xref: /titanic_51/usr/src/uts/common/sys/avl.h (revision 0d63ce2b32a9e1cc8ed71d4d92536c44d66a530a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef	_AVL_H
28 #define	_AVL_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * This is a private header file.  Applications should not directly include
34  * this file.
35  */
36 
37 #ifdef	__cplusplus
38 extern "C" {
39 #endif
40 
41 #include <sys/avl_impl.h>
42 
43 /*
44  * This is a generic implemenatation of AVL trees for use in the Solaris kernel.
45  * The interfaces provide an efficient way of implementing an ordered set of
46  * data structures.
47  *
48  * AVL trees provide an alternative to using an ordered linked list. Using AVL
49  * trees will usually be faster, however they requires more storage. An ordered
50  * linked list in general requires 2 pointers in each data structure. The
51  * AVL tree implementation uses 3 pointers. The following chart gives the
52  * approximate performance of operations with the different approaches:
53  *
54  *	Operation	 Link List	AVL tree
55  *	---------	 --------	--------
56  *	lookup		   O(n)		O(log(n))
57  *
58  *	insert 1 node	 constant	constant
59  *
60  *	delete 1 node	 constant	between constant and O(log(n))
61  *
62  *	delete all nodes   O(n)		O(n)
63  *
64  *	visit the next
65  *	or prev node	 constant	between constant and O(log(n))
66  *
67  *
68  * The data structure nodes are anchored at an "avl_tree_t" (the equivalent
69  * of a list header) and the individual nodes will have a field of
70  * type "avl_node_t" (corresponding to list pointers).
71  *
72  * The type "avl_index_t" is used to indicate a position in the list for
73  * certain calls.
74  *
75  * The usage scenario is generally:
76  *
77  * 1. Create the list/tree with: avl_create()
78  *
79  * followed by any mixture of:
80  *
81  * 2a. Insert nodes with: avl_add(), or avl_find() and avl_insert()
82  *
83  * 2b. Visited elements with:
84  *	 avl_first() - returns the lowest valued node
85  *	 avl_last() - returns the highest valued node
86  *	 AVL_NEXT() - given a node go to next higher one
87  *	 AVL_PREV() - given a node go to previous lower one
88  *
89  * 2c.  Find the node with the closest value either less than or greater
90  *	than a given value with avl_nearest().
91  *
92  * 2d. Remove individual nodes from the list/tree with avl_remove().
93  *
94  * and finally when the list is being destroyed
95  *
96  * 3. Use avl_destroy_nodes() to quickly process/free up any remaining nodes.
97  *    Note that once you use avl_destroy_nodes(), you can no longer
98  *    use any routine except avl_destroy_nodes() and avl_destoy().
99  *
100  * 4. Use avl_destroy() to destroy the AVL tree itself.
101  *
102  * Any locking for multiple thread access is up to the user to provide, just
103  * as is needed for any linked list implementation.
104  */
105 
106 
107 /*
108  * Type used for the root of the AVL tree.
109  */
110 typedef struct avl_tree avl_tree_t;
111 
112 /*
113  * The data nodes in the AVL tree must have a field of this type.
114  */
115 typedef struct avl_node avl_node_t;
116 
117 /*
118  * An opaque type used to locate a position in the tree where a node
119  * would be inserted.
120  */
121 typedef uintptr_t avl_index_t;
122 
123 
124 /*
125  * Direction constants used for avl_nearest().
126  */
127 #define	AVL_BEFORE	(0)
128 #define	AVL_AFTER	(1)
129 
130 
131 
132 /*
133  * Prototypes
134  *
135  * Where not otherwise mentioned, "void *" arguments are a pointer to the
136  * user data structure which must contain a field of type avl_node_t.
137  *
138  * Also assume the user data structures looks like:
139  *	stuct my_type {
140  *		...
141  *		avl_node_t	my_link;
142  *		...
143  *	};
144  */
145 
146 /*
147  * Initialize an AVL tree. Arguments are:
148  *
149  * tree   - the tree to be initialized
150  * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
151  *          -1 for <, 0 for ==, and +1 for >
152  * size   - the value of sizeof(struct my_type)
153  * offset - the value of OFFSETOF(struct my_type, my_link)
154  */
155 extern void avl_create(avl_tree_t *tree,
156 	int (*compar) (const void *, const void *), size_t size, size_t offset);
157 
158 
159 /*
160  * Find a node with a matching value in the tree. Returns the matching node
161  * found. If not found, it returns NULL and then if "where" is not NULL it sets
162  * "where" for use with avl_insert() or avl_nearest().
