xref: /titanic_51/usr/src/uts/common/syscall/lwp_sobj.c (revision 9da57d7b0ddd8d73b676ce12c040362132cdd538)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved	*/
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/cred.h>
37 #include <sys/user.h>
38 #include <sys/errno.h>
39 #include <sys/file.h>
40 #include <sys/proc.h>
41 #include <sys/prsystm.h>
42 #include <sys/kmem.h>
43 #include <sys/sobject.h>
44 #include <sys/fault.h>
45 #include <sys/procfs.h>
46 #include <sys/watchpoint.h>
47 #include <sys/time.h>
48 #include <sys/cmn_err.h>
49 #include <sys/machlock.h>
50 #include <sys/debug.h>
51 #include <sys/synch.h>
52 #include <sys/synch32.h>
53 #include <sys/mman.h>
54 #include <sys/class.h>
55 #include <sys/schedctl.h>
56 #include <sys/sleepq.h>
57 #include <sys/policy.h>
58 #include <sys/tnf_probe.h>
59 #include <sys/lwpchan_impl.h>
60 #include <sys/turnstile.h>
61 #include <sys/atomic.h>
62 #include <sys/lwp_timer_impl.h>
63 #include <sys/lwp_upimutex_impl.h>
64 #include <vm/as.h>
65 #include <sys/sdt.h>
66 
67 static kthread_t *lwpsobj_owner(caddr_t);
68 static void lwp_unsleep(kthread_t *t);
69 static void lwp_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip);
70 static void lwp_mutex_cleanup(lwpchan_entry_t *ent, uint16_t lockflg);
71 
72 extern int lwp_cond_signal(lwp_cond_t *cv);
73 
74 /*
75  * Maximum number of user prio inheritance locks that can be held by a thread.
76  * Used to limit kmem for each thread. This is a per-thread limit that
77  * can be administered on a system wide basis (using /etc/system).
78  *
79  * Also, when a limit, say maxlwps is added for numbers of lwps within a
80  * process, the per-thread limit automatically becomes a process-wide limit
81  * of maximum number of held upi locks within a process:
82  *      maxheldupimx = maxnestupimx * maxlwps;
83  */
84 static uint32_t maxnestupimx = 2000;
85 
86 /*
87  * The sobj_ops vector exports a set of functions needed when a thread
88  * is asleep on a synchronization object of this type.
89  */
90 static sobj_ops_t lwp_sobj_ops = {
91 	SOBJ_USER, lwpsobj_owner, lwp_unsleep, lwp_change_pri
92 };
93 
94 static kthread_t *lwpsobj_pi_owner(upimutex_t *up);
95 
96 static sobj_ops_t lwp_sobj_pi_ops = {
97 	SOBJ_USER_PI, lwpsobj_pi_owner, turnstile_unsleep,
98 	turnstile_change_pri
99 };
100 
101 static sleepq_head_t	lwpsleepq[NSLEEPQ];
102 upib_t			upimutextab[UPIMUTEX_TABSIZE];
103 
104 #define	LWPCHAN_LOCK_SHIFT	10	/* 1024 locks for each pool */
105 #define	LWPCHAN_LOCK_SIZE	(1 << LWPCHAN_LOCK_SHIFT)
106 
107 /*
108  * We know that both lc_wchan and lc_wchan0 are addresses that most
109  * likely are 8-byte aligned, so we shift off the low-order 3 bits.
110  * 'pool' is either 0 or 1.
111  */
112 #define	LWPCHAN_LOCK_HASH(X, pool) \
113 	(((((X) >> 3) ^ ((X) >> (LWPCHAN_LOCK_SHIFT + 3))) & \
114 	(LWPCHAN_LOCK_SIZE - 1)) + ((pool)? LWPCHAN_LOCK_SIZE : 0))
115 
116 static kmutex_t		lwpchanlock[2 * LWPCHAN_LOCK_SIZE];
117 
118 /*
119  * Is this a POSIX threads user-level lock requiring priority inheritance?
120  */
121 #define	UPIMUTEX(type)	((type) & LOCK_PRIO_INHERIT)
122 
123 static sleepq_head_t *
124 lwpsqhash(lwpchan_t *lwpchan)
125 {
126 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
127 	return (&lwpsleepq[SQHASHINDEX(x)]);
128 }
129 
130 /*
131  * Lock an lwpchan.
132  * Keep this in sync with lwpchan_unlock(), below.
133  */
134 static void
135 lwpchan_lock(lwpchan_t *lwpchan, int pool)
136 {
137 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
138 	mutex_enter(&lwpchanlock[LWPCHAN_LOCK_HASH(x, pool)]);
139 }
140 
141 /*
142  * Unlock an lwpchan.
143  * Keep this in sync with lwpchan_lock(), above.
144  */
145 static void
146 lwpchan_unlock(lwpchan_t *lwpchan, int pool)
147 {
148 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
149 	mutex_exit(&lwpchanlock[LWPCHAN_LOCK_HASH(x, pool)]);
150 }
151 
152 /*
153  * Delete mappings from the lwpchan cache for pages that are being
154  * unmapped by as_unmap().  Given a range of addresses, "start" to "end",
155  * all mappings within the range are deleted from the lwpchan cache.
156  */
157 void
158 lwpchan_delete_mapping(proc_t *p, caddr_t start, caddr_t end)
159 {
160 	lwpchan_data_t *lcp;
161 	lwpchan_hashbucket_t *hashbucket;
162 	lwpchan_hashbucket_t *endbucket;
163 	lwpchan_entry_t *ent;
164 	lwpchan_entry_t **prev;
165 	caddr_t addr;
166 
167 	mutex_enter(&p->p_lcp_lock);
168 	lcp = p->p_lcp;
169 	hashbucket = lcp->lwpchan_cache;
170 	endbucket = hashbucket + lcp->lwpchan_size;
171 	for (; hashbucket < endbucket; hashbucket++) {
172 		if (hashbucket->lwpchan_chain == NULL)
173 			continue;
174 		mutex_enter(&hashbucket->lwpchan_lock);
175 		prev = &hashbucket->lwpchan_chain;
176 		/* check entire chain */
177 		while ((ent = *prev) != NULL) {
178 			addr = ent->lwpchan_addr;
179 			if (start <= addr && addr < end) {
180 				*prev = ent->lwpchan_next;
181 				/*
182 				 * We do this only for the obsolete type
183 				 * USYNC_PROCESS_ROBUST.  Otherwise robust
184 				 * locks do not draw ELOCKUNMAPPED or
185 				 * EOWNERDEAD due to being unmapped.
186 				 */
187 				if (ent->lwpchan_pool == LWPCHAN_MPPOOL &&
188 				    (ent->lwpchan_type & USYNC_PROCESS_ROBUST))
189 					lwp_mutex_cleanup(ent, LOCK_UNMAPPED);
190 				kmem_free(ent, sizeof (*ent));
191 				atomic_add_32(&lcp->lwpchan_entries, -1);
192 			} else {
193 				prev = &ent->lwpchan_next;
194 			}
195 		}
196 		mutex_exit(&hashbucket->lwpchan_lock);
197 	}
198 	mutex_exit(&p->p_lcp_lock);
199 }
200 
201 /*
202  * Given an lwpchan cache pointer and a process virtual address,
203  * return a pointer to the corresponding lwpchan hash bucket.
204  */
205 static lwpchan_hashbucket_t *
206 lwpchan_bucket(lwpchan_data_t *lcp, uintptr_t addr)
207 {
208 	uint_t i;
209 
210 	/*
211 	 * All user-level sync object addresses are 8-byte aligned.
212 	 * Ignore the lowest 3 bits of the address and use the
213 	 * higher-order 2*lwpchan_bits bits for the hash index.
214 	 */
215 	addr >>= 3;
216 	i = (addr ^ (addr >> lcp->lwpchan_bits)) & lcp->lwpchan_mask;
217 	return (lcp->lwpchan_cache + i);
218 }
219 
220 /*
221  * (Re)allocate the per-process lwpchan cache.
222  */
223 static void
224 lwpchan_alloc_cache(proc_t *p, uint_t bits)
225 {
226 	lwpchan_data_t *lcp;
227 	lwpchan_data_t *old_lcp;
228 	lwpchan_hashbucket_t *hashbucket;
229 	lwpchan_hashbucket_t *endbucket;
230 	lwpchan_hashbucket_t *newbucket;
231 	lwpchan_entry_t *ent;
232 	lwpchan_entry_t *next;
233 	uint_t count;
234 
235 	ASSERT(bits >= LWPCHAN_INITIAL_BITS && bits <= LWPCHAN_MAX_BITS);
236 
237 	lcp = kmem_alloc(sizeof (lwpchan_data_t), KM_SLEEP);
238 	lcp->lwpchan_bits = bits;
239 	lcp->lwpchan_size = 1 << lcp->lwpchan_bits;
240 	lcp->lwpchan_mask = lcp->lwpchan_size - 1;
241 	lcp->lwpchan_entries = 0;
242 	lcp->lwpchan_cache = kmem_zalloc(lcp->lwpchan_size *
243 	    sizeof (lwpchan_hashbucket_t), KM_SLEEP);
244 	lcp->lwpchan_next_data = NULL;
245 
246 	mutex_enter(&p->p_lcp_lock);
247 	if ((old_lcp = p->p_lcp) != NULL) {
248 		if (old_lcp->lwpchan_bits >= bits) {
249 			/* someone beat us to it */
250 			mutex_exit(&p->p_lcp_lock);
251 			kmem_free(lcp->lwpchan_cache, lcp->lwpchan_size *
252 			    sizeof (lwpchan_hashbucket_t));
253 			kmem_free(lcp, sizeof (lwpchan_data_t));
254 			return;
255 		}
256 		/*
257 		 * Acquire all of the old hash table locks.
258 		 */
259 		hashbucket = old_lcp->lwpchan_cache;
260 		endbucket = hashbucket + old_lcp->lwpchan_size;
261 		for (; hashbucket < endbucket; hashbucket++)
262 			mutex_enter(&hashbucket->lwpchan_lock);
263 		/*
264 		 * Move all of the old hash table entries to the
265 		 * new hash table.  The new hash table has not yet
266 		 * been installed so we don't need any of its locks.
267 		 */
268 		count = 0;
269 		hashbucket = old_lcp->lwpchan_cache;
270 		for (; hashbucket < endbucket; hashbucket++) {
271 			ent = hashbucket->lwpchan_chain;
272 			while (ent != NULL) {
273 				next = ent->lwpchan_next;
274 				newbucket = lwpchan_bucket(lcp,
275 				    (uintptr_t)ent->lwpchan_addr);
276 				ent->lwpchan_next = newbucket->lwpchan_chain;
277 				newbucket->lwpchan_chain = ent;
278 				ent = next;
279 				count++;
280 			}
281 			hashbucket->lwpchan_chain = NULL;
282 		}
283 		lcp->lwpchan_entries = count;
284 	}
285 
286 	/*
287 	 * Retire the old hash table.  We can't actually kmem_free() it
288 	 * now because someone may still have a pointer to it.  Instead,
289 	 * we link it onto the new hash table's list of retired hash tables.
290 	 * The new hash table is double the size of the previous one, so
291 	 * the total size of all retired hash tables is less than the size
292 	 * of the new one.  exit() and exec() free the retired hash tables
293 	 * (see lwpchan_destroy_cache(), below).
294 	 */
295 	lcp->lwpchan_next_data = old_lcp;
296 
297 	/*
298 	 * As soon as we store the new lcp, future locking operations will
299 	 * use it.  Therefore, we must ensure that all the state we've just
300 	 * established reaches global visibility before the new lcp does.
301 	 */
302 	membar_producer();
303 	p->p_lcp = lcp;
304 
305 	if (old_lcp != NULL) {
306 		/*
307 		 * Release all of the old hash table locks.
308 		 */
309 		hashbucket = old_lcp->lwpchan_cache;
310 		for (; hashbucket < endbucket; hashbucket++)
311 			mutex_exit(&hashbucket->lwpchan_lock);
312 	}
313 	mutex_exit(&p->p_lcp_lock);
314 }
315 
316 /*
317  * Deallocate the lwpchan cache, and any dynamically allocated mappings.
318  * Called when the process exits or execs.  All lwps except one have
319  * exited so we need no locks here.
320  */
321 void
322 lwpchan_destroy_cache(int exec)
323 {
324 	proc_t *p = curproc;
325 	lwpchan_hashbucket_t *hashbucket;
326 	lwpchan_hashbucket_t *endbucket;
327 	lwpchan_data_t *lcp;
328 	lwpchan_entry_t *ent;
329 	lwpchan_entry_t *next;
330 	uint16_t lockflg;
331 
332 	lcp = p->p_lcp;
333 	p->p_lcp = NULL;
334 
335 	lockflg = exec? LOCK_UNMAPPED : LOCK_OWNERDEAD;
336 	hashbucket = lcp->lwpchan_cache;
337 	endbucket = hashbucket + lcp->lwpchan_size;
338 	for (; hashbucket < endbucket; hashbucket++) {
339 		ent = hashbucket->lwpchan_chain;
340 		hashbucket->lwpchan_chain = NULL;
341 		while (ent != NULL) {
342 			next = ent->lwpchan_next;
343 			if (ent->lwpchan_pool == LWPCHAN_MPPOOL &&
344 			    (ent->lwpchan_type & LOCK_ROBUST))
345 				lwp_mutex_cleanup(ent, lockflg);
346 			kmem_free(ent, sizeof (*ent));
347 			ent = next;
348 		}
349 	}
350 
351 	while (lcp != NULL) {
352 		lwpchan_data_t *next_lcp = lcp->lwpchan_next_data;
353 		kmem_free(lcp->lwpchan_cache, lcp->lwpchan_size *
354 		    sizeof (lwpchan_hashbucket_t));
355 		kmem_free(lcp, sizeof (lwpchan_data_t));
356 		lcp = next_lcp;
357 	}
358 }
359 
360 /*
361  * Return zero when there is an entry in the lwpchan cache for the
362  * given process virtual address and non-zero when there is not.
363  * The returned non-zero value is the current length of the
364  * hash chain plus one.  The caller holds the hash bucket lock.
365  */
366 static uint_t
367 lwpchan_cache_mapping(caddr_t addr, int type, int pool, lwpchan_t *lwpchan,
368 	lwpchan_hashbucket_t *hashbucket)
369 {
370 	lwpchan_entry_t *ent;
371 	uint_t count = 1;
372 
373 	for (ent = hashbucket->lwpchan_chain; ent; ent = ent->lwpchan_next) {
374 		if (ent->lwpchan_addr == addr) {
375 			if (ent->lwpchan_type != type ||
376 			    ent->lwpchan_pool != pool) {
377 				/*
378 				 * This shouldn't happen, but might if the
379 				 * process reuses its memory for different
380 				 * types of sync objects.  We test first
381 				 * to avoid grabbing the memory cache line.
382 				 */
383 				ent->lwpchan_type = (uint16_t)type;
384 				ent->lwpchan_pool = (uint16_t)pool;
385 			}
386 			*lwpchan = ent->lwpchan_lwpchan;
387 			return (0);
388 		}
389 		count++;
390 	}
391 	return (count);
392 }
393 
394 /*
395  * Return the cached lwpchan mapping if cached, otherwise insert
396  * a virtual address to lwpchan mapping into the cache.
