep);
4643 }
4644 
4645 /*
4646  * This function moves the identity of page "pp_old" to page "pp_new".
4647  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4648  * and need not be hashed out from anywhere.
4649  */
4650 void
4651 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4652 {
4653 	vnode_t *vp = pp_old->p_vnode;
4654 	u_offset_t off = pp_old->p_offset;
4655 	kmutex_t *phm, *vphm;
4656 
4657 	/*
4658 	 * Rehash two pages
4659 	 */
4660 	ASSERT(PAGE_EXCL(pp_old));
4661 	ASSERT(PAGE_EXCL(pp_new));
4662 	ASSERT(vp != NULL);
4663 	ASSERT(pp_new->p_vnode == NULL);
4664 
4665 	/*
4666 	 * hashout then hashin while holding the mutexes
4667 	 */
4668 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4669 	mutex_enter(phm);
4670 	vphm = page_vnode_mutex(vp);
4671 	mutex_enter(vphm);
4672 
4673 	page_do_relocate_hash(pp_new, pp_old);
4674 
4675 	mutex_exit(vphm);
4676 	mutex_exit(phm);
4677 
4678 	/*
4679 	 * The page_struct_lock need not be acquired for lckcnt and
4680 	 * cowcnt since the page has an "exclusive" lock.
4681 	 */
4682 	ASSERT(pp_new->p_lckcnt == 0);
4683 	ASSERT(pp_new->p_cowcnt == 0);
4684 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4685 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4686 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4687 
4688 	/* The following comment preserved from page_flip(). */
4689 	/* XXX - Do we need to protect fsdata? */
4690 	pp_new->p_fsdata = pp_old->p_fsdata;
4691 }
4692 
4693 /*
4694  * Helper routine used to lock all remaining members of a
4695  * large page. The caller is responsible for passing in a locked
4696  * pp. If pp is a large page, then it succeeds in locking all the
4697  * remaining constituent pages or it returns with only the
4698  * original page locked.
4699  *
4700  * Returns 1 on success, 0 on failure.
4701  *
4702  * If success is returned this routine gurantees p_szc for all constituent
4703  * pages of a large page pp belongs to can't change. To achieve this we
4704  * recheck szc of pp after locking all constituent pages and retry if szc
4705  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4706  * lock on one of constituent pages it can't be running after all constituent
4707  * pages are locked.  hat_page_demote() with a lock on a constituent page
4708  * outside of this large page (i.e. pp belonged to a larger large page) is
4709  * already done with all constituent pages of pp since the root's p_szc is
4710  * changed last. Thefore no need to synchronize with hat_page_demote() that
4711  * locked a constituent page outside of pp's current large page.
4712  */
4713 #ifdef DEBUG
4714 uint32_t gpg_trylock_mtbf = 0;
4715 #endif
4716 
4717 int
4718 group_page_trylock(page_t *pp, se_t se)
4719 {
4720 	page_t  *tpp;
4721 	pgcnt_t	npgs, i, j;
4722 	uint_t pszc = pp->p_szc;
4723 
4724 #ifdef DEBUG
4725 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4726 		return (0);
4727 	}
4728 #endif
4729 
4730 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4731 		return (0);
4732 	}
4733 
4734 retry:
4735 	ASSERT(PAGE_LOCKED_SE(pp, se));
4736 	ASSERT(!PP_ISFREE(pp));
4737 	if (pszc == 0) {
4738 		return (1);
4739 	}
4740 	npgs = page_get_pagecnt(pszc);
4741 	tpp = pp + 1;
4742 	for (i = 1; i < npgs; i++, tpp++) {
4743 		if (!page_trylock(tpp, se)) {
4744 			tpp = pp + 1;
4745 			for (j = 1; j < i; j++, tpp++) {
4746 				page_unlock(tpp);
4747 			}
4748 			return (0);
4749 		}
4750 	}
4751 	if (pp->p_szc != pszc) {
4752 		ASSERT(pp->p_szc < pszc);
4753 		ASSERT(pp->p_vnode != NULL && pp->p_vnode != &kvp &&
4754 		    !IS_SWAPFSVP(pp->p_vnode));
4755 		tpp = pp + 1;
4756 		for (i = 1; i < npgs; i++, tpp++) {
4757 			page_unlock(tpp);
4758 		}
4759 		pszc = pp->p_szc;
4760 		goto retry;
4761 	}
4762 	return (1);
4763 }
4764 
4765 void
4766 group_page_unlock(page_t *pp)
4767 {
4768 	page_t *tpp;
4769 	pgcnt_t	npgs, i;
4770 
4771 	ASSERT(PAGE_LOCKED(pp));
4772 	ASSERT(!PP_ISFREE(pp));
4773 	ASSERT(pp == PP_PAGEROOT(pp));
4774 	npgs = page_get_pagecnt(pp->p_szc);
4775 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4776 		page_unlock(tpp);
4777 	}
4778 }
4779 
4780 /*
4781  * returns
4782  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4783  * ERANGE	: this is not a base page
4784  * EBUSY	: failure to get locks on the page/pages
4785  * ENOMEM	: failure to obtain replacement pages
4786  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4787  *
4788  * Return with all constituent members of target and replacement
4789  * SE_EXCL locked. It is the callers responsibility to drop the
4790  * locks.
4791  */
4792 int
4793 do_page_relocate(
4794 	page_t **target,
4795 	page_t **replacement,
4796 	int grouplock,
4797 	spgcnt_t *nrelocp,
4798 	lgrp_t *lgrp)
4799 {
4800 #ifdef DEBUG
4801 	page_t *first_repl;
4802 #endif /* DEBUG */
4803 	page_t *repl;
4804 	page_t *targ;
4805 	page_t *pl = NULL;
4806 	uint_t ppattr;
4807 	pfn_t   pfn, repl_pfn;
4808 	uint_t	szc;
4809 	spgcnt_t npgs, i;
4810 	int repl_contig = 0;
4811 	uint_t flags = 0;
4812 	spgcnt_t dofree = 0;
4813 
4814 	*nrelocp = 0;
4815 
4816 #if defined(__sparc)
4817 	/*
4818 	 * We need to wait till OBP has completed
4819 	 * its boot-time handoff of its resources to the kernel
4820 	 * before we allow page relocation
4821 	 */
4822 	if (page_relocate_ready == 0) {
4823 		return (EAGAIN);
4824 	}
4825 #endif
4826 
4827 	/*
4828 	 * If this is not a base page,
4829 	 * just return with 0x0 pages relocated.
