xref: /titanic_51/usr/src/uts/common/rpc/svc_clts.c (revision fc51f9bbbff02dbd8c3adf640b1a184ceeb58fa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *  Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  *  Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 /*
35  * svc_clts.c
36  * Server side for RPC in the kernel.
37  *
38  */
39 
40 #include <sys/param.h>
41 #include <sys/types.h>
42 #include <sys/sysmacros.h>
43 #include <sys/file.h>
44 #include <sys/stream.h>
45 #include <sys/strsubr.h>
46 #include <sys/tihdr.h>
47 #include <sys/tiuser.h>
48 #include <sys/t_kuser.h>
49 #include <sys/fcntl.h>
50 #include <sys/errno.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/cmn_err.h>
54 #include <sys/kstat.h>
55 #include <sys/vtrace.h>
56 #include <sys/debug.h>
57 
58 #include <rpc/types.h>
59 #include <rpc/xdr.h>
60 #include <rpc/auth.h>
61 #include <rpc/clnt.h>
62 #include <rpc/rpc_msg.h>
63 #include <rpc/svc.h>
64 #include <inet/ip.h>
65 
66 /*
67  * Routines exported through ops vector.
68  */
69 static bool_t		svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
70 static bool_t		svc_clts_ksend(SVCXPRT *, struct rpc_msg *);
71 static bool_t		svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
72 static bool_t		svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
73 static void		svc_clts_kdestroy(SVCMASTERXPRT *);
74 static int		svc_clts_kdup(struct svc_req *, caddr_t, int,
75 				struct dupreq **, bool_t *);
76 static void		svc_clts_kdupdone(struct dupreq *, caddr_t,
77 				void (*)(), int, int);
78 static int32_t		*svc_clts_kgetres(SVCXPRT *, int);
79 static void		svc_clts_kclone_destroy(SVCXPRT *);
80 static void		svc_clts_kfreeres(SVCXPRT *);
81 static void		svc_clts_kstart(SVCMASTERXPRT *);
82 
83 /*
84  * Server transport operations vector.
85  */
86 struct svc_ops svc_clts_op = {
87 	svc_clts_krecv,		/* Get requests */
88 	svc_clts_kgetargs,	/* Deserialize arguments */
89 	svc_clts_ksend,		/* Send reply */
90 	svc_clts_kfreeargs,	/* Free argument data space */
91 	svc_clts_kdestroy,	/* Destroy transport handle */
92 	svc_clts_kdup,		/* Check entry in dup req cache */
93 	svc_clts_kdupdone,	/* Mark entry in dup req cache as done */
94 	svc_clts_kgetres,	/* Get pointer to response buffer */
95 	svc_clts_kfreeres,	/* Destroy pre-serialized response header */
96 	svc_clts_kclone_destroy, /* Destroy a clone xprt */
97 	svc_clts_kstart		/* Tell `ready-to-receive' to rpcmod */
98 };
99 
100 /*
101  * Transport private data.
102  * Kept in xprt->xp_p2buf.
103  */
104 struct udp_data {
105 	mblk_t	*ud_resp;			/* buffer for response */
106 	mblk_t	*ud_inmp;			/* mblk chain of request */
107 };
108 
109 #define	UD_MAXSIZE	8800
110 #define	UD_INITSIZE	2048
111 
112 /*
113  * Connectionless server statistics
114  */
115 static const struct rpc_clts_server {
116 	kstat_named_t	rscalls;
117 	kstat_named_t	rsbadcalls;
118 	kstat_named_t	rsnullrecv;
119 	kstat_named_t	rsbadlen;
120 	kstat_named_t	rsxdrcall;
121 	kstat_named_t	rsdupchecks;
122 	kstat_named_t	rsdupreqs;
123 } clts_rsstat_tmpl = {
124 	{ "calls",	KSTAT_DATA_UINT64 },
125 	{ "badcalls",	KSTAT_DATA_UINT64 },
126 	{ "nullrecv",	KSTAT_DATA_UINT64 },
127 	{ "badlen",	KSTAT_DATA_UINT64 },
128 	{ "xdrcall",	KSTAT_DATA_UINT64 },
129 	{ "dupchecks",	KSTAT_DATA_UINT64 },
130 	{ "dupreqs",	KSTAT_DATA_UINT64 }
131 };
132 
133 static uint_t clts_rsstat_ndata =
134 	sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t);
135 
136 #define	CLONE2STATS(clone_xprt)	\
137 	(struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2
138 
139 #define	RSSTAT_INCR(stats, x)	\
140 	atomic_add_64(&(stats)->x.value.ui64, 1)
141 
142 /*
143  * Create a transport record.
