1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_DTRACE_H 28 #define _SYS_DTRACE_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #ifdef __cplusplus 33 extern "C" { 34 #endif 35 36 /* 37 * DTrace Dynamic Tracing Software: Kernel Interfaces 38 * 39 * Note: The contents of this file are private to the implementation of the 40 * Solaris system and DTrace subsystem and are subject to change at any time 41 * without notice. Applications and drivers using these interfaces will fail 42 * to run on future releases. These interfaces should not be used for any 43 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 44 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 45 */ 46 47 #ifndef _ASM 48 49 #include <sys/types.h> 50 #include <sys/modctl.h> 51 #include <sys/processor.h> 52 #include <sys/systm.h> 53 #include <sys/ctf_api.h> 54 #include <sys/cyclic.h> 55 #include <sys/int_limits.h> 56 57 /* 58 * DTrace Universal Constants and Typedefs 59 */ 60 #define DTRACE_CPUALL -1 /* all CPUs */ 61 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 62 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 63 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 64 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 65 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 66 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 67 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 68 #define DTRACE_ARGNONE -1 /* invalid argument index */ 69 70 #define DTRACE_PROVNAMELEN 64 71 #define DTRACE_MODNAMELEN 64 72 #define DTRACE_FUNCNAMELEN 128 73 #define DTRACE_NAMELEN 64 74 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 75 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 76 #define DTRACE_ARGTYPELEN 128 77 78 typedef uint32_t dtrace_id_t; /* probe identifier */ 79 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 80 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 81 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 82 typedef uint16_t dtrace_actkind_t; /* action kind */ 83 typedef int64_t dtrace_optval_t; /* option value */ 84 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 85 86 typedef enum dtrace_probespec { 87 DTRACE_PROBESPEC_NONE = -1, 88 DTRACE_PROBESPEC_PROVIDER = 0, 89 DTRACE_PROBESPEC_MOD, 90 DTRACE_PROBESPEC_FUNC, 91 DTRACE_PROBESPEC_NAME 92 } dtrace_probespec_t; 93 94 /* 95 * DTrace Intermediate Format (DIF) 96 * 97 * The following definitions describe the DTrace Intermediate Format (DIF), a 98 * a RISC-like instruction set and program encoding used to represent 99 * predicates and actions that can be bound to DTrace probes. The constants 100 * below defining the number of available registers are suggested minimums; the 101 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 102 * registers provided by the current DTrace implementation. 103 */ 104 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 105 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 106 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 107 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 108 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 109 110 #define DIF_OP_OR 1 /* or r1, r2, rd */ 111 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 112 #define DIF_OP_AND 3 /* and r1, r2, rd */ 113 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 114 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 115 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 116 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 117 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 118 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 119 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 120 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 121 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 122 #define DIF_OP_NOT 13 /* not r1, rd */ 123 #define DIF_OP_MOV 14 /* mov r1, rd */ 124 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 125 #define DIF_OP_TST 16 /* tst r1 */ 126 #define DIF_OP_BA 17 /* ba label */ 127 #define DIF_OP_BE 18 /* be label */ 128 #define DIF_OP_BNE 19 /* bne label */ 129 #define DIF_OP_BG 20 /* bg label */ 130 #define DIF_OP_BGU 21 /* bgu label */ 131 #define DIF_OP_BGE 22 /* bge label */ 132 #define DIF_OP_BGEU 23 /* bgeu label */ 133 #define DIF_OP_BL 24 /* bl label */ 134 #define DIF_OP_BLU 25 /* blu label */ 135 #define DIF_OP_BLE 26 /* ble label */ 136 #define DIF_OP_BLEU 27 /* bleu label */ 137 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 138 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 139 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 140 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 141 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 142 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 143 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 144 #define DIF_OP_RET 35 /* ret rd */ 145 #define DIF_OP_NOP 36 /* nop */ 146 #define DIF_OP_SETX 37 /* setx intindex, rd */ 147 #define DIF_OP_SETS 38 /* sets strindex, rd */ 148 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 149 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 150 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 151 #define DIF_OP_STGS 42 /* stgs var, rs */ 152 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 153 #define DIF_OP_LDTS 44 /* ldts var, rd */ 154 #define DIF_OP_STTS 45 /* stts var, rs */ 155 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 156 #define DIF_OP_CALL 47 /* call subr, rd */ 157 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 158 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 159 #define DIF_OP_POPTS 50 /* popts */ 160 #define DIF_OP_FLUSHTS 51 /* flushts */ 161 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 162 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 163 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 164 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 165 #define DIF_OP_LDLS 56 /* ldls var, rd */ 166 #define DIF_OP_STLS 57 /* stls var, rs */ 167 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 168 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 169 #define DIF_OP_STB 60 /* stb r1, [rd] */ 170 #define DIF_OP_STH 61 /* sth r1, [rd] */ 171 #define DIF_OP_STW 62 /* stw r1, [rd] */ 172 #define DIF_OP_STX 63 /* stx r1, [rd] */ 173 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 174 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 175 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 176 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 177 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 178 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 179 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 180 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 181 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 182 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 183 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 184 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 185 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 186 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 187 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 188 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 189 190 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 191 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 192 #define DIF_REGISTER_MAX 0xff /* highest register number */ 193 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 194 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 195 196 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 197 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 198 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 199 200 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 201 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 202 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 203 204 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 205 #define DIF_VAR_REGS 0x0001 /* registers array */ 206 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 207 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 208 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 209 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 210 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 211 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 212 #define DIF_VAR_ID 0x0105 /* probe ID */ 213 #define DIF_VAR_ARG0 0x0106 /* first argument */ 214 #define DIF_VAR_ARG1 0x0107 /* second argument */ 215 #define DIF_VAR_ARG2 0x0108 /* third argument */ 216 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 217 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 218 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 219 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 220 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 221 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 222 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 223 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 224 #define DIF_VAR_CALLER 0x0111 /* caller */ 225 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 226 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 227 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 228 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 229 #define DIF_VAR_PID 0x0116 /* process ID */ 230 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 231 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 232 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 233 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 234 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 235 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 236 #define DIF_VAR_PPID 0x011d /* parent process ID */ 237 #define DIF_VAR_UID 0x011e /* process user ID */ 238 #define DIF_VAR_GID 0x011f /* process group ID */ 239 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 240 241 #define DIF_SUBR_RAND 0 242 #define DIF_SUBR_MUTEX_OWNED 1 243 #define DIF_SUBR_MUTEX_OWNER 2 244 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 245 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 246 #define DIF_SUBR_RW_READ_HELD 5 247 #define DIF_SUBR_RW_WRITE_HELD 6 248 #define DIF_SUBR_RW_ISWRITER 7 249 #define DIF_SUBR_COPYIN 8 250 #define DIF_SUBR_COPYINSTR 9 251 #define DIF_SUBR_SPECULATION 10 252 #define DIF_SUBR_PROGENYOF 11 253 #define DIF_SUBR_STRLEN 12 254 #define DIF_SUBR_COPYOUT 13 255 #define DIF_SUBR_COPYOUTSTR 14 256 #define DIF_SUBR_ALLOCA 15 257 #define DIF_SUBR_BCOPY 16 258 #define DIF_SUBR_COPYINTO 17 259 #define DIF_SUBR_MSGDSIZE 18 260 #define DIF_SUBR_MSGSIZE 19 261 #define DIF_SUBR_GETMAJOR 20 262 #define DIF_SUBR_GETMINOR 21 263 #define DIF_SUBR_DDI_PATHNAME 22 264 #define DIF_SUBR_STRJOIN 23 265 #define DIF_SUBR_LLTOSTR 24 266 #define DIF_SUBR_BASENAME 25 267 #define DIF_SUBR_DIRNAME 26 268 #define DIF_SUBR_CLEANPATH 27 269 #define DIF_SUBR_STRCHR 28 270 #define DIF_SUBR_STRRCHR 29 271 #define DIF_SUBR_STRSTR 30 272 #define DIF_SUBR_STRTOK 31 273 #define DIF_SUBR_SUBSTR 32 274 #define DIF_SUBR_INDEX 33 275 #define DIF_SUBR_RINDEX 34 276 #define DIF_SUBR_HTONS 35 277 #define DIF_SUBR_HTONL 36 278 #define DIF_SUBR_HTONLL 37 279 #define DIF_SUBR_NTOHS 38 280 #define DIF_SUBR_NTOHL 39 281 #define DIF_SUBR_NTOHLL 40 282 #define DIF_SUBR_INET_NTOP 41 283 #define DIF_SUBR_INET_NTOA 42 284 #define DIF_SUBR_INET_NTOA6 43 285 286 #define DIF_SUBR_MAX 43 /* max subroutine value */ 287 288 typedef uint32_t dif_instr_t; 289 290 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 291 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 292 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 293 #define DIF_INSTR_RD(i) ((i) & 0xff) 294 #define DIF_INSTR_RS(i) ((i) & 0xff) 295 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 296 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 297 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 298 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 299 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 300 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 301 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 302 303 #define DIF_INSTR_FMT(op, r1, r2, d) \ 304 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 305 306 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 307 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 308 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 309 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 310 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 311 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 312 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 313 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 314 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 315 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 316 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 317 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 318 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 319 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 320 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 321 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 322 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 323 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 324 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 325 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 326 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 327 328 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 329 330 /* 331 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 332 * of variables, function and associative array arguments, and the return type 333 * for each DIF object (shown below). It contains a description of the type, 334 * its size in bytes, and a module identifier. 