4830 	 */
4831 	targ = *target;
4832 	ASSERT(PAGE_EXCL(targ));
4833 	ASSERT(!PP_ISFREE(targ));
4834 	szc = targ->p_szc;
4835 	ASSERT(szc < mmu_page_sizes);
4836 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4837 	pfn = targ->p_pagenum;
4838 	if (pfn != PFN_BASE(pfn, szc)) {
4839 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4840 		return (ERANGE);
4841 	}
4842 
4843 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4844 		repl_pfn = repl->p_pagenum;
4845 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4846 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4847 			return (ERANGE);
4848 		}
4849 		repl_contig = 1;
4850 	}
4851 
4852 	/*
4853 	 * We must lock all members of this large page or we cannot
4854 	 * relocate any part of it.
4855 	 */
4856 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4857 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4858 		return (EBUSY);
4859 	}
4860 
4861 	/*
4862 	 * reread szc it could have been decreased before
4863 	 * group_page_trylock() was done.
4864 	 */
4865 	szc = targ->p_szc;
4866 	ASSERT(szc < mmu_page_sizes);
4867 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4868 	ASSERT(pfn == PFN_BASE(pfn, szc));
4869 
4870 	npgs = page_get_pagecnt(targ->p_szc);
4871 
4872 	if (repl == NULL) {
4873 		dofree = npgs;		/* Size of target page in MMU pages */
4874 		if (!page_create_wait(dofree, 0)) {
4875 			if (grouplock != 0) {
4876 				group_page_unlock(targ);
4877 			}
4878 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4879 			return (ENOMEM);
4880 		}
4881 
4882 		/*
4883 		 * seg kmem pages require that the target and replacement
4884 		 * page be the same pagesize.
4885 		 */
4886 		flags = (targ->p_vnode == &kvp) ? PGR_SAMESZC : 0;
4887 		repl = page_get_replacement_page(targ, lgrp, flags);
4888 		if (repl == NULL) {
4889 			if (grouplock != 0) {
4890 				group_page_unlock(targ);
4891 			}
4892 			page_create_putback(dofree);
4893 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4894 			return (ENOMEM);
4895 		}
4896 	}
4897 #ifdef DEBUG
4898 	else {
4899 		ASSERT(PAGE_LOCKED(repl));
4900 	}
4901 #endif /* DEBUG */
4902 
4903 #if defined(__sparc)
4904 	/*
4905 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4906 	 */
4907 	if (targ->p_vnode == &kvp) {
4908 		*replacement = repl;
4909 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4910 			if (grouplock != 0) {
4911 				group_page_unlock(targ);
4912 			}
4913 			if (dofree) {
4914 				*replacement = NULL;
4915 				page_free_replacement_page(repl);
4916 				page_create_putback(dofree);
4917 			}
4918 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4919 			return (EAGAIN);
4920 		}
4921 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4922 		return (0);
4923 	}
4924 #else
4925 #if defined(lint)
4926 	dofree = dofree;
4927 #endif
4928 #endif
4929 
4930 #ifdef DEBUG
4931 	first_repl = repl;
4932 #endif /* DEBUG */
4933 
4934 	for (i = 0; i < npgs; i++) {
4935 		ASSERT(PAGE_EXCL(targ));
4936 
4937 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4938 
4939 		ASSERT(hat_page_getshare(targ) == 0);
4940 		ASSERT(!PP_ISFREE(targ));
4941 		ASSERT(targ->p_pagenum == (pfn + i));
4942 		ASSERT(repl_contig == 0 ||
4943 		    repl->p_pagenum == (repl_pfn + i));
4944 
4945 		/*
4946 		 * Copy the page contents and attributes then
4947 		 * relocate the page in the page hash.
4948 		 */
4949 		ppcopy(targ, repl);
4950 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4951 		page_clr_all_props(repl);
4952 		page_set_props(repl, ppattr);
4953 		page_relocate_hash(repl, targ);
4954 
4955 		ASSERT(hat_page_getshare(targ) == 0);
4956 		ASSERT(hat_page_getshare(repl) == 0);
4957 		/*
4958 		 * Now clear the props on targ, after the
4959 		 * page_relocate_hash(), they no longer
4960 		 * have any meaning.
4961 		 */
4962 		page_clr_all_props(targ);
4963 		ASSERT(targ->p_next == targ);
4964 		ASSERT(targ->p_prev == targ);
4965 		page_list_concat(&pl, &targ);
4966 
4967 		targ++;
4968 		if (repl_contig != 0) {
4969 			repl++;
4970 		} else {
4971 			repl = repl->p_next;
4972 		}
4973 	}
4974 	/* assert that we have come full circle with repl */
4975 	ASSERT(repl_contig == 1 || first_repl == repl);
4976 
4977 	*target = pl;
4978 	if (*replacement == NULL) {
4979 		ASSERT(first_repl == repl);
4980 		*replacement = repl;
4981 	}
4982 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4983 	*nrelocp = npgs;
4984 	return (0);
4985 }
4986 /*
4987  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4988  */
4989 int
4990 page_relocate(
4991 	page_t **target,
4992 	page_t **replacement,
4993 	int grouplock,
4994 	int freetarget,
4995 	spgcnt_t *nrelocp,
4996 	lgrp_t *lgrp)
4997 {
4998 	spgcnt_t ret;
4999 
5000 	/* do_page_relocate returns 0 on success or errno value */
5001 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5002 
5003 	if (ret != 0 || freetarget == 0) {
5004 		return (ret);
5005 	}
5006 	if (*nrelocp == 1) {
5007 		ASSERT(*target != NULL);
5008 		page_free(*target, 1);
5009 	} else {
5010 		page_t *tpp = *target;
5011 		uint_t szc = tpp->p_szc;
5012 		pgcnt_t npgs = page_get_pagecnt(szc);
5013 		ASSERT(npgs > 1);
5014 		ASSERT(szc != 0);
5015 		do {
5016 			ASSERT(PAGE_EXCL(tpp));
5017 			ASSERT(!hat_page_is_mapped(tpp));
5018 			ASSERT(tpp->p_szc == szc);
5019 			PP_SETFREE(tpp);
5020 			PP_SETAGED(tpp);
5021 			npgs--;
5022 		} while ((tpp = tpp->p_next) != *target);
5023 		ASSERT(npgs == 0);
5024 		page_list_add_pages(*target, 0);
5025 		npgs = page_get_pagecnt(szc);
5026 		page_create_putback(npgs);
5027 	}
5028 	return (ret);
5029 }
5030 
5031 /*
5032  * it is up to the caller to deal with pcf accounting.
