1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Page Retire - Big Theory Statement. 31 * 32 * This file handles removing sections of faulty memory from use when the 33 * user land FMA Diagnosis Engine requests that a page be removed or when 34 * a CE or UE is detected by the hardware. 35 * 36 * In the bad old days, the kernel side of Page Retire did a lot of the work 37 * on its own. Now, with the DE keeping track of errors, the kernel side is 38 * rather simple minded on most platforms. 39 * 40 * Errors are all reflected to the DE, and after digesting the error and 41 * looking at all previously reported errors, the DE decides what should 42 * be done about the current error. If the DE wants a particular page to 43 * be retired, then the kernel page retire code is invoked via an ioctl. 44 * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling 45 * page retire to handle the error. Since page retire is just a simple 46 * mechanism it doesn't need to differentiate between the different callers. 47 * 48 * The p_toxic field in the page_t is used to indicate which errors have 49 * occurred and what action has been taken on a given page. Because errors are 50 * reported without regard to the locked state of a page, no locks are used 51 * to SET the error bits in p_toxic. However, in order to clear the error 52 * bits, the page_t must be held exclusively locked. 53 * 54 * When page_retire() is called, it must be able to acquire locks, sleep, etc. 55 * It must not be called from high-level interrupt context. 56 * 57 * Depending on how the requested page is being used at the time of the retire 58 * request (and on the availability of sufficient system resources), the page 59 * may be retired immediately, or just marked for retirement later. For 60 * example, locked pages are marked, while free pages are retired. Multiple 61 * requests may be made to retire the same page, although there is no need 62 * to: once the p_toxic flags are set, the page will be retired as soon as it 63 * can be exclusively locked. 64 * 65 * The retire mechanism is driven centrally out of page_unlock(). To expedite 66 * the retirement of pages, further requests for SE_SHARED locks are denied 67 * as long as a page retirement is pending. In addition, as long as pages are 68 * pending retirement a background thread runs periodically trying to retire 69 * those pages. Pages which could not be retired while the system is running 70 * are scrubbed prior to rebooting to avoid latent errors on the next boot. 71 * 72 * Single CE pages and UE pages without persistent errors are scrubbed and 73 * returned to service. Recidivist pages, as well as FMA-directed requests 74 * for retirement, result in the page being taken out of service. Once the 75 * decision is made to take a page out of service, the page is cleared, hashed 76 * onto the retired_pages vnode, marked as retired, and it is unlocked. No 77 * other requesters (except for unretire) are allowed to lock retired pages. 78 * 79 * The public routines return (sadly) 0 if they worked and a non-zero error 80 * value if something went wrong. This is done for the ioctl side of the 81 * world to allow errors to be reflected all the way out to user land. The 82 * non-zero values are explained in comments atop each function. 83 */ 84 85 /* 86 * Things to fix: 87 * 88 * 1. Cleanup SE_EWANTED. Since we're aggressive about trying to retire 89 * pages, we can use page_retire_pp() to replace SE_EWANTED and all 90 * the special delete_memory_thread() code just goes away. 91 * 92 * 2. Trying to retire non-relocatable kvp pages may result in a 93 * quagmire. This is because seg_kmem() no longer keeps its pages locked, 94 * and calls page_lookup() in the free path; since kvp pages are modified 95 * and don't have a usable backing store, page_retire() can't do anything 96 * with them, and we'll keep denying the lock to seg_kmem_free() in a 97 * vicious cycle. To prevent that, we don't deny locks to kvp pages, and 98 * hence only call page_retire_pp() from page_unlock() in the free path. 99 * Since most kernel pages are indefinitely held anyway, and don't 100 * participate in I/O, this is of little consequence. 101 * 102 * 3. Low memory situations will be interesting. If we don't have 103 * enough memory for page_relocate() to succeed, we won't be able to 104 * retire dirty pages; nobody will be able to push them out to disk 105 * either, since we aggressively deny the page lock. We could change 106 * fsflush so it can recognize this situation, grab the lock, and push 107 * the page out, where we'll catch it in the free path and retire it. 108 * 109 * 4. Beware of places that have code like this in them: 110 * 111 * if (! page_tryupgrade(pp)) { 112 * page_unlock(pp); 113 * while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) { 114 * / *NOTHING* / 115 * } 116 * } 117 * page_free(pp); 118 * 119 * The problem is that pp can change identity right after the 120 * page_unlock() call. In particular, page_retire() can step in 121 * there, change pp's identity, and hash pp onto the retired_vnode. 122 * 123 * Of course, other functions besides page_retire() can have the 124 * same effect. A kmem reader can waltz by, set up a mapping to the 125 * page, and then unlock the page. Page_free() will then go castors 126 * up. So if anybody is doing this, it's already a bug. 127 * 128 * 5. mdboot()'s call into page_retire_hunt() should probably be 129 * moved lower. Where the call is made now, we can get into trouble 130 * by scrubbing a kernel page that is then accessed later. 