xref: /titanic_51/usr/src/uts/common/sys/dtrace_impl.h (revision ee63a9c96aceb3724cf0ee9b2e586b0dce3908a2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29  */
30 
31 #ifndef _SYS_DTRACE_IMPL_H
32 #define	_SYS_DTRACE_IMPL_H
33 
34 #ifdef	__cplusplus
35 extern "C" {
36 #endif
37 
38 /*
39  * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
40  *
41  * Note: The contents of this file are private to the implementation of the
42  * Solaris system and DTrace subsystem and are subject to change at any time
43  * without notice.  Applications and drivers using these interfaces will fail
44  * to run on future releases.  These interfaces should not be used for any
45  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
46  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
47  */
48 
49 #include <sys/dtrace.h>
50 
51 /*
52  * DTrace Implementation Constants and Typedefs
53  */
54 #define	DTRACE_MAXPROPLEN		128
55 #define	DTRACE_DYNVAR_CHUNKSIZE		256
56 
57 struct dtrace_probe;
58 struct dtrace_ecb;
59 struct dtrace_predicate;
60 struct dtrace_action;
61 struct dtrace_provider;
62 struct dtrace_state;
63 
64 typedef struct dtrace_probe dtrace_probe_t;
65 typedef struct dtrace_ecb dtrace_ecb_t;
66 typedef struct dtrace_predicate dtrace_predicate_t;
67 typedef struct dtrace_action dtrace_action_t;
68 typedef struct dtrace_provider dtrace_provider_t;
69 typedef struct dtrace_meta dtrace_meta_t;
70 typedef struct dtrace_state dtrace_state_t;
71 typedef uint32_t dtrace_optid_t;
72 typedef uint32_t dtrace_specid_t;
73 typedef uint64_t dtrace_genid_t;
74 
75 /*
76  * DTrace Probes
77  *
78  * The probe is the fundamental unit of the DTrace architecture.  Probes are
79  * created by DTrace providers, and managed by the DTrace framework.  A probe
80  * is identified by a unique <provider, module, function, name> tuple, and has
81  * a unique probe identifier assigned to it.  (Some probes are not associated
82  * with a specific point in text; these are called _unanchored probes_ and have
83  * no module or function associated with them.)  Probes are represented as a
84  * dtrace_probe structure.  To allow quick lookups based on each element of the
85  * probe tuple, probes are hashed by each of provider, module, function and
86  * name.  (If a lookup is performed based on a regular expression, a
87  * dtrace_probekey is prepared, and a linear search is performed.) Each probe
88  * is additionally pointed to by a linear array indexed by its identifier.  The
89  * identifier is the provider's mechanism for indicating to the DTrace
90  * framework that a probe has fired:  the identifier is passed as the first
91  * argument to dtrace_probe(), where it is then mapped into the corresponding
92  * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
93  * iterate over the probe's list of enabling control blocks; see "DTrace
94  * Enabling Control Blocks", below.)
95  */
96 struct dtrace_probe {
97 	dtrace_id_t dtpr_id;			/* probe identifier */
98 	dtrace_ecb_t *dtpr_ecb;			/* ECB list; see below */
99 	dtrace_ecb_t *dtpr_ecb_last;		/* last ECB in list */
100 	void *dtpr_arg;				/* provider argument */
101 	dtrace_cacheid_t dtpr_predcache;	/* predicate cache ID */
102 	int dtpr_aframes;			/* artificial frames */
103 	dtrace_provider_t *dtpr_provider;	/* pointer to provider */
104 	char *dtpr_mod;				/* probe's module name */
105 	char *dtpr_func;			/* probe's function name */
106 	char *dtpr_name;			/* probe's name */
107 	dtrace_probe_t *dtpr_nextmod;		/* next in module hash */
108 	dtrace_probe_t *dtpr_prevmod;		/* previous in module hash */
109 	dtrace_probe_t *dtpr_nextfunc;		/* next in function hash */
110 	dtrace_probe_t *dtpr_prevfunc;		/* previous in function hash */
111 	dtrace_probe_t *dtpr_nextname;		/* next in name hash */
112 	dtrace_probe_t *dtpr_prevname;		/* previous in name hash */
113 	dtrace_genid_t dtpr_gen;		/* probe generation ID */
114 };
115 
116 typedef int dtrace_probekey_f(const char *, const char *, int);
117 
118 typedef struct dtrace_probekey {
119 	const char *dtpk_prov;			/* provider name to match */
120 	dtrace_probekey_f *dtpk_pmatch;		/* provider matching function */
121 	const char *dtpk_mod;			/* module name to match */
122 	dtrace_probekey_f *dtpk_mmatch;		/* module matching function */
123 	const char *dtpk_func;			/* func name to match */
124 	dtrace_probekey_f *dtpk_fmatch;		/* func matching function */
125 	const char *dtpk_name;			/* name to match */
126 	dtrace_probekey_f *dtpk_nmatch;		/* name matching function */
127 	dtrace_id_t dtpk_id;			/* identifier to match */
128 } dtrace_probekey_t;
129 
130 typedef struct dtrace_hashbucket {
131 	struct dtrace_hashbucket *dthb_next;	/* next on hash chain */
132 	dtrace_probe_t *dthb_chain;		/* chain of probes */
133 	int dthb_len;				/* number of probes here */
134 } dtrace_hashbucket_t;
135 
136 typedef struct dtrace_hash {
137 	dtrace_hashbucket_t **dth_tab;		/* hash table */
138 	int dth_size;				/* size of hash table */
139 	int dth_mask;				/* mask to index into table */
140 	int dth_nbuckets;			/* total number of buckets */
141 	uintptr_t dth_nextoffs;			/* offset of next in probe */
142 	uintptr_t dth_prevoffs;			/* offset of prev in probe */
143 	uintptr_t dth_stroffs;			/* offset of str in probe */
144 } dtrace_hash_t;
145 
146 /*
147  * DTrace Enabling Control Blocks
148  *
149  * When a provider wishes to fire a probe, it calls into dtrace_probe(),
150  * passing the probe identifier as the first argument.  As described above,
151  * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
152  * structure.  This structure contains information about the probe, and a
153  * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
154  * DTrace consumer state, and contains an optional predicate, and a list of
155  * actions.  (Shown schematically below.)  The ECB abstraction allows a single
156  * probe to be multiplexed across disjoint consumers, or across disjoint
157  * enablings of a single probe within one consumer.
158  *
159  *   Enabling Control Block
160  *        dtrace_ecb_t
161  * +------------------------+
162  * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
163  * | dtrace_state_t * ------+--------------> State associated with this ECB
164  * | dtrace_predicate_t * --+---------+
165  * | dtrace_action_t * -----+----+    |
166  * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
167  * +-------------------+----+    |    |       dtrace_predicate_t
168  *                     |         |    +---> +--------------------+
169  *                     |         |          | dtrace_difo_t * ---+----> DIFO
170  *                     |         |          +--------------------+
171  *                     |         |
172  *            Next ECB |         |           Action
173  *            (if any) |         |       dtrace_action_t
174  *                     :         +--> +-------------------+
175  *                     :              | dtrace_actkind_t -+------> kind
176  *                     v              | dtrace_difo_t * --+------> DIFO (if any)
177  *                                    | dtrace_recdesc_t -+------> record descr.
