xref: /titanic_51/usr/src/uts/common/sys/callo.h (revision 07d06da50d310a325b457d6330165aebab1e0064)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #ifndef _SYS_CALLO_H
31 #define	_SYS_CALLO_H
32 
33 #include <sys/t_lock.h>
34 #include <sys/taskq.h>
35 #include <sys/lgrp.h>
36 #include <sys/processor.h>
37 #include <sys/cyclic.h>
38 #include <sys/kstat.h>
39 #include <sys/systm.h>
40 
41 #ifdef	__cplusplus
42 extern "C" {
43 #endif
44 
45 #ifdef	_KERNEL
46 
47 typedef struct callout_list	callout_list_t;
48 
49 /*
50  * The callout mechanism provides general-purpose event scheduling:
51  * an arbitrary function is called in a specified amount of time.
52  * The expiration time for a callout is kept in its callout list
53  * structure.
54  */
55 typedef struct callout {
56 	struct callout	*c_idnext;	/* next in ID hash, or on freelist */
57 	struct callout	*c_idprev;	/* prev in ID hash */
58 	struct callout	*c_clnext;	/* next in callout list */
59 	struct callout	*c_clprev;	/* prev in callout list */
60 	callout_id_t	c_xid;		/* extended callout ID; see below */
61 	callout_list_t	*c_list;	/* callout list */
62 	void		(*c_func)(void *); /* function to call */
63 	void		*c_arg;		/* argument to function */
64 	kthread_t	*c_executor;	/* executing thread */
65 	kcondvar_t	c_done;		/* signal callout completion */
66 	ushort_t	c_waiting;	/* untimeout waiting flag */
67 } callout_t;
68 
69 /*
70  * The callout ID (callout_id_t) uniquely identifies a callout. The callout
71  * ID is always 64 bits internally. The lower 32 bits contain an ID value.
72  * The upper 32 bits contain a generation number and flags. When the ID value
73  * wraps the generation number is incremented during ID generation. This
74  * protects callers from ID collisions that can happen as a result of the wrap.
75  *
76  * The kernel internal interface, timeout_generic(), always returns a
77  * callout_id_t. But the legacy interfaces, timeout() and realtime_timeout()
78  * return a timeout_id_t. On a 64-bit system, timeout_id_t is also 64 bits.
79  * So, the full 64-bit ID (sans the flags) can be returned. However, on 32-bit
80  * systems, timeout_id_t is 32 bits. So, only the lower 32 bits can be
81  * returned. In such cases, a default generation number of 0 is assigned to
82  * the legacy IDs.
83  *
84  * The lower 32-bit ID space is partitioned into two spaces - one for
85  * short-term callouts and one for long-term.
86  *
87  * Here is the bit layout for the callout ID:
88  *
89  *      63    62    61 ...  32    31      30     29 .. X+1  X ... 1   0
90  *  -----------------------------------------------------------------------
91  *  | Free | Exec | Generation | Long | Counter | ID bits | Table  | Type |
92  *  |      |      | number     | term | High    |         | number |      |
93  *  -----------------------------------------------------------------------
94  *
95  * Free:
96  *    This bit indicates that this callout has been freed. This is for
97  *    debugging purposes.
98  *
99  * Exec(uting):
100  *    This is the executing bit which is only set in the extended callout
101  *    ID. This bit indicates that the callout handler is currently being
102  *    executed.
103  *
104  * Generation number:
105  *    This is the generation part of the ID.
106  *
107  * Long term:
108  *    This bit indicates whether this is a short-term or a long-term callout.
109  *    The long-term bit exists to address the problem of callout ID collision
110  *    on 32-bit systems. This is an issue because the system typically
111  *    generates a large number of timeout() requests, which means that callout
112  *    IDs eventually get recycled. Most timeouts are very short-lived, so that
113  *    ID recycling isn't a problem; but there are a handful of timeouts which
114  *    are sufficiently long-lived to see their own IDs reused. We use the
115  *    long-term bit to partition the ID namespace into pieces; the short-term
116  *    space gets all the heavy traffic and can wrap frequently (i.e., on the
117  *    order of a day) with no ill effects; the long-term space gets very little
118  *    traffic and thus never wraps. That said, we need to future proof callouts
119  *    in case 32-bit systems grow in size and are able to consume callout IDs
120  *    at faster rates. So, we should make all the kernel clients that use
121  *    callouts to use the internal interface so that they can use IDs outside
122  *    of the legacy space with a proper generation number.
