xref: /titanic_51/usr/src/uts/common/sys/dtrace.h (revision 1e4c938b57d1656808e4112127ff1dce3eba5314)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29  */
30 
31 #ifndef _SYS_DTRACE_H
32 #define	_SYS_DTRACE_H
33 
34 #ifdef	__cplusplus
35 extern "C" {
36 #endif
37 
38 /*
39  * DTrace Dynamic Tracing Software: Kernel Interfaces
40  *
41  * Note: The contents of this file are private to the implementation of the
42  * Solaris system and DTrace subsystem and are subject to change at any time
43  * without notice.  Applications and drivers using these interfaces will fail
44  * to run on future releases.  These interfaces should not be used for any
45  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
46  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
47  */
48 
49 #ifndef _ASM
50 
51 #include <sys/types.h>
52 #include <sys/modctl.h>
53 #include <sys/processor.h>
54 #include <sys/systm.h>
55 #include <sys/ctf_api.h>
56 #include <sys/cyclic.h>
57 #include <sys/int_limits.h>
58 
59 /*
60  * DTrace Universal Constants and Typedefs
61  */
62 #define	DTRACE_CPUALL		-1	/* all CPUs */
63 #define	DTRACE_IDNONE		0	/* invalid probe identifier */
64 #define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
65 #define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
66 #define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
67 #define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
68 #define	DTRACE_PROVNONE		0	/* invalid provider identifier */
69 #define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
70 #define	DTRACE_ARGNONE		-1	/* invalid argument index */
71 
72 #define	DTRACE_PROVNAMELEN	64
73 #define	DTRACE_MODNAMELEN	64
74 #define	DTRACE_FUNCNAMELEN	128
75 #define	DTRACE_NAMELEN		64
76 #define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
77 				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
78 #define	DTRACE_ARGTYPELEN	128
79 
80 typedef uint32_t dtrace_id_t;		/* probe identifier */
81 typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
82 typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
83 typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
84 typedef uint16_t dtrace_actkind_t;	/* action kind */
85 typedef int64_t dtrace_optval_t;	/* option value */
86 typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
87 
88 typedef enum dtrace_probespec {
89 	DTRACE_PROBESPEC_NONE = -1,
90 	DTRACE_PROBESPEC_PROVIDER = 0,
91 	DTRACE_PROBESPEC_MOD,
92 	DTRACE_PROBESPEC_FUNC,
93 	DTRACE_PROBESPEC_NAME
94 } dtrace_probespec_t;
95 
96 /*
97  * DTrace Intermediate Format (DIF)
98  *
99  * The following definitions describe the DTrace Intermediate Format (DIF), a
100  * a RISC-like instruction set and program encoding used to represent
101  * predicates and actions that can be bound to DTrace probes.  The constants
102  * below defining the number of available registers are suggested minimums; the
103  * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
104  * registers provided by the current DTrace implementation.
105  */
106 #define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
107 #define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
108 #define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
109 #define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
110 #define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
111 
112 #define	DIF_OP_OR	1		/* or	r1, r2, rd */
113 #define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
114 #define	DIF_OP_AND	3		/* and	r1, r2, rd */
115 #define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
116 #define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
117 #define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
118 #define	DIF_OP_ADD	7		/* add	r1, r2, rd */
119 #define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
120 #define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
121 #define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
122 #define	DIF_OP_SREM	11		/* srem r1, r2, rd */
123 #define	DIF_OP_UREM	12		/* urem r1, r2, rd */
124 #define	DIF_OP_NOT	13		/* not	r1, rd */
125 #define	DIF_OP_MOV	14		/* mov	r1, rd */
126 #define	DIF_OP_CMP	15		/* cmp	r1, r2 */
127 #define	DIF_OP_TST	16		/* tst  r1 */
128 #define	DIF_OP_BA	17		/* ba	label */
129 #define	DIF_OP_BE	18		/* be	label */
130 #define	DIF_OP_BNE	19		/* bne	label */
131 #define	DIF_OP_BG	20		/* bg	label */
132 #define	DIF_OP_BGU	21		/* bgu	label */
133 #define	DIF_OP_BGE	22		/* bge	label */
134 #define	DIF_OP_BGEU	23		/* bgeu	label */
135 #define	DIF_OP_BL	24		/* bl	label */
136 #define	DIF_OP_BLU	25		/* blu	label */
137 #define	DIF_OP_BLE	26		/* ble	label */
138 #define	DIF_OP_BLEU	27		/* bleu	label */
139 #define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
140 #define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
141 #define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
142 #define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
143 #define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
144 #define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
145 #define	DIF_OP_LDX	34		/* ldx	[r1], rd */
146 #define	DIF_OP_RET	35		/* ret	rd */
147 #define	DIF_OP_NOP	36		/* nop */
148 #define	DIF_OP_SETX	37		/* setx	intindex, rd */
149 #define	DIF_OP_SETS	38		/* sets strindex, rd */
150 #define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
151 #define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
152 #define	DIF_OP_LDGS	41		/* ldgs var, rd */
153 #define	DIF_OP_STGS	42		/* stgs var, rs */
154 #define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
155 #define	DIF_OP_LDTS	44		/* ldts var, rd */
156 #define	DIF_OP_STTS	45		/* stts var, rs */
157 #define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
158 #define	DIF_OP_CALL	47		/* call	subr, rd */
159 #define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
160 #define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
161 #define	DIF_OP_POPTS	50		/* popts */
162 #define	DIF_OP_FLUSHTS	51		/* flushts */
163 #define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
164 #define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
165 #define	DIF_OP_STGAA	54		/* stgaa var, rs */
166 #define	DIF_OP_STTAA	55		/* sttaa var, rs */
167 #define	DIF_OP_LDLS	56		/* ldls	var, rd */
168 #define	DIF_OP_STLS	57		/* stls	var, rs */
169 #define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
170 #define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
171 #define	DIF_OP_STB	60		/* stb	r1, [rd] */
172 #define	DIF_OP_STH	61		/* sth	r1, [rd] */
173 #define	DIF_OP_STW	62		/* stw	r1, [rd] */
174 #define	DIF_OP_STX	63		/* stx	r1, [rd] */
175 #define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
176 #define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
177 #define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
178 #define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
179 #define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
180 #define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
181 #define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
182 #define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
183 #define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
184 #define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
185 #define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
186 #define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
187 #define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
188 #define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
189 #define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
190 #define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
191 
192 #define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
193 #define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
194 #define	DIF_REGISTER_MAX	0xff	/* highest register number */
195 #define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
196 #define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
197 
198 #define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
199 #define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
200 #define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
201 
202 #define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
203 #define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
204 #define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
205 
206 #define	DIF_VAR_ARGS		0x0000	/* arguments array */
207 #define	DIF_VAR_REGS		0x0001	/* registers array */
208 #define	DIF_VAR_UREGS		0x0002	/* user registers array */
209 #define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
210 #define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
211 #define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
212 #define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
213 #define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
214 #define	DIF_VAR_ID		0x0105	/* probe ID */
215 #define	DIF_VAR_ARG0		0x0106	/* first argument */
216 #define	DIF_VAR_ARG1		0x0107	/* second argument */
217 #define	DIF_VAR_ARG2		0x0108	/* third argument */
218 #define	DIF_VAR_ARG3		0x0109	/* fourth argument */
219 #define	DIF_VAR_ARG4		0x010a	/* fifth argument */
220 #define	DIF_VAR_ARG5		0x010b	/* sixth argument */
221 #define	DIF_VAR_ARG6		0x010c	/* seventh argument */
222 #define	DIF_VAR_ARG7		0x010d	/* eighth argument */
223 #define	DIF_VAR_ARG8		0x010e	/* ninth argument */
224 #define	DIF_VAR_ARG9		0x010f	/* tenth argument */
225 #define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
226 #define	DIF_VAR_CALLER		0x0111	/* caller */
227 #define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
228 #define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
229 #define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
230 #define	DIF_VAR_PROBENAME	0x0115	/* probe name */
231 #define	DIF_VAR_PID		0x0116	/* process ID */
232 #define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
233 #define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
234 #define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
235 #define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
236 #define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
237 #define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
238 #define	DIF_VAR_PPID		0x011d	/* parent process ID */
239 #define	DIF_VAR_UID		0x011e	/* process user ID */
240 #define	DIF_VAR_GID		0x011f	/* process group ID */
241 #define	DIF_VAR_ERRNO		0x0120	/* thread errno */
242 
243 #define	DIF_SUBR_RAND			0
244 #define	DIF_SUBR_MUTEX_OWNED		1
245 #define	DIF_SUBR_MUTEX_OWNER		2
246 #define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
247 #define	DIF_SUBR_MUTEX_TYPE_SPIN	4
248 #define	DIF_SUBR_RW_READ_HELD		5
249 #define	DIF_SUBR_RW_WRITE_HELD		6
250 #define	DIF_SUBR_RW_ISWRITER		7
251 #define	DIF_SUBR_COPYIN			8
252 #define	DIF_SUBR_COPYINSTR		9
253 #define	DIF_SUBR_SPECULATION		10
254 #define	DIF_SUBR_PROGENYOF		11
255 #define	DIF_SUBR_STRLEN			12
256 #define	DIF_SUBR_COPYOUT		13
257 #define	DIF_SUBR_COPYOUTSTR		14
258 #define	DIF_SUBR_ALLOCA			15
259 #define	DIF_SUBR_BCOPY			16
260 #define	DIF_SUBR_COPYINTO		17
261 #define	DIF_SUBR_MSGDSIZE		18
262 #define	DIF_SUBR_MSGSIZE		19
263 #define	DIF_SUBR_GETMAJOR		20
264 #define	DIF_SUBR_GETMINOR		21
265 #define	DIF_SUBR_DDI_PATHNAME		22
266 #define	DIF_SUBR_STRJOIN		23
267 #define	DIF_SUBR_LLTOSTR		24
268 #define	DIF_SUBR_BASENAME		25
269 #define	DIF_SUBR_DIRNAME		26
270 #define	DIF_SUBR_CLEANPATH		27
271 #define	DIF_SUBR_STRCHR			28
272 #define	DIF_SUBR_STRRCHR		29
273 #define	DIF_SUBR_STRSTR			30
274 #define	DIF_SUBR_STRTOK			31
275 #define	DIF_SUBR_SUBSTR			32
276 #define	DIF_SUBR_INDEX			33
277 #define	DIF_SUBR_RINDEX			34
278 #define	DIF_SUBR_HTONS			35
279 #define	DIF_SUBR_HTONL			36
280 #define	DIF_SUBR_HTONLL			37
281 #define	DIF_SUBR_NTOHS			38
282 #define	DIF_SUBR_NTOHL			39
283 #define	DIF_SUBR_NTOHLL			40
284 #define	DIF_SUBR_INET_NTOP		41
285 #define	DIF_SUBR_INET_NTOA		42
286 #define	DIF_SUBR_INET_NTOA6		43
287 
288 #define	DIF_SUBR_MAX			43	/* max subroutine value */
289 
290 typedef uint32_t dif_instr_t;
291 
292 #define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
293 #define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
294 #define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
295 #define	DIF_INSTR_RD(i)			((i) & 0xff)
296 #define	DIF_INSTR_RS(i)			((i) & 0xff)
297 #define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
298 #define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
299 #define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
300 #define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
301 #define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
302 #define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
303 #define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
304 
305 #define	DIF_INSTR_FMT(op, r1, r2, d) \
306 	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
307 
308 #define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
309 #define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
310 #define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
311 #define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
312 #define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
313 #define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
314 #define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
315 #define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
316 #define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
317 #define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
318 #define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
319 #define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
320 #define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
321 #define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
322 #define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
323 #define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
324 #define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
325 #define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
326 #define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
327 #define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
328 #define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
329 
330 #define	DIF_REG_R0	0		/* %r0 is always set to zero */
331 
332 /*
333  * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
334  * of variables, function and associative array arguments, and the return type
335  * for each DIF object (shown below).  It contains a description of the type,
336  * its size in bytes, and a module identifier.