178  *                                    | dtrace_action_t * +------+
179  *                                    +-------------------+      |
180  *                                                               | Next action
181  *                               +-------------------------------+  (if any)
182  *                               |
183  *                               |           Action
184  *                               |       dtrace_action_t
185  *                               +--> +-------------------+
186  *                                    | dtrace_actkind_t -+------> kind
187  *                                    | dtrace_difo_t * --+------> DIFO (if any)
188  *                                    | dtrace_action_t * +------+
189  *                                    +-------------------+      |
190  *                                                               | Next action
191  *                               +-------------------------------+  (if any)
192  *                               |
193  *                               :
194  *                               v
195  *
196  *
197  * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
198  * than is available in the principal buffer, the ECB is processed:  if the
199  * predicate is non-NULL, the DIF object is executed.  If the result is
200  * non-zero, the action list is processed, with each action being executed
201  * accordingly.  When the action list has been completely executed, processing
202  * advances to the next ECB.  processing advances to the next ECB.  If the
203  * result is non-zero; For each ECB, it first determines the The ECB
204  * abstraction allows disjoint consumers to multiplex on single probes.
205  */
206 struct dtrace_ecb {
207 	dtrace_epid_t dte_epid;			/* enabled probe ID */
208 	uint32_t dte_alignment;			/* required alignment */
209 	size_t dte_needed;			/* bytes needed */
210 	size_t dte_size;			/* total size of payload */
211 	dtrace_predicate_t *dte_predicate;	/* predicate, if any */
212 	dtrace_action_t *dte_action;		/* actions, if any */
213 	dtrace_ecb_t *dte_next;			/* next ECB on probe */
214 	dtrace_state_t *dte_state;		/* pointer to state */
215 	uint32_t dte_cond;			/* security condition */
216 	dtrace_probe_t *dte_probe;		/* pointer to probe */
217 	dtrace_action_t *dte_action_last;	/* last action on ECB */
218 	uint64_t dte_uarg;			/* library argument */
219 };
220 
221 struct dtrace_predicate {
222 	dtrace_difo_t *dtp_difo;		/* DIF object */
223 	dtrace_cacheid_t dtp_cacheid;		/* cache identifier */
224 	int dtp_refcnt;				/* reference count */
225 };
226 
227 struct dtrace_action {
228 	dtrace_actkind_t dta_kind;		/* kind of action */
229 	uint16_t dta_intuple;			/* boolean:  in aggregation */
230 	uint32_t dta_refcnt;			/* reference count */
231 	dtrace_difo_t *dta_difo;		/* pointer to DIFO */
232 	dtrace_recdesc_t dta_rec;		/* record description */
233 	dtrace_action_t *dta_prev;		/* previous action */
234 	dtrace_action_t *dta_next;		/* next action */
235 };
236 
237 typedef struct dtrace_aggregation {
238 	dtrace_action_t dtag_action;		/* action; must be first */
239 	dtrace_aggid_t dtag_id;			/* identifier */
240 	dtrace_ecb_t *dtag_ecb;			/* corresponding ECB */
241 	dtrace_action_t *dtag_first;		/* first action in tuple */
242 	uint32_t dtag_base;			/* base of aggregation */
243 	uint8_t dtag_hasarg;			/* boolean:  has argument */
244 	uint64_t dtag_initial;			/* initial value */
245 	void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
246 } dtrace_aggregation_t;
247 
248 /*
249  * DTrace Buffers
250  *
251  * Principal buffers, aggregation buffers, and speculative buffers are all
252  * managed with the dtrace_buffer structure.  By default, this structure
253  * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
254  * active and passive buffers, respectively.  For speculative buffers,
255  * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
256  * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
257  * always allocated on a per-CPU basis; a single dtrace_buffer structure is
258  * never shared among CPUs.  (That is, there is never true sharing of the
259  * dtrace_buffer structure; to prevent false sharing of the structure, it must
260  * always be aligned to the coherence granularity -- generally 64 bytes.)
261  *
262  * One of the critical design decisions of DTrace is that a given ECB always
263  * stores the same quantity and type of data.  This is done to assure that the
264  * only metadata required for an ECB's traced data is the EPID.  That is, from
265  * the EPID, the consumer can determine the data layout.  (The data buffer
266  * layout is shown schematically below.)  By assuring that one can determine
267  * data layout from the EPID, the metadata stream can be separated from the
268  * data stream -- simplifying the data stream enormously.
269  *
270  *      base of data buffer --->  +------+--------------------+------+
271  *                                | EPID | data               | EPID |
272  *                                +------+--------+------+----+------+
273  *                                | data          | EPID | data      |
274  *                                +---------------+------+-----------+
275  *                                | data, cont.                      |
276  *                                +------+--------------------+------+
277  *                                | EPID | data               |      |
278  *                                +------+--------------------+      |
279  *                                |                ||                |
280  *                                |                ||                |
281  *                                |                \/                |
282  *                                :                                  :
283  *                                .                                  .
284  *                                .                                  .
285  *                                .                                  .
286  *                                :                                  :
287  *                                |                                  |
288  *     limit of data buffer --->  +----------------------------------+
289  *
290  * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
291  * principal buffer (both scratch and payload) exceed the available space.  If
292  * the ECB's needs exceed available space (and if the principal buffer policy
293  * is the default "switch" policy), the ECB is dropped, the buffer's drop count
294  * is incremented, and processing advances to the next ECB.  If the ECB's needs
295  * can be met with the available space, the ECB is processed, but the offset in
296  * the principal buffer is only advanced if the ECB completes processing
297  * without error.
298  *
299  * When a buffer is to be switched (either because the buffer is the principal
300  * buffer with a "switch" policy or because it is an aggregation buffer), a
301  * cross call is issued to the CPU associated with the buffer.  In the cross
302  * call context, interrupts are disabled, and the active and the inactive
303  * buffers are atomically switched.  This involves switching the data pointers,
304  * copying the various state fields (offset, drops, errors, etc.) into their
305  * inactive equivalents, and clearing the state fields.  Because interrupts are
306  * disabled during this procedure, the switch is guaranteed to appear atomic to
307  * dtrace_probe().
308  *
309  * DTrace Ring Buffering
310  *
311  * To process a ring buffer correctly, one must know the oldest valid record.
312  * Processing starts at the oldest record in the buffer and continues until
313  * the end of the buffer is reached.  Processing then resumes starting with
314  * the record stored at offset 0 in the buffer, and continues until the
315  * youngest record is processed.  If trace records are of a fixed-length,
316  * determining the oldest record is trivial:
317  *
318  *   - If the ring buffer has not wrapped, the oldest record is the record
319  *     stored at offset 0.
320  *
321  *   - If the ring buffer has wrapped, the oldest record is the record stored
322  *     at the current offset.
323  *
324  * With variable length records, however, just knowing the current offset
325  * doesn't suffice for determining the oldest valid record:  assuming that one
326  * allows for arbitrary data, one has no way of searching forward from the
327  * current offset to find the oldest valid record.  (That is, one has no way
328  * of separating data from metadata.) It would be possible to simply refuse to
329  * process any data in the ring buffer between the current offset and the
330  * limit, but this leaves (potentially) an enormous amount of otherwise valid
331  * data unprocessed.
332  *
333  * To effect ring buffering, we track two offsets in the buffer:  the current
334  * offset and the _wrapped_ offset.  If a request is made to reserve some
335  * amount of data, and the buffer has wrapped, the wrapped offset is
336  * incremented until the wrapped offset minus the current offset is greater
337  * than or equal to the reserve request.  This is done by repeatedly looking
338  * up the ECB corresponding to the EPID at the current wrapped offset, and
339  * incrementing the wrapped offset by the size of the data payload
340  * corresponding to that ECB.  If this offset is greater than or equal to the
341  * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
342  * current offset effectively "chases" the wrapped offset around the buffer.