144  * The transport record, output buffer, and private data structure
145  * are allocated.  The output buffer is serialized into using xdrmem.
146  * There is one transport record per user process which implements a
147  * set of services.
148  */
149 /* ARGSUSED */
150 int
151 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo,
152     SVCMASTERXPRT **nxprt)
153 {
154 	SVCMASTERXPRT *xprt;
155 	struct rpcstat *rpcstat;
156 
157 	if (nxprt == NULL)
158 		return (EINVAL);
159 
160 	rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
161 	ASSERT(rpcstat != NULL);
162 
163 	xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
164 	xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP);
165 	xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server;
166 	xprt->xp_ops = &svc_clts_op;
167 	xprt->xp_msg_size = tinfo->TSDU_size;
168 
169 	xprt->xp_rtaddr.buf = NULL;
170 	xprt->xp_rtaddr.maxlen = tinfo->ADDR_size;
171 	xprt->xp_rtaddr.len = 0;
172 
173 	*nxprt = xprt;
174 
175 	return (0);
176 }
177 
178 /*
179  * Destroy a transport record.
180  * Frees the space allocated for a transport record.
181  */
182 static void
183 svc_clts_kdestroy(SVCMASTERXPRT *xprt)
184 {
185 	if (xprt->xp_netid)
186 		kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
187 	if (xprt->xp_addrmask.maxlen)
188 		kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
189 
190 	mutex_destroy(&xprt->xp_req_lock);
191 	mutex_destroy(&xprt->xp_thread_lock);
192 
193 	kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t));
194 	kmem_free(xprt, sizeof (SVCMASTERXPRT));
195 }
196 
197 /*
198  * Transport-type specific part of svc_xprt_cleanup().
199  * Frees the message buffer space allocated for a clone of a transport record
200  */
201 static void
202 svc_clts_kclone_destroy(SVCXPRT *clone_xprt)
203 {
204 	/* LINTED pointer alignment */
205 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
206 
207 	if (ud->ud_resp) {
208 		/*
209 		 * There should not be any left over results buffer.
210 		 */
211 		ASSERT(ud->ud_resp->b_cont == NULL);
212 
213 		/*
214 		 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv
215 		 * saved.
216 		 */
217 		freeb(ud->ud_resp);
218 	}
219 	if (ud->ud_inmp)
220 		freemsg(ud->ud_inmp);
221 }
222 
223 /*
224  * svc_tli_kcreate() calls this function at the end to tell
225  * rpcmod that the transport is ready to receive requests.
226  */
227 /* ARGSUSED */
228 static void
229 svc_clts_kstart(SVCMASTERXPRT *xprt)
230 {
231 }
232 
233 /*
234  * Receive rpc requests.
235  * Pulls a request in off the socket, checks if the packet is intact,
236  * and deserializes the call packet.
237  */
238 static bool_t
239 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
240 {
241 	/* LINTED pointer alignment */
242 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
243 	XDR *xdrs = &clone_xprt->xp_xdrin;
244 	struct rpc_clts_server *stats = CLONE2STATS(clone_xprt);
245 	union T_primitives *pptr;
246 	int hdrsz;
247 	cred_t *cr;
248 
249 	TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START,
250 	    "svc_clts_krecv_start:");
251 
252 	RSSTAT_INCR(stats, rscalls);
253 
254 	/*
255 	 * The incoming request should start with an M_PROTO message.
256 	 */
257 	if (mp->b_datap->db_type != M_PROTO) {
258 		goto bad;
259 	}
260 
261 	/*
262 	 * The incoming request should be an T_UNITDTA_IND.  There
263 	 * might be other messages coming up the stream, but we can
264 	 * ignore them.
265 	 */
266 	pptr = (union T_primitives *)mp->b_rptr;
267 	if (pptr->type != T_UNITDATA_IND) {
268 		goto bad;
269 	}
270 	/*
271 	 * Do some checking to make sure that the header at least looks okay.