131 */ 132 133 #include <sys/types.h> 134 #include <sys/param.h> 135 #include <sys/systm.h> 136 #include <sys/mman.h> 137 #include <sys/vnode.h> 138 #include <sys/cmn_err.h> 139 #include <sys/ksynch.h> 140 #include <sys/thread.h> 141 #include <sys/disp.h> 142 #include <sys/ontrap.h> 143 #include <sys/vmsystm.h> 144 #include <sys/mem_config.h> 145 #include <sys/atomic.h> 146 #include <sys/callb.h> 147 #include <vm/page.h> 148 #include <vm/vm_dep.h> 149 #include <vm/as.h> 150 #include <vm/hat.h> 151 152 /* 153 * vnode for all pages which are retired from the VM system; 154 */ 155 vnode_t *retired_pages; 156 157 /* 158 * Background thread that wakes up periodically to try to retire pending 159 * pages. This prevents threads from becoming blocked indefinitely in 160 * page_lookup() or some other routine should the page(s) they are waiting 161 * on become eligible for social security. 162 */ 163 static void page_retire_thread(void); 164 static kthread_t *pr_thread_id; 165 static kcondvar_t pr_cv; 166 static kmutex_t pr_thread_mutex; 167 static clock_t pr_thread_shortwait; 168 static clock_t pr_thread_longwait; 169 170 /* 171 * Make a list of all of the pages that have been marked for retirement 172 * but are not yet retired. At system shutdown, we will scrub all of the 173 * pages in the list in case there are outstanding UEs. Then, we 174 * cross-check this list against the number of pages that are yet to be 175 * retired, and if we find inconsistencies, we scan every page_t in the 176 * whole system looking for any pages that need to be scrubbed for UEs. 177 * The background thread also uses this queue to determine which pages 178 * it should keep trying to retire. 179 */ 180 #ifdef DEBUG 181 #define PR_PENDING_QMAX 32 182 #else /* DEBUG */ 183 #define PR_PENDING_QMAX 256 184 #endif /* DEBUG */ 185 page_t *pr_pending_q[PR_PENDING_QMAX]; 186 kmutex_t pr_q_mutex; 187 188 /* 189 * Page retire global kstats 190 */ 191 struct page_retire_kstat { 192 kstat_named_t pr_retired; 193 kstat_named_t pr_requested; 194 kstat_named_t pr_requested_free; 195 kstat_named_t pr_enqueue_fail; 196 kstat_named_t pr_dequeue_fail; 197 kstat_named_t pr_pending; 198 kstat_named_t pr_failed; 199 kstat_named_t pr_failed_kernel; 200 kstat_named_t pr_limit; 201 kstat_named_t pr_limit_exceeded; 202 kstat_named_t pr_fma; 203 kstat_named_t pr_mce; 204 kstat_named_t pr_ue; 205 kstat_named_t pr_ue_cleared_retire; 206 kstat_named_t pr_ue_cleared_free; 207 kstat_named_t pr_ue_persistent; 208 kstat_named_t pr_unretired; 209 }; 210 211 static struct page_retire_kstat page_retire_kstat = { 212 { "pages_retired", KSTAT_DATA_UINT64}, 213 { "pages_retire_request", KSTAT_DATA_UINT64}, 214 { "pages_retire_request_free", KSTAT_DATA_UINT64}, 215 { "pages_notenqueued", KSTAT_DATA_UINT64}, 216 { "pages_notdequeued", KSTAT_DATA_UINT64}, 217 { "pages_pending", KSTAT_DATA_UINT64}, 218 { "pages_deferred", KSTAT_DATA_UINT64}, 219 { "pages_deferred_kernel", KSTAT_DATA_UINT64}, 220 { "pages_limit", KSTAT_DATA_UINT64}, 221 { "pages_limit_exceeded", KSTAT_DATA_UINT64}, 222 { "pages_fma", KSTAT_DATA_UINT64}, 223 { "pages_multiple_ce", KSTAT_DATA_UINT64}, 224 { "pages_ue", KSTAT_DATA_UINT64}, 225 { "pages_ue_cleared_retired", KSTAT_DATA_UINT64}, 226 { "pages_ue_cleared_freed", KSTAT_DATA_UINT64}, 227 { "pages_ue_persistent", KSTAT_DATA_UINT64}, 228 { "pages_unretired", KSTAT_DATA_UINT64}, 229 }; 230 231 static kstat_t *page_retire_ksp = NULL; 232 233 #define PR_INCR_KSTAT(stat) \ 234 atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1) 235 #define PR_DECR_KSTAT(stat) \ 236 atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1) 237 238 #define PR_KSTAT_RETIRED_CE (page_retire_kstat.pr_mce.value.ui64) 239 #define PR_KSTAT_RETIRED_FMA (page_retire_kstat.pr_fma.value.ui64) 240 #define PR_KSTAT_RETIRED_NOTUE (PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA) 241 #define PR_KSTAT_PENDING (page_retire_kstat.pr_pending.value.ui64) 242 #define PR_KSTAT_EQFAIL (page_retire_kstat.pr_enqueue_fail.value.ui64) 243 #define PR_KSTAT_DQFAIL (page_retire_kstat.pr_dequeue_fail.value.ui64) 244 245 /* 246 * Limit the number of multiple CE page retires. 247 * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in 248 * basis points, where 100 basis points equals one percent. 249 */ 250 #define MCE_BPT 10 251 uint64_t max_pages_retired_bps = MCE_BPT; 252 #define PAGE_RETIRE_LIMIT ((physmem * max_pages_retired_bps) / 10000) 253 254 /* 255 * Control over the verbosity of page retirement. 256 * 257 * When set to zero (the default), no messages will be printed. 258 * When set to one, summary messages will be printed. 259 * When set > one, all messages will be printed. 260 * 261 * A value of one will trigger detailed messages for retirement operations, 262 * and is intended as a platform tunable for processors where FMA's DE does 263 * not run (e.g., spitfire). Values > one are intended for debugging only. 264 */ 265 int page_retire_messages = 0; 266 267 /* 268 * Control whether or not we return scrubbed UE pages to service. 