343  * Schematically:
344  *
345  *      base of data buffer --->  +------+--------------------+------+
346  *                                | EPID | data               | EPID |
347  *                                +------+--------+------+----+------+
348  *                                | data          | EPID | data      |
349  *                                +---------------+------+-----------+
350  *                                | data, cont.                      |
351  *                                +------+---------------------------+
352  *                                | EPID | data                      |
353  *           current offset --->  +------+---------------------------+
354  *                                | invalid data                     |
355  *           wrapped offset --->  +------+--------------------+------+
356  *                                | EPID | data               | EPID |
357  *                                +------+--------+------+----+------+
358  *                                | data          | EPID | data      |
359  *                                +---------------+------+-----------+
360  *                                :                                  :
361  *                                .                                  .
362  *                                .        ... valid data ...        .
363  *                                .                                  .
364  *                                :                                  :
365  *                                +------+-------------+------+------+
366  *                                | EPID | data        | EPID | data |
367  *                                +------+------------++------+------+
368  *                                | data, cont.       | leftover     |
369  *     limit of data buffer --->  +-------------------+--------------+
370  *
371  * If the amount of requested buffer space exceeds the amount of space
372  * available between the current offset and the end of the buffer:
373  *
374  *  (1)  all words in the data buffer between the current offset and the limit
375  *       of the data buffer (marked "leftover", above) are set to
376  *       DTRACE_EPIDNONE
377  *
378  *  (2)  the wrapped offset is set to zero
379  *
380  *  (3)  the iteration process described above occurs until the wrapped offset
381  *       is greater than the amount of desired space.
382  *
383  * The wrapped offset is implemented by (re-)using the inactive offset.
384  * In a "switch" buffer policy, the inactive offset stores the offset in
385  * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
386  * offset.
387  *
388  * DTrace Scratch Buffering
389  *
390  * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
391  * To accommodate such requests easily, scratch memory may be allocated in
392  * the buffer beyond the current offset plus the needed memory of the current
393  * ECB.  If there isn't sufficient room in the buffer for the requested amount
394  * of scratch space, the allocation fails and an error is generated.  Scratch
395  * memory is tracked in the dtrace_mstate_t and is automatically freed when
396  * the ECB ceases processing.  Note that ring buffers cannot allocate their
397  * scratch from the principal buffer -- lest they needlessly overwrite older,
398  * valid data.  Ring buffers therefore have their own dedicated scratch buffer
399  * from which scratch is allocated.
400  */
401 #define	DTRACEBUF_RING		0x0001		/* bufpolicy set to "ring" */
402 #define	DTRACEBUF_FILL		0x0002		/* bufpolicy set to "fill" */
403 #define	DTRACEBUF_NOSWITCH	0x0004		/* do not switch buffer */
404 #define	DTRACEBUF_WRAPPED	0x0008		/* ring buffer has wrapped */
405 #define	DTRACEBUF_DROPPED	0x0010		/* drops occurred */
406 #define	DTRACEBUF_ERROR		0x0020		/* errors occurred */
407 #define	DTRACEBUF_FULL		0x0040		/* "fill" buffer is full */
408 #define	DTRACEBUF_CONSUMED	0x0080		/* buffer has been consumed */
409 #define	DTRACEBUF_INACTIVE	0x0100		/* buffer is not yet active */
410 
411 typedef struct dtrace_buffer {
412 	uint64_t dtb_offset;			/* current offset in buffer */
413 	uint64_t dtb_size;			/* size of buffer */
414 	uint32_t dtb_flags;			/* flags */
415 	uint32_t dtb_drops;			/* number of drops */
416 	caddr_t dtb_tomax;			/* active buffer */
417 	caddr_t dtb_xamot;			/* inactive buffer */
418 	uint32_t dtb_xamot_flags;		/* inactive flags */
419 	uint32_t dtb_xamot_drops;		/* drops in inactive buffer */
420 	uint64_t dtb_xamot_offset;		/* offset in inactive buffer */
421 	uint32_t dtb_errors;			/* number of errors */
422 	uint32_t dtb_xamot_errors;		/* errors in inactive buffer */
423 #ifndef _LP64
424 	uint64_t dtb_pad1;			/* pad out to 64 bytes */
425 #endif
426 	uint64_t dtb_switched;			/* time of last switch */
427 	uint64_t dtb_interval;			/* observed switch interval */
428 	uint64_t dtb_pad2[6];			/* pad to avoid false sharing */
429 } dtrace_buffer_t;
430 
431 /*
432  * DTrace Aggregation Buffers
433  *
434  * Aggregation buffers use much of the same mechanism as described above
435  * ("DTrace Buffers").  However, because an aggregation is fundamentally a
436  * hash, there exists dynamic metadata associated with an aggregation buffer
437  * that is not associated with other kinds of buffers.  This aggregation
438  * metadata is _only_ relevant for the in-kernel implementation of
439  * aggregations; it is not actually relevant to user-level consumers.  To do
440  * this, we allocate dynamic aggregation data (hash keys and hash buckets)
441  * starting below the _limit_ of the buffer, and we allocate data from the
442  * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
443  * data is copied out; the metadata is simply discarded.  Schematically,
444  * aggregation buffers look like:
445  *
446  *      base of data buffer --->  +-------+------+-----------+-------+
447  *                                | aggid | key  | value     | aggid |
448  *                                +-------+------+-----------+-------+
449  *                                | key                              |
450  *                                +-------+-------+-----+------------+
451  *                                | value | aggid | key | value      |
452  *                                +-------+------++-----+------+-----+
453  *                                | aggid | key  | value       |     |
454  *                                +-------+------+-------------+     |
455  *                                |                ||                |
456  *                                |                ||                |
457  *                                |                \/                |
458  *                                :                                  :
459  *                                .                                  .
460  *                                .                                  .
461  *                                .                                  .
462  *                                :                                  :
463  *                                |                /\                |
464  *                                |                ||   +------------+
465  *                                |                ||   |            |
466  *                                +---------------------+            |
467  *                                | hash keys                        |
468  *                                | (dtrace_aggkey structures)       |
469  *                                |                                  |
470  *                                +----------------------------------+
471  *                                | hash buckets                     |
472  *                                | (dtrace_aggbuffer structure)     |
473  *                                |                                  |
474  *     limit of data buffer --->  +----------------------------------+
475  *
476  *
477  * As implied above, just as we assure that ECBs always store a constant
478  * amount of data, we assure that a given aggregation -- identified by its
479  * aggregation ID -- always stores data of a constant quantity and type.
480  * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
481  * given record.
482  *
483  * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
484  * aligned.  (If this the structure changes such that this becomes false, an
485  * assertion will fail in dtrace_aggregate().)