397  */
398 static int
399 lwpchan_get_mapping(struct as *as, caddr_t addr,
400 	int type, lwpchan_t *lwpchan, int pool)
401 {
402 	proc_t *p = curproc;
403 	lwpchan_data_t *lcp;
404 	lwpchan_hashbucket_t *hashbucket;
405 	lwpchan_entry_t *ent;
406 	memid_t	memid;
407 	uint_t count;
408 	uint_t bits;
409 
410 top:
411 	/* initialize the lwpchan cache, if necesary */
412 	if ((lcp = p->p_lcp) == NULL) {
413 		lwpchan_alloc_cache(p, LWPCHAN_INITIAL_BITS);
414 		goto top;
415 	}
416 	hashbucket = lwpchan_bucket(lcp, (uintptr_t)addr);
417 	mutex_enter(&hashbucket->lwpchan_lock);
418 	if (lcp != p->p_lcp) {
419 		/* someone resized the lwpchan cache; start over */
420 		mutex_exit(&hashbucket->lwpchan_lock);
421 		goto top;
422 	}
423 	if (lwpchan_cache_mapping(addr, type, pool, lwpchan, hashbucket) == 0) {
424 		/* it's in the cache */
425 		mutex_exit(&hashbucket->lwpchan_lock);
426 		return (1);
427 	}
428 	mutex_exit(&hashbucket->lwpchan_lock);
429 	if (as_getmemid(as, addr, &memid) != 0)
430 		return (0);
431 	lwpchan->lc_wchan0 = (caddr_t)(uintptr_t)memid.val[0];
432 	lwpchan->lc_wchan = (caddr_t)(uintptr_t)memid.val[1];
433 	ent = kmem_alloc(sizeof (lwpchan_entry_t), KM_SLEEP);
434 	mutex_enter(&hashbucket->lwpchan_lock);
435 	if (lcp != p->p_lcp) {
436 		/* someone resized the lwpchan cache; start over */
437 		mutex_exit(&hashbucket->lwpchan_lock);
438 		kmem_free(ent, sizeof (*ent));
439 		goto top;
440 	}
441 	count = lwpchan_cache_mapping(addr, type, pool, lwpchan, hashbucket);
442 	if (count == 0) {
443 		/* someone else added this entry to the cache */
444 		mutex_exit(&hashbucket->lwpchan_lock);
445 		kmem_free(ent, sizeof (*ent));
446 		return (1);
447 	}
448 	if (count > lcp->lwpchan_bits + 2 && /* larger table, longer chains */
449 	    (bits = lcp->lwpchan_bits) < LWPCHAN_MAX_BITS) {
450 		/* hash chain too long; reallocate the hash table */
451 		mutex_exit(&hashbucket->lwpchan_lock);
452 		kmem_free(ent, sizeof (*ent));
453 		lwpchan_alloc_cache(p, bits + 1);
454 		goto top;
455 	}
456 	ent->lwpchan_addr = addr;
457 	ent->lwpchan_type = (uint16_t)type;
458 	ent->lwpchan_pool = (uint16_t)pool;
459 	ent->lwpchan_lwpchan = *lwpchan;
460 	ent->lwpchan_next = hashbucket->lwpchan_chain;
461 	hashbucket->lwpchan_chain = ent;
462 	atomic_add_32(&lcp->lwpchan_entries, 1);
463 	mutex_exit(&hashbucket->lwpchan_lock);
464 	return (1);
465 }
466 
467 /*
468  * Return a unique pair of identifiers that corresponds to a
469  * synchronization object's virtual address.  Process-shared
470  * sync objects usually get vnode/offset from as_getmemid().
471  */
472 static int
473 get_lwpchan(struct as *as, caddr_t addr, int type, lwpchan_t *lwpchan, int pool)
474 {
475 	/*
476 	 * If the lwp synch object is defined to be process-private,
477 	 * we just make the first field of the lwpchan be 'as' and
478 	 * the second field be the synch object's virtual address.
479 	 * (segvn_getmemid() does the same for MAP_PRIVATE mappings.)
480 	 * The lwpchan cache is used only for process-shared objects.
481 	 */
482 	if (!(type & USYNC_PROCESS)) {
483 		lwpchan->lc_wchan0 = (caddr_t)as;
484 		lwpchan->lc_wchan = addr;
485 		return (1);
486 	}
487 
488 	return (lwpchan_get_mapping(as, addr, type, lwpchan, pool));
489 }
490 
491 static void
492 lwp_block(lwpchan_t *lwpchan)
493 {
494 	kthread_t *t = curthread;
495 	klwp_t *lwp = ttolwp(t);
496 	sleepq_head_t *sqh;
497 
498 	thread_lock(t);
499 	t->t_flag |= T_WAKEABLE;
500 	t->t_lwpchan = *lwpchan;
501 	t->t_sobj_ops = &lwp_sobj_ops;
502 	t->t_release = 0;
503 	sqh = lwpsqhash(lwpchan);
504 	disp_lock_enter_high(&sqh->sq_lock);
505 	CL_SLEEP(t);
506 	DTRACE_SCHED(sleep);
507 	THREAD_SLEEP(t, &sqh->sq_lock);
508 	sleepq_insert(&sqh->sq_queue, t);
509 	thread_unlock(t);
510 	lwp->lwp_asleep = 1;
511 	lwp->lwp_sysabort = 0;
512 	lwp->lwp_ru.nvcsw++;
513 	(void) new_mstate(curthread, LMS_SLEEP);
514 }
515 
516 static kthread_t *
517 lwpsobj_pi_owner(upimutex_t *up)
518 {
519 	return (up->upi_owner);
520 }
521 
522 static struct upimutex *
523 upi_get(upib_t *upibp, lwpchan_t *lcp)
524 {
525 	struct upimutex *upip;
526 
527 	for (upip = upibp->upib_first; upip != NULL;
528 	    upip = upip->upi_nextchain) {
529 		if (upip->upi_lwpchan.lc_wchan0 == lcp->lc_wchan0 &&
530 		    upip->upi_lwpchan.lc_wchan == lcp->lc_wchan)
531 			break;
532 	}
533 	return (upip);
534 }
535 
536 static void
537 upi_chain_add(upib_t *upibp, struct upimutex *upimutex)
538 {
539 	ASSERT(MUTEX_HELD(&upibp->upib_lock));
540 
541 	/*
542 	 * Insert upimutex at front of list. Maybe a bit unfair
543 	 * but assume that not many lwpchans hash to the same
544 	 * upimutextab bucket, i.e. the list of upimutexes from
545 	 * upib_first is not too long.
546 	 */
547 	upimutex->upi_nextchain = upibp->upib_first;
548 	upibp->upib_first = upimutex;
549 }
550 
551 static void
552 upi_chain_del(upib_t *upibp, struct upimutex *upimutex)
553 {
554 	struct upimutex **prev;
555 
556 	ASSERT(MUTEX_HELD(&upibp->upib_lock));
557 
558 	prev = &upibp->upib_first;
559 	while (*prev != upimutex) {
560 		prev = &(*prev)->upi_nextchain;
561 	}
562 	*prev = upimutex->upi_nextchain;
563 	upimutex->upi_nextchain = NULL;
564 }
565 
566 /*
567  * Add upimutex to chain of upimutexes held by curthread.
568  * Returns number of upimutexes held by curthread.
569  */
570 static uint32_t
571 upi_mylist_add(struct upimutex *upimutex)
572 {
573 	kthread_t *t = curthread;
574 
575 	/*
576 	 * Insert upimutex at front of list of upimutexes owned by t. This
577 	 * would match typical LIFO order in which nested locks are acquired
578 	 * and released.
579 	 */
580 	upimutex->upi_nextowned = t->t_upimutex;
581 	t->t_upimutex = upimutex;
582 	t->t_nupinest++;
583 	ASSERT(t->t_nupinest > 0);
584 	return (t->t_nupinest);
585 }
586 
587 /*
588  * Delete upimutex from list of upimutexes owned by curthread.
589  */
590 static void
591 upi_mylist_del(struct upimutex *upimutex)
592 {
593 	kthread_t *t = curthread;
594 	struct upimutex **prev;
595 
596 	/*
597 	 * Since the order in which nested locks are acquired and released,
598 	 * is typically LIFO, and typical nesting levels are not too deep, the
599 	 * following should not be expensive in the general case.
600 	 */
601 	prev = &t->t_upimutex;
602 	while (*prev != upimutex) {
603 		prev = &(*prev)->upi_nextowned;
604 	}
605 	*prev = upimutex->upi_nextowned;
606 	upimutex->upi_nextowned = NULL;
607 	ASSERT(t->t_nupinest > 0);
608 	t->t_nupinest--;
609 }
610 
611 /*
612  * Returns true if upimutex is owned. Should be called only when upim points
613  * to kmem which cannot disappear from underneath.
614  */
615 static int
616 upi_owned(upimutex_t *upim)
617 {
618 	return (upim->upi_owner == curthread);
619 }
620 
621 /*
622  * Returns pointer to kernel object (upimutex_t *) if lp is owned.
623  */
624 static struct upimutex *
625 lwp_upimutex_owned(lwp_mutex_t *lp, uint8_t type)
626 {
627 	lwpchan_t lwpchan;
628 	upib_t *upibp;
629 	struct upimutex *upimutex;
630 
631 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
632 	    &lwpchan, LWPCHAN_MPPOOL))
633 		return (NULL);
634 
635 	upibp = &UPI_CHAIN(lwpchan);
636 	mutex_enter(&upibp->upib_lock);
637 	upimutex = upi_get(upibp, &lwpchan);
638 	if (upimutex == NULL || upimutex->upi_owner != curthread) {
639 		mutex_exit(&upibp->upib_lock);
640 		return (NULL);
641 	}
642 	mutex_exit(&upibp->upib_lock);
643 	return (upimutex);
644 }
645 
646 /*
647  * Unlocks upimutex, waking up waiters if any. upimutex kmem is freed if
648  * no lock hand-off occurrs.
649  */
650 static void
651 upimutex_unlock(struct upimutex *upimutex, uint16_t flag)
652 {
653 	turnstile_t *ts;
654 	upib_t *upibp;
655 	kthread_t *newowner;
656 
657 	upi_mylist_del(upimutex);
658 	upibp = upimutex->upi_upibp;
659 	mutex_enter(&upibp->upib_lock);
660 	if (upimutex->upi_waiter != 0) { /* if waiters */
661 		ts = turnstile_lookup(upimutex);
662 		if (ts != NULL && !(flag & LOCK_NOTRECOVERABLE)) {
663 			/* hand-off lock to highest prio waiter */
664 			newowner = ts->ts_sleepq[TS_WRITER_Q].sq_first;
665 			upimutex->upi_owner = newowner;
666 			if (ts->ts_waiters == 1)
667 				upimutex->upi_waiter = 0;
668 			turnstile_wakeup(ts, TS_WRITER_Q, 1, newowner);
669 			mutex_exit(&upibp->upib_lock);
670 			return;
671 		} else if (ts != NULL) {
672 			/* LOCK_NOTRECOVERABLE: wakeup all */
673 			turnstile_wakeup(ts, TS_WRITER_Q, ts->ts_waiters, NULL);
674 		} else {
675 			/*
676 			 * Misleading w bit. Waiters might have been
677 			 * interrupted. No need to clear the w bit (upimutex
678 			 * will soon be freed). Re-calculate PI from existing
679 			 * waiters.
680 			 */
681 			turnstile_exit(upimutex);
682 			turnstile_pi_recalc();
683 		}
684 	}
685 	/*
686 	 * no waiters, or LOCK_NOTRECOVERABLE.
687 	 * remove from the bucket chain of upi mutexes.
688 	 * de-allocate kernel memory (upimutex).
689 	 */
690 	upi_chain_del(upimutex->upi_upibp, upimutex);
691 	mutex_exit(&upibp->upib_lock);
692 	kmem_free(upimutex, sizeof (upimutex_t));
693 }
694 
695 static int
696 lwp_upimutex_lock(lwp_mutex_t *lp, uint8_t type, int try, lwp_timer_t *lwptp)
697 {
698 	label_t ljb;
699 	int error = 0;
700 	lwpchan_t lwpchan;
701 	uint16_t flag;
702 	upib_t *upibp;
703 	volatile struct upimutex *upimutex = NULL;
704 	turnstile_t *ts;
705 	uint32_t nupinest;
706 	volatile int upilocked = 0;
707 
708 	if (on_fault(&ljb)) {
709 		if (upilocked)
710 			upimutex_unlock((upimutex_t *)upimutex, 0);
711 		error = EFAULT;
712 		goto out;
713 	}
714 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
715 	    &lwpchan, LWPCHAN_MPPOOL)) {
716 		error = EFAULT;
717 		goto out;
718 	}
719 	upibp = &UPI_CHAIN(lwpchan);
720 retry:
721 	mutex_enter(&upibp->upib_lock);
722 	upimutex = upi_get(upibp, &lwpchan);
723 	if (upimutex == NULL)  {
724 		/* lock available since lwpchan has no upimutex */
725 		upimutex = kmem_zalloc(sizeof (upimutex_t), KM_SLEEP);
726 		upi_chain_add(upibp, (upimutex_t *)upimutex);
727 		upimutex->upi_owner = curthread; /* grab lock */
728 		upimutex->upi_upibp = upibp;
729 		upimutex->upi_vaddr = lp;
730 		upimutex->upi_lwpchan = lwpchan;
731 		mutex_exit(&upibp->upib_lock);
732 		nupinest = upi_mylist_add((upimutex_t *)upimutex);
733 		upilocked = 1;
734 		fuword16_noerr(&lp->mutex_flag, &flag);
735 		if (nupinest > maxnestupimx &&
736 		    secpolicy_resource(CRED()) != 0) {
737 			upimutex_unlock((upimutex_t *)upimutex, flag);
738 			error = ENOMEM;
739 			goto out;
740 		}
741 		if (flag & LOCK_NOTRECOVERABLE) {
742 			/*
743 			 * Since the setting of LOCK_NOTRECOVERABLE
744 			 * was done under the high-level upi mutex,
745 			 * in lwp_upimutex_unlock(), this flag needs to
746 			 * be checked while holding the upi mutex.
747 			 * If set, this thread should return without
748 			 * the lock held, and with the right error code.
749 			 */
750 			upimutex_unlock((upimutex_t *)upimutex, flag);
751 			upilocked = 0;
752 			error = ENOTRECOVERABLE;
753 		} else if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
754 			if (flag & LOCK_OWNERDEAD)
755 				error = EOWNERDEAD;
756 			else if (type & USYNC_PROCESS_ROBUST)
757 				error = ELOCKUNMAPPED;
758 			else
759 				error = EOWNERDEAD;
760 		}
761 		goto out;
762 	}
763 	/*
764 	 * If a upimutex object exists, it must have an owner.
765 	 * This is due to lock hand-off, and release of upimutex when no
766 	 * waiters are present at unlock time,
767 	 */
768 	ASSERT(upimutex->upi_owner != NULL);
769 	if (upimutex->upi_owner == curthread) {
770 		/*
771 		 * The user wrapper can check if the mutex type is
772 		 * ERRORCHECK: if not, it should stall at user-level.
773 		 * If so, it should return the error code.
774 		 */
775 		mutex_exit(&upibp->upib_lock);
776 		error = EDEADLK;
777 		goto out;
778 	}
779 	if (try == UPIMUTEX_TRY) {
780 		mutex_exit(&upibp->upib_lock);
781 		error = EBUSY;
782 		goto out;
783 	}
784 	/*
785 	 * Block for the lock.
786 	 * Put the lwp in an orderly state for debugging.
787 	 * Calling prstop() has to be done here, and not in
788 	 * turnstile_block(), since the preceding call to
789 	 * turnstile_lookup() raises the PIL to a level
790 	 * at which calls to prstop() should not be made.