272 	 */
273 	hdrsz = (int)(mp->b_wptr - mp->b_rptr);
274 	if (hdrsz < TUNITDATAINDSZ ||
275 	    hdrsz < (pptr->unitdata_ind.OPT_offset +
276 	    pptr->unitdata_ind.OPT_length) ||
277 	    hdrsz < (pptr->unitdata_ind.SRC_offset +
278 	    pptr->unitdata_ind.SRC_length)) {
279 		goto bad;
280 	}
281 
282 	/*
283 	 * Make sure that the transport provided a usable address.
284 	 */
285 	if (pptr->unitdata_ind.SRC_length <= 0) {
286 		goto bad;
287 	}
288 	/*
289 	 * Point the remote transport address in the service_transport
290 	 * handle at the address in the request.
291 	 */
292 	clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr +
293 	    pptr->unitdata_ind.SRC_offset;
294 	clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length;
295 
296 	/*
297 	 * Copy the local transport address in the service_transport
298 	 * handle at the address in the request. We will have only
299 	 * the local IP address in options.
300 	 */
301 	if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) {
302 		char *dstopt = (char *)mp->b_rptr +
303 		    pptr->unitdata_ind.OPT_offset;
304 		struct T_opthdr *toh = (struct T_opthdr *)dstopt;
305 
306 		if (toh->level == IPPROTO_IPV6 && toh->status == 0 &&
307 		    toh->name == IPV6_PKTINFO) {
308 			struct in6_pktinfo *pkti;
309 
310 			dstopt += sizeof (struct T_opthdr);
311 			pkti = (struct in6_pktinfo *)dstopt;
312 			((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr
313 			    = pkti->ipi6_addr;
314 		} else if (toh->level == IPPROTO_IP && toh->status == 0 &&
315 		    toh->name == IP_RECVDSTADDR) {
316 			dstopt += sizeof (struct T_opthdr);
317 			((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr
318 			    = *(struct in_addr *)dstopt;
319 		}
320 	}
321 
322 	/*
323 	 * Save the first mblk which contains the T_unidata_ind in
324 	 * ud_resp.  It will be used to generate the T_unitdata_req
325 	 * during the reply.
326 	 * We reuse any options in the T_unitdata_ind for the T_unitdata_req
327 	 * since we must pass any SCM_UCRED across in order for TX to
328 	 * work. We also make sure any cred_t is carried across.
329 	 */
330 	if (ud->ud_resp) {
331 		if (ud->ud_resp->b_cont != NULL) {
332 			cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, "
333 			    "b_cont %p", (void *)ud->ud_resp,
334 			    (void *)ud->ud_resp->b_cont);
335 		}
336 		freeb(ud->ud_resp);
337 	}
338 	/* Move any cred_t to the first mblk in the message */
339 	cr = msg_getcred(mp, NULL);
340 	if (cr != NULL)
341 		mblk_setcred(mp, cr, NOPID);
342 
343 	ud->ud_resp = mp;
344 	mp = mp->b_cont;
345 	ud->ud_resp->b_cont = NULL;
346 
347 	xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
348 
349 	TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
350 	    "xdr_callmsg_start:");
351 	if (! xdr_callmsg(xdrs, msg)) {
352 		TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
353 		    "xdr_callmsg_end:(%S)", "bad");
354 		RSSTAT_INCR(stats, rsxdrcall);
355 		goto bad;
356 	}
357 	TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
358 	    "xdr_callmsg_end:(%S)", "good");
359 
360 	clone_xprt->xp_xid = msg->rm_xid;
361 	ud->ud_inmp = mp;
362 
363 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
364 	    "svc_clts_krecv_end:(%S)", "good");
365 	return (TRUE);
366 
367 bad:
368 	if (mp)
369 		freemsg(mp);
370 	if (ud->ud_resp) {
371 		/*
372 		 * There should not be any left over results buffer.
373 		 */
374 		ASSERT(ud->ud_resp->b_cont == NULL);
375 		freeb(ud->ud_resp);
376 		ud->ud_resp = NULL;
377 	}
378 
379 	RSSTAT_INCR(stats, rsbadcalls);
380 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
381 	    "svc_clts_krecv_end:(%S)", "bad");
382 	return (FALSE);
383 }
384 
385 /*
386  * Send rpc reply.
387  * Serialize the reply packet into the output buffer then
388  * call t_ksndudata to send it.
