1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/tuneable.h> 31 #include <sys/systm.h> 32 #include <sys/vm.h> 33 #include <sys/kmem.h> 34 #include <sys/vmem.h> 35 #include <sys/mman.h> 36 #include <sys/cmn_err.h> 37 #include <sys/debug.h> 38 #include <sys/dumphdr.h> 39 #include <sys/bootconf.h> 40 #include <sys/lgrp.h> 41 #include <vm/seg_kmem.h> 42 #include <vm/hat.h> 43 #include <vm/page.h> 44 #include <vm/vm_dep.h> 45 #include <vm/faultcode.h> 46 #include <sys/promif.h> 47 #include <vm/seg_kp.h> 48 #include <sys/bitmap.h> 49 #include <sys/mem_cage.h> 50 51 /* 52 * seg_kmem is the primary kernel memory segment driver. It 53 * maps the kernel heap [kernelheap, ekernelheap), module text, 54 * and all memory which was allocated before the VM was initialized 55 * into kas. 56 * 57 * Pages which belong to seg_kmem are hashed into &kvp vnode at 58 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 59 * They must never be paged out since segkmem_fault() is a no-op to 60 * prevent recursive faults. 61 * 62 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 63 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 64 * supports relocation the #ifdef kludges can be removed. 65 * 66 * seg_kmem pages may be subject to relocation by page_relocate(), 67 * provided that the HAT supports it; if this is so, segkmem_reloc 68 * will be set to a nonzero value. All boot time allocated memory as 69 * well as static memory is considered off limits to relocation. 70 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 71 * we request P_NORELOC pages for memory that isn't safe to relocate. 72 * 73 * The kernel heap is logically divided up into four pieces: 74 * 75 * heap32_arena is for allocations that require 32-bit absolute 76 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 77 * 78 * heap_core is for allocations that require 2GB *relative* 79 * offsets; in other words all memory from heap_core is within 80 * 2GB of all other memory from the same arena. This is a requirement 81 * of the addressing modes of some processors in supervisor code. 82 * 83 * heap_arena is the general heap arena. 84 * 85 * static_arena is the static memory arena. Allocations from it 86 * are not subject to relocation so it is safe to use the memory 87 * physical address as well as the virtual address (e.g. the VA to 88 * PA translations are static). Caches may import from static_arena; 89 * all other static memory allocations should use static_alloc_arena. 90 * 91 * On some platforms which have limited virtual address space, seg_kmem 92 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 93 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 94 * address space which is actually seg_kp mapped. 95 */ 96 97 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 98 99 char *kernelheap; /* start of primary kernel heap */ 100 char *ekernelheap; /* end of primary kernel heap */ 101 struct seg kvseg; /* primary kernel heap segment */ 102 struct seg kvseg_core; /* "core" kernel heap segment */ 103 struct seg kzioseg; /* Segment for zio mappings */ 104 vmem_t *heap_arena; /* primary kernel heap arena */ 105 vmem_t *heap_core_arena; /* core kernel heap arena */ 106 char *heap_core_base; /* start of core kernel heap arena */ 107 char *heap_lp_base; /* start of kernel large page heap arena */ 108 char *heap_lp_end; /* end of kernel large page heap arena */ 109 vmem_t *hat_memload_arena; /* HAT translation data */ 110 struct seg kvseg32; /* 32-bit kernel heap segment */ 111 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 112 vmem_t *heaptext_arena; /* heaptext arena */ 113 struct as kas; /* kernel address space */ 114 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 115 vmem_t *static_arena; /* arena for caches to import static memory */ 116 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 117 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 118 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 119 120 /* 121 * seg_kmem driver can map part of the kernel heap with large pages. 122 * Currently this functionality is implemented for sparc platforms only. 123 * 124 * The large page size "segkmem_lpsize" for kernel heap is selected in the 125 * platform specific code. It can also be modified via /etc/system file. 126 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 127 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 128 * match segkmem_lpsize. 129 * 130 * At boot time we carve from kernel heap arena a range of virtual addresses 131 * that will be used for large page mappings. This range [heap_lp_base, 132 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 133 * create "kmem_lp_arena" that caches memory already backed up by large 134 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 135 */ 136 137 size_t segkmem_lpsize; 138 static uint_t segkmem_lpshift = PAGESHIFT; 139 int segkmem_lpszc = 0; 140 141 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 142 size_t segkmem_heaplp_quantum; 143 vmem_t *heap_lp_arena; 144 static vmem_t *kmem_lp_arena; 145 static vmem_t *segkmem_ppa_arena; 146 static segkmem_lpcb_t segkmem_lpcb; 147 148 /* 149 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 150 * consumed by the large page heap. By default this parameter is set to 1/8 of 151 * physmem but can be adjusted through /etc/system either directly or 152 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 153 * we allow for large page heap. 154 */ 155 size_t segkmem_kmemlp_max; 156 static uint_t segkmem_kmemlp_pcnt; 157 158 /* 159 * Getting large pages for kernel heap could be problematic due to 160 * physical memory fragmentation. That's why we allow to preallocate 161 * "segkmem_kmemlp_min" bytes at boot time. 162 */ 163 static size_t segkmem_kmemlp_min; 164 165 /* 166 * Throttling is used to avoid expensive tries to allocate large pages 167 * for kernel heap when a lot of succesive attempts to do so fail. 168 */ 169 static ulong_t segkmem_lpthrottle_max = 0x400000; 170 static ulong_t segkmem_lpthrottle_start = 0x40; 171 static ulong_t segkmem_use_lpthrottle = 1; 172 173 /* 174 * Freed pages accumulate on a garbage list until segkmem is ready, 175 * at which point we call segkmem_gc() to free it all. 176 */ 177 typedef struct segkmem_gc_list { 178 struct segkmem_gc_list *gc_next; 179 vmem_t *gc_arena; 180 size_t gc_size; 181 } segkmem_gc_list_t; 182 183 static segkmem_gc_list_t *segkmem_gc_list; 184 185 /* 186 * Allocations from the hat_memload arena add VM_MEMLOAD to their 187 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 188 * to take steps to prevent infinite recursion. HAT allocations also 189 * must be non-relocatable to prevent recursive page faults. 