791 	 */
792 	if ((error = lwptp->lwpt_time_error) != 0) {
793 		/*
794 		 * The SUSV3 Posix spec is very clear that we
795 		 * should get no error from validating the
796 		 * timer until we would actually sleep.
797 		 */
798 		mutex_exit(&upibp->upib_lock);
799 		goto out;
800 	}
801 	prstop(PR_REQUESTED, 0);
802 	if (lwptp->lwpt_tsp != NULL) {
803 		/*
804 		 * If we successfully queue the timeout
805 		 * (lwp_timer_enqueue() returns zero),
806 		 * then don't drop t_delay_lock until we are
807 		 * on the sleep queue (in turnstile_block()).
808 		 * Otherwise we will get an immediate timeout
809 		 * when we attempt to sleep in turnstile_block().
810 		 */
811 		mutex_enter(&curthread->t_delay_lock);
812 		if (lwp_timer_enqueue(lwptp) != 0)
813 			mutex_exit(&curthread->t_delay_lock);
814 	}
815 	/*
816 	 * Now, set the waiter bit and block for the lock in turnstile_block().
817 	 * No need to preserve the previous wbit since a lock try is not
818 	 * attempted after setting the wait bit. Wait bit is set under
819 	 * the upib_lock, which is not released until the turnstile lock
820 	 * is acquired. Say, the upimutex is L:
821 	 *
822 	 * 1. upib_lock is held so the waiter does not have to retry L after
823 	 *    setting the wait bit: since the owner has to grab the upib_lock
824 	 *    to unlock L, it will certainly see the wait bit set.
825 	 * 2. upib_lock is not released until the turnstile lock is acquired.
826 	 *    This is the key to preventing a missed wake-up. Otherwise, the
827 	 *    owner could acquire the upib_lock, and the tc_lock, to call
828 	 *    turnstile_wakeup(). All this, before the waiter gets tc_lock
829 	 *    to sleep in turnstile_block(). turnstile_wakeup() will then not
830 	 *    find this waiter, resulting in the missed wakeup.
831 	 * 3. The upib_lock, being a kernel mutex, cannot be released while
832 	 *    holding the tc_lock (since mutex_exit() could need to acquire
833 	 *    the same tc_lock)...and so is held when calling turnstile_block().
834 	 *    The address of upib_lock is passed to turnstile_block() which
835 	 *    releases it after releasing all turnstile locks, and before going
836 	 *    to sleep in swtch().
837 	 * 4. The waiter value cannot be a count of waiters, because a waiter
838 	 *    can be interrupted. The interrupt occurs under the tc_lock, at
839 	 *    which point, the upib_lock cannot be locked, to decrement waiter
840 	 *    count. So, just treat the waiter state as a bit, not a count.
841 	 */
842 	ts = turnstile_lookup((upimutex_t *)upimutex);
843 	upimutex->upi_waiter = 1;
844 	error = turnstile_block(ts, TS_WRITER_Q, (upimutex_t *)upimutex,
845 	    &lwp_sobj_pi_ops, &upibp->upib_lock, lwptp);
846 	/*
847 	 * Hand-off implies that we wakeup holding the lock, except when:
848 	 *	- deadlock is detected
849 	 *	- lock is not recoverable
850 	 *	- we got an interrupt or timeout
851 	 * If we wake up due to an interrupt or timeout, we may
852 	 * or may not be holding the lock due to mutex hand-off.
853 	 * Use lwp_upimutex_owned() to check if we do hold the lock.
854 	 */
855 	if (error != 0) {
856 		if ((error == EINTR || error == ETIME) &&
857 		    (upimutex = lwp_upimutex_owned(lp, type))) {
858 			/*
859 			 * Unlock and return - the re-startable syscall will
860 			 * try the lock again if we got EINTR.
861 			 */
862 			(void) upi_mylist_add((upimutex_t *)upimutex);
863 			upimutex_unlock((upimutex_t *)upimutex, 0);
864 		}
865 		/*
866 		 * The only other possible error is EDEADLK.  If so, upimutex
867 		 * is valid, since its owner is deadlocked with curthread.
868 		 */
869 		ASSERT(error == EINTR || error == ETIME ||
870 		    (error == EDEADLK && !upi_owned((upimutex_t *)upimutex)));
871 		ASSERT(!lwp_upimutex_owned(lp, type));
872 		goto out;
873 	}
874 	if (lwp_upimutex_owned(lp, type)) {
875 		ASSERT(lwp_upimutex_owned(lp, type) == upimutex);
876 		nupinest = upi_mylist_add((upimutex_t *)upimutex);
877 		upilocked = 1;
878 	}
879 	/*
880 	 * Now, need to read the user-level lp->mutex_flag to do the following:
881 	 *
882 	 * - if lock is held, check if EOWNERDEAD or ELOCKUNMAPPED
883 	 *   should be returned.
884 	 * - if lock isn't held, check if ENOTRECOVERABLE should
885 	 *   be returned.
886 	 *
887 	 * Now, either lp->mutex_flag is readable or it's not. If not
888 	 * readable, the on_fault path will cause a return with EFAULT
889 	 * as it should.  If it is readable, the state of the flag
890 	 * encodes the robustness state of the lock:
891 	 *
892 	 * If the upimutex is locked here, the flag's LOCK_OWNERDEAD
893 	 * or LOCK_UNMAPPED setting will influence the return code
894 	 * appropriately.  If the upimutex is not locked here, this
895 	 * could be due to a spurious wake-up or a NOTRECOVERABLE
896 	 * event.  The flag's setting can be used to distinguish
897 	 * between these two events.
898 	 */
899 	fuword16_noerr(&lp->mutex_flag, &flag);
900 	if (upilocked) {
901 		/*
902 		 * If the thread wakes up from turnstile_block with the lock
903 		 * held, the flag could not be set to LOCK_NOTRECOVERABLE,
904 		 * since it would not have been handed-off the lock.
905 		 * So, no need to check for this case.
906 		 */
907 		if (nupinest > maxnestupimx &&
908 		    secpolicy_resource(CRED()) != 0) {
909 			upimutex_unlock((upimutex_t *)upimutex, flag);
910 			upilocked = 0;
911 			error = ENOMEM;
912 		} else if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
913 			if (flag & LOCK_OWNERDEAD)
914 				error = EOWNERDEAD;
915 			else if (type & USYNC_PROCESS_ROBUST)
916 				error = ELOCKUNMAPPED;
917 			else
918 				error = EOWNERDEAD;
919 		}
920 	} else {
921 		/*
922 		 * Wake-up without the upimutex held. Either this is a
923 		 * spurious wake-up (due to signals, forkall(), whatever), or
924 		 * it is a LOCK_NOTRECOVERABLE robustness event. The setting
925 		 * of the mutex flag can be used to distinguish between the
926 		 * two events.
927 		 */
928 		if (flag & LOCK_NOTRECOVERABLE) {
929 			error = ENOTRECOVERABLE;
930 		} else {
931 			/*
932 			 * Here, the flag could be set to LOCK_OWNERDEAD or
933 			 * not. In both cases, this is a spurious wakeup,
934 			 * since the upi lock is not held, but the thread
935 			 * has returned from turnstile_block().
936 			 *
937 			 * The user flag could be LOCK_OWNERDEAD if, at the
938 			 * same time as curthread having been woken up
939 			 * spuriously, the owner (say Tdead) has died, marked
940 			 * the mutex flag accordingly, and handed off the lock
941 			 * to some other waiter (say Tnew). curthread just
942 			 * happened to read the flag while Tnew has yet to deal
943 			 * with the owner-dead event.
944 			 *
945 			 * In this event, curthread should retry the lock.
946 			 * If Tnew is able to cleanup the lock, curthread
947 			 * will eventually get the lock with a zero error code,
948 			 * If Tnew is unable to cleanup, its eventual call to
949 			 * unlock the lock will result in the mutex flag being
950 			 * set to LOCK_NOTRECOVERABLE, and the wake-up of
951 			 * all waiters, including curthread, which will then
952 			 * eventually return ENOTRECOVERABLE due to the above
953 			 * check.
954 			 *
955 			 * Of course, if the user-flag is not set with
956 			 * LOCK_OWNERDEAD, retrying is the thing to do, since
957 			 * this is definitely a spurious wakeup.
958 			 */
959 			goto retry;
960 		}
961 	}
962 
963 out:
964 	no_fault();
965 	return (error);
966 }
967 
968 
969 static int
970 lwp_upimutex_unlock(lwp_mutex_t *lp, uint8_t type)
971 {
972 	label_t ljb;
973 	int error = 0;
974 	lwpchan_t lwpchan;
975 	uint16_t flag;
976 	upib_t *upibp;
977 	volatile struct upimutex *upimutex = NULL;
978 	volatile int upilocked = 0;
979 
980 	if (on_fault(&ljb)) {
981 		if (upilocked)
982 			upimutex_unlock((upimutex_t *)upimutex, 0);
983 		error = EFAULT;
984 		goto out;
985 	}
986 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
987 	    &lwpchan, LWPCHAN_MPPOOL)) {
988 		error = EFAULT;
989 		goto out;
990 	}
991 	upibp = &UPI_CHAIN(lwpchan);
992 	mutex_enter(&upibp->upib_lock);
993 	upimutex = upi_get(upibp, &lwpchan);
994 	/*
995 	 * If the lock is not held, or the owner is not curthread, return
996 	 * error. The user-level wrapper can return this error or stall,
997 	 * depending on whether mutex is of ERRORCHECK type or not.
998 	 */
999 	if (upimutex == NULL || upimutex->upi_owner != curthread) {
1000 		mutex_exit(&upibp->upib_lock);
1001 		error = EPERM;
1002 		goto out;
1003 	}
1004 	mutex_exit(&upibp->upib_lock); /* release for user memory access */
1005 	upilocked = 1;
1006 	fuword16_noerr(&lp->mutex_flag, &flag);
1007 	if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
1008 		/*
1009 		 * transition mutex to the LOCK_NOTRECOVERABLE state.
1010 		 */
1011 		flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
1012 		flag |= LOCK_NOTRECOVERABLE;
1013 		suword16_noerr(&lp->mutex_flag, flag);
1014 	}
1015 	if (type & USYNC_PROCESS)
1016 		suword32_noerr(&lp->mutex_ownerpid, 0);
1017 	upimutex_unlock((upimutex_t *)upimutex, flag);
1018 	upilocked = 0;
1019 out:
1020 	no_fault();
1021 	return (error);
1022 }
1023 
1024 /*
1025  * Clear the contents of a user-level mutex; return the flags.
1026  * Used only by upi_dead() and lwp_mutex_cleanup(), below.
1027  */
1028 static uint16_t
1029 lwp_clear_mutex(lwp_mutex_t *lp, uint16_t lockflg)
1030 {
1031 	uint16_t flag;
1032 
1033 	fuword16_noerr(&lp->mutex_flag, &flag);
1034 	if ((flag &
1035 	    (LOCK_OWNERDEAD | LOCK_UNMAPPED | LOCK_NOTRECOVERABLE)) == 0) {
1036 		flag |= lockflg;
1037 		suword16_noerr(&lp->mutex_flag, flag);
1038 	}
1039 	suword32_noerr((uint32_t *)&lp->mutex_owner, 0);
1040 	suword32_noerr((uint32_t *)&lp->mutex_owner + 1, 0);
1041 	suword32_noerr(&lp->mutex_ownerpid, 0);
1042 	suword8_noerr(&lp->mutex_rcount, 0);
1043 
1044 	return (flag);
1045 }
1046 
1047 /*
1048  * Mark user mutex state, corresponding to kernel upimutex,
1049  * as LOCK_UNMAPPED or LOCK_OWNERDEAD, as appropriate
1050  */
1051 static int
1052 upi_dead(upimutex_t *upip, uint16_t lockflg)
1053 {
1054 	label_t ljb;
1055 	int error = 0;
1056 	lwp_mutex_t *lp;
1057 
1058 	if (on_fault(&ljb)) {
1059 		error = EFAULT;
1060 		goto out;
1061 	}
1062 
1063 	lp = upip->upi_vaddr;
1064 	(void) lwp_clear_mutex(lp, lockflg);
1065 	suword8_noerr(&lp->mutex_lockw, 0);
1066 out:
1067 	no_fault();
1068 	return (error);
1069 }
1070 
1071 /*
1072  * Unlock all upimutexes held by curthread, since curthread is dying.
1073  * For each upimutex, attempt to mark its corresponding user mutex object as
1074  * dead.
1075  */
1076 void
1077 upimutex_cleanup()
1078 {
1079 	kthread_t *t = curthread;
1080 	uint16_t lockflg = (ttoproc(t)->p_proc_flag & P_PR_EXEC)?
1081 	    LOCK_UNMAPPED : LOCK_OWNERDEAD;
1082 	struct upimutex *upip;
1083 
1084 	while ((upip = t->t_upimutex) != NULL) {
1085 		if (upi_dead(upip, lockflg) != 0) {
1086 			/*
1087 			 * If the user object associated with this upimutex is
1088 			 * unmapped, unlock upimutex with the
1089 			 * LOCK_NOTRECOVERABLE flag, so that all waiters are
1090 			 * woken up. Since user object is unmapped, it could
1091 			 * not be marked as dead or notrecoverable.
1092 			 * The waiters will now all wake up and return
1093 			 * ENOTRECOVERABLE, since they would find that the lock
1094 			 * has not been handed-off to them.
1095 			 * See lwp_upimutex_lock().
1096 			 */
1097 			upimutex_unlock(upip, LOCK_NOTRECOVERABLE);
1098 		} else {
1099 			/*
1100 			 * The user object has been updated as dead.
1101 			 * Unlock the upimutex: if no waiters, upip kmem will
1102 			 * be freed. If there is a waiter, the lock will be
1103 			 * handed off. If exit() is in progress, each existing
1104 			 * waiter will successively get the lock, as owners
1105 			 * die, and each new owner will call this routine as
1106 			 * it dies. The last owner will free kmem, since
1107 			 * it will find the upimutex has no waiters. So,
1108 			 * eventually, the kmem is guaranteed to be freed.
1109 			 */
1110 			upimutex_unlock(upip, 0);
1111 		}
1112 		/*
1113 		 * Note that the call to upimutex_unlock() above will delete
1114 		 * upimutex from the t_upimutexes chain. And so the
1115 		 * while loop will eventually terminate.
1116 		 */
1117 	}
1118 }
1119 
1120 int
1121 lwp_mutex_timedlock(lwp_mutex_t *lp, timespec_t *tsp)
1122 {
1123 	kthread_t *t = curthread;
1124 	klwp_t *lwp = ttolwp(t);
1125 	proc_t *p = ttoproc(t);
1126 	lwp_timer_t lwpt;
1127 	caddr_t timedwait;
1128 	int error = 0;
1129 	int time_error;
1130 	clock_t tim = -1;
1131 	uchar_t waiters;
1132 	volatile int locked = 0;
1133 	volatile int watched = 0;
1134 	label_t ljb;
1135 	volatile uint8_t type = 0;
1136 	lwpchan_t lwpchan;
1137 	sleepq_head_t *sqh;
1138 	static int iswanted();
1139 	uint16_t flag;
1140 	int imm_timeout = 0;
1141 
1142 	if ((caddr_t)lp >= p->p_as->a_userlimit)
1143 		return (set_errno(EFAULT));
1144 
1145 	timedwait = (caddr_t)tsp;
1146 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
1147 	    lwpt.lwpt_imm_timeout) {
1148 		imm_timeout = 1;
1149 		timedwait = NULL;
1150 	}
1151 
1152 	/*
1153 	 * Although LMS_USER_LOCK implies "asleep waiting for user-mode lock",
1154 	 * this micro state is really a run state. If the thread indeed blocks,
1155 	 * this state becomes valid. If not, the state is converted back to
1156 	 * LMS_SYSTEM. So, it is OK to set the mstate here, instead of just
1157 	 * when blocking.