337  */
338 typedef struct dtrace_diftype {
339 	uint8_t dtdt_kind;		/* type kind (see below) */
340 	uint8_t dtdt_ckind;		/* type kind in CTF */
341 	uint8_t dtdt_flags;		/* type flags (see below) */
342 	uint8_t dtdt_pad;		/* reserved for future use */
343 	uint32_t dtdt_size;		/* type size in bytes (unless string) */
344 } dtrace_diftype_t;
345 
346 #define	DIF_TYPE_CTF		0	/* type is a CTF type */
347 #define	DIF_TYPE_STRING		1	/* type is a D string */
348 
349 #define	DIF_TF_BYREF		0x1	/* type is passed by reference */
350 
351 /*
352  * A DTrace Intermediate Format variable record is used to describe each of the
353  * variables referenced by a given DIF object.  It contains an integer variable
354  * identifier along with variable scope and properties, as shown below.  The
355  * size of this structure must be sizeof (int) aligned.
356  */
357 typedef struct dtrace_difv {
358 	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
359 	uint32_t dtdv_id;		/* variable reference identifier */
360 	uint8_t dtdv_kind;		/* variable kind (see below) */
361 	uint8_t dtdv_scope;		/* variable scope (see below) */
362 	uint16_t dtdv_flags;		/* variable flags (see below) */
363 	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
364 } dtrace_difv_t;
365 
366 #define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
367 #define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
368 
369 #define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
370 #define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
371 #define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
372 
373 #define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
374 #define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
375 
376 /*
377  * DTrace Actions
378  *
379  * The upper byte determines the class of the action; the low bytes determines
380  * the specific action within that class.  The classes of actions are as
381  * follows:
382  *
383  *   [ no class ]                  <= May record process- or kernel-related data
384  *   DTRACEACT_PROC                <= Only records process-related data
385  *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
386  *   DTRACEACT_KERNEL              <= Only records kernel-related data
387  *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
388  *   DTRACEACT_SPECULATIVE         <= Speculation-related action
389  *   DTRACEACT_AGGREGATION         <= Aggregating action
390  */
391 #define	DTRACEACT_NONE			0	/* no action */
392 #define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
393 #define	DTRACEACT_EXIT			2	/* exit() action */
394 #define	DTRACEACT_PRINTF		3	/* printf() action */
395 #define	DTRACEACT_PRINTA		4	/* printa() action */
396 #define	DTRACEACT_LIBACT		5	/* library-controlled action */
397 
398 #define	DTRACEACT_PROC			0x0100
399 #define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
400 #define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
401 #define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
402 #define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
403 #define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
404 
405 #define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
406 #define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
407 #define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
408 #define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
409 #define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
410 
411 #define	DTRACEACT_PROC_CONTROL		0x0300
412 
413 #define	DTRACEACT_KERNEL		0x0400
414 #define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
415 #define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
416 #define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
417 
418 #define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
419 #define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
420 #define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
421 #define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
422 
423 #define	DTRACEACT_SPECULATIVE		0x0600
424 #define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
425 #define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
426 #define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
427 
428 #define	DTRACEACT_CLASS(x)		((x) & 0xff00)
429 
430 #define	DTRACEACT_ISDESTRUCTIVE(x)	\
431 	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
432 	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
433 
434 #define	DTRACEACT_ISSPECULATIVE(x)	\
435 	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
436 
437 #define	DTRACEACT_ISPRINTFLIKE(x)	\
438 	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
439 	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
440 
441 /*
442  * DTrace Aggregating Actions
443  *
444  * These are functions f(x) for which the following is true:
445  *
446  *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
447  *
448  * where x_n is a set of arbitrary data.  Aggregating actions are in their own
449  * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
450  * for easier processing of the aggregation argument and data payload for a few
451  * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
452  */
453 #define	DTRACEACT_AGGREGATION		0x0700
454 #define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
455 #define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
456 #define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
457 #define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
458 #define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
459 #define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
460 #define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
461 #define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
462 #define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
463 
464 #define	DTRACEACT_ISAGG(x)		\
465 	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
466 
467 #define	DTRACE_QUANTIZE_NBUCKETS	\
468 	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
469 
470 #define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
471 
472 #define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
473 	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
474 	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
475 	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
476 	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
477 
478 #define	DTRACE_LQUANTIZE_STEPSHIFT		48
479 #define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
480 #define	DTRACE_LQUANTIZE_LEVELSHIFT		32
481 #define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
482 #define	DTRACE_LQUANTIZE_BASESHIFT		0
483 #define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
484 
485 #define	DTRACE_LQUANTIZE_STEP(x)		\
486 	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
487 	DTRACE_LQUANTIZE_STEPSHIFT)
488 
489 #define	DTRACE_LQUANTIZE_LEVELS(x)		\
490 	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
491 	DTRACE_LQUANTIZE_LEVELSHIFT)
492 
493 #define	DTRACE_LQUANTIZE_BASE(x)		\
494 	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
495 	DTRACE_LQUANTIZE_BASESHIFT)
496 
497 #define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
498 #define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
499 #define	DTRACE_LLQUANTIZE_LOWSHIFT		32
500 #define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
501 #define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
502 #define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
503 #define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
504 #define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
505 
506 #define	DTRACE_LLQUANTIZE_FACTOR(x)		\
507 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
508 	DTRACE_LLQUANTIZE_FACTORSHIFT)
509 
510 #define	DTRACE_LLQUANTIZE_LOW(x)		\
511 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
512 	DTRACE_LLQUANTIZE_LOWSHIFT)
513 
514 #define	DTRACE_LLQUANTIZE_HIGH(x)		\
515 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
516 	DTRACE_LLQUANTIZE_HIGHSHIFT)
517 
518 #define	DTRACE_LLQUANTIZE_NSTEP(x)		\
519 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
520 	DTRACE_LLQUANTIZE_NSTEPSHIFT)
521 
522 #define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
523 #define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
524 #define	DTRACE_USTACK_ARG(x, y)		\
525 	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
526 
527 #ifndef _LP64
528 #ifndef _LITTLE_ENDIAN
529 #define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
530 #else
531 #define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
532 #endif
533 #else
534 #define	DTRACE_PTR(type, name)	type *name
535 #endif
536 
537 /*
538  * DTrace Object Format (DOF)
539  *
540  * DTrace programs can be persistently encoded in the DOF format so that they
541  * may be embedded in other programs (for example, in an ELF file) or in the
542  * dtrace driver configuration file for use in anonymous tracing.  The DOF
543  * format is versioned and extensible so that it can be revised and so that
544  * internal data structures can be modified or extended compatibly.  All DOF
545  * structures use fixed-size types, so the 32-bit and 64-bit representations
546  * are identical and consumers can use either data model transparently.
547  *
548  * The file layout is structured as follows:
549  *
550  * +---------------+-------------------+----- ... ----+---- ... ------+
551  * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
552  * | (file header) | (section headers) | section data | section data  |
553  * +---------------+-------------------+----- ... ----+---- ... ------+
554  * |<------------ dof_hdr.dofh_loadsz --------------->|               |
555  * |<------------ dof_hdr.dofh_filesz ------------------------------->|
556  *
557  * The file header stores meta-data including a magic number, data model for
558  * the instrumentation, data encoding, and properties of the DIF code within.
559  * The header describes its own size and the size of the section headers.  By
560  * convention, an array of section headers follows the file header, and then
561  * the data for all loadable sections and unloadable sections.  This permits
562  * consumer code to easily download the headers and all loadable data into the
563  * DTrace driver in one contiguous chunk, omitting other extraneous sections.
564  *
565  * The section headers describe the size, offset, alignment, and section type
566  * for each section.  Sections are described using a set of #defines that tell
567  * the consumer what kind of data is expected.  Sections can contain links to
568  * other sections by storing a dof_secidx_t, an index into the section header
569  * array, inside of the section data structures.  The section header includes
570  * an entry size so that sections with data arrays can grow their structures.
571  *
572  * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
573  * are represented themselves as a collection of related DOF sections.  This
574  * permits us to change the set of sections associated with a DIFO over time,
575  * and also permits us to encode DIFOs that contain different sets of sections.
576  * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
577  * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
578  * dof_secidx_t's which in turn denote the sections associated with this DIFO.
579  *
580  * This loose coupling of the file structure (header and sections) to the
581  * structure of the DTrace program itself (ECB descriptions, action
582  * descriptions, and DIFOs) permits activities such as relocation processing
583  * to occur in a single pass without having to understand D program structure.
584  *
585  * Finally, strings are always stored in ELF-style string tables along with a
586  * string table section index and string table offset.  Therefore strings in
587  * DOF are always arbitrary-length and not bound to the current implementation.