269 * By default we do not since FMA wants to run its diagnostics first 270 * and then ask us to unretire the page if it passes. Non-FMA platforms 271 * may set this to zero so we will only retire recidivist pages. It should 272 * not be changed by the user. 273 */ 274 int page_retire_first_ue = 1; 275 276 /* 277 * Master enable for page retire. This prevents a CE or UE early in boot 278 * from trying to retire a page before page_retire_init() has finished 279 * setting things up. This is internal only and is not a tunable! 280 */ 281 static int pr_enable = 0; 282 283 extern struct vnode kvp; 284 285 #ifdef DEBUG 286 struct page_retire_debug { 287 int prd_dup; 288 int prd_noaction; 289 int prd_queued; 290 int prd_notqueued; 291 int prd_dequeue; 292 int prd_top; 293 int prd_locked; 294 int prd_reloc; 295 int prd_relocfail; 296 int prd_mod; 297 int prd_mod_late; 298 int prd_kern; 299 int prd_free; 300 int prd_noreclaim; 301 int prd_hashout; 302 int prd_fma; 303 int prd_uescrubbed; 304 int prd_uenotscrubbed; 305 int prd_mce; 306 int prd_prlocked; 307 int prd_prnotlocked; 308 int prd_prretired; 309 int prd_ulocked; 310 int prd_unotretired; 311 int prd_udestroy; 312 int prd_uhashout; 313 int prd_uunretired; 314 int prd_unotlocked; 315 int prd_checkhit; 316 int prd_checkmiss; 317 int prd_tctop; 318 int prd_tclocked; 319 int prd_hunt; 320 int prd_dohunt; 321 int prd_earlyhunt; 322 int prd_latehunt; 323 int prd_nofreedemote; 324 int prd_nodemote; 325 int prd_demoted; 326 } pr_debug; 327 328 #define PR_DEBUG(foo) ((pr_debug.foo)++) 329 330 /* 331 * A type histogram. We record the incidence of the various toxic 332 * flag combinations along with the interesting page attributes. The 333 * goal is to get as many combinations as we can while driving all 334 * pr_debug values nonzero (indicating we've exercised all possible 335 * code paths across all possible page types). Not all combinations 336 * will make sense -- e.g. PRT_MOD|PRT_KERNEL. 337 * 338 * pr_type offset bit encoding (when examining with a debugger): 339 * 340 * PRT_NAMED - 0x4 341 * PRT_KERNEL - 0x8 342 * PRT_FREE - 0x10 343 * PRT_MOD - 0x20 344 * PRT_FMA - 0x0 345 * PRT_MCE - 0x40 346 * PRT_UE - 0x80 347 */ 348 349 #define PRT_NAMED 0x01 350 #define PRT_KERNEL 0x02 351 #define PRT_FREE 0x04 352 #define PRT_MOD 0x08 353 #define PRT_FMA 0x00 /* yes, this is not a mistake */ 354 #define PRT_MCE 0x10 355 #define PRT_UE 0x20 356 #define PRT_ALL 0x3F 357 358 int pr_types[PRT_ALL+1]; 359 360 #define PR_TYPES(pp) { \ 361 int whichtype = 0; \ 362 if (pp->p_vnode) \ 363 whichtype |= PRT_NAMED; \ 364 if (PP_ISKVP(pp)) \ 365 whichtype |= PRT_KERNEL; \ 366 if (PP_ISFREE(pp)) \ 367 whichtype |= PRT_FREE; \ 368 if (hat_ismod(pp)) \ 369 whichtype |= PRT_MOD; \ 370 if (pp->p_toxic & PR_UE) \ 371 whichtype |= PRT_UE; \ 372 if (pp->p_toxic & PR_MCE) \ 373 whichtype |= PRT_MCE; \ 374 pr_types[whichtype]++; \ 375 } 376 377 int recl_calls; 378 int recl_mtbf = 3; 379 int reloc_calls; 380 int reloc_mtbf = 7; 381 int pr_calls; 382 int pr_mtbf = 15; 383 384 #define MTBF(v, f) (((++(v)) & (f)) != (f)) 385 386 #else /* DEBUG */ 387 388 #define PR_DEBUG(foo) /* nothing */ 389 #define PR_TYPES(foo) /* nothing */ 390 #define MTBF(v, f) (1) 391 392 #endif /* DEBUG */ 393 394 /* 395 * page_retire_done() - completion processing 396 * 397 * Used by the page_retire code for common completion processing. 398 * It keeps track of how many times a given result has happened, 399 * and writes out an occasional message. 400 * 401 * May be called with a NULL pp (PRD_INVALID_PA case). 402 */ 403 #define PRD_INVALID_KEY -1 404 #define PRD_SUCCESS 0 405 #define PRD_PENDING 1 406 #define PRD_FAILED 2 407 #define PRD_DUPLICATE 3 408 #define PRD_INVALID_PA 4 409 #define PRD_LIMIT 5 410 #define PRD_UE_SCRUBBED 6 411 #define PRD_UNR_SUCCESS 7 412 #define PRD_UNR_CANTLOCK 8 413 #define PRD_UNR_NOT 9 414 415 typedef struct page_retire_op { 416 int pr_key; /* one of the PRD_* defines from above */ 417 int pr_count; /* How many times this has happened */ 418 int pr_retval; /* return value */ 419 int pr_msglvl; /* message level - when to print */ 420 char *pr_message; /* Cryptic message for field service */ 421 } page_retire_op_t; 422 423 static page_retire_op_t page_retire_ops[] = { 424 /* key count retval msglvl message */ 425 {PRD_SUCCESS, 0, 0, 1, 426 "Page 0x%08x.%08x removed from service"}, 427 {PRD_PENDING, 0, EAGAIN, 2, 428 "Page 0x%08x.%08x will be retired on free"}, 429 {PRD_FAILED, 0, EAGAIN, 0, NULL}, 430 {PRD_DUPLICATE, 0, EBUSY, 2, 431 "Page 0x%08x.%08x already retired"}, 432 {PRD_INVALID_PA, 0, EINVAL, 2, 433 "PA 0x%08x.%08x is not a relocatable page"}, 434 {PRD_LIMIT, 0, 0, 1, 435 "Page 0x%08x.%08x not retired due to limit exceeded"}, 436 {PRD_UE_SCRUBBED, 0, 0, 1, 437 "Previously reported error on page 0x%08x.%08x cleared"}, 438 {PRD_UNR_SUCCESS, 0, 0, 1, 439 "Page 0x%08x.%08x returned to service"}, 440 {PRD_UNR_CANTLOCK, 0, EAGAIN, 2, 441 "Page 0x%08x.%08x could not be unretired"}, 442 {PRD_UNR_NOT, 0, EBADF, 2, 443 "Page 0x%08x.%08x is not retired"}, 444 {PRD_INVALID_KEY, 0, 0, 0, NULL} /* MUST BE LAST! */ 445 }; 446 447 /* 448 * print a message if page_retire_messages is true. 449 */ 450 #define PR_MESSAGE(debuglvl, msglvl, msg, pa) \ 451 { \ 452 uint64_t p = (uint64_t)pa; \ 453 if (page_retire_messages >= msglvl && msg != NULL) { \ 454 cmn_err(debuglvl, msg, \ 455 (uint32_t)(p >> 32), (uint32_t)p); \ 456 } \ 457 } 458 459 /* 460 * Note that multiple bits may be set in a single settoxic operation. 461 * May be called without the page locked. 