335 */ 336 typedef struct dtrace_diftype { 337 uint8_t dtdt_kind; /* type kind (see below) */ 338 uint8_t dtdt_ckind; /* type kind in CTF */ 339 uint8_t dtdt_flags; /* type flags (see below) */ 340 uint8_t dtdt_pad; /* reserved for future use */ 341 uint32_t dtdt_size; /* type size in bytes (unless string) */ 342 } dtrace_diftype_t; 343 344 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 345 #define DIF_TYPE_STRING 1 /* type is a D string */ 346 347 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 348 349 /* 350 * A DTrace Intermediate Format variable record is used to describe each of the 351 * variables referenced by a given DIF object. It contains an integer variable 352 * identifier along with variable scope and properties, as shown below. The 353 * size of this structure must be sizeof (int) aligned. 354 */ 355 typedef struct dtrace_difv { 356 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 357 uint32_t dtdv_id; /* variable reference identifier */ 358 uint8_t dtdv_kind; /* variable kind (see below) */ 359 uint8_t dtdv_scope; /* variable scope (see below) */ 360 uint16_t dtdv_flags; /* variable flags (see below) */ 361 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 362 } dtrace_difv_t; 363 364 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 365 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 366 367 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 368 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 369 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 370 371 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 372 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 373 374 /* 375 * DTrace Actions 376 * 377 * The upper byte determines the class of the action; the low bytes determines 378 * the specific action within that class. The classes of actions are as 379 * follows: 380 * 381 * [ no class ] <= May record process- or kernel-related data 382 * DTRACEACT_PROC <= Only records process-related data 383 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 384 * DTRACEACT_KERNEL <= Only records kernel-related data 385 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 386 * DTRACEACT_SPECULATIVE <= Speculation-related action 387 * DTRACEACT_AGGREGATION <= Aggregating action 388 */ 389 #define DTRACEACT_NONE 0 /* no action */ 390 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 391 #define DTRACEACT_EXIT 2 /* exit() action */ 392 #define DTRACEACT_PRINTF 3 /* printf() action */ 393 #define DTRACEACT_PRINTA 4 /* printa() action */ 394 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 395 396 #define DTRACEACT_PROC 0x0100 397 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 398 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 399 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 400 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 401 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 402 403 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 404 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 405 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 406 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 407 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 408 409 #define DTRACEACT_PROC_CONTROL 0x0300 410 411 #define DTRACEACT_KERNEL 0x0400 412 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 413 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 414 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 415 416 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 417 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 418 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 419 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 420 421 #define DTRACEACT_SPECULATIVE 0x0600 422 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 423 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 424 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 425 426 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 427 428 #define DTRACEACT_ISDESTRUCTIVE(x) \ 429 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 430 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 431 432 #define DTRACEACT_ISSPECULATIVE(x) \ 433 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 434 435 #define DTRACEACT_ISPRINTFLIKE(x) \ 436 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 437 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 438 439 /* 440 * DTrace Aggregating Actions 441 * 442 * These are functions f(x) for which the following is true: 443 * 444 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 445 * 446 * where x_n is a set of arbitrary data. Aggregating actions are in their own 447 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 448 * for easier processing of the aggregation argument and data payload for a few 449 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 450 */ 451 #define DTRACEACT_AGGREGATION 0x0700 452 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 453 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 454 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 455 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 456 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 457 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 458 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 459 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 460 461 #define DTRACEACT_ISAGG(x) \ 462 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 463 464 #define DTRACE_QUANTIZE_NBUCKETS \ 465 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 466 467 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 468 469 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 470 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 471 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 472 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 473 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 474 475 #define DTRACE_LQUANTIZE_STEPSHIFT 48 476 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 477 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 478 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 479 #define DTRACE_LQUANTIZE_BASESHIFT 0 480 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 481 482 #define DTRACE_LQUANTIZE_STEP(x) \ 483 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 484 DTRACE_LQUANTIZE_STEPSHIFT) 485 486 #define DTRACE_LQUANTIZE_LEVELS(x) \ 487 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 488 DTRACE_LQUANTIZE_LEVELSHIFT) 489 490 #define DTRACE_LQUANTIZE_BASE(x) \ 491 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 492 DTRACE_LQUANTIZE_BASESHIFT) 493 494 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 495 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 496 #define DTRACE_USTACK_ARG(x, y) \ 497 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 498 499 #ifndef _LP64 500 #ifndef _LITTLE_ENDIAN 501 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 502 #else 503 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 504 #endif 505 #else 506 #define DTRACE_PTR(type, name) type *name 507 #endif 508 509 /* 510 * DTrace Object Format (DOF) 511 * 512 * DTrace programs can be persistently encoded in the DOF format so that they 513 * may be embedded in other programs (for example, in an ELF file) or in the 514 * dtrace driver configuration file for use in anonymous tracing. The DOF 515 * format is versioned and extensible so that it can be revised and so that 516 * internal data structures can be modified or extended compatibly. All DOF 517 * structures use fixed-size types, so the 32-bit and 64-bit representations 518 * are identical and consumers can use either data model transparently. 519 * 520 * The file layout is structured as follows: 521 * 522 * +---------------+-------------------+----- ... ----+---- ... ------+ 523 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 524 * | (file header) | (section headers) | section data | section data | 525 * +---------------+-------------------+----- ... ----+---- ... ------+ 526 * |<------------ dof_hdr.dofh_loadsz --------------->| | 527 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 528 * 529 * The file header stores meta-data including a magic number, data model for 530 * the instrumentation, data encoding, and properties of the DIF code within. 531 * The header describes its own size and the size of the section headers. By 532 * convention, an array of section headers follows the file header, and then 533 * the data for all loadable sections and unloadable sections. This permits 534 * consumer code to easily download the headers and all loadable data into the 535 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 536 * 537 * The section headers describe the size, offset, alignment, and section type 538 * for each section. Sections are described using a set of #defines that tell 539 * the consumer what kind of data is expected. Sections can contain links to 540 * other sections by storing a dof_secidx_t, an index into the section header 541 * array, inside of the section data structures. The section header includes 542 * an entry size so that sections with data arrays can grow their structures. 543 * 544 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 545 * are represented themselves as a collection of related DOF sections. This 546 * permits us to change the set of sections associated with a DIFO over time, 547 * and also permits us to encode DIFOs that contain different sets of sections. 548 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 549 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 550 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 551 * 552 * This loose coupling of the file structure (header and sections) to the 553 * structure of the DTrace program itself (ECB descriptions, action 554 * descriptions, and DIFOs) permits activities such as relocation processing 555 * to occur in a single pass without having to understand D program structure. 556 * 557 * Finally, strings are always stored in ELF-style string tables along with a 558 * string table section index and string table offset. Therefore strings in 559 * DOF are always arbitrary-length and not bound to the current implementation. 