190 */ 191 static void * 192 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 193 { 194 flags |= (VM_MEMLOAD | VM_NORELOC); 195 return (segkmem_alloc(vmp, size, flags)); 196 } 197 198 /* 199 * Allocations from static_arena arena (or any other arena that uses 200 * segkmem_alloc_permanent()) require non-relocatable (permanently 201 * wired) memory pages, since these pages are referenced by physical 202 * as well as virtual address. 203 */ 204 void * 205 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 206 { 207 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 208 } 209 210 /* 211 * Initialize kernel heap boundaries. 212 */ 213 void 214 kernelheap_init( 215 void *heap_start, 216 void *heap_end, 217 char *first_avail, 218 void *core_start, 219 void *core_end) 220 { 221 uintptr_t textbase; 222 size_t core_size; 223 size_t heap_size; 224 vmem_t *heaptext_parent; 225 size_t heap_lp_size = 0; 226 #ifdef __sparc 227 size_t kmem64_sz = kmem64_aligned_end - kmem64_base; 228 #endif /* __sparc */ 229 230 kernelheap = heap_start; 231 ekernelheap = heap_end; 232 233 #ifdef __sparc 234 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 235 /* 236 * Bias heap_lp start address by kmem64_sz to reduce collisions 237 * in 4M kernel TSB between kmem64 area and heap_lp 238 */ 239 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M); 240 if (kmem64_sz <= heap_lp_size / 2) 241 heap_lp_size -= kmem64_sz; 242 heap_lp_base = ekernelheap - heap_lp_size; 243 heap_lp_end = heap_lp_base + heap_lp_size; 244 #endif /* __sparc */ 245 246 /* 247 * If this platform has a 'core' heap area, then the space for 248 * overflow module text should be carved out of the end of that 249 * heap. Otherwise, it gets carved out of the general purpose 250 * heap. 251 */ 252 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 253 if (core_size > 0) { 254 ASSERT(core_size >= HEAPTEXT_SIZE); 255 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 256 core_size -= HEAPTEXT_SIZE; 257 } 258 #ifndef __sparc 259 else { 260 ekernelheap -= HEAPTEXT_SIZE; 261 textbase = (uintptr_t)ekernelheap; 262 } 263 #endif 264 265 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 266 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 267 segkmem_alloc, segkmem_free); 268 269 if (core_size > 0) { 270 heap_core_arena = vmem_create("heap_core", core_start, 271 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 272 heap_core_base = core_start; 273 } else { 274 heap_core_arena = heap_arena; 275 heap_core_base = kernelheap; 276 } 277 278 /* 279 * reserve space for the large page heap. If large pages for kernel 280 * heap is enabled large page heap arean will be created later in the 281 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 282 * range will be returned back to the heap_arena. 283 */ 284 if (heap_lp_size) { 285 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 286 heap_lp_base, heap_lp_end, 287 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 288 } 289 290 /* 291 * Remove the already-spoken-for memory range [kernelheap, first_avail). 292 */ 293 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 294 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 295 296 #ifdef __sparc 297 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 298 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 299 NULL, NULL, 0, VM_SLEEP); 300 301 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 302 heaptext_parent = NULL; 303 #else /* __sparc */ 304 heap32_arena = heap_core_arena; 305 heaptext_parent = heap_core_arena; 306 #endif /* __sparc */ 307 308 heaptext_arena = vmem_create("heaptext", (void *)textbase, 309 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 310 311 /* 312 * Create a set of arenas for memory with static translations 313 * (e.g. VA -> PA translations cannot change). Since using 314 * kernel pages by physical address implies it isn't safe to 315 * walk across page boundaries, the static_arena quantum must 316 * be PAGESIZE. Any kmem caches that require static memory 317 * should source from static_arena, while direct allocations 318 * should only use static_alloc_arena. 319 */ 320 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 321 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 322 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 323 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 324 0, VM_SLEEP); 325 326 /* 327 * Create an arena for translation data (ptes, hmes, or hblks). 328 * We need an arena for this because hat_memload() is essential 329 * to vmem_populate() (see comments in common/os/vmem.c). 330 * 331 * Note: any kmem cache that allocates from hat_memload_arena 332 * must be created as a KMC_NOHASH cache (i.e. no external slab 333 * and bufctl structures to allocate) so that slab creation doesn't 334 * require anything more than a single vmem_alloc(). 