462 */ 463 void 464 page_settoxic(page_t *pp, uchar_t bits) 465 { 466 atomic_or_8(&pp->p_toxic, bits); 467 } 468 469 /* 470 * Note that multiple bits may cleared in a single clrtoxic operation. 471 * Must be called with the page exclusively locked. 472 */ 473 void 474 page_clrtoxic(page_t *pp, uchar_t bits) 475 { 476 ASSERT(PAGE_EXCL(pp)); 477 atomic_and_8(&pp->p_toxic, ~bits); 478 } 479 480 /* 481 * Prints any page retire messages to the user, and decides what 482 * error code is appropriate for the condition reported. 483 */ 484 static int 485 page_retire_done(page_t *pp, int code) 486 { 487 page_retire_op_t *prop; 488 uint64_t pa = 0; 489 int i; 490 491 if (pp != NULL) { 492 pa = mmu_ptob(pp->p_pagenum); 493 } 494 495 prop = NULL; 496 for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) { 497 if (page_retire_ops[i].pr_key == code) { 498 prop = &page_retire_ops[i]; 499 break; 500 } 501 } 502 503 #ifdef DEBUG 504 if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) { 505 cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code); 506 } 507 #endif 508 509 ASSERT(prop->pr_key == code); 510 511 prop->pr_count++; 512 513 PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa); 514 if (pp != NULL) { 515 page_settoxic(pp, PR_MSG); 516 } 517 518 return (prop->pr_retval); 519 } 520 521 /* 522 * On a reboot, our friend mdboot() wants to clear up any PP_PR_REQ() pages 523 * that we were not able to retire. On large machines, walking the complete 524 * page_t array and looking at every page_t takes too long. So, as a page is 525 * marked toxic, we track it using a list that can be processed at reboot 526 * time. page_retire_enqueue() will do its best to try to avoid duplicate 527 * entries, but if we get too many errors at once the queue can overflow, 528 * in which case we will end up walking every page_t as a last resort. 529 * The background thread also makes use of this queue to find which pages 530 * are pending retirement. 531 */ 532 static void 533 page_retire_enqueue(page_t *pp) 534 { 535 int nslot = -1; 536 int i; 537 538 mutex_enter(&pr_q_mutex); 539 540 /* 541 * Check to make sure retire hasn't already dequeued it. 542 * In the meantime if the page was cleaned up, no need 543 * to enqueue it. 544 */ 545 if (PP_RETIRED(pp) || pp->p_toxic == 0) { 546 mutex_exit(&pr_q_mutex); 547 PR_DEBUG(prd_noaction); 548 return; 549 } 550 551 for (i = 0; i < PR_PENDING_QMAX; i++) { 552 if (pr_pending_q[i] == pp) { 553 mutex_exit(&pr_q_mutex); 554 PR_DEBUG(prd_dup); 555 return; 556 } else if (nslot == -1 && pr_pending_q[i] == NULL) { 557 nslot = i; 558 } 559 } 560 561 PR_INCR_KSTAT(pr_pending); 562 563 if (nslot != -1) { 564 pr_pending_q[nslot] = pp; 565 PR_DEBUG(prd_queued); 566 } else { 567 PR_INCR_KSTAT(pr_enqueue_fail); 568 PR_DEBUG(prd_notqueued); 569 } 570 mutex_exit(&pr_q_mutex); 571 } 572 573 static void 574 page_retire_dequeue(page_t *pp) 575 { 576 int i; 577 578 mutex_enter(&pr_q_mutex); 579 580 for (i = 0; i < PR_PENDING_QMAX; i++) { 581 if (pr_pending_q[i] == pp) { 582 pr_pending_q[i] = NULL; 583 break; 584 } 585 } 586 587 if (i == PR_PENDING_QMAX) { 588 PR_INCR_KSTAT(pr_dequeue_fail); 589 } 590 591 PR_DECR_KSTAT(pr_pending); 592 PR_DEBUG(prd_dequeue); 593 594 mutex_exit(&pr_q_mutex); 595 } 596 597 /* 598 * Act like page_destroy(), but instead of freeing the page, hash it onto 599 * the retired_pages vnode, and mark it retired. 600 * 601 * For fun, we try to scrub the page until it's squeaky clean. 602 * availrmem is adjusted here. 603 */ 604 static void 605 page_retire_destroy(page_t *pp) 606 { 607 u_offset_t off = (u_offset_t)((uintptr_t)pp); 608 609 ASSERT(PAGE_EXCL(pp)); 610 ASSERT(!PP_ISFREE(pp)); 611 ASSERT(pp->p_szc == 0); 612 ASSERT(!hat_page_is_mapped(pp)); 613 ASSERT(!pp->p_vnode); 614 615 page_clr_all_props(pp); 616 pagescrub(pp, 0, MMU_PAGESIZE); 617 618 pp->p_next = NULL; 619 pp->p_prev = NULL; 620 if (page_hashin(pp, retired_pages, off, NULL) == 0) { 621 cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp); 622 } 623 624 page_settoxic(pp, PR_RETIRED); 625 page_clrtoxic(pp, PR_BUSY); 626 page_retire_dequeue(pp); 627 PR_INCR_KSTAT(pr_retired); 628 629 if (pp->p_toxic & PR_FMA) { 630 PR_INCR_KSTAT(pr_fma); 631 } else if (pp->p_toxic & PR_UE) { 632 PR_INCR_KSTAT(pr_ue); 633 } else { 634 PR_INCR_KSTAT(pr_mce); 635 } 636 637 mutex_enter(&freemem_lock); 638 availrmem--; 639 mutex_exit(&freemem_lock); 640 641 page_unlock(pp); 642 } 643 644 /* 645 * Check whether the number of pages which have been retired already exceeds 646 * the maximum allowable percentage of memory which may be retired. 647 * 648 * Returns 1 if the limit has been exceeded. 649 */ 650 static int 651 page_retire_limit(void) 652 { 653 if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) { 654 PR_INCR_KSTAT(pr_limit_exceeded); 655 return (1); 656 } 657 658 return (0); 659 } 660 661 #define MSG_DM "Data Mismatch occurred at PA 0x%08x.%08x" \ 662 "[ 0x%x != 0x%x ] while attempting to clear previously " \ 663 "reported error; page removed from service" 664 665 #define MSG_UE "Uncorrectable Error occurred at PA 0x%08x.%08x while " \ 666 "attempting to clear previously reported error; page removed " \ 667 "from service" 668 669 /* 670 * Attempt to clear a UE from a page. 671 * Returns 1 if the error has been successfully cleared. 