486  */
487 typedef struct dtrace_aggkey {
488 	uint32_t dtak_hashval;			/* hash value */
489 	uint32_t dtak_action:4;			/* action -- 4 bits */
490 	uint32_t dtak_size:28;			/* size -- 28 bits */
491 	caddr_t dtak_data;			/* data pointer */
492 	struct dtrace_aggkey *dtak_next;	/* next in hash chain */
493 } dtrace_aggkey_t;
494 
495 typedef struct dtrace_aggbuffer {
496 	uintptr_t dtagb_hashsize;		/* number of buckets */
497 	uintptr_t dtagb_free;			/* free list of keys */
498 	dtrace_aggkey_t **dtagb_hash;		/* hash table */
499 } dtrace_aggbuffer_t;
500 
501 /*
502  * DTrace Speculations
503  *
504  * Speculations have a per-CPU buffer and a global state.  Once a speculation
505  * buffer has been comitted or discarded, it cannot be reused until all CPUs
506  * have taken the same action (commit or discard) on their respective
507  * speculative buffer.  However, because DTrace probes may execute in arbitrary
508  * context, other CPUs cannot simply be cross-called at probe firing time to
509  * perform the necessary commit or discard.  The speculation states thus
510  * optimize for the case that a speculative buffer is only active on one CPU at
511  * the time of a commit() or discard() -- for if this is the case, other CPUs
512  * need not take action, and the speculation is immediately available for
513  * reuse.  If the speculation is active on multiple CPUs, it must be
514  * asynchronously cleaned -- potentially leading to a higher rate of dirty
515  * speculative drops.  The speculation states are as follows:
516  *
517  *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
518  *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
519  *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
520  *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
521  *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
522  *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
523  *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
524  *
525  * The state transition diagram is as follows:
526  *
527  *     +----------------------------------------------------------+
528  *     |                                                          |
529  *     |                      +------------+                      |
530  *     |  +-------------------| COMMITTING |<-----------------+   |
531  *     |  |                   +------------+                  |   |
532  *     |  | copied spec.            ^             commit() on |   | discard() on
533  *     |  | into principal          |              active CPU |   | active CPU
534  *     |  |                         | commit()                |   |
535  *     V  V                         |                         |   |
536  * +----------+                 +--------+                +-----------+
537  * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
538  * +----------+  speculation()  +--------+  speculate()   +-----------+
539  *     ^  ^                         |                         |   |
540  *     |  |                         | discard()               |   |
541  *     |  | asynchronously          |            discard() on |   | speculate()
542  *     |  | cleaned                 V            inactive CPU |   | on inactive
543  *     |  |                   +------------+                  |   | CPU
544  *     |  +-------------------| DISCARDING |<-----------------+   |
545  *     |                      +------------+                      |
546  *     | asynchronously             ^                             |
547  *     | copied spec.               |       discard()             |
548  *     | into principal             +------------------------+    |
549  *     |                                                     |    V
550  *  +----------------+             commit()              +------------+
551  *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
552  *  +----------------+                                   +------------+
553  */
554 typedef enum dtrace_speculation_state {
555 	DTRACESPEC_INACTIVE = 0,
556 	DTRACESPEC_ACTIVE,
557 	DTRACESPEC_ACTIVEONE,
558 	DTRACESPEC_ACTIVEMANY,
559 	DTRACESPEC_COMMITTING,
560 	DTRACESPEC_COMMITTINGMANY,
561 	DTRACESPEC_DISCARDING
562 } dtrace_speculation_state_t;
563 
564 typedef struct dtrace_speculation {
565 	dtrace_speculation_state_t dtsp_state;	/* current speculation state */
566 	int dtsp_cleaning;			/* non-zero if being cleaned */
567 	dtrace_buffer_t *dtsp_buffer;		/* speculative buffer */
568 } dtrace_speculation_t;
569 
570 /*
571  * DTrace Dynamic Variables
572  *
573  * The dynamic variable problem is obviously decomposed into two subproblems:
574  * allocating new dynamic storage, and freeing old dynamic storage.  The
575  * presence of the second problem makes the first much more complicated -- or
576  * rather, the absence of the second renders the first trivial.  This is the
577  * case with aggregations, for which there is effectively no deallocation of
578  * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
579  * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
580  * allow for both dynamic allocation and dynamic deallocation, the
581  * implementation of dynamic variables is quite a bit more complicated than
582  * that of their aggregation kin.
583  *
584  * We observe that allocating new dynamic storage is tricky only because the
585  * size can vary -- the allocation problem is much easier if allocation sizes
586  * are uniform.  We further observe that in D, the size of dynamic variables is
587  * actually _not_ dynamic -- dynamic variable sizes may be determined by static
588  * analysis of DIF text.  (This is true even of putatively dynamically-sized
589  * objects like strings and stacks, the sizes of which are dictated by the
590  * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
591  * performing this analysis on all DIF before enabling any probes.  For each
592  * dynamic load or store, we calculate the dynamically-allocated size plus the
593  * size of the dtrace_dynvar structure plus the storage required to key the
594  * data.  For all DIF, we take the largest value and dub it the _chunksize_.
595  * We then divide dynamic memory into two parts:  a hash table that is wide
596  * enough to have every chunk in its own bucket, and a larger region of equal
597  * chunksize units.  Whenever we wish to dynamically allocate a variable, we
598  * always allocate a single chunk of memory.  Depending on the uniformity of
599  * allocation, this will waste some amount of memory -- but it eliminates the
600  * non-determinism inherent in traditional heap fragmentation.
601  *
602  * Dynamic objects are allocated by storing a non-zero value to them; they are
603  * deallocated by storing a zero value to them.  Dynamic variables are
604  * complicated enormously by being shared between CPUs.  In particular,
605  * consider the following scenario:
606  *
607  *                 CPU A                                 CPU B
608  *  +---------------------------------+   +---------------------------------+
609  *  |                                 |   |                                 |
610  *  | allocates dynamic object a[123] |   |                                 |
611  *  | by storing the value 345 to it  |   |                                 |
612  *  |                               --------->                              |
613  *  |                                 |   | wishing to load from object     |
614  *  |                                 |   | a[123], performs lookup in      |
615  *  |                                 |   | dynamic variable space          |
616  *  |                               <---------                              |
617  *  | deallocates object a[123] by    |   |                                 |
618  *  | storing 0 to it                 |   |                                 |
619  *  |                                 |   |                                 |
620  *  | allocates dynamic object b[567] |   | performs load from a[123]       |
621  *  | by storing the value 789 to it  |   |                                 |
622  *  :                                 :   :                                 :
623  *  .                                 .   .                                 .
624  *
625  * This is obviously a race in the D program, but there are nonetheless only
626  * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
627  * CPU B may _not_ see the value 789 for a[123].
628  *
629  * There are essentially two ways to deal with this:
630  *
631  *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
632  *       from a[123], it needs to lock a[123] and hold the lock for the
633  *       duration that it wishes to manipulate it.
634  *
635  *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
636  *       to them.
637  *
638  * The implementation of (1) is rife with complexity, because it requires the
639  * user of a dynamic variable to explicitly decree when they are done using it.
640  * Were all variables by value, this perhaps wouldn't be debilitating -- but
641  * dynamic variables of non-scalar types are tracked by reference.  That is, if
642  * a dynamic variable is, say, a string, and that variable is to be traced to,
643  * say, the principal buffer, the DIF emulation code returns to the main
644  * dtrace_probe() loop a pointer to the underlying storage, not the contents of
645  * the storage.  Further, code calling on DIF emulation would have to be aware
646  * that the DIF emulation has returned a reference to a dynamic variable that
647  * has been potentially locked.  The variable would have to be unlocked after
648  * the main dtrace_probe() loop is finished with the variable, and the main
649  * dtrace_probe() loop would have to be careful to not call any further DIF
650  * emulation while the variable is locked to avoid deadlock.  More generally,
651  * if one were to implement (1), DIF emulation code dealing with dynamic
652  * variables could only deal with one dynamic variable at a time (lest deadlock
653  * result).  To sum, (1) exports too much subtlety to the users of dynamic
654  * variables -- increasing maintenance burden and imposing serious constraints
655  * on future DTrace development.