335 */ 336 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 337 hat_memload_alloc, segkmem_free, heap_arena, 0, 338 VM_SLEEP | VMC_POPULATOR | VMC_DUMPSAFE); 339 } 340 341 void 342 boot_mapin(caddr_t addr, size_t size) 343 { 344 caddr_t eaddr; 345 page_t *pp; 346 pfn_t pfnum; 347 348 if (page_resv(btop(size), KM_NOSLEEP) == 0) 349 panic("boot_mapin: page_resv failed"); 350 351 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 352 pfnum = va_to_pfn(addr); 353 if (pfnum == PFN_INVALID) 354 continue; 355 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 356 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 357 358 /* 359 * must break up any large pages that may have constituent 360 * pages being utilized for BOP_ALLOC()'s before calling 361 * page_numtopp().The locking code (ie. page_reclaim()) 362 * can't handle them 363 */ 364 if (pp->p_szc != 0) 365 page_boot_demote(pp); 366 367 pp = page_numtopp(pfnum, SE_EXCL); 368 if (pp == NULL || PP_ISFREE(pp)) 369 panic("boot_alloc: pp is NULL or free"); 370 371 /* 372 * If the cage is on but doesn't yet contain this page, 373 * mark it as non-relocatable. 374 */ 375 if (kcage_on && !PP_ISNORELOC(pp)) { 376 PP_SETNORELOC(pp); 377 PLCNT_XFER_NORELOC(pp); 378 } 379 380 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 381 pp->p_lckcnt = 1; 382 #if defined(__x86) 383 page_downgrade(pp); 384 #else 385 page_unlock(pp); 386 #endif 387 } 388 } 389 390 /* 391 * Get pages from boot and hash them into the kernel's vp. 392 * Used after page structs have been allocated, but before segkmem is ready. 393 */ 394 void * 395 boot_alloc(void *inaddr, size_t size, uint_t align) 396 { 397 caddr_t addr = inaddr; 398 399 if (bootops == NULL) 400 prom_panic("boot_alloc: attempt to allocate memory after " 401 "BOP_GONE"); 402 403 size = ptob(btopr(size)); 404 #ifdef __sparc 405 if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr) 406 panic("boot_alloc: bop_alloc_chunk failed"); 407 #else 408 if (BOP_ALLOC(bootops, addr, size, align) != addr) 409 panic("boot_alloc: BOP_ALLOC failed"); 410 #endif 411 boot_mapin((caddr_t)addr, size); 412 return (addr); 413 } 414 415 static void 416 segkmem_badop() 417 { 418 panic("segkmem_badop"); 419 } 420 421 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 422 423 /*ARGSUSED*/ 424 static faultcode_t 425 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 426 enum fault_type type, enum seg_rw rw) 427 { 428 pgcnt_t npages; 429 spgcnt_t pg; 430 page_t *pp; 431 struct vnode *vp = seg->s_data; 432 433 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 434 435 if (seg->s_as != &kas || size > seg->s_size || 436 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 437 panic("segkmem_fault: bad args"); 438 439 /* 440 * If it is one of segkp pages, call segkp_fault. 441 */ 442 if (segkp_bitmap && seg == &kvseg && 443 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 444 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 445 446 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 447 return (FC_NOSUPPORT); 448 449 npages = btopr(size); 450 451 switch (type) { 452 case F_SOFTLOCK: /* lock down already-loaded translations */ 453 for (pg = 0; pg < npages; pg++) { 454 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 455 SE_SHARED); 456 if (pp == NULL) { 457 /* 458 * Hmm, no page. Does a kernel mapping 459 * exist for it? 460 */ 461 if (!hat_probe(kas.a_hat, addr)) { 462 addr -= PAGESIZE; 463 while (--pg >= 0) { 464 pp = page_find(vp, (u_offset_t) 465 (uintptr_t)addr); 466 if (pp) 467 page_unlock(pp); 468 addr -= PAGESIZE; 469 } 470 return (FC_NOMAP); 471 } 472 } 473 addr += PAGESIZE; 474 } 475 if (rw == S_OTHER) 476 hat_reserve(seg->s_as, addr, size); 477 return (0); 478 case F_SOFTUNLOCK: 479 while (npages--) { 480 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 481 if (pp) 482 page_unlock(pp); 483 addr += PAGESIZE; 484 } 485 return (0); 486 default: 487 return (FC_NOSUPPORT); 488 } 489 /*NOTREACHED*/ 490 } 491 492 static int 493 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 494 { 495 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 496 497 if (seg->s_as != &kas || size > seg->s_size || 498 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 499 panic("segkmem_setprot: bad args"); 500 501 /* 502 * If it is one of segkp pages, call segkp. 503 */ 504 if (segkp_bitmap && seg == &kvseg && 505 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 506 return (SEGOP_SETPROT(segkp, addr, size, prot)); 507 508 if (prot == 0) 509 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 510 else 511 hat_chgprot(kas.a_hat, addr, size, prot); 512 return (0); 513 } 514 515 /* 516 * This is a dummy segkmem function overloaded to call segkp 517 * when segkp is under the heap. 518 */ 519 /* ARGSUSED */ 520 static int 521 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 522 { 523 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 524 525 if (seg->s_as != &kas) 526 segkmem_badop(); 527 528 /* 529 * If it is one of segkp pages, call into segkp. 530 */ 531 if (segkp_bitmap && seg == &kvseg && 532 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 533 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 534 535 segkmem_badop(); 536 return (0); 537 } 538 539 /* 540 * This is a dummy segkmem function overloaded to call segkp 541 * when segkp is under the heap. 542 */ 543 /* ARGSUSED */ 544 static int 545 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 546 { 547 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 548 549 if (seg->s_as != &kas) 550 segkmem_badop(); 551 552 /* 553 * If it is one of segkp pages, call into segkp. 