1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 23 /* All Rights Reserved */ 24 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #ifndef _SYS_STRSUBR_H 32 #define _SYS_STRSUBR_H 33 34 #pragma ident "%Z%%M% %I% %E% SMI" /* SVr4.0 1.17 */ 35 36 /* 37 * WARNING: 38 * Everything in this file is private, belonging to the 39 * STREAMS subsystem. The only guarantee made about the 40 * contents of this file is that if you include it, your 41 * code will not port to the next release. 42 */ 43 #include <sys/stream.h> 44 #include <sys/stropts.h> 45 #include <sys/session.h> 46 #include <sys/kstat.h> 47 #include <sys/uio.h> 48 #include <sys/proc.h> 49 #include <vm/as.h> 50 #include <vm/page.h> 51 #include <vm/anon.h> 52 53 #ifdef __cplusplus 54 extern "C" { 55 #endif 56 57 /* 58 * In general, the STREAMS locks are disjoint; they are only held 59 * locally, and not simultaneously by a thread. However, module 60 * code, including at the stream head, requires some locks to be 61 * acquired in order for its safety. 62 * 1. Stream level claim. This prevents the value of q_next 63 * from changing while module code is executing. 64 * 2. Queue level claim. This prevents the value of q_ptr 65 * from changing while put or service code is executing. 66 * In addition, it provides for queue single-threading 67 * for QPAIR and PERQ MT-safe modules. 68 * 3. Stream head lock. May be held by the stream head module 69 * to implement a read/write/open/close monitor. 70 * Note: that the only types of twisted stream supported are 71 * the pipe and transports which have read and write service 72 * procedures on both sides of the twist. 73 * 4. Queue lock. May be acquired by utility routines on 74 * behalf of a module. 75 */ 76 77 /* 78 * In general, sd_lock protects the consistency of the stdata 79 * structure. Additionally, it is used with sd_monitor 80 * to implement an open/close monitor. In particular, it protects 81 * the following fields: 82 * sd_iocblk 83 * sd_flag 84 * sd_copyflag 85 * sd_iocid 86 * sd_iocwait 87 * sd_sidp 88 * sd_pgidp 89 * sd_wroff 90 * sd_rerror 91 * sd_werror 92 * sd_pushcnt 93 * sd_sigflags 94 * sd_siglist 95 * sd_pollist 96 * sd_mark 97 * sd_closetime 98 * sd_wakeq 99 * sd_uiordq 100 * sd_uiowrq 101 * sd_maxblk 102 * 103 * The following fields are modified only by the allocator, which 104 * has exclusive access to them at that time: 105 * sd_wrq 106 * sd_strtab 107 * 108 * The following field is protected by the overlying file system 109 * code, guaranteeing single-threading of opens: 110 * sd_vnode 111 * 112 * Stream-level locks should be acquired before any queue-level locks 113 * are acquired. 114 * 115 * The stream head write queue lock(sd_wrq) is used to protect the 116 * fields qn_maxpsz and qn_minpsz because freezestr() which is 117 * necessary for strqset() only gets the queue lock. 118 */ 119 120 /* 121 * Function types for the parameterized stream head. 122 * The msgfunc_t takes the parameters: 123 * msgfunc(vnode_t *vp, mblk_t *mp, strwakeup_t *wakeups, 124 * strsigset_t *firstmsgsigs, strsigset_t *allmsgsigs, 125 * strpollset_t *pollwakeups); 126 * It returns an optional message to be processed by the stream head. 127 * 128 * The parameters for errfunc_t are: 129 * errfunc(vnode *vp, int ispeek, int *clearerr); 130 * It returns an errno and zero if there was no pending error. 131 */ 132 typedef uint_t strwakeup_t; 133 typedef uint_t strsigset_t; 134 typedef short strpollset_t; 135 typedef uintptr_t callbparams_id_t; 136 typedef mblk_t *(*msgfunc_t)(vnode_t *, mblk_t *, strwakeup_t *, 137 strsigset_t *, strsigset_t *, strpollset_t *); 138 typedef int (*errfunc_t)(vnode_t *, int, int *); 139 140 /* 141 * Per stream sd_lock in putnext may be replaced by per cpu stream_putlocks 142 * each living in a separate cache line. putnext/canputnext grabs only one of 143 * stream_putlocks while strlock() (called on behalf of insertq()/removeq()) 144 * acquires all stream_putlocks. Normally stream_putlocks are only employed 145 * for highly contended streams that have SQ_CIPUT queues in the critical path 146 * (e.g. NFS/UDP stream). 147 * 148 * stream_putlocks are dynamically assigned to stdata structure through 149 * sd_ciputctrl pointer possibly when a stream is already in use. Since 150 * strlock() uses stream_putlocks only under sd_lock acquiring sd_lock when 151 * assigning stream_putlocks to the stream ensures synchronization with 152 * strlock(). 153 * 154 * For lock ordering purposes stream_putlocks are treated as the extension of 155 * sd_lock and are always grabbed right after grabbing sd_lock and released 156 * right before releasing sd_lock except putnext/canputnext where only one of 157 * stream_putlocks locks is used and where it is the first lock to grab. 158 */ 159 160 typedef struct ciputctrl_str { 161 union _ciput_un { 162 uchar_t pad[64]; 163 struct _ciput_str { 164 kmutex_t ciput_lck; 165 ushort_t ciput_cnt; 166 } ciput_str; 167 } ciput_un; 168 } ciputctrl_t; 169 170 #define ciputctrl_lock ciput_un.ciput_str.ciput_lck 171 #define ciputctrl_count ciput_un.ciput_str.ciput_cnt 172 173 /* 174 * Header for a stream: interface to rest of system. 