656  *
657  * The implementation of (2) is also complex, but the complexity is more
658  * manageable.  We need to be sure that when a variable is deallocated, it is
659  * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
660  * variable is on a dirty list, it cannot be found by CPUs performing a
661  * subsequent lookup of the variable -- but it may still be in use by other
662  * CPUs.  To assure that all CPUs that may be seeing the old variable have
663  * cleared out of probe context, a dtrace_sync() can be issued.  Once the
664  * dtrace_sync() has completed, it can be known that all CPUs are done
665  * manipulating the dynamic variable -- the dirty list can be atomically
666  * appended to the free list.  Unfortunately, there's a slight hiccup in this
667  * mechanism:  dtrace_sync() may not be issued from probe context.  The
668  * dtrace_sync() must be therefore issued asynchronously from non-probe
669  * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
670  * "cleanrate" frequency.  To ease this implementation, we define several chunk
671  * lists:
672  *
673  *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
674  *
675  *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
676  *     cleaned.  Not available, but will be shortly.  Dynamic variable
677  *     allocation may not spin or block for availability, however.
678  *
679  *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
680  *
681  *   - Free.  Available for allocation.
682  *
683  * Moreover, to avoid absurd contention, _each_ of these lists is implemented
684  * on a per-CPU basis.  This is only for performance, not correctness; chunks
685  * may be allocated from another CPU's free list.  The algorithm for allocation
686  * then is this:
687  *
688  *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
689  *        is non-empty and allocation is successful, allocation is complete.
690  *
691  *   (2)  If the clean list is non-empty, atomically move it to the free list,
692  *        and reattempt (1).
693  *
694  *   (3)  If the dynamic variable space is in the CLEAN state, look for free
695  *        and clean lists on other CPUs by setting the current CPU to the next
696  *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
697  *        is, if all CPUs have been checked), atomically switch the state of
698  *        the dynamic variable space based on the following:
699  *
700  *        - If no free chunks were found and no dirty chunks were found,
701  *          atomically set the state to EMPTY.
702  *
703  *        - If dirty chunks were found, atomically set the state to DIRTY.
704  *
705  *        - If rinsing chunks were found, atomically set the state to RINSING.
706  *
707  *   (4)  Based on state of dynamic variable space state, increment appropriate
708  *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
709  *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
710  *        RINSING state).  Fail the allocation.
711  *
712  * The cleaning cyclic operates with the following algorithm:  for all CPUs
713  * with a non-empty dirty list, atomically move the dirty list to the rinsing
714  * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
715  * atomically move the rinsing list to the clean list.  Perform another
716  * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
717  * state of the dynamic variable space can be restored to CLEAN.
718  *
719  * There exist two final races that merit explanation.  The first is a simple
720  * allocation race:
721  *
722  *                 CPU A                                 CPU B
723  *  +---------------------------------+   +---------------------------------+
724  *  |                                 |   |                                 |
725  *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
726  *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
727  *  |                                 |   |                                 |
728  *  :                                 :   :                                 :
729  *  .                                 .   .                                 .
730  *
731  * Again, this is a race in the D program.  It can be resolved by having a[123]
732  * hold the value 345 or a[123] hold the value 567 -- but it must be true that
733  * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
734  * put the same element twice on the same hash chain.)  This is resolved
735  * simply:  before the allocation is undertaken, the start of the new chunk's
736  * hash chain is noted.  Later, after the allocation is complete, the hash
737  * chain is atomically switched to point to the new element.  If this fails
738  * (because of either concurrent allocations or an allocation concurrent with a
739  * deletion), the newly allocated chunk is deallocated to the dirty list, and
740  * the whole process of looking up (and potentially allocating) the dynamic
741  * variable is reattempted.
742  *
743  * The final race is a simple deallocation race:
744  *
745  *                 CPU A                                 CPU B
746  *  +---------------------------------+   +---------------------------------+
747  *  |                                 |   |                                 |
748  *  | deallocates dynamic object      |   | deallocates dynamic object      |
749  *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
750  *  | to it                           |   | to it                           |
751  *  |                                 |   |                                 |
752  *  :                                 :   :                                 :
753  *  .                                 .   .                                 .
754  *
755  * Once again, this is a race in the D program, but it is one that we must
756  * handle without corrupting the underlying data structures.  Because
757  * deallocations require the deletion of a chunk from the middle of a hash
758  * chain, we cannot use a single-word atomic operation to remove it.  For this,
759  * we add a spin lock to the hash buckets that is _only_ used for deallocations
760  * (allocation races are handled as above).  Further, this spin lock is _only_
761  * held for the duration of the delete; before control is returned to the DIF
762  * emulation code, the hash bucket is unlocked.
763  */
764 typedef struct dtrace_key {
765 	uint64_t dttk_value;			/* data value or data pointer */
766 	uint64_t dttk_size;			/* 0 if by-val, >0 if by-ref */
767 } dtrace_key_t;
768 
769 typedef struct dtrace_tuple {
770 	uint32_t dtt_nkeys;			/* number of keys in tuple */
771 	uint32_t dtt_pad;			/* padding */
772 	dtrace_key_t dtt_key[1];		/* array of tuple keys */
773 } dtrace_tuple_t;
774 
775 typedef struct dtrace_dynvar {
776 	uint64_t dtdv_hashval;			/* hash value -- 0 if free */
777 	struct dtrace_dynvar *dtdv_next;	/* next on list or hash chain */
778 	void *dtdv_data;			/* pointer to data */
779 	dtrace_tuple_t dtdv_tuple;		/* tuple key */
780 } dtrace_dynvar_t;
781 
782 typedef enum dtrace_dynvar_op {
783 	DTRACE_DYNVAR_ALLOC,
784 	DTRACE_DYNVAR_NOALLOC,
785 	DTRACE_DYNVAR_DEALLOC
786 } dtrace_dynvar_op_t;
787 
788 typedef struct dtrace_dynhash {
789 	dtrace_dynvar_t *dtdh_chain;		/* hash chain for this bucket */
790 	uintptr_t dtdh_lock;			/* deallocation lock */
791 #ifdef _LP64
792 	uintptr_t dtdh_pad[6];			/* pad to avoid false sharing */
793 #else
794 	uintptr_t dtdh_pad[14];			/* pad to avoid false sharing */
795 #endif
796 } dtrace_dynhash_t;
797 
798 typedef struct dtrace_dstate_percpu {
799 	dtrace_dynvar_t *dtdsc_free;		/* free list for this CPU */
800 	dtrace_dynvar_t *dtdsc_dirty;		/* dirty list for this CPU */
801 	dtrace_dynvar_t *dtdsc_rinsing;		/* rinsing list for this CPU */
802 	dtrace_dynvar_t *dtdsc_clean;		/* clean list for this CPU */
803 	uint64_t dtdsc_drops;			/* number of capacity drops */
804 	uint64_t dtdsc_dirty_drops;		/* number of dirty drops */
805 	uint64_t dtdsc_rinsing_drops;		/* number of rinsing drops */
806 #ifdef _LP64
807 	uint64_t dtdsc_pad;			/* pad to avoid false sharing */
808 #else
809 	uint64_t dtdsc_pad[2];			/* pad to avoid false sharing */
810 #endif
811 } dtrace_dstate_percpu_t;
812 
813 typedef enum dtrace_dstate_state {
814 	DTRACE_DSTATE_CLEAN = 0,
815 	DTRACE_DSTATE_EMPTY,
816 	DTRACE_DSTATE_DIRTY,
817 	DTRACE_DSTATE_RINSING
818 } dtrace_dstate_state_t;
819 
820 typedef struct dtrace_dstate {
821 	void *dtds_base;			/* base of dynamic var. space */
822 	size_t dtds_size;			/* size of dynamic var. space */
823 	size_t dtds_hashsize;			/* number of buckets in hash */
824 	size_t dtds_chunksize;			/* size of each chunk */
825 	dtrace_dynhash_t *dtds_hash;		/* pointer to hash table */
826 	dtrace_dstate_state_t dtds_state;	/* current dynamic var. state */
827 	dtrace_dstate_percpu_t *dtds_percpu;	/* per-CPU dyn. var. state */
828 } dtrace_dstate_t;
829 
830 /*
831  * DTrace Variable State
832  *
833  * The DTrace variable state tracks user-defined variables in its dtrace_vstate
834  * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
835  * but some dtrace_vstate structures may exist without a corresponding DTrace
836  * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
837  * user-defined variables can have one of three scopes:
838  *
839  *  DIFV_SCOPE_GLOBAL  =>  global scope
840  *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
841  *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
842  *
843  * The variable state tracks variables by both their scope and their allocation
844  * type:
845  *
846  *  - The dtvs_globals and dtvs_locals members each point to an array of
847  *    dtrace_statvar structures.  These structures contain both the variable
848  *    metadata (dtrace_difv structures) and the underlying storage for all
849  *    statically allocated variables, including statically allocated
850  *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
851  *
852  *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
853  *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
854  *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
855  *    is allocated out of the dynamic variable space.