560 */ 561 562 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 563 564 typedef struct dof_hdr { 565 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 566 uint32_t dofh_flags; /* file attribute flags (if any) */ 567 uint32_t dofh_hdrsize; /* size of file header in bytes */ 568 uint32_t dofh_secsize; /* size of section header in bytes */ 569 uint32_t dofh_secnum; /* number of section headers */ 570 uint64_t dofh_secoff; /* file offset of section headers */ 571 uint64_t dofh_loadsz; /* file size of loadable portion */ 572 uint64_t dofh_filesz; /* file size of entire DOF file */ 573 uint64_t dofh_pad; /* reserved for future use */ 574 } dof_hdr_t; 575 576 #define DOF_ID_MAG0 0 /* first byte of magic number */ 577 #define DOF_ID_MAG1 1 /* second byte of magic number */ 578 #define DOF_ID_MAG2 2 /* third byte of magic number */ 579 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 580 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 581 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 582 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 583 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 584 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 585 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 586 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 587 588 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 589 #define DOF_MAG_MAG1 'D' 590 #define DOF_MAG_MAG2 'O' 591 #define DOF_MAG_MAG3 'F' 592 593 #define DOF_MAG_STRING "\177DOF" 594 #define DOF_MAG_STRLEN 4 595 596 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 597 #define DOF_MODEL_ILP32 1 598 #define DOF_MODEL_LP64 2 599 600 #ifdef _LP64 601 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 602 #else 603 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 604 #endif 605 606 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 607 #define DOF_ENCODE_LSB 1 608 #define DOF_ENCODE_MSB 2 609 610 #ifdef _BIG_ENDIAN 611 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 612 #else 613 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 614 #endif 615 616 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 617 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 618 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 619 620 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 621 622 typedef uint32_t dof_secidx_t; /* section header table index type */ 623 typedef uint32_t dof_stridx_t; /* string table index type */ 624 625 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 626 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 627 628 typedef struct dof_sec { 629 uint32_t dofs_type; /* section type (see below) */ 630 uint32_t dofs_align; /* section data memory alignment */ 631 uint32_t dofs_flags; /* section flags (if any) */ 632 uint32_t dofs_entsize; /* size of section entry (if table) */ 633 uint64_t dofs_offset; /* offset of section data within file */ 634 uint64_t dofs_size; /* size of section data in bytes */ 635 } dof_sec_t; 636 637 #define DOF_SECT_NONE 0 /* null section */ 638 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 639 #define DOF_SECT_SOURCE 2 /* D program source code */ 640 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 641 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 642 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 643 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 644 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 645 #define DOF_SECT_STRTAB 8 /* string table */ 646 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 647 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 648 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 649 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 650 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 651 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 652 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 653 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 654 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 655 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 656 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 657 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 658 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 659 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 660 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 661 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 662 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 663 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 664 665 #define DOF_SECF_LOAD 1 /* section should be loaded */ 666 667 typedef struct dof_ecbdesc { 668 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 669 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 670 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 671 uint32_t dofe_pad; /* reserved for future use */ 672 uint64_t dofe_uarg; /* user-supplied library argument */ 673 } dof_ecbdesc_t; 674 675 typedef struct dof_probedesc { 676 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 677 dof_stridx_t dofp_provider; /* provider string */ 678 dof_stridx_t dofp_mod; /* module string */ 679 dof_stridx_t dofp_func; /* function string */ 680 dof_stridx_t dofp_name; /* name string */ 681 uint32_t dofp_id; /* probe identifier (or zero) */ 682 } dof_probedesc_t; 683 684 typedef struct dof_actdesc { 685 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 686 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 687 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 688 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 689 uint64_t dofa_arg; /* kind-specific argument */ 690 uint64_t dofa_uarg; /* user-supplied argument */ 691 } dof_actdesc_t; 692 693 typedef struct dof_difohdr { 694 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 695 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 696 } dof_difohdr_t; 697 698 typedef struct dof_relohdr { 699 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 700 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 701 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 702 } dof_relohdr_t; 703 704 typedef struct dof_relodesc { 705 dof_stridx_t dofr_name; /* string name of relocation symbol */ 706 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 707 uint64_t dofr_offset; /* byte offset for relocation */ 708 uint64_t dofr_data; /* additional type-specific data */ 709 } dof_relodesc_t; 710 711 #define DOF_RELO_NONE 0 /* empty relocation entry */ 712 #define DOF_RELO_SETX 1 /* relocate setx value */ 713 714 typedef struct dof_optdesc { 715 uint32_t dofo_option; /* option identifier */ 716 dof_secidx_t dofo_strtab; /* string table, if string option */ 717 uint64_t dofo_value; /* option value or string index */ 718 } dof_optdesc_t; 719 720 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 721 722 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 723 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 724 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 725 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 726 727 typedef struct dof_provider { 728 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 729 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 730 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 731 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 732 dof_stridx_t dofpv_name; /* provider name string */ 733 dof_attr_t dofpv_provattr; /* provider attributes */ 734 dof_attr_t dofpv_modattr; /* module attributes */ 735 dof_attr_t dofpv_funcattr; /* function attributes */ 736 dof_attr_t dofpv_nameattr; /* name attributes */ 737 dof_attr_t dofpv_argsattr; /* args attributes */ 738 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 739 } dof_provider_t; 740 741 typedef struct dof_probe { 742 uint64_t dofpr_addr; /* probe base address or offset */ 743 dof_stridx_t dofpr_func; /* probe function string */ 744 dof_stridx_t dofpr_name; /* probe name string */ 745 dof_stridx_t dofpr_nargv; /* native argument type strings */ 746 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 747 uint32_t dofpr_argidx; /* index of first argument mapping */ 748 uint32_t dofpr_offidx; /* index of first offset entry */ 749 uint8_t dofpr_nargc; /* native argument count */ 750 uint8_t dofpr_xargc; /* translated argument count */ 751 uint16_t dofpr_noffs; /* number of offset entries for probe */ 752 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 753 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 754 uint16_t dofpr_pad1; /* reserved for future use */ 755 uint32_t dofpr_pad2; /* reserved for future use */ 756 } dof_probe_t; 757 758 typedef struct dof_xlator { 759 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 760 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 761 dof_stridx_t dofxl_argv; /* input parameter type strings */ 762 uint32_t dofxl_argc; /* input parameter list length */ 763 dof_stridx_t dofxl_type; /* output type string name */ 764 dof_attr_t dofxl_attr; /* output stability attributes */ 765 } dof_xlator_t; 766 767 typedef struct dof_xlmember { 768 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 769 dof_stridx_t dofxm_name; /* member name */ 770 dtrace_diftype_t dofxm_type; /* member type */ 771 } dof_xlmember_t; 772 773 typedef struct dof_xlref { 774 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 775 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 776 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 777 } dof_xlref_t; 778 779 /* 780 * DTrace Intermediate Format Object (DIFO) 781 * 782 * A DIFO is used to store the compiled DIF for a D expression, its return 783 * type, and its string and variable tables. The string table is a single 784 * buffer of character data into which sets instructions and variable 785 * references can reference strings using a byte offset. The variable table 786 * is an array of dtrace_difv_t structures that describe the name and type of 787 * each variable and the id used in the DIF code. This structure is described 788 * above in the DIF section of this header file. The DIFO is used at both 789 * user-level (in the library) and in the kernel, but the structure is never 790 * passed between the two: the DOF structures form the only interface. As a 791 * result, the definition can change depending on the presence of _KERNEL. 792 */ 793 typedef struct dtrace_difo { 794 dif_instr_t *dtdo_buf; /* instruction buffer */ 795 uint64_t *dtdo_inttab; /* integer table (optional) */ 796 char *dtdo_strtab; /* string table (optional) */ 797 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 798 uint_t dtdo_len; /* length of instruction buffer */ 799 uint_t dtdo_intlen; /* length of integer table */ 800 uint_t dtdo_strlen; /* length of string table */ 801 uint_t dtdo_varlen; /* length of variable table */ 802 dtrace_diftype_t dtdo_rtype; /* return type */ 803 uint_t dtdo_refcnt; /* owner reference count */ 804 uint_t dtdo_destructive; /* invokes destructive subroutines */ 805 #ifndef _KERNEL 806 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 807 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 808 struct dt_node **dtdo_xlmtab; /* translator references */ 809 uint_t dtdo_krelen; /* length of krelo table */ 810 uint_t dtdo_urelen; /* length of urelo table */ 811 uint_t dtdo_xlmlen; /* length of translator table */ 812 #endif 813 } dtrace_difo_t; 814 815 /* 816 * DTrace Enabling Description Structures 817 * 818 * When DTrace is tracking the description of a DTrace enabling entity (probe, 819 * predicate, action, ECB, record, etc.), it does so in a description 820 * structure. These structures all end in "desc", and are used at both 821 * user-level and in the kernel -- but (with the exception of 822 * dtrace_probedesc_t) they are never passed between them. Typically, 823 * user-level will use the description structures when assembling an enabling. 824 * It will then distill those description structures into a DOF object (see 825 * above), and send it into the kernel. The kernel will again use the 826 * description structures to create a description of the enabling as it reads 827 * the DOF. When the description is complete, the enabling will be actually 828 * created -- turning it into the structures that represent the enabling 829 * instead of merely describing it. Not surprisingly, the description 830 * structures bear a strong resemblance to the DOF structures that act as their 831 * conduit. 