175 */ 176 typedef struct stdata { 177 struct queue *sd_wrq; /* write queue */ 178 struct msgb *sd_iocblk; /* return block for ioctl */ 179 struct vnode *sd_vnode; /* pointer to associated vnode */ 180 struct streamtab *sd_strtab; /* pointer to streamtab for stream */ 181 uint_t sd_flag; /* state/flags */ 182 uint_t sd_iocid; /* ioctl id */ 183 struct pid *sd_sidp; /* controlling session info */ 184 struct pid *sd_pgidp; /* controlling process group info */ 185 ushort_t sd_unused; /* UNUSED, retained for binary */ 186 /* compatibility */ 187 ushort_t sd_wroff; /* write offset */ 188 int sd_rerror; /* error to return on read ops */ 189 int sd_werror; /* error to return on write ops */ 190 int sd_pushcnt; /* number of pushes done on stream */ 191 int sd_sigflags; /* logical OR of all siglist events */ 192 struct strsig *sd_siglist; /* pid linked list to rcv SIGPOLL sig */ 193 struct pollhead sd_pollist; /* list of all pollers to wake up */ 194 struct msgb *sd_mark; /* "marked" message on read queue */ 195 clock_t sd_closetime; /* time to wait to drain q in close */ 196 kmutex_t sd_lock; /* protect head consistency */ 197 kcondvar_t sd_monitor; /* open/close/push/pop monitor */ 198 kcondvar_t sd_iocmonitor; /* ioctl single-threading */ 199 kcondvar_t sd_refmonitor; /* sd_refcnt monitor */ 200 ssize_t sd_qn_minpsz; /* These two fields are a performance */ 201 ssize_t sd_qn_maxpsz; /* enhancements, cache the values in */ 202 /* the stream head so we don't have */ 203 /* to ask the module below the stream */ 204 /* head to get this information. */ 205 struct stdata *sd_mate; /* pointer to twisted stream mate */ 206 kthread_id_t sd_freezer; /* thread that froze stream */ 207 kmutex_t sd_reflock; /* Protects sd_refcnt */ 208 int sd_refcnt; /* number of claimstr */ 209 uint_t sd_wakeq; /* strwakeq()'s copy of sd_flag */ 210 struct queue *sd_struiordq; /* sync barrier struio() read queue */ 211 struct queue *sd_struiowrq; /* sync barrier struio() write queue */ 212 char sd_struiodnak; /* defer NAK of M_IOCTL by rput() */ 213 struct msgb *sd_struionak; /* pointer M_IOCTL mblk(s) to NAK */ 214 caddr_t sd_t_audit_data; /* For audit purposes only */ 215 ssize_t sd_maxblk; /* maximum message block size */ 216 uint_t sd_rput_opt; /* options/flags for strrput */ 217 uint_t sd_wput_opt; /* options/flags for write/putmsg */ 218 uint_t sd_read_opt; /* options/flags for strread */ 219 msgfunc_t sd_rprotofunc; /* rput M_*PROTO routine */ 220 msgfunc_t sd_rmiscfunc; /* rput routine (non-data/proto) */ 221 errfunc_t sd_rderrfunc; /* read side error callback */ 222 errfunc_t sd_wrerrfunc; /* write side error callback */ 223 /* 224 * support for low contention concurrent putnext. 225 */ 226 ciputctrl_t *sd_ciputctrl; 227 uint_t sd_nciputctrl; 228 229 int sd_anchor; /* position of anchor in stream */ 230 /* 231 * Service scheduling at the stream head. 232 */ 233 kmutex_t sd_qlock; 234 struct queue *sd_qhead; /* Head of queues to be serviced. */ 235 struct queue *sd_qtail; /* Tail of queues to be serviced. */ 236 void *sd_servid; /* Service ID for bckgrnd schedule */ 237 ushort_t sd_svcflags; /* Servicing flags */ 238 short sd_nqueues; /* Number of queues in the list */ 239 kcondvar_t sd_qcv; /* Waiters for qhead to become empty */ 240 kcondvar_t sd_zcopy_wait; 241 uint_t sd_copyflag; /* copy-related flags */ 242 } stdata_t; 243 244 /* 245 * stdata servicing flags. 246 */ 247 #define STRS_WILLSERVICE 0x01 248 #define STRS_SCHEDULED 0x02 249 250 #define STREAM_NEEDSERVICE(stp) ((stp)->sd_qhead != NULL) 251 252 /* 253 * stdata flag field defines 254 */ 255 #define IOCWAIT 0x00000001 /* Someone is doing an ioctl */ 256 #define RSLEEP 0x00000002 /* Someone wants to read/recv msg */ 257 #define WSLEEP 0x00000004 /* Someone wants to write */ 258 #define STRPRI 0x00000008 /* An M_PCPROTO is at stream head */ 259 #define STRHUP 0x00000010 /* Device has vanished */ 260 #define STWOPEN 0x00000020 /* waiting for 1st open */ 261 #define STPLEX 0x00000040 /* stream is being multiplexed */ 262 #define STRISTTY 0x00000080 /* stream is a terminal */ 263 #define STRGETINPROG 0x00000100 /* (k)strgetmsg is running */ 264 #define IOCWAITNE 0x00000200 /* STR_NOERROR ioctl running */ 265 #define STRDERR 0x00000400 /* fatal read error from M_ERROR */ 266 #define STWRERR 0x00000800 /* fatal write error from M_ERROR */ 267 #define STRDERRNONPERSIST 0x00001000 /* nonpersistent read errors */ 268 #define STWRERRNONPERSIST 0x00002000 /* nonpersistent write errors */ 269 #define STRCLOSE 0x00004000 /* wait for a close to complete */ 270 #define SNDMREAD 0x00008000 /* used for read notification */ 271 #define OLDNDELAY 0x00010000 /* use old TTY semantics for */ 272 /* NDELAY reads and writes */ 273 /* 0x00020000 unused */ 274 /* 0x00040000 unused */ 275 #define STRTOSTOP 0x00080000 /* block background writes */ 276 /* 0x00100000 unused */ 277 /* 0x00200000 unused */ 278 #define STRMOUNT 0x00400000 /* stream is mounted */ 279 #define STRNOTATMARK 0x00800000 /* Not at mark (when empty read q) */ 280 #define STRDELIM 0x01000000 /* generate delimited messages */ 281 #define STRATMARK 0x02000000 /* At mark (due to MSGMARKNEXT) */ 282 #define STZCNOTIFY 0x04000000 /* wait for zerocopy mblk to be acked */ 283 #define STRPLUMB 0x08000000 /* push/pop pending */ 284 #define STREOF 0x10000000 /* End-of-file indication */ 285 #define STREOPENFAIL 0x20000000 /* indicates if re-open has failed */ 286 #define STRMATE 0x40000000 /* this stream is a mate */ 287 #define STRHASLINKS 0x80000000 /* I_LINKs under this stream */ 288 289 /* 290 * Copy-related flags (sd_copyflag), set by SO_COPYOPT. 291 */ 292 #define STZCVMSAFE 0x00000001 /* safe to borrow file (segmapped) */ 293 /* pages instead of bcopy */ 294 #define STZCVMUNSAFE 0x00000002 /* unsafe to borrow file pages */ 295 #define STRCOPYCACHED 0x00000004 /* copy should NOT bypass cache */ 296 297 /* 298 * Options and flags for strrput (sd_rput_opt) 299 */ 300 #define SR_POLLIN 0x00000001 /* pollwakeup needed for band0 data */ 301 #define SR_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 302 #define SR_CONSOL_DATA 0x00000004 /* Consolidate M_DATA onto q_last */ 303 #define SR_IGN_ZEROLEN 0x00000008 /* Ignore zero-length M_DATA */ 304 305 /* 306 * Options and flags for strwrite/strputmsg (sd_wput_opt) 307 */ 308 #define SW_SIGPIPE 0x00000001 /* Send SIGPIPE for write error */ 309 #define SW_RECHECK_ERR 0x00000002 /* Recheck errors in strwrite loop */ 310 #define SW_SNDZERO 0x00000004 /* send 0-length msg down pipe/FIFO */ 311 312 /* 313 * Options and flags for strread (sd_read_opt) 314 */ 315 #define RD_MSGDIS 0x00000001 /* read msg discard */ 316 #define RD_MSGNODIS 0x00000002 /* read msg no discard */ 317 #define RD_PROTDAT 0x00000004 /* read M_[PC]PROTO contents as data */ 318 #define RD_PROTDIS 0x00000008 /* discard M_[PC]PROTO blocks and */ 319 /* retain data blocks */ 320 /* 321 * Flags parameter for strsetrputhooks() and strsetwputhooks(). 