588  */
589 
590 #define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
591 
592 typedef struct dof_hdr {
593 	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
594 	uint32_t dofh_flags;		/* file attribute flags (if any) */
595 	uint32_t dofh_hdrsize;		/* size of file header in bytes */
596 	uint32_t dofh_secsize;		/* size of section header in bytes */
597 	uint32_t dofh_secnum;		/* number of section headers */
598 	uint64_t dofh_secoff;		/* file offset of section headers */
599 	uint64_t dofh_loadsz;		/* file size of loadable portion */
600 	uint64_t dofh_filesz;		/* file size of entire DOF file */
601 	uint64_t dofh_pad;		/* reserved for future use */
602 } dof_hdr_t;
603 
604 #define	DOF_ID_MAG0	0	/* first byte of magic number */
605 #define	DOF_ID_MAG1	1	/* second byte of magic number */
606 #define	DOF_ID_MAG2	2	/* third byte of magic number */
607 #define	DOF_ID_MAG3	3	/* fourth byte of magic number */
608 #define	DOF_ID_MODEL	4	/* DOF data model (see below) */
609 #define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
610 #define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
611 #define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
612 #define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
613 #define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
614 #define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
615 
616 #define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
617 #define	DOF_MAG_MAG1	'D'
618 #define	DOF_MAG_MAG2	'O'
619 #define	DOF_MAG_MAG3	'F'
620 
621 #define	DOF_MAG_STRING	"\177DOF"
622 #define	DOF_MAG_STRLEN	4
623 
624 #define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
625 #define	DOF_MODEL_ILP32	1
626 #define	DOF_MODEL_LP64	2
627 
628 #ifdef _LP64
629 #define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
630 #else
631 #define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
632 #endif
633 
634 #define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
635 #define	DOF_ENCODE_LSB	1
636 #define	DOF_ENCODE_MSB	2
637 
638 #ifdef _BIG_ENDIAN
639 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
640 #else
641 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
642 #endif
643 
644 #define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
645 #define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
646 #define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
647 
648 #define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
649 
650 typedef uint32_t dof_secidx_t;	/* section header table index type */
651 typedef uint32_t dof_stridx_t;	/* string table index type */
652 
653 #define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
654 #define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
655 
656 typedef struct dof_sec {
657 	uint32_t dofs_type;	/* section type (see below) */
658 	uint32_t dofs_align;	/* section data memory alignment */
659 	uint32_t dofs_flags;	/* section flags (if any) */
660 	uint32_t dofs_entsize;	/* size of section entry (if table) */
661 	uint64_t dofs_offset;	/* offset of section data within file */
662 	uint64_t dofs_size;	/* size of section data in bytes */
663 } dof_sec_t;
664 
665 #define	DOF_SECT_NONE		0	/* null section */
666 #define	DOF_SECT_COMMENTS	1	/* compiler comments */
667 #define	DOF_SECT_SOURCE		2	/* D program source code */
668 #define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
669 #define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
670 #define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
671 #define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
672 #define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
673 #define	DOF_SECT_STRTAB		8	/* string table */
674 #define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
675 #define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
676 #define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
677 #define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
678 #define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
679 #define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
680 #define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
681 #define	DOF_SECT_PROBES		16	/* dof_probe_t array */
682 #define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
683 #define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
684 #define	DOF_SECT_INTTAB		19	/* uint64_t array */
685 #define	DOF_SECT_UTSNAME	20	/* struct utsname */
686 #define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
687 #define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
688 #define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
689 #define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
690 #define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
691 #define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
692 
693 #define	DOF_SECF_LOAD		1	/* section should be loaded */
694 
695 #define	DOF_SEC_ISLOADABLE(x)						\
696 	(((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) ||	\
697 	((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) ||	\
698 	((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) ||		\
699 	((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) ||		\
700 	((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) ||	\
701 	((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) ||	\
702 	((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) ||	\
703 	((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) ||		\
704 	((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) ||		\
705 	((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) ||	\
706 	((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) ||	\
707 	((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
708 
709 typedef struct dof_ecbdesc {
710 	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
711 	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
712 	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
713 	uint32_t dofe_pad;		/* reserved for future use */
714 	uint64_t dofe_uarg;		/* user-supplied library argument */
715 } dof_ecbdesc_t;
716 
717 typedef struct dof_probedesc {
718 	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
719 	dof_stridx_t dofp_provider;	/* provider string */
720 	dof_stridx_t dofp_mod;		/* module string */
721 	dof_stridx_t dofp_func;		/* function string */
722 	dof_stridx_t dofp_name;		/* name string */
723 	uint32_t dofp_id;		/* probe identifier (or zero) */
724 } dof_probedesc_t;
725 
726 typedef struct dof_actdesc {
727 	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
728 	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
729 	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
730 	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
731 	uint64_t dofa_arg;		/* kind-specific argument */
732 	uint64_t dofa_uarg;		/* user-supplied argument */
733 } dof_actdesc_t;
734 
735 typedef struct dof_difohdr {
736 	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
737 	dof_secidx_t dofd_links[1];	/* variable length array of indices */
738 } dof_difohdr_t;
739 
740 typedef struct dof_relohdr {
741 	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
742 	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
743 	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
744 } dof_relohdr_t;
745 
746 typedef struct dof_relodesc {
747 	dof_stridx_t dofr_name;		/* string name of relocation symbol */
748 	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
749 	uint64_t dofr_offset;		/* byte offset for relocation */
750 	uint64_t dofr_data;		/* additional type-specific data */
751 } dof_relodesc_t;
752 
753 #define	DOF_RELO_NONE	0		/* empty relocation entry */
754 #define	DOF_RELO_SETX	1		/* relocate setx value */
755 
756 typedef struct dof_optdesc {
757 	uint32_t dofo_option;		/* option identifier */
758 	dof_secidx_t dofo_strtab;	/* string table, if string option */
759 	uint64_t dofo_value;		/* option value or string index */
760 } dof_optdesc_t;
761 
762 typedef uint32_t dof_attr_t;		/* encoded stability attributes */
763 
764 #define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
765 #define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
766 #define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
767 #define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
768 
769 typedef struct dof_provider {
770 	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
771 	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
772 	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
773 	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
774 	dof_stridx_t dofpv_name;	/* provider name string */
775 	dof_attr_t dofpv_provattr;	/* provider attributes */
776 	dof_attr_t dofpv_modattr;	/* module attributes */
777 	dof_attr_t dofpv_funcattr;	/* function attributes */
778 	dof_attr_t dofpv_nameattr;	/* name attributes */
779 	dof_attr_t dofpv_argsattr;	/* args attributes */
780 	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
781 } dof_provider_t;
782 
783 typedef struct dof_probe {
784 	uint64_t dofpr_addr;		/* probe base address or offset */
785 	dof_stridx_t dofpr_func;	/* probe function string */
786 	dof_stridx_t dofpr_name;	/* probe name string */
787 	dof_stridx_t dofpr_nargv;	/* native argument type strings */
788 	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
789 	uint32_t dofpr_argidx;		/* index of first argument mapping */
790 	uint32_t dofpr_offidx;		/* index of first offset entry */
791 	uint8_t dofpr_nargc;		/* native argument count */
792 	uint8_t dofpr_xargc;		/* translated argument count */
793 	uint16_t dofpr_noffs;		/* number of offset entries for probe */
794 	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
795 	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
796 	uint16_t dofpr_pad1;		/* reserved for future use */
797 	uint32_t dofpr_pad2;		/* reserved for future use */
798 } dof_probe_t;
799 
800 typedef struct dof_xlator {
801 	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
802 	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
803 	dof_stridx_t dofxl_argv;	/* input parameter type strings */
804 	uint32_t dofxl_argc;		/* input parameter list length */
805 	dof_stridx_t dofxl_type;	/* output type string name */
806 	dof_attr_t dofxl_attr;		/* output stability attributes */
807 } dof_xlator_t;
808 
809 typedef struct dof_xlmember {
810 	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
811 	dof_stridx_t dofxm_name;	/* member name */
812 	dtrace_diftype_t dofxm_type;	/* member type */
813 } dof_xlmember_t;
814 
815 typedef struct dof_xlref {
816 	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
817 	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
818 	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
819 } dof_xlref_t;
820 
821 /*
822  * DTrace Intermediate Format Object (DIFO)
823  *
824  * A DIFO is used to store the compiled DIF for a D expression, its return
825  * type, and its string and variable tables.  The string table is a single
826  * buffer of character data into which sets instructions and variable
827  * references can reference strings using a byte offset.  The variable table
828  * is an array of dtrace_difv_t structures that describe the name and type of
829  * each variable and the id used in the DIF code.  This structure is described
830  * above in the DIF section of this header file.  The DIFO is used at both
831  * user-level (in the library) and in the kernel, but the structure is never
832  * passed between the two: the DOF structures form the only interface.  As a
833  * result, the definition can change depending on the presence of _KERNEL.
834  */
835 typedef struct dtrace_difo {
836 	dif_instr_t *dtdo_buf;		/* instruction buffer */
837 	uint64_t *dtdo_inttab;		/* integer table (optional) */
838 	char *dtdo_strtab;		/* string table (optional) */
839 	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
840 	uint_t dtdo_len;		/* length of instruction buffer */
841 	uint_t dtdo_intlen;		/* length of integer table */
842 	uint_t dtdo_strlen;		/* length of string table */
843 	uint_t dtdo_varlen;		/* length of variable table */
844 	dtrace_diftype_t dtdo_rtype;	/* return type */
845 	uint_t dtdo_refcnt;		/* owner reference count */
846 	uint_t dtdo_destructive;	/* invokes destructive subroutines */
847 #ifndef _KERNEL
848 	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
849 	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
850 	struct dt_node **dtdo_xlmtab;	/* translator references */
851 	uint_t dtdo_krelen;		/* length of krelo table */
852 	uint_t dtdo_urelen;		/* length of urelo table */
853 	uint_t dtdo_xlmlen;		/* length of translator table */
854 #endif
855 } dtrace_difo_t;
856 
857 /*
858  * DTrace Enabling Description Structures
859  *
860  * When DTrace is tracking the description of a DTrace enabling entity (probe,
861  * predicate, action, ECB, record, etc.), it does so in a description
862  * structure.  These structures all end in "desc", and are used at both
863  * user-level and in the kernel -- but (with the exception of
864  * dtrace_probedesc_t) they are never passed between them.  Typically,
865  * user-level will use the description structures when assembling an enabling.
866  * It will then distill those description structures into a DOF object (see
867  * above), and send it into the kernel.  The kernel will again use the
868  * description structures to create a description of the enabling as it reads
869  * the DOF.  When the description is complete, the enabling will be actually
870  * created -- turning it into the structures that represent the enabling
871  * instead of merely describing it.  Not surprisingly, the description
872  * structures bear a strong resemblance to the DOF structures that act as their
873  * conduit.