832 */ 833 struct dtrace_predicate; 834 835 typedef struct dtrace_probedesc { 836 dtrace_id_t dtpd_id; /* probe identifier */ 837 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 838 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 839 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 840 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 841 } dtrace_probedesc_t; 842 843 typedef struct dtrace_repldesc { 844 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 845 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 846 } dtrace_repldesc_t; 847 848 typedef struct dtrace_preddesc { 849 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 850 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 851 } dtrace_preddesc_t; 852 853 typedef struct dtrace_actdesc { 854 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 855 struct dtrace_actdesc *dtad_next; /* next action */ 856 dtrace_actkind_t dtad_kind; /* kind of action */ 857 uint32_t dtad_ntuple; /* number in tuple */ 858 uint64_t dtad_arg; /* action argument */ 859 uint64_t dtad_uarg; /* user argument */ 860 int dtad_refcnt; /* reference count */ 861 } dtrace_actdesc_t; 862 863 typedef struct dtrace_ecbdesc { 864 dtrace_actdesc_t *dted_action; /* action description(s) */ 865 dtrace_preddesc_t dted_pred; /* predicate description */ 866 dtrace_probedesc_t dted_probe; /* probe description */ 867 uint64_t dted_uarg; /* library argument */ 868 int dted_refcnt; /* reference count */ 869 } dtrace_ecbdesc_t; 870 871 /* 872 * DTrace Metadata Description Structures 873 * 874 * DTrace separates the trace data stream from the metadata stream. The only 875 * metadata tokens placed in the data stream are enabled probe identifiers 876 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order 877 * to determine the structure of the data, DTrace consumers pass the token to 878 * the kernel, and receive in return a corresponding description of the enabled 879 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 880 * dtrace_aggdesc structure). Both of these structures are expressed in terms 881 * of record descriptions (via the dtrace_recdesc structure) that describe the 882 * exact structure of the data. Some record descriptions may also contain a 883 * format identifier; this additional bit of metadata can be retrieved from the 884 * kernel, for which a format description is returned via the dtrace_fmtdesc 885 * structure. Note that all four of these structures must be bitness-neutral 886 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 887 */ 888 typedef struct dtrace_recdesc { 889 dtrace_actkind_t dtrd_action; /* kind of action */ 890 uint32_t dtrd_size; /* size of record */ 891 uint32_t dtrd_offset; /* offset in ECB's data */ 892 uint16_t dtrd_alignment; /* required alignment */ 893 uint16_t dtrd_format; /* format, if any */ 894 uint64_t dtrd_arg; /* action argument */ 895 uint64_t dtrd_uarg; /* user argument */ 896 } dtrace_recdesc_t; 897 898 typedef struct dtrace_eprobedesc { 899 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 900 dtrace_id_t dtepd_probeid; /* probe ID */ 901 uint64_t dtepd_uarg; /* library argument */ 902 uint32_t dtepd_size; /* total size */ 903 int dtepd_nrecs; /* number of records */ 904 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 905 } dtrace_eprobedesc_t; 906 907 typedef struct dtrace_aggdesc { 908 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 909 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 910 int dtagd_flags; /* not filled in by kernel */ 911 dtrace_aggid_t dtagd_id; /* aggregation ID */ 912 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 913 uint32_t dtagd_size; /* size in bytes */ 914 int dtagd_nrecs; /* number of records */ 915 uint32_t dtagd_pad; /* explicit padding */ 916 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 917 } dtrace_aggdesc_t; 918 919 typedef struct dtrace_fmtdesc { 920 DTRACE_PTR(char, dtfd_string); /* format string */ 921 int dtfd_length; /* length of format string */ 922 uint16_t dtfd_format; /* format identifier */ 923 } dtrace_fmtdesc_t; 924 925 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 926 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 927 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 928 929 #define DTRACE_SIZEOF_AGGDESC(desc) \ 930 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 931 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 932 933 /* 934 * DTrace Option Interface 935 * 936 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 937 * in a DOF image. The dof_optdesc structure contains an option identifier and 938 * an option value. The valid option identifiers are found below; the mapping 939 * between option identifiers and option identifying strings is maintained at 940 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 941 * following are potentially valid option values: all positive integers, zero 942 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 943 * predefined tokens as their values; these are defined with 944 * DTRACEOPT_{option}_{token}. 945 */ 946 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 947 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 948 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 949 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 950 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 951 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 952 #define DTRACEOPT_STRSIZE 6 /* string size */ 953 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 954 #define DTRACEOPT_CPU 8 /* CPU to trace */ 955 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 956 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 957 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 958 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 959 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 960 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 961 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 962 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 963 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 964 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 965 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 966 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 967 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 968 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 969 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 970 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 971 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 972 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 973 #define DTRACEOPT_MAX 27 /* number of options */ 974 975 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 976 977 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 978 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 979 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 980 981 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 982 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 983 984 /* 985 * DTrace Buffer Interface 986 * 987 * In order to get a snapshot of the principal or aggregation buffer, 988 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 989 * structure. This describes which CPU user-level is interested in, and 990 * where user-level wishes the kernel to snapshot the buffer to (the 991 * dtbd_data field). The kernel uses the same structure to pass back some 992 * information regarding the buffer: the size of data actually copied out, the 993 * number of drops, the number of errors, and the offset of the oldest record. 994 * If the buffer policy is a "switch" policy, taking a snapshot of the 995 * principal buffer has the additional effect of switching the active and 996 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 997 * the additional effect of switching the active and inactive buffers. 998 */ 999 typedef struct dtrace_bufdesc { 1000 uint64_t dtbd_size; /* size of buffer */ 1001 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 1002 uint32_t dtbd_errors; /* number of errors */ 1003 uint64_t dtbd_drops; /* number of drops */ 1004 DTRACE_PTR(char, dtbd_data); /* data */ 1005 uint64_t dtbd_oldest; /* offset of oldest record */ 1006 } dtrace_bufdesc_t; 1007 1008 /* 1009 * DTrace Status 1010 * 1011 * The status of DTrace is relayed via the dtrace_status structure. This 1012 * structure contains members to count drops other than the capacity drops 1013 * available via the buffer interface (see above). This consists of dynamic 1014 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1015 * speculative drops (including capacity speculative drops, drops due to busy 1016 * speculative buffers and drops due to unavailable speculative buffers). 1017 * Additionally, the status structure contains a field to indicate the number 1018 * of "fill"-policy buffers have been filled and a boolean field to indicate 1019 * that exit() has been called. If the dtst_exiting field is non-zero, no 1020 * further data will be generated until tracing is stopped (at which time any 1021 * enablings of the END action will be processed); if user-level sees that 1022 * this field is non-zero, tracing should be stopped as soon as possible. 1023 */ 1024 typedef struct dtrace_status { 1025 uint64_t dtst_dyndrops; /* dynamic drops */ 1026 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1027 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1028 uint64_t dtst_specdrops; /* speculative drops */ 1029 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1030 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1031 uint64_t dtst_errors; /* total errors */ 1032 uint64_t dtst_filled; /* number of filled bufs */ 1033 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1034 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1035 char dtst_killed; /* non-zero if killed */ 1036 char dtst_exiting; /* non-zero if exit() called */ 1037 char dtst_pad[6]; /* pad out to 64-bit align */ 1038 } dtrace_status_t; 1039 1040 /* 1041 * DTrace Configuration 1042 * 1043 * User-level may need to understand some elements of the kernel DTrace 1044 * configuration in order to generate correct DIF. This information is 1045 * conveyed via the dtrace_conf structure. 1046 */ 1047 typedef struct dtrace_conf { 1048 uint_t dtc_difversion; /* supported DIF version */ 1049 uint_t dtc_difintregs; /* # of DIF integer registers */ 1050 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1051 uint_t dtc_ctfmodel; /* CTF data model */ 1052 uint_t dtc_pad[8]; /* reserved for future use */ 1053 } dtrace_conf_t; 1054 1055 /* 1056 * DTrace Faults 1057 * 1058 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1059 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1060 * postprocessing at user-level. Probe processing faults induce an ERROR 1061 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1062 * the error condition using thse symbolic labels. 1063 */ 1064 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1065 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1066 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1067 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1068 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1069 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1070 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1071 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1072 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1073 #define DTRACEFLT_BADSTACK 9 /* Bad stack */ 1074 1075 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1076 1077 /* 1078 * DTrace Argument Types 1079 * 1080 * Because it would waste both space and time, argument types do not reside 1081 * with the probe. In order to determine argument types for args[X] 1082 * variables, the D compiler queries for argument types on a probe-by-probe 1083 * basis. (This optimizes for the common case that arguments are either not 1084 * used or used in an untyped fashion.) Typed arguments are specified with a 1085 * string of the type name in the dtragd_native member of the argument 1086 * description structure. Typed arguments may be further translated to types 1087 * of greater stability; the provider indicates such a translated argument by 1088 * filling in the dtargd_xlate member with the string of the translated type. 1089 * Finally, the provider may indicate which argument value a given argument 1090 * maps to by setting the dtargd_mapping member -- allowing a single argument 1091 * to map to multiple args[X] variables. 1092 */ 1093 typedef struct dtrace_argdesc { 1094 dtrace_id_t dtargd_id; /* probe identifier */ 1095 int dtargd_ndx; /* arg number (-1 iff none) */ 1096 int dtargd_mapping; /* value mapping */ 1097 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1098 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1099 } dtrace_argdesc_t; 1100 1101 /* 1102 * DTrace Stability Attributes 1103 * 1104 * Each DTrace provider advertises the name and data stability of each of its 1105 * probe description components, as well as its architectural dependencies. 