554 */ 555 if (segkp_bitmap && seg == &kvseg && 556 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 557 return (SEGOP_KLUSTER(segkp, addr, delta)); 558 559 segkmem_badop(); 560 return (0); 561 } 562 563 static void 564 segkmem_xdump_range(void *arg, void *start, size_t size) 565 { 566 struct as *as = arg; 567 caddr_t addr = start; 568 caddr_t addr_end = addr + size; 569 570 while (addr < addr_end) { 571 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 572 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 573 dump_addpage(as, addr, pfn); 574 addr += PAGESIZE; 575 dump_timeleft = dump_timeout; 576 } 577 } 578 579 static void 580 segkmem_dump_range(void *arg, void *start, size_t size) 581 { 582 caddr_t addr = start; 583 caddr_t addr_end = addr + size; 584 585 /* 586 * If we are about to start dumping the range of addresses we 587 * carved out of the kernel heap for the large page heap walk 588 * heap_lp_arena to find what segments are actually populated 589 */ 590 if (SEGKMEM_USE_LARGEPAGES && 591 addr == heap_lp_base && addr_end == heap_lp_end && 592 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 593 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 594 segkmem_xdump_range, arg); 595 } else { 596 segkmem_xdump_range(arg, start, size); 597 } 598 } 599 600 static void 601 segkmem_dump(struct seg *seg) 602 { 603 /* 604 * The kernel's heap_arena (represented by kvseg) is a very large 605 * VA space, most of which is typically unused. To speed up dumping 606 * we use vmem_walk() to quickly find the pieces of heap_arena that 607 * are actually in use. We do the same for heap32_arena and 608 * heap_core. 609 * 610 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 611 * may ultimately need to allocate memory. Reentrant walks are 612 * necessarily imperfect snapshots. The kernel heap continues 613 * to change during a live crash dump, for example. For a normal 614 * crash dump, however, we know that there won't be any other threads 615 * messing with the heap. Therefore, at worst, we may fail to dump 616 * the pages that get allocated by the act of dumping; but we will 617 * always dump every page that was allocated when the walk began. 618 * 619 * The other segkmem segments are dense (fully populated), so there's 620 * no need to use this technique when dumping them. 621 * 622 * Note: when adding special dump handling for any new sparsely- 623 * populated segments, be sure to add similar handling to the ::kgrep 624 * code in mdb. 625 */ 626 if (seg == &kvseg) { 627 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 628 segkmem_dump_range, seg->s_as); 629 #ifndef __sparc 630 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 631 segkmem_dump_range, seg->s_as); 632 #endif 633 } else if (seg == &kvseg_core) { 634 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 635 segkmem_dump_range, seg->s_as); 636 } else if (seg == &kvseg32) { 637 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 638 segkmem_dump_range, seg->s_as); 639 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 640 segkmem_dump_range, seg->s_as); 641 } else if (seg == &kzioseg) { 642 /* 643 * We don't want to dump pages attached to kzioseg since they 644 * contain file data from ZFS. If this page's segment is 645 * kzioseg return instead of writing it to the dump device. 646 */ 647 return; 648 } else { 649 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 650 } 651 } 652 653 /* 654 * lock/unlock kmem pages over a given range [addr, addr+len). 655 * Returns a shadow list of pages in ppp. If there are holes 656 * in the range (e.g. some of the kernel mappings do not have 657 * underlying page_ts) returns ENOTSUP so that as_pagelock() 658 * will handle the range via as_fault(F_SOFTLOCK). 659 */ 660 /*ARGSUSED*/ 661 static int 662 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 663 page_t ***ppp, enum lock_type type, enum seg_rw rw) 664 { 665 page_t **pplist, *pp; 666 pgcnt_t npages; 667 spgcnt_t pg; 668 size_t nb; 669 struct vnode *vp = seg->s_data; 670 671 ASSERT(ppp != NULL); 672 673 /* 674 * If it is one of segkp pages, call into segkp. 675 */ 676 if (segkp_bitmap && seg == &kvseg && 677 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 678 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw)); 679 680 npages = btopr(len); 681 nb = sizeof (page_t *) * npages; 682 683 if (type == L_PAGEUNLOCK) { 684 pplist = *ppp; 685 ASSERT(pplist != NULL); 686 687 for (pg = 0; pg < npages; pg++) { 688 pp = pplist[pg]; 689 page_unlock(pp); 690 } 691 kmem_free(pplist, nb); 692 return (0); 693 } 694 695 ASSERT(type == L_PAGELOCK); 696 697 pplist = kmem_alloc(nb, KM_NOSLEEP); 698 if (pplist == NULL) { 699 *ppp = NULL; 700 return (ENOTSUP); /* take the slow path */ 701 } 702 703 for (pg = 0; pg < npages; pg++) { 704 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 705 if (pp == NULL) { 706 while (--pg >= 0) 707 page_unlock(pplist[pg]); 708 kmem_free(pplist, nb); 709 *ppp = NULL; 710 return (ENOTSUP); 711 } 712 pplist[pg] = pp; 713 addr += PAGESIZE; 714 } 715 716 *ppp = pplist; 717 return (0); 718 } 719 720 /* 721 * This is a dummy segkmem function overloaded to call segkp 722 * when segkp is under the heap. 723 */ 724 /* ARGSUSED */ 725 static int 726 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 727 { 728 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 729 730 if (seg->s_as != &kas) 731 segkmem_badop(); 732 733 /* 734 * If it is one of segkp pages, call into segkp. 735 */ 736 if (segkp_bitmap && seg == &kvseg && 737 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 738 return (SEGOP_GETMEMID(segkp, addr, memidp)); 739 740 segkmem_badop(); 741 return (0); 742 } 743 744 /*ARGSUSED*/ 745 static lgrp_mem_policy_info_t * 746 segkmem_getpolicy(struct seg *seg, caddr_t addr) 747 { 748 return (NULL); 749 } 750 751 /*ARGSUSED*/ 752 static int 753 segkmem_capable(struct seg *seg, segcapability_t capability) 754 { 755 if (capability == S_CAPABILITY_NOMINFLT) 756 return (1); 757 return (0); 758 } 759 760 static struct seg_ops segkmem_ops = { 761 SEGKMEM_BADOP(int), /* dup */ 762 SEGKMEM_BADOP(int), /* unmap */ 763 SEGKMEM_BADOP(void), /* free */ 764 segkmem_fault, 765 SEGKMEM_BADOP(faultcode_t), /* faulta */ 766 segkmem_setprot, 767 segkmem_checkprot, 768 segkmem_kluster, 769 SEGKMEM_BADOP(size_t), /* swapout */ 770 SEGKMEM_BADOP(int), /* sync */ 771 SEGKMEM_BADOP(size_t), /* incore */ 772 SEGKMEM_BADOP(int), /* lockop */ 773 SEGKMEM_BADOP(int), /* getprot */ 774 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 775 SEGKMEM_BADOP(int), /* gettype */ 776 SEGKMEM_BADOP(int), /* getvp */ 777 SEGKMEM_BADOP(int), /* advise */ 778 segkmem_dump, 779 segkmem_pagelock, 780 SEGKMEM_BADOP(int), /* setpgsz */ 781 segkmem_getmemid, 782 segkmem_getpolicy, /* getpolicy */ 783 segkmem_capable, /* capable */ 784 }; 785 786 int 787 segkmem_zio_create(struct seg *seg) 788 { 789 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 790 seg->s_ops = &segkmem_ops; 791 seg->s_data = &zvp; 792 kas.a_size += seg->s_size; 793 return (0); 794 } 795 796 int 797 segkmem_create(struct seg *seg) 798 { 799 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 800 seg->s_ops = &segkmem_ops; 801 seg->s_data = &kvp; 802 kas.a_size += seg->s_size; 803 return (0); 804 } 805 806 /*ARGSUSED*/ 807 page_t * 808 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 809 { 810 struct seg kseg; 811 int pgflags; 812 struct vnode *vp = arg; 813 814 if (vp == NULL) 815 vp = &kvp; 816 817 kseg.s_as = &kas; 818 pgflags = PG_EXCL; 819 820 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 821 pgflags |= PG_NORELOC; 822 if ((vmflag & VM_NOSLEEP) == 0) 823 pgflags |= PG_WAIT; 824 if (vmflag & VM_PANIC) 825 pgflags |= PG_PANIC; 826 if (vmflag & VM_PUSHPAGE) 827 pgflags |= PG_PUSHPAGE; 828 829 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 830 pgflags, &kseg, addr)); 831 } 832 833 /* 834 * Allocate pages to back the virtual address range [addr, addr + size). 835 * If addr is NULL, allocate the virtual address space as well. 836 */ 837 void * 838 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 839 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 840 { 841 page_t *ppl; 842 caddr_t addr = inaddr; 843 pgcnt_t npages = btopr(size); 844 int allocflag; 845 846 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 847 return (NULL); 848 849 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 850 851 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 852 if (inaddr == NULL) 853 vmem_free(vmp, addr, size); 854 return (NULL); 855 } 856 857 ppl = page_create_func(addr, size, vmflag, pcarg); 858 if (ppl == NULL) { 859 if (inaddr == NULL) 860 vmem_free(vmp, addr, size); 861 page_unresv(npages); 862 return (NULL); 863 } 864 865 /* 866 * Under certain conditions, we need to let the HAT layer know 867 * that it cannot safely allocate memory. Allocations from 868 * the hat_memload vmem arena always need this, to prevent 869 * infinite recursion. 870 * 871 * In addition, the x86 hat cannot safely do memory 872 * allocations while in vmem_populate(), because there 873 * is no simple bound on its usage. 874 */ 875 if (vmflag & VM_MEMLOAD) 876 allocflag = HAT_NO_KALLOC; 877 #if defined(__x86) 878 else if (vmem_is_populator()) 879 allocflag = HAT_NO_KALLOC; 880 #endif 881 else 882 allocflag = 0; 883 884 while (ppl != NULL) { 885 page_t *pp = ppl; 886 page_sub(&ppl, pp); 887 ASSERT(page_iolock_assert(pp)); 888 ASSERT(PAGE_EXCL(pp)); 889 page_io_unlock(pp); 890 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 891 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 892 HAT_LOAD_LOCK | allocflag); 893 pp->p_lckcnt = 1; 894 #if defined(__x86) 895 page_downgrade(pp); 896 #else 897 if (vmflag & SEGKMEM_SHARELOCKED) 898 page_downgrade(pp); 899 else 900 page_unlock(pp); 901 #endif 902 } 903 904 return (addr); 905 } 906 907 static void * 908 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 909 { 910 void *addr; 911 segkmem_gc_list_t *gcp, **prev_gcpp; 912 913 ASSERT(vp != NULL); 914 915 if (kvseg.s_base == NULL) { 916 #ifndef __sparc 917 if (bootops->bsys_alloc == NULL) 918 halt("Memory allocation between bop_alloc() and " 919 "kmem_alloc().\n"); 920 #endif 921 922 /* 923 * There's not a lot of memory to go around during boot, 924 * so recycle it if we can. 925 */ 926 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 927 prev_gcpp = &gcp->gc_next) { 928 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 929 *prev_gcpp = gcp->gc_next; 930 return (gcp); 931 } 932 } 933 934 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 935 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 936 panic("segkmem_alloc: boot_alloc failed"); 937 return (addr); 938 } 939 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 940 segkmem_page_create, vp)); 941 } 942 943 void * 944 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 945 { 946 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 947 } 948 949 void * 950 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 951 { 952 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 953 } 954 955 /* 956 * Any changes to this routine must also be carried over to 957 * devmap_free_pages() in the seg_dev driver. This is because 958 * we currently don't have a special kernel segment for non-paged 959 * kernel memory that is exported by drivers to user space. 960 */ 961 static void 962 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp, 963 void (*func)(page_t *)) 964 { 965 page_t *pp; 966 caddr_t addr = inaddr; 967 caddr_t eaddr; 968 pgcnt_t npages = btopr(size); 969 970 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 971 ASSERT(vp != NULL); 972 973 if (kvseg.s_base == NULL) { 974 segkmem_gc_list_t *gc = inaddr; 975 gc->gc_arena = vmp; 976 gc->gc_size = size; 977 gc->gc_next = segkmem_gc_list; 978 segkmem_gc_list = gc; 979 return; 980 } 981 982 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 983 984 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 985 #if defined(__x86) 986 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 987 if (pp == NULL) 988 panic("segkmem_free: page not found"); 989 if (!page_tryupgrade(pp)) { 990 /* 991 * Some other thread has a sharelock. Wait for 992 * it to drop the lock so we can free this page. 993 */ 994 page_unlock(pp); 995 