389  */
390 static bool_t
391 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
392 {
393 	/* LINTED pointer alignment */
394 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
395 	XDR *xdrs = &clone_xprt->xp_xdrout;
396 	int stat = FALSE;
397 	mblk_t *mp;
398 	int msgsz;
399 	struct T_unitdata_req *udreq;
400 	xdrproc_t xdr_results;
401 	caddr_t xdr_location;
402 	bool_t has_args;
403 
404 	TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START,
405 	    "svc_clts_ksend_start:");
406 
407 	ASSERT(ud->ud_resp != NULL);
408 
409 	/*
410 	 * If there is a result procedure specified in the reply message,
411 	 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
412 	 * We need to make sure it won't be processed twice, so we null
413 	 * it for xdr_replymsg here.
414 	 */
415 	has_args = FALSE;
416 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
417 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
418 		if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
419 			has_args = TRUE;
420 			xdr_location = msg->acpted_rply.ar_results.where;
421 			msg->acpted_rply.ar_results.proc = xdr_void;
422 			msg->acpted_rply.ar_results.where = NULL;
423 		}
424 	}
425 
426 	if (ud->ud_resp->b_cont == NULL) {
427 		/*
428 		 * Allocate an initial mblk for the response data.
429 		 */
430 		while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
431 			if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
432 				TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
433 				    "svc_clts_ksend_end:(%S)", "strwaitbuf");
434 				return (FALSE);
435 			}
436 		}
437 
438 		/*
439 		 * Initialize the XDR decode stream.  Additional mblks
440 		 * will be allocated if necessary.  They will be UD_MAXSIZE
441 		 * sized.
442 		 */
443 		xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
444 
445 		/*
446 		 * Leave some space for protocol headers.
447 		 */
448 		(void) XDR_SETPOS(xdrs, 512);
449 		mp->b_rptr += 512;
450 
451 		msg->rm_xid = clone_xprt->xp_xid;
452 
453 		ud->ud_resp->b_cont = mp;
454 
455 		TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
456 		    "xdr_replymsg_start:");
457 		if (!(xdr_replymsg(xdrs, msg) &&
458 		    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
459 		    xdr_results, xdr_location)))) {
460 			TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
461 			    "xdr_replymsg_end:(%S)", "bad");
462 			RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n");
463 			goto out;
464 		}
465 		TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
466 		    "xdr_replymsg_end:(%S)", "good");
467 
468 	} else if (!(xdr_replymsg_body(xdrs, msg) &&
469 	    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
470 	    xdr_results, xdr_location)))) {
471 		RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
472 		goto out;
473 	}
474 
475 	msgsz = (int)xmsgsize(ud->ud_resp->b_cont);
476 
477 	if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 &&
478 	    msgsz > clone_xprt->xp_msg_size)) {
479 #ifdef	DEBUG
480 		cmn_err(CE_NOTE,
481 "KRPC: server response message of %d bytes; transport limits are [0, %d]",
482 		    msgsz, clone_xprt->xp_msg_size);
483 #endif
484 		goto out;
485 	}
486 
487 	/*
488 	 * Construct the T_unitdata_req.  We take advantage
489 	 * of the fact that T_unitdata_ind looks just like
490 	 * T_unitdata_req, except for the primitive type.
491 	 * Reusing it means we preserve any options, and we must preserve
492 	 * the SCM_UCRED option for TX to work.
493 	 * This has the side effect of also passing certain receive-side
494 	 * options like IP_RECVDSTADDR back down the send side. This
495 	 * implies that we can not ASSERT on a non-NULL db_credp when
496 	 * we have send-side options in UDP.
497 	 */
498 	udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr;
499 	udreq->PRIM_type = T_UNITDATA_REQ;
500 	put(clone_xprt->xp_wq, ud->ud_resp);
501 	stat = TRUE;
502 	ud->ud_resp = NULL;
503 
504 out:
505 	if (stat == FALSE) {
506 		freemsg(ud->ud_resp);
507 		ud->ud_resp = NULL;
508 	}
509 
510 	/*
511 	 * This is completely disgusting.  If public is set it is
512 	 * a pointer to a structure whose first field is the address
513 	 * of the function to free that structure and any related
514 	 * stuff.  (see rrokfree in nfs_xdr.c).