672 */ 673 static int 674 page_clear_transient_ue(page_t *pp) 675 { 676 caddr_t kaddr; 677 uint8_t rb, wb; 678 uint64_t pa; 679 uint32_t pa_hi, pa_lo; 680 on_trap_data_t otd; 681 int errors = 0; 682 int i; 683 684 ASSERT(PAGE_EXCL(pp)); 685 ASSERT(PP_PR_REQ(pp)); 686 ASSERT(pp->p_szc == 0); 687 ASSERT(!hat_page_is_mapped(pp)); 688 689 /* 690 * Clear the page and attempt to clear the UE. If we trap 691 * on the next access to the page, we know the UE has recurred. 692 */ 693 pagescrub(pp, 0, PAGESIZE); 694 695 /* 696 * Map the page and write a bunch of bit patterns to compare 697 * what we wrote with what we read back. This isn't a perfect 698 * test but it should be good enough to catch most of the 699 * recurring UEs. If this fails to catch a recurrent UE, we'll 700 * retire the page the next time we see a UE on the page. 701 */ 702 kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1); 703 704 pa = ptob((uint64_t)page_pptonum(pp)); 705 pa_hi = (uint32_t)(pa >> 32); 706 pa_lo = (uint32_t)pa; 707 708 /* 709 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing 710 * the cache in between reading and writing. We do this under 711 * on_trap() protection to avoid recursion. 712 */ 713 if (on_trap(&otd, OT_DATA_EC)) { 714 PR_MESSAGE(CE_WARN, 1, MSG_UE, pa); 715 errors = 1; 716 } else { 717 for (wb = 0xff; wb > 0; wb--) { 718 for (i = 0; i < PAGESIZE; i++) { 719 kaddr[i] = wb; 720 } 721 722 sync_data_memory(kaddr, PAGESIZE); 723 724 for (i = 0; i < PAGESIZE; i++) { 725 rb = kaddr[i]; 726 if (rb != wb) { 727 /* 728 * We had a mismatch without a trap. 729 * Uh-oh. Something is really wrong 730 * with this system. 731 */ 732 if (page_retire_messages) { 733 cmn_err(CE_WARN, MSG_DM, 734 pa_hi, pa_lo, rb, wb); 735 } 736 errors = 1; 737 goto out; /* double break */ 738 } 739 } 740 } 741 } 742 out: 743 no_trap(); 744 ppmapout(kaddr); 745 746 return (errors ? 0 : 1); 747 } 748 749 /* 750 * Try to clear a page_t with a single UE. If the UE was transient, it is 751 * returned to service, and we return 1. Otherwise we return 0 meaning 752 * that further processing is required to retire the page. 753 */ 754 static int 755 page_retire_transient_ue(page_t *pp) 756 { 757 ASSERT(PAGE_EXCL(pp)); 758 ASSERT(!hat_page_is_mapped(pp)); 759 760 /* 761 * If this page is a repeat offender, retire him under the 762 * "two strikes and you're out" rule. The caller is responsible 763 * for scrubbing the page to try to clear the error. 764 */ 765 if (pp->p_toxic & PR_UE_SCRUBBED) { 766 PR_INCR_KSTAT(pr_ue_persistent); 767 return (0); 768 } 769 770 if (page_clear_transient_ue(pp)) { 771 /* 772 * We set the PR_SCRUBBED_UE bit; if we ever see this 773 * page again, we will retire it, no questions asked. 774 */ 775 page_settoxic(pp, PR_UE_SCRUBBED); 776 777 if (page_retire_first_ue) { 778 PR_INCR_KSTAT(pr_ue_cleared_retire); 779 return (0); 780 } else { 781 PR_INCR_KSTAT(pr_ue_cleared_free); 782 783 page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG | PR_BUSY); 784 page_retire_dequeue(pp); 785 786 /* LINTED: CONSTCOND */ 787 VN_DISPOSE(pp, B_FREE, 1, kcred); 788 return (1); 789 } 790 } 791 792 PR_INCR_KSTAT(pr_ue_persistent); 793 return (0); 794 } 795 796 /* 797 * Update the statistics dynamically when our kstat is read. 798 */ 799 static int 800 page_retire_kstat_update(kstat_t *ksp, int rw) 801 { 802 struct page_retire_kstat *pr; 803 804 if (ksp == NULL) 805 return (EINVAL); 806 807 switch (rw) { 808 809 case KSTAT_READ: 810 pr = (struct page_retire_kstat *)ksp->ks_data; 811 ASSERT(pr == &page_retire_kstat); 812 pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT; 813 return (0); 814 815 case KSTAT_WRITE: 816 return (EACCES); 817 818 default: 819 return (EINVAL); 820 } 821 /*NOTREACHED*/ 822 } 823 824 /* 825 * Initialize the page retire mechanism: 826 * 827 * - Establish the correctable error retire limit. 828 * - Initialize locks. 829 * - Build the retired_pages vnode. 830 * - Set up the kstats. 831 * - Fire off the background thread. 832 * - Tell page_tryretire() it's OK to start retiring pages. 833 */ 834 void 835 page_retire_init(void) 836 { 837 const fs_operation_def_t retired_vnodeops_template[] = {NULL, NULL}; 838 struct vnodeops *vops; 839 840 const uint_t page_retire_ndata = 841 sizeof (page_retire_kstat) / sizeof (kstat_named_t); 842 843 ASSERT(page_retire_ksp == NULL); 844 845 if (max_pages_retired_bps <= 0) { 846 max_pages_retired_bps = MCE_BPT; 847 } 848 849 mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL); 850 851 retired_pages = vn_alloc(KM_SLEEP); 852 if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) { 853 cmn_err(CE_PANIC, 854 "page_retired_init: can't make retired vnodeops"); 855 } 856 vn_setops(retired_pages, vops); 857 858 if ((page_retire_ksp = kstat_create("unix", 0, "page_retire", 859 "misc", KSTAT_TYPE_NAMED, page_retire_ndata, 860 KSTAT_FLAG_VIRTUAL)) == NULL) { 861 cmn_err(CE_WARN, "kstat_create for page_retire failed"); 862 } else { 863 page_retire_ksp->ks_data = (void *)&page_retire_kstat; 864 page_retire_ksp->ks_update = page_retire_kstat_update; 865 kstat_install(page_retire_ksp); 866 } 867 868 pr_thread_shortwait = 23 * hz; 869 pr_thread_longwait = 1201 * hz; 870 mutex_init(&pr_thread_mutex, NULL, MUTEX_DEFAULT, NULL); 871 cv_init(&pr_cv, NULL, CV_DEFAULT, NULL); 872 pr_thread_id = thread_create(NULL, 0, page_retire_thread, NULL, 0, &p0, 873 TS_RUN, minclsyspri); 874 875 pr_enable = 1; 876 } 877 878 /* 879 * page_retire_hunt() callback for the retire thread. 