856  *
857  *  - The dtvs_dynvars member is the dynamic variable state associated with the
858  *    variable state.  The dynamic variable state (described in "DTrace Dynamic
859  *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
860  *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
861  */
862 typedef struct dtrace_statvar {
863 	uint64_t dtsv_data;			/* data or pointer to it */
864 	size_t dtsv_size;			/* size of pointed-to data */
865 	int dtsv_refcnt;			/* reference count */
866 	dtrace_difv_t dtsv_var;			/* variable metadata */
867 } dtrace_statvar_t;
868 
869 typedef struct dtrace_vstate {
870 	dtrace_state_t *dtvs_state;		/* back pointer to state */
871 	dtrace_statvar_t **dtvs_globals;	/* statically-allocated glbls */
872 	int dtvs_nglobals;			/* number of globals */
873 	dtrace_difv_t *dtvs_tlocals;		/* thread-local metadata */
874 	int dtvs_ntlocals;			/* number of thread-locals */
875 	dtrace_statvar_t **dtvs_locals;		/* clause-local data */
876 	int dtvs_nlocals;			/* number of clause-locals */
877 	dtrace_dstate_t dtvs_dynvars;		/* dynamic variable state */
878 } dtrace_vstate_t;
879 
880 /*
881  * DTrace Machine State
882  *
883  * In the process of processing a fired probe, DTrace needs to track and/or
884  * cache some per-CPU state associated with that particular firing.  This is
885  * state that is always discarded after the probe firing has completed, and
886  * much of it is not specific to any DTrace consumer, remaining valid across
887  * all ECBs.  This state is tracked in the dtrace_mstate structure.
888  */
889 #define	DTRACE_MSTATE_ARGS		0x00000001
890 #define	DTRACE_MSTATE_PROBE		0x00000002
891 #define	DTRACE_MSTATE_EPID		0x00000004
892 #define	DTRACE_MSTATE_TIMESTAMP		0x00000008
893 #define	DTRACE_MSTATE_STACKDEPTH	0x00000010
894 #define	DTRACE_MSTATE_CALLER		0x00000020
895 #define	DTRACE_MSTATE_IPL		0x00000040
896 #define	DTRACE_MSTATE_FLTOFFS		0x00000080
897 #define	DTRACE_MSTATE_WALLTIMESTAMP	0x00000100
898 #define	DTRACE_MSTATE_USTACKDEPTH	0x00000200
899 #define	DTRACE_MSTATE_UCALLER		0x00000400
900 
901 typedef struct dtrace_mstate {
902 	uintptr_t dtms_scratch_base;		/* base of scratch space */
903 	uintptr_t dtms_scratch_ptr;		/* current scratch pointer */
904 	size_t dtms_scratch_size;		/* scratch size */
905 	uint32_t dtms_present;			/* variables that are present */
906 	uint64_t dtms_arg[5];			/* cached arguments */
907 	dtrace_epid_t dtms_epid;		/* current EPID */
908 	uint64_t dtms_timestamp;		/* cached timestamp */
909 	hrtime_t dtms_walltimestamp;		/* cached wall timestamp */
910 	int dtms_stackdepth;			/* cached stackdepth */
911 	int dtms_ustackdepth;			/* cached ustackdepth */
912 	struct dtrace_probe *dtms_probe;	/* current probe */
913 	uintptr_t dtms_caller;			/* cached caller */
914 	uint64_t dtms_ucaller;			/* cached user-level caller */
915 	int dtms_ipl;				/* cached interrupt pri lev */
916 	int dtms_fltoffs;			/* faulting DIFO offset */
917 	uintptr_t dtms_strtok;			/* saved strtok() pointer */
918 	uint32_t dtms_access;			/* memory access rights */
919 	dtrace_difo_t *dtms_difo;		/* current dif object */
920 } dtrace_mstate_t;
921 
922 #define	DTRACE_COND_OWNER	0x1
923 #define	DTRACE_COND_USERMODE	0x2
924 #define	DTRACE_COND_ZONEOWNER	0x4
925 
926 #define	DTRACE_PROBEKEY_MAXDEPTH	8	/* max glob recursion depth */
927 
928 /*
929  * Access flag used by dtrace_mstate.dtms_access.
930  */
931 #define	DTRACE_ACCESS_KERNEL	0x1		/* the priv to read kmem */
932 #define	DTRACE_ACCESS_PROC	0x2		/* the priv for proc state */
933 #define	DTRACE_ACCESS_ARGS	0x4		/* the priv to examine args */
934 
935 /*
936  * DTrace Activity
937  *
938  * Each DTrace consumer is in one of several states, which (for purposes of
939  * avoiding yet-another overloading of the noun "state") we call the current
940  * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
941  * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
942  * only transition in one direction; the activity transition diagram is a
943  * directed acyclic graph.  The activity transition diagram is as follows:
944  *
945  *
946  * +----------+                   +--------+                   +--------+
947  * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
948  * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
949  *                before BEGIN        |        after BEGIN       |  |  |
950  *                                    |                          |  |  |
951  *                      exit() action |                          |  |  |
952  *                     from BEGIN ECB |                          |  |  |
953  *                                    |                          |  |  |
954  *                                    v                          |  |  |
955  *                               +----------+     exit() action  |  |  |
956  * +-----------------------------| DRAINING |<-------------------+  |  |
957  * |                             +----------+                       |  |
958  * |                                  |                             |  |
959  * |                   dtrace_stop(), |                             |  |
960  * |                     before END   |                             |  |
961  * |                                  |                             |  |
962  * |                                  v                             |  |
963  * | +---------+                 +----------+                       |  |
964  * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
965  * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
966  * |                after END                       before END         |
967  * |                                                                   |
968  * |                              +--------+                           |
969  * +----------------------------->| KILLED |<--------------------------+
970  *       deadman timeout or       +--------+     deadman timeout or
971  *        killed consumer                         killed consumer
972  *
973  * Note that once a DTrace consumer has stopped tracing, there is no way to
974  * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
975  * the DTrace pseudodevice.
976  */
977 typedef enum dtrace_activity {
978 	DTRACE_ACTIVITY_INACTIVE = 0,		/* not yet running */
979 	DTRACE_ACTIVITY_WARMUP,			/* while starting */
980 	DTRACE_ACTIVITY_ACTIVE,			/* running */
981 	DTRACE_ACTIVITY_DRAINING,		/* before stopping */
982 	DTRACE_ACTIVITY_COOLDOWN,		/* while stopping */
983 	DTRACE_ACTIVITY_STOPPED,		/* after stopping */
984 	DTRACE_ACTIVITY_KILLED			/* killed */
985 } dtrace_activity_t;
986 
987 /*
988  * DTrace Helper Implementation
989  *
990  * A description of the helper architecture may be found in <sys/dtrace.h>.