515 	 */
516 	if (xdrs->x_public) {
517 		/* LINTED pointer alignment */
518 		(**((int (**)())xdrs->x_public))(xdrs->x_public);
519 	}
520 
521 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
522 	    "svc_clts_ksend_end:(%S)", "done");
523 	return (stat);
524 }
525 
526 /*
527  * Deserialize arguments.
528  */
529 static bool_t
530 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
531     caddr_t args_ptr)
532 {
533 
534 	/* LINTED pointer alignment */
535 	return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
536 	    xdr_args, args_ptr));
537 
538 }
539 
540 static bool_t
541 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
542     caddr_t args_ptr)
543 {
544 	/* LINTED pointer alignment */
545 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
546 	XDR *xdrs = &clone_xprt->xp_xdrin;
547 	bool_t retval;
548 
549 	if (args_ptr) {
550 		xdrs->x_op = XDR_FREE;
551 		retval = (*xdr_args)(xdrs, args_ptr);
552 	} else
553 		retval = TRUE;
554 
555 	if (ud->ud_inmp) {
556 		freemsg(ud->ud_inmp);
557 		ud->ud_inmp = NULL;
558 	}
559 
560 	return (retval);
561 }
562 
563 static int32_t *
564 svc_clts_kgetres(SVCXPRT *clone_xprt, int size)
565 {
566 	/* LINTED pointer alignment */
567 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
568 	XDR *xdrs = &clone_xprt->xp_xdrout;
569 	mblk_t *mp;
570 	int32_t *buf;
571 	struct rpc_msg rply;
572 
573 	/*
574 	 * Allocate an initial mblk for the response data.
575 	 */
576 	while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
577 		if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
578 			return (FALSE);
579 		}
580 	}
581 
582 	mp->b_cont = NULL;
583 
584 	/*
585 	 * Initialize the XDR decode stream.  Additional mblks
586 	 * will be allocated if necessary.  They will be UD_MAXSIZE
587 	 * sized.
588 	 */
589 	xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
590 
591 	/*
592 	 * Leave some space for protocol headers.
593 	 */
594 	(void) XDR_SETPOS(xdrs, 512);
595 	mp->b_rptr += 512;
596 
597 	/*
598 	 * Assume a successful RPC since most of them are.
599 	 */
600 	rply.rm_xid = clone_xprt->xp_xid;
601 	rply.rm_direction = REPLY;
602 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
603 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
604 	rply.acpted_rply.ar_stat = SUCCESS;
605 
606 	if (!xdr_replymsg_hdr(xdrs, &rply)) {
607 		freeb(mp);
608 		return (NULL);
609 	}
610 
611 	buf = XDR_INLINE(xdrs, size);
612 
613 	if (buf == NULL)
614 		freeb(mp);
615 	else
616 		ud->ud_resp->b_cont = mp;
617 
618 	return (buf);
619 }
620 
621 static void
622 svc_clts_kfreeres(SVCXPRT *clone_xprt)
623 {
624 	/* LINTED pointer alignment */
625 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
626 
627 	if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL)
628 		return;
629 
630 	/*
631 	 * SVC_FREERES() is called whenever the server decides not to
632 	 * send normal reply. Thus, we expect only one mblk to be allocated,
633 	 * because we have not attempted any XDR encoding.
634 	 * If we do any XDR encoding and we get an error, then SVC_REPLY()
635 	 * will freemsg(ud->ud_resp);
636 	 */
637 	ASSERT(ud->ud_resp->b_cont->b_cont == NULL);
638 	freeb(ud->ud_resp->b_cont);
639 	ud->ud_resp->b_cont = NULL;
640 }
641 
642 /*
643  * the dup cacheing routines below provide a cache of non-failure
644  * transaction id's.  rpc service routines can use this to detect
645  * retransmissions and re-send a non-failure response.
646  */
647 
648 /*
649  * MAXDUPREQS is the number of cached items.  It should be adjusted
650  * to the service load so that there is likely to be a response entry
651  * when the first retransmission comes in.
652  */
653 #define	MAXDUPREQS	1024
654 
655 /*
656  * This should be appropriately scaled to MAXDUPREQS.
