xref: /titanic_51/usr/src/uts/common/rpc/svc.c (revision affbd3ccca8e26191a210ec9f9ffae170f919afd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 /*
29  * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
30  */
31 
32 /*	Copyright (c) 1983, 1984, 1985,  1986, 1987, 1988, 1989 AT&T	*/
33 /*	  All Rights Reserved  	*/
34 
35 /*
36  * Portions of this source code were derived from Berkeley 4.3 BSD
37  * under license from the Regents of the University of California.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * Server-side remote procedure call interface.
44  *
45  * Master transport handle (SVCMASTERXPRT).
46  *   The master transport handle structure is shared among service
47  *   threads processing events on the transport. Some fields in the
48  *   master structure are protected by locks
49  *   - xp_req_lock protects the request queue:
50  *	xp_req_head, xp_req_tail
51  *   - xp_thread_lock protects the thread (clone) counts
52  *	xp_threads, xp_detached_threads, xp_wq
53  *   Each master transport is registered to exactly one thread pool.
54  *
55  * Clone transport handle (SVCXPRT)
56  *   The clone transport handle structure is a per-service-thread handle
57  *   to the transport. The structure carries all the fields/buffers used
58  *   for request processing. A service thread or, in other words, a clone
59  *   structure, can be linked to an arbitrary master structure to process
60  *   requests on this transport. The master handle keeps track of reference
61  *   counts of threads (clones) linked to it. A service thread can switch
62  *   to another transport by unlinking its clone handle from the current
63  *   transport and linking to a new one. Switching is relatively inexpensive
64  *   but it involves locking (master's xprt->xp_thread_lock).
65  *
66  * Pools.
67  *   A pool represents a kernel RPC service (NFS, Lock Manager, etc.).
68  *   Transports related to the service are registered to the service pool.
69  *   Service threads can switch between different transports in the pool.
70  *   Thus, each service has its own pool of service threads. The maximum
71  *   number of threads in a pool is pool->p_maxthreads. This limit allows
72  *   to restrict resource usage by the service. Some fields are protected
73  *   by locks:
74  *   - p_req_lock protects several counts and flags:
75  *	p_reqs, p_walkers, p_asleep, p_drowsy, p_req_cv
76  *   - p_thread_lock governs other thread counts:
77  *	p_threads, p_detached_threads, p_reserved_threads, p_closing
78  *
79  *   In addition, each pool contains a doubly-linked list of transports,
80  *   an `xprt-ready' queue and a creator thread (see below). Threads in
81  *   the pool share some other parameters such as stack size and
82  *   polling timeout.
83  *
84  *   Pools are initialized through the svc_pool_create() function called from
85  *   the nfssys() system call. However, thread creation must be done by
86  *   the userland agent. This is done by using SVCPOOL_WAIT and
87  *   SVCPOOL_RUN arguments to nfssys(), which call svc_wait() and
88  *   svc_do_run(), respectively. Once the pool has been initialized,
89  *   the userland process must set up a 'creator' thread. This thread
90  *   should park itself in the kernel by calling svc_wait(). If
91  *   svc_wait() returns successfully, it should fork off a new worker
92  *   thread, which then calls svc_do_run() in order to get work. When
93  *   that thread is complete, svc_do_run() will return, and the user
94  *   program should call thr_exit().
95  *
96  *   When we try to register a new pool and there is an old pool with
97  *   the same id in the doubly linked pool list (this happens when we kill
98  *   and restart nfsd or lockd), then we unlink the old pool from the list
99  *   and mark its state as `closing'. After that the transports can still
100  *   process requests but new transports won't be registered. When all the
101  *   transports and service threads associated with the pool are gone the
102  *   creator thread (see below) will clean up the pool structure and exit.
103  *
104  * svc_queuereq() and svc_run().
105  *   The kernel RPC server is interrupt driven. The svc_queuereq() interrupt
106  *   routine is called to deliver an RPC request. The service threads
107  *   loop in svc_run(). The interrupt function queues a request on the
108  *   transport's queue and it makes sure that the request is serviced.
109  *   It may either wake up one of sleeping threads, or ask for a new thread
110  *   to be created, or, if the previous request is just being picked up, do
111  *   nothing. In the last case the service thread that is picking up the
112  *   previous request will wake up or create the next thread. After a service
113  *   thread processes a request and sends a reply it returns to svc_run()
114  *   and svc_run() calls svc_poll() to find new input.
115  *
116  *   There is an "inconsistent" but "safe" optimization in the
117  *   svc_queuereq() code. The request is queued under the transport's
118  *   request lock, while the `pending-requests' count is incremented
119  *   independently under the pool request lock. Thus, a request can be picked
120  *   up by a service thread before the counter is incremented. It may also
121  *   happen that the service thread will win the race condition on the pool
122  *   lock and it will decrement the count even before the interrupt thread
123  *   increments it (so the count can be temporarily negative).
124  *
125  * svc_poll().
126  *   In order to avoid unnecessary locking, which causes performance
127  *   problems, we always look for a pending request on the current transport.
128  *   If there is none we take a hint from the pool's `xprt-ready' queue.
129  *   If the queue had an overflow we switch to the `drain' mode checking
130  *   each transport  in the pool's transport list. Once we find a
131  *   master transport handle with a pending request we latch the request
132  *   lock on this transport and return to svc_run(). If the request
133  *   belongs to a transport different than the one the service thread is
134  *   linked to we need to unlink and link again.
135  *
136  *   A service thread goes asleep when there are no pending
137  *   requests on the transports registered on the pool's transports.
138  *   All the pool's threads sleep on the same condition variable.
139  *   If a thread has been sleeping for too long period of time
140  *   (by default 5 seconds) it wakes up and exits.  Also when a transport
141  *   is closing sleeping threads wake up to unlink from this transport.
142  *
143  * The `xprt-ready' queue.
144  *   If a service thread finds no request on a transport it is currently linked
145  *   to it will find another transport with a pending request. To make
146  *   this search more efficient each pool has an `xprt-ready' queue.
147  *   The queue is a FIFO. When the interrupt routine queues a request it also
148  *   inserts a pointer to the transport into the `xprt-ready' queue. A
149  *   thread looking for a transport with a pending request can pop up a
150  *   transport and check for a request. The request can be already gone
151  *   since it could be taken by a thread linked to that transport. In such a
152  *   case we try the next hint. The `xprt-ready' queue has fixed size (by
153  *   default 256 nodes). If it overflows svc_poll() has to switch to the
154  *   less efficient but safe `drain' mode and walk through the pool's
155  *   transport list.
156  *
157  *   Both the svc_poll() loop and the `xprt-ready' queue are optimized
158  *   for the peak load case that is for the situation when the queue is not
159  *   empty, there are all the time few pending requests, and a service
160  *   thread which has just processed a request does not go asleep but picks
161  *   up immediately the next request.
162  *
163  * Thread creator.
164  *   Each pool has a thread creator associated with it. The creator thread
165  *   sleeps on a condition variable and waits for a signal to create a
166  *   service thread. The actual thread creation is done in userland by
167  *   the method described in "Pools" above.
168  *
169  *   Signaling threads should turn on the `creator signaled' flag, and
170  *   can avoid sending signals when the flag is on. The flag is cleared
171  *   when the thread is created.
172  *
173  *   When the pool is in closing state (ie it has been already unregistered
174  *   from the pool list) the last thread on the last transport in the pool
175  *   should turn the p_creator_exit flag on. The creator thread will
176  *   clean up the pool structure and exit.
177  *
178  * Thread reservation; Detaching service threads.
179  *   A service thread can detach itself to block for an extended amount
180  *   of time. However, to keep the service active we need to guarantee
181  *   at least pool->p_redline non-detached threads that can process incoming
182  *   requests. This, the maximum number of detached and reserved threads is
183  *   p->p_maxthreads - p->p_redline. A service thread should first acquire
184  *   a reservation, and if the reservation was granted it can detach itself.
185  *   If a reservation was granted but the thread does not detach itself
186  *   it should cancel the reservation before it returns to svc_run().
187  */
188 
189 #include <sys/param.h>
190 #include <sys/types.h>
191 #include <rpc/types.h>
192 #include <sys/socket.h>
193 #include <sys/time.h>
194 #include <sys/tiuser.h>
195 #include <sys/t_kuser.h>
196 #include <netinet/in.h>
197 #include <rpc/xdr.h>
198 #include <rpc/auth.h>
199 #include <rpc/clnt.h>
200 #include <rpc/rpc_msg.h>
201 #include <rpc/svc.h>
202 #include <sys/proc.h>
203 #include <sys/user.h>
204 #include <sys/stream.h>
205 #include <sys/strsubr.h>
206 #include <sys/tihdr.h>
207 #include <sys/debug.h>
208 #include <sys/cmn_err.h>
209 #include <sys/file.h>
210 #include <sys/systm.h>
211 #include <sys/callb.h>
212 #include <sys/vtrace.h>
213 #include <sys/zone.h>
214 #include <nfs/nfs.h>
215 
216 #define	RQCRED_SIZE	400	/* this size is excessive */
217 
218 /*
219  * Defines for svc_poll()
220  */
221 #define	SVC_EXPRTGONE ((SVCMASTERXPRT *)1)	/* Transport is closing */
222 #define	SVC_ETIMEDOUT ((SVCMASTERXPRT *)2)	/* Timeout */
223 #define	SVC_EINTR ((SVCMASTERXPRT *)3)		/* Interrupted by signal */
224 
225 /*
226  * Default stack size for service threads.
227  */
228 #define	DEFAULT_SVC_RUN_STKSIZE		(0)	/* default kernel stack */
229 
230 int    svc_default_stksize = DEFAULT_SVC_RUN_STKSIZE;
231 
232 /*
233  * Default polling timeout for service threads.
234  * Multiplied by hz when used.
235  */
236 #define	DEFAULT_SVC_POLL_TIMEOUT	(5)	/* seconds */
237 
238 clock_t svc_default_timeout = DEFAULT_SVC_POLL_TIMEOUT;
239 
240 /*
241  * Size of the `xprt-ready' queue.
242  */
243 #define	DEFAULT_SVC_QSIZE		(256)	/* qnodes */
244 
245 size_t svc_default_qsize = DEFAULT_SVC_QSIZE;
246 
247 /*
248  * Default limit for the number of service threads.
249  */
250 #define	DEFAULT_SVC_MAXTHREADS		(INT16_MAX)
251 
252 int    svc_default_maxthreads = DEFAULT_SVC_MAXTHREADS;
253 
254 /*
255  * Maximum number of requests from the same transport (in `drain' mode).
256  */
257 #define	DEFAULT_SVC_MAX_SAME_XPRT	(8)
258 
259 int    svc_default_max_same_xprt = DEFAULT_SVC_MAX_SAME_XPRT;
260 
261 
262 /*
263  * Default `Redline' of non-detached threads.
264  * Total number of detached and reserved threads in an RPC server
265  * thread pool is limited to pool->p_maxthreads - svc_redline.
266  */
267 #define	DEFAULT_SVC_REDLINE		(1)
268 
269 int    svc_default_redline = DEFAULT_SVC_REDLINE;
270 
271 /*
272  * A node for the `xprt-ready' queue.
273  * See below.
274  */
275 struct __svcxprt_qnode {
276 	__SVCXPRT_QNODE	*q_next;
277 	SVCMASTERXPRT	*q_xprt;
278 };
279 
280 /*
281  * Global SVC variables (private).
282  */
283 struct svc_globals {
284 	SVCPOOL		*svc_pools;
285 	kmutex_t	svc_plock;
286 };
287 
288 /*
289  * Debug variable to check for rdma based
290  * transport startup and cleanup. Contorlled
291  * through /etc/system. Off by default.
292  */
293 int rdma_check = 0;
294 
295 /*
296  * Authentication parameters list.
297  */
298 static caddr_t rqcred_head;
299 static kmutex_t rqcred_lock;
300 
301 /*
302  * Pointers to transport specific `rele' routines in rpcmod (set from rpcmod).