880 */ 881 static void 882 page_retire_thread_cb(page_t *pp) 883 { 884 PR_DEBUG(prd_tctop); 885 if (!PP_ISKVP(pp) && page_trylock(pp, SE_EXCL)) { 886 PR_DEBUG(prd_tclocked); 887 page_unlock(pp); 888 } 889 } 890 891 /* 892 * page_retire_hunt() callback for mdboot(). 893 * 894 * It is necessary to scrub any failing pages prior to reboot in order to 895 * prevent a latent error trap from occurring on the next boot. 896 */ 897 void 898 page_retire_mdboot_cb(page_t *pp) 899 { 900 /* 901 * Don't scrub the kernel, since we might still need it, unless 902 * we have UEs on the page, in which case we have nothing to lose. 903 */ 904 if (!PP_ISKVP(pp) || PP_TOXIC(pp)) { 905 pp->p_selock = -1; /* pacify ASSERTs */ 906 PP_CLRFREE(pp); 907 pagescrub(pp, 0, PAGESIZE); 908 pp->p_selock = 0; 909 } 910 pp->p_toxic = 0; 911 } 912 913 /* 914 * Hunt down any pages in the system that have not yet been retired, invoking 915 * the provided callback function on each of them. 916 */ 917 void 918 page_retire_hunt(void (*callback)(page_t *)) 919 { 920 page_t *pp; 921 page_t *first; 922 uint64_t tbr, found; 923 int i; 924 925 PR_DEBUG(prd_hunt); 926 927 if (PR_KSTAT_PENDING == 0) { 928 return; 929 } 930 931 PR_DEBUG(prd_dohunt); 932 933 found = 0; 934 mutex_enter(&pr_q_mutex); 935 936 tbr = PR_KSTAT_PENDING; 937 938 for (i = 0; i < PR_PENDING_QMAX; i++) { 939 if ((pp = pr_pending_q[i]) != NULL) { 940 mutex_exit(&pr_q_mutex); 941 callback(pp); 942 mutex_enter(&pr_q_mutex); 943 found++; 944 } 945 } 946 947 if (PR_KSTAT_EQFAIL == PR_KSTAT_DQFAIL && found == tbr) { 948 mutex_exit(&pr_q_mutex); 949 PR_DEBUG(prd_earlyhunt); 950 return; 951 } 952 mutex_exit(&pr_q_mutex); 953 954 PR_DEBUG(prd_latehunt); 955 956 /* 957 * We've lost track of a page somewhere. Hunt it down. 958 */ 959 memsegs_lock(0); 960 pp = first = page_first(); 961 do { 962 if (PP_PR_REQ(pp)) { 963 callback(pp); 964 if (++found == tbr) { 965 break; /* got 'em all */ 966 } 967 } 968 } while ((pp = page_next(pp)) != first); 969 memsegs_unlock(0); 970 } 971 972 /* 973 * The page_retire_thread loops forever, looking to see if there are 974 * pages still waiting to be retired. 975 */ 976 static void 977 page_retire_thread(void) 978 { 979 callb_cpr_t c; 980 981 CALLB_CPR_INIT(&c, &pr_thread_mutex, callb_generic_cpr, "page_retire"); 982 983 mutex_enter(&pr_thread_mutex); 984 for (;;) { 985 if (pr_enable && PR_KSTAT_PENDING) { 986 kmem_reap(); 987 seg_preap(); 988 page_retire_hunt(page_retire_thread_cb); 989 CALLB_CPR_SAFE_BEGIN(&c); 990 (void) cv_timedwait(&pr_cv, &pr_thread_mutex, 991 lbolt + pr_thread_shortwait); 992 CALLB_CPR_SAFE_END(&c, &pr_thread_mutex); 993 } else { 994 CALLB_CPR_SAFE_BEGIN(&c); 995 (void) cv_timedwait(&pr_cv, &pr_thread_mutex, 996 lbolt + pr_thread_longwait); 997 CALLB_CPR_SAFE_END(&c, &pr_thread_mutex); 998 } 999 } 1000 /*NOTREACHED*/ 1001 } 1002 1003 /* 1004 * page_retire_pp() decides what to do with a failing page. 1005 * 1006 * When we get a free page (e.g. the scrubber or in the free path) life is 1007 * nice because the page is clean and marked free -- those always retire 1008 * nicely. From there we go by order of difficulty. If the page has data, 1009 * we attempt to relocate its contents to a suitable replacement page. If 1010 * that does not succeed, we look to see if it is clean. If after all of 1011 * this we have a clean, unmapped page (which we usually do!), we retire it. 1012 * If the page is not clean, we still process it regardless on a UE; for 1013 * CEs or FMA requests, we fail leaving the page in service. The page will 1014 * eventually be tried again later. We always return with the page unlocked 1015 * since we are called from page_unlock(). 1016 * 1017 * We don't call panic or do anything fancy down in here. Our boss the DE 1018 * gets paid handsomely to do his job of figuring out what to do when errors 1019 * occur. We just do what he tells us to do. 1020 */ 1021 static int 1022 page_retire_pp(page_t *pp) 1023 { 1024 int toxic; 1025 1026 ASSERT(PAGE_EXCL(pp)); 1027 ASSERT(pp->p_iolock_state == 0); 1028 ASSERT(pp->p_szc == 0); 1029 1030 PR_DEBUG(prd_top); 1031 PR_TYPES(pp); 1032 1033 toxic = pp->p_toxic; 1034 ASSERT(toxic & PR_REASONS); 1035 1036 if ((toxic & (PR_FMA | PR_MCE)) && !(toxic & PR_UE) && 1037 page_retire_limit()) { 1038 page_clrtoxic(pp, PR_FMA | PR_MCE | PR_MSG | PR_BUSY); 1039 page_retire_dequeue(pp); 1040 page_unlock(pp); 1041 return (page_retire_done(pp, PRD_LIMIT)); 1042 } 1043 1044 if (PP_ISFREE(pp)) { 1045 PR_DEBUG(prd_free); 1046 if (!MTBF(recl_calls, recl_mtbf) || !page_reclaim(pp, NULL)) { 1047 PR_DEBUG(prd_noreclaim); 1048 PR_INCR_KSTAT(pr_failed); 1049 page_unlock(pp); 1050 return (page_retire_done(pp, PRD_FAILED)); 1051 } 1052 } 1053 1054 if ((toxic & PR_UE) == 0 && pp->p_vnode && !PP_ISFREE(pp) && 1055 !PP_ISNORELOCKERNEL(pp) && MTBF(reloc_calls, reloc_mtbf)) { 1056 page_t *newpp; 1057 spgcnt_t count; 1058 1059 /* 1060 * If we can relocate the page, great! newpp will go 1061 * on without us, and everything is fine. Regardless 1062 * of whether the relocation succeeds, we are still 1063 * going to take `pp' around back and shoot it. 1064 */ 1065 newpp = NULL; 1066 if (page_relocate(&pp, &newpp, 0, 0, &count, NULL) == 0) { 1067 PR_DEBUG(prd_reloc); 1068 page_unlock(newpp); 1069 ASSERT(hat_page_getattr(pp, P_MOD) == 0); 1070 } else { 1071 PR_DEBUG(prd_relocfail); 