874  */
875 struct dtrace_predicate;
876 
877 typedef struct dtrace_probedesc {
878 	dtrace_id_t dtpd_id;			/* probe identifier */
879 	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
880 	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
881 	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
882 	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
883 } dtrace_probedesc_t;
884 
885 typedef struct dtrace_repldesc {
886 	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
887 	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
888 } dtrace_repldesc_t;
889 
890 typedef struct dtrace_preddesc {
891 	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
892 	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
893 } dtrace_preddesc_t;
894 
895 typedef struct dtrace_actdesc {
896 	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
897 	struct dtrace_actdesc *dtad_next;	/* next action */
898 	dtrace_actkind_t dtad_kind;		/* kind of action */
899 	uint32_t dtad_ntuple;			/* number in tuple */
900 	uint64_t dtad_arg;			/* action argument */
901 	uint64_t dtad_uarg;			/* user argument */
902 	int dtad_refcnt;			/* reference count */
903 } dtrace_actdesc_t;
904 
905 typedef struct dtrace_ecbdesc {
906 	dtrace_actdesc_t *dted_action;		/* action description(s) */
907 	dtrace_preddesc_t dted_pred;		/* predicate description */
908 	dtrace_probedesc_t dted_probe;		/* probe description */
909 	uint64_t dted_uarg;			/* library argument */
910 	int dted_refcnt;			/* reference count */
911 } dtrace_ecbdesc_t;
912 
913 /*
914  * DTrace Metadata Description Structures
915  *
916  * DTrace separates the trace data stream from the metadata stream.  The only
917  * metadata tokens placed in the data stream are enabled probe identifiers
918  * (EPIDs) or (in the case of aggregations) aggregation identifiers.  In order
919  * to determine the structure of the data, DTrace consumers pass the token to
920  * the kernel, and receive in return a corresponding description of the enabled
921  * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
922  * dtrace_aggdesc structure).  Both of these structures are expressed in terms
923  * of record descriptions (via the dtrace_recdesc structure) that describe the
924  * exact structure of the data.  Some record descriptions may also contain a
925  * format identifier; this additional bit of metadata can be retrieved from the
926  * kernel, for which a format description is returned via the dtrace_fmtdesc
927  * structure.  Note that all four of these structures must be bitness-neutral
928  * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
929  */
930 typedef struct dtrace_recdesc {
931 	dtrace_actkind_t dtrd_action;		/* kind of action */
932 	uint32_t dtrd_size;			/* size of record */
933 	uint32_t dtrd_offset;			/* offset in ECB's data */
934 	uint16_t dtrd_alignment;		/* required alignment */
935 	uint16_t dtrd_format;			/* format, if any */
936 	uint64_t dtrd_arg;			/* action argument */
937 	uint64_t dtrd_uarg;			/* user argument */
938 } dtrace_recdesc_t;
939 
940 typedef struct dtrace_eprobedesc {
941 	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
942 	dtrace_id_t dtepd_probeid;		/* probe ID */
943 	uint64_t dtepd_uarg;			/* library argument */
944 	uint32_t dtepd_size;			/* total size */
945 	int dtepd_nrecs;			/* number of records */
946 	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
947 } dtrace_eprobedesc_t;
948 
949 typedef struct dtrace_aggdesc {
950 	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
951 	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
952 	int dtagd_flags;			/* not filled in by kernel */
953 	dtrace_aggid_t dtagd_id;		/* aggregation ID */
954 	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
955 	uint32_t dtagd_size;			/* size in bytes */
956 	int dtagd_nrecs;			/* number of records */
957 	uint32_t dtagd_pad;			/* explicit padding */
958 	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
959 } dtrace_aggdesc_t;
960 
961 typedef struct dtrace_fmtdesc {
962 	DTRACE_PTR(char, dtfd_string);		/* format string */
963 	int dtfd_length;			/* length of format string */
964 	uint16_t dtfd_format;			/* format identifier */
965 } dtrace_fmtdesc_t;
966 
967 #define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
968 	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
969 	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
970 
971 #define	DTRACE_SIZEOF_AGGDESC(desc)				\
972 	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
973 	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
974 
975 /*
976  * DTrace Option Interface
977  *
978  * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
979  * in a DOF image.  The dof_optdesc structure contains an option identifier and
980  * an option value.  The valid option identifiers are found below; the mapping
981  * between option identifiers and option identifying strings is maintained at
982  * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
983  * following are potentially valid option values:  all positive integers, zero
984  * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
985  * predefined tokens as their values; these are defined with
986  * DTRACEOPT_{option}_{token}.
987  */
988 #define	DTRACEOPT_BUFSIZE	0	/* buffer size */
989 #define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
990 #define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
991 #define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
992 #define	DTRACEOPT_SPECSIZE	4	/* speculation size */
993 #define	DTRACEOPT_NSPEC		5	/* number of speculations */
994 #define	DTRACEOPT_STRSIZE	6	/* string size */
995 #define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
996 #define	DTRACEOPT_CPU		8	/* CPU to trace */
997 #define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
998 #define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
999 #define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1000 #define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1001 #define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1002 #define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1003 #define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1004 #define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1005 #define	DTRACEOPT_STATUSRATE	17	/* status rate */
1006 #define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1007 #define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1008 #define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1009 #define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1010 #define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1011 #define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1012 #define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1013 #define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1014 #define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1015 #define	DTRACEOPT_MAX		27	/* number of options */
1016 
1017 #define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1018 
1019 #define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1020 #define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1021 #define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1022 
1023 #define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1024 #define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1025 
1026 /*
1027  * DTrace Buffer Interface
1028  *
1029  * In order to get a snapshot of the principal or aggregation buffer,
1030  * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1031  * structure.  This describes which CPU user-level is interested in, and
1032  * where user-level wishes the kernel to snapshot the buffer to (the
1033  * dtbd_data field).  The kernel uses the same structure to pass back some
1034  * information regarding the buffer:  the size of data actually copied out, the
1035  * number of drops, the number of errors, and the offset of the oldest record.
1036  * If the buffer policy is a "switch" policy, taking a snapshot of the
1037  * principal buffer has the additional effect of switching the active and
1038  * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1039  * the additional effect of switching the active and inactive buffers.
1040  */
1041 typedef struct dtrace_bufdesc {
1042 	uint64_t dtbd_size;			/* size of buffer */
1043 	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1044 	uint32_t dtbd_errors;			/* number of errors */
1045 	uint64_t dtbd_drops;			/* number of drops */
1046 	DTRACE_PTR(char, dtbd_data);		/* data */
1047 	uint64_t dtbd_oldest;			/* offset of oldest record */
1048 } dtrace_bufdesc_t;
1049 
1050 /*
1051  * DTrace Status
1052  *
1053  * The status of DTrace is relayed via the dtrace_status structure.  This
1054  * structure contains members to count drops other than the capacity drops
1055  * available via the buffer interface (see above).  This consists of dynamic
1056  * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1057  * speculative drops (including capacity speculative drops, drops due to busy
1058  * speculative buffers and drops due to unavailable speculative buffers).
1059  * Additionally, the status structure contains a field to indicate the number
1060  * of "fill"-policy buffers have been filled and a boolean field to indicate
1061  * that exit() has been called.  If the dtst_exiting field is non-zero, no
1062  * further data will be generated until tracing is stopped (at which time any
1063  * enablings of the END action will be processed); if user-level sees that
1064  * this field is non-zero, tracing should be stopped as soon as possible.
1065  */
1066 typedef struct dtrace_status {
1067 	uint64_t dtst_dyndrops;			/* dynamic drops */
1068 	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1069 	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1070 	uint64_t dtst_specdrops;		/* speculative drops */
1071 	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1072 	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1073 	uint64_t dtst_errors;			/* total errors */
1074 	uint64_t dtst_filled;			/* number of filled bufs */
1075 	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1076 	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1077 	char dtst_killed;			/* non-zero if killed */
1078 	char dtst_exiting;			/* non-zero if exit() called */
1079 	char dtst_pad[6];			/* pad out to 64-bit align */
1080 } dtrace_status_t;
1081 
1082 /*
1083  * DTrace Configuration
1084  *
1085  * User-level may need to understand some elements of the kernel DTrace
1086  * configuration in order to generate correct DIF.  This information is
1087  * conveyed via the dtrace_conf structure.
1088  */
1089 typedef struct dtrace_conf {
1090 	uint_t dtc_difversion;			/* supported DIF version */
1091 	uint_t dtc_difintregs;			/* # of DIF integer registers */
1092 	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1093 	uint_t dtc_ctfmodel;			/* CTF data model */
1094 	uint_t dtc_pad[8];			/* reserved for future use */
1095 } dtrace_conf_t;
1096 
1097 /*
1098  * DTrace Faults
1099  *
1100  * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1101  * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1102  * postprocessing at user-level.  Probe processing faults induce an ERROR
1103  * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1104  * the error condition using thse symbolic labels.
1105  */
1106 #define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1107 #define	DTRACEFLT_BADADDR		1	/* Bad address */
1108 #define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1109 #define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1110 #define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1111 #define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1112 #define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1113 #define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1114 #define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1115 #define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1116 
1117 #define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1118 
1119 /*
1120  * DTrace Argument Types
1121  *
1122  * Because it would waste both space and time, argument types do not reside
1123  * with the probe.  In order to determine argument types for args[X]
1124  * variables, the D compiler queries for argument types on a probe-by-probe
1125  * basis.  (This optimizes for the common case that arguments are either not
1126  * used or used in an untyped fashion.)  Typed arguments are specified with a
1127  * string of the type name in the dtragd_native member of the argument
1128  * description structure.  Typed arguments may be further translated to types
1129  * of greater stability; the provider indicates such a translated argument by
1130  * filling in the dtargd_xlate member with the string of the translated type.
1131  * Finally, the provider may indicate which argument value a given argument
1132  * maps to by setting the dtargd_mapping member -- allowing a single argument
1133  * to map to multiple args[X] variables.
1134  */
1135 typedef struct dtrace_argdesc {
1136 	dtrace_id_t dtargd_id;			/* probe identifier */
1137 	int dtargd_ndx;				/* arg number (-1 iff none) */
1138 	int dtargd_mapping;			/* value mapping */
1139 	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1140 	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1141 } dtrace_argdesc_t;
1142 
1143 /*
1144  * DTrace Stability Attributes
1145  *
1146  * Each DTrace provider advertises the name and data stability of each of its
1147  * probe description components, as well as its architectural dependencies.
1148  * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1149  * order to compute the properties of an input program and report them.