303  */
304 void	(*rpc_rele)(queue_t *, mblk_t *) = NULL;
305 void	(*mir_rele)(queue_t *, mblk_t *) = NULL;
306 
307 /* ARGSUSED */
308 void
309 rpc_rdma_rele(queue_t *q, mblk_t *mp)
310 {
311 }
312 void    (*rdma_rele)(queue_t *, mblk_t *) = rpc_rdma_rele;
313 
314 
315 /*
316  * This macro picks which `rele' routine to use, based on the transport type.
317  */
318 #define	RELE_PROC(xprt) \
319 	((xprt)->xp_type == T_RDMA ? rdma_rele : \
320 	(((xprt)->xp_type == T_CLTS) ? rpc_rele : mir_rele))
321 
322 /*
323  * If true, then keep quiet about version mismatch.
324  * This macro is for broadcast RPC only. We have no broadcast RPC in
325  * kernel now but one may define a flag in the transport structure
326  * and redefine this macro.
327  */
328 #define	version_keepquiet(xprt)	(FALSE)
329 
330 /*
331  * ZSD key used to retrieve zone-specific svc globals
332  */
333 static zone_key_t svc_zone_key;
334 
335 static void svc_callout_free(SVCMASTERXPRT *);
336 static void svc_xprt_qinit(SVCPOOL *, size_t);
337 static void svc_xprt_qdestroy(SVCPOOL *);
338 static void svc_thread_creator(SVCPOOL *);
339 static void svc_creator_signal(SVCPOOL *);
340 static void svc_creator_signalexit(SVCPOOL *);
341 static void svc_pool_unregister(struct svc_globals *, SVCPOOL *);
342 static int svc_run(SVCPOOL *);
343 
344 /* ARGSUSED */
345 static void *
346 svc_zoneinit(zoneid_t zoneid)
347 {
348 	struct svc_globals *svc;
349 
350 	svc = kmem_alloc(sizeof (*svc), KM_SLEEP);
351 	mutex_init(&svc->svc_plock, NULL, MUTEX_DEFAULT, NULL);
352 	svc->svc_pools = NULL;
353 	return (svc);
354 }
355 
356 /* ARGSUSED */
357 static void
358 svc_zoneshutdown(zoneid_t zoneid, void *arg)
359 {
360 	struct svc_globals *svc = arg;
361 	SVCPOOL *pool;
362 
363 	mutex_enter(&svc->svc_plock);
364 	while ((pool = svc->svc_pools) != NULL) {
365 		svc_pool_unregister(svc, pool);
366 	}
367 	mutex_exit(&svc->svc_plock);
368 }
369 
370 /* ARGSUSED */
371 static void
372 svc_zonefini(zoneid_t zoneid, void *arg)
373 {
374 	struct svc_globals *svc = arg;
375 
376 	ASSERT(svc->svc_pools == NULL);
377 	mutex_destroy(&svc->svc_plock);
378 	kmem_free(svc, sizeof (*svc));
379 }
380 
381 /*
382  * Global SVC init routine.
383  * Initialize global generic and transport type specific structures
384  * used by the kernel RPC server side. This routine is called only
385  * once when the module is being loaded.
386  */
387 void
388 svc_init()
389 {
390 	zone_key_create(&svc_zone_key, svc_zoneinit, svc_zoneshutdown,
391 	    svc_zonefini);
392 	svc_cots_init();
393 	svc_clts_init();
394 }
395 
396 /*
397  * Destroy the SVCPOOL structure.
398  */
399 static void
400 svc_pool_cleanup(SVCPOOL *pool)
401 {
402 	ASSERT(pool->p_threads + pool->p_detached_threads == 0);
403 	ASSERT(pool->p_lcount == 0);
404 	ASSERT(pool->p_closing);
405 
406 	/*
407 	 * Call the user supplied shutdown function.  This is done
408 	 * here so the user of the pool will be able to cleanup
409 	 * service related resources.
410 	 */
411 	if (pool->p_shutdown != NULL)
412 		(pool->p_shutdown)();
413 
414 	/* Destroy `xprt-ready' queue */
415 	svc_xprt_qdestroy(pool);
416 
417 	/* Destroy transport list */
418 	rw_destroy(&pool->p_lrwlock);
419 
420 	/* Destroy locks and condition variables */
421 	mutex_destroy(&pool->p_thread_lock);
422 	mutex_destroy(&pool->p_req_lock);
423 	cv_destroy(&pool->p_req_cv);
424 
425 	/* Destroy creator's locks and condition variables */
426 	mutex_destroy(&pool->p_creator_lock);
427 	cv_destroy(&pool->p_creator_cv);
428 	mutex_destroy(&pool->p_user_lock);
429 	cv_destroy(&pool->p_user_cv);
430 
431 	/* Free pool structure */
432 	kmem_free(pool, sizeof (SVCPOOL));
433 }
434 
435 /*
436  * If all the transports and service threads are already gone
437  * signal the creator thread to clean up and exit.
438  */
439 static bool_t
440 svc_pool_tryexit(SVCPOOL *pool)
441 {
442 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
443 	ASSERT(pool->p_closing);
444 
445 	if (pool->p_threads + pool->p_detached_threads == 0) {
446 		rw_enter(&pool->p_lrwlock, RW_READER);
447 		if (pool->p_lcount == 0) {
448 			/*
449 			 * Release the locks before sending a signal.
450 			 */
451 			rw_exit(&pool->p_lrwlock);
452 			mutex_exit(&pool->p_thread_lock);
453 
454 			/*
455 			 * Notify the creator thread to clean up and exit
456 			 *
457 			 * NOTICE: No references to the pool beyond this point!
458 			 *		   The pool is being destroyed.
459 			 */
460 			ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
461 			svc_creator_signalexit(pool);
462 
463 			return (TRUE);
464 		}
465 		rw_exit(&pool->p_lrwlock);
466 	}
467 
468 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
469 	return (FALSE);
470 }
471 
472 /*
473  * Find a pool with a given id.
474  */
475 static SVCPOOL *
476 svc_pool_find(struct svc_globals *svc, int id)
477 {
478 	SVCPOOL *pool;
479 
480 	ASSERT(MUTEX_HELD(&svc->svc_plock));
481 
482 	/*
483 	 * Search the list for a pool with a matching id
484 	 * and register the transport handle with that pool.
485 	 */
486 	for (pool = svc->svc_pools; pool; pool = pool->p_next)
487 		if (pool->p_id == id)
488 			return (pool);
489 
490 	return (NULL);
491 }
492 
493 /*
494  * PSARC 2003/523 Contract Private Interface
495  * svc_do_run
496  * Changes must be reviewed by Solaris File Sharing
497  * Changes must be communicated to contract-2003-523@sun.com
498  */
499 int
500 svc_do_run(int id)
501 {
502 	SVCPOOL *pool;
503 	int err = 0;
504 	struct svc_globals *svc;
505 
506 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
507 	mutex_enter(&svc->svc_plock);
508 
509 	pool = svc_pool_find(svc, id);
510 
511 	mutex_exit(&svc->svc_plock);
512 
513 	if (pool == NULL)
514 		return (ENOENT);
515 
516 	/*
517 	 * Increment counter of pool threads now
518 	 * that a thread has been created.
519 	 */
520 	mutex_enter(&pool->p_thread_lock);
521 	pool->p_threads++;
522 	mutex_exit(&pool->p_thread_lock);
523 
524 	/* Give work to the new thread. */
525 	err = svc_run(pool);
526 
527 	return (err);
528 }
529 
530 /*
531  * Unregister a pool from the pool list.
532  * Set the closing state. If all the transports and service threads
533  * are already gone signal the creator thread to clean up and exit.
534  */
535 static void
536 svc_pool_unregister(struct svc_globals *svc, SVCPOOL *pool)
537 {
538 	SVCPOOL *next = pool->p_next;
539 	SVCPOOL *prev = pool->p_prev;
540 
541 	ASSERT(MUTEX_HELD(&svc->svc_plock));
542 
543 	/* Remove from the list */
544 	if (pool == svc->svc_pools)
545 		svc->svc_pools = next;
546 	if (next)
547 		next->p_prev = prev;
548 	if (prev)
549 		prev->p_next = next;
550 	pool->p_next = pool->p_prev = NULL;
551 
552 	/*
553 	 * Offline the pool. Mark the pool as closing.
554 	 * If there are no transports in this pool notify
555 	 * the creator thread to clean it up and exit.
556 	 */
557 	mutex_enter(&pool->p_thread_lock);
558 	if (pool->p_offline != NULL)
559 		(pool->p_offline)();
560 	pool->p_closing = TRUE;
561 	if (svc_pool_tryexit(pool))
562 		return;
563 	mutex_exit(&pool->p_thread_lock);
564 }
565 
566 /*
567  * Register a pool with a given id in the global doubly linked pool list.
568  * - if there is a pool with the same id in the list then unregister it
569  * - insert the new pool into the list.
570  */
571 static void
572 svc_pool_register(struct svc_globals *svc, SVCPOOL *pool, int id)
573 {
574 	SVCPOOL *old_pool;
575 
576 	/*
577 	 * If there is a pool with the same id then remove it from
578 	 * the list and mark the pool as closing.
579 	 */
580 	mutex_enter(&svc->svc_plock);
581 
582 	if (old_pool = svc_pool_find(svc, id))
583 		svc_pool_unregister(svc, old_pool);
584 
585 	/* Insert into the doubly linked list */
586 	pool->p_id = id;
587 	pool->p_next = svc->svc_pools;
588 	pool->p_prev = NULL;
589 	if (svc->svc_pools)
590 		svc->svc_pools->p_prev = pool;
591 	svc->svc_pools = pool;
592 
593 	mutex_exit(&svc->svc_plock);
594 }
595 
596 /*
597  * Initialize a newly created pool structure
598  */
599 static int
600 svc_pool_init(SVCPOOL *pool, uint_t maxthreads, uint_t redline,
601 	uint_t qsize, uint_t timeout, uint_t stksize, uint_t max_same_xprt)
602 {
603 	klwp_t *lwp = ttolwp(curthread);
604 
605 	ASSERT(pool);
606 
607 	if (maxthreads == 0)
608 		maxthreads = svc_default_maxthreads;
609 	if (redline == 0)
610 		redline = svc_default_redline;
611 	if (qsize == 0)
612 		qsize = svc_default_qsize;
613 	if (timeout == 0)
614 		timeout = svc_default_timeout;
615 	if (stksize == 0)
616 		stksize = svc_default_stksize;
617 	if (max_same_xprt == 0)
618 		max_same_xprt = svc_default_max_same_xprt;
619 
620 	if (maxthreads < redline)
621 		return (EINVAL);
622 
623 	/* Allocate and initialize the `xprt-ready' queue */
624 	svc_xprt_qinit(pool, qsize);
625 
626 	/* Initialize doubly-linked xprt list */
627 	rw_init(&pool->p_lrwlock, NULL, RW_DEFAULT, NULL);
628 
629 	/*
630 	 * Setting lwp_childstksz on the current lwp so that
631 	 * descendants of this lwp get the modified stacksize, if
632 	 * it is defined. It is important that either this lwp or
633 	 * one of its descendants do the actual servicepool thread
634 	 * creation to maintain the stacksize inheritance.