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 996 SE_EXCL); 997 } 998 #else 999 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1000 #endif 1001 if (pp == NULL) 1002 panic("segkmem_free: page not found"); 1003 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1004 pp->p_lckcnt = 0; 1005 if (func) 1006 func(pp); 1007 else 1008 page_destroy(pp, 0); 1009 } 1010 if (func == NULL) 1011 page_unresv(npages); 1012 1013 if (vmp != NULL) 1014 vmem_free(vmp, inaddr, size); 1015 1016 } 1017 1018 void 1019 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *)) 1020 { 1021 segkmem_free_vn(vmp, inaddr, size, &kvp, func); 1022 } 1023 1024 void 1025 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1026 { 1027 segkmem_free_vn(vmp, inaddr, size, &kvp, NULL); 1028 } 1029 1030 void 1031 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1032 { 1033 segkmem_free_vn(vmp, inaddr, size, &zvp, NULL); 1034 } 1035 1036 void 1037 segkmem_gc(void) 1038 { 1039 ASSERT(kvseg.s_base != NULL); 1040 while (segkmem_gc_list != NULL) { 1041 segkmem_gc_list_t *gc = segkmem_gc_list; 1042 segkmem_gc_list = gc->gc_next; 1043 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1044 } 1045 } 1046 1047 /* 1048 * Legacy entry points from here to end of file. 1049 */ 1050 void 1051 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1052 pfn_t pfn, uint_t flags) 1053 { 1054 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1055 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1056 flags | HAT_LOAD_LOCK); 1057 } 1058 1059 void 1060 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1061 { 1062 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1063 } 1064 1065 void * 1066 kmem_getpages(pgcnt_t npages, int kmflag) 1067 { 1068 return (kmem_alloc(ptob(npages), kmflag)); 1069 } 1070 1071 void 1072 kmem_freepages(void *addr, pgcnt_t npages) 1073 { 1074 kmem_free(addr, ptob(npages)); 1075 } 1076 1077 /* 1078 * segkmem_page_create_large() allocates a large page to be used for the kmem 1079 * caches. If kpr is enabled we ask for a relocatable page unless requested 1080 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1081 */ 1082 static page_t * 1083 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1084 { 1085 int pgflags; 1086 1087 pgflags = PG_EXCL; 1088 1089 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1090 pgflags |= PG_NORELOC; 1091 if (!(vmflag & VM_NOSLEEP)) 1092 pgflags |= PG_WAIT; 1093 if (vmflag & VM_PUSHPAGE) 1094 pgflags |= PG_PUSHPAGE; 1095 1096 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1097 pgflags, &kvseg, addr, arg)); 1098 } 1099 1100 /* 1101 * Allocate a large page to back the virtual address range 1102 * [addr, addr + size). If addr is NULL, allocate the virtual address 1103 * space as well. 1104 */ 1105 static void * 1106 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1107 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1108 void *pcarg) 1109 { 1110 caddr_t addr = inaddr, pa; 1111 size_t lpsize = segkmem_lpsize; 1112 pgcnt_t npages = btopr(size); 1113 pgcnt_t nbpages = btop(lpsize); 1114 pgcnt_t nlpages = size >> segkmem_lpshift; 1115 size_t ppasize = nbpages * sizeof (page_t *); 1116 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1117 int i; 1118 1119 vmflag |= VM_NOSLEEP; 1120 1121 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1122 return (NULL); 1123 } 1124 1125 /* 1126 * allocate an array we need for hat_memload_array. 1127 * we use a separate arena to avoid recursion. 1128 * we will not need this array when hat_memload_array learns pp++ 1129 */ 1130 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1131 goto fail_array_alloc; 1132 } 1133 1134 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1135 goto fail_vmem_alloc; 1136 1137 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1138 1139 /* create all the pages */ 1140 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1141 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1142 goto fail_page_create; 1143 page_list_concat(&pplist, &pp); 1144 } 1145 1146 /* at this point we have all the resource to complete the request */ 1147 while ((rootpp = pplist) != NULL) { 1148 for (i = 0; i < nbpages; i++) { 1149 ASSERT(pplist != NULL); 1150 pp = pplist; 1151 page_sub(&pplist, pp); 1152 ASSERT(page_iolock_assert(pp)); 1153 page_io_unlock(pp); 1154 ppa[i] = pp; 1155 } 1156 /* 1157 * Load the locked entry. It's OK to preload the entry into the 1158 * TSB since we now support large mappings in the kernel TSB. 1159 */ 1160 hat_memload_array(kas.a_hat, 1161 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1162 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1163 HAT_LOAD_LOCK); 1164 1165 for (--i; i >= 0; --i) { 1166 ppa[i]->p_lckcnt = 1; 1167 page_unlock(ppa[i]); 1168 } 1169 } 1170 1171 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1172 return (addr); 1173 1174 fail_page_create: 1175 while ((rootpp = pplist) != NULL) { 1176 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1177 ASSERT(pp != NULL); 1178 page_sub(&pplist, pp); 1179 ASSERT(page_iolock_assert(pp)); 1180 page_io_unlock(pp); 1181 } 1182 page_destroy_pages(rootpp); 1183 } 1184 1185 if (inaddr == NULL) 1186 vmem_free(vmp, addr, size); 1187 1188 fail_vmem_alloc: 1189 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1190 1191 fail_array_alloc: 1192 page_unresv(npages); 1193 1194 return (NULL); 1195 } 1196 1197 static void 1198 segkmem_free_one_lp(caddr_t addr, size_t size) 1199 { 1200 page_t *pp, *rootpp = NULL; 1201 pgcnt_t pgs_left = btopr(size); 1202 1203 ASSERT(size == segkmem_lpsize); 1204 1205 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1206 1207 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1208 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1209 if (pp == NULL) 1210 panic("segkmem_free_one_lp: page not found"); 1211 ASSERT(PAGE_EXCL(pp)); 1212 pp->p_lckcnt = 0; 1213 if (rootpp == NULL) 1214 rootpp = pp; 