1150  */
1151 typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1152 typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1153 
1154 #define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1155 #define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1156 #define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1157 #define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1158 #define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1159 #define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1160 #define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1161 #define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1162 #define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1163 
1164 #define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1165 #define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1166 #define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1167 #define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1168 #define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1169 #define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1170 #define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1171 
1172 #define	DTRACE_PRIV_NONE	0x0000
1173 #define	DTRACE_PRIV_KERNEL	0x0001
1174 #define	DTRACE_PRIV_USER	0x0002
1175 #define	DTRACE_PRIV_PROC	0x0004
1176 #define	DTRACE_PRIV_OWNER	0x0008
1177 #define	DTRACE_PRIV_ZONEOWNER	0x0010
1178 
1179 #define	DTRACE_PRIV_ALL	\
1180 	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1181 	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1182 
1183 typedef struct dtrace_ppriv {
1184 	uint32_t dtpp_flags;			/* privilege flags */
1185 	uid_t dtpp_uid;				/* user ID */
1186 	zoneid_t dtpp_zoneid;			/* zone ID */
1187 } dtrace_ppriv_t;
1188 
1189 typedef struct dtrace_attribute {
1190 	dtrace_stability_t dtat_name;		/* entity name stability */
1191 	dtrace_stability_t dtat_data;		/* entity data stability */
1192 	dtrace_class_t dtat_class;		/* entity data dependency */
1193 } dtrace_attribute_t;
1194 
1195 typedef struct dtrace_pattr {
1196 	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1197 	dtrace_attribute_t dtpa_mod;		/* module attributes */
1198 	dtrace_attribute_t dtpa_func;		/* function attributes */
1199 	dtrace_attribute_t dtpa_name;		/* name attributes */
1200 	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1201 } dtrace_pattr_t;
1202 
1203 typedef struct dtrace_providerdesc {
1204 	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1205 	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1206 	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1207 } dtrace_providerdesc_t;
1208 
1209 /*
1210  * DTrace Pseudodevice Interface
1211  *
1212  * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1213  * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1214  * DTrace.
1215  */
1216 #define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1217 #define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1218 #define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1219 #define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1220 #define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1221 #define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1222 #define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1223 #define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1224 #define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1225 #define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1226 #define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1227 #define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1228 #define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1229 #define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1230 #define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1231 #define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1232 #define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1233 
1234 /*
1235  * DTrace Helpers
1236  *
1237  * In general, DTrace establishes probes in processes and takes actions on
1238  * processes without knowing their specific user-level structures.  Instead of
1239  * existing in the framework, process-specific knowledge is contained by the
1240  * enabling D program -- which can apply process-specific knowledge by making
1241  * appropriate use of DTrace primitives like copyin() and copyinstr() to
1242  * operate on user-level data.  However, there may exist some specific probes
1243  * of particular semantic relevance that the application developer may wish to
1244  * explicitly export.  For example, an application may wish to export a probe
1245  * at the point that it begins and ends certain well-defined transactions.  In
1246  * addition to providing probes, programs may wish to offer assistance for
1247  * certain actions.  For example, in highly dynamic environments (e.g., Java),
1248  * it may be difficult to obtain a stack trace in terms of meaningful symbol
1249  * names (the translation from instruction addresses to corresponding symbol
1250  * names may only be possible in situ); these environments may wish to define
1251  * a series of actions to be applied in situ to obtain a meaningful stack
1252  * trace.
1253  *
1254  * These two mechanisms -- user-level statically defined tracing and assisting
1255  * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1256  * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1257  * providers, probes and their arguments.  If a helper wishes to provide
1258  * action assistance, probe descriptions and corresponding DIF actions may be
1259  * specified in the helper DOF.  For such helper actions, however, the probe
1260  * description describes the specific helper:  all DTrace helpers have the
1261  * provider name "dtrace" and the module name "helper", and the name of the
1262  * helper is contained in the function name (for example, the ustack() helper
1263  * is named "ustack").  Any helper-specific name may be contained in the name
1264  * (for example, if a helper were to have a constructor, it might be named
1265  * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1266  * action that they are helping is taken.  Helper actions may only return DIF
1267  * expressions, and may only call the following subroutines:
1268  *
1269  *    alloca()      <= Allocates memory out of the consumer's scratch space
1270  *    bcopy()       <= Copies memory to scratch space
1271  *    copyin()      <= Copies memory from user-level into consumer's scratch
1272  *    copyinto()    <= Copies memory into a specific location in scratch
1273  *    copyinstr()   <= Copies a string into a specific location in scratch
1274  *
1275  * Helper actions may only access the following built-in variables:
1276  *
1277  *    curthread     <= Current kthread_t pointer
1278  *    tid           <= Current thread identifier
1279  *    pid           <= Current process identifier
1280  *    ppid          <= Parent process identifier
1281  *    uid           <= Current user ID
1282  *    gid           <= Current group ID
1283  *    execname      <= Current executable name
1284  *    zonename      <= Current zone name
1285  *
1286  * Helper actions may not manipulate or allocate dynamic variables, but they
1287  * may have clause-local and statically-allocated global variables.  The
1288  * helper action variable state is specific to the helper action -- variables
1289  * used by the helper action may not be accessed outside of the helper
1290  * action, and the helper action may not access variables that like outside
1291  * of it.  Helper actions may not load from kernel memory at-large; they are
1292  * restricting to loading current user state (via copyin() and variants) and
1293  * scratch space.  As with probe enablings, helper actions are executed in
1294  * program order.  The result of the helper action is the result of the last
1295  * executing helper expression.
1296  *
1297  * Helpers -- composed of either providers/probes or probes/actions (or both)
1298  * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1299  * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1300  * encapsulates the name and base address of the user-level library or
1301  * executable publishing the helpers and probes as well as the DOF that
1302  * contains the definitions of those helpers and probes.
1303  *
1304  * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1305  * helpers and should no longer be used.  No other ioctls are valid on the
1306  * helper minor node.
1307  */
1308 #define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1309 #define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1310 #define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1311 #define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1312 
1313 typedef struct dof_helper {
1314 	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1315 	uint64_t dofhp_addr;			/* base address of object */
1316 	uint64_t dofhp_dof;			/* address of helper DOF */
1317 } dof_helper_t;
1318 
1319 #define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1320 #define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1321 #define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1322 #define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1323 #define	DTRACEMNRN_CLONE	2		/* first clone minor */
1324 
1325 #ifdef _KERNEL
1326 
1327 /*
1328  * DTrace Provider API
1329  *
1330  * The following functions are implemented by the DTrace framework and are
1331  * used to implement separate in-kernel DTrace providers.  Common functions
1332  * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1333  * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1334  *
1335  * The provider API has two halves:  the API that the providers consume from
1336  * DTrace, and the API that providers make available to DTrace.
1337  *
1338  * 1 Framework-to-Provider API
1339  *
1340  * 1.1  Overview
1341  *
1342  * The Framework-to-Provider API is represented by the dtrace_pops structure
1343  * that the provider passes to the framework when registering itself.  This
1344  * structure consists of the following members:
1345  *
1346  *   dtps_provide()          <-- Provide all probes, all modules
1347  *   dtps_provide_module()   <-- Provide all probes in specified module
1348  *   dtps_enable()           <-- Enable specified probe
1349  *   dtps_disable()          <-- Disable specified probe
1350  *   dtps_suspend()          <-- Suspend specified probe
1351  *   dtps_resume()           <-- Resume specified probe
1352  *   dtps_getargdesc()       <-- Get the argument description for args[X]
1353  *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1354  *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1355  *   dtps_destroy()          <-- Destroy all state associated with this probe
1356  *
1357  * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1358  *
1359  * 1.2.1  Overview
1360  *
1361  *   Called to indicate that the provider should provide all probes.  If the
1362  *   specified description is non-NULL, dtps_provide() is being called because
1363  *   no probe matched a specified probe -- if the provider has the ability to
1364  *   create custom probes, it may wish to create a probe that matches the
1365  *   specified description.
1366  *
1367  * 1.2.2  Arguments and notes
1368  *
1369  *   The first argument is the cookie as passed to dtrace_register().  The
1370  *   second argument is a pointer to a probe description that the provider may
1371  *   wish to consider when creating custom probes.  The provider is expected to
1372  *   call back into the DTrace framework via dtrace_probe_create() to create
1373  *   any necessary probes.  dtps_provide() may be called even if the provider
1374  *   has made available all probes; the provider should check the return value
1375  *   of dtrace_probe_create() to handle this case.  Note that the provider need
1376  *   not implement both dtps_provide() and dtps_provide_module(); see
1377  *   "Arguments and Notes" for dtrace_register(), below.
1378  *
1379  * 1.2.3  Return value
1380  *
1381  *   None.
1382  *
1383  * 1.2.4  Caller's context
1384  *
1385  *   dtps_provide() is typically called from open() or ioctl() context, but may
1386  *   be called from other contexts as well.  The DTrace framework is locked in
1387  *   such a way that providers may not register or unregister.  This means that
1388  *   the provider may not call any DTrace API that affects its registration with
1389  *   the framework, including dtrace_register(), dtrace_unregister(),
1390  *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1391  *   that the provider may (and indeed, is expected to) call probe-related
1392  *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1393  *   and dtrace_probe_arg().
1394  *
1395  * 1.3  void dtps_provide_module(void *arg, struct modctl *mp)
1396  *
1397  * 1.3.1  Overview
1398  *
1399  *   Called to indicate that the provider should provide all probes in the
1400  *   specified module.
1401  *
1402  * 1.3.2  Arguments and notes
1403  *
1404  *   The first argument is the cookie as passed to dtrace_register().  The
1405  *   second argument is a pointer to a modctl structure that indicates the
1406  *   module for which probes should be created.
1407  *
1408  * 1.3.3  Return value
1409  *
1410  *   None.
1411  *
1412  * 1.3.4  Caller's context
1413  *
1414  *   dtps_provide_module() may be called from open() or ioctl() context, but
1415  *   may also be called from a module loading context.  mod_lock is held, and
1416  *   the DTrace framework is locked in such a way that providers may not
1417  *   register or unregister.  This means that the provider may not call any
1418  *   DTrace API that affects its registration with the framework, including
1419  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1420  *   dtrace_condense().  However, the context is such that the provider may (and
1421  *   indeed, is expected to) call probe-related DTrace routines, including
1422  *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1423  *   that the provider need not implement both dtps_provide() and
1424  *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1425  *   below.
1426  *
1427  * 1.4  int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1428  *
1429  * 1.4.1  Overview
1430  *
1431  *   Called to enable the specified probe.