635 	 */
636 	if (lwp != NULL)
637 		lwp->lwp_childstksz = stksize;
638 
639 	/* Initialize thread limits, locks and condition variables */
640 	pool->p_maxthreads = maxthreads;
641 	pool->p_redline = redline;
642 	pool->p_timeout = timeout * hz;
643 	pool->p_stksize = stksize;
644 	pool->p_max_same_xprt = max_same_xprt;
645 	mutex_init(&pool->p_thread_lock, NULL, MUTEX_DEFAULT, NULL);
646 	mutex_init(&pool->p_req_lock, NULL, MUTEX_DEFAULT, NULL);
647 	cv_init(&pool->p_req_cv, NULL, CV_DEFAULT, NULL);
648 
649 	/* Initialize userland creator */
650 	pool->p_user_exit = FALSE;
651 	pool->p_signal_create_thread = FALSE;
652 	pool->p_user_waiting = FALSE;
653 	mutex_init(&pool->p_user_lock, NULL, MUTEX_DEFAULT, NULL);
654 	cv_init(&pool->p_user_cv, NULL, CV_DEFAULT, NULL);
655 
656 	/* Initialize the creator and start the creator thread */
657 	pool->p_creator_exit = FALSE;
658 	mutex_init(&pool->p_creator_lock, NULL, MUTEX_DEFAULT, NULL);
659 	cv_init(&pool->p_creator_cv, NULL, CV_DEFAULT, NULL);
660 
661 	(void) zthread_create(NULL, pool->p_stksize, svc_thread_creator,
662 	    pool, 0, minclsyspri);
663 
664 	return (0);
665 }
666 
667 /*
668  * PSARC 2003/523 Contract Private Interface
669  * svc_pool_create
670  * Changes must be reviewed by Solaris File Sharing
671  * Changes must be communicated to contract-2003-523@sun.com
672  *
673  * Create an kernel RPC server-side thread/transport pool.
674  *
675  * This is public interface for creation of a server RPC thread pool
676  * for a given service provider. Transports registered with the pool's id
677  * will be served by a pool's threads. This function is called from the
678  * nfssys() system call.
679  */
680 int
681 svc_pool_create(struct svcpool_args *args)
682 {
683 	SVCPOOL *pool;
684 	int error;
685 	struct svc_globals *svc;
686 
687 	/*
688 	 * Caller should check credentials in a way appropriate
689 	 * in the context of the call.
690 	 */
691 
692 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
693 	/* Allocate a new pool */
694 	pool = kmem_zalloc(sizeof (SVCPOOL), KM_SLEEP);
695 
696 	/*
697 	 * Initialize the pool structure and create a creator thread.
698 	 */
699 	error = svc_pool_init(pool, args->maxthreads, args->redline,
700 	    args->qsize, args->timeout, args->stksize, args->max_same_xprt);
701 
702 	if (error) {
703 		kmem_free(pool, sizeof (SVCPOOL));
704 		return (error);
705 	}
706 
707 	/* Register the pool with the global pool list */
708 	svc_pool_register(svc, pool, args->id);
709 
710 	return (0);
711 }
712 
713 int
714 svc_pool_control(int id, int cmd, void *arg)
715 {
716 	SVCPOOL *pool;
717 	struct svc_globals *svc;
718 
719 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
720 
721 	switch (cmd) {
722 	case SVCPSET_SHUTDOWN_PROC:
723 		/*
724 		 * Search the list for a pool with a matching id
725 		 * and register the transport handle with that pool.
726 		 */
727 		mutex_enter(&svc->svc_plock);
728 
729 		if ((pool = svc_pool_find(svc, id)) == NULL) {
730 			mutex_exit(&svc->svc_plock);
731 			return (ENOENT);
732 		}
733 		/*
734 		 * Grab the transport list lock before releasing the
735 		 * pool list lock
736 		 */
737 		rw_enter(&pool->p_lrwlock, RW_WRITER);
738 		mutex_exit(&svc->svc_plock);
739 
740 		pool->p_shutdown = *((void (*)())arg);
741 
742 		rw_exit(&pool->p_lrwlock);
743 
744 		return (0);
745 	case SVCPSET_UNREGISTER_PROC:
746 		/*
747 		 * Search the list for a pool with a matching id
748 		 * and register the unregister callback handle with that pool.
749 		 */
750 		mutex_enter(&svc->svc_plock);
751 
752 		if ((pool = svc_pool_find(svc, id)) == NULL) {
753 			mutex_exit(&svc->svc_plock);
754 			return (ENOENT);
755 		}
756 		/*
757 		 * Grab the transport list lock before releasing the
758 		 * pool list lock
759 		 */
760 		rw_enter(&pool->p_lrwlock, RW_WRITER);
761 		mutex_exit(&svc->svc_plock);
762 
763 		pool->p_offline = *((void (*)())arg);
764 
765 		rw_exit(&pool->p_lrwlock);
766 
767 		return (0);
768 	default:
769 		return (EINVAL);
770 	}
771 }
772 
773 /*
774  * Pool's transport list manipulation routines.
775  * - svc_xprt_register()
776  * - svc_xprt_unregister()
777  *
778  * svc_xprt_register() is called from svc_tli_kcreate() to
779  * insert a new master transport handle into the doubly linked
780  * list of server transport handles (one list per pool).
781  *
782  * The list is used by svc_poll(), when it operates in `drain'
783  * mode, to search for a next transport with a pending request.
784  */
785 
786 int
787 svc_xprt_register(SVCMASTERXPRT *xprt, int id)
788 {
789 	SVCMASTERXPRT *prev, *next;
790 	SVCPOOL *pool;
791 	struct svc_globals *svc;
792 
793 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
794 	/*
795 	 * Search the list for a pool with a matching id
796 	 * and register the transport handle with that pool.
797 	 */
798 	mutex_enter(&svc->svc_plock);
799 
800 	if ((pool = svc_pool_find(svc, id)) == NULL) {
801 		mutex_exit(&svc->svc_plock);
802 		return (ENOENT);
803 	}
804 
805 	/* Grab the transport list lock before releasing the pool list lock */
806 	rw_enter(&pool->p_lrwlock, RW_WRITER);
807 	mutex_exit(&svc->svc_plock);
808 
809 	/* Don't register new transports when the pool is in closing state */
810 	if (pool->p_closing) {
811 		rw_exit(&pool->p_lrwlock);
812 		return (EBUSY);
813 	}
814 
815 	/*
816 	 * Initialize xp_pool to point to the pool.
817 	 * We don't want to go through the pool list every time.
818 	 */
819 	xprt->xp_pool = pool;
820 
821 	/*
822 	 * Insert a transport handle into the list.
823 	 * The list head points to the most recently inserted transport.
824 	 */
825 	if (pool->p_lhead == NULL)
826 		pool->p_lhead = xprt->xp_prev = xprt->xp_next = xprt;
827 	else {
828 		next = pool->p_lhead;
829 		prev = pool->p_lhead->xp_prev;
830 
831 		xprt->xp_next = next;
832 		xprt->xp_prev = prev;
833 
834 		pool->p_lhead = prev->xp_next = next->xp_prev = xprt;
835 	}
836 
837 	/* Increment the transports count */
838 	pool->p_lcount++;
839 
840 	rw_exit(&pool->p_lrwlock);
841 	return (0);
842 }
843 
844 /*
845  * Called from svc_xprt_cleanup() to remove a master transport handle
846  * from the pool's list of server transports (when a transport is
847  * being destroyed).
848  */
849 void
850 svc_xprt_unregister(SVCMASTERXPRT *xprt)
851 {
852 	SVCPOOL *pool = xprt->xp_pool;
853 
854 	/*
855 	 * Unlink xprt from the list.
856 	 * If the list head points to this xprt then move it
857 	 * to the next xprt or reset to NULL if this is the last
858 	 * xprt in the list.
859 	 */
860 	rw_enter(&pool->p_lrwlock, RW_WRITER);
861 
862 	if (xprt == xprt->xp_next)
863 		pool->p_lhead = NULL;
864 	else {
865 		SVCMASTERXPRT *next = xprt->xp_next;
866 		SVCMASTERXPRT *prev = xprt->xp_prev;
867 
868 		next->xp_prev = prev;
869 		prev->xp_next = next;
870 
871 		if (pool->p_lhead == xprt)
872 			pool->p_lhead = next;
873 	}
874 
875 	xprt->xp_next = xprt->xp_prev = NULL;
876 
877 	/* Decrement list count */
878 	pool->p_lcount--;
879 
880 	rw_exit(&pool->p_lrwlock);
881 }
882 
883 static void
884 svc_xprt_qdestroy(SVCPOOL *pool)
885 {
886 	mutex_destroy(&pool->p_qend_lock);
887 	kmem_free(pool->p_qbody, pool->p_qsize * sizeof (__SVCXPRT_QNODE));
888 }
889 
890 /*
891  * Initialize an `xprt-ready' queue for a given pool.
892  */
893 static void
894 svc_xprt_qinit(SVCPOOL *pool, size_t qsize)
895 {
896 	int i;
897 
898 	pool->p_qsize = qsize;
899 	pool->p_qbody = kmem_zalloc(pool->p_qsize * sizeof (__SVCXPRT_QNODE),
900 	    KM_SLEEP);
901 
902 	for (i = 0; i < pool->p_qsize - 1; i++)
903 		pool->p_qbody[i].q_next = &(pool->p_qbody[i+1]);
904 
905 	pool->p_qbody[pool->p_qsize-1].q_next = &(pool->p_qbody[0]);
906 	pool->p_qtop = &(pool->p_qbody[0]);
907 	pool->p_qend = &(pool->p_qbody[0]);
908 
909 	mutex_init(&pool->p_qend_lock, NULL, MUTEX_DEFAULT, NULL);
910 }
911 
912 /*
913  * Called from the svc_queuereq() interrupt routine to queue
914  * a hint for svc_poll() which transport has a pending request.
915  * - insert a pointer to xprt into the xprt-ready queue (FIFO)
916  * - if the xprt-ready queue is full turn the overflow flag on.
917  *
918  * NOTICE: pool->p_qtop is protected by the the pool's request lock
919  * and the caller (svc_queuereq()) must hold the lock.
920  */
921 static void
922 svc_xprt_qput(SVCPOOL *pool, SVCMASTERXPRT *xprt)
923 {
924 	ASSERT(MUTEX_HELD(&pool->p_req_lock));
925 
926 	/* If the overflow flag is there is nothing we can do */
927 	if (pool->p_qoverflow)
928 		return;
929 
930 	/* If the queue is full turn the overflow flag on and exit */
931 	if (pool->p_qtop->q_next == pool->p_qend) {
932 		mutex_enter(&pool->p_qend_lock);
933 		if (pool->p_qtop->q_next == pool->p_qend) {
934 			pool->p_qoverflow = TRUE;
935 			mutex_exit(&pool->p_qend_lock);
936 			return;
937 		}
938 		mutex_exit(&pool->p_qend_lock);
939 	}
940 
941 	/* Insert a hint and move pool->p_qtop */
942 	pool->p_qtop->q_xprt = xprt;
943 	pool->p_qtop = pool->p_qtop->q_next;
944 }
945 
946 /*
947  * Called from svc_poll() to get a hint which transport has a
948  * pending request. Returns a pointer to a transport or NULL if the
949  * `xprt-ready' queue is empty.
950  *
951  * Since we do not acquire the pool's request lock while checking if
952  * the queue is empty we may miss a request that is just being delivered.
953  * However this is ok since svc_poll() will retry again until the
954  * count indicates that there are pending requests for this pool.
955  */
956 static SVCMASTERXPRT *
957 svc_xprt_qget(SVCPOOL *pool)
958 {
959 	SVCMASTERXPRT *xprt;
960 
961 	mutex_enter(&pool->p_qend_lock);
962 	do {
963 		/*
964 		 * If the queue is empty return NULL.
965 		 * Since we do not acquire the pool's request lock which
966 		 * protects pool->p_qtop this is not exact check. However,
967 		 * this is safe - if we miss a request here svc_poll()
968 		 * will retry again.
969 		 */
970 		if (pool->p_qend == pool->p_qtop) {
971 			mutex_exit(&pool->p_qend_lock);
972 			return (NULL);
973 		}
974 
975 		/* Get a hint and move pool->p_qend */
976 		xprt = pool->p_qend->q_xprt;
977 		pool->p_qend = pool->p_qend->q_next;
978 
979 		/* Skip fields deleted by svc_xprt_qdelete()	 */
980 	} while (xprt == NULL);
981 	mutex_exit(&pool->p_qend_lock);
982 
983 	return (xprt);
984 }
985 
986 /*
987  * Reset an overflow in the xprt-ready queue after
988  * all the pending requests has been drained.
989  * This switches svc_poll back to getting hints from the
990  * xprt-ready queue.
991  *
992  * NOTICE: pool->p_qtop is protected by the the pool's request lock
993  * and the caller (svc_poll()) must hold the lock.