1072 } 1073 } 1074 1075 if (hat_ismod(pp)) { 1076 PR_DEBUG(prd_mod); 1077 PR_INCR_KSTAT(pr_failed); 1078 page_unlock(pp); 1079 return (page_retire_done(pp, PRD_FAILED)); 1080 } 1081 1082 if (PP_ISKVP(pp)) { 1083 PR_DEBUG(prd_kern); 1084 PR_INCR_KSTAT(pr_failed_kernel); 1085 page_unlock(pp); 1086 return (page_retire_done(pp, PRD_FAILED)); 1087 } 1088 1089 if (pp->p_lckcnt || pp->p_cowcnt) { 1090 PR_DEBUG(prd_locked); 1091 PR_INCR_KSTAT(pr_failed); 1092 page_unlock(pp); 1093 return (page_retire_done(pp, PRD_FAILED)); 1094 } 1095 1096 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1097 ASSERT(!PP_ISFREE(pp)); 1098 ASSERT(!hat_page_is_mapped(pp)); 1099 1100 /* 1101 * If the page is modified, and was not relocated; we can't 1102 * retire it without dropping data on the floor. We have to 1103 * recheck after unloading since the dirty bit could have been 1104 * set since we last checked. 1105 */ 1106 if (hat_ismod(pp)) { 1107 PR_DEBUG(prd_mod_late); 1108 PR_INCR_KSTAT(pr_failed); 1109 page_unlock(pp); 1110 return (page_retire_done(pp, PRD_FAILED)); 1111 } 1112 1113 if (pp->p_vnode) { 1114 PR_DEBUG(prd_hashout); 1115 page_hashout(pp, NULL); 1116 } 1117 ASSERT(!pp->p_vnode); 1118 1119 /* 1120 * The problem page is locked, demoted, unmapped, not free, 1121 * hashed out, and not COW or mlocked (whew!). 1122 * 1123 * Now we select our ammunition, take it around back, and shoot it. 1124 */ 1125 if (toxic & PR_UE) { 1126 if (page_retire_transient_ue(pp)) { 1127 PR_DEBUG(prd_uescrubbed); 1128 return (page_retire_done(pp, PRD_UE_SCRUBBED)); 1129 } else { 1130 PR_DEBUG(prd_uenotscrubbed); 1131 page_retire_destroy(pp); 1132 return (page_retire_done(pp, PRD_SUCCESS)); 1133 } 1134 } else if (toxic & PR_FMA) { 1135 PR_DEBUG(prd_fma); 1136 page_retire_destroy(pp); 1137 return (page_retire_done(pp, PRD_SUCCESS)); 1138 } else if (toxic & PR_MCE) { 1139 PR_DEBUG(prd_mce); 1140 page_retire_destroy(pp); 1141 return (page_retire_done(pp, PRD_SUCCESS)); 1142 } 1143 panic("page_retire_pp: bad toxic flags %d", toxic); 1144 /*NOTREACHED*/ 1145 } 1146 1147 /* 1148 * Try to retire a page when we stumble onto it in the page lock routines. 1149 */ 1150 void 1151 page_tryretire(page_t *pp) 1152 { 1153 ASSERT(PAGE_EXCL(pp)); 1154 1155 if (!pr_enable) { 1156 page_unlock(pp); 1157 return; 1158 } 1159 1160 /* 1161 * If the page is a big page, try to break it up. 1162 * 1163 * If there are other bad pages besides `pp', they will be 1164 * recursively retired for us thanks to a bit of magic. 1165 * If the page is a small page with errors, try to retire it. 1166 */ 1167 if (pp->p_szc > 0) { 1168 if (PP_ISFREE(pp) && !page_try_demote_free_pages(pp)) { 1169 page_unlock(pp); 1170 PR_DEBUG(prd_nofreedemote); 1171 return; 1172 } else if (!page_try_demote_pages(pp)) { 1173 page_unlock(pp); 1174 PR_DEBUG(prd_nodemote); 1175 return; 1176 } 1177 PR_DEBUG(prd_demoted); 1178 page_unlock(pp); 1179 } else { 1180 (void) page_retire_pp(pp); 1181 } 1182 } 1183 1184 /* 1185 * page_retire() - the front door in to retire a page. 1186 * 1187 * Ideally, page_retire() would instantly retire the requested page. 1188 * Unfortunately, some pages are locked or otherwise tied up and cannot be 1189 * retired right away. To deal with that, bits are set in p_toxic of the 1190 * page_t. An attempt is made to lock the page; if the attempt is successful, 1191 * we instantly unlock the page counting on page_unlock() to notice p_toxic 1192 * is nonzero and to call back into page_retire_pp(). Success is determined 1193 * by looking to see whether the page has been retired once it has been 1194 * unlocked. 1195 * 1196 * Returns: 1197 * 1198 * - 0 on success, 1199 * - EINVAL when the PA is whacko, 1200 * - EBUSY if the page is already retired, or 1201 * - EAGAIN if the page could not be _immediately_ retired. 1202 */ 1203 int 1204 page_retire(uint64_t pa, uchar_t reason) 1205 { 1206 page_t *pp; 1207 1208 ASSERT(reason & PR_REASONS); /* there must be a reason */ 1209 ASSERT(!(reason & ~PR_REASONS)); /* but no other bits */ 1210 1211 pp = page_numtopp_nolock(mmu_btop(pa)); 1212 if (pp == NULL) { 1213 PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on" 1214 " page 0x%08x.%08x; page is not relocatable memory", pa); 1215 return (page_retire_done(pp, PRD_INVALID_PA)); 1216 } 1217 if (PP_RETIRED(pp)) { 1218 return (page_retire_done(pp, PRD_DUPLICATE)); 1219 } 1220 1221 if (reason & PR_UE) { 1222 PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on" 1223 " page 0x%08x.%08x", pa); 1224 } else { 1225 PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of" 1226 " page 0x%08x.%08x", pa); 1227 } 1228 page_settoxic(pp, reason); 1229 page_retire_enqueue(pp); 1230 1231 /* 1232 * And now for some magic. 1233 * 1234 * We marked this page toxic up above. All there is left to do is 1235 * to try to lock the page and then unlock it. The page lock routines 1236 * will intercept the page and retire it if they can. If the page 1237 * cannot be locked, 's okay -- page_unlock() will eventually get it, 1238 * or the background thread, until then the lock routines will deny 1239 * further locks on it. 1240 */ 1241 if (MTBF(pr_calls, pr_mtbf) && page_trylock(pp, SE_EXCL)) { 1242 PR_DEBUG(prd_prlocked); 1243 page_unlock(pp); 1244 } else { 1245 PR_DEBUG(prd_prnotlocked); 1246 } 1247 1248 if (PP_RETIRED(pp)) { 1249 PR_DEBUG(prd_prretired); 1250 return (0); 1251 } else { 1252 cv_signal(&pr_cv); 1253 PR_INCR_KSTAT(pr_failed); 1254 1255 if (pp->p_toxic & PR_MSG) { 1256 return (page_retire_done(pp, PRD_FAILED)); 1257 } else { 1258 return (page_retire_done(pp, PRD_PENDING)); 1259 } 1260 } 1261 } 1262 1263 /* 1264 * Take a retired page off the retired-pages vnode and clear the toxic flags. 