123  *
124  * Counter High + ID counter bits:
125  *    These bits represent the actual ID bits in the callout ID.
126  *    The highest bit of the running counter is always set; this ensures that
127  *    the callout ID is always non-zero, thus eliminating the need for an
128  *    explicit wrap-around test during ID generation.
129  *
130  * Table number:
131  *    These bits carry the table number for the callout table where the callout
132  *    is queued. Each CPU has its own callout table. So, the callout tables are
133  *    numbered from 0 - (max_ncpus - 1). Because max_ncpus is different on
134  *    different systems, the actual number of table number bits will vary
135  *    accordingly. And so will the ID counter bits.
136  *
137  * Type:
138  *    This bit represents the callout (table) type. Each CPU has one realtime
139  *    and one normal callout table.
140  */
141 #define	CALLOUT_FREE		0x8000000000000000ULL
142 #define	CALLOUT_EXECUTING	0x4000000000000000ULL
143 #define	CALLOUT_ID_FLAGS	(CALLOUT_FREE | CALLOUT_EXECUTING)
144 #define	CALLOUT_ID_MASK		~CALLOUT_ID_FLAGS
145 #define	CALLOUT_GENERATION_LOW	0x100000000ULL
146 #define	CALLOUT_LONGTERM	0x80000000
147 #define	CALLOUT_COUNTER_HIGH	0x40000000
148 #define	CALLOUT_TYPE_BITS	1
149 #define	CALLOUT_NTYPES		(1 << CALLOUT_TYPE_BITS)
150 #define	CALLOUT_TYPE_MASK	(CALLOUT_NTYPES - 1)
151 #define	CALLOUT_COUNTER_SHIFT	callout_table_bits
152 #define	CALLOUT_TABLE(t, f)	(((f) << CALLOUT_TYPE_BITS) | (t))
153 #define	CALLOUT_TABLE_NUM(ct)	((ct) - callout_table)
154 #define	CALLOUT_TABLE_TYPE(ct)	(CALLOUT_TABLE_NUM(ct) & CALLOUT_TYPE_MASK)
155 #define	CALLOUT_TABLE_SEQID(ct)	(CALLOUT_TABLE_NUM(ct) >> CALLOUT_TYPE_BITS)
156 
157 /*
158  * We assume that during any period of CALLOUT_LONGTERM_TICKS ticks, at most
159  * (CALLOUT_COUNTER_HIGH / callout_counter_low) callouts will be generated.
160  */
161 #define	CALLOUT_LONGTERM_TICKS	0x4000UL
162 #define	CALLOUT_BUCKET_SHIFT	9
163 #define	CALLOUT_BUCKETS		(1 << CALLOUT_BUCKET_SHIFT)
164 #define	CALLOUT_BUCKET_MASK	(CALLOUT_BUCKETS - 1)
165 #define	CALLOUT_HASH(x)		((x) & CALLOUT_BUCKET_MASK)
166 #define	CALLOUT_IDHASH(x)	CALLOUT_HASH((x) >> CALLOUT_COUNTER_SHIFT)
167 /*
168  * The multiply by 0 and 1 below are cosmetic. Just to align things better
169  * and make it more readable. The multiplications will be done at compile
170  * time.