994  */
995 static void
996 svc_xprt_qreset(SVCPOOL *pool)
997 {
998 	ASSERT(MUTEX_HELD(&pool->p_req_lock));
999 
1000 	pool->p_qend = pool->p_qtop;
1001 	pool->p_qoverflow = FALSE;
1002 }
1003 
1004 /*
1005  * Delete all the references to a transport handle that
1006  * is being destroyed from the xprt-ready queue.
1007  * Deleted pointers are replaced with NULLs.
1008  */
1009 static void
1010 svc_xprt_qdelete(SVCPOOL *pool, SVCMASTERXPRT *xprt)
1011 {
1012 	__SVCXPRT_QNODE *q = pool->p_qend;
1013 	__SVCXPRT_QNODE *qtop = pool->p_qtop;
1014 
1015 	/*
1016 	 * Delete all the references to xprt between the current
1017 	 * position of pool->p_qend and current pool->p_qtop.
1018 	 */
1019 	for (;;) {
1020 		if (q->q_xprt == xprt)
1021 			q->q_xprt = NULL;
1022 		if (q == qtop)
1023 			return;
1024 		q = q->q_next;
1025 	}
1026 }
1027 
1028 /*
1029  * Destructor for a master server transport handle.
1030  * - if there are no more non-detached threads linked to this transport
1031  *   then, if requested, call xp_closeproc (we don't wait for detached
1032  *   threads linked to this transport to complete).
1033  * - if there are no more threads linked to this
1034  *   transport then
1035  *   a) remove references to this transport from the xprt-ready queue
1036  *   b) remove a reference to this transport from the pool's transport list
1037  *   c) call a transport specific `destroy' function
1038  *   d) cancel remaining thread reservations.
1039  *
1040  * NOTICE: Caller must hold the transport's thread lock.
1041  */
1042 static void
1043 svc_xprt_cleanup(SVCMASTERXPRT *xprt, bool_t detached)
1044 {
1045 	ASSERT(MUTEX_HELD(&xprt->xp_thread_lock));
1046 	ASSERT(xprt->xp_wq == NULL);
1047 
1048 	/*
1049 	 * If called from the last non-detached thread
1050 	 * it should call the closeproc on this transport.
1051 	 */
1052 	if (!detached && xprt->xp_threads == 0 && xprt->xp_closeproc) {
1053 		(*(xprt->xp_closeproc)) (xprt);
1054 	}
1055 
1056 	if (xprt->xp_threads + xprt->xp_detached_threads > 0)
1057 		mutex_exit(&xprt->xp_thread_lock);
1058 	else {
1059 		/* Remove references to xprt from the `xprt-ready' queue */
1060 		svc_xprt_qdelete(xprt->xp_pool, xprt);
1061 
1062 		/* Unregister xprt from the pool's transport list */
1063 		svc_xprt_unregister(xprt);
1064 		svc_callout_free(xprt);
1065 		SVC_DESTROY(xprt);
1066 	}
1067 }
1068 
1069 /*
1070  * Find a dispatch routine for a given prog/vers pair.
1071  * This function is called from svc_getreq() to search the callout
1072  * table for an entry with a matching RPC program number `prog'
1073  * and a version range that covers `vers'.
1074  * - if it finds a matching entry it returns pointer to the dispatch routine
1075  * - otherwise it returns NULL and, if `minp' or `maxp' are not NULL,
1076  *   fills them with, respectively, lowest version and highest version
1077  *   supported for the program `prog'
1078  */
1079 static SVC_DISPATCH *
1080 svc_callout_find(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
1081     rpcvers_t *vers_min, rpcvers_t *vers_max)
1082 {
1083 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1084 	int i;
1085 
1086 	*vers_min = ~(rpcvers_t)0;
1087 	*vers_max = 0;
1088 
1089 	for (i = 0; i < sct->sct_size; i++) {
1090 		SVC_CALLOUT *sc = &sct->sct_sc[i];
1091 
1092 		if (prog == sc->sc_prog) {
1093 			if (vers >= sc->sc_versmin && vers <= sc->sc_versmax)
1094 				return (sc->sc_dispatch);
1095 
1096 			if (*vers_max < sc->sc_versmax)
1097 				*vers_max = sc->sc_versmax;
1098 			if (*vers_min > sc->sc_versmin)
1099 				*vers_min = sc->sc_versmin;
1100 		}
1101 	}
1102 
1103 	return (NULL);
1104 }
1105 
1106 /*
1107  * Optionally free callout table allocated for this transport by
1108  * the service provider.
1109  */
1110 static void
1111 svc_callout_free(SVCMASTERXPRT *xprt)
1112 {
1113 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1114 
1115 	if (sct->sct_free) {
1116 		kmem_free(sct->sct_sc, sct->sct_size * sizeof (SVC_CALLOUT));
1117 		kmem_free(sct, sizeof (SVC_CALLOUT_TABLE));
1118 	}
1119 }
1120 
1121 /*
1122  * Send a reply to an RPC request
1123  *
1124  * PSARC 2003/523 Contract Private Interface
1125  * svc_sendreply
1126  * Changes must be reviewed by Solaris File Sharing
1127  * Changes must be communicated to contract-2003-523@sun.com
1128  */
1129 bool_t
1130 svc_sendreply(const SVCXPRT *clone_xprt, const xdrproc_t xdr_results,
1131     const caddr_t xdr_location)
1132 {
1133 	struct rpc_msg rply;
1134 
1135 	rply.rm_direction = REPLY;
1136 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1137 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1138 	rply.acpted_rply.ar_stat = SUCCESS;
1139 	rply.acpted_rply.ar_results.where = xdr_location;
1140 	rply.acpted_rply.ar_results.proc = xdr_results;
1141 
1142 	return (SVC_REPLY((SVCXPRT *)clone_xprt, &rply));
1143 }
1144 
1145 /*
1146  * No procedure error reply
1147  *
1148  * PSARC 2003/523 Contract Private Interface
1149  * svcerr_noproc
1150  * Changes must be reviewed by Solaris File Sharing
1151  * Changes must be communicated to contract-2003-523@sun.com
1152  */
1153 void
1154 svcerr_noproc(const SVCXPRT *clone_xprt)
1155 {
1156 	struct rpc_msg rply;
1157 
1158 	rply.rm_direction = REPLY;
1159 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1160 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1161 	rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1162 	SVC_FREERES((SVCXPRT *)clone_xprt);
1163 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1164 }
1165 
1166 /*
1167  * Can't decode arguments error reply
1168  *
1169  * PSARC 2003/523 Contract Private Interface
1170  * svcerr_decode
1171  * Changes must be reviewed by Solaris File Sharing
1172  * Changes must be communicated to contract-2003-523@sun.com
1173  */
1174 void
1175 svcerr_decode(const SVCXPRT *clone_xprt)
1176 {
1177 	struct rpc_msg rply;
1178 
1179 	rply.rm_direction = REPLY;
1180 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1181 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1182 	rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1183 	SVC_FREERES((SVCXPRT *)clone_xprt);
1184 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1185 }
1186 
1187 /*
1188  * Some system error
1189  */
1190 void
1191 svcerr_systemerr(const SVCXPRT *clone_xprt)
1192 {
1193 	struct rpc_msg rply;
1194 
1195 	rply.rm_direction = REPLY;
1196 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1197 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1198 	rply.acpted_rply.ar_stat = SYSTEM_ERR;
1199 	SVC_FREERES((SVCXPRT *)clone_xprt);
1200 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1201 }
1202 
1203 /*
1204  * Authentication error reply
1205  */
1206 void
1207 svcerr_auth(const SVCXPRT *clone_xprt, const enum auth_stat why)
1208 {
1209 	struct rpc_msg rply;
1210 
1211 	rply.rm_direction = REPLY;
1212 	rply.rm_reply.rp_stat = MSG_DENIED;
1213 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1214 	rply.rjcted_rply.rj_why = why;
1215 	SVC_FREERES((SVCXPRT *)clone_xprt);
1216 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1217 }
1218 
1219 /*
1220  * Authentication too weak error reply
1221  */
1222 void
1223 svcerr_weakauth(const SVCXPRT *clone_xprt)
1224 {
1225 	svcerr_auth((SVCXPRT *)clone_xprt, AUTH_TOOWEAK);
1226 }
1227 
1228 /*
1229  * Program unavailable error reply
1230  *
1231  * PSARC 2003/523 Contract Private Interface
1232  * svcerr_noprog
1233  * Changes must be reviewed by Solaris File Sharing
1234  * Changes must be communicated to contract-2003-523@sun.com
1235  */
1236 void
1237 svcerr_noprog(const SVCXPRT *clone_xprt)
1238 {
1239 	struct rpc_msg rply;
1240 
1241 	rply.rm_direction = REPLY;
1242 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1243 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1244 	rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1245 	SVC_FREERES((SVCXPRT *)clone_xprt);
1246 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1247 }
1248 
1249 /*
1250  * Program version mismatch error reply
1251  *
1252  * PSARC 2003/523 Contract Private Interface
1253  * svcerr_progvers
1254  * Changes must be reviewed by Solaris File Sharing
1255  * Changes must be communicated to contract-2003-523@sun.com
1256  */
1257 void
1258 svcerr_progvers(const SVCXPRT *clone_xprt,
1259     const rpcvers_t low_vers, const rpcvers_t high_vers)
1260 {
1261 	struct rpc_msg rply;
1262 
1263 	rply.rm_direction = REPLY;
1264 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1265 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1266 	rply.acpted_rply.ar_stat = PROG_MISMATCH;
1267 	rply.acpted_rply.ar_vers.low = low_vers;
1268 	rply.acpted_rply.ar_vers.high = high_vers;
1269 	SVC_FREERES((SVCXPRT *)clone_xprt);
1270 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1271 }
1272 
1273 /*
1274  * Get server side input from some transport.
1275  *
1276  * Statement of authentication parameters management:
1277  * This function owns and manages all authentication parameters, specifically
1278  * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1279  * the "cooked" credentials (rqst->rq_clntcred).
1280  * However, this function does not know the structure of the cooked
1281  * credentials, so it make the following assumptions:
1282  *   a) the structure is contiguous (no pointers), and
1283  *   b) the cred structure size does not exceed RQCRED_SIZE bytes.
1284  * In all events, all three parameters are freed upon exit from this routine.
1285  * The storage is trivially managed on the call stack in user land, but
1286  * is malloced in kernel land.
1287  *
1288  * Note: the xprt's xp_svc_lock is not held while the service's dispatch
1289  * routine is running.	If we decide to implement svc_unregister(), we'll
1290  * need to decide whether it's okay for a thread to unregister a service
1291  * while a request is being processed.	If we decide that this is a
1292  * problem, we can probably use some sort of reference counting scheme to
1293  * keep the callout entry from going away until the request has completed.
1294  */
1295 static void
1296 svc_getreq(
1297 	SVCXPRT *clone_xprt,	/* clone transport handle */
1298 	mblk_t *mp)
1299 {
1300 	struct rpc_msg msg;
1301 	struct svc_req r;
1302 	char  *cred_area;	/* too big to allocate on call stack */
1303 
1304 	TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_START,
1305 	    "svc_getreq_start:");
1306 
1307 	ASSERT(clone_xprt->xp_master != NULL);
1308 
1309 	/*
1310 	 * Firstly, allocate the authentication parameters' storage
1311 	 */
1312 	mutex_enter(&rqcred_lock);
1313 	if (rqcred_head) {
1314 		cred_area = rqcred_head;
1315 
1316 		/* LINTED pointer alignment */
1317 		rqcred_head = *(caddr_t *)rqcred_head;
1318 		mutex_exit(&rqcred_lock);
1319 	} else {
1320 		mutex_exit(&rqcred_lock);
1321 		cred_area = kmem_alloc(2 * MAX_AUTH_BYTES + RQCRED_SIZE,
1322 		    KM_SLEEP);
1323 	}
1324 	msg.rm_call.cb_cred.oa_base = cred_area;
1325 	msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1326 	r.rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1327 
1328 	/*
1329 	 * Now receive a message from the transport.