5033  */
5034 void
5035 page_free_replacement_page(page_t *pplist)
5036 {
5037 	page_t *pp;
5038 
5039 	while (pplist != NULL) {
5040 		/*
5041 		 * pp_targ is a linked list.
5042 		 */
5043 		pp = pplist;
5044 		if (pp->p_szc == 0) {
5045 			page_sub(&pplist, pp);
5046 			page_clr_all_props(pp);
5047 			PP_SETFREE(pp);
5048 			PP_SETAGED(pp);
5049 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5050 			page_unlock(pp);
5051 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5052 		} else {
5053 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5054 			page_t *tpp;
5055 			page_list_break(&pp, &pplist, curnpgs);
5056 			tpp = pp;
5057 			do {
5058 				ASSERT(PAGE_EXCL(tpp));
5059 				ASSERT(!hat_page_is_mapped(tpp));
5060 				page_clr_all_props(pp);
5061 				PP_SETFREE(tpp);
5062 				PP_SETAGED(tpp);
5063 			} while ((tpp = tpp->p_next) != pp);
5064 			page_list_add_pages(pp, 0);
5065 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5066 		}
5067 	}
5068 }
5069 
5070 /*
5071  * Relocate target to non-relocatable replacement page.
5072  */
5073 int
5074 page_relocate_cage(page_t **target, page_t **replacement)
5075 {
5076 	page_t *tpp, *rpp;
5077 	spgcnt_t pgcnt, npgs;
5078 	int result;
5079 
5080 	tpp = *target;
5081 
5082 	ASSERT(PAGE_EXCL(tpp));
5083 	ASSERT(tpp->p_szc == 0);
5084 
5085 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5086 
5087 	do {
5088 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5089 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5090 		if (rpp == NULL) {
5091 			page_create_putback(pgcnt);
5092 			kcage_cageout_wakeup();
5093 		}
5094 	} while (rpp == NULL);
5095 
5096 	ASSERT(PP_ISNORELOC(rpp));
5097 
5098 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5099 
5100 	if (result == 0) {
5101 		*replacement = rpp;
5102 		if (pgcnt != npgs)
5103 			panic("page_relocate_cage: partial relocation");
5104 	}
5105 
5106 	return (result);
5107 }
5108 
5109 /*
5110  * Release the page lock on a page, place on cachelist
5111  * tail if no longer mapped. Caller can let us know if
5112  * the page is known to be clean.
5113  */
5114 int
5115 page_release(page_t *pp, int checkmod)
5116 {
5117 	int status;
5118 
5119 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5120 		(pp->p_vnode != NULL));
5121 
5122 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5123 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5124 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5125 	    !hat_page_is_mapped(pp)) {
5126 
5127 		/*
5128 		 * If page is modified, unlock it
5129 		 *
5130 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5131 		 * (1) We found that this page doesn't have any mappings
5132 		 *	_after_ holding SE_EXCL and
5133 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5134 		 */
5135 		if (checkmod && hat_ismod(pp)) {
5136 			page_unlock(pp);
5137 			status = PGREL_MOD;
5138 		} else {
5139 			/*LINTED: constant in conditional context*/
5140 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5141 			status = PGREL_CLEAN;
5142 		}
5143 	} else {
5144 		page_unlock(pp);
5145 		status = PGREL_NOTREL;
5146 	}
5147 	return (status);
5148 }
5149 
5150 /*
5151  * Given a constituent page, try to demote the large page on the freelist.
5152  *
5153  * Returns nonzero if the page could be demoted successfully. Returns with
5154  * the constituent page still locked.
5155  */
5156 int
5157 page_try_demote_free_pages(page_t *pp)
5158 {
5159 	page_t *rootpp = pp;
5160 	pfn_t	pfn = page_pptonum(pp);
5161 	spgcnt_t npgs;
5162 	uint_t	szc = pp->p_szc;
5163 
5164 	ASSERT(PP_ISFREE(pp));
5165 	ASSERT(PAGE_EXCL(pp));
5166 
5167 	/*
5168 	 * Adjust rootpp and lock it, if `pp' is not the base
5169 	 * constituent page.
5170 	 */
5171 	npgs = page_get_pagecnt(pp->p_szc);
5172 	if (npgs == 1) {
5173 		return (0);
5174 	}
5175 
5176 	if (!IS_P2ALIGNED(pfn, npgs)) {
5177 		pfn = P2ALIGN(pfn, npgs);
5178 		rootpp = page_numtopp_nolock(pfn);
5179 	}
5180 
5181 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5182 		return (0);
5183 	}
5184 
5185 	if (rootpp->p_szc != szc) {
5186 		if (pp != rootpp)
5187 			page_unlock(rootpp);
5188 		return (0);
5189 	}
5190 
5191 	page_demote_free_pages(rootpp);
5192 
5193 	if (pp != rootpp)
5194 		page_unlock(rootpp);
5195 
5196 	ASSERT(PP_ISFREE(pp));
5197 	ASSERT(PAGE_EXCL(pp));
5198 	return (1);
5199 }
5200 
5201 /*
5202  * Given a constituent page, try to demote the large page.
5203  *
5204  * Returns nonzero if the page could be demoted successfully. Returns with
5205  * the constituent page still locked.