1158 	 */
1159 	(void) new_mstate(t, LMS_USER_LOCK);
1160 	if (on_fault(&ljb)) {
1161 		if (locked)
1162 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1163 		error = EFAULT;
1164 		goto out;
1165 	}
1166 	/*
1167 	 * Force Copy-on-write if necessary and ensure that the
1168 	 * synchronization object resides in read/write memory.
1169 	 * Cause an EFAULT return now if this is not so.
1170 	 */
1171 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
1172 	suword8_noerr(&lp->mutex_type, type);
1173 	if (UPIMUTEX(type)) {
1174 		no_fault();
1175 		error = lwp_upimutex_lock(lp, type, UPIMUTEX_BLOCK, &lwpt);
1176 		if ((type & USYNC_PROCESS) &&
1177 		    (error == 0 ||
1178 		    error == EOWNERDEAD || error == ELOCKUNMAPPED))
1179 			(void) suword32(&lp->mutex_ownerpid, p->p_pid);
1180 		if (tsp && !time_error)	/* copyout the residual time left */
1181 			error = lwp_timer_copyout(&lwpt, error);
1182 		if (error)
1183 			return (set_errno(error));
1184 		return (0);
1185 	}
1186 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
1187 	    &lwpchan, LWPCHAN_MPPOOL)) {
1188 		error = EFAULT;
1189 		goto out;
1190 	}
1191 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1192 	locked = 1;
1193 	if (type & LOCK_ROBUST) {
1194 		fuword16_noerr(&lp->mutex_flag, &flag);
1195 		if (flag & LOCK_NOTRECOVERABLE) {
1196 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1197 			error = ENOTRECOVERABLE;
1198 			goto out;
1199 		}
1200 	}
1201 	fuword8_noerr(&lp->mutex_waiters, &waiters);
1202 	suword8_noerr(&lp->mutex_waiters, 1);
1203 
1204 	/*
1205 	 * If watchpoints are set, they need to be restored, since
1206 	 * atomic accesses of memory such as the call to ulock_try()
1207 	 * below cannot be watched.
1208 	 */
1209 
1210 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1211 
1212 	while (!ulock_try(&lp->mutex_lockw)) {
1213 		if (time_error) {
1214 			/*
1215 			 * The SUSV3 Posix spec is very clear that we
1216 			 * should get no error from validating the
1217 			 * timer until we would actually sleep.
1218 			 */
1219 			error = time_error;
1220 			break;
1221 		}
1222 
1223 		if (watched) {
1224 			watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1225 			watched = 0;
1226 		}
1227 
1228 		/*
1229 		 * Put the lwp in an orderly state for debugging.
1230 		 */
1231 		prstop(PR_REQUESTED, 0);
1232 		if (timedwait) {
1233 			/*
1234 			 * If we successfully queue the timeout,
1235 			 * then don't drop t_delay_lock until
1236 			 * we are on the sleep queue (below).
1237 			 */
1238 			mutex_enter(&t->t_delay_lock);
1239 			if (lwp_timer_enqueue(&lwpt) != 0) {
1240 				mutex_exit(&t->t_delay_lock);
1241 				imm_timeout = 1;
1242 				timedwait = NULL;
1243 			}
1244 		}
1245 		lwp_block(&lwpchan);
1246 		/*
1247 		 * Nothing should happen to cause the lwp to go to
1248 		 * sleep again until after it returns from swtch().
1249 		 */
1250 		if (timedwait)
1251 			mutex_exit(&t->t_delay_lock);
1252 		locked = 0;
1253 		lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1254 		if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || imm_timeout)
1255 			setrun(t);
1256 		swtch();
1257 		t->t_flag &= ~T_WAKEABLE;
1258 		if (timedwait)
1259 			tim = lwp_timer_dequeue(&lwpt);
1260 		setallwatch();
1261 		if (ISSIG(t, FORREAL) || lwp->lwp_sysabort || MUSTRETURN(p, t))
1262 			error = EINTR;
1263 		else if (imm_timeout || (timedwait && tim == -1))
1264 			error = ETIME;
1265 		if (error) {
1266 			lwp->lwp_asleep = 0;
1267 			lwp->lwp_sysabort = 0;
1268 			watched = watch_disable_addr((caddr_t)lp, sizeof (*lp),
1269 			    S_WRITE);
1270 
1271 			/*
1272 			 * Need to re-compute waiters bit. The waiters field in
1273 			 * the lock is not reliable. Either of two things could
1274 			 * have occurred: no lwp may have called lwp_release()
1275 			 * for me but I have woken up due to a signal or
1276 			 * timeout.  In this case, the waiter bit is incorrect
1277 			 * since it is still set to 1, set above.
1278 			 * OR an lwp_release() did occur for some other lwp on
1279 			 * the same lwpchan. In this case, the waiter bit is
1280 			 * correct.  But which event occurred, one can't tell.
1281 			 * So, recompute.
1282 			 */
1283 			lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1284 			locked = 1;
1285 			sqh = lwpsqhash(&lwpchan);
1286 			disp_lock_enter(&sqh->sq_lock);
1287 			waiters = iswanted(sqh->sq_queue.sq_first, &lwpchan);
1288 			disp_lock_exit(&sqh->sq_lock);
1289 			break;
1290 		}
1291 		lwp->lwp_asleep = 0;
1292 		watched = watch_disable_addr((caddr_t)lp, sizeof (*lp),
1293 		    S_WRITE);
1294 		lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1295 		locked = 1;
1296 		fuword8_noerr(&lp->mutex_waiters, &waiters);
1297 		suword8_noerr(&lp->mutex_waiters, 1);
1298 		if (type & LOCK_ROBUST) {
1299 			fuword16_noerr(&lp->mutex_flag, &flag);
1300 			if (flag & LOCK_NOTRECOVERABLE) {
1301 				error = ENOTRECOVERABLE;
1302 				break;
1303 			}
1304 		}
1305 	}
1306 
1307 	if (t->t_mstate == LMS_USER_LOCK)
1308 		(void) new_mstate(t, LMS_SYSTEM);
1309 
1310 	if (error == 0) {
1311 		if (type & USYNC_PROCESS)
1312 			suword32_noerr(&lp->mutex_ownerpid, p->p_pid);
1313 		if (type & LOCK_ROBUST) {
1314 			fuword16_noerr(&lp->mutex_flag, &flag);
1315 			if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
1316 				if (flag & LOCK_OWNERDEAD)
1317 					error = EOWNERDEAD;
1318 				else if (type & USYNC_PROCESS_ROBUST)
1319 					error = ELOCKUNMAPPED;
1320 				else
1321 					error = EOWNERDEAD;
1322 			}
1323 		}
1324 	}
1325 	suword8_noerr(&lp->mutex_waiters, waiters);
1326 	locked = 0;
1327 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1328 out:
1329 	no_fault();
1330 	if (watched)
1331 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1332 	if (tsp && !time_error)		/* copyout the residual time left */
1333 		error = lwp_timer_copyout(&lwpt, error);
1334 	if (error)
1335 		return (set_errno(error));
1336 	return (0);
1337 }
1338 
1339 /*
1340  * Obsolete lwp_mutex_lock() interface, no longer called from libc.
1341  * libc now calls lwp_mutex_timedlock(lp, NULL).
1342  * This system call trap continues to exist solely for the benefit
1343  * of old statically-linked binaries from Solaris 9 and before.
1344  * It should be removed from the system when we no longer care
1345  * about such applications.
1346  */
1347 int
1348 lwp_mutex_lock(lwp_mutex_t *lp)
1349 {
1350 	return (lwp_mutex_timedlock(lp, NULL));
1351 }
1352 
1353 static int
1354 iswanted(kthread_t *t, lwpchan_t *lwpchan)
1355 {
1356 	/*
1357 	 * The caller holds the dispatcher lock on the sleep queue.
1358 	 */
1359 	while (t != NULL) {
1360 		if (t->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1361 		    t->t_lwpchan.lc_wchan == lwpchan->lc_wchan)
1362 			return (1);
1363 		t = t->t_link;
1364 	}
1365 	return (0);
1366 }
1367 
1368 /*
1369  * Return the highest priority thread sleeping on this lwpchan.
1370  */
1371 static kthread_t *
1372 lwp_queue_waiter(lwpchan_t *lwpchan)
1373 {
1374 	sleepq_head_t *sqh;
1375 	kthread_t *tp;
1376 
1377 	sqh = lwpsqhash(lwpchan);
1378 	disp_lock_enter(&sqh->sq_lock);		/* lock the sleep queue */
1379 	for (tp = sqh->sq_queue.sq_first; tp != NULL; tp = tp->t_link) {
1380 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1381 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan)
1382 			break;
1383 	}
1384 	disp_lock_exit(&sqh->sq_lock);
1385 	return (tp);
1386 }
1387 
1388 static int
1389 lwp_release(lwpchan_t *lwpchan, uchar_t *waiters, int sync_type)
1390 {
1391 	sleepq_head_t *sqh;
1392 	kthread_t *tp;
1393 	kthread_t **tpp;
1394 
1395 	sqh = lwpsqhash(lwpchan);
1396 	disp_lock_enter(&sqh->sq_lock);		/* lock the sleep queue */
1397 	tpp = &sqh->sq_queue.sq_first;
1398 	while ((tp = *tpp) != NULL) {
1399 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1400 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
1401 			/*
1402 			 * The following is typically false. It could be true
1403 			 * only if lwp_release() is called from
1404 			 * lwp_mutex_wakeup() after reading the waiters field
1405 			 * from memory in which the lwp lock used to be, but has
1406 			 * since been re-used to hold a lwp cv or lwp semaphore.
1407 			 * The thread "tp" found to match the lwp lock's wchan
1408 			 * is actually sleeping for the cv or semaphore which
1409 			 * now has the same wchan. In this case, lwp_release()
1410 			 * should return failure.
1411 			 */
1412 			if (sync_type != (tp->t_flag & T_WAITCVSEM)) {
1413 				ASSERT(sync_type == 0);
1414 				/*
1415 				 * assert that this can happen only for mutexes
1416 				 * i.e. sync_type == 0, for correctly written
1417 				 * user programs.
1418 				 */
1419 				disp_lock_exit(&sqh->sq_lock);
1420 				return (0);
1421 			}
1422 			*waiters = iswanted(tp->t_link, lwpchan);
1423 			sleepq_unlink(tpp, tp);
1424 			DTRACE_SCHED1(wakeup, kthread_t *, tp);
1425 			tp->t_wchan0 = NULL;
1426 			tp->t_wchan = NULL;
1427 			tp->t_sobj_ops = NULL;
1428 			tp->t_release = 1;
1429 			THREAD_TRANSITION(tp);	/* drops sleepq lock */
1430 			CL_WAKEUP(tp);
1431 			thread_unlock(tp);	/* drop run queue lock */
1432 			return (1);
1433 		}
1434 		tpp = &tp->t_link;
1435 	}
1436 	*waiters = 0;
1437 	disp_lock_exit(&sqh->sq_lock);
1438 	return (0);
1439 }
1440 
1441 static void
1442 lwp_release_all(lwpchan_t *lwpchan)
1443 {
1444 	sleepq_head_t	*sqh;
1445 	kthread_t *tp;
1446 	kthread_t **tpp;
1447 
1448 	sqh = lwpsqhash(lwpchan);
1449 	disp_lock_enter(&sqh->sq_lock);		/* lock sleep q queue */
1450 	tpp = &sqh->sq_queue.sq_first;
1451 	while ((tp = *tpp) != NULL) {
1452 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1453 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
1454 			sleepq_unlink(tpp, tp);
1455 			DTRACE_SCHED1(wakeup, kthread_t *, tp);
1456 			tp->t_wchan0 = NULL;
1457 			tp->t_wchan = NULL;
1458 			tp->t_sobj_ops = NULL;
1459 			CL_WAKEUP(tp);
1460 			thread_unlock_high(tp);	/* release run queue lock */
1461 		} else {
1462 			tpp = &tp->t_link;
1463 		}
1464 	}
1465 	disp_lock_exit(&sqh->sq_lock);		/* drop sleep q lock */
1466 }
1467 
1468 /*
1469  * unblock a lwp that is trying to acquire this mutex. the blocked
1470  * lwp resumes and retries to acquire the lock.
1471  */
1472 int
1473 lwp_mutex_wakeup(lwp_mutex_t *lp, int release_all)
1474 {
1475 	proc_t *p = ttoproc(curthread);
1476 	lwpchan_t lwpchan;
1477 	uchar_t waiters;
1478 	volatile int locked = 0;
1479 	volatile int watched = 0;
1480 	volatile uint8_t type = 0;
1481 	label_t ljb;
1482 	int error = 0;
1483 
1484 	if ((caddr_t)lp >= p->p_as->a_userlimit)
1485 		return (set_errno(EFAULT));
1486 
1487 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1488 
1489 	if (on_fault(&ljb)) {
1490 		if (locked)
1491 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1492 		error = EFAULT;
1493 		goto out;
1494 	}
1495 	/*
1496 	 * Force Copy-on-write if necessary and ensure that the
1497 	 * synchronization object resides in read/write memory.
1498 	 * Cause an EFAULT return now if this is not so.
1499 	 */
1500 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
1501 	suword8_noerr(&lp->mutex_type, type);
1502 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
1503 	    &lwpchan, LWPCHAN_MPPOOL)) {
1504 		error = EFAULT;
1505 		goto out;
1506 	}
1507 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1508 	locked = 1;
1509 	/*
1510 	 * Always wake up an lwp (if any) waiting on lwpchan. The woken lwp will
1511 	 * re-try the lock in lwp_mutex_timedlock(). The call to lwp_release()
1512 	 * may fail.  If it fails, do not write into the waiter bit.
1513 	 * The call to lwp_release() might fail due to one of three reasons:
1514 	 *
1515 	 * 	1. due to the thread which set the waiter bit not actually
1516 	 *	   sleeping since it got the lock on the re-try. The waiter
1517 	 *	   bit will then be correctly updated by that thread. This
1518 	 *	   window may be closed by reading the wait bit again here
1519 	 *	   and not calling lwp_release() at all if it is zero.
1520 	 *	2. the thread which set the waiter bit and went to sleep
1521 	 *	   was woken up by a signal. This time, the waiter recomputes
1522 	 *	   the wait bit in the return with EINTR code.
1523 	 *	3. the waiter bit read by lwp_mutex_wakeup() was in
1524 	 *	   memory that has been re-used after the lock was dropped.
1525 	 *	   In this case, writing into the waiter bit would cause data
1526 	 *	   corruption.
1527 	 */
1528 	if (release_all)
1529 		lwp_release_all(&lwpchan);
1530 	else if (lwp_release(&lwpchan, &waiters, 0))
1531 		suword8_noerr(&lp->mutex_waiters, waiters);
1532 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1533 out:
1534 	no_fault();
1535 	if (watched)
1536 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1537 	if (error)
1538 		return (set_errno(error));
1539 	return (0);
1540 }
1541 
1542 /*
1543  * lwp_cond_wait() has four arguments, a pointer to a condition variable,
1544  * a pointer to a mutex, a pointer to a timespec for a timed wait and
1545  * a flag telling the kernel whether or not to honor the kernel/user
1546  * schedctl parking protocol (see schedctl_is_park() in schedctl.c).