322 * These flags define the interface for setting the above internal 323 * flags in sd_rput_opt and sd_wput_opt. 324 */ 325 #define SH_CONSOL_DATA 0x00000001 /* Consolidate M_DATA onto q_last */ 326 #define SH_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 327 #define SH_IGN_ZEROLEN 0x00000004 /* Drop zero-length M_DATA */ 328 329 #define SH_SIGPIPE 0x00000100 /* Send SIGPIPE for write error */ 330 #define SH_RECHECK_ERR 0x00000200 /* Recheck errors in strwrite loop */ 331 332 /* 333 * Each queue points to a sync queue (the inner perimeter) which keeps 334 * track of the number of threads that are inside a given queue (sq_count) 335 * and also is used to implement the asynchronous putnext 336 * (by queuing messages if the queue can not be entered.) 337 * 338 * Messages are queued on sq_head/sq_tail including deferred qwriter(INNER) 339 * messages. The sq_head/sq_tail list is a singly-linked list with 340 * b_queue recording the queue and b_prev recording the function to 341 * be called (either the put procedure or a qwriter callback function.) 342 * 343 * The sq_count counter tracks the number of threads that are 344 * executing inside the perimeter or (in the case of outer perimeters) 345 * have some work queued for them relating to the perimeter. The sq_rmqcount 346 * counter tracks the subset which are in removeq() (usually invoked from 347 * qprocsoff(9F)). 348 * 349 * In addition a module writer can declare that the module has an outer 350 * perimeter (by setting D_MTOUTPERIM) in which case all inner perimeter 351 * syncq's for the module point (through sq_outer) to an outer perimeter 352 * syncq. The outer perimeter consists of the doubly linked list (sq_onext and 353 * sq_oprev) linking all the inner perimeter syncq's with out outer perimeter 354 * syncq. This is used to implement qwriter(OUTER) (an asynchronous way of 355 * getting exclusive access at the outer perimeter) and outer_enter/exit 356 * which are used by the framework to acquire exclusive access to the outer 357 * perimeter during open and close of modules that have set D_MTOUTPERIM. 358 * 359 * In the inner perimeter case sq_save is available for use by machine 360 * dependent code. sq_head/sq_tail are used to queue deferred messages on 361 * the inner perimeter syncqs and to queue become_writer requests on the 362 * outer perimeter syncqs. 363 * 364 * Note: machine dependent optimized versions of putnext may depend 365 * on the order of sq_flags and sq_count (so that they can e.g. 366 * read these two fields in a single load instruction.) 367 * 368 * Per perimeter SQLOCK/sq_count in putnext/put may be replaced by per cpu 369 * sq_putlocks/sq_putcounts each living in a separate cache line. Obviously 370 * sq_putlock[x] protects sq_putcount[x]. putnext/put routine will grab only 1 371 * of sq_putlocks and update only 1 of sq_putcounts. strlock() and many 372 * other routines in strsubr.c and ddi.c will grab all sq_putlocks (as well as 373 * SQLOCK) and figure out the count value as the sum of sq_count and all of 374 * sq_putcounts. The idea is to make critical fast path -- putnext -- much 375 * faster at the expense of much less often used slower path like 376 * strlock(). One known case where entersq/strlock is executed pretty often is 377 * SpecWeb but since IP is SQ_CIOC and socket TCP/IP stream is nextless 378 * there's no need to grab multiple sq_putlocks and look at sq_putcounts. See 379 * strsubr.c for more comments. 380 * 381 * Note regular SQLOCK and sq_count are still used in many routines 382 * (e.g. entersq(), rwnext()) in the same way as before sq_putlocks were 383 * introduced. 384 * 385 * To understand when all sq_putlocks need to be held and all sq_putcounts 386 * need to be added up one needs to look closely at putnext code. Basically if 387 * a routine like e.g. wait_syncq() needs to be sure that perimeter is empty 388 * all sq_putlocks/sq_putcounts need to be held/added up. On the other hand 389 * there's no need to hold all sq_putlocks and count all sq_putcounts in 390 * routines like leavesq()/dropsq() and etc. since the are usually exit 391 * counterparts of entersq/outer_enter() and etc. which have already either 392 * prevented put entry poins from executing or did not care about put 393 * entrypoints. entersq() doesn't need to care about sq_putlocks/sq_putcounts 394 * if the entry point has a shared access since put has the highest degree of 395 * concurrency and such entersq() does not intend to block out put 396 * entrypoints. 397 * 398 * Before sq_putcounts were introduced the standard way to wait for perimeter 399 * to become empty was: 400 * 401 * mutex_enter(SQLOCK(sq)); 402 * while (sq->sq_count > 0) { 403 * sq->sq_flags |= SQ_WANTWAKEUP; 404 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 405 * } 406 * mutex_exit(SQLOCK(sq)); 407 * 408 * The new way is: 409 * 410 * mutex_enter(SQLOCK(sq)); 411 * count = sq->sq_count; 412 * SQ_PUTLOCKS_ENTER(sq); 413 * SUM_SQ_PUTCOUNTS(sq, count); 414 * while (count != 0) { 415 * sq->sq_flags |= SQ_WANTWAKEUP; 416 * SQ_PUTLOCKS_EXIT(sq); 417 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 418 * count = sq->sq_count; 419 * SQ_PUTLOCKS_ENTER(sq); 420 * SUM_SQ_PUTCOUNTS(sq, count); 421 * } 422 * SQ_PUTLOCKS_EXIT(sq); 423 * mutex_exit(SQLOCK(sq)); 424 * 425 * Note that SQ_WANTWAKEUP is set before dropping SQ_PUTLOCKS. This makes sure 426 * putnext won't skip a wakeup. 