1265 * If "free" is nonzero, lock it and put it back on the freelist. If "free" 1266 * is zero, the caller already holds SE_EXCL lock so we simply unretire it 1267 * and don't do anything else with it. 1268 * 1269 * Any unretire messages are printed from this routine. 1270 * 1271 * Returns 0 if page pp was unretired; else an error code. 1272 */ 1273 int 1274 page_unretire_pp(page_t *pp, int free) 1275 { 1276 /* 1277 * To be retired, a page has to be hashed onto the retired_pages vnode 1278 * and have PR_RETIRED set in p_toxic. 1279 */ 1280 if (free == 0 || page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) { 1281 ASSERT(PAGE_EXCL(pp)); 1282 PR_DEBUG(prd_ulocked); 1283 if (!PP_RETIRED(pp)) { 1284 PR_DEBUG(prd_unotretired); 1285 page_unlock(pp); 1286 return (page_retire_done(pp, PRD_UNR_NOT)); 1287 } 1288 1289 PR_MESSAGE(CE_NOTE, 1, "unretiring retired" 1290 " page 0x%08x.%08x", mmu_ptob(pp->p_pagenum)); 1291 if (pp->p_toxic & PR_FMA) { 1292 PR_DECR_KSTAT(pr_fma); 1293 } else if (pp->p_toxic & PR_UE) { 1294 PR_DECR_KSTAT(pr_ue); 1295 } else { 1296 PR_DECR_KSTAT(pr_mce); 1297 } 1298 page_clrtoxic(pp, PR_ALLFLAGS); 1299 1300 if (free) { 1301 PR_DEBUG(prd_udestroy); 1302 page_destroy(pp, 0); 1303 } else { 1304 PR_DEBUG(prd_uhashout); 1305 page_hashout(pp, NULL); 1306 } 1307 1308 mutex_enter(&freemem_lock); 1309 availrmem++; 1310 mutex_exit(&freemem_lock); 1311 1312 PR_DEBUG(prd_uunretired); 1313 PR_DECR_KSTAT(pr_retired); 1314 PR_INCR_KSTAT(pr_unretired); 1315 return (page_retire_done(pp, PRD_UNR_SUCCESS)); 1316 } 1317 PR_DEBUG(prd_unotlocked); 1318 return (page_retire_done(pp, PRD_UNR_CANTLOCK)); 1319 } 1320 1321 /* 1322 * Return a page to service by moving it from the retired_pages vnode 1323 * onto the freelist. 1324 * 1325 * Called from mmioctl_page_retire() on behalf of the FMA DE. 1326 * 1327 * Returns: 1328 * 1329 * - 0 if the page is unretired, 1330 * - EAGAIN if the pp can not be locked, 1331 * - EINVAL if the PA is whacko, and 1332 * - EBADF if the pp is not retired. 1333 */ 1334 int 1335 page_unretire(uint64_t pa) 1336 { 1337 page_t *pp; 1338 1339 pp = page_numtopp_nolock(mmu_btop(pa)); 1340 if (pp == NULL) { 1341 return (page_retire_done(pp, PRD_INVALID_PA)); 1342 } 1343 1344 return (page_unretire_pp(pp, 1)); 1345 } 1346 1347 /* 1348 * Test a page to see if it is retired. If errors is non-NULL, the toxic 1349 * bits of the page are returned. Returns 0 on success, error code on failure. 1350 */ 1351 int 1352 page_retire_check_pp(page_t *pp, uint64_t *errors) 1353 { 1354 int rc; 1355 1356 if (PP_RETIRED(pp)) { 1357 PR_DEBUG(prd_checkhit); 1358 rc = 0; 1359 } else { 1360 PR_DEBUG(prd_checkmiss); 1361 rc = EAGAIN; 1362 } 1363 1364 /* 1365 * We have magically arranged the bit values returned to fmd(1M) 1366 * to line up with the FMA, MCE, and UE bits of the page_t. 1367 */ 1368 if (errors) { 1369 uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK); 1370 if (toxic & PR_UE_SCRUBBED) { 1371 toxic &= ~PR_UE_SCRUBBED; 1372 toxic |= PR_UE; 1373 } 1374 *errors = toxic; 1375 } 1376 1377 return (rc); 1378 } 1379 1380 /* 1381 * Test to see if the page_t for a given PA is retired, and return the 1382 * hardware errors we have seen on the page if requested. 1383 * 1384 * Called from mmioctl_page_retire on behalf of the FMA DE. 1385 * 1386 * Returns: 1387 * 1388 * - 0 if the page is retired, 1389 * - EAGAIN if it is not, and 1390 * - EINVAL if the PA is whacko. 1391 */ 1392 int 1393 page_retire_check(uint64_t pa, uint64_t *errors) 1394 { 1395 page_t *pp; 1396 1397 if (errors) { 1398 *errors = 0; 1399 } 1400 1401 pp = page_numtopp_nolock(mmu_btop(pa)); 1402 if (pp == NULL) { 1403 return (page_retire_done(pp, PRD_INVALID_PA)); 1404 } 1405 1406 return (page_retire_check_pp(pp, errors)); 1407 } 1408 1409 /* 1410 * Page retire self-test. For now, it always returns 0. 1411 */ 1412 int 1413 page_retire_test(void) 1414 { 1415 page_t *first, *pp, *cpp, *cpp2, *lpp; 1416 1417 /* 1418 * Tests the corner case where a large page can't be retired 1419 * because one of the constituent pages is locked. We mark 1420 * one page to be retired and try to retire it, and mark the 1421 * other page to be retired but don't try to retire it, so 1422 * that page_unlock() in the failure path will recurse and try 1423 * to retire THAT page. This is the worst possible situation 1424 * we can get ourselves into. 1425 */ 1426 memsegs_lock(0); 1427 pp = first = page_first(); 1428 do { 1429 if (pp->p_szc && PP_PAGEROOT(pp) == pp) { 1430 cpp = pp + 1; 1431 lpp = PP_ISFREE(pp)? pp : pp + 2; 1432 cpp2 = pp + 3; 1433 if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED)) 1434 continue; 1435 if (!page_trylock(cpp, SE_EXCL)) { 1436 page_unlock(lpp); 1437 continue; 1438 } 1439 page_settoxic(cpp, PR_FMA | PR_BUSY); 1440 page_settoxic(cpp2, PR_FMA); 1441 page_tryretire(cpp); /* will fail */ 1442 page_unlock(lpp); 1443 (void) page_retire(cpp->p_pagenum, PR_FMA); 1444 (void) page_retire(cpp2->p_pagenum, PR_FMA); 1445 } 1446 } while ((pp = page_next(pp)) != first); 1447 memsegs_unlock(0); 1448 1449 return (0); 1450 } 1451