1106 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1107 * order to compute the properties of an input program and report them. 1108 */ 1109 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1110 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1111 1112 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1113 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1114 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1115 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1116 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1117 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1118 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1119 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1120 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1121 1122 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1123 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1124 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1125 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1126 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1127 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1128 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1129 1130 #define DTRACE_PRIV_NONE 0x0000 1131 #define DTRACE_PRIV_KERNEL 0x0001 1132 #define DTRACE_PRIV_USER 0x0002 1133 #define DTRACE_PRIV_PROC 0x0004 1134 #define DTRACE_PRIV_OWNER 0x0008 1135 #define DTRACE_PRIV_ZONEOWNER 0x0010 1136 1137 #define DTRACE_PRIV_ALL \ 1138 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1139 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1140 1141 typedef struct dtrace_ppriv { 1142 uint32_t dtpp_flags; /* privilege flags */ 1143 uid_t dtpp_uid; /* user ID */ 1144 zoneid_t dtpp_zoneid; /* zone ID */ 1145 } dtrace_ppriv_t; 1146 1147 typedef struct dtrace_attribute { 1148 dtrace_stability_t dtat_name; /* entity name stability */ 1149 dtrace_stability_t dtat_data; /* entity data stability */ 1150 dtrace_class_t dtat_class; /* entity data dependency */ 1151 } dtrace_attribute_t; 1152 1153 typedef struct dtrace_pattr { 1154 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1155 dtrace_attribute_t dtpa_mod; /* module attributes */ 1156 dtrace_attribute_t dtpa_func; /* function attributes */ 1157 dtrace_attribute_t dtpa_name; /* name attributes */ 1158 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1159 } dtrace_pattr_t; 1160 1161 typedef struct dtrace_providerdesc { 1162 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1163 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1164 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1165 } dtrace_providerdesc_t; 1166 1167 /* 1168 * DTrace Pseudodevice Interface 1169 * 1170 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1171 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1172 * DTrace. 1173 */ 1174 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1175 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1176 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1177 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1178 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1179 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1180 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1181 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1182 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1183 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1184 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1185 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1186 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1187 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1188 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1189 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1190 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1191 1192 /* 1193 * DTrace Helpers 1194 * 1195 * In general, DTrace establishes probes in processes and takes actions on 1196 * processes without knowing their specific user-level structures. Instead of 1197 * existing in the framework, process-specific knowledge is contained by the 1198 * enabling D program -- which can apply process-specific knowledge by making 1199 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1200 * operate on user-level data. However, there may exist some specific probes 1201 * of particular semantic relevance that the application developer may wish to 1202 * explicitly export. For example, an application may wish to export a probe 1203 * at the point that it begins and ends certain well-defined transactions. In 1204 * addition to providing probes, programs may wish to offer assistance for 1205 * certain actions. For example, in highly dynamic environments (e.g., Java), 1206 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1207 * names (the translation from instruction addresses to corresponding symbol 1208 * names may only be possible in situ); these environments may wish to define 1209 * a series of actions to be applied in situ to obtain a meaningful stack 1210 * trace. 1211 * 1212 * These two mechanisms -- user-level statically defined tracing and assisting 1213 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1214 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1215 * providers, probes and their arguments. If a helper wishes to provide 1216 * action assistance, probe descriptions and corresponding DIF actions may be 1217 * specified in the helper DOF. For such helper actions, however, the probe 1218 * description describes the specific helper: all DTrace helpers have the 1219 * provider name "dtrace" and the module name "helper", and the name of the 1220 * helper is contained in the function name (for example, the ustack() helper 1221 * is named "ustack"). Any helper-specific name may be contained in the name 1222 * (for example, if a helper were to have a constructor, it might be named 1223 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1224 * action that they are helping is taken. Helper actions may only return DIF 1225 * expressions, and may only call the following subroutines: 1226 * 1227 * alloca() <= Allocates memory out of the consumer's scratch space 1228 * bcopy() <= Copies memory to scratch space 1229 * copyin() <= Copies memory from user-level into consumer's scratch 1230 * copyinto() <= Copies memory into a specific location in scratch 1231 * copyinstr() <= Copies a string into a specific location in scratch 1232 * 1233 * Helper actions may only access the following built-in variables: 1234 * 1235 * curthread <= Current kthread_t pointer 1236 * tid <= Current thread identifier 1237 * pid <= Current process identifier 1238 * ppid <= Parent process identifier 1239 * uid <= Current user ID 1240 * gid <= Current group ID 1241 * execname <= Current executable name 1242 * zonename <= Current zone name 1243 * 1244 * Helper actions may not manipulate or allocate dynamic variables, but they 1245 * may have clause-local and statically-allocated global variables. The 1246 * helper action variable state is specific to the helper action -- variables 1247 * used by the helper action may not be accessed outside of the helper 1248 * action, and the helper action may not access variables that like outside 1249 * of it. Helper actions may not load from kernel memory at-large; they are 1250 * restricting to loading current user state (via copyin() and variants) and 1251 * scratch space. As with probe enablings, helper actions are executed in 1252 * program order. The result of the helper action is the result of the last 1253 * executing helper expression. 1254 * 1255 * Helpers -- composed of either providers/probes or probes/actions (or both) 1256 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1257 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1258 * encapsulates the name and base address of the user-level library or 1259 * executable publishing the helpers and probes as well as the DOF that 1260 * contains the definitions of those helpers and probes. 1261 * 1262 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1263 * helpers and should no longer be used. No other ioctls are valid on the 1264 * helper minor node. 1265 */ 1266 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1267 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1268 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1269 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1270 1271 typedef struct dof_helper { 1272 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1273 uint64_t dofhp_addr; /* base address of object */ 1274 uint64_t dofhp_dof; /* address of helper DOF */ 1275 } dof_helper_t; 1276 1277 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1278 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1279 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1280 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1281 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1282 1283 #ifdef _KERNEL 1284 1285 /* 1286 * DTrace Provider API 1287 * 1288 * The following functions are implemented by the DTrace framework and are 1289 * used to implement separate in-kernel DTrace providers. Common functions 1290 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1291 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1292 * 1293 * The provider API has two halves: the API that the providers consume from 1294 * DTrace, and the API that providers make available to DTrace. 1295 * 1296 * 1 Framework-to-Provider API 1297 * 1298 * 1.1 Overview 1299 * 1300 * The Framework-to-Provider API is represented by the dtrace_pops structure 1301 * that the provider passes to the framework when registering itself. This 1302 * structure consists of the following members: 1303 * 1304 * dtps_provide() <-- Provide all probes, all modules 1305 * dtps_provide_module() <-- Provide all probes in specified module 1306 * dtps_enable() <-- Enable specified probe 1307 * dtps_disable() <-- Disable specified probe 1308 * dtps_suspend() <-- Suspend specified probe 1309 * dtps_resume() <-- Resume specified probe 1310 * dtps_getargdesc() <-- Get the argument description for args[X] 1311 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1312 * dtps_usermode() <-- Find out if the probe was fired in user mode 1313 * dtps_destroy() <-- Destroy all state associated with this probe 1314 * 1315 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1316 * 1317 * 1.2.1 Overview 1318 * 1319 * Called to indicate that the provider should provide all probes. If the 1320 * specified description is non-NULL, dtps_provide() is being called because 1321 * no probe matched a specified probe -- if the provider has the ability to 1322 * create custom probes, it may wish to create a probe that matches the 1323 * specified description. 1324 * 1325 * 1.2.2 Arguments and notes 1326 * 1327 * The first argument is the cookie as passed to dtrace_register(). The 1328 * second argument is a pointer to a probe description that the provider may 1329 * wish to consider when creating custom probes. The provider is expected to 1330 * call back into the DTrace framework via dtrace_probe_create() to create 1331 * any necessary probes. dtps_provide() may be called even if the provider 1332 * has made available all probes; the provider should check the return value 1333 * of dtrace_probe_create() to handle this case. Note that the provider need 1334 * not implement both dtps_provide() and dtps_provide_module(); see 1335 * "Arguments and Notes" for dtrace_register(), below. 1336 * 1337 * 1.2.3 Return value 1338 * 1339 * None. 1340 * 1341 * 1.2.4 Caller's context 1342 * 1343 * dtps_provide() is typically called from open() or ioctl() context, but may 1344 * be called from other contexts as well. The DTrace framework is locked in 1345 * such a way that providers may not register or unregister. This means that 1346 * the provider may not call any DTrace API that affects its registration with 1347 * the framework, including dtrace_register(), dtrace_unregister(), 1348 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1349 * that the provider may (and indeed, is expected to) call probe-related 1350 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1351 * and dtrace_probe_arg(). 1352 * 1353 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) 1354 * 1355 * 1.3.1 Overview 1356 * 1357 * Called to indicate that the provider should provide all probes in the 1358 * specified module. 