1330 	 */
1331 	if (SVC_RECV(clone_xprt, mp, &msg)) {
1332 		void (*dispatchroutine) (struct svc_req *, SVCXPRT *);
1333 		rpcvers_t vers_min;
1334 		rpcvers_t vers_max;
1335 		bool_t no_dispatch;
1336 		enum auth_stat why;
1337 
1338 		/*
1339 		 * Find the registered program and call its
1340 		 * dispatch routine.
1341 		 */
1342 		r.rq_xprt = clone_xprt;
1343 		r.rq_prog = msg.rm_call.cb_prog;
1344 		r.rq_vers = msg.rm_call.cb_vers;
1345 		r.rq_proc = msg.rm_call.cb_proc;
1346 		r.rq_cred = msg.rm_call.cb_cred;
1347 
1348 		/*
1349 		 * First authenticate the message.
1350 		 */
1351 		TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_START,
1352 		    "svc_getreq_auth_start:");
1353 		if ((why = sec_svc_msg(&r, &msg, &no_dispatch)) != AUTH_OK) {
1354 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1355 			    "svc_getreq_auth_end:(%S)", "failed");
1356 			svcerr_auth(clone_xprt, why);
1357 			/*
1358 			 * Free the arguments.
1359 			 */
1360 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1361 		} else if (no_dispatch) {
1362 			/*
1363 			 * XXX - when bug id 4053736 is done, remove
1364 			 * the SVC_FREEARGS() call.
1365 			 */
1366 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1367 		} else {
1368 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1369 			    "svc_getreq_auth_end:(%S)", "good");
1370 
1371 			dispatchroutine = svc_callout_find(clone_xprt,
1372 			    r.rq_prog, r.rq_vers, &vers_min, &vers_max);
1373 
1374 			if (dispatchroutine) {
1375 				(*dispatchroutine) (&r, clone_xprt);
1376 			} else {
1377 				/*
1378 				 * If we got here, the program or version
1379 				 * is not served ...
1380 				 */
1381 				if (vers_max == 0 ||
1382 				    version_keepquiet(clone_xprt))
1383 					svcerr_noprog(clone_xprt);
1384 				else
1385 					svcerr_progvers(clone_xprt, vers_min,
1386 					    vers_max);
1387 
1388 				/*
1389 				 * Free the arguments. For successful calls
1390 				 * this is done by the dispatch routine.
1391 				 */
1392 				(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1393 				/* Fall through to ... */
1394 			}
1395 			/*
1396 			 * Call cleanup procedure for RPCSEC_GSS.
1397 			 * This is a hack since there is currently no
1398 			 * op, such as SVC_CLEANAUTH. rpc_gss_cleanup
1399 			 * should only be called for a non null proc.
1400 			 * Null procs in RPC GSS are overloaded to
1401 			 * provide context setup and control. The main
1402 			 * purpose of rpc_gss_cleanup is to decrement the
1403 			 * reference count associated with the cached
1404 			 * GSS security context. We should never get here
1405 			 * for an RPCSEC_GSS null proc since *no_dispatch
1406 			 * would have been set to true from sec_svc_msg above.
1407 			 */
1408 			if (r.rq_cred.oa_flavor == RPCSEC_GSS)
1409 				rpc_gss_cleanup(clone_xprt);
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * Free authentication parameters' storage
1415 	 */
1416 	mutex_enter(&rqcred_lock);
1417 	/* LINTED pointer alignment */
1418 	*(caddr_t *)cred_area = rqcred_head;
1419 	rqcred_head = cred_area;
1420 	mutex_exit(&rqcred_lock);
1421 }
1422 
1423 /*
1424  * Allocate new clone transport handle.
1425  */
1426 static SVCXPRT *
1427 svc_clone_init(void)
1428 {
1429 	SVCXPRT *clone_xprt;
1430 
1431 	clone_xprt = kmem_zalloc(sizeof (SVCXPRT), KM_SLEEP);
1432 	clone_xprt->xp_cred = crget();
1433 	return (clone_xprt);
1434 }
1435 
1436 /*
1437  * Free memory allocated by svc_clone_init.
1438  */
1439 static void
1440 svc_clone_free(SVCXPRT *clone_xprt)
1441 {
1442 	/* Fre credentials from crget() */
1443 	if (clone_xprt->xp_cred)
1444 		crfree(clone_xprt->xp_cred);
1445 
1446 	kmem_free(clone_xprt, sizeof (SVCXPRT));
1447 }
1448 
1449 /*
1450  * Link a per-thread clone transport handle to a master
1451  * - increment a thread reference count on the master
1452  * - copy some of the master's fields to the clone
1453  * - call a transport specific clone routine.
1454  */
1455 static void
1456 svc_clone_link(SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1457 {
1458 	cred_t *cred = clone_xprt->xp_cred;
1459 
1460 	ASSERT(cred);
1461 
1462 	/*
1463 	 * Bump up master's thread count.
1464 	 * Linking a per-thread clone transport handle to a master
1465 	 * associates a service thread with the master.
1466 	 */
1467 	mutex_enter(&xprt->xp_thread_lock);
1468 	xprt->xp_threads++;
1469 	mutex_exit(&xprt->xp_thread_lock);
1470 
1471 	/* Clear everything */
1472 	bzero(clone_xprt, sizeof (SVCXPRT));
1473 
1474 	/* Set pointer to the master transport stucture */
1475 	clone_xprt->xp_master = xprt;
1476 
1477 	/* Structure copy of all the common fields */
1478 	clone_xprt->xp_xpc = xprt->xp_xpc;
1479 
1480 	/* Restore per-thread fields (xp_cred) */
1481 	clone_xprt->xp_cred = cred;
1482 
1483 	/*
1484 	 * NOTICE: There is no transport-type specific code now.
1485 	 *	   If you want to add a transport-type specific cloning code
1486 	 *	   add one more operation (e.g. xp_clone()) to svc_ops,
1487 	 *	   implement it for each transport type, and call it here
1488 	 *	   through an appropriate macro (e.g. SVC_CLONE()).
1489 	 */
1490 }
1491 
1492 /*
1493  * Unlink a non-detached clone transport handle from a master
1494  * - decrement a thread reference count on the master
1495  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1496  *   if this is the last non-detached/absolute thread on this transport
1497  *   then it will close/destroy the transport
1498  * - call transport specific function to destroy the clone handle
1499  * - clear xp_master to avoid recursion.
1500  */
1501 static void
1502 svc_clone_unlink(SVCXPRT *clone_xprt)
1503 {
1504 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1505 
1506 	/* This cannot be a detached thread */
1507 	ASSERT(!clone_xprt->xp_detached);
1508 	ASSERT(xprt->xp_threads > 0);
1509 
1510 	/* Decrement a reference count on the transport */
1511 	mutex_enter(&xprt->xp_thread_lock);
1512 	xprt->xp_threads--;
1513 
1514 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1515 	if (xprt->xp_wq)
1516 		mutex_exit(&xprt->xp_thread_lock);
1517 	else
1518 		svc_xprt_cleanup(xprt, FALSE);
1519 
1520 	/* Call a transport specific clone `destroy' function */
1521 	SVC_CLONE_DESTROY(clone_xprt);
1522 
1523 	/* Clear xp_master */
1524 	clone_xprt->xp_master = NULL;
1525 }
1526 
1527 /*
1528  * Unlink a detached clone transport handle from a master
1529  * - decrement the thread count on the master
1530  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1531  *   if this is the last thread on this transport then it will destroy
1532  *   the transport.
1533  * - call a transport specific function to destroy the clone handle
1534  * - clear xp_master to avoid recursion.
1535  */
1536 static void
1537 svc_clone_unlinkdetached(SVCXPRT *clone_xprt)
1538 {
1539 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1540 
1541 	/* This must be a detached thread */
1542 	ASSERT(clone_xprt->xp_detached);
1543 	ASSERT(xprt->xp_detached_threads > 0);
1544 	ASSERT(xprt->xp_threads + xprt->xp_detached_threads > 0);
1545 
1546 	/* Grab xprt->xp_thread_lock and decrement link counts */
1547 	mutex_enter(&xprt->xp_thread_lock);
1548 	xprt->xp_detached_threads--;
1549 
1550 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1551 	if (xprt->xp_wq)
1552 		mutex_exit(&xprt->xp_thread_lock);
1553 	else
1554 		svc_xprt_cleanup(xprt, TRUE);
1555 
1556 	/* Call transport specific clone `destroy' function */
1557 	SVC_CLONE_DESTROY(clone_xprt);
1558 
1559 	/* Clear xp_master */
1560 	clone_xprt->xp_master = NULL;
1561 }
1562 
1563 /*
1564  * Try to exit a non-detached service thread
1565  * - check if there are enough threads left
1566  * - if this thread (ie its clone transport handle) are linked
1567  *   to a master transport then unlink it
1568  * - free the clone structure
1569  * - return to userland for thread exit
1570  *
1571  * If this is the last non-detached or the last thread on this
1572  * transport then the call to svc_clone_unlink() will, respectively,
1573  * close and/or destroy the transport.
1574  */
1575 static void
1576 svc_thread_exit(SVCPOOL *pool, SVCXPRT *clone_xprt)
1577 {
1578 	if (clone_xprt->xp_master)
1579 		svc_clone_unlink(clone_xprt);
1580 	svc_clone_free(clone_xprt);
1581 
1582 	mutex_enter(&pool->p_thread_lock);
1583 	pool->p_threads--;
1584 	if (pool->p_closing && svc_pool_tryexit(pool))
1585 		/* return -  thread exit will be handled at user level */
1586 		return;
1587 	mutex_exit(&pool->p_thread_lock);
1588 
1589 	/* return -  thread exit will be handled at user level */
1590 }
1591 
1592 /*
1593  * Exit a detached service thread that returned to svc_run
1594  * - decrement the `detached thread' count for the pool
1595  * - unlink the detached clone transport handle from the master
1596  * - free the clone structure
1597  * - return to userland for thread exit
1598  *
1599  * If this is the last thread on this transport then the call
1600  * to svc_clone_unlinkdetached() will destroy the transport.
1601  */
1602 static void
1603 svc_thread_exitdetached(SVCPOOL *pool, SVCXPRT *clone_xprt)
1604 {
1605 	/* This must be a detached thread */
1606 	ASSERT(clone_xprt->xp_master);
1607 	ASSERT(clone_xprt->xp_detached);
1608 	ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
1609 
1610 	svc_clone_unlinkdetached(clone_xprt);
1611 	svc_clone_free(clone_xprt);
1612 
1613 	mutex_enter(&pool->p_thread_lock);
1614 
1615 	ASSERT(pool->p_reserved_threads >= 0);
1616 	ASSERT(pool->p_detached_threads > 0);
1617 
1618 	pool->p_detached_threads--;
1619 	if (pool->p_closing && svc_pool_tryexit(pool))
1620 		/* return -  thread exit will be handled at user level */
1621 		return;
1622 	mutex_exit(&pool->p_thread_lock);
1623 
1624 	/* return -  thread exit will be handled at user level */
1625 }
1626 
1627 /*
1628  * PSARC 2003/523 Contract Private Interface
1629  * svc_wait
1630  * Changes must be reviewed by Solaris File Sharing
1631  * Changes must be communicated to contract-2003-523@sun.com
1632  */
1633 int
1634 svc_wait(int id)
1635 {
1636 	SVCPOOL *pool;
1637 	int	err = 0;
1638 	struct svc_globals *svc;
1639 
1640 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
1641 	mutex_enter(&svc->svc_plock);
1642 	pool = svc_pool_find(svc, id);
1643 	mutex_exit(&svc->svc_plock);
1644 
1645 	if (pool == NULL)
1646 		return (ENOENT);
1647 
1648 	mutex_enter(&pool->p_user_lock);
1649 
1650 	/* Check if there's already a user thread waiting on this pool */
1651 	if (pool->p_user_waiting) {
1652 		mutex_exit(&pool->p_user_lock);
1653 		return (EBUSY);
1654 	}
1655 
1656 	pool->p_user_waiting = TRUE;
1657 
1658 	/* Go to sleep, waiting for the signaled flag. */
1659 	while (!pool->p_signal_create_thread && !pool->p_user_exit) {
1660 		if (cv_wait_sig(&pool->p_user_cv, &pool->p_user_lock) == 0) {
1661 			/* Interrupted, return to handle exit or signal */
1662 			pool->p_user_waiting = FALSE;
1663 			pool->p_signal_create_thread = FALSE;
1664 			mutex_exit(&pool->p_user_lock);
1665 
1666 			/*
1667 			 * Thread has been interrupted and therefore
1668 			 * the service daemon is leaving as well so
1669 			 * let's go ahead and remove the service
1670 			 * pool at this time.