171  */
172 #define	CALLOUT_CLHASH(x)			\
173 	CALLOUT_HASH(				\
174 	    ((x)>>(CALLOUT_BUCKET_SHIFT*0)) ^	\
175 	    ((x)>>(CALLOUT_BUCKET_SHIFT*1)) ^	\
176 	    ((x)>>(CALLOUT_BUCKET_SHIFT*2)) ^	\
177 	    ((x)>>(CALLOUT_BUCKET_SHIFT*3)))
178 
179 #define	CALLOUT_ID_TO_TABLE(id)		((id) & callout_table_mask)
180 
181 #define	CALLOUT_SHORT_ID(table)		\
182 		((callout_id_t)(table) | CALLOUT_COUNTER_HIGH)
183 #define	CALLOUT_LONG_ID(table)		\
184 		(CALLOUT_SHORT_ID(table) | CALLOUT_LONGTERM)
185 
186 #define	CALLOUT_THREADS		2
187 
188 #define	CALLOUT_REALTIME	0		/* realtime callout type */
189 #define	CALLOUT_NORMAL		1		/* normal callout type */
190 
191 /*
192  * callout_t's are cache-aligned structures allocated from kmem caches. One kmem
193  * cache is created per lgrp and is shared by all CPUs in that lgrp. Benefits:
194  *	- cache pages are mapped only in the TLBs of the CPUs of the lgrp
195  *	- data in cache pages is present only in those CPU caches
196  *	- memory access performance improves with locality-awareness in kmem
197  *
198  * The following structure is used to manage per-lgroup kmem caches.
199  *
200  * NOTE: Free callout_t's go to a callout table's freelist. CPUs map to callout
201  * tables via their sequence IDs, not CPU IDs. DR operations can cause a
202  * free list to have callouts from multiple lgrp caches. This takes away some
203  * performance, but is no worse than if we did not use lgrp caches at all.
204  */
205 typedef struct callout_cache {
206 	struct callout_cache	*cc_next;	/* link in the global list */
207 	lgrp_handle_t		cc_hand;	/* lgroup handle */
208 	kmem_cache_t		*cc_cache;	/* kmem cache pointer */
209 	kmem_cache_t		*cc_lcache;	/* kmem cache pointer */
210 } callout_cache_t;
211 
212 /*
213  * The callout hash structure is used for queueing both callouts and
214  * callout lists. That is why the fields are declared as void *.
215  */
216 typedef struct callout_hash {
217 	void	*ch_head;
218 	void	*ch_tail;
219 } callout_hash_t;
220 
221 /*
222  * CALLOUT_LIST_FLAG_FREE
223  *	Callout list is free.
224  * CALLOUT_LIST_FLAG_ABSOLUTE
225  *	Callout list contains absolute timers.
226  * CALLOUT_LIST_FLAG_HRESTIME
227  *	Callout list contains hrestime timers.
228  * CALLOUT_LIST_FLAG_NANO
229  *	Callout list contains 1-nanosecond resolution callouts.
230  */
231 #define	CALLOUT_LIST_FLAG_FREE			0x1
232 #define	CALLOUT_LIST_FLAG_ABSOLUTE		0x2
233 #define	CALLOUT_LIST_FLAG_HRESTIME		0x4
234 #define	CALLOUT_LIST_FLAG_NANO			0x8
235 
236 struct callout_list {
237 	callout_list_t	*cl_next;	/* next in clhash */
238 	callout_list_t	*cl_prev;	/* prev in clhash */
239 	hrtime_t	cl_expiration;	/* expiration for callouts in list */
240 	callout_hash_t	cl_callouts;	/* list of callouts */
241 	int		cl_flags;	/* callout flags */
242 };
243 
244 /*
245  * Callout heap element. Each element in the heap stores the expiration
246  * as well as the corresponding callout list. This is to avoid a lookup
247  * of the callout list when the heap is processed. Because we store the
248  * callout list pointer in the heap element, we have to always remove
249  * a heap element and its callout list together. We cannot remove one
250  * without the other.
251  */
252 typedef struct callout_heap {
253 	hrtime_t	ch_expiration;
254 	callout_list_t	*ch_list;
255 } callout_heap_t;
256 
257 /*
258  * When the heap contains too many empty callout lists, it needs to be
259  * cleaned up. The decision to clean up the heap is a function of the
260  * number of empty entries and the heap size. Also, we don't want to
261  * clean up small heaps.