1215 } 1216 ASSERT(rootpp != NULL); 1217 page_destroy_pages(rootpp); 1218 1219 /* page_unresv() is done by the caller */ 1220 } 1221 1222 /* 1223 * This function is called to import new spans into the vmem arenas like 1224 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1225 * spans from large page arena - kmem_lp_arena. In order to do this it might 1226 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1227 * it was not able to satisfy the upgraded request it then calls regular 1228 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1229 */ 1230 /*ARGSUSED*/ 1231 void * 1232 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 1233 { 1234 size_t size; 1235 kthread_t *t = curthread; 1236 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1237 1238 ASSERT(sizep != NULL); 1239 1240 size = *sizep; 1241 1242 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1243 !(vmflag & SEGKMEM_SHARELOCKED)) { 1244 1245 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1246 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1247 void *addr = NULL; 1248 ulong_t *lpthrtp = &lpcb->lp_throttle; 1249 ulong_t lpthrt = *lpthrtp; 1250 int dowakeup = 0; 1251 int doalloc = 1; 1252 1253 ASSERT(kmem_lp_arena != NULL); 1254 ASSERT(asize >= size); 1255 1256 if (lpthrt != 0) { 1257 /* try to update the throttle value */ 1258 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1259 if (lpthrt >= segkmem_lpthrottle_max) { 1260 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1261 segkmem_lpthrottle_max / 4); 1262 } 1263 1264 /* 1265 * when we get above throttle start do an exponential 1266 * backoff at trying large pages and reaping 1267 */ 1268 if (lpthrt > segkmem_lpthrottle_start && 1269 (lpthrt & (lpthrt - 1))) { 1270 lpcb->allocs_throttled++; 1271 lpthrt--; 1272 if ((lpthrt & (lpthrt - 1)) == 0) 1273 kmem_reap(); 1274 return (segkmem_alloc(vmp, size, vmflag)); 1275 } 1276 } 1277 1278 if (!(vmflag & VM_NOSLEEP) && 1279 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1280 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1281 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1282 1283 /* 1284 * we are low on free memory in kmem_lp_arena 1285 * we let only one guy to allocate heap_lp 1286 * quantum size chunk that everybody is going to 1287 * share 1288 */ 1289 mutex_enter(&lpcb->lp_lock); 1290 1291 if (lpcb->lp_wait) { 1292 1293 /* we are not the first one - wait */ 1294 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1295 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1296 kmemlp_qnt) { 1297 doalloc = 0; 1298 } 1299 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1300 kmemlp_qnt) { 1301 1302 /* 1303 * we are the first one, make sure we import 1304 * a large page 1305 */ 1306 if (asize == kmemlp_qnt) 1307 asize += kmemlp_qnt; 1308 dowakeup = 1; 1309 lpcb->lp_wait = 1; 1310 } 1311 1312 mutex_exit(&lpcb->lp_lock); 1313 } 1314 1315 /* 1316 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1317 * large pages are not available. In that case this allocation 1318 * attempt will fail and we will retry allocation with small 1319 * pages. We also do not want to panic if this allocation fails 1320 * because we are going to retry. 1321 */ 1322 if (doalloc) { 1323 addr = vmem_alloc(kmem_lp_arena, asize, 1324 (vmflag | VM_ABORT) & ~VM_PANIC); 1325 1326 if (dowakeup) { 1327 mutex_enter(&lpcb->lp_lock); 1328 ASSERT(lpcb->lp_wait != 0); 1329 lpcb->lp_wait = 0; 1330 cv_broadcast(&lpcb->lp_cv); 1331 mutex_exit(&lpcb->lp_lock); 1332 } 1333 } 1334 1335 if (addr != NULL) { 1336 *sizep = asize; 1337 *lpthrtp = 0; 1338 return (addr); 1339 } 1340 1341 if (vmflag & VM_NOSLEEP) 1342 lpcb->nosleep_allocs_failed++; 1343 else 1344 lpcb->sleep_allocs_failed++; 1345 lpcb->alloc_bytes_failed += size; 1346 1347 /* if large page throttling is not started yet do it */ 1348 if (segkmem_use_lpthrottle && lpthrt == 0) { 1349 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1350 } 1351 } 1352 return (segkmem_alloc(vmp, size, vmflag)); 1353 } 1354 1355 void 1356 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1357 { 1358 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1359 segkmem_free(vmp, inaddr, size); 1360 } else { 1361 vmem_free(kmem_lp_arena, inaddr, size); 1362 } 1363 } 1364 1365 /* 1366 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1367 * into kmem_lp arena. In the process it maps the imported segment with 1368 * large pages 1369 */ 1370 static void * 1371 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1372 { 1373 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1374 void *addr; 1375 1376 ASSERT(size != 0); 1377 ASSERT(vmp == heap_lp_arena); 1378 1379 /* do not allow large page heap grow beyound limits */ 1380 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1381 lpcb->allocs_limited++; 1382 return (NULL); 1383 } 1384 1385 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1386 segkmem_page_create_large, NULL); 1387 return (addr); 1388 } 1389 1390 /* 1391 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1392 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1393 * large pages used to map it. 1394 */ 1395 static void 1396 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1397 { 1398 pgcnt_t nlpages = size >> segkmem_lpshift; 1399 size_t lpsize = segkmem_lpsize; 1400 caddr_t addr = inaddr; 1401 pgcnt_t npages = btopr(size); 1402 int i; 1403 1404 ASSERT(vmp == heap_lp_arena); 1405 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1406 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1407 1408 for (i = 0; i < nlpages; i++) { 1409 segkmem_free_one_lp(addr, lpsize); 1410 addr += lpsize; 1411 } 1412 1413 page_unresv(npages); 1414 1415 vmem_free(vmp, inaddr, size); 1416 } 1417 1418 /* 1419 * This function is called at system boot time by kmem_init right after 1420 * /etc/system file has been read. It checks based on hardware configuration 1421 * and /etc/system settings if system is going to use large pages. The 1422 * initialiazation necessary to actually start using large pages 1423 * happens later in the process after segkmem_heap_lp_init() is called. 