5206  */
5207 int
5208 page_try_demote_pages(page_t *pp)
5209 {
5210 	page_t *tpp, *rootpp = pp;
5211 	pfn_t	pfn = page_pptonum(pp);
5212 	spgcnt_t i, npgs;
5213 	uint_t	szc = pp->p_szc;
5214 	vnode_t *vp = pp->p_vnode;
5215 
5216 	ASSERT(PAGE_EXCL(pp));
5217 
5218 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5219 
5220 	if (pp->p_szc == 0) {
5221 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5222 		return (1);
5223 	}
5224 
5225 	if (vp != NULL && !IS_SWAPFSVP(vp) && vp != &kvp) {
5226 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5227 		page_demote_vp_pages(pp);
5228 		ASSERT(pp->p_szc == 0);
5229 		return (1);
5230 	}
5231 
5232 	/*
5233 	 * Adjust rootpp if passed in is not the base
5234 	 * constituent page.
5235 	 */
5236 	npgs = page_get_pagecnt(pp->p_szc);
5237 	ASSERT(npgs > 1);
5238 	if (!IS_P2ALIGNED(pfn, npgs)) {
5239 		pfn = P2ALIGN(pfn, npgs);
5240 		rootpp = page_numtopp_nolock(pfn);
5241 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5242 		ASSERT(rootpp->p_vnode != NULL);
5243 		ASSERT(rootpp->p_szc == szc);
5244 	}
5245 
5246 	/*
5247 	 * We can't demote kernel pages since we can't hat_unload()
5248 	 * the mappings.
5249 	 */
5250 	if (rootpp->p_vnode == &kvp)
5251 		return (0);
5252 
5253 	/*
5254 	 * Attempt to lock all constituent pages except the page passed
5255 	 * in since it's already locked.
5256 	 */
5257 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5258 		ASSERT(!PP_ISFREE(tpp));
5259 		ASSERT(tpp->p_vnode != NULL);
5260 
5261 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5262 			break;
5263 		ASSERT(tpp->p_szc == rootpp->p_szc);
5264 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5265 	}
5266 
5267 	/*
5268 	 * If we failed to lock them all then unlock what we have
5269 	 * locked so far and bail.
5270 	 */
5271 	if (i < npgs) {
5272 		tpp = rootpp;
5273 		while (i-- > 0) {
5274 			if (tpp != pp)
5275 				page_unlock(tpp);
5276 			tpp++;
5277 		}
5278 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5279 		return (0);
5280 	}
5281 
5282 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5283 		ASSERT(PAGE_EXCL(tpp));
5284 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5285 		tpp->p_szc = 0;
5286 	}
5287 
5288 	/*
5289 	 * Unlock all pages except the page passed in.
5290 	 */
5291 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5292 		ASSERT(!hat_page_is_mapped(tpp));
5293 		if (tpp != pp)
5294 			page_unlock(tpp);
5295 	}
5296 
5297 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5298 	return (1);
5299 }
5300 
5301 /*
5302  * Called by page_free() and page_destroy() to demote the page size code
5303  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5304  * p_szc on free list, neither can we just clear p_szc of a single page_t
5305  * within a large page since it will break other code that relies on p_szc
5306  * being the same for all page_t's of a large page). Anonymous pages should
5307  * never end up here because anon_map_getpages() cannot deal with p_szc
5308  * changes after a single constituent page is locked.  While anonymous or
5309  * kernel large pages are demoted or freed the entire large page at a time
5310  * with all constituent pages locked EXCL for the file system pages we
5311  * have to be able to demote a large page (i.e. decrease all constituent pages
5312  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5313  * we can easily deal with anonymous page demotion the entire large page at a
5314  * time is that those operation originate at address space level and concern
5315  * the entire large page region with actual demotion only done when pages are
5316  * not shared with any other processes (therefore we can always get EXCL lock
5317  * on all anonymous constituent pages after clearing segment page
5318  * cache). However file system pages can be truncated or invalidated at a
5319  * PAGESIZE level from the file system side and end up in page_free() or
5320  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5321  * and therfore pageout should be able to demote a large page by EXCL locking
5322  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5323  * rely on being able to lock EXCL all constituent pages.
5324  *
5325  * To prevent szc changes on file system pages one has to lock all constituent
5326  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5327  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5328  * prevent szc changes is hat layer that uses its own page level mlist
5329  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5330  * taken. Therefore we need to change szc under hat level locks if we only
5331  * have an EXCL lock on a single constituent page and hat still references any
5332  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5333  * hat_pageunload() all constituent pages without having EXCL locks on all of
5334  * constituent pages). We use hat_page_demote() call to safely demote szc of
5335  * all constituent pages under hat locks when we only have an EXCL lock on one
5336  * of constituent pages.
5337  *
5338  * This routine calls page_szc_lock() before calling hat_page_demote() to
5339  * allow segvn in one special case not to lock all constituent pages SHARED
5340  * before calling hat_memload_array() that relies on p_szc not changeing even
5341  * before hat level mlist lock is taken.  In that case segvn uses
5342  * page_szc_lock() to prevent hat_page_demote() changeing p_szc values.
5343  *
5344  * Anonymous or kernel page demotion still has to lock all pages exclusively
5345  * and do hat_pageunload() on all constituent pages before demoting the page
5346  * therefore there's no need for anonymous or kernel page demotion to use
5347  * hat_page_demote() mechanism.
5348  *
5349  * hat_page_demote() removes all large mappings that map pp and then decreases
5350  * p_szc starting from the last constituent page of the large page. By working
5351  * from the tail of a large page in pfn decreasing order allows one looking at
5352  * the root page to know that hat_page_demote() is done for root's szc area.
5353  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5354  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5355  * that started on this page when it had szc > 1 is done for this szc 1 area.
5356  *
5357  * We are guranteed that all constituent pages of pp's large page belong to
5358  * the same vnode with the consecutive offsets increasing in the direction of
5359  * the pfn i.e. the identity of constituent pages can't change until their
5360  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5361  * large mappings to pp even though we don't lock any constituent page except
5362  * pp (i.e. we won't unload e.g. kernel locked page).