1547  * The kernel puts the lwp to sleep on a unique pair of caddr_t's called an
1548  * lwpchan, returned by get_lwpchan().  If the timespec pointer is non-NULL,
1549  * it is used an an in/out parameter.  On entry, it contains the relative
1550  * time until timeout.  On exit, we copyout the residual time left to it.
1551  */
1552 int
1553 lwp_cond_wait(lwp_cond_t *cv, lwp_mutex_t *mp, timespec_t *tsp, int check_park)
1554 {
1555 	kthread_t *t = curthread;
1556 	klwp_t *lwp = ttolwp(t);
1557 	proc_t *p = ttoproc(t);
1558 	lwp_timer_t lwpt;
1559 	lwpchan_t cv_lwpchan;
1560 	lwpchan_t m_lwpchan;
1561 	caddr_t timedwait;
1562 	volatile uint16_t type = 0;
1563 	volatile uint8_t mtype = 0;
1564 	uchar_t waiters;
1565 	volatile int error;
1566 	clock_t tim = -1;
1567 	volatile int locked = 0;
1568 	volatile int m_locked = 0;
1569 	volatile int cvwatched = 0;
1570 	volatile int mpwatched = 0;
1571 	label_t ljb;
1572 	volatile int no_lwpchan = 1;
1573 	int imm_timeout = 0;
1574 	int imm_unpark = 0;
1575 
1576 	if ((caddr_t)cv >= p->p_as->a_userlimit ||
1577 	    (caddr_t)mp >= p->p_as->a_userlimit)
1578 		return (set_errno(EFAULT));
1579 
1580 	timedwait = (caddr_t)tsp;
1581 	if ((error = lwp_timer_copyin(&lwpt, tsp)) != 0)
1582 		return (set_errno(error));
1583 	if (lwpt.lwpt_imm_timeout) {
1584 		imm_timeout = 1;
1585 		timedwait = NULL;
1586 	}
1587 
1588 	(void) new_mstate(t, LMS_USER_LOCK);
1589 
1590 	if (on_fault(&ljb)) {
1591 		if (no_lwpchan) {
1592 			error = EFAULT;
1593 			goto out;
1594 		}
1595 		if (m_locked) {
1596 			m_locked = 0;
1597 			lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1598 		}
1599 		if (locked) {
1600 			locked = 0;
1601 			lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1602 		}
1603 		/*
1604 		 * set up another on_fault() for a possible fault
1605 		 * on the user lock accessed at "efault"
1606 		 */
1607 		if (on_fault(&ljb)) {
1608 			if (m_locked) {
1609 				m_locked = 0;
1610 				lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1611 			}
1612 			goto out;
1613 		}
1614 		error = EFAULT;
1615 		goto efault;
1616 	}
1617 
1618 	/*
1619 	 * Force Copy-on-write if necessary and ensure that the
1620 	 * synchronization object resides in read/write memory.
1621 	 * Cause an EFAULT return now if this is not so.
1622 	 */
1623 	fuword8_noerr(&mp->mutex_type, (uint8_t *)&mtype);
1624 	suword8_noerr(&mp->mutex_type, mtype);
1625 	if (UPIMUTEX(mtype) == 0) {
1626 		/* convert user level mutex, "mp", to a unique lwpchan */
1627 		/* check if mtype is ok to use below, instead of type from cv */
1628 		if (!get_lwpchan(p->p_as, (caddr_t)mp, mtype,
1629 		    &m_lwpchan, LWPCHAN_MPPOOL)) {
1630 			error = EFAULT;
1631 			goto out;
1632 		}
1633 	}
1634 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1635 	suword16_noerr(&cv->cond_type, type);
1636 	/* convert user level condition variable, "cv", to a unique lwpchan */
1637 	if (!get_lwpchan(p->p_as, (caddr_t)cv, type,
1638 	    &cv_lwpchan, LWPCHAN_CVPOOL)) {
1639 		error = EFAULT;
1640 		goto out;
1641 	}
1642 	no_lwpchan = 0;
1643 	cvwatched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1644 	if (UPIMUTEX(mtype) == 0)
1645 		mpwatched = watch_disable_addr((caddr_t)mp, sizeof (*mp),
1646 		    S_WRITE);
1647 
1648 	/*
1649 	 * lwpchan_lock ensures that the calling lwp is put to sleep atomically
1650 	 * with respect to a possible wakeup which is a result of either
1651 	 * an lwp_cond_signal() or an lwp_cond_broadcast().
1652 	 *
1653 	 * What's misleading, is that the lwp is put to sleep after the
1654 	 * condition variable's mutex is released.  This is OK as long as
1655 	 * the release operation is also done while holding lwpchan_lock.
1656 	 * The lwp is then put to sleep when the possibility of pagefaulting
1657 	 * or sleeping is completely eliminated.
1658 	 */
1659 	lwpchan_lock(&cv_lwpchan, LWPCHAN_CVPOOL);
1660 	locked = 1;
1661 	if (UPIMUTEX(mtype) == 0) {
1662 		lwpchan_lock(&m_lwpchan, LWPCHAN_MPPOOL);
1663 		m_locked = 1;
1664 		suword8_noerr(&cv->cond_waiters_kernel, 1);
1665 		/*
1666 		 * unlock the condition variable's mutex. (pagefaults are
1667 		 * possible here.)
1668 		 */
1669 		if (mtype & USYNC_PROCESS)
1670 			suword32_noerr(&mp->mutex_ownerpid, 0);
1671 		ulock_clear(&mp->mutex_lockw);
1672 		fuword8_noerr(&mp->mutex_waiters, &waiters);
1673 		if (waiters != 0) {
1674 			/*
1675 			 * Given the locking of lwpchan_lock around the release
1676 			 * of the mutex and checking for waiters, the following
1677 			 * call to lwp_release() can fail ONLY if the lock
1678 			 * acquirer is interrupted after setting the waiter bit,
1679 			 * calling lwp_block() and releasing lwpchan_lock.
1680 			 * In this case, it could get pulled off the lwp sleep
1681 			 * q (via setrun()) before the following call to
1682 			 * lwp_release() occurs. In this case, the lock
1683 			 * requestor will update the waiter bit correctly by
1684 			 * re-evaluating it.
1685 			 */
1686 			if (lwp_release(&m_lwpchan, &waiters, 0))
1687 				suword8_noerr(&mp->mutex_waiters, waiters);
1688 		}
1689 		m_locked = 0;
1690 		lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1691 	} else {
1692 		suword8_noerr(&cv->cond_waiters_kernel, 1);
1693 		error = lwp_upimutex_unlock(mp, mtype);
1694 		if (error) {	/* if the upimutex unlock failed */
1695 			locked = 0;
1696 			lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1697 			goto out;
1698 		}
1699 	}
1700 	no_fault();
1701 
1702 	if (mpwatched) {
1703 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
1704 		mpwatched = 0;
1705 	}
1706 	if (cvwatched) {
1707 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1708 		cvwatched = 0;
1709 	}
1710 
1711 	/*
1712 	 * Put the lwp in an orderly state for debugging.
1713 	 */
1714 	prstop(PR_REQUESTED, 0);
1715 	if (check_park && (!schedctl_is_park() || t->t_unpark)) {
1716 		/*
1717 		 * We received a signal at user-level before calling here
1718 		 * or another thread wants us to return immediately
1719 		 * with EINTR.  See lwp_unpark().
1720 		 */
1721 		imm_unpark = 1;
1722 		t->t_unpark = 0;
1723 		timedwait = NULL;
1724 	} else if (timedwait) {
1725 		/*
1726 		 * If we successfully queue the timeout,
1727 		 * then don't drop t_delay_lock until
1728 		 * we are on the sleep queue (below).
1729 		 */
1730 		mutex_enter(&t->t_delay_lock);
1731 		if (lwp_timer_enqueue(&lwpt) != 0) {
1732 			mutex_exit(&t->t_delay_lock);
1733 			imm_timeout = 1;
1734 			timedwait = NULL;
1735 		}
1736 	}
1737 	t->t_flag |= T_WAITCVSEM;
1738 	lwp_block(&cv_lwpchan);
1739 	/*
1740 	 * Nothing should happen to cause the lwp to go to sleep
1741 	 * until after it returns from swtch().
1742 	 */
1743 	if (timedwait)
1744 		mutex_exit(&t->t_delay_lock);
1745 	locked = 0;
1746 	lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1747 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) ||
1748 	    (imm_timeout | imm_unpark))
1749 		setrun(t);
1750 	swtch();
1751 	t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
1752 	if (timedwait)
1753 		tim = lwp_timer_dequeue(&lwpt);
1754 	if (ISSIG(t, FORREAL) || lwp->lwp_sysabort ||
1755 	    MUSTRETURN(p, t) || imm_unpark)
1756 		error = EINTR;
1757 	else if (imm_timeout || (timedwait && tim == -1))
1758 		error = ETIME;
1759 	lwp->lwp_asleep = 0;
1760 	lwp->lwp_sysabort = 0;
1761 	setallwatch();
1762 
1763 	if (t->t_mstate == LMS_USER_LOCK)
1764 		(void) new_mstate(t, LMS_SYSTEM);
1765 
1766 	if (tsp && check_park)		/* copyout the residual time left */
1767 		error = lwp_timer_copyout(&lwpt, error);
1768 
1769 	/* the mutex is reacquired by the caller on return to user level */
1770 	if (error) {
1771 		/*
1772 		 * If we were concurrently lwp_cond_signal()d and we
1773 		 * received a UNIX signal or got a timeout, then perform
1774 		 * another lwp_cond_signal() to avoid consuming the wakeup.
1775 		 */
1776 		if (t->t_release)
1777 			(void) lwp_cond_signal(cv);
1778 		return (set_errno(error));
1779 	}
1780 	return (0);
1781 
1782 efault:
1783 	/*
1784 	 * make sure that the user level lock is dropped before
1785 	 * returning to caller, since the caller always re-acquires it.
1786 	 */
1787 	if (UPIMUTEX(mtype) == 0) {
1788 		lwpchan_lock(&m_lwpchan, LWPCHAN_MPPOOL);
1789 		m_locked = 1;
1790 		if (mtype & USYNC_PROCESS)
1791 			suword32_noerr(&mp->mutex_ownerpid, 0);
1792 		ulock_clear(&mp->mutex_lockw);
1793 		fuword8_noerr(&mp->mutex_waiters, &waiters);
1794 		if (waiters != 0) {
1795 			/*
1796 			 * See comment above on lock clearing and lwp_release()
1797 			 * success/failure.
1798 			 */
1799 			if (lwp_release(&m_lwpchan, &waiters, 0))
1800 				suword8_noerr(&mp->mutex_waiters, waiters);
1801 		}
1802 		m_locked = 0;
1803 		lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1804 	} else {
1805 		(void) lwp_upimutex_unlock(mp, mtype);
1806 	}
1807 out:
1808 	no_fault();
1809 	if (mpwatched)
1810 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
1811 	if (cvwatched)
1812 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1813 	if (t->t_mstate == LMS_USER_LOCK)
1814 		(void) new_mstate(t, LMS_SYSTEM);
1815 	return (set_errno(error));
1816 }
1817 
1818 /*
1819  * wakeup one lwp that's blocked on this condition variable.
1820  */
1821 int
1822 lwp_cond_signal(lwp_cond_t *cv)
1823 {
1824 	proc_t *p = ttoproc(curthread);
1825 	lwpchan_t lwpchan;
1826 	uchar_t waiters;
1827 	volatile uint16_t type = 0;
1828 	volatile int locked = 0;
1829 	volatile int watched = 0;
1830 	label_t ljb;
1831 	int error = 0;
1832 
1833 	if ((caddr_t)cv >= p->p_as->a_userlimit)
1834 		return (set_errno(EFAULT));
1835 
1836 	watched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1837 
1838 	if (on_fault(&ljb)) {
1839 		if (locked)
1840 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1841 		error = EFAULT;
1842 		goto out;
1843 	}
1844 	/*
1845 	 * Force Copy-on-write if necessary and ensure that the
1846 	 * synchronization object resides in read/write memory.
1847 	 * Cause an EFAULT return now if this is not so.
1848 	 */
1849 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1850 	suword16_noerr(&cv->cond_type, type);
1851 	if (!get_lwpchan(curproc->p_as, (caddr_t)cv, type,
1852 	    &lwpchan, LWPCHAN_CVPOOL)) {
1853 		error = EFAULT;
1854 		goto out;
1855 	}
1856 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1857 	locked = 1;
1858 	fuword8_noerr(&cv->cond_waiters_kernel, &waiters);
1859 	if (waiters != 0) {
1860 		/*
1861 		 * The following call to lwp_release() might fail but it is
1862 		 * OK to write into the waiters bit below, since the memory
1863 		 * could not have been re-used or unmapped (for correctly
1864 		 * written user programs) as in the case of lwp_mutex_wakeup().
1865 		 * For an incorrect program, we should not care about data
1866 		 * corruption since this is just one instance of other places
1867 		 * where corruption can occur for such a program. Of course
1868 		 * if the memory is unmapped, normal fault recovery occurs.
1869 		 */
1870 		(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
1871 		suword8_noerr(&cv->cond_waiters_kernel, waiters);
1872 	}
1873 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1874 out:
1875 	no_fault();
1876 	if (watched)
1877 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1878 	if (error)
1879 		return (set_errno(error));
1880 	return (0);
1881 }
1882 
1883 /*
1884  * wakeup every lwp that's blocked on this condition variable.
1885  */
1886 int
1887 lwp_cond_broadcast(lwp_cond_t *cv)
1888 {
1889 	proc_t *p = ttoproc(curthread);
1890 	lwpchan_t lwpchan;
1891 	volatile uint16_t type = 0;
1892 	volatile int locked = 0;
1893 	volatile int watched = 0;
1894 	label_t ljb;
1895 	uchar_t waiters;
1896 	int error = 0;
1897 
1898 	if ((caddr_t)cv >= p->p_as->a_userlimit)
1899 		return (set_errno(EFAULT));
1900 
1901 	watched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1902 
1903 	if (on_fault(&ljb)) {
1904 		if (locked)
1905 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1906 		error = EFAULT;
1907 		goto out;
1908 	}
1909 	/*
1910 	 * Force Copy-on-write if necessary and ensure that the
1911 	 * synchronization object resides in read/write memory.
1912 	 * Cause an EFAULT return now if this is not so.
1913 	 */
1914 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1915 	suword16_noerr(&cv->cond_type, type);
1916 	if (!get_lwpchan(curproc->p_as, (caddr_t)cv, type,
1917 	    &lwpchan, LWPCHAN_CVPOOL)) {
1918 		error = EFAULT;
1919 		goto out;
1920 	}
1921 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1922 	locked = 1;
1923 	fuword8_noerr(&cv->cond_waiters_kernel, &waiters);
1924 	if (waiters != 0) {
1925 		lwp_release_all(&lwpchan);
1926 		suword8_noerr(&cv->cond_waiters_kernel, 0);
1927 	}
1928 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1929 out:
1930 	no_fault();
1931 	if (watched)
1932 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1933 	if (error)
1934 		return (set_errno(error));
1935 	return (0);
1936 }
1937 
1938 int
1939 lwp_sema_trywait(lwp_sema_t *sp)
1940 {
1941 	kthread_t *t = curthread;
1942 	proc_t *p = ttoproc(t);
1943 	label_t ljb;
1944 	volatile int locked = 0;
1945 	volatile int watched = 0;
1946 	volatile uint16_t type = 0;
1947 	int count;
1948 	lwpchan_t lwpchan;
1949 	uchar_t waiters;
1950 	int error = 0;
1951 
1952 	if ((caddr_t)sp >= p->p_as->a_userlimit)
1953 		return (set_errno(EFAULT));
1954 
1955 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
1956 
1957 	if (on_fault(&ljb)) {
1958 		if (locked)
1959 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1960 		error = EFAULT;
1961 		goto out;
1962 	}
1963 	/*
1964 	 * Force Copy-on-write if necessary and ensure that the
1965 	 * synchronization object resides in read/write memory.