1671 			 */
1672 			mutex_enter(&svc->svc_plock);
1673 			svc_pool_unregister(svc, pool);
1674 			mutex_exit(&svc->svc_plock);
1675 
1676 			return (EINTR);
1677 		}
1678 	}
1679 
1680 	pool->p_signal_create_thread = FALSE;
1681 	pool->p_user_waiting = FALSE;
1682 
1683 	/*
1684 	 * About to exit the service pool. Set return value
1685 	 * to let the userland code know our intent. Signal
1686 	 * svc_thread_creator() so that it can clean up the
1687 	 * pool structure.
1688 	 */
1689 	if (pool->p_user_exit) {
1690 		err = ECANCELED;
1691 		cv_signal(&pool->p_user_cv);
1692 	}
1693 
1694 	mutex_exit(&pool->p_user_lock);
1695 
1696 	/* Return to userland with error code, for possible thread creation. */
1697 	return (err);
1698 }
1699 
1700 /*
1701  * `Service threads' creator thread.
1702  * The creator thread waits for a signal to create new thread.
1703  */
1704 static void
1705 svc_thread_creator(SVCPOOL *pool)
1706 {
1707 	callb_cpr_t cpr_info;	/* CPR info for the creator thread */
1708 
1709 	CALLB_CPR_INIT(&cpr_info, &pool->p_creator_lock, callb_generic_cpr,
1710 	    "svc_thread_creator");
1711 
1712 	for (;;) {
1713 		mutex_enter(&pool->p_creator_lock);
1714 
1715 		/* Check if someone set the exit flag */
1716 		if (pool->p_creator_exit)
1717 			break;
1718 
1719 		/* Clear the `signaled' flag and go asleep */
1720 		pool->p_creator_signaled = FALSE;
1721 
1722 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1723 		cv_wait(&pool->p_creator_cv, &pool->p_creator_lock);
1724 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1725 
1726 		/* Check if someone signaled to exit */
1727 		if (pool->p_creator_exit)
1728 			break;
1729 
1730 		mutex_exit(&pool->p_creator_lock);
1731 
1732 		mutex_enter(&pool->p_thread_lock);
1733 
1734 		/*
1735 		 * When the pool is in closing state and all the transports
1736 		 * are gone the creator should not create any new threads.
1737 		 */
1738 		if (pool->p_closing) {
1739 			rw_enter(&pool->p_lrwlock, RW_READER);
1740 			if (pool->p_lcount == 0) {
1741 				rw_exit(&pool->p_lrwlock);
1742 				mutex_exit(&pool->p_thread_lock);
1743 				continue;
1744 			}
1745 			rw_exit(&pool->p_lrwlock);
1746 		}
1747 
1748 		/*
1749 		 * Create a new service thread now.
1750 		 */
1751 		ASSERT(pool->p_reserved_threads >= 0);
1752 		ASSERT(pool->p_detached_threads >= 0);
1753 
1754 		if (pool->p_threads + pool->p_detached_threads <
1755 		    pool->p_maxthreads) {
1756 			/*
1757 			 * Signal the service pool wait thread
1758 			 * only if it hasn't already been signaled.
1759 			 */
1760 			mutex_enter(&pool->p_user_lock);
1761 			if (pool->p_signal_create_thread == FALSE) {
1762 				pool->p_signal_create_thread = TRUE;
1763 				cv_signal(&pool->p_user_cv);
1764 			}
1765 			mutex_exit(&pool->p_user_lock);
1766 
1767 		}
1768 
1769 		mutex_exit(&pool->p_thread_lock);
1770 	}
1771 
1772 	/*
1773 	 * Pool is closed. Cleanup and exit.
1774 	 */
1775 
1776 	/* Signal userland creator thread that it can stop now. */
1777 	mutex_enter(&pool->p_user_lock);
1778 	pool->p_user_exit = TRUE;
1779 	cv_broadcast(&pool->p_user_cv);
1780 	mutex_exit(&pool->p_user_lock);
1781 
1782 	/* Wait for svc_wait() to be done with the pool */
1783 	mutex_enter(&pool->p_user_lock);
1784 	while (pool->p_user_waiting) {
1785 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1786 		cv_wait(&pool->p_user_cv, &pool->p_user_lock);
1787 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1788 	}
1789 	mutex_exit(&pool->p_user_lock);
1790 
1791 	CALLB_CPR_EXIT(&cpr_info);
1792 	svc_pool_cleanup(pool);
1793 	zthread_exit();
1794 }
1795 
1796 /*
1797  * If the creator thread  is idle signal it to create
1798  * a new service thread.
1799  */
1800 static void
1801 svc_creator_signal(SVCPOOL *pool)
1802 {
1803 	mutex_enter(&pool->p_creator_lock);
1804 	if (pool->p_creator_signaled == FALSE) {
1805 		pool->p_creator_signaled = TRUE;
1806 		cv_signal(&pool->p_creator_cv);
1807 	}
1808 	mutex_exit(&pool->p_creator_lock);
1809 }
1810 
1811 /*
1812  * Notify the creator thread to clean up and exit.
1813  */
1814 static void
1815 svc_creator_signalexit(SVCPOOL *pool)
1816 {
1817 	mutex_enter(&pool->p_creator_lock);
1818 	pool->p_creator_exit = TRUE;
1819 	cv_signal(&pool->p_creator_cv);
1820 	mutex_exit(&pool->p_creator_lock);
1821 }
1822 
1823 /*
1824  * Polling part of the svc_run().
1825  * - search for a transport with a pending request
1826  * - when one is found then latch the request lock and return to svc_run()
1827  * - if there is no request go asleep and wait for a signal
1828  * - handle two exceptions:
1829  *   a) current transport is closing
1830  *   b) timeout waiting for a new request
1831  *   in both cases return to svc_run()
1832  */
1833 static SVCMASTERXPRT *
1834 svc_poll(SVCPOOL *pool, SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1835 {
1836 	/*
1837 	 * Main loop iterates until
1838 	 * a) we find a pending request,
1839 	 * b) detect that the current transport is closing
1840 	 * c) time out waiting for a new request.
1841 	 */
1842 	for (;;) {
1843 		SVCMASTERXPRT *next;
1844 		clock_t timeleft;
1845 
1846 		/*
1847 		 * Step 1.
1848 		 * Check if there is a pending request on the current
1849 		 * transport handle so that we can avoid cloning.
1850 		 * If so then decrement the `pending-request' count for
1851 		 * the pool and return to svc_run().
1852 		 *
1853 		 * We need to prevent a potential starvation. When
1854 		 * a selected transport has all pending requests coming in
1855 		 * all the time then the service threads will never switch to
1856 		 * another transport. With a limited number of service
1857 		 * threads some transports may be never serviced.
1858 		 * To prevent such a scenario we pick up at most
1859 		 * pool->p_max_same_xprt requests from the same transport
1860 		 * and then take a hint from the xprt-ready queue or walk
1861 		 * the transport list.
1862 		 */
1863 		if (xprt && xprt->xp_req_head && (!pool->p_qoverflow ||
1864 		    clone_xprt->xp_same_xprt++ < pool->p_max_same_xprt)) {
1865 			mutex_enter(&xprt->xp_req_lock);
1866 			if (xprt->xp_req_head) {
1867 				mutex_enter(&pool->p_req_lock);
1868 				pool->p_reqs--;
1869 				mutex_exit(&pool->p_req_lock);
1870 
1871 				return (xprt);
1872 			}
1873 			mutex_exit(&xprt->xp_req_lock);
1874 		}
1875 		clone_xprt->xp_same_xprt = 0;
1876 
1877 		/*
1878 		 * Step 2.
1879 		 * If there is no request on the current transport try to
1880 		 * find another transport with a pending request.
1881 		 */
1882 		mutex_enter(&pool->p_req_lock);
1883 		pool->p_walkers++;
1884 		mutex_exit(&pool->p_req_lock);
1885 
1886 		/*
1887 		 * Make sure that transports will not be destroyed just
1888 		 * while we are checking them.
1889 		 */
1890 		rw_enter(&pool->p_lrwlock, RW_READER);
1891 
1892 		for (;;) {
1893 			SVCMASTERXPRT *hint;
1894 
1895 			/*
1896 			 * Get the next transport from the xprt-ready queue.
1897 			 * This is a hint. There is no guarantee that the
1898 			 * transport still has a pending request since it
1899 			 * could be picked up by another thread in step 1.
1900 			 *
1901 			 * If the transport has a pending request then keep
1902 			 * it locked. Decrement the `pending-requests' for
1903 			 * the pool and `walking-threads' counts, and return
1904 			 * to svc_run().
1905 			 */
1906 			hint = svc_xprt_qget(pool);
1907 
1908 			if (hint && hint->xp_req_head) {
1909 				mutex_enter(&hint->xp_req_lock);
1910 				if (hint->xp_req_head) {
1911 					rw_exit(&pool->p_lrwlock);
1912 
1913 					mutex_enter(&pool->p_req_lock);
1914 					pool->p_reqs--;
1915 					pool->p_walkers--;
1916 					mutex_exit(&pool->p_req_lock);
1917 
1918 					return (hint);
1919 				}
1920 				mutex_exit(&hint->xp_req_lock);
1921 			}
1922 
1923 			/*
1924 			 * If there was no hint in the xprt-ready queue then
1925 			 * - if there is less pending requests than polling
1926 			 *   threads go asleep
1927 			 * - otherwise check if there was an overflow in the
1928 			 *   xprt-ready queue; if so, then we need to break
1929 			 *   the `drain' mode
1930 			 */
1931 			if (hint == NULL) {
1932 				if (pool->p_reqs < pool->p_walkers) {
1933 					mutex_enter(&pool->p_req_lock);
1934 					if (pool->p_reqs < pool->p_walkers)
1935 						goto sleep;
1936 					mutex_exit(&pool->p_req_lock);
1937 				}
1938 				if (pool->p_qoverflow) {
1939 					break;
1940 				}
1941 			}
1942 		}
1943 
1944 		/*
1945 		 * If there was an overflow in the xprt-ready queue then we
1946 		 * need to switch to the `drain' mode, i.e. walk through the
1947 		 * pool's transport list and search for a transport with a
1948 		 * pending request. If we manage to drain all the pending
1949 		 * requests then we can clear the overflow flag. This will
1950 		 * switch svc_poll() back to taking hints from the xprt-ready
1951 		 * queue (which is generally more efficient).
1952 		 *
1953 		 * If there are no registered transports simply go asleep.
1954 		 */
1955 		if (xprt == NULL && pool->p_lhead == NULL) {
1956 			mutex_enter(&pool->p_req_lock);
1957 			goto sleep;
1958 		}
1959 
1960 		/*
1961 		 * `Walk' through the pool's list of master server
1962 		 * transport handles. Continue to loop until there are less
1963 		 * looping threads then pending requests.
1964 		 */
1965 		next = xprt ? xprt->xp_next : pool->p_lhead;
1966 
1967 		for (;;) {
1968 			/*
1969 			 * Check if there is a request on this transport.
1970 			 *
1971 			 * Since blocking on a locked mutex is very expensive
1972 			 * check for a request without a lock first. If we miss
1973 			 * a request that is just being delivered but this will
1974 			 * cost at most one full walk through the list.
1975 			 */
1976 			if (next->xp_req_head) {
1977 				/*
1978 				 * Check again, now with a lock.