5363  */
5364 static void
5365 page_demote_vp_pages(page_t *pp)
5366 {
5367 	kmutex_t *mtx;
5368 
5369 	ASSERT(PAGE_EXCL(pp));
5370 	ASSERT(!PP_ISFREE(pp));
5371 	ASSERT(pp->p_vnode != NULL);
5372 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5373 	ASSERT(pp->p_vnode != &kvp);
5374 
5375 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5376 
5377 	mtx = page_szc_lock(pp);
5378 	if (mtx != NULL) {
5379 		hat_page_demote(pp);
5380 		mutex_exit(mtx);
5381 	}
5382 	ASSERT(pp->p_szc == 0);
5383 }
5384 
5385 /*
5386  * Mark any existing pages for migration in the given range
5387  */
5388 void
5389 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5390     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5391     u_offset_t vnoff, int rflag)
5392 {
5393 	struct anon	*ap;
5394 	vnode_t		*curvp;
5395 	lgrp_t		*from;
5396 	pgcnt_t		i;
5397 	pgcnt_t		nlocked;
5398 	u_offset_t	off;
5399 	pfn_t		pfn;
5400 	size_t		pgsz;
5401 	size_t		segpgsz;
5402 	pgcnt_t		pages;
5403 	uint_t		pszc;
5404 	page_t		**ppa;
5405 	pgcnt_t		ppa_nentries;
5406 	page_t		*pp;
5407 	caddr_t		va;
5408 	ulong_t		an_idx;
5409 	anon_sync_obj_t	cookie;
5410 
5411 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5412 
5413 	/*
5414 	 * Don't do anything if don't need to do lgroup optimizations
5415 	 * on this system
5416 	 */
5417 	if (!lgrp_optimizations())
5418 		return;
5419 
5420 	/*
5421 	 * Align address and length to (potentially large) page boundary
5422 	 */
5423 	segpgsz = page_get_pagesize(seg->s_szc);
5424 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5425 	if (rflag)
5426 		len = P2ROUNDUP(len, segpgsz);
5427 
5428 	/*
5429 	 * Allocate page array to accomodate largest page size
5430 	 */
5431 	pgsz = page_get_pagesize(page_num_pagesizes() - 1);
5432 	ppa_nentries = btop(pgsz);
5433 	ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP);
5434 
5435 	/*
5436 	 * Do one (large) page at a time
5437 	 */
5438 	va = addr;
5439 	while (va < addr + len) {
5440 		/*
5441 		 * Lookup (root) page for vnode and offset corresponding to
5442 		 * this virtual address
5443 		 * Try anonmap first since there may be copy-on-write
5444 		 * pages, but initialize vnode pointer and offset using
5445 		 * vnode arguments just in case there isn't an amp.
5446 		 */
5447 		curvp = vp;
5448 		off = vnoff + va - seg->s_base;
5449 		if (amp) {
5450 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5451 			an_idx = anon_index + seg_page(seg, va);
5452 			anon_array_enter(amp, an_idx, &cookie);
5453 			ap = anon_get_ptr(amp->ahp, an_idx);
5454 			if (ap)
5455 				swap_xlate(ap, &curvp, &off);
5456 			anon_array_exit(&cookie);
5457 			ANON_LOCK_EXIT(&amp->a_rwlock);
5458 		}
5459 
5460 		pp = NULL;
5461 		if (curvp)
5462 			pp = page_lookup(curvp, off, SE_SHARED);
5463 
5464 		/*
5465 		 * If there isn't a page at this virtual address,
5466 		 * skip to next page
5467 		 */
5468 		if (pp == NULL) {
5469 			va += PAGESIZE;
5470 			continue;
5471 		}
5472 
5473 		/*
5474 		 * Figure out which lgroup this page is in for kstats
5475 		 */
5476 		pfn = page_pptonum(pp);
5477 		from = lgrp_pfn_to_lgrp(pfn);
5478 
5479 		/*
5480 		 * Get page size, and round up and skip to next page boundary
5481 		 * if unaligned address
5482 		 */
5483 		pszc = pp->p_szc;
5484 		pgsz = page_get_pagesize(pszc);
5485 		pages = btop(pgsz);
5486 		if (!IS_P2ALIGNED(va, pgsz) ||
5487 		    !IS_P2ALIGNED(pfn, pages) ||
5488 		    pgsz > segpgsz) {
5489 			pgsz = MIN(pgsz, segpgsz);
5490 			page_unlock(pp);
5491 			i = btop(P2END((uintptr_t)va, pgsz) -
5492 			    (uintptr_t)va);
5493 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5494 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i);
5495 			continue;
5496 		}
5497 
5498 		/*
5499 		 * Upgrade to exclusive lock on page
5500 		 */
5501 		if (!page_tryupgrade(pp)) {
5502 			page_unlock(pp);
5503 			va += pgsz;
5504 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5505 			    btop(pgsz));
5506 			continue;
5507 		}
5508 
5509 		/*
5510 		 * Remember pages locked exclusively and how many
5511 		 */
5512 		ppa[0] = pp;
5513 		nlocked = 1;
5514 
5515 		/*
5516 		 * Lock constituent pages if this is large page
5517 		 */
5518 		if (pages > 1) {
5519 			/*
5520 			 * Lock all constituents except root page, since it
5521 			 * should be locked already.
5522 			 */
5523 			for (i = 1; i < pages; i++) {
5524 				pp++;
5525 				if (!page_trylock(pp, SE_EXCL)) {
5526 					break;
5527 				}
5528 				if (PP_ISFREE(pp) ||
5529 				    pp->p_szc != pszc) {
5530 					/*
5531 					 * hat_page_demote() raced in with us.
5532 					 */
5533 					ASSERT(!IS_SWAPFSVP(curvp));
5534 					page_unlock(pp);
5535 					break;
5536 				}
5537 				ppa[nlocked] = pp;
5538 				nlocked++;
5539 			}
5540 		}
5541 
5542 		/*
5543 		 * If all constituent pages couldn't be locked,
5544 		 * unlock pages locked so far and skip to next page.
5545 		 */
5546 		if (nlocked != pages) {
5547 			for (i = 0; i < nlocked; i++)
5548 				page_unlock(ppa[i]);
5549 			va += pgsz;
5550 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5551 			    btop(pgsz));
5552 			continue;
5553 		}
5554 
5555 		/*
5556 		 * hat_page_demote() can no longer happen
5557 		 * since last cons page had the right p_szc after
5558 		 * all cons pages were locked. all cons pages
5559 		 * should now have the same p_szc.