1359 * 1360 * 1.3.2 Arguments and notes 1361 * 1362 * The first argument is the cookie as passed to dtrace_register(). The 1363 * second argument is a pointer to a modctl structure that indicates the 1364 * module for which probes should be created. 1365 * 1366 * 1.3.3 Return value 1367 * 1368 * None. 1369 * 1370 * 1.3.4 Caller's context 1371 * 1372 * dtps_provide_module() may be called from open() or ioctl() context, but 1373 * may also be called from a module loading context. mod_lock is held, and 1374 * the DTrace framework is locked in such a way that providers may not 1375 * register or unregister. This means that the provider may not call any 1376 * DTrace API that affects its registration with the framework, including 1377 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1378 * dtrace_condense(). However, the context is such that the provider may (and 1379 * indeed, is expected to) call probe-related DTrace routines, including 1380 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1381 * that the provider need not implement both dtps_provide() and 1382 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1383 * below. 1384 * 1385 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) 1386 * 1387 * 1.4.1 Overview 1388 * 1389 * Called to enable the specified probe. 1390 * 1391 * 1.4.2 Arguments and notes 1392 * 1393 * The first argument is the cookie as passed to dtrace_register(). The 1394 * second argument is the identifier of the probe to be enabled. The third 1395 * argument is the probe argument as passed to dtrace_probe_create(). 1396 * dtps_enable() will be called when a probe transitions from not being 1397 * enabled at all to having one or more ECB. The number of ECBs associated 1398 * with the probe may change without subsequent calls into the provider. 1399 * When the number of ECBs drops to zero, the provider will be explicitly 1400 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1401 * be called for a probe identifier that hasn't been explicitly enabled via 1402 * dtps_enable(). 1403 * 1404 * 1.4.3 Return value 1405 * 1406 * None. 1407 * 1408 * 1.4.4 Caller's context 1409 * 1410 * The DTrace framework is locked in such a way that it may not be called 1411 * back into at all. cpu_lock is held. mod_lock is not held and may not 1412 * be acquired. 1413 * 1414 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1415 * 1416 * 1.5.1 Overview 1417 * 1418 * Called to disable the specified probe. 1419 * 1420 * 1.5.2 Arguments and notes 1421 * 1422 * The first argument is the cookie as passed to dtrace_register(). The 1423 * second argument is the identifier of the probe to be disabled. The third 1424 * argument is the probe argument as passed to dtrace_probe_create(). 1425 * dtps_disable() will be called when a probe transitions from being enabled 1426 * to having zero ECBs. dtrace_probe() should never be called for a probe 1427 * identifier that has been explicitly enabled via dtps_disable(). 1428 * 1429 * 1.5.3 Return value 1430 * 1431 * None. 1432 * 1433 * 1.5.4 Caller's context 1434 * 1435 * The DTrace framework is locked in such a way that it may not be called 1436 * back into at all. cpu_lock is held. mod_lock is not held and may not 1437 * be acquired. 1438 * 1439 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1440 * 1441 * 1.6.1 Overview 1442 * 1443 * Called to suspend the specified enabled probe. This entry point is for 1444 * providers that may need to suspend some or all of their probes when CPUs 1445 * are being powered on or when the boot monitor is being entered for a 1446 * prolonged period of time. 1447 * 1448 * 1.6.2 Arguments and notes 1449 * 1450 * The first argument is the cookie as passed to dtrace_register(). The 1451 * second argument is the identifier of the probe to be suspended. The 1452 * third argument is the probe argument as passed to dtrace_probe_create(). 1453 * dtps_suspend will only be called on an enabled probe. Providers that 1454 * provide a dtps_suspend entry point will want to take roughly the action 1455 * that it takes for dtps_disable. 1456 * 1457 * 1.6.3 Return value 1458 * 1459 * None. 1460 * 1461 * 1.6.4 Caller's context 1462 * 1463 * Interrupts are disabled. The DTrace framework is in a state such that the 1464 * specified probe cannot be disabled or destroyed for the duration of 1465 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1466 * little latitude; the provider is expected to do no more than a store to 1467 * memory. 1468 * 1469 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1470 * 1471 * 1.7.1 Overview 1472 * 1473 * Called to resume the specified enabled probe. This entry point is for 1474 * providers that may need to resume some or all of their probes after the 1475 * completion of an event that induced a call to dtps_suspend(). 1476 * 1477 * 1.7.2 Arguments and notes 1478 * 1479 * The first argument is the cookie as passed to dtrace_register(). The 1480 * second argument is the identifier of the probe to be resumed. The 1481 * third argument is the probe argument as passed to dtrace_probe_create(). 1482 * dtps_resume will only be called on an enabled probe. Providers that 1483 * provide a dtps_resume entry point will want to take roughly the action 1484 * that it takes for dtps_enable. 1485 * 1486 * 1.7.3 Return value 1487 * 1488 * None. 1489 * 1490 * 1.7.4 Caller's context 1491 * 1492 * Interrupts are disabled. The DTrace framework is in a state such that the 1493 * specified probe cannot be disabled or destroyed for the duration of 1494 * dtps_resume(). As interrupts are disabled, the provider is afforded 1495 * little latitude; the provider is expected to do no more than a store to 1496 * memory. 1497 * 1498 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1499 * dtrace_argdesc_t *desc) 1500 * 1501 * 1.8.1 Overview 1502 * 1503 * Called to retrieve the argument description for an args[X] variable. 1504 * 1505 * 1.8.2 Arguments and notes 1506 * 1507 * The first argument is the cookie as passed to dtrace_register(). The 1508 * second argument is the identifier of the current probe. The third 1509 * argument is the probe argument as passed to dtrace_probe_create(). The 1510 * fourth argument is a pointer to the argument description. This 1511 * description is both an input and output parameter: it contains the 1512 * index of the desired argument in the dtargd_ndx field, and expects 1513 * the other fields to be filled in upon return. If there is no argument 1514 * corresponding to the specified index, the dtargd_ndx field should be set 1515 * to DTRACE_ARGNONE. 1516 * 1517 * 1.8.3 Return value 1518 * 1519 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1520 * members of the dtrace_argdesc_t structure are all output values. 1521 * 1522 * 1.8.4 Caller's context 1523 * 1524 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1525 * the DTrace framework is locked in such a way that providers may not 1526 * register or unregister. This means that the provider may not call any 1527 * DTrace API that affects its registration with the framework, including 1528 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1529 * dtrace_condense(). 1530 * 1531 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1532 * int argno, int aframes) 1533 * 1534 * 1.9.1 Overview 1535 * 1536 * Called to retrieve a value for an argX or args[X] variable. 1537 * 1538 * 1.9.2 Arguments and notes 1539 * 1540 * The first argument is the cookie as passed to dtrace_register(). The 1541 * second argument is the identifier of the current probe. The third 1542 * argument is the probe argument as passed to dtrace_probe_create(). The 1543 * fourth argument is the number of the argument (the X in the example in 1544 * 1.9.1). The fifth argument is the number of stack frames that were used 1545 * to get from the actual place in the code that fired the probe to 1546 * dtrace_probe() itself, the so-called artificial frames. This argument may 1547 * be used to descend an appropriate number of frames to find the correct 1548 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1549 * function is used. 1550 * 1551 * 1.9.3 Return value 1552 * 1553 * The value of the argument. 1554 * 1555 * 1.9.4 Caller's context 1556 * 1557 * This is called from within dtrace_probe() meaning that interrupts 1558 * are disabled. No locks should be taken within this entry point. 1559 * 1560 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1561 * 1562 * 1.10.1 Overview 1563 * 1564 * Called to determine if the probe was fired in a user context. 1565 * 1566 * 1.10.2 Arguments and notes 1567 * 1568 * The first argument is the cookie as passed to dtrace_register(). The 1569 * second argument is the identifier of the current probe. The third 1570 * argument is the probe argument as passed to dtrace_probe_create(). This 1571 * entry point must not be left NULL for providers whose probes allow for 1572 * mixed mode tracing, that is to say those probes that can fire during 1573 * kernel- _or_ user-mode execution 1574 * 1575 * 1.10.3 Return value 1576 * 1577 * A boolean value. 1578 * 1579 * 1.10.4 Caller's context 1580 * 1581 * This is called from within dtrace_probe() meaning that interrupts 1582 * are disabled. No locks should be taken within this entry point. 1583 * 1584 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1585 * 1586 * 1.11.1 Overview 1587 * 1588 * Called to destroy the specified probe. 1589 * 1590 * 1.11.2 Arguments and notes 1591 * 1592 * The first argument is the cookie as passed to dtrace_register(). The 1593 * second argument is the identifier of the probe to be destroyed. The third 1594 * argument is the probe argument as passed to dtrace_probe_create(). The 1595 * provider should free all state associated with the probe. The framework 1596 * guarantees that dtps_destroy() is only called for probes that have either 1597 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1598 * Once dtps_disable() has been called for a probe, no further call will be 1599 * made specifying the probe. 1600 * 1601 * 1.11.3 Return value 1602 * 1603 * None. 1604 * 1605 * 1.11.4 Caller's context 1606 * 1607 * The DTrace framework is locked in such a way that it may not be called 1608 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1609 * acquired. 1610 * 1611 * 1612 * 2 Provider-to-Framework API 1613 * 1614 * 2.1 Overview 1615 * 1616 * The Provider-to-Framework API provides the mechanism for the provider to 1617 * register itself with the DTrace framework, to create probes, to lookup 1618 * probes and (most importantly) to fire probes. The Provider-to-Framework 1619 * consists of: 1620 * 1621 * dtrace_register() <-- Register a provider with the DTrace framework 1622 * dtrace_unregister() <-- Remove a provider's DTrace registration 1623 * dtrace_invalidate() <-- Invalidate the specified provider 1624 * dtrace_condense() <-- Remove a provider's unenabled probes 1625 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1626 * dtrace_probe_create() <-- Create a DTrace probe 1627 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1628 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1629 * dtrace_probe() <-- Fire the specified probe 1630 * 1631 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1632 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1633 * dtrace_provider_id_t *idp) 1634 * 1635 * 2.2.1 Overview 1636 * 1637 * dtrace_register() registers the calling provider with the DTrace 1638 * framework. It should generally be called by DTrace providers in their 1639 * attach(9E) entry point. 1640 * 1641 * 2.2.2 Arguments and Notes 1642 * 1643 * The first argument is the name of the provider. The second argument is a 1644 * pointer to the stability attributes for the provider. The third argument 1645 * is the privilege flags for the provider, and must be some combination of: 1646 * 1647 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1648 * 1649 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1650 * enable probes from this provider 1651 * 1652 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1653 * enable probes from this provider 1654 * 1655 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1656 * may enable probes from this provider 1657 * 1658 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1659 * the privilege requirements above. These probes 1660 * require either (a) a user ID matching the user 1661 * ID of the cred passed in the fourth argument 1662 * or (b) the PRIV_PROC_OWNER privilege. 