1432  *
1433  * 1.4.2  Arguments and notes
1434  *
1435  *   The first argument is the cookie as passed to dtrace_register().  The
1436  *   second argument is the identifier of the probe to be enabled.  The third
1437  *   argument is the probe argument as passed to dtrace_probe_create().
1438  *   dtps_enable() will be called when a probe transitions from not being
1439  *   enabled at all to having one or more ECB.  The number of ECBs associated
1440  *   with the probe may change without subsequent calls into the provider.
1441  *   When the number of ECBs drops to zero, the provider will be explicitly
1442  *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1443  *   be called for a probe identifier that hasn't been explicitly enabled via
1444  *   dtps_enable().
1445  *
1446  * 1.4.3  Return value
1447  *
1448  *   On success, dtps_enable() should return 0. On failure, -1 should be
1449  *   returned.
1450  *
1451  * 1.4.4  Caller's context
1452  *
1453  *   The DTrace framework is locked in such a way that it may not be called
1454  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1455  *   be acquired.
1456  *
1457  * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1458  *
1459  * 1.5.1  Overview
1460  *
1461  *   Called to disable the specified probe.
1462  *
1463  * 1.5.2  Arguments and notes
1464  *
1465  *   The first argument is the cookie as passed to dtrace_register().  The
1466  *   second argument is the identifier of the probe to be disabled.  The third
1467  *   argument is the probe argument as passed to dtrace_probe_create().
1468  *   dtps_disable() will be called when a probe transitions from being enabled
1469  *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1470  *   identifier that has been explicitly enabled via dtps_disable().
1471  *
1472  * 1.5.3  Return value
1473  *
1474  *   None.
1475  *
1476  * 1.5.4  Caller's context
1477  *
1478  *   The DTrace framework is locked in such a way that it may not be called
1479  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1480  *   be acquired.
1481  *
1482  * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1483  *
1484  * 1.6.1  Overview
1485  *
1486  *   Called to suspend the specified enabled probe.  This entry point is for
1487  *   providers that may need to suspend some or all of their probes when CPUs
1488  *   are being powered on or when the boot monitor is being entered for a
1489  *   prolonged period of time.
1490  *
1491  * 1.6.2  Arguments and notes
1492  *
1493  *   The first argument is the cookie as passed to dtrace_register().  The
1494  *   second argument is the identifier of the probe to be suspended.  The
1495  *   third argument is the probe argument as passed to dtrace_probe_create().
1496  *   dtps_suspend will only be called on an enabled probe.  Providers that
1497  *   provide a dtps_suspend entry point will want to take roughly the action
1498  *   that it takes for dtps_disable.
1499  *
1500  * 1.6.3  Return value
1501  *
1502  *   None.
1503  *
1504  * 1.6.4  Caller's context
1505  *
1506  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1507  *   specified probe cannot be disabled or destroyed for the duration of
1508  *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1509  *   little latitude; the provider is expected to do no more than a store to
1510  *   memory.
1511  *
1512  * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1513  *
1514  * 1.7.1  Overview
1515  *
1516  *   Called to resume the specified enabled probe.  This entry point is for
1517  *   providers that may need to resume some or all of their probes after the
1518  *   completion of an event that induced a call to dtps_suspend().
1519  *
1520  * 1.7.2  Arguments and notes
1521  *
1522  *   The first argument is the cookie as passed to dtrace_register().  The
1523  *   second argument is the identifier of the probe to be resumed.  The
1524  *   third argument is the probe argument as passed to dtrace_probe_create().
1525  *   dtps_resume will only be called on an enabled probe.  Providers that
1526  *   provide a dtps_resume entry point will want to take roughly the action
1527  *   that it takes for dtps_enable.
1528  *
1529  * 1.7.3  Return value
1530  *
1531  *   None.
1532  *
1533  * 1.7.4  Caller's context
1534  *
1535  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1536  *   specified probe cannot be disabled or destroyed for the duration of
1537  *   dtps_resume().  As interrupts are disabled, the provider is afforded
1538  *   little latitude; the provider is expected to do no more than a store to
1539  *   memory.
1540  *
1541  * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1542  *           dtrace_argdesc_t *desc)
1543  *
1544  * 1.8.1  Overview
1545  *
1546  *   Called to retrieve the argument description for an args[X] variable.
1547  *
1548  * 1.8.2  Arguments and notes
1549  *
1550  *   The first argument is the cookie as passed to dtrace_register(). The
1551  *   second argument is the identifier of the current probe. The third
1552  *   argument is the probe argument as passed to dtrace_probe_create(). The
1553  *   fourth argument is a pointer to the argument description.  This
1554  *   description is both an input and output parameter:  it contains the
1555  *   index of the desired argument in the dtargd_ndx field, and expects
1556  *   the other fields to be filled in upon return.  If there is no argument
1557  *   corresponding to the specified index, the dtargd_ndx field should be set
1558  *   to DTRACE_ARGNONE.
1559  *
1560  * 1.8.3  Return value
1561  *
1562  *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1563  *   members of the dtrace_argdesc_t structure are all output values.
1564  *
1565  * 1.8.4  Caller's context
1566  *
1567  *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1568  *   the DTrace framework is locked in such a way that providers may not
1569  *   register or unregister.  This means that the provider may not call any
1570  *   DTrace API that affects its registration with the framework, including
1571  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1572  *   dtrace_condense().
1573  *
1574  * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1575  *               int argno, int aframes)
1576  *
1577  * 1.9.1  Overview
1578  *
1579  *   Called to retrieve a value for an argX or args[X] variable.
1580  *
1581  * 1.9.2  Arguments and notes
1582  *
1583  *   The first argument is the cookie as passed to dtrace_register(). The
1584  *   second argument is the identifier of the current probe. The third
1585  *   argument is the probe argument as passed to dtrace_probe_create(). The
1586  *   fourth argument is the number of the argument (the X in the example in
1587  *   1.9.1). The fifth argument is the number of stack frames that were used
1588  *   to get from the actual place in the code that fired the probe to
1589  *   dtrace_probe() itself, the so-called artificial frames. This argument may
1590  *   be used to descend an appropriate number of frames to find the correct
1591  *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1592  *   function is used.
1593  *
1594  * 1.9.3  Return value
1595  *
1596  *   The value of the argument.
1597  *
1598  * 1.9.4  Caller's context
1599  *
1600  *   This is called from within dtrace_probe() meaning that interrupts
1601  *   are disabled. No locks should be taken within this entry point.
1602  *
1603  * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1604  *
1605  * 1.10.1  Overview
1606  *
1607  *   Called to determine if the probe was fired in a user context.
1608  *
1609  * 1.10.2  Arguments and notes
1610  *
1611  *   The first argument is the cookie as passed to dtrace_register(). The
1612  *   second argument is the identifier of the current probe. The third
1613  *   argument is the probe argument as passed to dtrace_probe_create().  This
1614  *   entry point must not be left NULL for providers whose probes allow for
1615  *   mixed mode tracing, that is to say those probes that can fire during
1616  *   kernel- _or_ user-mode execution
1617  *
1618  * 1.10.3  Return value
1619  *
1620  *   A boolean value.
1621  *
1622  * 1.10.4  Caller's context
1623  *
1624  *   This is called from within dtrace_probe() meaning that interrupts
1625  *   are disabled. No locks should be taken within this entry point.
1626  *
1627  * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1628  *
1629  * 1.11.1 Overview
1630  *
1631  *   Called to destroy the specified probe.
1632  *
1633  * 1.11.2 Arguments and notes
1634  *
1635  *   The first argument is the cookie as passed to dtrace_register().  The
1636  *   second argument is the identifier of the probe to be destroyed.  The third
1637  *   argument is the probe argument as passed to dtrace_probe_create().  The
1638  *   provider should free all state associated with the probe.  The framework
1639  *   guarantees that dtps_destroy() is only called for probes that have either
1640  *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1641  *   Once dtps_disable() has been called for a probe, no further call will be
1642  *   made specifying the probe.
1643  *
1644  * 1.11.3 Return value
1645  *
1646  *   None.
1647  *
1648  * 1.11.4 Caller's context
1649  *
1650  *   The DTrace framework is locked in such a way that it may not be called
1651  *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1652  *   acquired.
1653  *
1654  *
1655  * 2 Provider-to-Framework API
1656  *
1657  * 2.1  Overview
1658  *
1659  * The Provider-to-Framework API provides the mechanism for the provider to
1660  * register itself with the DTrace framework, to create probes, to lookup
1661  * probes and (most importantly) to fire probes.  The Provider-to-Framework
1662  * consists of:
1663  *
1664  *   dtrace_register()       <-- Register a provider with the DTrace framework
1665  *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1666  *   dtrace_invalidate()     <-- Invalidate the specified provider
1667  *   dtrace_condense()       <-- Remove a provider's unenabled probes
1668  *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1669  *   dtrace_probe_create()   <-- Create a DTrace probe
1670  *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1671  *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1672  *   dtrace_probe()          <-- Fire the specified probe
1673  *
1674  * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1675  *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1676  *          dtrace_provider_id_t *idp)
1677  *
1678  * 2.2.1  Overview
1679  *
1680  *   dtrace_register() registers the calling provider with the DTrace
1681  *   framework.  It should generally be called by DTrace providers in their
1682  *   attach(9E) entry point.
1683  *
1684  * 2.2.2  Arguments and Notes
1685  *
1686  *   The first argument is the name of the provider.  The second argument is a
1687  *   pointer to the stability attributes for the provider.  The third argument
1688  *   is the privilege flags for the provider, and must be some combination of:
1689  *
1690  *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1691  *
1692  *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1693  *                             enable probes from this provider
1694  *
1695  *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1696  *                             enable probes from this provider
1697  *
1698  *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1699  *                             may enable probes from this provider
1700  *
1701  *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1702  *                             the privilege requirements above. These probes
1703  *                             require either (a) a user ID matching the user
1704  *                             ID of the cred passed in the fourth argument
1705  *                             or (b) the PRIV_PROC_OWNER privilege.
1706  *
1707  *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1708  *                             the privilege requirements above. These probes
1709  *                             require either (a) a zone ID matching the zone
1710  *                             ID of the cred passed in the fourth argument
1711  *                             or (b) the PRIV_PROC_ZONE privilege.
1712  *
1713  *   Note that these flags designate the _visibility_ of the probes, not
1714  *   the conditions under which they may or may not fire.