262  */
263 #define	CALLOUT_MIN_REAP	(CALLOUT_BUCKETS >> 3)
264 #define	CALLOUT_CLEANUP(ct)	((ct->ct_nreap >= callout_min_reap) &&	\
265 				    (ct->ct_nreap >= (ct->ct_heap_num >> 1)))
266 
267 /*
268  * Per-callout table kstats.
269  *
270  * CALLOUT_TIMEOUTS
271  *	Callouts created since boot.
272  * CALLOUT_TIMEOUTS_PENDING
273  *	Number of outstanding callouts.
274  * CALLOUT_UNTIMEOUTS_UNEXPIRED
275  *	Number of cancelled callouts that have not expired.
276  * CALLOUT_UNTIMEOUTS_EXECUTING
277  *	Number of cancelled callouts that were executing at the time of
278  *	cancellation.
279  * CALLOUT_UNTIMEOUTS_EXPIRED
280  *	Number of cancelled callouts that had already expired at the time
281  *	of cancellations.
282  * CALLOUT_EXPIRATIONS
283  *	Number of callouts that expired.
284  * CALLOUT_ALLOCATIONS
285  *	Number of callout structures allocated.
286  * CALLOUT_CLEANUPS
287  *	Number of times a callout table is cleaned up.
288  */
289 typedef enum callout_stat_type {
290 	CALLOUT_TIMEOUTS,
291 	CALLOUT_TIMEOUTS_PENDING,
292 	CALLOUT_UNTIMEOUTS_UNEXPIRED,
293 	CALLOUT_UNTIMEOUTS_EXECUTING,
294 	CALLOUT_UNTIMEOUTS_EXPIRED,
295 	CALLOUT_EXPIRATIONS,
296 	CALLOUT_ALLOCATIONS,
297 	CALLOUT_CLEANUPS,
298 	CALLOUT_NUM_STATS
299 } callout_stat_type_t;
300 
301 /*
302  * Callout flags:
303  *
304  * CALLOUT_FLAG_ROUNDUP
305  *	Roundup the expiration time to the next resolution boundary.
306  *	If this flag is not specified, the expiration time is rounded down.
307  * CALLOUT_FLAG_ABSOLUTE
308  *	Normally, the expiration passed to the timeout API functions is an
309  *	expiration interval. If this flag is specified, then it is
310  *	interpreted as the expiration time itself.
311  * CALLOUT_FLAG_HRESTIME
312  *	Normally, callouts are not affected by changes to system time
313  *	(hrestime). This flag is used to create a callout that is affected
314  *	by system time. If system time changes, these timers must be
315  *	handled in a special way (see callout.c). These are used by condition
316  *	variables and LWP timers that need this behavior.
317  * CALLOUT_FLAG_32BIT
318  *	Legacy interfaces timeout() and realtime_timeout() pass this flag
319  *	to timeout_generic() to indicate that a 32-bit ID should be allocated.
320  */
321 #define	CALLOUT_FLAG_ROUNDUP		0x1
322 #define	CALLOUT_FLAG_ABSOLUTE		0x2
323 #define	CALLOUT_FLAG_HRESTIME		0x4
324 #define	CALLOUT_FLAG_32BIT		0x8
325 
326 /*
327  * On 32-bit systems, the legacy interfaces, timeout() and realtime_timeout(),
328  * must pass CALLOUT_FLAG_32BIT to timeout_generic() so that a 32-bit ID
329  * can be generated.
330  */
331 #ifdef _LP64
332 #define	CALLOUT_LEGACY		0
333 #else
334 #define	CALLOUT_LEGACY		CALLOUT_FLAG_32BIT
335 #endif
336 
337 /*
338  * All of the state information associated with a callout table.
339  * The fields are ordered with cache performance in mind.