1966 	 * Cause an EFAULT return now if this is not so.
1967 	 */
1968 	fuword16_noerr((void *)&sp->sema_type, (uint16_t *)&type);
1969 	suword16_noerr((void *)&sp->sema_type, type);
1970 	if (!get_lwpchan(p->p_as, (caddr_t)sp, type,
1971 	    &lwpchan, LWPCHAN_CVPOOL)) {
1972 		error = EFAULT;
1973 		goto out;
1974 	}
1975 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1976 	locked = 1;
1977 	fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
1978 	if (count == 0)
1979 		error = EBUSY;
1980 	else
1981 		suword32_noerr((void *)&sp->sema_count, --count);
1982 	if (count != 0) {
1983 		fuword8_noerr(&sp->sema_waiters, &waiters);
1984 		if (waiters != 0) {
1985 			(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
1986 			suword8_noerr(&sp->sema_waiters, waiters);
1987 		}
1988 	}
1989 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1990 out:
1991 	no_fault();
1992 	if (watched)
1993 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
1994 	if (error)
1995 		return (set_errno(error));
1996 	return (0);
1997 }
1998 
1999 /*
2000  * See lwp_cond_wait(), above, for an explanation of the 'check_park' argument.
2001  */
2002 int
2003 lwp_sema_timedwait(lwp_sema_t *sp, timespec_t *tsp, int check_park)
2004 {
2005 	kthread_t *t = curthread;
2006 	klwp_t *lwp = ttolwp(t);
2007 	proc_t *p = ttoproc(t);
2008 	lwp_timer_t lwpt;
2009 	caddr_t timedwait;
2010 	clock_t tim = -1;
2011 	label_t ljb;
2012 	volatile int locked = 0;
2013 	volatile int watched = 0;
2014 	volatile uint16_t type = 0;
2015 	int count;
2016 	lwpchan_t lwpchan;
2017 	uchar_t waiters;
2018 	int error = 0;
2019 	int time_error;
2020 	int imm_timeout = 0;
2021 	int imm_unpark = 0;
2022 
2023 	if ((caddr_t)sp >= p->p_as->a_userlimit)
2024 		return (set_errno(EFAULT));
2025 
2026 	timedwait = (caddr_t)tsp;
2027 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
2028 	    lwpt.lwpt_imm_timeout) {
2029 		imm_timeout = 1;
2030 		timedwait = NULL;
2031 	}
2032 
2033 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2034 
2035 	if (on_fault(&ljb)) {
2036 		if (locked)
2037 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2038 		error = EFAULT;
2039 		goto out;
2040 	}
2041 	/*
2042 	 * Force Copy-on-write if necessary and ensure that the
2043 	 * synchronization object resides in read/write memory.
2044 	 * Cause an EFAULT return now if this is not so.
2045 	 */
2046 	fuword16_noerr((void *)&sp->sema_type, (uint16_t *)&type);
2047 	suword16_noerr((void *)&sp->sema_type, type);
2048 	if (!get_lwpchan(p->p_as, (caddr_t)sp, type,
2049 	    &lwpchan, LWPCHAN_CVPOOL)) {
2050 		error = EFAULT;
2051 		goto out;
2052 	}
2053 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2054 	locked = 1;
2055 	fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
2056 	while (error == 0 && count == 0) {
2057 		if (time_error) {
2058 			/*
2059 			 * The SUSV3 Posix spec is very clear that we
2060 			 * should get no error from validating the
2061 			 * timer until we would actually sleep.
2062 			 */
2063 			error = time_error;
2064 			break;
2065 		}
2066 		suword8_noerr(&sp->sema_waiters, 1);
2067 		if (watched)
2068 			watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2069 		/*
2070 		 * Put the lwp in an orderly state for debugging.
2071 		 */
2072 		prstop(PR_REQUESTED, 0);
2073 		if (check_park && (!schedctl_is_park() || t->t_unpark)) {
2074 			/*
2075 			 * We received a signal at user-level before calling
2076 			 * here or another thread wants us to return
2077 			 * immediately with EINTR.  See lwp_unpark().
2078 			 */
2079 			imm_unpark = 1;
2080 			t->t_unpark = 0;
2081 			timedwait = NULL;
2082 		} else if (timedwait) {
2083 			/*
2084 			 * If we successfully queue the timeout,
2085 			 * then don't drop t_delay_lock until
2086 			 * we are on the sleep queue (below).
2087 			 */
2088 			mutex_enter(&t->t_delay_lock);
2089 			if (lwp_timer_enqueue(&lwpt) != 0) {
2090 				mutex_exit(&t->t_delay_lock);
2091 				imm_timeout = 1;
2092 				timedwait = NULL;
2093 			}
2094 		}
2095 		t->t_flag |= T_WAITCVSEM;
2096 		lwp_block(&lwpchan);
2097 		/*
2098 		 * Nothing should happen to cause the lwp to sleep
2099 		 * again until after it returns from swtch().
2100 		 */
2101 		if (timedwait)
2102 			mutex_exit(&t->t_delay_lock);
2103 		locked = 0;
2104 		lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2105 		if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) ||
2106 		    (imm_timeout | imm_unpark))
2107 			setrun(t);
2108 		swtch();
2109 		t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
2110 		if (timedwait)
2111 			tim = lwp_timer_dequeue(&lwpt);
2112 		setallwatch();
2113 		if (ISSIG(t, FORREAL) || lwp->lwp_sysabort ||
2114 		    MUSTRETURN(p, t) || imm_unpark)
2115 			error = EINTR;
2116 		else if (imm_timeout || (timedwait && tim == -1))
2117 			error = ETIME;
2118 		lwp->lwp_asleep = 0;
2119 		lwp->lwp_sysabort = 0;
2120 		watched = watch_disable_addr((caddr_t)sp,
2121 		    sizeof (*sp), S_WRITE);
2122 		lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2123 		locked = 1;
2124 		fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
2125 	}
2126 	if (error == 0)
2127 		suword32_noerr((void *)&sp->sema_count, --count);
2128 	if (count != 0) {
2129 		(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
2130 		suword8_noerr(&sp->sema_waiters, waiters);
2131 	}
2132 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2133 out:
2134 	no_fault();
2135 	if (watched)
2136 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2137 	if (tsp && check_park && !time_error)
2138 		error = lwp_timer_copyout(&lwpt, error);
2139 	if (error)
2140 		return (set_errno(error));
2141 	return (0);
2142 }
2143 
2144 /*
2145  * Obsolete lwp_sema_wait() interface, no longer called from libc.
2146  * libc now calls lwp_sema_timedwait().
2147  * This system call trap exists solely for the benefit of old
2148  * statically linked applications from Solaris 9 and before.
2149  * It should be removed when we no longer care about such applications.
2150  */
2151 int
2152 lwp_sema_wait(lwp_sema_t *sp)
2153 {
2154 	return (lwp_sema_timedwait(sp, NULL, 0));
2155 }
2156 
2157 int
2158 lwp_sema_post(lwp_sema_t *sp)
2159 {
2160 	proc_t *p = ttoproc(curthread);
2161 	label_t ljb;
2162 	volatile int locked = 0;
2163 	volatile int watched = 0;
2164 	volatile uint16_t type = 0;
2165 	int count;
2166 	lwpchan_t lwpchan;
2167 	uchar_t waiters;
2168 	int error = 0;
2169 
2170 	if ((caddr_t)sp >= p->p_as->a_userlimit)
2171 		return (set_errno(EFAULT));
2172 
2173 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2174 
2175 	if (on_fault(&ljb)) {
2176 		if (locked)
2177 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2178 		error = EFAULT;
2179 		goto out;
2180 	}
2181 	/*
2182 	 * Force Copy-on-write if necessary and ensure that the
2183 	 * synchronization object resides in read/write memory.
2184 	 * Cause an EFAULT return now if this is not so.
2185 	 */
2186 	fuword16_noerr(&sp->sema_type, (uint16_t *)&type);
2187 	suword16_noerr(&sp->sema_type, type);
2188 	if (!get_lwpchan(curproc->p_as, (caddr_t)sp, type,
2189 	    &lwpchan, LWPCHAN_CVPOOL)) {
2190 		error = EFAULT;
2191 		goto out;
2192 	}
2193 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2194 	locked = 1;
2195 	fuword32_noerr(&sp->sema_count, (uint32_t *)&count);
2196 	if (count == _SEM_VALUE_MAX)
2197 		error = EOVERFLOW;
2198 	else
2199 		suword32_noerr(&sp->sema_count, ++count);
2200 	if (count == 1) {
2201 		fuword8_noerr(&sp->sema_waiters, &waiters);
2202 		if (waiters) {
2203 			(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
2204 			suword8_noerr(&sp->sema_waiters, waiters);
2205 		}
2206 	}
2207 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2208 out:
2209 	no_fault();
2210 	if (watched)
2211 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2212 	if (error)
2213 		return (set_errno(error));
2214 	return (0);
2215 }
2216 
2217 #define	TRW_WANT_WRITE		0x1
2218 #define	TRW_LOCK_GRANTED	0x2
2219 
2220 #define	READ_LOCK		0
2221 #define	WRITE_LOCK		1
2222 #define	TRY_FLAG		0x10
2223 #define	READ_LOCK_TRY		(READ_LOCK | TRY_FLAG)
2224 #define	WRITE_LOCK_TRY		(WRITE_LOCK | TRY_FLAG)
2225 
2226 /*
2227  * Release one writer or one or more readers. Compute the rwstate word to
2228  * reflect the new state of the queue. For a safe hand-off we copy the new
2229  * rwstate value back to userland before we wake any of the new lock holders.
2230  *
2231  * Note that sleepq_insert() implements a prioritized FIFO (with writers
2232  * being given precedence over readers of the same priority).
2233  *
2234  * If the first thread is a reader we scan the queue releasing all readers
2235  * until we hit a writer or the end of the queue. If the first thread is a
2236  * writer we still need to check for another writer.
2237  */
2238 void
2239 lwp_rwlock_release(lwpchan_t *lwpchan, lwp_rwlock_t *rw)
2240 {
2241 	sleepq_head_t *sqh;
2242 	kthread_t *tp;
2243 	kthread_t **tpp;
2244 	kthread_t *tpnext;
2245 	kthread_t *wakelist = NULL;
2246 	uint32_t rwstate = 0;
2247 	int wcount = 0;
2248 	int rcount = 0;
2249 
2250 	sqh = lwpsqhash(lwpchan);
2251 	disp_lock_enter(&sqh->sq_lock);
2252 	tpp = &sqh->sq_queue.sq_first;
2253 	while ((tp = *tpp) != NULL) {
2254 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
2255 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
2256 			if (tp->t_writer & TRW_WANT_WRITE) {
2257 				if ((wcount++ == 0) && (rcount == 0)) {
2258 					rwstate |= URW_WRITE_LOCKED;
2259 
2260 					/* Just one writer to wake. */
2261 					sleepq_unlink(tpp, tp);
2262 					wakelist = tp;
2263 
2264 					/* tpp already set for next thread. */
2265 					continue;
2266 				} else {
2267 					rwstate |= URW_HAS_WAITERS;
2268 					/* We need look no further. */
2269 					break;
2270 				}
2271 			} else {
2272 				rcount++;
2273 				if (wcount == 0) {
2274 					rwstate++;
2275 
2276 					/* Add reader to wake list. */
2277 					sleepq_unlink(tpp, tp);
2278 					tp->t_link = wakelist;
2279 					wakelist = tp;
2280 
2281 					/* tpp already set for next thread. */
2282 					continue;
2283 				} else {
2284 					rwstate |= URW_HAS_WAITERS;
2285 					/* We need look no further. */
2286 					break;
2287 				}
2288 			}
2289 		}
2290 		tpp = &tp->t_link;
2291 	}
2292 
2293 	/* Copy the new rwstate back to userland. */
2294 	suword32_noerr(&rw->rwlock_readers, rwstate);
2295 
2296 	/* Wake the new lock holder(s) up. */
2297 	tp = wakelist;
2298 	while (tp != NULL) {
2299 		DTRACE_SCHED1(wakeup, kthread_t *, tp);
2300 		tp->t_wchan0 = NULL;
2301 		tp->t_wchan = NULL;
2302 		tp->t_sobj_ops = NULL;
2303 		tp->t_writer |= TRW_LOCK_GRANTED;
2304 		tpnext = tp->t_link;
2305 		tp->t_link = NULL;
2306 		CL_WAKEUP(tp);
2307 		thread_unlock_high(tp);
2308 		tp = tpnext;
2309 	}
2310 
2311 	disp_lock_exit(&sqh->sq_lock);
2312 }
2313 
2314 /*
2315  * We enter here holding the user-level mutex, which we must release before
2316  * returning or blocking. Based on lwp_cond_wait().
2317  */
2318 static int
2319 lwp_rwlock_lock(lwp_rwlock_t *rw, timespec_t *tsp, int rd_wr)
2320 {
2321 	lwp_mutex_t *mp = NULL;
2322 	kthread_t *t = curthread;
2323 	kthread_t *tp;
2324 	klwp_t *lwp = ttolwp(t);
2325 	proc_t *p = ttoproc(t);
2326 	lwp_timer_t lwpt;
2327 	lwpchan_t lwpchan;
2328 	lwpchan_t mlwpchan;
2329 	caddr_t timedwait;
2330 	volatile uint16_t type = 0;
2331 	volatile uint8_t mtype = 0;
2332 	uchar_t mwaiters;
2333 	volatile int error = 0;
2334 	int time_error;
2335 	clock_t tim = -1;
2336 	volatile int locked = 0;
2337 	volatile int mlocked = 0;
2338 	volatile int watched = 0;
2339 	volatile int mwatched = 0;
2340 	label_t ljb;
2341 	volatile int no_lwpchan = 1;
2342 	int imm_timeout = 0;
2343 	int try_flag;
2344 	uint32_t rwstate;
2345 	int acquired = 0;
2346 
2347 	/* We only check rw because the mutex is included in it. */
2348 	if ((caddr_t)rw >= p->p_as->a_userlimit)
2349 		return (set_errno(EFAULT));
2350 
2351 	/* We must only report this error if we are about to sleep (later). */
2352 	timedwait = (caddr_t)tsp;
2353 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
2354 	    lwpt.lwpt_imm_timeout) {
2355 		imm_timeout = 1;
2356 		timedwait = NULL;
2357 	}
2358 
2359 	(void) new_mstate(t, LMS_USER_LOCK);
2360 
2361 	if (on_fault(&ljb)) {
2362 		if (no_lwpchan) {
2363 			error = EFAULT;
2364 			goto out_nodrop;
2365 		}
2366 		if (mlocked) {
2367 			mlocked = 0;
2368 			lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2369 		}
2370 		if (locked) {
2371 			locked = 0;
2372 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2373 		}
2374 		/*
2375 		 * Set up another on_fault() for a possible fault
2376 		 * on the user lock accessed at "out_drop".