1715  *
1716  *   The fourth argument is the credential that is associated with the
1717  *   provider.  This argument should be NULL if the privilege flags don't
1718  *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1719  *   framework stashes the uid and zoneid represented by this credential
1720  *   for use at probe-time, in implicit predicates.  These limit visibility
1721  *   of the probes to users and/or zones which have sufficient privilege to
1722  *   access them.
1723  *
1724  *   The fifth argument is a DTrace provider operations vector, which provides
1725  *   the implementation for the Framework-to-Provider API.  (See Section 1,
1726  *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1727  *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1728  *   members (if the provider so desires, _one_ of these members may be left
1729  *   NULL -- denoting that the provider only implements the other) and (2)
1730  *   the dtps_suspend() and dtps_resume() members, which must either both be
1731  *   NULL or both be non-NULL.
1732  *
1733  *   The sixth argument is a cookie to be specified as the first argument for
1734  *   each function in the Framework-to-Provider API.  This argument may have
1735  *   any value.
1736  *
1737  *   The final argument is a pointer to dtrace_provider_id_t.  If
1738  *   dtrace_register() successfully completes, the provider identifier will be
1739  *   stored in the memory pointed to be this argument.  This argument must be
1740  *   non-NULL.
1741  *
1742  * 2.2.3  Return value
1743  *
1744  *   On success, dtrace_register() returns 0 and stores the new provider's
1745  *   identifier into the memory pointed to by the idp argument.  On failure,
1746  *   dtrace_register() returns an errno:
1747  *
1748  *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1749  *              This may because a parameter that must be non-NULL was NULL,
1750  *              because the name was invalid (either empty or an illegal
1751  *              provider name) or because the attributes were invalid.
1752  *
1753  *   No other failure code is returned.
1754  *
1755  * 2.2.4  Caller's context
1756  *
1757  *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1758  *   hold no locks across dtrace_register() that may also be acquired by
1759  *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1760  *
1761  * 2.3  int dtrace_unregister(dtrace_provider_t id)
1762  *
1763  * 2.3.1  Overview
1764  *
1765  *   Unregisters the specified provider from the DTrace framework.  It should
1766  *   generally be called by DTrace providers in their detach(9E) entry point.
1767  *
1768  * 2.3.2  Arguments and Notes
1769  *
1770  *   The only argument is the provider identifier, as returned from a
1771  *   successful call to dtrace_register().  As a result of calling
1772  *   dtrace_unregister(), the DTrace framework will call back into the provider
1773  *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1774  *   completes, however, the DTrace framework will no longer make calls through
1775  *   the Framework-to-Provider API.
1776  *
1777  * 2.3.3  Return value
1778  *
1779  *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1780  *   returns an errno:
1781  *
1782  *     EBUSY    There are currently processes that have the DTrace pseudodevice
1783  *              open, or there exists an anonymous enabling that hasn't yet
1784  *              been claimed.
1785  *
1786  *   No other failure code is returned.
1787  *
1788  * 2.3.4  Caller's context
1789  *
1790  *   Because a call to dtrace_unregister() may induce calls through the
1791  *   Framework-to-Provider API, the caller may not hold any lock across
1792  *   dtrace_register() that is also acquired in any of the Framework-to-
1793  *   Provider API functions.  Additionally, mod_lock may not be held.
1794  *
1795  * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1796  *
1797  * 2.4.1  Overview
1798  *
1799  *   Invalidates the specified provider.  All subsequent probe lookups for the
1800  *   specified provider will fail, but its probes will not be removed.
1801  *
1802  * 2.4.2  Arguments and note
1803  *
1804  *   The only argument is the provider identifier, as returned from a
1805  *   successful call to dtrace_register().  In general, a provider's probes
1806  *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1807  *   an entire provider, regardless of whether or not probes are enabled or
1808  *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1809  *   probes from firing -- it will merely prevent any new enablings of the
1810  *   provider's probes.
1811  *
1812  * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1813  *
1814  * 2.5.1  Overview
1815  *
1816  *   Removes all the unenabled probes for the given provider. This function is
1817  *   not unlike dtrace_unregister(), except that it doesn't remove the
1818  *   provider just as many of its associated probes as it can.
1819  *
1820  * 2.5.2  Arguments and Notes
1821  *
1822  *   As with dtrace_unregister(), the sole argument is the provider identifier
1823  *   as returned from a successful call to dtrace_register().  As a result of
1824  *   calling dtrace_condense(), the DTrace framework will call back into the
1825  *   given provider's dtps_destroy() entry point for each of the provider's
1826  *   unenabled probes.
1827  *
1828  * 2.5.3  Return value
1829  *
1830  *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1831  *   function should check the return value as appropriate; its behavior may
1832  *   change in the future.
1833  *
1834  * 2.5.4  Caller's context
1835  *
1836  *   As with dtrace_unregister(), the caller may not hold any lock across
1837  *   dtrace_condense() that is also acquired in the provider's entry points.
1838  *   Also, mod_lock may not be held.
1839  *
1840  * 2.6 int dtrace_attached()
1841  *
1842  * 2.6.1  Overview
1843  *
1844  *   Indicates whether or not DTrace has attached.
1845  *
1846  * 2.6.2  Arguments and Notes
1847  *
1848  *   For most providers, DTrace makes initial contact beyond registration.
1849  *   That is, once a provider has registered with DTrace, it waits to hear
1850  *   from DTrace to create probes.  However, some providers may wish to
1851  *   proactively create probes without first being told by DTrace to do so.
1852  *   If providers wish to do this, they must first call dtrace_attached() to
1853  *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1854  *   the provider must not make any other Provider-to-Framework API call.
1855  *
1856  * 2.6.3  Return value
1857  *
1858  *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1859  *
1860  * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1861  *	    const char *func, const char *name, int aframes, void *arg)
1862  *
1863  * 2.7.1  Overview
1864  *
1865  *   Creates a probe with specified module name, function name, and name.
1866  *
1867  * 2.7.2  Arguments and Notes
1868  *
1869  *   The first argument is the provider identifier, as returned from a
1870  *   successful call to dtrace_register().  The second, third, and fourth
1871  *   arguments are the module name, function name, and probe name,
1872  *   respectively.  Of these, module name and function name may both be NULL
1873  *   (in which case the probe is considered to be unanchored), or they may both
1874  *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1875  *   string.
1876  *
1877  *   The fifth argument is the number of artificial stack frames that will be
1878  *   found on the stack when dtrace_probe() is called for the new probe.  These
1879  *   artificial frames will be automatically be pruned should the stack() or
1880  *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1881  *   the parameter doesn't add an artificial frame, this parameter should be
1882  *   zero.
1883  *
1884  *   The final argument is a probe argument that will be passed back to the
1885  *   provider when a probe-specific operation is called.  (e.g., via
1886  *   dtps_enable(), dtps_disable(), etc.)
1887  *
1888  *   Note that it is up to the provider to be sure that the probe that it
1889  *   creates does not already exist -- if the provider is unsure of the probe's
1890  *   existence, it should assure its absence with dtrace_probe_lookup() before
1891  *   calling dtrace_probe_create().
1892  *
1893  * 2.7.3  Return value
1894  *
1895  *   dtrace_probe_create() always succeeds, and always returns the identifier
1896  *   of the newly-created probe.
1897  *
1898  * 2.7.4  Caller's context
1899  *
1900  *   While dtrace_probe_create() is generally expected to be called from
1901  *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1902  *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1903  *
1904  * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1905  *	    const char *func, const char *name)
1906  *
1907  * 2.8.1  Overview
1908  *
1909  *   Looks up a probe based on provdider and one or more of module name,
1910  *   function name and probe name.
1911  *
1912  * 2.8.2  Arguments and Notes
1913  *
1914  *   The first argument is the provider identifier, as returned from a
1915  *   successful call to dtrace_register().  The second, third, and fourth
1916  *   arguments are the module name, function name, and probe name,
1917  *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1918  *   the identifier of the first probe that is provided by the specified
1919  *   provider and matches all of the non-NULL matching criteria.
1920  *   dtrace_probe_lookup() is generally used by a provider to be check the
1921  *   existence of a probe before creating it with dtrace_probe_create().
1922  *
1923  * 2.8.3  Return value
1924  *
1925  *   If the probe exists, returns its identifier.  If the probe does not exist,
1926  *   return DTRACE_IDNONE.
1927  *
1928  * 2.8.4  Caller's context
1929  *
1930  *   While dtrace_probe_lookup() is generally expected to be called from
1931  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1932  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1933  *
1934  * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1935  *
1936  * 2.9.1  Overview
1937  *
1938  *   Returns the probe argument associated with the specified probe.
1939  *
1940  * 2.9.2  Arguments and Notes
1941  *
1942  *   The first argument is the provider identifier, as returned from a
1943  *   successful call to dtrace_register().  The second argument is a probe
1944  *   identifier, as returned from dtrace_probe_lookup() or
1945  *   dtrace_probe_create().  This is useful if a probe has multiple
1946  *   provider-specific components to it:  the provider can create the probe
1947  *   once with provider-specific state, and then add to the state by looking
1948  *   up the probe based on probe identifier.
1949  *
1950  * 2.9.3  Return value
1951  *
1952  *   Returns the argument associated with the specified probe.  If the
1953  *   specified probe does not exist, or if the specified probe is not provided
1954  *   by the specified provider, NULL is returned.
1955  *
1956  * 2.9.4  Caller's context
1957  *
1958  *   While dtrace_probe_arg() is generally expected to be called from
1959  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1960  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1961  *
1962  * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1963  *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1964  *
1965  * 2.10.1  Overview
1966  *
1967  *   The epicenter of DTrace:  fires the specified probes with the specified
1968  *   arguments.
1969  *
1970  * 2.10.2  Arguments and Notes
1971  *
1972  *   The first argument is a probe identifier as returned by
1973  *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
1974  *   arguments are the values to which the D variables "arg0" through "arg4"
1975  *   will be mapped.
1976  *
1977  *   dtrace_probe() should be called whenever the specified probe has fired --
1978  *   however the provider defines it.
1979  *
1980  * 2.10.3  Return value
1981  *
1982  *   None.
1983  *
1984  * 2.10.4  Caller's context
1985  *
1986  *   dtrace_probe() may be called in virtually any context:  kernel, user,
1987  *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
1988  *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
1989  *   that must be afforded to DTrace is the ability to make calls within
1990  *   itself (and to its in-kernel subroutines) and the ability to access
1991  *   arbitrary (but mapped) memory.  On some platforms, this constrains
1992  *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
1993  *   from any context in which TL is greater than zero.  dtrace_probe() may
1994  *   also not be called from any routine which may be called by dtrace_probe()
1995  *   -- which includes functions in the DTrace framework and some in-kernel
1996  *   DTrace subroutines.  All such functions "dtrace_"; providers that
1997  *   instrument the kernel arbitrarily should be sure to not instrument these
1998  *   routines.