427 * 428 * sq_putlocks are treated as the extension of SQLOCK for lock ordering 429 * purposes and are always grabbed right after grabbing SQLOCK and released 430 * right before releasing SQLOCK. This also allows dynamic creation of 431 * sq_putlocks while holding SQLOCK (by making sq_ciputctrl non null even when 432 * the stream is already in use). Only in putnext one of sq_putlocks 433 * is grabbed instead of SQLOCK. putnext return path remembers what counter it 434 * incremented and decrements the right counter on its way out. 435 */ 436 437 struct syncq { 438 kmutex_t sq_lock; /* atomic access to syncq */ 439 uint16_t sq_count; /* # threads inside */ 440 uint16_t sq_flags; /* state and some type info */ 441 /* 442 * Distributed syncq scheduling 443 * The list of queue's is handled by sq_head and 444 * sq_tail fields. 445 * 446 * The list of events is handled by the sq_evhead and sq_evtail 447 * fields. 448 */ 449 queue_t *sq_head; /* queue of deferred messages */ 450 queue_t *sq_tail; /* queue of deferred messages */ 451 mblk_t *sq_evhead; /* Event message on the syncq */ 452 mblk_t *sq_evtail; 453 uint_t sq_nqueues; /* # of queues on this sq */ 454 /* 455 * Concurrency and condition variables 456 */ 457 uint16_t sq_type; /* type (concurrency) of syncq */ 458 uint16_t sq_rmqcount; /* # threads inside removeq() */ 459 kcondvar_t sq_wait; /* block on this sync queue */ 460 kcondvar_t sq_exitwait; /* waiting for thread to leave the */ 461 /* inner perimeter */ 462 /* 463 * Handling synchronous callbacks such as qtimeout and qbufcall 464 */ 465 ushort_t sq_callbflags; /* flags for callback synchronization */ 466 callbparams_id_t sq_cancelid; /* id of callback being cancelled */ 467 struct callbparams *sq_callbpend; /* Pending callbacks */ 468 469 /* 470 * Links forming an outer perimeter from one outer syncq and 471 * a set of inner sync queues. 472 */ 473 struct syncq *sq_outer; /* Pointer to outer perimeter */ 474 struct syncq *sq_onext; /* Linked list of syncq's making */ 475 struct syncq *sq_oprev; /* up the outer perimeter. */ 476 /* 477 * support for low contention concurrent putnext. 478 */ 479 ciputctrl_t *sq_ciputctrl; 480 uint_t sq_nciputctrl; 481 /* 482 * Counter for the number of threads wanting to become exclusive. 483 */ 484 uint_t sq_needexcl; 485 /* 486 * These two fields are used for scheduling a syncq for 487 * background processing. The sq_svcflag is protected by 488 * SQLOCK lock. 489 */ 490 struct syncq *sq_next; /* for syncq scheduling */ 491 void * sq_servid; 492 uint_t sq_servcount; /* # pending background threads */ 493 uint_t sq_svcflags; /* Scheduling flags */ 494 clock_t sq_tstamp; /* Time when was enabled */ 495 /* 496 * Maximum priority of the queues on this syncq. 497 */ 498 pri_t sq_pri; 499 }; 500 typedef struct syncq syncq_t; 501 502 /* 503 * sync queue scheduling flags (for sq_svcflags). 504 */ 505 #define SQ_SERVICE 0x1 /* being serviced */ 506 #define SQ_BGTHREAD 0x2 /* awaiting service by bg thread */ 507 #define SQ_DISABLED 0x4 /* don't put syncq in service list */ 508 509 /* 510 * FASTPUT bit in sd_count/putcount. 511 */ 512 #define SQ_FASTPUT 0x8000 513 #define SQ_FASTMASK 0x7FFF 514 515 /* 516 * sync queue state flags 517 */ 518 #define SQ_EXCL 0x0001 /* exclusive access to inner */ 519 /* perimeter */ 520 #define SQ_BLOCKED 0x0002 /* qprocsoff */ 521 #define SQ_FROZEN 0x0004 /* freezestr */ 522 #define SQ_WRITER 0x0008 /* qwriter(OUTER) pending or running */ 523 #define SQ_MESSAGES 0x0010 /* messages on syncq */ 524 #define SQ_WANTWAKEUP 0x0020 /* do cv_broadcast on sq_wait */ 525 #define SQ_WANTEXWAKEUP 0x0040 /* do cv_broadcast on sq_exitwait */ 526 #define SQ_EVENTS 0x0080 /* Events pending */ 527 #define SQ_QUEUED (SQ_MESSAGES | SQ_EVENTS) 528 #define SQ_FLAGMASK 0x00FF 529 530 /* 531 * Test a queue to see if inner perimeter is exclusive. 532 */ 533 #define PERIM_EXCL(q) ((q)->q_syncq->sq_flags & SQ_EXCL) 534 535 /* 536 * If any of these flags are set it is not possible for a thread to 537 * enter a put or service procedure. Instead it must either block 538 * or put the message on the syncq. 539 */ 540 #define SQ_GOAWAY (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN|SQ_WRITER|\ 541 SQ_QUEUED) 542 /* 543 * If any of these flags are set it not possible to drain the syncq 544 */ 545 #define SQ_STAYAWAY (SQ_BLOCKED|SQ_FROZEN|SQ_WRITER) 546 547 /* 548 * Flags to trigger syncq tail processing. 549 */ 550 #define SQ_TAIL (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP) 551 552 /* 553 * Syncq types (stored in sq_type) 554 * The SQ_TYPES_IN_FLAGS (ciput) are also stored in sq_flags 555 * for performance reasons. Thus these type values have to be in the low 556 * 16 bits and not conflict with the sq_flags values above. 557 * 558 * Notes: 559 * - putnext() and put() assume that the put procedures have the highest 560 * degree of concurrency. Thus if any of the SQ_CI* are set then SQ_CIPUT 561 * has to be set. This restriction can be lifted by adding code to putnext 562 * and put that check that sq_count == 0 like entersq does. 563 * - putnext() and put() does currently not handle !SQ_COPUT 564 * - In order to implement !SQ_COCB outer_enter has to be fixed so that 565 * the callback can be cancelled while cv_waiting in outer_enter. 566 * - If SQ_CISVC needs to be implemented, qprocsoff() needs to wait 567 * for the currently running services to stop (wait for QINSERVICE 568 * to go off). disable_svc called from qprcosoff disables only 569 * services that will be run in future. 570 * 571 * All the SQ_CO flags are set when there is no outer perimeter. 572 */ 573 #define SQ_CIPUT 0x0100 /* Concurrent inner put proc */ 574 #define SQ_CISVC 0x0200 /* Concurrent inner svc proc */ 575 #define SQ_CIOC 0x0400 /* Concurrent inner open/close */ 576 #define SQ_CICB 0x0800 /* Concurrent inner callback */ 577 #define SQ_COPUT 0x1000 /* Concurrent outer put proc */ 578 #define SQ_COSVC 0x2000 /* Concurrent outer svc proc */ 579 #define SQ_COOC 0x4000 /* Concurrent outer open/close */ 580 #define SQ_COCB 0x8000 /* Concurrent outer callback */ 581 582 /* Types also kept in sq_flags for performance */ 583 #define SQ_TYPES_IN_FLAGS (SQ_CIPUT) 584 585 #define SQ_CI (SQ_CIPUT|SQ_CISVC|SQ_CIOC|SQ_CICB) 586 #define SQ_CO (SQ_COPUT|SQ_COSVC|SQ_COOC|SQ_COCB) 587 #define SQ_TYPEMASK (SQ_CI|SQ_CO) 588 589 /* 590 * Flag combinations passed to entersq and leavesq to specify the type 591 * of entry point. 