2377 		 */
2378 		if (on_fault(&ljb)) {
2379 			if (mlocked) {
2380 				mlocked = 0;
2381 				lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2382 			}
2383 			error = EFAULT;
2384 			goto out_nodrop;
2385 		}
2386 		error = EFAULT;
2387 		goto out_nodrop;
2388 	}
2389 
2390 	/* Process rd_wr (including sanity check). */
2391 	try_flag = (rd_wr & TRY_FLAG);
2392 	rd_wr &= ~TRY_FLAG;
2393 	if ((rd_wr != READ_LOCK) && (rd_wr != WRITE_LOCK)) {
2394 		error = EINVAL;
2395 		goto out_nodrop;
2396 	}
2397 
2398 	/*
2399 	 * Force Copy-on-write if necessary and ensure that the
2400 	 * synchronization object resides in read/write memory.
2401 	 * Cause an EFAULT return now if this is not so.
2402 	 */
2403 	mp = &rw->mutex;
2404 	fuword8_noerr(&mp->mutex_type, (uint8_t *)&mtype);
2405 	fuword16_noerr(&rw->rwlock_type, (uint16_t *)&type);
2406 	suword8_noerr(&mp->mutex_type, mtype);
2407 	suword16_noerr(&rw->rwlock_type, type);
2408 
2409 	/* We can only continue for simple USYNC_PROCESS locks. */
2410 	if ((mtype != USYNC_PROCESS) || (type != USYNC_PROCESS)) {
2411 		error = EINVAL;
2412 		goto out_nodrop;
2413 	}
2414 
2415 	/* Convert user level mutex, "mp", to a unique lwpchan. */
2416 	if (!get_lwpchan(p->p_as, (caddr_t)mp, mtype,
2417 	    &mlwpchan, LWPCHAN_MPPOOL)) {
2418 		error = EFAULT;
2419 		goto out_nodrop;
2420 	}
2421 
2422 	/* Convert user level rwlock, "rw", to a unique lwpchan. */
2423 	if (!get_lwpchan(p->p_as, (caddr_t)rw, type,
2424 	    &lwpchan, LWPCHAN_CVPOOL)) {
2425 		error = EFAULT;
2426 		goto out_nodrop;
2427 	}
2428 
2429 	no_lwpchan = 0;
2430 	watched = watch_disable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2431 	mwatched = watch_disable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2432 
2433 	/*
2434 	 * lwpchan_lock() ensures that the calling LWP is put to sleep
2435 	 * atomically with respect to a possible wakeup which is a result
2436 	 * of lwp_rwlock_unlock().
2437 	 *
2438 	 * What's misleading is that the LWP is put to sleep after the
2439 	 * rwlock's mutex is released. This is OK as long as the release
2440 	 * operation is also done while holding mlwpchan. The LWP is then
2441 	 * put to sleep when the possibility of pagefaulting or sleeping
2442 	 * has been completely eliminated.
2443 	 */
2444 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2445 	locked = 1;
2446 	lwpchan_lock(&mlwpchan, LWPCHAN_MPPOOL);
2447 	mlocked = 1;
2448 
2449 	/*
2450 	 * Fetch the current rwlock state.
2451 	 *
2452 	 * The possibility of spurious wake-ups or killed waiters means
2453 	 * rwstate's URW_HAS_WAITERS bit may indicate false positives.
2454 	 * We only fix these if they are important to us.
2455 	 *
2456 	 * Although various error states can be observed here (e.g. the lock
2457 	 * is not held, but there are waiters) we assume these are applicaton
2458 	 * errors and so we take no corrective action.
2459 	 */
2460 	fuword32_noerr(&rw->rwlock_readers, &rwstate);
2461 	/*
2462 	 * We cannot legitimately get here from user-level
2463 	 * without URW_HAS_WAITERS being set.
2464 	 * Set it now to guard against user-level error.
2465 	 */
2466 	rwstate |= URW_HAS_WAITERS;
2467 
2468 	/*
2469 	 * We can try only if the lock isn't held by a writer.
2470 	 */
2471 	if (!(rwstate & URW_WRITE_LOCKED)) {
2472 		tp = lwp_queue_waiter(&lwpchan);
2473 		if (tp == NULL) {
2474 			/*
2475 			 * Hmmm, rwstate indicates waiters but there are
2476 			 * none queued. This could just be the result of a
2477 			 * spurious wakeup, so let's ignore it.
2478 			 *
2479 			 * We now have a chance to acquire the lock
2480 			 * uncontended, but this is the last chance for
2481 			 * a writer to acquire the lock without blocking.
2482 			 */
2483 			if (rd_wr == READ_LOCK) {
2484 				rwstate++;
2485 				acquired = 1;
2486 			} else if ((rwstate & URW_READERS_MASK) == 0) {
2487 				rwstate |= URW_WRITE_LOCKED;
2488 				acquired = 1;
2489 			}
2490 		} else if (rd_wr == READ_LOCK) {
2491 			/*
2492 			 * This is the last chance for a reader to acquire
2493 			 * the lock now, but it can only do so if there is
2494 			 * no writer of equal or greater priority at the
2495 			 * head of the queue .
2496 			 *
2497 			 * It is also just possible that there is a reader
2498 			 * at the head of the queue. This may be the result
2499 			 * of a spurious wakeup or an application failure.
2500 			 * In this case we only acquire the lock if we have
2501 			 * equal or greater priority. It is not our job to
2502 			 * release spurious waiters.
2503 			 */
2504 			pri_t our_pri = DISP_PRIO(t);
2505 			pri_t his_pri = DISP_PRIO(tp);
2506 
2507 			if ((our_pri > his_pri) || ((our_pri == his_pri) &&
2508 			    !(tp->t_writer & TRW_WANT_WRITE))) {
2509 				rwstate++;
2510 				acquired = 1;
2511 			}
2512 		}
2513 	}
2514 
2515 	if (acquired || try_flag || time_error) {
2516 		/*
2517 		 * We're not going to block this time.
2518 		 */
2519 		suword32_noerr(&rw->rwlock_readers, rwstate);
2520 		lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2521 		locked = 0;
2522 
2523 		if (acquired) {
2524 			/*
2525 			 * Got the lock!
2526 			 */
2527 			error = 0;
2528 
2529 		} else if (try_flag) {
2530 			/*
2531 			 * We didn't get the lock and we're about to block.
2532 			 * If we're doing a trylock, return EBUSY instead.
2533 			 */
2534 			error = EBUSY;
2535 
2536 		} else if (time_error) {
2537 			/*
2538 			 * The SUSV3 POSIX spec is very clear that we should
2539 			 * get no error from validating the timer (above)
2540 			 * until we would actually sleep.
2541 			 */
2542 			error = time_error;
2543 		}
2544 
2545 		goto out_drop;
2546 	}
2547 
2548 	/*
2549 	 * We're about to block, so indicate what kind of waiter we are.
2550 	 */
2551 	t->t_writer = 0;
2552 	if (rd_wr == WRITE_LOCK)
2553 		t->t_writer = TRW_WANT_WRITE;
2554 	suword32_noerr(&rw->rwlock_readers, rwstate);
2555 
2556 	/*
2557 	 * Unlock the rwlock's mutex (pagefaults are possible here).
2558 	 */
2559 	suword32_noerr((uint32_t *)&mp->mutex_owner, 0);
2560 	suword32_noerr((uint32_t *)&mp->mutex_owner + 1, 0);
2561 	suword32_noerr(&mp->mutex_ownerpid, 0);
2562 	ulock_clear(&mp->mutex_lockw);
2563 	fuword8_noerr(&mp->mutex_waiters, &mwaiters);
2564 	if (mwaiters != 0) {
2565 		/*
2566 		 * Given the locking of mlwpchan around the release of
2567 		 * the mutex and checking for waiters, the following
2568 		 * call to lwp_release() can fail ONLY if the lock
2569 		 * acquirer is interrupted after setting the waiter bit,
2570 		 * calling lwp_block() and releasing mlwpchan.
2571 		 * In this case, it could get pulled off the LWP sleep
2572 		 * queue (via setrun()) before the following call to
2573 		 * lwp_release() occurs, and the lock requestor will
2574 		 * update the waiter bit correctly by re-evaluating it.
2575 		 */
2576 		if (lwp_release(&mlwpchan, &mwaiters, 0))
2577 			suword8_noerr(&mp->mutex_waiters, mwaiters);
2578 	}
2579 	lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2580 	mlocked = 0;
2581 	no_fault();
2582 
2583 	if (mwatched) {
2584 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2585 		mwatched = 0;
2586 	}
2587 	if (watched) {
2588 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2589 		watched = 0;
2590 	}
2591 
2592 	/*
2593 	 * Put the LWP in an orderly state for debugging.
2594 	 */
2595 	prstop(PR_REQUESTED, 0);
2596 	if (timedwait) {
2597 		/*
2598 		 * If we successfully queue the timeout,
2599 		 * then don't drop t_delay_lock until
2600 		 * we are on the sleep queue (below).
2601 		 */
2602 		mutex_enter(&t->t_delay_lock);
2603 		if (lwp_timer_enqueue(&lwpt) != 0) {
2604 			mutex_exit(&t->t_delay_lock);
2605 			imm_timeout = 1;
2606 			timedwait = NULL;
2607 		}
2608 	}
2609 	t->t_flag |= T_WAITCVSEM;
2610 	lwp_block(&lwpchan);
2611 
2612 	/*
2613 	 * Nothing should happen to cause the LWp to go to sleep until after
2614 	 * it returns from swtch().
2615 	 */
2616 	if (timedwait)
2617 		mutex_exit(&t->t_delay_lock);
2618 	locked = 0;
2619 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2620 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t))
2621 		setrun(t);
2622 	swtch();
2623 
2624 	/*
2625 	 * We're back, but we need to work out why. Were we interrupted? Did
2626 	 * we timeout? Were we granted the lock?
2627 	 */
2628 	error = EAGAIN;
2629 	acquired = (t->t_writer & TRW_LOCK_GRANTED);
2630 	t->t_writer = 0;
2631 	t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
2632 	if (timedwait)
2633 		tim = lwp_timer_dequeue(&lwpt);
2634 	if (ISSIG(t, FORREAL) || lwp->lwp_sysabort || MUSTRETURN(p, t))
2635 		error = EINTR;
2636 	else if (imm_timeout || (timedwait && tim == -1))
2637 		error = ETIME;
2638 	lwp->lwp_asleep = 0;
2639 	lwp->lwp_sysabort = 0;
2640 	setallwatch();
2641 
2642 	/*
2643 	 * If we were granted the lock we don't care about EINTR or ETIME.
2644 	 */
2645 	if (acquired)
2646 		error = 0;
2647 
2648 	if (t->t_mstate == LMS_USER_LOCK)
2649 		(void) new_mstate(t, LMS_SYSTEM);
2650 
2651 	if (error)
2652 		return (set_errno(error));
2653 	return (0);
2654 
2655 out_drop:
2656 	/*
2657 	 * Make sure that the user level lock is dropped before returning
2658 	 * to the caller.
2659 	 */
2660 	if (!mlocked) {
2661 		lwpchan_lock(&mlwpchan, LWPCHAN_MPPOOL);
2662 		mlocked = 1;
2663 	}
2664 	suword32_noerr((uint32_t *)&mp->mutex_owner, 0);
2665 	suword32_noerr((uint32_t *)&mp->mutex_owner + 1, 0);
2666 	suword32_noerr(&mp->mutex_ownerpid, 0);
2667 	ulock_clear(&mp->mutex_lockw);
2668 	fuword8_noerr(&mp->mutex_waiters, &mwaiters);
2669 	if (mwaiters != 0) {
2670 		/*
2671 		 * See comment above on lock clearing and lwp_release()
2672 		 * success/failure.
2673 		 */
2674 		if (lwp_release(&mlwpchan, &mwaiters, 0))
2675 			suword8_noerr(&mp->mutex_waiters, mwaiters);
2676 	}
2677 	lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2678 	mlocked = 0;
2679 
2680 out_nodrop:
2681 	no_fault();
2682 	if (mwatched)
2683 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2684 	if (watched)
2685 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2686 	if (t->t_mstate == LMS_USER_LOCK)
2687 		(void) new_mstate(t, LMS_SYSTEM);
2688 	if (error)
2689 		return (set_errno(error));
2690 	return (0);
2691 }
2692 
2693 /*
2694  * We enter here holding the user-level mutex but, unlike lwp_rwlock_lock(),
2695  * we never drop the lock.
2696  */
2697 static int
2698 lwp_rwlock_unlock(lwp_rwlock_t *rw)
2699 {
2700 	kthread_t *t = curthread;
2701 	proc_t *p = ttoproc(t);
2702 	lwpchan_t lwpchan;
2703 	volatile uint16_t type = 0;
2704 	volatile int error = 0;
2705 	volatile int locked = 0;
2706 	volatile int watched = 0;
2707 	label_t ljb;
2708 	volatile int no_lwpchan = 1;
2709 	uint32_t rwstate;
2710 
2711 	/* We only check rw because the mutex is included in it. */
2712 	if ((caddr_t)rw >= p->p_as->a_userlimit)
2713 		return (set_errno(EFAULT));
2714 
2715 	if (on_fault(&ljb)) {
2716 		if (no_lwpchan) {
2717 			error = EFAULT;
2718 			goto out_nodrop;
2719 		}
2720 		if (locked) {
2721 			locked = 0;
2722 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2723 		}
2724 		error = EFAULT;
2725 		goto out_nodrop;
2726 	}
2727 
2728 	/*
2729 	 * Force Copy-on-write if necessary and ensure that the
2730 	 * synchronization object resides in read/write memory.
2731 	 * Cause an EFAULT return now if this is not so.
2732 	 */
2733 	fuword16_noerr(&rw->rwlock_type, (uint16_t *)&type);
2734 	suword16_noerr(&rw->rwlock_type, type);
2735 
2736 	/* We can only continue for simple USYNC_PROCESS locks. */
2737 	if (type != USYNC_PROCESS) {
2738 		error = EINVAL;
2739 		goto out_nodrop;
2740 	}
2741 
2742 	/* Convert user level rwlock, "rw", to a unique lwpchan. */
2743 	if (!get_lwpchan(p->p_as, (caddr_t)rw, type,
2744 	    &lwpchan, LWPCHAN_CVPOOL)) {
2745 		error = EFAULT;
2746 		goto out_nodrop;
2747 	}
2748 
2749 	no_lwpchan = 0;
2750 	watched = watch_disable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2751 
2752 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2753 	locked = 1;
2754 
2755 	/*
2756 	 * We can resolve multiple readers (except the last reader) here.
2757 	 * For the last reader or a writer we need lwp_rwlock_release(),
2758 	 * to which we also delegate the task of copying the new rwstate
2759 	 * back to userland (see the comment there).