163  *
164  * node   - node that has the value being looked for
165  * where  - position for use with avl_nearest() or avl_insert(), may be NULL
166  */
167 extern void *avl_find(avl_tree_t *tree, void *node, avl_index_t *where);
168 
169 /*
170  * Insert a node into the tree.
171  *
172  * node   - the node to insert
173  * where  - position as returned from avl_find()
174  */
175 extern void avl_insert(avl_tree_t *tree, void *node, avl_index_t where);
176 
177 /*
178  * Insert "new_data" in "tree" in the given "direction" either after
179  * or before the data "here".
180  *
181  * This might be usefull for avl clients caching recently accessed
182  * data to avoid doing avl_find() again for insertion.
183  *
184  * new_data	- new data to insert
185  * here  	- existing node in "tree"
186  * direction	- either AVL_AFTER or AVL_BEFORE the data "here".
187  */
188 extern void avl_insert_here(avl_tree_t *tree, void *new_data, void *here,
189     int direction);
190 
191 
192 /*
193  * Return the first or last valued node in the tree. Will return NULL
194  * if the tree is empty.
195  *
196  */
197 extern void *avl_first(avl_tree_t *tree);
198 extern void *avl_last(avl_tree_t *tree);
199 
200 
201 /*
202  * Return the next or previous valued node in the tree.
203  * AVL_NEXT() will return NULL if at the last node.
204  * AVL_PREV() will return NULL if at the first node.
205  *
206  * node   - the node from which the next or previous node is found
207  */
208 #define	AVL_NEXT(tree, node)	avl_walk(tree, node, AVL_AFTER)
209 #define	AVL_PREV(tree, node)	avl_walk(tree, node, AVL_BEFORE)
210 
211 
212 /*
213  * Find the node with the nearest value either greater or less than
214  * the value from a previous avl_find(). Returns the node or NULL if
215  * there isn't a matching one.
216  *
217  * where     - position as returned from avl_find()
218  * direction - either AVL_BEFORE or AVL_AFTER
219  *
220  * EXAMPLE get the greatest node that is less than a given value:
221  *
222  *	avl_tree_t *tree;
223  *	struct my_data look_for_value = {....};
224  *	struct my_data *node;
225  *	struct my_data *less;
226  *	avl_index_t where;
227  *
228  *	node = avl_find(tree, &look_for_value, &where);
229  *	if (node != NULL)
230  *		less = AVL_PREV(tree, node);
231  *	else
232  *		less = avl_nearest(tree, where, AVL_BEFORE);
233  */
234 extern void *avl_nearest(avl_tree_t *tree, avl_index_t where, int direction);
235 
236 
237 /*
238  * Add a single node to the tree.
239  * The node must not be in the tree, and it must not
240  * compare equal to any other node already in the tree.
241  *
242  * node   - the node to add
243  */
244 extern void avl_add(avl_tree_t *tree, void *node);
245 
246 
247 /*
248  * Remove a single node from the tree.  The node must be in the tree.
249  *
250  * node   - the node to remove
251  */
252 extern void avl_remove(avl_tree_t *tree, void *node);
253 
254 
255 /*
256  * Return the number of nodes in the tree
257  */
258 extern ulong_t avl_numnodes(avl_tree_t *tree);
259 
260 
261 /*
262  * Used to destroy any remaining nodes in a tree. The cookie argument should
263  * be initialized to NULL before the first call. Returns a node that has been
264  * removed from the tree and may be free()'d. Returns NULL when the tree is
265  * empty.
266  *
267  * Once you call avl_destroy_nodes(), you can only continuing calling it and
268  * finally avl_destroy(). No other AVL routines will be valid.
269  *
270  * cookie - a "void *" used to save state between calls to avl_destroy_nodes()
271  *
272  * EXAMPLE:
273  *	avl_tree_t *tree;
274  *	struct my_data *node;
275  *	void *cookie;
276  *
277  *	cookie = NULL;
278  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
279  *		free(node);
280  *	avl_destroy(tree);
281  */
282 extern void *avl_destroy_nodes(avl_tree_t *tree, void **cookie);
283 
284 
285 /*
286  * Final destroy of an AVL tree. Arguments are:
287  *
288  * tree   - the empty tree to destroy
289  */
290 extern void avl_destroy(avl_tree_t *tree);
291 
292 
293 
294 #ifdef	__cplusplus
295 }
296 #endif
297 
298 #endif	/* _AVL_H */
299