1424 */ 1425 int 1426 segkmem_lpsetup() 1427 { 1428 int use_large_pages = 0; 1429 1430 #ifdef __sparc 1431 1432 size_t memtotal = physmem * PAGESIZE; 1433 1434 if (heap_lp_base == NULL) { 1435 segkmem_lpsize = PAGESIZE; 1436 return (0); 1437 } 1438 1439 /* get a platform dependent value of large page size for kernel heap */ 1440 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1441 1442 if (segkmem_lpsize <= PAGESIZE) { 1443 /* 1444 * put virtual space reserved for the large page kernel 1445 * back to the regular heap 1446 */ 1447 vmem_xfree(heap_arena, heap_lp_base, 1448 heap_lp_end - heap_lp_base); 1449 heap_lp_base = NULL; 1450 heap_lp_end = NULL; 1451 segkmem_lpsize = PAGESIZE; 1452 return (0); 1453 } 1454 1455 /* set heap_lp quantum if necessary */ 1456 if (segkmem_heaplp_quantum == 0 || 1457 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1458 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1459 segkmem_heaplp_quantum = segkmem_lpsize; 1460 } 1461 1462 /* set kmem_lp quantum if necessary */ 1463 if (segkmem_kmemlp_quantum == 0 || 1464 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1465 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1466 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1467 } 1468 1469 /* set total amount of memory allowed for large page kernel heap */ 1470 if (segkmem_kmemlp_max == 0) { 1471 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1472 segkmem_kmemlp_pcnt = 12; 1473 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1474 } 1475 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1476 segkmem_heaplp_quantum); 1477 1478 /* fix lp kmem preallocation request if necesssary */ 1479 if (segkmem_kmemlp_min) { 1480 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1481 segkmem_heaplp_quantum); 1482 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1483 segkmem_kmemlp_min = segkmem_kmemlp_max; 1484 } 1485 1486 use_large_pages = 1; 1487 segkmem_lpszc = page_szc(segkmem_lpsize); 1488 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1489 1490 #endif 1491 return (use_large_pages); 1492 } 1493 1494 void 1495 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1496 { 1497 ASSERT(zio_mem_base != NULL); 1498 ASSERT(zio_mem_size != 0); 1499 1500 zio_arena = vmem_create("zfs_file_data", zio_mem_base, zio_mem_size, 1501 PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1502 1503 zio_alloc_arena = vmem_create("zfs_file_data_buf", NULL, 0, PAGESIZE, 1504 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1505 1506 ASSERT(zio_arena != NULL); 1507 ASSERT(zio_alloc_arena != NULL); 1508 } 1509 1510 #ifdef __sparc 1511 1512 1513 static void * 1514 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1515 { 1516 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1517 void *addr; 1518 1519 if (ppaquantum <= PAGESIZE) 1520 return (segkmem_alloc(vmp, size, vmflag)); 1521 1522 ASSERT((size & (ppaquantum - 1)) == 0); 1523 1524 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1525 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1526 segkmem_page_create, NULL) == NULL) { 1527 vmem_xfree(vmp, addr, size); 1528 addr = NULL; 1529 } 1530 1531 return (addr); 1532 } 1533 1534 static void 1535 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1536 { 1537 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1538 1539 ASSERT(addr != NULL); 1540 1541 if (ppaquantum <= PAGESIZE) { 1542 segkmem_free(vmp, addr, size); 1543 } else { 1544 segkmem_free(NULL, addr, size); 1545 vmem_xfree(vmp, addr, size); 1546 } 1547 } 1548 1549 void 1550 segkmem_heap_lp_init() 1551 { 1552 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1553 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1554 size_t lpsize = segkmem_lpsize; 1555 size_t ppaquantum; 1556 void *addr; 1557 1558 if (segkmem_lpsize <= PAGESIZE) { 1559 ASSERT(heap_lp_base == NULL); 1560 ASSERT(heap_lp_end == NULL); 1561 return; 1562 } 1563 1564 ASSERT(segkmem_heaplp_quantum >= lpsize); 1565 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1566 ASSERT(lpcb->lp_uselp == 0); 1567 ASSERT(heap_lp_base != NULL); 1568 ASSERT(heap_lp_end != NULL); 1569 ASSERT(heap_lp_base < heap_lp_end); 1570 ASSERT(heap_lp_arena == NULL); 1571 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1572 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1573 1574 /* create large page heap arena */ 1575 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1576 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1577 1578 ASSERT(heap_lp_arena != NULL); 1579 1580 /* This arena caches memory already mapped by large pages */ 1581 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1582 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1583 1584 ASSERT(kmem_lp_arena != NULL); 1585 1586 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1587 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1588 1589 /* 1590 * this arena is used for the array of page_t pointers necessary 1591 * to call hat_mem_load_array 1592 */ 1593 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1594 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1595 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1596 VM_SLEEP); 1597 1598 ASSERT(segkmem_ppa_arena != NULL); 1599 1600 /* prealloacate some memory for the lp kernel heap */ 1601 if (segkmem_kmemlp_min) { 1602 1603 ASSERT(P2PHASE(segkmem_kmemlp_min, 1604 segkmem_heaplp_quantum) == 0); 1605 1606 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1607 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1608 1609 addr = vmem_add(kmem_lp_arena, addr, 1610 segkmem_kmemlp_min, VM_SLEEP); 1611 ASSERT(addr != NULL); 1612 } 1613 } 1614 1615 lpcb->lp_uselp = 1; 1616 } 1617 1618 #endif 1619