5560 		 */
5561 
5562 		/*
5563 		 * All constituent pages locked successfully, so mark
5564 		 * large page for migration and unload the mappings of
5565 		 * constituent pages, so a fault will occur on any part of the
5566 		 * large page
5567 		 */
5568 		PP_SETMIGRATE(ppa[0]);
5569 		for (i = 0; i < nlocked; i++) {
5570 			pp = ppa[i];
5571 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
5572 			ASSERT(hat_page_getshare(pp) == 0);
5573 			page_unlock(pp);
5574 		}
5575 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5576 
5577 		va += pgsz;
5578 	}
5579 	kmem_free(ppa, ppa_nentries * sizeof (page_t *));
5580 }
5581 
5582 /*
5583  * Migrate any pages that have been marked for migration in the given range
5584  */
5585 void
5586 page_migrate(
5587 	struct seg	*seg,
5588 	caddr_t		addr,
5589 	page_t		**ppa,
5590 	pgcnt_t		npages)
5591 {
5592 	lgrp_t		*from;
5593 	lgrp_t		*to;
5594 	page_t		*newpp;
5595 	page_t		*pp;
5596 	pfn_t		pfn;
5597 	size_t		pgsz;
5598 	spgcnt_t	page_cnt;
5599 	spgcnt_t	i;
5600 	uint_t		pszc;
5601 
5602 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5603 
5604 	while (npages > 0) {
5605 		pp = *ppa;
5606 		pszc = pp->p_szc;
5607 		pgsz = page_get_pagesize(pszc);
5608 		page_cnt = btop(pgsz);
5609 
5610 		/*
5611 		 * Check to see whether this page is marked for migration
5612 		 *
5613 		 * Assume that root page of large page is marked for
5614 		 * migration and none of the other constituent pages
5615 		 * are marked.  This really simplifies clearing the
5616 		 * migrate bit by not having to clear it from each
5617 		 * constituent page.
5618 		 *
5619 		 * note we don't want to relocate an entire large page if
5620 		 * someone is only using one subpage.
5621 		 */
5622 		if (npages < page_cnt)
5623 			break;
5624 
5625 		/*
5626 		 * Is it marked for migration?
5627 		 */
5628 		if (!PP_ISMIGRATE(pp))
5629 			goto next;
5630 
5631 		/*
5632 		 * Determine lgroups that page is being migrated between
5633 		 */
5634 		pfn = page_pptonum(pp);
5635 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5636 			break;
5637 		}
5638 		from = lgrp_pfn_to_lgrp(pfn);
5639 		to = lgrp_mem_choose(seg, addr, pgsz);
5640 
5641 		/*
5642 		 * Check to see whether we are trying to migrate page to lgroup
5643 		 * where it is allocated already
5644 		 */
5645 		if (to == from) {
5646 			PP_CLRMIGRATE(pp);
5647 			goto next;
5648 		}
5649 
5650 		/*
5651 		 * Need to get exclusive lock's to migrate
5652 		 */
5653 		for (i = 0; i < page_cnt; i++) {
5654 			ASSERT(PAGE_LOCKED(ppa[i]));
5655 			if (page_pptonum(ppa[i]) != pfn + i ||
5656 			    ppa[i]->p_szc != pszc) {
5657 				break;
5658 			}
5659 			if (!page_tryupgrade(ppa[i])) {
5660 				lgrp_stat_add(from->lgrp_id,
5661 				    LGRP_PM_FAIL_LOCK_PGS,
5662 				    page_cnt);
5663 				break;
5664 			}
5665 		}
5666 		if (i != page_cnt) {
5667 			while (--i != -1) {
5668 				page_downgrade(ppa[i]);
5669 			}
5670 			goto next;
5671 		}
5672 
5673 		(void) page_create_wait(page_cnt, PG_WAIT);
5674 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5675 		if (newpp == NULL) {
5676 			page_create_putback(page_cnt);
5677 			for (i = 0; i < page_cnt; i++) {
5678 				page_downgrade(ppa[i]);
5679 			}
5680 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5681 			    page_cnt);
5682 			goto next;
5683 		}
5684 		ASSERT(newpp->p_szc == pszc);
5685 		/*
5686 		 * Clear migrate bit and relocate page
5687 		 */
5688 		PP_CLRMIGRATE(pp);
5689 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5690 			panic("page_migrate: page_relocate failed");
5691 		}
5692 		ASSERT(page_cnt * PAGESIZE == pgsz);
5693 
5694 		/*
5695 		 * Keep stats for number of pages migrated from and to
5696 		 * each lgroup
5697 		 */
5698 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5699 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5700 		/*
5701 		 * update the page_t array we were passed in and
5702 		 * unlink constituent pages of a large page.
5703 		 */
5704 		for (i = 0; i < page_cnt; ++i, ++pp) {
5705 			ASSERT(PAGE_EXCL(newpp));
5706 			ASSERT(newpp->p_szc == pszc);
5707 			ppa[i] = newpp;
5708 			pp = newpp;
5709 			page_sub(&newpp, pp);
5710 			page_downgrade(pp);
5711 		}
5712 		ASSERT(newpp == NULL);
5713 next:
5714 		addr += pgsz;
5715 		ppa += page_cnt;
5716 		npages -= page_cnt;
5717 	}
5718 }
5719 
5720 ulong_t mem_waiters 	= 0;
5721 ulong_t	max_count 	= 20;
5722 #define	MAX_DELAY	0x1ff
5723 
5724 /*
5725  * Check if enough memory is available to proceed.
5726  * Depending on system configuration and how much memory is
5727  * reserved for swap we need to check against two variables.
5728  * e.g. on systems with little physical swap availrmem can be
5729  * more reliable indicator of how much memory is available.
5730  * On systems with large phys swap freemem can be better indicator.
5731  * If freemem drops below threshold level don't return an error
5732  * immediately but wake up pageout to free memory and block.
5733  * This is done number of times. If pageout is not able to free
5734  * memory within certain time return an error.