991  * Each process contains a pointer to its helpers in its p_dtrace_helpers
992  * member.  This is a pointer to a dtrace_helpers structure, which contains an
993  * array of pointers to dtrace_helper structures, helper variable state (shared
994  * among a process's helpers) and a generation count.  (The generation count is
995  * used to provide an identifier when a helper is added so that it may be
996  * subsequently removed.)  The dtrace_helper structure is self-explanatory,
997  * containing pointers to the objects needed to execute the helper.  Note that
998  * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
999  * than dtrace_helpers_max are allowed per-process.
1000  */
1001 #define	DTRACE_HELPER_ACTION_USTACK	0
1002 #define	DTRACE_NHELPER_ACTIONS		1
1003 
1004 typedef struct dtrace_helper_action {
1005 	int dtha_generation;			/* helper action generation */
1006 	int dtha_nactions;			/* number of actions */
1007 	dtrace_difo_t *dtha_predicate;		/* helper action predicate */
1008 	dtrace_difo_t **dtha_actions;		/* array of actions */
1009 	struct dtrace_helper_action *dtha_next;	/* next helper action */
1010 } dtrace_helper_action_t;
1011 
1012 typedef struct dtrace_helper_provider {
1013 	int dthp_generation;			/* helper provider generation */
1014 	uint32_t dthp_ref;			/* reference count */
1015 	dof_helper_t dthp_prov;			/* DOF w/ provider and probes */
1016 } dtrace_helper_provider_t;
1017 
1018 typedef struct dtrace_helpers {
1019 	dtrace_helper_action_t **dthps_actions;	/* array of helper actions */
1020 	dtrace_vstate_t dthps_vstate;		/* helper action var. state */
1021 	dtrace_helper_provider_t **dthps_provs;	/* array of providers */
1022 	uint_t dthps_nprovs;			/* count of providers */
1023 	uint_t dthps_maxprovs;			/* provider array size */
1024 	int dthps_generation;			/* current generation */
1025 	pid_t dthps_pid;			/* pid of associated proc */
1026 	int dthps_deferred;			/* helper in deferred list */
1027 	struct dtrace_helpers *dthps_next;	/* next pointer */
1028 	struct dtrace_helpers *dthps_prev;	/* prev pointer */
1029 } dtrace_helpers_t;
1030 
1031 /*
1032  * DTrace Helper Action Tracing
1033  *
1034  * Debugging helper actions can be arduous.  To ease the development and
1035  * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1036  * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
1037  * it is by default on DEBUG kernels), all helper activity will be traced to a
1038  * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
1039  * helper, the location within the helper, and a trace of all local variables.
1040  * The ring buffer may be displayed in a human-readable format with the
1041  * ::dtrace_helptrace mdb(1) dcmd.
1042  */
1043 #define	DTRACE_HELPTRACE_NEXT	(-1)
1044 #define	DTRACE_HELPTRACE_DONE	(-2)
1045 #define	DTRACE_HELPTRACE_ERR	(-3)
1046 
1047 typedef struct dtrace_helptrace {
1048 	dtrace_helper_action_t	*dtht_helper;	/* helper action */
1049 	int dtht_where;				/* where in helper action */
1050 	int dtht_nlocals;			/* number of locals */
1051 	int dtht_fault;				/* type of fault (if any) */
1052 	int dtht_fltoffs;			/* DIF offset */
1053 	uint64_t dtht_illval;			/* faulting value */
1054 	uint64_t dtht_locals[1];		/* local variables */
1055 } dtrace_helptrace_t;
1056 
1057 /*
1058  * DTrace Credentials
1059  *
1060  * In probe context, we have limited flexibility to examine the credentials
1061  * of the DTrace consumer that created a particular enabling.  We use
1062  * the Least Privilege interfaces to cache the consumer's cred pointer and
1063  * some facts about that credential in a dtrace_cred_t structure. These
1064  * can limit the consumer's breadth of visibility and what actions the
1065  * consumer may take.
1066  */
1067 #define	DTRACE_CRV_ALLPROC		0x01
1068 #define	DTRACE_CRV_KERNEL		0x02
1069 #define	DTRACE_CRV_ALLZONE		0x04
1070 
1071 #define	DTRACE_CRV_ALL		(DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1072 	DTRACE_CRV_ALLZONE)
1073 
1074 #define	DTRACE_CRA_PROC				0x0001
1075 #define	DTRACE_CRA_PROC_CONTROL			0x0002
1076 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER	0x0004
1077 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE	0x0008
1078 #define	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG	0x0010
1079 #define	DTRACE_CRA_KERNEL			0x0020
1080 #define	DTRACE_CRA_KERNEL_DESTRUCTIVE		0x0040
1081 
1082 #define	DTRACE_CRA_ALL		(DTRACE_CRA_PROC | \
1083 	DTRACE_CRA_PROC_CONTROL | \
1084 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1085 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1086 	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1087 	DTRACE_CRA_KERNEL | \
1088 	DTRACE_CRA_KERNEL_DESTRUCTIVE)
1089 
1090 typedef struct dtrace_cred {
1091 	cred_t			*dcr_cred;
1092 	uint8_t			dcr_destructive;
1093 	uint8_t			dcr_visible;
1094 	uint16_t		dcr_action;
1095 } dtrace_cred_t;
1096 
1097 /*
1098  * DTrace Consumer State
1099  *
1100  * Each DTrace consumer has an associated dtrace_state structure that contains
1101  * its in-kernel DTrace state -- including options, credentials, statistics and
1102  * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
1103  * structure is also allocated for anonymous enablings.  When anonymous state
1104  * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1105  * dtrace_state structure.
1106  */
1107 struct dtrace_state {
1108 	dev_t dts_dev;				/* device */
1109 	int dts_necbs;				/* total number of ECBs */
1110 	dtrace_ecb_t **dts_ecbs;		/* array of ECBs */
1111 	dtrace_epid_t dts_epid;			/* next EPID to allocate */
1112 	size_t dts_needed;			/* greatest needed space */
1113 	struct dtrace_state *dts_anon;		/* anon. state, if grabbed */
1114 	dtrace_activity_t dts_activity;		/* current activity */
1115 	dtrace_vstate_t dts_vstate;		/* variable state */
1116 	dtrace_buffer_t *dts_buffer;		/* principal buffer */
1117 	dtrace_buffer_t *dts_aggbuffer;		/* aggregation buffer */
1118 	dtrace_speculation_t *dts_speculations;	/* speculation array */
1119 	int dts_nspeculations;			/* number of speculations */
1120 	int dts_naggregations;			/* number of aggregations */
1121 	dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1122 	vmem_t *dts_aggid_arena;		/* arena for aggregation IDs */
1123 	uint64_t dts_errors;			/* total number of errors */
1124 	uint32_t dts_speculations_busy;		/* number of spec. busy */
1125 	uint32_t dts_speculations_unavail;	/* number of spec unavail */
1126 	uint32_t dts_stkstroverflows;		/* stack string tab overflows */
1127 	uint32_t dts_dblerrors;			/* errors in ERROR probes */
1128 	uint32_t dts_reserve;			/* space reserved for END */
1129 	hrtime_t dts_laststatus;		/* time of last status */
1130 	cyclic_id_t dts_cleaner;		/* cleaning cyclic */
1131 	cyclic_id_t dts_deadman;		/* deadman cyclic */
1132 	hrtime_t dts_alive;			/* time last alive */
1133 	char dts_speculates;			/* boolean: has speculations */
1134 	char dts_destructive;			/* boolean: has dest. actions */
1135 	int dts_nformats;			/* number of formats */
1136 	char **dts_formats;			/* format string array */
1137 	dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1138 	dtrace_cred_t dts_cred;			/* credentials */
1139 	size_t dts_nretained;			/* number of retained enabs */
1140 };
1141 
1142 struct dtrace_provider {
1143 	dtrace_pattr_t dtpv_attr;		/* provider attributes */
1144 	dtrace_ppriv_t dtpv_priv;		/* provider privileges */
1145 	dtrace_pops_t dtpv_pops;		/* provider operations */
1146 	char *dtpv_name;			/* provider name */
1147 	void *dtpv_arg;				/* provider argument */
1148 	hrtime_t dtpv_defunct;			/* when made defunct */
1149 	struct dtrace_provider *dtpv_next;	/* next provider */
1150 };
1151 
1152 struct dtrace_meta {
1153 	dtrace_mops_t dtm_mops;			/* meta provider operations */
1154 	char *dtm_name;				/* meta provider name */
1155 	void *dtm_arg;				/* meta provider user arg */
1156 	uint64_t dtm_count;			/* no. of associated provs. */
1157 };
1158 
1159 /*
1160  * DTrace Enablings
1161  *
1162  * A dtrace_enabling structure is used to track a collection of ECB
1163  * descriptions -- before they have been turned into actual ECBs.  This is
1164  * created as a result of DOF processing, and is generally used to generate
1165  * ECBs immediately thereafter.  However, enablings are also generally
1166  * retained should the probes they describe be created at a later time; as
1167  * each new module or provider registers with the framework, the retained
1168  * enablings are reevaluated, with any new match resulting in new ECBs.  To
1169  * prevent probes from being matched more than once, the enabling tracks the
1170  * last probe generation matched, and only matches probes from subsequent
1171  * generations.