340  */
341 typedef struct callout_table {
342 	kmutex_t	ct_mutex;	/* protects all callout state */
343 	callout_t	*ct_free;	/* free callout structures */
344 	callout_list_t	*ct_lfree;	/* free callout list structures */
345 	callout_id_t	ct_short_id;	/* most recently issued short-term ID */
346 	callout_id_t	ct_long_id;	/* most recently issued long-term ID */
347 	callout_hash_t 	*ct_idhash;	/* ID hash chains */
348 	callout_hash_t 	*ct_clhash;	/* callout list hash */
349 	kstat_named_t	*ct_kstat_data;	/* callout kstat data */
350 
351 	uint_t		ct_type;	/* callout table type */
352 	uint_t		ct_suspend;	/* suspend count */
353 	cyclic_id_t	ct_cyclic;	/* cyclic for this table */
354 	callout_heap_t	*ct_heap;	/* callout expiration heap */
355 	ulong_t		ct_heap_num;	/* occupied slots in the heap */
356 	ulong_t		ct_heap_max;	/* end of the heap */
357 	kmem_cache_t	*ct_cache;	/* callout kmem cache */
358 	kmem_cache_t	*ct_lcache;	/* callout list kmem cache */
359 	callout_id_t	ct_gen_id;	/* generation based ID */
360 
361 	callout_hash_t	ct_expired;	/* list of expired callout lists */
362 	taskq_t		*ct_taskq;	/* taskq to execute normal callouts */
363 	kstat_t		*ct_kstats;	/* callout kstats */
364 	int		ct_nreap;	/* # heap entries that need reaping */
365 #ifdef _LP64
366 	char		ct_pad[28];	/* cache alignment */
367 #else
368 	char		ct_pad[24];	/* cache alignment */
369 #endif
370 } callout_table_t;
371 
372 /*
373  * Short hand definitions for the callout kstats.
374  */
375 #define	ct_timeouts							\
376 		ct_kstat_data[CALLOUT_TIMEOUTS].value.ui64
377 #define	ct_timeouts_pending						\
378 		ct_kstat_data[CALLOUT_TIMEOUTS_PENDING].value.ui64
379 #define	ct_untimeouts_unexpired						\
380 		ct_kstat_data[CALLOUT_UNTIMEOUTS_UNEXPIRED].value.ui64
381 #define	ct_untimeouts_executing						\
382 		ct_kstat_data[CALLOUT_UNTIMEOUTS_EXECUTING].value.ui64
383 #define	ct_untimeouts_expired						\
384 		ct_kstat_data[CALLOUT_UNTIMEOUTS_EXPIRED].value.ui64
385 #define	ct_expirations							\
386 		ct_kstat_data[CALLOUT_EXPIRATIONS].value.ui64
387 #define	ct_allocations							\
388 		ct_kstat_data[CALLOUT_ALLOCATIONS].value.ui64
389 #define	ct_cleanups							\
390 		ct_kstat_data[CALLOUT_CLEANUPS].value.ui64
391 
392 #define	CALLOUT_CHUNK	128
393 
394 #define	CALLOUT_HEAP_PARENT(index)	(((index) - 1) >> 1)
395 #define	CALLOUT_HEAP_RIGHT(index)	(((index) + 1) << 1)
396 #define	CALLOUT_HEAP_LEFT(index)	((((index) + 1) << 1) - 1)
397 
398 #define	CALLOUT_CYCLIC_HANDLER(t)					\
399 	((t == CALLOUT_REALTIME) ? callout_realtime : callout_normal)
400 
401 #define	CALLOUT_TCP_RESOLUTION		10000000ULL
402 
403 #define	CALLOUT_ALIGN	64	/* cache line size */
404 
405 #ifdef _LP64
406 #define	CALLOUT_MAX_TICKS	NSEC_TO_TICK(CY_INFINITY);
407 #else
408 #define	CALLOUT_MAX_TICKS	LONG_MAX
409 #endif
410 
411 #define	CALLOUT_TOLERANCE	200000		/* nanoseconds */
412 
413 extern void		callout_init(void);
414 extern void		membar_sync(void);
415 extern void		callout_cpu_online(cpu_t *);
416 extern void		callout_cpu_offline(cpu_t *);
417 extern void		callout_hrestime(void);
418 
419 #endif
420 
421 #ifdef	__cplusplus
422 }
423 #endif
424 
425 #endif	/* _SYS_CALLO_H */
426