5735  * The same applies for availrmem but kmem_reap is used to
5736  * free memory.
5737  */
5738 int
5739 page_mem_avail(pgcnt_t npages)
5740 {
5741 	ulong_t count;
5742 
5743 #if defined(__i386)
5744 	if (freemem > desfree + npages &&
5745 	    availrmem > swapfs_reserve + npages &&
5746 	    btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
5747 	    npages)
5748 		return (1);
5749 #else
5750 	if (freemem > desfree + npages &&
5751 	    availrmem > swapfs_reserve + npages)
5752 		return (1);
5753 #endif
5754 
5755 	count = max_count;
5756 	atomic_add_long(&mem_waiters, 1);
5757 
5758 	while (freemem < desfree + npages && --count) {
5759 		cv_signal(&proc_pageout->p_cv);
5760 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5761 			atomic_add_long(&mem_waiters, -1);
5762 			return (0);
5763 		}
5764 	}
5765 	if (count == 0) {
5766 		atomic_add_long(&mem_waiters, -1);
5767 		return (0);
5768 	}
5769 
5770 	count = max_count;
5771 	while (availrmem < swapfs_reserve + npages && --count) {
5772 		kmem_reap();
5773 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5774 			atomic_add_long(&mem_waiters, -1);
5775 			return (0);
5776 		}
5777 	}
5778 	atomic_add_long(&mem_waiters, -1);
5779 	if (count == 0)
5780 		return (0);
5781 
5782 #if defined(__i386)
5783 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
5784 	    tune.t_minarmem + npages)
5785 		return (0);
5786 #endif
5787 	return (1);
5788 }
5789 
5790 
5791 /*
5792  * Search the memory segments to locate the desired page.  Within a
5793  * segment, pages increase linearly with one page structure per
5794  * physical page frame (size PAGESIZE).  The search begins
5795  * with the segment that was accessed last, to take advantage of locality.
5796  * If the hint misses, we start from the beginning of the sorted memseg list
5797  */
5798 
5799 
5800 /*
5801  * Some data structures for pfn to pp lookup.
5802  */
5803 ulong_t mhash_per_slot;
5804 struct memseg *memseg_hash[N_MEM_SLOTS];
5805 
5806 page_t *
5807 page_numtopp_nolock(pfn_t pfnum)
5808 {
5809 	struct memseg *seg;
5810 	page_t *pp;
5811 	vm_cpu_data_t *vc = CPU->cpu_vm_data;
5812 
5813 	ASSERT(vc != NULL);
5814 
5815 	MEMSEG_STAT_INCR(nsearch);
5816 
5817 	/* Try last winner first */
5818 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5819 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5820 		MEMSEG_STAT_INCR(nlastwon);
5821 		pp = seg->pages + (pfnum - seg->pages_base);
5822 		if (pp->p_pagenum == pfnum)
5823 			return ((page_t *)pp);
5824 	}
5825 
5826 	/* Else Try hash */
5827 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5828 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5829 		MEMSEG_STAT_INCR(nhashwon);
5830 		vc->vc_pnum_memseg = seg;
5831 		pp = seg->pages + (pfnum - seg->pages_base);
5832 		if (pp->p_pagenum == pfnum)
5833 			return ((page_t *)pp);
5834 	}
5835 
5836 	/* Else Brute force */
5837 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5838 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5839 			vc->vc_pnum_memseg = seg;
5840 			pp = seg->pages + (pfnum - seg->pages_base);
5841 			return ((page_t *)pp);
5842 		}
5843 	}
5844 	vc->vc_pnum_memseg = NULL;
5845 	MEMSEG_STAT_INCR(nnotfound);
5846 	return ((page_t *)NULL);
5847 
5848 }
5849 
5850 struct memseg *
5851 page_numtomemseg_nolock(pfn_t pfnum)
5852 {
5853 	struct memseg *seg;
5854 	page_t *pp;
5855 
5856 	/* Try hash */
5857 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5858 		(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5859 		pp = seg->pages + (pfnum - seg->pages_base);
5860 		if (pp->p_pagenum == pfnum)
5861 			return (seg);
5862 	}
5863 
5864 	/* Else Brute force */
5865 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5866 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5867 			return (seg);
5868 		}
5869 	}
5870 	return ((struct memseg *)NULL);
5871 }
5872 
5873 /*
5874  * Given a page and a count return the page struct that is
5875  * n structs away from the current one in the global page
5876  * list.
5877  *
5878  * This function wraps to the first page upon
5879  * reaching the end of the memseg list.
5880  */
5881 page_t *
5882 page_nextn(page_t *pp, ulong_t n)
5883 {
5884 	struct memseg *seg;
5885 	page_t *ppn;
5886 	vm_cpu_data_t *vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5887 
5888 	ASSERT(vc != NULL);
5889 
5890 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5891 	    (seg->pages_base == seg->pages_end) ||
5892 	    !(pp >= seg->pages && pp < seg->epages)) {
5893 
5894 		for (seg = memsegs; seg; seg = seg->next) {
5895 			if (pp >= seg->pages && pp < seg->epages)
5896 				break;
5897 		}
5898 
5899 		if (seg == NULL) {
5900 			/* Memory delete got in, return something valid. */
5901 			/* TODO: fix me. */
5902 			seg = memsegs;
5903 			pp = seg->pages;
5904 		}
5905 	}
5906 
5907 	/* check for wraparound - possible if n is large */
5908 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5909 		n -= seg->epages - pp;
5910 		seg = seg->next;
5911 		if (seg == NULL)
5912 			seg = memsegs;
5913 		pp = seg->pages;
5914 	}
5915 	vc->vc_pnext_memseg = seg;
5916 	return (ppn);
5917 }
5918 
5919 /*
5920  * Initialize for a loop using page_next_scan_large().
5921  */
5922 page_t *
5923 page_next_scan_init(void **cookie)
5924 {
5925 	ASSERT(cookie != NULL);
5926 	*cookie = (void *)memsegs;
5927 	return ((page_t *)memsegs->pages);
5928 }
5929 
5930 /*
5931  * Return the next page in a scan of page_t's, assuming we want
5932  * to skip over sub-pages within larger page sizes.