1172  */
1173 typedef struct dtrace_enabling {
1174 	dtrace_ecbdesc_t **dten_desc;		/* all ECB descriptions */
1175 	int dten_ndesc;				/* number of ECB descriptions */
1176 	int dten_maxdesc;			/* size of ECB array */
1177 	dtrace_vstate_t *dten_vstate;		/* associated variable state */
1178 	dtrace_genid_t dten_probegen;		/* matched probe generation */
1179 	dtrace_ecbdesc_t *dten_current;		/* current ECB description */
1180 	int dten_error;				/* current error value */
1181 	int dten_primed;			/* boolean: set if primed */
1182 	struct dtrace_enabling *dten_prev;	/* previous enabling */
1183 	struct dtrace_enabling *dten_next;	/* next enabling */
1184 } dtrace_enabling_t;
1185 
1186 /*
1187  * DTrace Anonymous Enablings
1188  *
1189  * Anonymous enablings are DTrace enablings that are not associated with a
1190  * controlling process, but rather derive their enabling from DOF stored as
1191  * properties in the dtrace.conf file.  If there is an anonymous enabling, a
1192  * DTrace consumer state and enabling are created on attach.  The state may be
1193  * subsequently grabbed by the first consumer specifying the "grabanon"
1194  * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
1195  * refuse to unload.
1196  */
1197 typedef struct dtrace_anon {
1198 	dtrace_state_t *dta_state;		/* DTrace consumer state */
1199 	dtrace_enabling_t *dta_enabling;	/* pointer to enabling */
1200 	processorid_t dta_beganon;		/* which CPU BEGIN ran on */
1201 } dtrace_anon_t;
1202 
1203 /*
1204  * DTrace Error Debugging
1205  */
1206 #ifdef DEBUG
1207 #define	DTRACE_ERRDEBUG
1208 #endif
1209 
1210 #ifdef DTRACE_ERRDEBUG
1211 
1212 typedef struct dtrace_errhash {
1213 	const char	*dter_msg;	/* error message */
1214 	int		dter_count;	/* number of times seen */
1215 } dtrace_errhash_t;
1216 
1217 #define	DTRACE_ERRHASHSZ	256	/* must be > number of err msgs */
1218 
1219 #endif	/* DTRACE_ERRDEBUG */
1220 
1221 /*
1222  * DTrace Toxic Ranges
1223  *
1224  * DTrace supports safe loads from probe context; if the address turns out to
1225  * be invalid, a bit will be set by the kernel indicating that DTrace
1226  * encountered a memory error, and DTrace will propagate the error to the user
1227  * accordingly.  However, there may exist some regions of memory in which an
1228  * arbitrary load can change system state, and from which it is impossible to
1229  * recover from such a load after it has been attempted.  Examples of this may
1230  * include memory in which programmable I/O registers are mapped (for which a
1231  * read may have some implications for the device) or (in the specific case of
1232  * UltraSPARC-I and -II) the virtual address hole.  The platform is required
1233  * to make DTrace aware of these toxic ranges; DTrace will then check that
1234  * target addresses are not in a toxic range before attempting to issue a
1235  * safe load.
1236  */
1237 typedef struct dtrace_toxrange {
1238 	uintptr_t	dtt_base;		/* base of toxic range */
1239 	uintptr_t	dtt_limit;		/* limit of toxic range */
1240 } dtrace_toxrange_t;
1241 
1242 extern uint64_t dtrace_getarg(int, int);
1243 extern greg_t dtrace_getfp(void);
1244 extern int dtrace_getipl(void);
1245 extern uintptr_t dtrace_caller(int);
1246 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1247 extern void *dtrace_casptr(void *, void *, void *);
1248 extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1249 extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1250 extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1251 extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
1252     volatile uint16_t *);
1253 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1254 extern ulong_t dtrace_getreg(struct regs *, uint_t);
1255 extern uint64_t dtrace_getvmreg(uint_t, volatile uint16_t *);
1256 extern int dtrace_getstackdepth(int);
1257 extern void dtrace_getupcstack(uint64_t *, int);
1258 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1259 extern int dtrace_getustackdepth(void);
1260 extern uintptr_t dtrace_fulword(void *);
1261 extern uint8_t dtrace_fuword8(void *);
1262 extern uint16_t dtrace_fuword16(void *);
1263 extern uint32_t dtrace_fuword32(void *);
1264 extern uint64_t dtrace_fuword64(void *);
1265 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1266     int, uintptr_t);
1267 extern int dtrace_assfail(const char *, const char *, int);
1268 extern int dtrace_attached(void);
1269 extern hrtime_t dtrace_gethrestime();
1270 
1271 #ifdef __sparc
1272 extern void dtrace_flush_windows(void);
1273 extern void dtrace_flush_user_windows(void);
1274 extern uint_t dtrace_getotherwin(void);
1275 extern uint_t dtrace_getfprs(void);
1276 #else
1277 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1278 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1279 #endif
1280 
1281 /*
1282  * DTrace Assertions
1283  *
1284  * DTrace calls ASSERT from probe context.  To assure that a failed ASSERT
1285  * does not induce a markedly more catastrophic failure (e.g., one from which
1286  * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that
1287  * may safely be called from probe context.  This header file must thus be
1288  * included by any DTrace component that calls ASSERT from probe context, and
1289  * _only_ by those components.  (The only exception to this is kernel
1290  * debugging infrastructure at user-level that doesn't depend on calling
1291  * ASSERT.)
1292  */
1293 #undef ASSERT
1294 #ifdef DEBUG
1295 #define	ASSERT(EX)	((void)((EX) || \
1296 			dtrace_assfail(#EX, __FILE__, __LINE__)))
1297 #else
1298 #define	ASSERT(X)	((void)0)
1299 #endif
1300 
1301 #ifdef	__cplusplus
1302 }
1303 #endif
1304 
1305 #endif /* _SYS_DTRACE_IMPL_H */
1306