1663 * 1664 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1665 * the privilege requirements above. These probes 1666 * require either (a) a zone ID matching the zone 1667 * ID of the cred passed in the fourth argument 1668 * or (b) the PRIV_PROC_ZONE privilege. 1669 * 1670 * Note that these flags designate the _visibility_ of the probes, not 1671 * the conditions under which they may or may not fire. 1672 * 1673 * The fourth argument is the credential that is associated with the 1674 * provider. This argument should be NULL if the privilege flags don't 1675 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1676 * framework stashes the uid and zoneid represented by this credential 1677 * for use at probe-time, in implicit predicates. These limit visibility 1678 * of the probes to users and/or zones which have sufficient privilege to 1679 * access them. 1680 * 1681 * The fifth argument is a DTrace provider operations vector, which provides 1682 * the implementation for the Framework-to-Provider API. (See Section 1, 1683 * above.) This must be non-NULL, and each member must be non-NULL. The 1684 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1685 * members (if the provider so desires, _one_ of these members may be left 1686 * NULL -- denoting that the provider only implements the other) and (2) 1687 * the dtps_suspend() and dtps_resume() members, which must either both be 1688 * NULL or both be non-NULL. 1689 * 1690 * The sixth argument is a cookie to be specified as the first argument for 1691 * each function in the Framework-to-Provider API. This argument may have 1692 * any value. 1693 * 1694 * The final argument is a pointer to dtrace_provider_id_t. If 1695 * dtrace_register() successfully completes, the provider identifier will be 1696 * stored in the memory pointed to be this argument. This argument must be 1697 * non-NULL. 1698 * 1699 * 2.2.3 Return value 1700 * 1701 * On success, dtrace_register() returns 0 and stores the new provider's 1702 * identifier into the memory pointed to by the idp argument. On failure, 1703 * dtrace_register() returns an errno: 1704 * 1705 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1706 * This may because a parameter that must be non-NULL was NULL, 1707 * because the name was invalid (either empty or an illegal 1708 * provider name) or because the attributes were invalid. 1709 * 1710 * No other failure code is returned. 1711 * 1712 * 2.2.4 Caller's context 1713 * 1714 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1715 * hold no locks across dtrace_register() that may also be acquired by 1716 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1717 * 1718 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1719 * 1720 * 2.3.1 Overview 1721 * 1722 * Unregisters the specified provider from the DTrace framework. It should 1723 * generally be called by DTrace providers in their detach(9E) entry point. 1724 * 1725 * 2.3.2 Arguments and Notes 1726 * 1727 * The only argument is the provider identifier, as returned from a 1728 * successful call to dtrace_register(). As a result of calling 1729 * dtrace_unregister(), the DTrace framework will call back into the provider 1730 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1731 * completes, however, the DTrace framework will no longer make calls through 1732 * the Framework-to-Provider API. 1733 * 1734 * 2.3.3 Return value 1735 * 1736 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1737 * returns an errno: 1738 * 1739 * EBUSY There are currently processes that have the DTrace pseudodevice 1740 * open, or there exists an anonymous enabling that hasn't yet 1741 * been claimed. 1742 * 1743 * No other failure code is returned. 1744 * 1745 * 2.3.4 Caller's context 1746 * 1747 * Because a call to dtrace_unregister() may induce calls through the 1748 * Framework-to-Provider API, the caller may not hold any lock across 1749 * dtrace_register() that is also acquired in any of the Framework-to- 1750 * Provider API functions. Additionally, mod_lock may not be held. 1751 * 1752 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1753 * 1754 * 2.4.1 Overview 1755 * 1756 * Invalidates the specified provider. All subsequent probe lookups for the 1757 * specified provider will fail, but its probes will not be removed. 1758 * 1759 * 2.4.2 Arguments and note 1760 * 1761 * The only argument is the provider identifier, as returned from a 1762 * successful call to dtrace_register(). In general, a provider's probes 1763 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1764 * an entire provider, regardless of whether or not probes are enabled or 1765 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1766 * probes from firing -- it will merely prevent any new enablings of the 1767 * provider's probes. 1768 * 1769 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1770 * 1771 * 2.5.1 Overview 1772 * 1773 * Removes all the unenabled probes for the given provider. This function is 1774 * not unlike dtrace_unregister(), except that it doesn't remove the 1775 * provider just as many of its associated probes as it can. 1776 * 1777 * 2.5.2 Arguments and Notes 1778 * 1779 * As with dtrace_unregister(), the sole argument is the provider identifier 1780 * as returned from a successful call to dtrace_register(). As a result of 1781 * calling dtrace_condense(), the DTrace framework will call back into the 1782 * given provider's dtps_destroy() entry point for each of the provider's 1783 * unenabled probes. 1784 * 1785 * 2.5.3 Return value 1786 * 1787 * Currently, dtrace_condense() always returns 0. However, consumers of this 1788 * function should check the return value as appropriate; its behavior may 1789 * change in the future. 1790 * 1791 * 2.5.4 Caller's context 1792 * 1793 * As with dtrace_unregister(), the caller may not hold any lock across 1794 * dtrace_condense() that is also acquired in the provider's entry points. 1795 * Also, mod_lock may not be held. 1796 * 1797 * 2.6 int dtrace_attached() 1798 * 1799 * 2.6.1 Overview 1800 * 1801 * Indicates whether or not DTrace has attached. 1802 * 1803 * 2.6.2 Arguments and Notes 1804 * 1805 * For most providers, DTrace makes initial contact beyond registration. 1806 * That is, once a provider has registered with DTrace, it waits to hear 1807 * from DTrace to create probes. However, some providers may wish to 1808 * proactively create probes without first being told by DTrace to do so. 1809 * If providers wish to do this, they must first call dtrace_attached() to 1810 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1811 * the provider must not make any other Provider-to-Framework API call. 1812 * 1813 * 2.6.3 Return value 1814 * 1815 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1816 * 1817 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1818 * const char *func, const char *name, int aframes, void *arg) 1819 * 1820 * 2.7.1 Overview 1821 * 1822 * Creates a probe with specified module name, function name, and name. 1823 * 1824 * 2.7.2 Arguments and Notes 1825 * 1826 * The first argument is the provider identifier, as returned from a 1827 * successful call to dtrace_register(). The second, third, and fourth 1828 * arguments are the module name, function name, and probe name, 1829 * respectively. Of these, module name and function name may both be NULL 1830 * (in which case the probe is considered to be unanchored), or they may both 1831 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1832 * string. 1833 * 1834 * The fifth argument is the number of artificial stack frames that will be 1835 * found on the stack when dtrace_probe() is called for the new probe. These 1836 * artificial frames will be automatically be pruned should the stack() or 1837 * stackdepth() functions be called as part of one of the probe's ECBs. If 1838 * the parameter doesn't add an artificial frame, this parameter should be 1839 * zero. 1840 * 1841 * The final argument is a probe argument that will be passed back to the 1842 * provider when a probe-specific operation is called. (e.g., via 1843 * dtps_enable(), dtps_disable(), etc.) 1844 * 1845 * Note that it is up to the provider to be sure that the probe that it 1846 * creates does not already exist -- if the provider is unsure of the probe's 1847 * existence, it should assure its absence with dtrace_probe_lookup() before 1848 * calling dtrace_probe_create(). 1849 * 1850 * 2.7.3 Return value 1851 * 1852 * dtrace_probe_create() always succeeds, and always returns the identifier 1853 * of the newly-created probe. 1854 * 1855 * 2.7.4 Caller's context 1856 * 1857 * While dtrace_probe_create() is generally expected to be called from 1858 * dtps_provide() and/or dtps_provide_module(), it may be called from other 1859 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1860 * 1861 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 1862 * const char *func, const char *name) 1863 * 1864 * 2.8.1 Overview 1865 * 1866 * Looks up a probe based on provdider and one or more of module name, 1867 * function name and probe name. 1868 * 1869 * 2.8.2 Arguments and Notes 1870 * 1871 * The first argument is the provider identifier, as returned from a 1872 * successful call to dtrace_register(). The second, third, and fourth 1873 * arguments are the module name, function name, and probe name, 1874 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 1875 * the identifier of the first probe that is provided by the specified 1876 * provider and matches all of the non-NULL matching criteria. 1877 * dtrace_probe_lookup() is generally used by a provider to be check the 1878 * existence of a probe before creating it with dtrace_probe_create(). 1879 * 1880 * 2.8.3 Return value 1881 * 1882 * If the probe exists, returns its identifier. If the probe does not exist, 1883 * return DTRACE_IDNONE. 1884 * 1885 * 2.8.4 Caller's context 1886 * 1887 * While dtrace_probe_lookup() is generally expected to be called from 1888 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1889 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1890 * 1891 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 1892 * 1893 * 2.9.1 Overview 1894 * 1895 * Returns the probe argument associated with the specified probe. 1896 * 1897 * 2.9.2 Arguments and Notes 1898 * 1899 * The first argument is the provider identifier, as returned from a 1900 * successful call to dtrace_register(). The second argument is a probe 1901 * identifier, as returned from dtrace_probe_lookup() or 1902 * dtrace_probe_create(). This is useful if a probe has multiple 1903 * provider-specific components to it: the provider can create the probe 1904 * once with provider-specific state, and then add to the state by looking 1905 * up the probe based on probe identifier. 1906 * 1907 * 2.9.3 Return value 1908 * 1909 * Returns the argument associated with the specified probe. If the 1910 * specified probe does not exist, or if the specified probe is not provided 1911 * by the specified provider, NULL is returned. 1912 * 1913 * 2.9.4 Caller's context 1914 * 1915 * While dtrace_probe_arg() is generally expected to be called from 1916 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1917 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1918 * 1919 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 1920 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 1921 * 1922 * 2.10.1 Overview 1923 * 1924 * The epicenter of DTrace: fires the specified probes with the specified 1925 * arguments. 1926 * 1927 * 2.10.2 Arguments and Notes 1928 * 1929 * The first argument is a probe identifier as returned by 1930 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 1931 * arguments are the values to which the D variables "arg0" through "arg4" 1932 * will be mapped. 