657  */
658 #define	DRHASHSZ	257
659 
660 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
661 #define	XIDHASH(xid)	((xid) & (DRHASHSZ - 1))
662 #else
663 #define	XIDHASH(xid)	((xid) % DRHASHSZ)
664 #endif
665 #define	DRHASH(dr)	XIDHASH((dr)->dr_xid)
666 #define	REQTOXID(req)	((req)->rq_xprt->xp_xid)
667 
668 static int	ndupreqs = 0;
669 int	maxdupreqs = MAXDUPREQS;
670 static kmutex_t dupreq_lock;
671 static struct dupreq *drhashtbl[DRHASHSZ];
672 static int	drhashstat[DRHASHSZ];
673 
674 static void unhash(struct dupreq *);
675 
676 /*
677  * drmru points to the head of a circular linked list in lru order.
678  * drmru->dr_next == drlru
679  */
680 struct dupreq *drmru;
681 
682 /*
683  * PSARC 2003/523 Contract Private Interface
684  * svc_clts_kdup
685  * Changes must be reviewed by Solaris File Sharing
686  * Changes must be communicated to contract-2003-523@sun.com
687  *
688  * svc_clts_kdup searches the request cache and returns 0 if the
689  * request is not found in the cache.  If it is found, then it
690  * returns the state of the request (in progress or done) and
691  * the status or attributes that were part of the original reply.
692  *
693  * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the
694  * value of the response. In that case, also return in *dupcachedp
695  * whether the response free routine is cached in the dupreq - in which case
696  * the caller should not be freeing it, because it will be done later
697  * in the svc_clts_kdup code when the dupreq is reused.
698  */
699 static int
700 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
701 	bool_t *dupcachedp)
702 {
703 	struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt);
704 	struct dupreq *dr;
705 	uint32_t xid;
706 	uint32_t drhash;
707 	int status;
708 
709 	xid = REQTOXID(req);
710 	mutex_enter(&dupreq_lock);
711 	RSSTAT_INCR(stats, rsdupchecks);
712 	/*
713 	 * Check to see whether an entry already exists in the cache.
714 	 */
715 	dr = drhashtbl[XIDHASH(xid)];
716 	while (dr != NULL) {
717 		if (dr->dr_xid == xid &&
718 		    dr->dr_proc == req->rq_proc &&
719 		    dr->dr_prog == req->rq_prog &&
720 		    dr->dr_vers == req->rq_vers &&
721 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
722 		    bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
723 		    dr->dr_addr.len) == 0) {
724 			status = dr->dr_status;
725 			if (status == DUP_DONE) {
726 				bcopy(dr->dr_resp.buf, res, size);
727 				if (dupcachedp != NULL)
728 					*dupcachedp = (dr->dr_resfree != NULL);
729 			} else {
730 				dr->dr_status = DUP_INPROGRESS;
731 				*drpp = dr;
732 			}
733 			RSSTAT_INCR(stats, rsdupreqs);
734 			mutex_exit(&dupreq_lock);
735 			return (status);
736 		}
737 		dr = dr->dr_chain;
738 	}
739 
740 	/*
741 	 * There wasn't an entry, either allocate a new one or recycle
742 	 * an old one.
743 	 */
744 	if (ndupreqs < maxdupreqs) {
745 		dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
746 		if (dr == NULL) {
747 			mutex_exit(&dupreq_lock);
748 			return (DUP_ERROR);
749 		}
750 		dr->dr_resp.buf = NULL;
751 		dr->dr_resp.maxlen = 0;
752 		dr->dr_addr.buf = NULL;
753 		dr->dr_addr.maxlen = 0;
754 		if (drmru) {
755 			dr->dr_next = drmru->dr_next;
756 			drmru->dr_next = dr;
757 		} else {
758 			dr->dr_next = dr;
759 		}
760 		ndupreqs++;
761 	} else {
762 		dr = drmru->dr_next;
763 		while (dr->dr_status == DUP_INPROGRESS) {
764 			dr = dr->dr_next;
765 			if (dr == drmru->dr_next) {
766 				cmn_err(CE_WARN, "svc_clts_kdup no slots free");
767 				mutex_exit(&dupreq_lock);
768 				return (DUP_ERROR);
769 			}
770 		}
771 		unhash(dr);
772 		if (dr->dr_resfree) {
773 			(*dr->dr_resfree)(dr->dr_resp.buf);
774 		}
775 	}
776 	dr->dr_resfree = NULL;
777 	drmru = dr;
778 
779 	dr->dr_xid = REQTOXID(req);
780 	dr->dr_prog = req->rq_prog;
781 	dr->dr_vers = req->rq_vers;
782 	dr->dr_proc = req->rq_proc;