592 */ 593 #define SQ_PUT (SQ_CIPUT|SQ_COPUT) 594 #define SQ_SVC (SQ_CISVC|SQ_COSVC) 595 #define SQ_OPENCLOSE (SQ_CIOC|SQ_COOC) 596 #define SQ_CALLBACK (SQ_CICB|SQ_COCB) 597 598 /* 599 * Other syncq types which are not copied into flags. 600 */ 601 #define SQ_PERMOD 0x01 /* Syncq is PERMOD */ 602 603 /* 604 * Asynchronous callback qun*** flag. 605 * The mechanism these flags are used in is one where callbacks enter 606 * the perimeter thanks to framework support. To use this mechanism 607 * the q* and qun* flavors of the callback routines must be used. 608 * e.g. qtimeout and quntimeout. The synchronization provided by the flags 609 * avoids deadlocks between blocking qun* routines and the perimeter 610 * lock. 611 */ 612 #define SQ_CALLB_BYPASSED 0x01 /* bypassed callback fn */ 613 614 /* 615 * Cancel callback mask. 616 * The mask expands as the number of cancelable callback types grows 617 * Note - separate callback flag because different callbacks have 618 * overlapping id space. 619 */ 620 #define SQ_CALLB_CANCEL_MASK (SQ_CANCEL_TOUT|SQ_CANCEL_BUFCALL) 621 622 #define SQ_CANCEL_TOUT 0x02 /* cancel timeout request */ 623 #define SQ_CANCEL_BUFCALL 0x04 /* cancel bufcall request */ 624 625 typedef struct callbparams { 626 syncq_t *cbp_sq; 627 void (*cbp_func)(void *); 628 void *cbp_arg; 629 callbparams_id_t cbp_id; 630 uint_t cbp_flags; 631 struct callbparams *cbp_next; 632 size_t cbp_size; 633 } callbparams_t; 634 635 typedef struct strbufcall { 636 void (*bc_func)(void *); 637 void *bc_arg; 638 size_t bc_size; 639 bufcall_id_t bc_id; 640 struct strbufcall *bc_next; 641 kthread_id_t bc_executor; 642 } strbufcall_t; 643 644 /* 645 * Structure of list of processes to be sent SIGPOLL/SIGURG signal 646 * on request. The valid S_* events are defined in stropts.h. 647 */ 648 typedef struct strsig { 649 struct pid *ss_pidp; /* pid/pgrp pointer */ 650 pid_t ss_pid; /* positive pid, negative pgrp */ 651 int ss_events; /* S_* events */ 652 struct strsig *ss_next; 653 } strsig_t; 654 655 /* 656 * bufcall list 657 */ 658 struct bclist { 659 strbufcall_t *bc_head; 660 strbufcall_t *bc_tail; 661 }; 662 663 /* 664 * Structure used to track mux links and unlinks. 665 */ 666 struct mux_node { 667 major_t mn_imaj; /* internal major device number */ 668 uint16_t mn_indegree; /* number of incoming edges */ 669 struct mux_node *mn_originp; /* where we came from during search */ 670 struct mux_edge *mn_startp; /* where search left off in mn_outp */ 671 struct mux_edge *mn_outp; /* list of outgoing edges */ 672 uint_t mn_flags; /* see below */ 673 }; 674 675 /* 676 * Flags for mux_nodes. 677 */ 678 #define VISITED 1 679 680 /* 681 * Edge structure - a list of these is hung off the 682 * mux_node to represent the outgoing edges. 683 */ 684 struct mux_edge { 685 struct mux_node *me_nodep; /* edge leads to this node */ 686 struct mux_edge *me_nextp; /* next edge */ 687 int me_muxid; /* id of link */ 688 }; 689 690 /* 691 * Queue info 692 * 693 * The syncq is included here to reduce memory fragmentation 694 * for kernel memory allocators that only allocate in sizes that are 695 * powers of two. If the kernel memory allocator changes this should 696 * be revisited. 697 */ 698 typedef struct queinfo { 699 struct queue qu_rqueue; /* read queue - must be first */ 700 struct queue qu_wqueue; /* write queue - must be second */ 701 struct syncq qu_syncq; /* syncq - must be third */ 702 } queinfo_t; 703 704 /* 705 * Multiplexed streams info 706 */ 707 typedef struct linkinfo { 708 struct linkblk li_lblk; /* must be first */ 709 struct file *li_fpdown; /* file pointer for lower stream */ 710 struct linkinfo *li_next; /* next in list */ 711 struct linkinfo *li_prev; /* previous in list */ 712 } linkinfo_t; 713 714 /* 715 * List of syncq's used by freeezestr/unfreezestr 716 */ 717 typedef struct syncql { 718 struct syncql *sql_next; 719 syncq_t *sql_sq; 720 } syncql_t; 721 722 typedef struct sqlist { 723 syncql_t *sqlist_head; 724 size_t sqlist_size; /* structure size in bytes */ 725 size_t sqlist_index; /* next free entry in array */ 726 syncql_t sqlist_array[4]; /* 4 or more entries */ 727 } sqlist_t; 728 729 typedef struct perdm { 730 struct perdm *dm_next; 731 syncq_t *dm_sq; 732 struct streamtab *dm_str; 733 uint_t dm_ref; 734 } perdm_t; 735 736 #define NEED_DM(dmp, qflag) \ 737 (dmp == NULL && (qflag & (QPERMOD | QMTOUTPERIM))) 738 739 /* 740 * fmodsw_impl_t is used within the kernel. fmodsw is used by 741 * the modules/drivers. The information is copied from fmodsw 742 * defined in the module/driver into the fmodsw_impl_t structure 743 * during the module/driver initialization. 744 */ 745 typedef struct fmodsw_impl fmodsw_impl_t; 746 747 struct fmodsw_impl { 748 fmodsw_impl_t *f_next; 749 char f_name[FMNAMESZ + 1]; 750 struct streamtab *f_str; 751 uint32_t f_qflag; 752 uint32_t f_sqtype; 753 perdm_t *f_dmp; 754 uint32_t f_ref; 755 uint32_t f_hits; 756 }; 757 758 typedef enum { 759 FMODSW_HOLD = 0x00000001, 760 FMODSW_LOAD = 0x00000002 761 } fmodsw_flags_t; 762 763 typedef struct cdevsw_impl { 764 struct streamtab *d_str; 765 uint32_t d_qflag; 766 uint32_t d_sqtype; 767 perdm_t *d_dmp; 768 } cdevsw_impl_t; 769 770 /* 771 * Finding related queues 772 */ 773 #define STREAM(q) ((q)->q_stream) 774 #define SQ(rq) ((syncq_t *)((rq) + 2)) 775 776 /* 777 * Locking macros 778 */ 779 #define QLOCK(q) (&(q)->q_lock) 780 #define SQLOCK(sq) (&(sq)->sq_lock) 781 782 #define STREAM_PUTLOCKS_ENTER(stp) { \ 783 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 784 if ((stp)->sd_ciputctrl != NULL) { \ 785 int i; \ 786 int nlocks = (stp)->sd_nciputctrl; \ 787 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 788 for (i = 0; i <= nlocks; i++) { \ 789 mutex_enter(&cip[i].ciputctrl_lock); \ 790 } \ 791 } \ 792 } 793 794 #define STREAM_PUTLOCKS_EXIT(stp) { \ 795 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 796 if ((stp)->sd_ciputctrl != NULL) { \ 797 int i; \ 798 int nlocks = (stp)->sd_nciputctrl; \ 799 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 800 for (i = 0; i <= nlocks; i++) { \ 801 mutex_exit(&cip[i].ciputctrl_lock); \ 802 } \ 803 } \ 804 } 805 806 #define SQ_PUTLOCKS_ENTER(sq) { \ 807 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 808 if ((sq)->sq_ciputctrl != NULL) { \ 809 int i; \ 810 int nlocks = (sq)->sq_nciputctrl; \ 811 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 812 ASSERT((sq)->sq_type & SQ_CIPUT); \ 813 for (i = 0; i <= nlocks; i++) { \ 814 mutex_enter(&cip[i].ciputctrl_lock); \ 815 } \ 816 } \ 817 } 818 819 #define SQ_PUTLOCKS_EXIT(sq) { \ 820 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 821 if ((sq)->sq_ciputctrl != NULL) { \ 822 int i; \ 823 int nlocks = (sq)->sq_nciputctrl; \ 824 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 825 ASSERT((sq)->sq_type & SQ_CIPUT); \ 826 for (i = 0; i <= nlocks; i++) { \ 827 mutex_exit(&cip[i].ciputctrl_lock); \ 828 } \ 829 } \ 830 } 831 832 #define SQ_PUTCOUNT_SETFAST(sq) { \ 833 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 834 if ((sq)->sq_ciputctrl != NULL) { \ 835 int i; \ 836 int nlocks = (sq)->sq_nciputctrl; \ 837 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 838 ASSERT((sq)->sq_type & SQ_CIPUT); \ 839 for (i = 0; i <= nlocks; i++) { \ 840 mutex_enter(&cip[i].ciputctrl_lock); \ 841 cip[i].ciputctrl_count |= SQ_FASTPUT; \ 842 mutex_exit(&cip[i].ciputctrl_lock); \ 843 } \ 844 } \ 845 } 846 847 #define SQ_PUTCOUNT_CLRFAST(sq) { \ 848 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 849 if ((sq)->sq_ciputctrl != NULL) { \ 850 int i; \ 851 int nlocks = (sq)->sq_nciputctrl; \ 852 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 853 ASSERT((sq)->sq_type & SQ_CIPUT); \ 854 for (i = 0; i <= nlocks; i++) { \ 855 mutex_enter(&cip[i].ciputctrl_lock); \ 856 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \ 857 mutex_exit(&cip[i].ciputctrl_lock); \ 858 } \ 859 } \ 860 } 861 862 863 #ifdef DEBUG 864 865 #define SQ_PUTLOCKS_HELD(sq) { \ 866 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 867 if ((sq)->sq_ciputctrl != NULL) { \ 868 int i; \ 869 int nlocks = (sq)->sq_nciputctrl; \ 870 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 871 ASSERT((sq)->sq_type & SQ_CIPUT); \ 872 for (i = 0; i <= nlocks; i++) { \ 873 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 874 } \ 875 } \ 876 } 877 878 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) { \ 879 if ((sq)->sq_ciputctrl != NULL) { \ 880 int i; \ 881 uint_t count = 0; \ 882 int ncounts = (sq)->sq_nciputctrl; \ 883 ASSERT((sq)->sq_type & SQ_CIPUT); \ 884 for (i = 0; i <= ncounts; i++) { \ 885 count += \ 886 (((sq)->sq_ciputctrl[i].ciputctrl_count) & \ 887 SQ_FASTMASK); \ 888 } \ 889 ASSERT(count == (countcheck)); \ 890 } \ 891 } 892 893 #define SUMCHECK_CIPUTCTRL_COUNTS(ciput, nciput, countcheck) { \ 894 int i; \ 895 uint_t count = 0; \ 896 ASSERT((ciput) != NULL); \ 897 for (i = 0; i <= (nciput); i++) { \ 898 count += (((ciput)[i].ciputctrl_count) & \ 899 SQ_FASTMASK); \ 900 } \ 901 ASSERT(count == (countcheck)); \ 902 } 903 904 #else /* DEBUG */ 905 906 #define SQ_PUTLOCKS_HELD(sq) 907 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) 908 #define SUMCHECK_CIPUTCTRL_COUNTS(sq, nciput, countcheck) 909 910 #endif /* DEBUG */ 911 912 #define SUM_SQ_PUTCOUNTS(sq, count) { \ 913 if ((sq)->sq_ciputctrl != NULL) { \ 914 int i; \ 915 int ncounts = (sq)->sq_nciputctrl; \ 916 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 917 ASSERT((sq)->sq_type & SQ_CIPUT); \ 918 for (i = 0; i <= ncounts; i++) { \ 919 (count) += ((cip[i].ciputctrl_count) & \ 920 SQ_FASTMASK); \ 921 } \ 922 } \ 923 } 924 925 #define CLAIM_QNEXT_LOCK(stp) mutex_enter(&(stp)->sd_lock) 926 #define RELEASE_QNEXT_LOCK(stp) mutex_exit(&(stp)->sd_lock) 927 928 /* 929 * syncq message manipulation macros. 930 */ 931 /* 932 * Put a message on the queue syncq. 933 * Assumes QLOCK held. 934 */ 935 #define SQPUT_MP(qp, mp) \ 936 { \ 937 qp->q_syncqmsgs++; \ 938 if (qp->q_sqhead == NULL) { \ 939 qp->q_sqhead = qp->q_sqtail = mp; \ 940 } else { \ 941 qp->q_sqtail->b_next = mp; \ 942 qp->q_sqtail = mp; \ 943 } \ 944 } 945 946 /* 947 * Miscellaneous parameters and flags. 948 */ 949 950 /* 951 * Default timeout in milliseconds for ioctls and close 952 */ 953 #define STRTIMOUT 15000 954 955 /* 956 * Flag values for stream io 957 */ 958 #define WRITEWAIT 0x1 /* waiting for write event */ 959 #define READWAIT 0x2 /* waiting for read event */ 960 #define NOINTR 0x4 /* error is not to be set for signal */ 961 #define GETWAIT 0x8 /* waiting for getmsg event */ 962 963 /* 964 * These flags need to be unique for stream io name space 965 * and copy modes name space. These flags allow strwaitq 966 * and strdoioctl to proceed as if signals or errors on the stream 967 * head have not occurred; i.e. they will be detected by some other 968 * means. 969 * STR_NOSIG does not allow signals to interrupt the call 970 * STR_NOERROR does not allow stream head read, write or hup errors to 971 * affect the call. When used with strdoioctl(), if a previous ioctl 972 * is pending and times out, STR_NOERROR will cause strdoioctl() to not 973 * return ETIME. If, however, the requested ioctl times out, ETIME 974 * will be returned (use ic_timout instead) 975 * STR_PEEK is used to inform strwaitq that the reader is peeking at data 976 * and that a non-persistent error should not be cleared. 977 * STR_DELAYERR is used to inform strwaitq that it should not check errors 978 * after being awoken since, in addition to an error, there might also be 979 * data queued on the stream head read queue. 980 */ 981 #define STR_NOSIG 0x10 /* Ignore signals during strdoioctl/strwaitq */ 982 #define STR_NOERROR 0x20 /* Ignore errors during strdoioctl/strwaitq */ 983 #define STR_PEEK 0x40 /* Peeking behavior on non-persistent errors */ 984 #define STR_DELAYERR 0x80 /* Do not check errors on return */ 985 986 /* 987 * Copy modes for tty and I_STR ioctls 988 */ 989 #define U_TO_K 01 /* User to Kernel */ 990 #define K_TO_K 02 /* Kernel to Kernel */ 991 992 /* 993 * Mux defines. 