2760 	 */
2761 	fuword32_noerr(&rw->rwlock_readers, &rwstate);
2762 	if (rwstate & URW_WRITE_LOCKED)
2763 		lwp_rwlock_release(&lwpchan, rw);
2764 	else if ((rwstate & URW_READERS_MASK) > 0) {
2765 		rwstate--;
2766 		if ((rwstate & URW_READERS_MASK) == 0)
2767 			lwp_rwlock_release(&lwpchan, rw);
2768 		else
2769 			suword32_noerr(&rw->rwlock_readers, rwstate);
2770 	}
2771 
2772 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2773 	locked = 0;
2774 	error = 0;
2775 
2776 out_nodrop:
2777 	no_fault();
2778 	if (watched)
2779 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2780 	if (error)
2781 		return (set_errno(error));
2782 	return (0);
2783 }
2784 
2785 int
2786 lwp_rwlock_sys(int subcode, lwp_rwlock_t *rwlp, timespec_t *tsp)
2787 {
2788 	switch (subcode) {
2789 	case 0:
2790 		return (lwp_rwlock_lock(rwlp, tsp, READ_LOCK));
2791 	case 1:
2792 		return (lwp_rwlock_lock(rwlp, tsp, WRITE_LOCK));
2793 	case 2:
2794 		return (lwp_rwlock_lock(rwlp, NULL, READ_LOCK_TRY));
2795 	case 3:
2796 		return (lwp_rwlock_lock(rwlp, NULL, WRITE_LOCK_TRY));
2797 	case 4:
2798 		return (lwp_rwlock_unlock(rwlp));
2799 	}
2800 	return (set_errno(EINVAL));
2801 }
2802 
2803 /*
2804  * Return the owner of the user-level s-object.
2805  * Since we can't really do this, return NULL.
2806  */
2807 /* ARGSUSED */
2808 static kthread_t *
2809 lwpsobj_owner(caddr_t sobj)
2810 {
2811 	return ((kthread_t *)NULL);
2812 }
2813 
2814 /*
2815  * Wake up a thread asleep on a user-level synchronization
2816  * object.
2817  */
2818 static void
2819 lwp_unsleep(kthread_t *t)
2820 {
2821 	ASSERT(THREAD_LOCK_HELD(t));
2822 	if (t->t_wchan0 != NULL) {
2823 		sleepq_head_t *sqh;
2824 		sleepq_t *sqp = t->t_sleepq;
2825 
2826 		if (sqp != NULL) {
2827 			sqh = lwpsqhash(&t->t_lwpchan);
2828 			ASSERT(&sqh->sq_queue == sqp);
2829 			sleepq_unsleep(t);
2830 			disp_lock_exit_high(&sqh->sq_lock);
2831 			CL_SETRUN(t);
2832 			return;
2833 		}
2834 	}
2835 	panic("lwp_unsleep: thread %p not on sleepq", (void *)t);
2836 }
2837 
2838 /*
2839  * Change the priority of a thread asleep on a user-level
2840  * synchronization object. To maintain proper priority order,
2841  * we:
2842  *	o dequeue the thread.
2843  *	o change its priority.
2844  *	o re-enqueue the thread.
2845  * Assumption: the thread is locked on entry.
2846  */
2847 static void
2848 lwp_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
2849 {
2850 	ASSERT(THREAD_LOCK_HELD(t));
2851 	if (t->t_wchan0 != NULL) {
2852 		sleepq_t   *sqp = t->t_sleepq;
2853 
2854 		sleepq_dequeue(t);
2855 		*t_prip = pri;
2856 		sleepq_insert(sqp, t);
2857 	} else
2858 		panic("lwp_change_pri: %p not on a sleep queue", (void *)t);
2859 }
2860 
2861 /*
2862  * Clean up a locked robust mutex
2863  */
2864 static void
2865 lwp_mutex_cleanup(lwpchan_entry_t *ent, uint16_t lockflg)
2866 {
2867 	uint16_t flag;
2868 	uchar_t waiters;
2869 	label_t ljb;
2870 	pid_t owner_pid;
2871 	lwp_mutex_t *lp;
2872 	volatile int locked = 0;
2873 	volatile int watched = 0;
2874 	volatile struct upimutex *upimutex = NULL;
2875 	volatile int upilocked = 0;
2876 
2877 	ASSERT(ent->lwpchan_type & LOCK_ROBUST);
2878 
2879 	lp = (lwp_mutex_t *)ent->lwpchan_addr;
2880 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2881 	if (on_fault(&ljb)) {
2882 		if (locked)
2883 			lwpchan_unlock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2884 		if (upilocked)
2885 			upimutex_unlock((upimutex_t *)upimutex, 0);
2886 		goto out;
2887 	}
2888 	if (ent->lwpchan_type & USYNC_PROCESS) {
2889 		fuword32_noerr(&lp->mutex_ownerpid, (uint32_t *)&owner_pid);
2890 		if ((UPIMUTEX(ent->lwpchan_type) || owner_pid != 0) &&
2891 		    owner_pid != curproc->p_pid)
2892 			goto out;
2893 	}
2894 	if (UPIMUTEX(ent->lwpchan_type)) {
2895 		lwpchan_t lwpchan = ent->lwpchan_lwpchan;
2896 		upib_t *upibp = &UPI_CHAIN(lwpchan);
2897 
2898 		mutex_enter(&upibp->upib_lock);
2899 		upimutex = upi_get(upibp, &lwpchan);
2900 		if (upimutex == NULL || upimutex->upi_owner != curthread) {
2901 			mutex_exit(&upibp->upib_lock);
2902 			goto out;
2903 		}
2904 		mutex_exit(&upibp->upib_lock);
2905 		upilocked = 1;
2906 		flag = lwp_clear_mutex(lp, lockflg);
2907 		suword8_noerr(&lp->mutex_lockw, 0);
2908 		upimutex_unlock((upimutex_t *)upimutex, flag);
2909 	} else {
2910 		lwpchan_lock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2911 		locked = 1;
2912 		if ((ent->lwpchan_type & USYNC_PROCESS) && owner_pid == 0) {
2913 			/*
2914 			 * There is no owner.  If there are waiters,
2915 			 * we should wake up one or all of them.
2916 			 * It doesn't hurt to wake them up in error
2917 			 * since they will just retry the lock and
2918 			 * go to sleep again if necessary.
2919 			 */
2920 			fuword8_noerr(&lp->mutex_waiters, &waiters);
2921 			if (waiters != 0) {	/* there are waiters */
2922 				fuword16_noerr(&lp->mutex_flag, &flag);
2923 				if (flag & LOCK_NOTRECOVERABLE) {
2924 					lwp_release_all(&ent->lwpchan_lwpchan);
2925 					suword8_noerr(&lp->mutex_waiters, 0);
2926 				} else if (lwp_release(&ent->lwpchan_lwpchan,
2927 				    &waiters, 0)) {
2928 					suword8_noerr(&lp->mutex_waiters,
2929 					    waiters);
2930 				}
2931 			}
2932 		} else {
2933 			(void) lwp_clear_mutex(lp, lockflg);
2934 			ulock_clear(&lp->mutex_lockw);
2935 			fuword8_noerr(&lp->mutex_waiters, &waiters);
2936 			if (waiters &&
2937 			    lwp_release(&ent->lwpchan_lwpchan, &waiters, 0))
2938 				suword8_noerr(&lp->mutex_waiters, waiters);
2939 		}
2940 		lwpchan_unlock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2941 	}
2942 out:
2943 	no_fault();
2944 	if (watched)
2945 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2946 }
2947 
2948 /*
2949  * Register a process-shared robust mutex in the lwpchan cache.
2950  */
2951 int
2952 lwp_mutex_register(lwp_mutex_t *lp)
2953 {
2954 	int error = 0;
2955 	volatile int watched;
2956 	label_t ljb;
2957 	uint8_t type;
2958 	lwpchan_t lwpchan;
2959 
2960 	if ((caddr_t)lp >= (caddr_t)USERLIMIT)
2961 		return (set_errno(EFAULT));
2962 
2963 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2964 
2965 	if (on_fault(&ljb)) {
2966 		error = EFAULT;
2967 	} else {
2968 		/*
2969 		 * Force Copy-on-write if necessary and ensure that the
2970 		 * synchronization object resides in read/write memory.
2971 		 * Cause an EFAULT return now if this is not so.
2972 		 */
2973 		fuword8_noerr(&lp->mutex_type, &type);
2974 		suword8_noerr(&lp->mutex_type, type);
2975 		if ((type & (USYNC_PROCESS|LOCK_ROBUST))
2976 		    != (USYNC_PROCESS|LOCK_ROBUST)) {
2977 			error = EINVAL;
2978 		} else if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
2979 		    &lwpchan, LWPCHAN_MPPOOL)) {
2980 			error = EFAULT;
2981 		}
2982 	}
2983 	no_fault();
2984 	if (watched)
2985 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2986 	if (error)
2987 		return (set_errno(error));
2988 	return (0);
2989 }
2990 
2991 int
2992 lwp_mutex_trylock(lwp_mutex_t *lp)
2993 {
2994 	kthread_t *t = curthread;
2995 	proc_t *p = ttoproc(t);
2996 	int error = 0;
2997 	volatile int locked = 0;
2998 	volatile int watched = 0;
2999 	label_t ljb;
3000 	volatile uint8_t type = 0;
3001 	uint16_t flag;
3002 	lwpchan_t lwpchan;
3003 
3004 	if ((caddr_t)lp >= p->p_as->a_userlimit)
3005 		return (set_errno(EFAULT));
3006 
3007 	(void) new_mstate(t, LMS_USER_LOCK);
3008 
3009 	if (on_fault(&ljb)) {
3010 		if (locked)
3011 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3012 		error = EFAULT;
3013 		goto out;
3014 	}
3015 	/*
3016 	 * Force Copy-on-write if necessary and ensure that the
3017 	 * synchronization object resides in read/write memory.
3018 	 * Cause an EFAULT return now if this is not so.
3019 	 */
3020 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
3021 	suword8_noerr(&lp->mutex_type, type);
3022 	if (UPIMUTEX(type)) {
3023 		no_fault();
3024 		error = lwp_upimutex_lock(lp, type, UPIMUTEX_TRY, NULL);
3025 		if ((type & USYNC_PROCESS) &&
3026 		    (error == 0 ||
3027 		    error == EOWNERDEAD || error == ELOCKUNMAPPED))
3028 			(void) suword32(&lp->mutex_ownerpid, p->p_pid);
3029 		if (error)
3030 			return (set_errno(error));
3031 		return (0);
3032 	}
3033 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
3034 	    &lwpchan, LWPCHAN_MPPOOL)) {
3035 		error = EFAULT;
3036 		goto out;
3037 	}
3038 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
3039 	locked = 1;
3040 	if (type & LOCK_ROBUST) {
3041 		fuword16_noerr(&lp->mutex_flag, &flag);
3042 		if (flag & LOCK_NOTRECOVERABLE) {
3043 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3044 			error =  ENOTRECOVERABLE;
3045 			goto out;
3046 		}
3047 	}
3048 
3049 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3050 
3051 	if (!ulock_try(&lp->mutex_lockw))
3052 		error = EBUSY;
3053 	else {
3054 		if (type & USYNC_PROCESS)
3055 			suword32_noerr(&lp->mutex_ownerpid, p->p_pid);
3056 		if (type & LOCK_ROBUST) {
3057 			fuword16_noerr(&lp->mutex_flag, &flag);
3058 			if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
3059 				if (flag & LOCK_OWNERDEAD)
3060 					error = EOWNERDEAD;
3061 				else if (type & USYNC_PROCESS_ROBUST)
3062 					error = ELOCKUNMAPPED;
3063 				else
3064 					error = EOWNERDEAD;
3065 			}
3066 		}
3067 	}
3068 	locked = 0;
3069 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3070 out:
3071 
3072 	if (t->t_mstate == LMS_USER_LOCK)
3073 		(void) new_mstate(t, LMS_SYSTEM);
3074 
3075 	no_fault();
3076 	if (watched)
3077 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3078 	if (error)
3079 		return (set_errno(error));
3080 	return (0);
3081 }
3082 
3083 /*
3084  * unlock the mutex and unblock lwps that is trying to acquire this mutex.
3085  * the blocked lwp resumes and retries to acquire the lock.
3086  */
3087 int
3088 lwp_mutex_unlock(lwp_mutex_t *lp)
3089 {
3090 	proc_t *p = ttoproc(curthread);
3091 	lwpchan_t lwpchan;
3092 	uchar_t waiters;
3093 	volatile int locked = 0;
3094 	volatile int watched = 0;
3095 	volatile uint8_t type = 0;
3096 	label_t ljb;
3097 	uint16_t flag;
3098 	int error = 0;
3099 
3100 	if ((caddr_t)lp >= p->p_as->a_userlimit)
3101 		return (set_errno(EFAULT));
3102 
3103 	if (on_fault(&ljb)) {
3104 		if (locked)
3105 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3106 		error = EFAULT;
3107 		goto out;
3108 	}
3109 
3110 	/*
3111 	 * Force Copy-on-write if necessary and ensure that the
3112 	 * synchronization object resides in read/write memory.
3113 	 * Cause an EFAULT return now if this is not so.
3114 	 */
3115 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
3116 	suword8_noerr(&lp->mutex_type, type);
3117 
3118 	if (UPIMUTEX(type)) {
3119 		no_fault();
3120 		error = lwp_upimutex_unlock(lp, type);
3121 		if (error)
3122 			return (set_errno(error));
3123 		return (0);
3124 	}
3125 
3126 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3127 
3128 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
3129 	    &lwpchan, LWPCHAN_MPPOOL)) {
3130 		error = EFAULT;
3131 		goto out;
3132 	}
3133 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
3134 	locked = 1;
3135 	if (type & LOCK_ROBUST) {
3136 		fuword16_noerr(&lp->mutex_flag, &flag);
3137 		if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
3138 			flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
3139 			flag |= LOCK_NOTRECOVERABLE;
3140 			suword16_noerr(&lp->mutex_flag, flag);
3141 		}
3142 	}
3143 	if (type & USYNC_PROCESS)
3144 		suword32_noerr(&lp->mutex_ownerpid, 0);
3145 	ulock_clear(&lp->mutex_lockw);
3146 	/*
3147 	 * Always wake up an lwp (if any) waiting on lwpchan. The woken lwp will
3148 	 * re-try the lock in lwp_mutex_timedlock(). The call to lwp_release()
3149 	 * may fail.  If it fails, do not write into the waiter bit.
3150 	 * The call to lwp_release() might fail due to one of three reasons:
3151 	 *
3152 	 * 	1. due to the thread which set the waiter bit not actually
3153 	 *	   sleeping since it got the lock on the re-try. The waiter
3154 	 *	   bit will then be correctly updated by that thread. This
3155 	 *	   window may be closed by reading the wait bit again here
3156 	 *	   and not calling lwp_release() at all if it is zero.
3157 	 *	2. the thread which set the waiter bit and went to sleep
3158 	 *	   was woken up by a signal. This time, the waiter recomputes
3159 	 *	   the wait bit in the return with EINTR code.
3160 	 *	3. the waiter bit read by lwp_mutex_wakeup() was in
3161 	 *	   memory that has been re-used after the lock was dropped.
3162 	 *	   In this case, writing into the waiter bit would cause data
3163 	 *	   corruption.
3164 	 */
3165 	fuword8_noerr(&lp->mutex_waiters, &waiters);
3166 	if (waiters) {
3167 		if ((type & LOCK_ROBUST) &&
3168 		    (flag & LOCK_NOTRECOVERABLE)) {
3169 			lwp_release_all(&lwpchan);
3170 			suword8_noerr(&lp->mutex_waiters, 0);
3171 		} else if (lwp_release(&lwpchan, &waiters, 0)) {
3172 			suword8_noerr(&lp->mutex_waiters, waiters);
3173 		}
3174 	}
3175 
3176 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3177 out:
3178 	no_fault();
3179 	if (watched)
3180 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3181 	if (error)
3182 		return (set_errno(error));
3183 	return (0);
3184 }
3185