1979 				 */
1980 				mutex_enter(&next->xp_req_lock);
1981 				if (next->xp_req_head) {
1982 					rw_exit(&pool->p_lrwlock);
1983 
1984 					mutex_enter(&pool->p_req_lock);
1985 					pool->p_reqs--;
1986 					pool->p_walkers--;
1987 					mutex_exit(&pool->p_req_lock);
1988 
1989 					return (next);
1990 				}
1991 				mutex_exit(&next->xp_req_lock);
1992 			}
1993 
1994 			/*
1995 			 * Continue to `walk' through the pool's
1996 			 * transport list until there is less requests
1997 			 * than walkers. Check this condition without
1998 			 * a lock first to avoid contention on a mutex.
1999 			 */
2000 			if (pool->p_reqs < pool->p_walkers) {
2001 				/*
2002 				 * Check again, now with the lock.
2003 				 * If all the pending requests have been
2004 				 * picked up than clear the overflow flag.
2005 				 */
2006 				mutex_enter(&pool->p_req_lock);
2007 				if (pool->p_reqs <= 0)
2008 					svc_xprt_qreset(pool);
2009 				if (pool->p_reqs < pool->p_walkers)
2010 					break;	/* goto sleep */
2011 				mutex_exit(&pool->p_req_lock);
2012 			}
2013 
2014 			next = next->xp_next;
2015 		}
2016 
2017 	sleep:
2018 		/*
2019 		 * No work to do. Stop the `walk' and go asleep.
2020 		 * Decrement the `walking-threads' count for the pool.
2021 		 */
2022 		pool->p_walkers--;
2023 		rw_exit(&pool->p_lrwlock);
2024 
2025 		/*
2026 		 * Count us as asleep, mark this thread as safe
2027 		 * for suspend and wait for a request.
2028 		 */
2029 		pool->p_asleep++;
2030 		timeleft = cv_timedwait_sig(&pool->p_req_cv, &pool->p_req_lock,
2031 		    pool->p_timeout + lbolt);
2032 
2033 		/*
2034 		 * If the drowsy flag is on this means that
2035 		 * someone has signaled a wakeup. In such a case
2036 		 * the `asleep-threads' count has already updated
2037 		 * so just clear the flag.
2038 		 *
2039 		 * If the drowsy flag is off then we need to update
2040 		 * the `asleep-threads' count.
2041 		 */
2042 		if (pool->p_drowsy) {
2043 			pool->p_drowsy = FALSE;
2044 			/*
2045 			 * If the thread is here because it timedout,
2046 			 * instead of returning SVC_ETIMEDOUT, it is
2047 			 * time to do some more work.
2048 			 */
2049 			if (timeleft == -1)
2050 				timeleft = 1;
2051 		} else {
2052 			pool->p_asleep--;
2053 		}
2054 		mutex_exit(&pool->p_req_lock);
2055 
2056 		/*
2057 		 * If we received a signal while waiting for a
2058 		 * request, inform svc_run(), so that we can return
2059 		 * to user level and restart the call.
2060 		 */
2061 		if (timeleft == 0)
2062 			return (SVC_EINTR);
2063 
2064 		/*
2065 		 * If the current transport is gone then notify
2066 		 * svc_run() to unlink from it.
2067 		 */
2068 		if (xprt && xprt->xp_wq == NULL)
2069 			return (SVC_EXPRTGONE);
2070 
2071 		/*
2072 		 * If we have timed out waiting for a request inform
2073 		 * svc_run() that we probably don't need this thread.
2074 		 */
2075 		if (timeleft == -1)
2076 			return (SVC_ETIMEDOUT);
2077 	}
2078 }
2079 
2080 /*
2081  * Main loop of the kernel RPC server
2082  * - wait for input (find a transport with a pending request).
2083  * - dequeue the request
2084  * - call a registered server routine to process the requests
2085  *
2086  * There can many threads running concurrently in this loop
2087  * on the same or on different transports.
2088  */
2089 static int
2090 svc_run(SVCPOOL *pool)
2091 {
2092 	SVCMASTERXPRT *xprt = NULL;	/* master transport handle  */
2093 	SVCXPRT *clone_xprt;	/* clone for this thread    */
2094 	struct svc_globals *svc;
2095 	proc_t *p = ttoproc(curthread);
2096 
2097 	/* Allocate a clone transport handle for this thread */
2098 	clone_xprt = svc_clone_init();
2099 
2100 	/*
2101 	 * The loop iterates until the thread becomes
2102 	 * idle too long or the transport is gone.
2103 	 */
2104 	for (;;) {
2105 		SVCMASTERXPRT *next;
2106 		mblk_t *mp;
2107 
2108 		TRACE_0(TR_FAC_KRPC, TR_SVC_RUN, "svc_run");
2109 
2110 		/*
2111 		 * If the process is exiting/killed, return
2112 		 * immediately without processing any more
2113 		 * requests.
2114 		 */
2115 		if (p->p_flag & (SEXITING | SKILLED)) {
2116 			svc_thread_exit(pool, clone_xprt);
2117 
2118 			/*
2119 			 * Thread has been interrupted and therefore
2120 			 * the service daemon is leaving as well so
2121 			 * let's go ahead and remove the service
2122 			 * pool at this time.
2123 			 */
2124 			svc = zone_getspecific(svc_zone_key, curproc->p_zone);
2125 			mutex_enter(&svc->svc_plock);
2126 			svc_pool_unregister(svc, pool);
2127 			mutex_exit(&svc->svc_plock);
2128 
2129 			return (0);
2130 		}
2131 
2132 		/* Find a transport with a pending request */
2133 		next = svc_poll(pool, xprt, clone_xprt);
2134 
2135 		/*
2136 		 * If svc_poll() finds a transport with a request
2137 		 * it latches xp_req_lock on it. Therefore we need
2138 		 * to dequeue the request and release the lock as
2139 		 * soon as possible.
2140 		 */
2141 		ASSERT(next != NULL &&
2142 		    (next == SVC_EXPRTGONE ||
2143 		    next == SVC_ETIMEDOUT ||
2144 		    next == SVC_EINTR ||
2145 		    MUTEX_HELD(&next->xp_req_lock)));
2146 
2147 		/* Ooops! Current transport is closing. Unlink now */
2148 		if (next == SVC_EXPRTGONE) {
2149 			svc_clone_unlink(clone_xprt);
2150 			xprt = NULL;
2151 			continue;
2152 		}
2153 
2154 		/* Ooops! Timeout while waiting for a request. Exit */
2155 		if (next == SVC_ETIMEDOUT) {
2156 			svc_thread_exit(pool, clone_xprt);
2157 			return (0);
2158 		}
2159 
2160 		/*
2161 		 * Interrupted by a signal while waiting for a
2162 		 * request. Return to userspace and restart.
2163 		 */
2164 		if (next == SVC_EINTR) {
2165 			svc_thread_exit(pool, clone_xprt);
2166 
2167 			/*
2168 			 * Thread has been interrupted and therefore
2169 			 * the service daemon is leaving as well so
2170 			 * let's go ahead and remove the service
2171 			 * pool at this time.
2172 			 */
2173 			svc = zone_getspecific(svc_zone_key, curproc->p_zone);
2174 			mutex_enter(&svc->svc_plock);
2175 			svc_pool_unregister(svc, pool);
2176 			mutex_exit(&svc->svc_plock);
2177 
2178 			return (EINTR);
2179 		}
2180 
2181 		/*
2182 		 * De-queue the request and release the request lock
2183 		 * on this transport (latched by svc_poll()).
2184 		 */
2185 		mp = next->xp_req_head;
2186 		next->xp_req_head = mp->b_next;
2187 		mp->b_next = (mblk_t *)0;
2188 
2189 		TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_DEQ,
2190 		    "rpc_que_req_deq:pool %p mp %p", pool, mp);
2191 		mutex_exit(&next->xp_req_lock);
2192 
2193 		/*
2194 		 * If this is a new request on a current transport then
2195 		 * the clone structure is already properly initialized.
2196 		 * Otherwise, if the request is on a different transport,
2197 		 * unlink from the current master and link to
2198 		 * the one we got a request on.
2199 		 */
2200 		if (next != xprt) {
2201 			if (xprt)
2202 				svc_clone_unlink(clone_xprt);
2203 			svc_clone_link(next, clone_xprt);
2204 			xprt = next;
2205 		}
2206 
2207 		/*
2208 		 * If there are more requests and req_cv hasn't
2209 		 * been signaled yet then wake up one more thread now.
2210 		 *
2211 		 * We avoid signaling req_cv until the most recently
2212 		 * signaled thread wakes up and gets CPU to clear
2213 		 * the `drowsy' flag.
2214 		 */
2215 		if (!(pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2216 		    pool->p_asleep == 0)) {
2217 			mutex_enter(&pool->p_req_lock);
2218 
2219 			if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2220 			    pool->p_asleep == 0)
2221 				mutex_exit(&pool->p_req_lock);
2222 			else {
2223 				pool->p_asleep--;
2224 				pool->p_drowsy = TRUE;
2225 
2226 				cv_signal(&pool->p_req_cv);
2227 				mutex_exit(&pool->p_req_lock);
2228 			}
2229 		}
2230 
2231 		/*
2232 		 * If there are no asleep/signaled threads, we are
2233 		 * still below pool->p_maxthreads limit, and no thread is
2234 		 * currently being created then signal the creator
2235 		 * for one more service thread.
2236 		 *
2237 		 * The asleep and drowsy checks are not protected
2238 		 * by a lock since it hurts performance and a wrong
2239 		 * decision is not essential.
2240 		 */
2241 		if (pool->p_asleep == 0 && !pool->p_drowsy &&
2242 		    pool->p_threads + pool->p_detached_threads <
2243 		    pool->p_maxthreads)
2244 			svc_creator_signal(pool);
2245 
2246 		/*
2247 		 * Process the request.
2248 		 */
2249 		svc_getreq(clone_xprt, mp);
2250 
2251 		/* If thread had a reservation it should have been canceled */
2252 		ASSERT(!clone_xprt->xp_reserved);
2253 
2254 		/*
2255 		 * If the clone is marked detached then exit.
2256 		 * The rpcmod slot has already been released
2257 		 * when we detached this thread.
2258 		 */
2259 		if (clone_xprt->xp_detached) {
2260 			svc_thread_exitdetached(pool, clone_xprt);
2261 			return (0);
2262 		}
2263 
2264 		/*
2265 		 * Release our reference on the rpcmod
2266 		 * slot attached to xp_wq->q_ptr.
2267 		 */
2268 		(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL);
2269 	}
2270 	/* NOTREACHED */
2271 }
2272 
2273 /*
2274  * Flush any pending requests for the queue and
2275  * and free the associated mblks.
2276  */
2277 void
2278 svc_queueclean(queue_t *q)
2279 {
2280 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2281 	mblk_t *mp;
2282 
2283 	/*
2284 	 * clean up the requests
2285 	 */
2286 	mutex_enter(&xprt->xp_req_lock);
2287 	while ((mp = xprt->xp_req_head) != NULL) {
2288 		xprt->xp_req_head = mp->b_next;
2289 		mp->b_next = (mblk_t *)0;
2290 		(*RELE_PROC(xprt)) (xprt->xp_wq, mp);
2291 	}
2292 	mutex_exit(&xprt->xp_req_lock);
2293 }
2294 
2295 /*
2296  * This routine is called by rpcmod to inform kernel RPC that a
2297  * queue is closing. It is called after all the requests have been
2298  * picked up (that is after all the slots on the queue have
2299  * been released by kernel RPC). It is also guaranteed that no more
2300  * request will be delivered on this transport.
2301  *
2302  * - clear xp_wq to mark the master server transport handle as closing
2303  * - if there are no more threads on this transport close/destroy it
2304  * - otherwise, broadcast threads sleeping in svc_poll(); the last
2305  *   thread will close/destroy the transport.
2306  */
2307 void
2308 svc_queueclose(queue_t *q)
2309 {
2310 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2311 
2312 	if (xprt == NULL) {
2313 		/*
2314 		 * If there is no master xprt associated with this stream,
2315 		 * then there is nothing to do.  This happens regularly
2316 		 * with connection-oriented listening streams created by
2317 		 * nfsd.