1999  */
2000 typedef struct dtrace_pops {
2001 	void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2002 	void (*dtps_provide_module)(void *arg, struct modctl *mp);
2003 	int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2004 	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2005 	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2006 	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2007 	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2008 	    dtrace_argdesc_t *desc);
2009 	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2010 	    int argno, int aframes);
2011 	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2012 	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2013 } dtrace_pops_t;
2014 
2015 typedef uintptr_t	dtrace_provider_id_t;
2016 
2017 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2018     cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2019 extern int dtrace_unregister(dtrace_provider_id_t);
2020 extern int dtrace_condense(dtrace_provider_id_t);
2021 extern void dtrace_invalidate(dtrace_provider_id_t);
2022 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2023     const char *, const char *);
2024 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2025     const char *, const char *, int, void *);
2026 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2027 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2028     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2029 
2030 /*
2031  * DTrace Meta Provider API
2032  *
2033  * The following functions are implemented by the DTrace framework and are
2034  * used to implement meta providers. Meta providers plug into the DTrace
2035  * framework and are used to instantiate new providers on the fly. At
2036  * present, there is only one type of meta provider and only one meta
2037  * provider may be registered with the DTrace framework at a time. The
2038  * sole meta provider type provides user-land static tracing facilities
2039  * by taking meta probe descriptions and adding a corresponding provider
2040  * into the DTrace framework.
2041  *
2042  * 1 Framework-to-Provider
2043  *
2044  * 1.1 Overview
2045  *
2046  * The Framework-to-Provider API is represented by the dtrace_mops structure
2047  * that the meta provider passes to the framework when registering itself as
2048  * a meta provider. This structure consists of the following members:
2049  *
2050  *   dtms_create_probe()	<-- Add a new probe to a created provider
2051  *   dtms_provide_pid()		<-- Create a new provider for a given process
2052  *   dtms_remove_pid()		<-- Remove a previously created provider
2053  *
2054  * 1.2  void dtms_create_probe(void *arg, void *parg,
2055  *           dtrace_helper_probedesc_t *probedesc);
2056  *
2057  * 1.2.1  Overview
2058  *
2059  *   Called by the DTrace framework to create a new probe in a provider
2060  *   created by this meta provider.
2061  *
2062  * 1.2.2  Arguments and notes
2063  *
2064  *   The first argument is the cookie as passed to dtrace_meta_register().
2065  *   The second argument is the provider cookie for the associated provider;
2066  *   this is obtained from the return value of dtms_provide_pid(). The third
2067  *   argument is the helper probe description.
2068  *
2069  * 1.2.3  Return value
2070  *
2071  *   None
2072  *
2073  * 1.2.4  Caller's context
2074  *
2075  *   dtms_create_probe() is called from either ioctl() or module load context.
2076  *   The DTrace framework is locked in such a way that meta providers may not
2077  *   register or unregister. This means that the meta provider cannot call
2078  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2079  *   such that the provider may (and is expected to) call provider-related
2080  *   DTrace provider APIs including dtrace_probe_create().
2081  *
2082  * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2083  *	      pid_t pid)
2084  *
2085  * 1.3.1  Overview
2086  *
2087  *   Called by the DTrace framework to instantiate a new provider given the
2088  *   description of the provider and probes in the mprov argument. The
2089  *   meta provider should call dtrace_register() to insert the new provider
2090  *   into the DTrace framework.
2091  *
2092  * 1.3.2  Arguments and notes
2093  *
2094  *   The first argument is the cookie as passed to dtrace_meta_register().
2095  *   The second argument is a pointer to a structure describing the new
2096  *   helper provider. The third argument is the process identifier for
2097  *   process associated with this new provider. Note that the name of the
2098  *   provider as passed to dtrace_register() should be the contatenation of
2099  *   the dtmpb_provname member of the mprov argument and the processs
2100  *   identifier as a string.
2101  *
2102  * 1.3.3  Return value
2103  *
2104  *   The cookie for the provider that the meta provider creates. This is
2105  *   the same value that it passed to dtrace_register().
2106  *
2107  * 1.3.4  Caller's context
2108  *
2109  *   dtms_provide_pid() is called from either ioctl() or module load context.
2110  *   The DTrace framework is locked in such a way that meta providers may not
2111  *   register or unregister. This means that the meta provider cannot call
2112  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2113  *   is such that the provider may -- and is expected to --  call
2114  *   provider-related DTrace provider APIs including dtrace_register().
2115  *
2116  * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2117  *	     pid_t pid)
2118  *
2119  * 1.4.1  Overview
2120  *
2121  *   Called by the DTrace framework to remove a provider that had previously
2122  *   been instantiated via the dtms_provide_pid() entry point. The meta
2123  *   provider need not remove the provider immediately, but this entry
2124  *   point indicates that the provider should be removed as soon as possible
2125  *   using the dtrace_unregister() API.
2126  *
2127  * 1.4.2  Arguments and notes
2128  *
2129  *   The first argument is the cookie as passed to dtrace_meta_register().
2130  *   The second argument is a pointer to a structure describing the helper
2131  *   provider. The third argument is the process identifier for process
2132  *   associated with this new provider.
2133  *
2134  * 1.4.3  Return value
2135  *
2136  *   None
2137  *
2138  * 1.4.4  Caller's context
2139  *
2140  *   dtms_remove_pid() is called from either ioctl() or exit() context.
2141  *   The DTrace framework is locked in such a way that meta providers may not
2142  *   register or unregister. This means that the meta provider cannot call
2143  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2144  *   is such that the provider may -- and is expected to -- call
2145  *   provider-related DTrace provider APIs including dtrace_unregister().
2146  */
2147 typedef struct dtrace_helper_probedesc {
2148 	char *dthpb_mod;			/* probe module */
2149 	char *dthpb_func; 			/* probe function */
2150 	char *dthpb_name; 			/* probe name */
2151 	uint64_t dthpb_base;			/* base address */
2152 	uint32_t *dthpb_offs;			/* offsets array */
2153 	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2154 	uint32_t dthpb_noffs;			/* offsets count */
2155 	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2156 	uint8_t *dthpb_args;			/* argument mapping array */
2157 	uint8_t dthpb_xargc;			/* translated argument count */
2158 	uint8_t dthpb_nargc;			/* native argument count */
2159 	char *dthpb_xtypes;			/* translated types strings */
2160 	char *dthpb_ntypes;			/* native types strings */
2161 } dtrace_helper_probedesc_t;
2162 
2163 typedef struct dtrace_helper_provdesc {
2164 	char *dthpv_provname;			/* provider name */
2165 	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2166 } dtrace_helper_provdesc_t;
2167 
2168 typedef struct dtrace_mops {
2169 	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2170 	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2171 	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2172 } dtrace_mops_t;
2173 
2174 typedef uintptr_t	dtrace_meta_provider_id_t;
2175 
2176 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2177     dtrace_meta_provider_id_t *);
2178 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2179 
2180 /*
2181  * DTrace Kernel Hooks
2182  *
2183  * The following functions are implemented by the base kernel and form a set of
2184  * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2185  * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2186  * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2187  */
2188 
2189 typedef enum dtrace_vtime_state {
2190 	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2191 	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2192 	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2193 	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2194 } dtrace_vtime_state_t;
2195 
2196 extern dtrace_vtime_state_t dtrace_vtime_active;
2197 extern void dtrace_vtime_switch(kthread_t *next);
2198 extern void dtrace_vtime_enable_tnf(void);
2199 extern void dtrace_vtime_disable_tnf(void);
2200 extern void dtrace_vtime_enable(void);
2201 extern void dtrace_vtime_disable(void);
2202 
2203 struct regs;
2204 
2205 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2206 extern int (*dtrace_return_probe_ptr)(struct regs *);
2207 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2208 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2209 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2210 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2211 
2212 typedef uintptr_t dtrace_icookie_t;
2213 typedef void (*dtrace_xcall_t)(void *);
2214 
2215 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2216 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2217 
2218 extern void dtrace_membar_producer(void);
2219 extern void dtrace_membar_consumer(void);
2220 
2221 extern void (*dtrace_cpu_init)(processorid_t);
2222 extern void (*dtrace_modload)(struct modctl *);
2223 extern void (*dtrace_modunload)(struct modctl *);
2224 extern void (*dtrace_helpers_cleanup)();
2225 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2226 extern void (*dtrace_cpustart_init)();
2227 extern void (*dtrace_cpustart_fini)();
2228 
2229 extern void (*dtrace_debugger_init)();
2230 extern void (*dtrace_debugger_fini)();
2231 extern dtrace_cacheid_t dtrace_predcache_id;
2232 
2233 extern hrtime_t dtrace_gethrtime(void);
2234 extern void dtrace_sync(void);
2235 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2236 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2237 extern void dtrace_vpanic(const char *, __va_list);
2238 extern void dtrace_panic(const char *, ...);
2239 
2240 extern int dtrace_safe_defer_signal(void);
2241 extern void dtrace_safe_synchronous_signal(void);
2242 
2243 extern int dtrace_mach_aframes(void);
2244 
2245 #if defined(__i386) || defined(__amd64)
2246 extern int dtrace_instr_size(uchar_t *instr);
2247 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2248 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2249 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2250 extern void dtrace_invop_callsite(void);
2251 #endif
2252 
2253 #ifdef __sparc
2254 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2255 extern void dtrace_getfsr(uint64_t *);
2256 #endif
2257 
2258 #define	DTRACE_CPUFLAG_ISSET(flag) \
2259 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2260 
2261 #define	DTRACE_CPUFLAG_SET(flag) \
2262 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2263 
2264 #define	DTRACE_CPUFLAG_CLEAR(flag) \
2265 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2266 
2267 #endif /* _KERNEL */
2268 
2269 #endif	/* _ASM */
2270 
2271 #if defined(__i386) || defined(__amd64)
2272 
2273 #define	DTRACE_INVOP_PUSHL_EBP		1
2274 #define	DTRACE_INVOP_POPL_EBP		2
2275 #define	DTRACE_INVOP_LEAVE		3
2276 #define	DTRACE_INVOP_NOP		4
2277 #define	DTRACE_INVOP_RET		5
2278 
2279 #endif
2280 
2281 #ifdef	__cplusplus
2282 }
2283 #endif
2284 
2285 #endif	/* _SYS_DTRACE_H */
2286