1933 * 1934 * dtrace_probe() should be called whenever the specified probe has fired -- 1935 * however the provider defines it. 1936 * 1937 * 2.10.3 Return value 1938 * 1939 * None. 1940 * 1941 * 2.10.4 Caller's context 1942 * 1943 * dtrace_probe() may be called in virtually any context: kernel, user, 1944 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 1945 * dispatcher locks held, with interrupts disabled, etc. The only latitude 1946 * that must be afforded to DTrace is the ability to make calls within 1947 * itself (and to its in-kernel subroutines) and the ability to access 1948 * arbitrary (but mapped) memory. On some platforms, this constrains 1949 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 1950 * from any context in which TL is greater than zero. dtrace_probe() may 1951 * also not be called from any routine which may be called by dtrace_probe() 1952 * -- which includes functions in the DTrace framework and some in-kernel 1953 * DTrace subroutines. All such functions "dtrace_"; providers that 1954 * instrument the kernel arbitrarily should be sure to not instrument these 1955 * routines. 1956 */ 1957 typedef struct dtrace_pops { 1958 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); 1959 void (*dtps_provide_module)(void *arg, struct modctl *mp); 1960 void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 1961 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 1962 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 1963 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 1964 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 1965 dtrace_argdesc_t *desc); 1966 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 1967 int argno, int aframes); 1968 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 1969 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 1970 } dtrace_pops_t; 1971 1972 typedef uintptr_t dtrace_provider_id_t; 1973 1974 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 1975 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 1976 extern int dtrace_unregister(dtrace_provider_id_t); 1977 extern int dtrace_condense(dtrace_provider_id_t); 1978 extern void dtrace_invalidate(dtrace_provider_id_t); 1979 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, 1980 const char *, const char *); 1981 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 1982 const char *, const char *, int, void *); 1983 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 1984 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 1985 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 1986 1987 /* 1988 * DTrace Meta Provider API 1989 * 1990 * The following functions are implemented by the DTrace framework and are 1991 * used to implement meta providers. Meta providers plug into the DTrace 1992 * framework and are used to instantiate new providers on the fly. At 1993 * present, there is only one type of meta provider and only one meta 1994 * provider may be registered with the DTrace framework at a time. The 1995 * sole meta provider type provides user-land static tracing facilities 1996 * by taking meta probe descriptions and adding a corresponding provider 1997 * into the DTrace framework. 1998 * 1999 * 1 Framework-to-Provider 2000 * 2001 * 1.1 Overview 2002 * 2003 * The Framework-to-Provider API is represented by the dtrace_mops structure 2004 * that the meta provider passes to the framework when registering itself as 2005 * a meta provider. This structure consists of the following members: 2006 * 2007 * dtms_create_probe() <-- Add a new probe to a created provider 2008 * dtms_provide_pid() <-- Create a new provider for a given process 2009 * dtms_remove_pid() <-- Remove a previously created provider 2010 * 2011 * 1.2 void dtms_create_probe(void *arg, void *parg, 2012 * dtrace_helper_probedesc_t *probedesc); 2013 * 2014 * 1.2.1 Overview 2015 * 2016 * Called by the DTrace framework to create a new probe in a provider 2017 * created by this meta provider. 2018 * 2019 * 1.2.2 Arguments and notes 2020 * 2021 * The first argument is the cookie as passed to dtrace_meta_register(). 2022 * The second argument is the provider cookie for the associated provider; 2023 * this is obtained from the return value of dtms_provide_pid(). The third 2024 * argument is the helper probe description. 2025 * 2026 * 1.2.3 Return value 2027 * 2028 * None 2029 * 2030 * 1.2.4 Caller's context 2031 * 2032 * dtms_create_probe() is called from either ioctl() or module load context. 2033 * The DTrace framework is locked in such a way that meta providers may not 2034 * register or unregister. This means that the meta provider cannot call 2035 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is 2036 * such that the provider may (and is expected to) call provider-related 2037 * DTrace provider APIs including dtrace_probe_create(). 2038 * 2039 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2040 * pid_t pid) 2041 * 2042 * 1.3.1 Overview 2043 * 2044 * Called by the DTrace framework to instantiate a new provider given the 2045 * description of the provider and probes in the mprov argument. The 2046 * meta provider should call dtrace_register() to insert the new provider 2047 * into the DTrace framework. 2048 * 2049 * 1.3.2 Arguments and notes 2050 * 2051 * The first argument is the cookie as passed to dtrace_meta_register(). 2052 * The second argument is a pointer to a structure describing the new 2053 * helper provider. The third argument is the process identifier for 2054 * process associated with this new provider. Note that the name of the 2055 * provider as passed to dtrace_register() should be the contatenation of 2056 * the dtmpb_provname member of the mprov argument and the processs 2057 * identifier as a string. 2058 * 2059 * 1.3.3 Return value 2060 * 2061 * The cookie for the provider that the meta provider creates. This is 2062 * the same value that it passed to dtrace_register(). 2063 * 2064 * 1.3.4 Caller's context 2065 * 2066 * dtms_provide_pid() is called from either ioctl() or module load context. 2067 * The DTrace framework is locked in such a way that meta providers may not 2068 * register or unregister. This means that the meta provider cannot call 2069 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2070 * is such that the provider may -- and is expected to -- call 2071 * provider-related DTrace provider APIs including dtrace_register(). 2072 * 2073 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2074 * pid_t pid) 2075 * 2076 * 1.4.1 Overview 2077 * 2078 * Called by the DTrace framework to remove a provider that had previously 2079 * been instantiated via the dtms_provide_pid() entry point. The meta 2080 * provider need not remove the provider immediately, but this entry 2081 * point indicates that the provider should be removed as soon as possible 2082 * using the dtrace_unregister() API. 2083 * 2084 * 1.4.2 Arguments and notes 2085 * 2086 * The first argument is the cookie as passed to dtrace_meta_register(). 2087 * The second argument is a pointer to a structure describing the helper 2088 * provider. The third argument is the process identifier for process 2089 * associated with this new provider. 2090 * 2091 * 1.4.3 Return value 2092 * 2093 * None 2094 * 2095 * 1.4.4 Caller's context 2096 * 2097 * dtms_remove_pid() is called from either ioctl() or exit() context. 2098 * The DTrace framework is locked in such a way that meta providers may not 2099 * register or unregister. This means that the meta provider cannot call 2100 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2101 * is such that the provider may -- and is expected to -- call 2102 * provider-related DTrace provider APIs including dtrace_unregister(). 2103 */ 2104 typedef struct dtrace_helper_probedesc { 2105 char *dthpb_mod; /* probe module */ 2106 char *dthpb_func; /* probe function */ 2107 char *dthpb_name; /* probe name */ 2108 uint64_t dthpb_base; /* base address */ 2109 uint32_t *dthpb_offs; /* offsets array */ 2110 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2111 uint32_t dthpb_noffs; /* offsets count */ 2112 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2113 uint8_t *dthpb_args; /* argument mapping array */ 2114 uint8_t dthpb_xargc; /* translated argument count */ 2115 uint8_t dthpb_nargc; /* native argument count */ 2116 char *dthpb_xtypes; /* translated types strings */ 2117 char *dthpb_ntypes; /* native types strings */ 2118 } dtrace_helper_probedesc_t; 2119 2120 typedef struct dtrace_helper_provdesc { 2121 char *dthpv_provname; /* provider name */ 2122 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2123 } dtrace_helper_provdesc_t; 2124 2125 typedef struct dtrace_mops { 2126 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2127 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2128 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2129 } dtrace_mops_t; 2130 2131 typedef uintptr_t dtrace_meta_provider_id_t; 2132 2133 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2134 dtrace_meta_provider_id_t *); 2135 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2136 2137 /* 2138 * DTrace Kernel Hooks 2139 * 2140 * The following functions are implemented by the base kernel and form a set of 2141 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2142 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2143 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2144 */ 2145 2146 typedef enum dtrace_vtime_state { 2147 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2148 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2149 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2150 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2151 } dtrace_vtime_state_t; 2152 2153 extern dtrace_vtime_state_t dtrace_vtime_active; 2154 extern void dtrace_vtime_switch(kthread_t *next); 2155 extern void dtrace_vtime_enable_tnf(void); 2156 extern void dtrace_vtime_disable_tnf(void); 2157 extern void dtrace_vtime_enable(void); 2158 extern void dtrace_vtime_disable(void); 2159 2160 struct regs; 2161 2162 extern int (*dtrace_pid_probe_ptr)(struct regs *); 2163 extern int (*dtrace_return_probe_ptr)(struct regs *); 2164 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2165 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2166 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2167 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2168 2169 typedef uintptr_t dtrace_icookie_t; 2170 typedef void (*dtrace_xcall_t)(void *); 2171 2172 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2173 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2174 2175 extern void dtrace_membar_producer(void); 2176 extern void dtrace_membar_consumer(void); 2177 2178 extern void (*dtrace_cpu_init)(processorid_t); 2179 extern void (*dtrace_modload)(struct modctl *); 2180 extern void (*dtrace_modunload)(struct modctl *); 2181 extern void (*dtrace_helpers_cleanup)(); 2182 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2183 extern void (*dtrace_cpustart_init)(); 2184 extern void (*dtrace_cpustart_fini)(); 2185 2186 extern void (*dtrace_kreloc_init)(); 2187 extern void (*dtrace_kreloc_fini)(); 2188 2189 extern void (*dtrace_debugger_init)(); 2190 extern void (*dtrace_debugger_fini)(); 2191 extern dtrace_cacheid_t dtrace_predcache_id; 2192 2193 extern hrtime_t dtrace_gethrtime(void); 2194 extern void dtrace_sync(void); 2195 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2196 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2197 extern void dtrace_vpanic(const char *, __va_list); 2198 extern void dtrace_panic(const char *, ...); 2199 2200 extern int dtrace_safe_defer_signal(void); 2201 extern void dtrace_safe_synchronous_signal(void); 2202 2203 extern int dtrace_mach_aframes(void); 2204 2205 #if defined(__i386) || defined(__amd64) 2206 extern int dtrace_instr_size(uchar_t *instr); 2207 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2208 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2209 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2210 extern void dtrace_invop_callsite(void); 2211 #endif 2212 2213 #ifdef __sparc 2214 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2215 extern void dtrace_getfsr(uint64_t *); 2216 #endif 2217 2218 #define DTRACE_CPUFLAG_ISSET(flag) \ 2219 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) 2220 2221 #define DTRACE_CPUFLAG_SET(flag) \ 2222 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) 2223 2224 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2225 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) 2226 2227 #endif /* _KERNEL */ 2228 2229 #endif /* _ASM */ 2230 2231 #if defined(__i386) || defined(__amd64) 2232 2233 #define DTRACE_INVOP_PUSHL_EBP 1 2234 #define DTRACE_INVOP_POPL_EBP 2 2235 #define DTRACE_INVOP_LEAVE 3 2236 #define DTRACE_INVOP_NOP 4 2237 #define DTRACE_INVOP_RET 5 2238 2239 #endif 2240 2241 #ifdef __cplusplus 2242 } 2243 #endif 2244 2245 #endif /* _SYS_DTRACE_H */ 2246