994 */ 995 #define LINKNORMAL 0x01 /* normal mux link */ 996 #define LINKPERSIST 0x02 /* persistent mux link */ 997 #define LINKTYPEMASK 0x03 /* bitmask of all link types */ 998 #define LINKCLOSE 0x04 /* unlink from strclose */ 999 1000 /* 1001 * Definitions of Streams macros and function interfaces. 1002 */ 1003 1004 /* 1005 * Obsolete queue scheduling macros. They are not used anymore, but still kept 1006 * here for 3-d party modules and drivers who might still use them. 1007 */ 1008 #define setqsched() 1009 #define qready() 1 1010 1011 #ifdef _KERNEL 1012 #define runqueues() 1013 #define queuerun() 1014 #endif 1015 1016 /* compatibility module for style 2 drivers with DR race condition */ 1017 #define DRMODNAME "drcompat" 1018 1019 /* 1020 * Macros dealing with mux_nodes. 1021 */ 1022 #define MUX_VISIT(X) ((X)->mn_flags |= VISITED) 1023 #define MUX_CLEAR(X) ((X)->mn_flags &= (~VISITED)); \ 1024 ((X)->mn_originp = NULL) 1025 #define MUX_DIDVISIT(X) ((X)->mn_flags & VISITED) 1026 1027 1028 /* 1029 * Twisted stream macros 1030 */ 1031 #define STRMATED(X) ((X)->sd_flag & STRMATE) 1032 #define STRLOCKMATES(X) if (&((X)->sd_lock) > &(((X)->sd_mate)->sd_lock)) { \ 1033 mutex_enter(&((X)->sd_lock)); \ 1034 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1035 } else { \ 1036 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1037 mutex_enter(&((X)->sd_lock)); \ 1038 } 1039 #define STRUNLOCKMATES(X) mutex_exit(&((X)->sd_lock)); \ 1040 mutex_exit(&(((X)->sd_mate)->sd_lock)) 1041 1042 #ifdef _KERNEL 1043 1044 extern void strinit(void); 1045 extern int strdoioctl(struct stdata *, struct strioctl *, int, int, 1046 cred_t *, int *); 1047 extern void strsendsig(struct strsig *, int, uchar_t, int); 1048 extern void str_sendsig(vnode_t *, int, uchar_t, int); 1049 extern void strhup(struct stdata *); 1050 extern int qattach(queue_t *, dev_t *, int, cred_t *, fmodsw_impl_t *, 1051 boolean_t); 1052 extern int qreopen(queue_t *, dev_t *, int, cred_t *); 1053 extern void qdetach(queue_t *, int, int, cred_t *, boolean_t); 1054 extern void enterq(queue_t *); 1055 extern void leaveq(queue_t *); 1056 extern int putiocd(mblk_t *, caddr_t, int, cred_t *); 1057 extern int getiocd(mblk_t *, caddr_t, int); 1058 extern struct linkinfo *alloclink(queue_t *, queue_t *, struct file *); 1059 extern void lbfree(struct linkinfo *); 1060 extern int linkcycle(stdata_t *, stdata_t *); 1061 extern struct linkinfo *findlinks(stdata_t *, int, int); 1062 extern queue_t *getendq(queue_t *); 1063 extern int mlink(vnode_t *, int, int, cred_t *, int *, int); 1064 extern int mlink_file(vnode_t *, int, struct file *, cred_t *, int *, int); 1065 extern int munlink(struct stdata *, struct linkinfo *, int, cred_t *, int *); 1066 extern int munlinkall(struct stdata *, int, cred_t *, int *); 1067 extern void mux_addedge(stdata_t *, stdata_t *, int); 1068 extern void mux_rmvedge(stdata_t *, int); 1069 extern int devflg_to_qflag(struct streamtab *, uint32_t, uint32_t *, 1070 uint32_t *); 1071 extern void setq(queue_t *, struct qinit *, struct qinit *, perdm_t *, 1072 uint32_t, uint32_t, boolean_t); 1073 extern perdm_t *hold_dm(struct streamtab *, uint32_t, uint32_t); 1074 extern void rele_dm(perdm_t *); 1075 extern int strmakectl(struct strbuf *, int32_t, int32_t, mblk_t **); 1076 extern int strmakedata(ssize_t *, struct uio *, stdata_t *, int32_t, mblk_t **); 1077 extern int strmakemsg(struct strbuf *, ssize_t *, struct uio *, 1078 struct stdata *, int32_t, mblk_t **); 1079 extern int strgetmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t *, 1080 int *, int, rval_t *); 1081 extern int strputmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t, 1082 int flag, int fmode); 1083 extern int strstartplumb(struct stdata *, int, int); 1084 extern void strendplumb(struct stdata *); 1085 extern struct streamtab *fifo_getinfo(void); 1086 extern int stropen(struct vnode *, dev_t *, int, cred_t *); 1087 extern int strclose(struct vnode *, int, cred_t *); 1088 extern int strpoll(register struct stdata *, short, int, short *, 1089 struct pollhead **); 1090 extern void strclean(struct vnode *); 1091 extern void str_cn_clean(); /* XXX hook for consoles signal cleanup */ 1092 extern int strwrite(struct vnode *, struct uio *, cred_t *); 1093 extern int strread(struct vnode *, struct uio *, cred_t *); 1094 extern int strioctl(struct vnode *, int, intptr_t, int, int, cred_t *, int *); 1095 extern int strrput(queue_t *, mblk_t *); 1096 extern int strrput_nondata(queue_t *, mblk_t *); 1097 extern mblk_t *strrput_proto(vnode_t *, mblk_t *, 1098 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1099 extern mblk_t *strrput_misc(vnode_t *, mblk_t *, 1100 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1101 extern int getiocseqno(void); 1102 extern int strwaitbuf(size_t, int); 1103 extern int strwaitq(stdata_t *, int, ssize_t, int, clock_t, int *); 1104 extern void strctty(struct stdata *); 1105 extern void stralloctty(sess_t *, struct stdata *); 1106 extern void strfreectty(struct stdata *); 1107 extern struct stdata *shalloc(queue_t *); 1108 extern void shfree(struct stdata *s); 1109 extern queue_t *allocq(void); 1110 extern void freeq(queue_t *); 1111 extern qband_t *allocband(void); 1112 extern void freeband(qband_t *); 1113 extern void freebs_enqueue(mblk_t *, dblk_t *); 1114 extern void setqback(queue_t *, unsigned char); 1115 extern int strcopyin(void *, void *, size_t, int); 1116 extern int strcopyout(void *, void *, size_t, int); 1117 extern void strsignal(struct stdata *, int, int32_t); 1118 extern clock_t str_cv_wait(kcondvar_t *, kmutex_t *, clock_t, int); 1119 extern void runbuffcalls(void); 1120 extern void disable_svc(queue_t *); 1121 extern void remove_runlist(queue_t *); 1122 extern void wait_svc(queue_t *); 1123 extern void backenable(queue_t *, uchar_t); 1124 extern void set_qend(queue_t *); 1125 extern void set_qnexthot(queue_t *); 1126 extern int strgeterr(stdata_t *, int32_t, int); 1127 extern void qenable_locked(queue_t *); 1128 extern mblk_t *getq_noenab(queue_t *); 1129 extern void rmvq_noenab(queue_t *, mblk_t *); 1130 extern void qbackenable(queue_t *, uchar_t); 1131 1132 extern void strblock(queue_t *); 1133 extern void strunblock(queue_t *); 1134 extern int qclaimed(queue_t *); 1135 extern int straccess(struct stdata *, enum jcaccess); 1136 1137 extern void entersq(syncq_t *, int); 1138 extern void leavesq(syncq_t *, int); 1139 extern void claimq(queue_t *); 1140 extern void releaseq(queue_t *); 1141 extern void claimstr(queue_t *); 1142 extern void releasestr(queue_t *); 1143 extern void removeq(queue_t *); 1144 extern void insertq(struct stdata *, queue_t *); 1145 extern void fill_syncq(syncq_t *, queue_t *, mblk_t *, void (*)()); 1146 extern void drain_syncq(syncq_t *); 1147 extern void qfill_syncq(syncq_t *, queue_t *, mblk_t *); 1148 extern void qdrain_syncq(syncq_t *, queue_t *); 1149 extern int flush_syncq(syncq_t *, queue_t *); 1150 extern void wait_sq_svc(syncq_t *); 1151 1152 extern void outer_enter(syncq_t *, uint16_t); 1153 extern void outer_exit(syncq_t *); 1154 extern void qwriter_inner(queue_t *, mblk_t *, void (*)()); 1155 extern void qwriter_outer(queue_t *, mblk_t *, void (*)()); 1156 1157 extern callbparams_t *callbparams_alloc(syncq_t *, void (*)(void *), 1158 void *, int); 1159 extern void callbparams_free(syncq_t *, callbparams_t *); 1160 extern void callbparams_free_id(syncq_t *, callbparams_id_t, int32_t); 1161 extern void qcallbwrapper(void *); 1162 1163 extern mblk_t *esballoc_wait(unsigned char *, size_t, uint_t, frtn_t *); 1164 extern mblk_t *esballoca(unsigned char *, size_t, uint_t, frtn_t *); 1165 extern mblk_t *desballoca(unsigned char *, size_t, uint_t, frtn_t *); 1166 extern int do_sendfp(struct stdata *, struct file *, struct cred *); 1167 extern int frozenstr(queue_t *); 1168 extern size_t xmsgsize(mblk_t *); 1169 1170 extern void putnext_tail(syncq_t *, queue_t *, uint32_t); 1171 extern void stream_willservice(stdata_t *); 1172 extern void stream_runservice(stdata_t *); 1173 1174 extern void strmate(vnode_t *, vnode_t *); 1175 extern queue_t *strvp2wq(vnode_t *); 1176 extern vnode_t *strq2vp(queue_t *); 1177 extern mblk_t *allocb_wait(size_t, uint_t, uint_t, int *); 1178 extern mblk_t *allocb_cred(size_t, cred_t *); 1179 extern mblk_t *allocb_cred_wait(size_t, uint_t, int *, cred_t *); 1180 extern mblk_t *allocb_tmpl(size_t, const mblk_t *); 1181 extern void mblk_setcred(mblk_t *, cred_t *); 1182 void strpollwakeup(vnode_t *, short); 1183 extern int putnextctl_wait(queue_t *, int); 1184 1185 int kstrputmsg(struct vnode *, mblk_t *, struct uio *, ssize_t, 1186 unsigned char, int, int); 1187 int kstrgetmsg(struct vnode *, mblk_t **, struct uio *, 1188 unsigned char *, int *, clock_t, rval_t *); 1189 extern int kstrwritemp(struct vnode *, mblk_t *, ushort_t); 1190 1191 void strsetrerror(vnode_t *, int, int, errfunc_t); 1192 void strsetwerror(vnode_t *, int, int, errfunc_t); 1193 void strseteof(vnode_t *, int); 1194 void strflushrq(vnode_t *, int); 1195 void strsetrputhooks(vnode_t *, uint_t, msgfunc_t, msgfunc_t); 1196 void strsetwputhooks(vnode_t *, uint_t, clock_t); 1197 int strwaitmark(vnode_t *); 1198 extern void strsignal_nolock(stdata_t *, int, int32_t); 1199 1200 struct multidata_s; 1201 struct pdesc_s; 1202 extern int hcksum_assoc(mblk_t *, struct multidata_s *, struct pdesc_s *, 1203 uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, int); 1204 extern void hcksum_retrieve(mblk_t *, struct multidata_s *, struct pdesc_s *, 1205 uint32_t *, uint32_t *, uint32_t *, uint32_t *, uint32_t *); 1206 extern unsigned int bcksum(uchar_t *, int, unsigned int); 1207 extern boolean_t is_vmloaned_mblk(mblk_t *, struct multidata_s *, 1208 struct pdesc_s *); 1209 1210 extern int fmodsw_register(const char *, struct streamtab *, int); 1211 extern int fmodsw_unregister(const char *); 1212 extern fmodsw_impl_t *fmodsw_find(const char *, fmodsw_flags_t); 1213 extern void fmodsw_rele(fmodsw_impl_t *); 1214 1215 extern void freemsgchain(mblk_t *); 1216 extern mblk_t *copymsgchain(mblk_t *); 1217 1218 /* 1219 * shared or externally configured data structures 1220 */ 1221 extern ssize_t strmsgsz; /* maximum stream message size */ 1222 extern ssize_t strctlsz; /* maximum size of ctl message */ 1223 extern int nstrpush; /* maximum number of pushes allowed */ 1224 1225 /* 1226 * Bufcalls related variables. 1227 */ 1228 extern struct bclist strbcalls; /* List of bufcalls */ 1229 extern kmutex_t strbcall_lock; /* Protects the list of bufcalls */ 1230 extern kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */ 1231 extern kcondvar_t bcall_cv; /* wait of executing bufcall completes */ 1232 1233 extern frtn_t frnop; 1234 1235 extern struct kmem_cache *ciputctrl_cache; 1236 extern int n_ciputctrl; 1237 extern int max_n_ciputctrl; 1238 extern int min_n_ciputctrl; 1239 1240 extern cdevsw_impl_t *devimpl; 1241 #endif /* _KERNEL */ 1242 1243 /* 1244 * Note: Use of these macros are restricted to kernel/unix and 1245 * intended for the STREAMS framework. 1246 * All modules/drivers should include sys/ddi.h. 1247 * 1248 * Finding related queues 1249 */ 1250 #define _OTHERQ(q) ((q)->q_flag&QREADR? (q)+1: (q)-1) 1251 #define _WR(q) ((q)->q_flag&QREADR? (q)+1: (q)) 1252 #define _RD(q) ((q)->q_flag&QREADR? (q): (q)-1) 1253 #define _SAMESTR(q) (!((q)->q_flag & QEND)) 1254 1255 /* 1256 * These are also declared here for modules/drivers that erroneously 1257 * include strsubr.h after ddi.h or fail to include ddi.h at all. 1258 */ 1259 extern struct queue *OTHERQ(queue_t *); /* stream.h */ 1260 extern struct queue *RD(queue_t *); 1261 extern struct queue *WR(queue_t *); 1262 extern int SAMESTR(queue_t *); 1263 1264 #ifdef __cplusplus 1265 } 1266 #endif 1267 1268 1269 #endif /* _SYS_STRSUBR_H */ 1270