2318 		 */
2319 		return;
2320 	}
2321 
2322 	mutex_enter(&xprt->xp_thread_lock);
2323 
2324 	ASSERT(xprt->xp_req_head == NULL);
2325 	ASSERT(xprt->xp_wq != NULL);
2326 
2327 	xprt->xp_wq = NULL;
2328 
2329 	if (xprt->xp_threads == 0) {
2330 		SVCPOOL *pool = xprt->xp_pool;
2331 
2332 		/*
2333 		 * svc_xprt_cleanup() destroys the transport
2334 		 * or releases the transport thread lock
2335 		 */
2336 		svc_xprt_cleanup(xprt, FALSE);
2337 
2338 		mutex_enter(&pool->p_thread_lock);
2339 
2340 		/*
2341 		 * If the pool is in closing state and this was
2342 		 * the last transport in the pool then signal the creator
2343 		 * thread to clean up and exit.
2344 		 */
2345 		if (pool->p_closing && svc_pool_tryexit(pool)) {
2346 			return;
2347 		}
2348 		mutex_exit(&pool->p_thread_lock);
2349 	} else {
2350 		/*
2351 		 * Wakeup threads sleeping in svc_poll() so that they
2352 		 * unlink from the transport
2353 		 */
2354 		mutex_enter(&xprt->xp_pool->p_req_lock);
2355 		cv_broadcast(&xprt->xp_pool->p_req_cv);
2356 		mutex_exit(&xprt->xp_pool->p_req_lock);
2357 
2358 		/*
2359 		 *  NOTICE: No references to the master transport structure
2360 		 *	    beyond this point!
2361 		 */
2362 		mutex_exit(&xprt->xp_thread_lock);
2363 	}
2364 }
2365 
2366 /*
2367  * Interrupt `request delivery' routine called from rpcmod
2368  * - put a request at the tail of the transport request queue
2369  * - insert a hint for svc_poll() into the xprt-ready queue
2370  * - increment the `pending-requests' count for the pool
2371  * - wake up a thread sleeping in svc_poll() if necessary
2372  * - if all the threads are running ask the creator for a new one.
2373  */
2374 void
2375 svc_queuereq(queue_t *q, mblk_t *mp)
2376 {
2377 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2378 	SVCPOOL *pool = xprt->xp_pool;
2379 
2380 	TRACE_0(TR_FAC_KRPC, TR_SVC_QUEUEREQ_START, "svc_queuereq_start");
2381 
2382 	/*
2383 	 * Step 1.
2384 	 * Grab the transport's request lock and put
2385 	 * the request at the tail of the transport's
2386 	 * request queue.
2387 	 */
2388 	mutex_enter(&xprt->xp_req_lock);
2389 	if (xprt->xp_req_head == NULL)
2390 		xprt->xp_req_head = mp;
2391 	else
2392 		xprt->xp_req_tail->b_next = mp;
2393 	xprt->xp_req_tail = mp;
2394 
2395 	mutex_exit(&xprt->xp_req_lock);
2396 
2397 	/*
2398 	 * Step 2.
2399 	 * Grab the pool request lock, insert a hint into
2400 	 * the xprt-ready queue, increment `pending-requests'
2401 	 * count for the pool, and wake up a thread sleeping
2402 	 * in svc_poll() if necessary.
2403 	 */
2404 	mutex_enter(&pool->p_req_lock);
2405 
2406 	/* Insert pointer to this transport into the xprt-ready queue */
2407 	svc_xprt_qput(pool, xprt);
2408 
2409 	/* Increment the `pending-requests' count for the pool */
2410 	pool->p_reqs++;
2411 
2412 	TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_ENQ,
2413 	    "rpc_que_req_enq:pool %p mp %p", pool, mp);
2414 
2415 	/*
2416 	 * If there are more requests and req_cv hasn't
2417 	 * been signaled yet then wake up one more thread now.
2418 	 *
2419 	 * We avoid signaling req_cv until the most recently
2420 	 * signaled thread wakes up and gets CPU to clear
2421 	 * the `drowsy' flag.
2422 	 */
2423 	if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2424 	    pool->p_asleep == 0) {
2425 		mutex_exit(&pool->p_req_lock);
2426 	} else {
2427 		pool->p_drowsy = TRUE;
2428 		pool->p_asleep--;
2429 
2430 		/*
2431 		 * Signal wakeup and drop the request lock.
2432 		 */
2433 		cv_signal(&pool->p_req_cv);
2434 		mutex_exit(&pool->p_req_lock);
2435 	}
2436 
2437 	/*
2438 	 * Step 3.
2439 	 * If there are no asleep/signaled threads, we are
2440 	 * still below pool->p_maxthreads limit, and no thread is
2441 	 * currently being created then signal the creator
2442 	 * for one more service thread.
2443 	 *
2444 	 * The asleep and drowsy checks are not not protected
2445 	 * by a lock since it hurts performance and a wrong
2446 	 * decision is not essential.
2447 	 */
2448 	if (pool->p_asleep == 0 && !pool->p_drowsy &&
2449 		pool->p_threads + pool->p_detached_threads < pool->p_maxthreads)
2450 		svc_creator_signal(pool);
2451 
2452 	TRACE_1(TR_FAC_KRPC, TR_SVC_QUEUEREQ_END,
2453 	    "svc_queuereq_end:(%S)", "end");
2454 }
2455 
2456 /*
2457  * Reserve a service thread so that it can be detached later.
2458  * This reservation is required to make sure that when it tries to
2459  * detach itself the total number of detached threads does not exceed
2460  * pool->p_maxthreads - pool->p_redline (i.e. that we can have
2461  * up to pool->p_redline non-detached threads).
2462  *
2463  * If the thread does not detach itself later, it should cancel the
2464  * reservation before returning to svc_run().
2465  *
2466  * - check if there is room for more reserved/detached threads
2467  * - if so, then increment the `reserved threads' count for the pool
2468  * - mark the thread as reserved (setting the flag in the clone transport
2469  *   handle for this thread
2470  * - returns 1 if the reservation succeeded, 0 if it failed.
2471  */
2472 int
2473 svc_reserve_thread(SVCXPRT *clone_xprt)
2474 {
2475 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2476 
2477 	/* Recursive reservations are not allowed */
2478 	ASSERT(!clone_xprt->xp_reserved);
2479 	ASSERT(!clone_xprt->xp_detached);
2480 
2481 	/* Check pool counts if there is room for reservation */
2482 	mutex_enter(&pool->p_thread_lock);
2483 	if (pool->p_reserved_threads + pool->p_detached_threads >=
2484 		pool->p_maxthreads - pool->p_redline) {
2485 		mutex_exit(&pool->p_thread_lock);
2486 		return (0);
2487 	}
2488 	pool->p_reserved_threads++;
2489 	mutex_exit(&pool->p_thread_lock);
2490 
2491 	/* Mark the thread (clone handle) as reserved */
2492 	clone_xprt->xp_reserved = TRUE;
2493 
2494 	return (1);
2495 }
2496 
2497 /*
2498  * Cancel a reservation for a thread.
2499  * - decrement the `reserved threads' count for the pool
2500  * - clear the flag in the clone transport handle for this thread.
2501  */
2502 void
2503 svc_unreserve_thread(SVCXPRT *clone_xprt)
2504 {
2505 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2506 
2507 	/* Thread must have a reservation */
2508 	ASSERT(clone_xprt->xp_reserved);
2509 	ASSERT(!clone_xprt->xp_detached);
2510 
2511 	/* Decrement global count */
2512 	mutex_enter(&pool->p_thread_lock);
2513 	pool->p_reserved_threads--;
2514 	mutex_exit(&pool->p_thread_lock);
2515 
2516 	/* Clear reservation flag */
2517 	clone_xprt->xp_reserved = FALSE;
2518 }
2519 
2520 /*
2521  * Detach a thread from its transport, so that it can block for an
2522  * extended time.  Because the transport can be closed after the thread is
2523  * detached, the thread should have already sent off a reply if it was
2524  * going to send one.
2525  *
2526  * - decrement `non-detached threads' count and increment `detached threads'
2527  *   counts for the transport
2528  * - decrement the  `non-detached threads' and `reserved threads'
2529  *   counts and increment the `detached threads' count for the pool
2530  * - release the rpcmod slot
2531  * - mark the clone (thread) as detached.
2532  *
2533  * No need to return a pointer to the thread's CPR information, since
2534  * the thread has a userland identity.
2535  *
2536  * NOTICE: a thread must not detach itself without making a prior reservation
2537  *	   through svc_thread_reserve().
2538  */
2539 callb_cpr_t *
2540 svc_detach_thread(SVCXPRT *clone_xprt)
2541 {
2542 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
2543 	SVCPOOL *pool = xprt->xp_pool;
2544 
2545 	/* Thread must have a reservation */
2546 	ASSERT(clone_xprt->xp_reserved);
2547 	ASSERT(!clone_xprt->xp_detached);
2548 
2549 	/* Bookkeeping for this transport */
2550 	mutex_enter(&xprt->xp_thread_lock);
2551 	xprt->xp_threads--;
2552 	xprt->xp_detached_threads++;
2553 	mutex_exit(&xprt->xp_thread_lock);
2554 
2555 	/* Bookkeeping for the pool */
2556 	mutex_enter(&pool->p_thread_lock);
2557 	pool->p_threads--;
2558 	pool->p_reserved_threads--;
2559 	pool->p_detached_threads++;
2560 	mutex_exit(&pool->p_thread_lock);
2561 
2562 	/* Release an rpcmod slot for this request */
2563 	(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL);
2564 
2565 	/* Mark the clone (thread) as detached */
2566 	clone_xprt->xp_reserved = FALSE;
2567 	clone_xprt->xp_detached = TRUE;
2568 
2569 	return (NULL);
2570 }
2571 
2572 /*
2573  * This routine is responsible for extracting RDMA plugin master XPRT,
2574  * unregister from the SVCPOOL and initiate plugin specific cleanup.
2575  * It is passed a list/group of rdma transports as records which are
2576  * active in a given registered or unregistered kRPC thread pool. Its shuts
2577  * all active rdma transports in that pool. If the thread active on the trasport
2578  * happens to be last thread for that pool, it will signal the creater thread
2579  * to cleanup the pool and destroy the xprt in svc_queueclose()
2580  */
2581 void
2582 rdma_stop(rdma_xprt_group_t rdma_xprts)
2583 {
2584 	SVCMASTERXPRT *xprt;
2585 	rdma_xprt_record_t *curr_rec;
2586 	queue_t *q;
2587 	mblk_t *mp;
2588 	int i;
2589 
2590 	if (rdma_xprts.rtg_count == 0)
2591 		return;
2592 
2593 	for (i = 0; i < rdma_xprts.rtg_count; i++) {
2594 		curr_rec = rdma_xprts.rtg_listhead;
2595 		rdma_xprts.rtg_listhead = curr_rec->rtr_next;
2596 		curr_rec->rtr_next = NULL;
2597 		xprt = curr_rec->rtr_xprt_ptr;
2598 		q = xprt->xp_wq;
2599 		svc_rdma_kstop(xprt);
2600 
2601 		mutex_enter(&xprt->xp_req_lock);
2602 		while ((mp = xprt->xp_req_head) != NULL) {
2603 			xprt->xp_req_head = mp->b_next;
2604 			mp->b_next = (mblk_t *)0;
2605 			if (mp)
2606 				freemsg(mp);
2607 		}
2608 		mutex_exit(&xprt->xp_req_lock);
2609 		svc_queueclose(q);
2610 #ifdef	DEBUG
2611 		if (rdma_check)
2612 			cmn_err(CE_NOTE, "rdma_stop: Exited svc_queueclose\n");
2613 #endif
2614 		/*
2615 		 * Free the rdma transport record for the expunged rdma
2616 		 * based master transport handle.
2617 		 */
2618 		kmem_free(curr_rec, sizeof (rdma_xprt_record_t));
2619 		if (!rdma_xprts.rtg_listhead)
2620 			break;
2621 	}
2622 }
2623