5933  *
5934  * The cookie is used to keep track of the current memseg.
5935  */
5936 page_t *
5937 page_next_scan_large(
5938 	page_t		*pp,
5939 	ulong_t		*n,
5940 	void		**cookie)
5941 {
5942 	struct memseg	*seg = (struct memseg *)*cookie;
5943 	page_t		*new_pp;
5944 	ulong_t		cnt;
5945 	pfn_t		pfn;
5946 
5947 
5948 	/*
5949 	 * get the count of page_t's to skip based on the page size
5950 	 */
5951 	ASSERT(pp != NULL);
5952 	if (pp->p_szc == 0) {
5953 		cnt = 1;
5954 	} else {
5955 		pfn = page_pptonum(pp);
5956 		cnt = page_get_pagecnt(pp->p_szc);
5957 		cnt -= pfn & (cnt - 1);
5958 	}
5959 	*n += cnt;
5960 	new_pp = pp + cnt;
5961 
5962 	/*
5963 	 * Catch if we went past the end of the current memory segment. If so,
5964 	 * just move to the next segment with pages.
5965 	 */
5966 	if (new_pp >= seg->epages) {
5967 		do {
5968 			seg = seg->next;
5969 			if (seg == NULL)
5970 				seg = memsegs;
5971 		} while (seg->pages == seg->epages);
5972 		new_pp = seg->pages;
5973 		*cookie = (void *)seg;
5974 	}
5975 
5976 	return (new_pp);
5977 }
5978 
5979 
5980 /*
5981  * Returns next page in list. Note: this function wraps
5982  * to the first page in the list upon reaching the end
5983  * of the list. Callers should be aware of this fact.
5984  */
5985 
5986 /* We should change this be a #define */
5987 
5988 page_t *
5989 page_next(page_t *pp)
5990 {
5991 	return (page_nextn(pp, 1));
5992 }
5993 
5994 page_t *
5995 page_first()
5996 {
5997 	return ((page_t *)memsegs->pages);
5998 }
5999 
6000 
6001 /*
6002  * This routine is called at boot with the initial memory configuration
6003  * and when memory is added or removed.
6004  */
6005 void
6006 build_pfn_hash()
6007 {
6008 	pfn_t cur;
6009 	pgcnt_t index;
6010 	struct memseg *pseg;
6011 	int	i;
6012 
6013 	/*
6014 	 * Clear memseg_hash array.
6015 	 * Since memory add/delete is designed to operate concurrently
6016 	 * with normal operation, the hash rebuild must be able to run
6017 	 * concurrently with page_numtopp_nolock(). To support this
6018 	 * functionality, assignments to memseg_hash array members must
6019 	 * be done atomically.
6020 	 *
6021 	 * NOTE: bzero() does not currently guarantee this for kernel
6022 	 * threads, and cannot be used here.
6023 	 */
6024 	for (i = 0; i < N_MEM_SLOTS; i++)
6025 		memseg_hash[i] = NULL;
6026 
6027 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6028 
6029 	/*
6030 	 * Physmax is the last valid pfn.
6031 	 */
6032 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6033 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6034 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6035 		cur = pseg->pages_base;
6036 		do {
6037 			if (index >= N_MEM_SLOTS)
6038 				index = MEMSEG_PFN_HASH(cur);
6039 
6040 			if (memseg_hash[index] == NULL ||
6041 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6042 				memseg_hash[index] = pseg;
6043 				hat_kpm_mseghash_update(index, pseg);
6044 			}
6045 			cur += mhash_per_slot;
6046 			index++;
6047 		} while (cur < pseg->pages_end);
6048 	}
6049 }
6050 
6051 /*
6052  * Return the pagenum for the pp
6053  */
6054 pfn_t
6055 page_pptonum(page_t *pp)
6056 {
6057 	return (pp->p_pagenum);
6058 }
6059 
6060 /*
6061  * interface to the referenced and modified etc bits
6062  * in the PSM part of the page struct
6063  * when no locking is desired.
6064  */
6065 void
6066 page_set_props(page_t *pp, uint_t flags)
6067 {
6068 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6069 	pp->p_nrm |= (uchar_t)flags;
6070 }
6071 
6072 void
6073 page_clr_all_props(page_t *pp)
6074 {
6075 	pp->p_nrm = 0;
6076 }
6077 
6078 /*
6079  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6080  */
6081 int
6082 page_clear_lck_cow(page_t *pp, int adjust)
6083 {
6084 	int	f_amount;
6085 
6086 	ASSERT(PAGE_EXCL(pp));
6087 
6088 	/*
6089 	 * The page_struct_lock need not be acquired here since
6090 	 * we require the caller hold the page exclusively locked.
6091 	 */
6092 	f_amount = 0;
6093 	if (pp->p_lckcnt) {
6094 		f_amount = 1;
6095 		pp->p_lckcnt = 0;
6096 	}
6097 	if (pp->p_cowcnt) {
6098 		f_amount += pp->p_cowcnt;
6099 		pp->p_cowcnt = 0;
6100 	}
6101 
6102 	if (adjust && f_amount) {
6103 		mutex_enter(&freemem_lock);
6104 		availrmem += f_amount;
6105 		mutex_exit(&freemem_lock);
6106 	}
6107 
6108 	return (f_amount);
6109 }
6110 
6111 /*
6112  * The following functions is called from free_vp_pages()
6113  * for an inexact estimate of a newly free'd page...
6114  */
6115 ulong_t
6116 page_share_cnt(page_t *pp)
6117 {
6118 	return (hat_page_getshare(pp));
6119 }
6120 
6121 int
6122 page_isshared(page_t *pp)
6123 {
6124 	return (hat_page_getshare(pp) > 1);
6125 }
6126 
6127 int
6128 page_isfree(page_t *pp)
6129 {
6130 	return (PP_ISFREE(pp));
6131 }
6132 
6133 int
6134 page_isref(page_t *pp)
6135 {
6136 	return (hat_page_getattr(pp, P_REF));
6137 }
6138 
6139 int
6140 page_ismod(page_t *pp)
6141 {
6142 	return (hat_page_getattr(pp, P_MOD));
6143 }
6144