783 	if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
784 		if (dr->dr_addr.buf != NULL)
785 			kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
786 		dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
787 		dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen,
788 		    KM_NOSLEEP);
789 		if (dr->dr_addr.buf == NULL) {
790 			dr->dr_addr.maxlen = 0;
791 			dr->dr_status = DUP_DROP;
792 			mutex_exit(&dupreq_lock);
793 			return (DUP_ERROR);
794 		}
795 	}
796 	dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
797 	bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
798 	if (dr->dr_resp.maxlen < size) {
799 		if (dr->dr_resp.buf != NULL)
800 			kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
801 		dr->dr_resp.maxlen = (unsigned int)size;
802 		dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
803 		if (dr->dr_resp.buf == NULL) {
804 			dr->dr_resp.maxlen = 0;
805 			dr->dr_status = DUP_DROP;
806 			mutex_exit(&dupreq_lock);
807 			return (DUP_ERROR);
808 		}
809 	}
810 	dr->dr_status = DUP_INPROGRESS;
811 
812 	drhash = (uint32_t)DRHASH(dr);
813 	dr->dr_chain = drhashtbl[drhash];
814 	drhashtbl[drhash] = dr;
815 	drhashstat[drhash]++;
816 	mutex_exit(&dupreq_lock);
817 	*drpp = dr;
818 	return (DUP_NEW);
819 }
820 
821 /*
822  * PSARC 2003/523 Contract Private Interface
823  * svc_clts_kdupdone
824  * Changes must be reviewed by Solaris File Sharing
825  * Changes must be communicated to contract-2003-523@sun.com
826  *
827  * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP)
828  * and stores the response.
829  */
830 static void
831 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
832 	int size, int status)
833 {
834 
835 	ASSERT(dr->dr_resfree == NULL);
836 	if (status == DUP_DONE) {
837 		bcopy(res, dr->dr_resp.buf, size);
838 		dr->dr_resfree = dis_resfree;
839 	}
840 	dr->dr_status = status;
841 }
842 
843 /*
844  * This routine expects that the mutex, dupreq_lock, is already held.
845  */
846 static void
847 unhash(struct dupreq *dr)
848 {
849 	struct dupreq *drt;
850 	struct dupreq *drtprev = NULL;
851 	uint32_t drhash;
852 
853 	ASSERT(MUTEX_HELD(&dupreq_lock));
854 
855 	drhash = (uint32_t)DRHASH(dr);
856 	drt = drhashtbl[drhash];
857 	while (drt != NULL) {
858 		if (drt == dr) {
859 			drhashstat[drhash]--;
860 			if (drtprev == NULL) {
861 				drhashtbl[drhash] = drt->dr_chain;
862 			} else {
863 				drtprev->dr_chain = drt->dr_chain;
864 			}
865 			return;
866 		}
867 		drtprev = drt;
868 		drt = drt->dr_chain;
869 	}
870 }
871 
872 void
873 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp)
874 {
875 	kstat_t *ksp;
876 	kstat_named_t *knp;
877 
878 	knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server",
879 	    (const kstat_named_t *)&clts_rsstat_tmpl,
880 	    sizeof (clts_rsstat_tmpl));
881 	/*
882 	 * Backwards compatibility for old kstat clients
883 	 */
884 	ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc",
885 	    KSTAT_TYPE_NAMED, clts_rsstat_ndata,
886 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
887 	if (ksp) {
888 		ksp->ks_data = knp;
889 		kstat_install(ksp);
890 	}
891 	*statsp = (struct rpc_clts_server *)knp;
892 }
893 
894 void
895 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp)
896 {
897 	rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server");
898 	kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid);
899 	kmem_free(*statsp, sizeof (clts_rsstat_tmpl));
900 }
901 
902 void
903 svc_clts_init()
904 {
905 	/*
906 	 * Check to make sure that the clts private data will fit into
907 	 * the stack buffer allocated by svc_run.  The compiler should
908 	 * remove this check, but it's a safety net if the udp_data
909 	 * structure ever changes.
910 	 */
911 	/*CONSTANTCONDITION*/
912 	ASSERT(sizeof (struct udp_data) <= SVC_P2LEN);
913 
914 	mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL);
915 }
916