xref: /titanic_51/usr/src/uts/common/rpc/svc.c (revision 1a7c1b724419d3cb5fa6eea75123c6b2060ba31b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
29  */
30 
31 /*	Copyright (c) 1983, 1984, 1985,  1986, 1987, 1988, 1989 AT&T	*/
32 /*	  All Rights Reserved  	*/
33 
34 /*
35  * Portions of this source code were derived from Berkeley 4.3 BSD
36  * under license from the Regents of the University of California.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * Server-side remote procedure call interface.
43  *
44  * Master transport handle (SVCMASTERXPRT).
45  *   The master transport handle structure is shared among service
46  *   threads processing events on the transport. Some fields in the
47  *   master structure are protected by locks
48  *   - xp_req_lock protects the request queue:
49  *	xp_req_head, xp_req_tail
50  *   - xp_thread_lock protects the thread (clone) counts
51  *	xp_threads, xp_detached_threads, xp_wq
52  *   Each master transport is registered to exactly one thread pool.
53  *
54  * Clone transport handle (SVCXPRT)
55  *   The clone transport handle structure is a per-service-thread handle
56  *   to the transport. The structure carries all the fields/buffers used
57  *   for request processing. A service thread or, in other words, a clone
58  *   structure, can be linked to an arbitrary master structure to process
59  *   requests on this transport. The master handle keeps track of reference
60  *   counts of threads (clones) linked to it. A service thread can switch
61  *   to another transport by unlinking its clone handle from the current
62  *   transport and linking to a new one. Switching is relatively inexpensive
63  *   but it involves locking (master's xprt->xp_thread_lock).
64  *
65  * Pools.
66  *   A pool represents a kernel RPC service (NFS, Lock Manager, etc.).
67  *   Transports related to the service are registered to the service pool.
68  *   Service threads can switch between different transports in the pool.
69  *   Thus, each service has its own pool of service threads. The maximum
70  *   number of threads in a pool is pool->p_maxthreads. This limit allows
71  *   to restrict resource usage by the service. Some fields are protected
72  *   by locks:
73  *   - p_req_lock protects several counts and flags:
74  *	p_reqs, p_walkers, p_asleep, p_drowsy, p_req_cv
75  *   - p_thread_lock governs other thread counts:
76  *	p_threads, p_detached_threads, p_reserved_threads, p_closing
77  *
78  *   In addition, each pool contains a doubly-linked list of transports,
79  *   an `xprt-ready' queue and a creator thread (see below). Threads in
80  *   the pool share some other parameters such as stack size and
81  *   polling timeout.
82  *
83  *   Pools are initialized through the svc_pool_create() function called from
84  *   the nfssys() system call. However, thread creation must be done by
85  *   the userland agent. This is done by using SVCPOOL_WAIT and
86  *   SVCPOOL_RUN arguments to nfssys(), which call svc_wait() and
87  *   svc_do_run(), respectively. Once the pool has been initialized,
88  *   the userland process must set up a 'creator' thread. This thread
89  *   should park itself in the kernel by calling svc_wait(). If
90  *   svc_wait() returns successfully, it should fork off a new worker
91  *   thread, which then calls svc_do_run() in order to get work. When
92  *   that thread is complete, svc_do_run() will return, and the user
93  *   program should call thr_exit().
94  *
95  *   When we try to register a new pool and there is an old pool with
96  *   the same id in the doubly linked pool list (this happens when we kill
97  *   and restart nfsd or lockd), then we unlink the old pool from the list
98  *   and mark its state as `closing'. After that the transports can still
99  *   process requests but new transports won't be registered. When all the
100  *   transports and service threads associated with the pool are gone the
101  *   creator thread (see below) will clean up the pool structure and exit.
102  *
103  * svc_queuereq() and svc_run().
104  *   The kernel RPC server is interrupt driven. The svc_queuereq() interrupt
105  *   routine is called to deliver an RPC request. The service threads
106  *   loop in svc_run(). The interrupt function queues a request on the
107  *   transport's queue and it makes sure that the request is serviced.
108  *   It may either wake up one of sleeping threads, or ask for a new thread
109  *   to be created, or, if the previous request is just being picked up, do
110  *   nothing. In the last case the service thread that is picking up the
111  *   previous request will wake up or create the next thread. After a service
112  *   thread processes a request and sends a reply it returns to svc_run()
113  *   and svc_run() calls svc_poll() to find new input.
114  *
115  *   There is an "inconsistent" but "safe" optimization in the
116  *   svc_queuereq() code. The request is queued under the transport's
117  *   request lock, while the `pending-requests' count is incremented
118  *   independently under the pool request lock. Thus, a request can be picked
119  *   up by a service thread before the counter is incremented. It may also
120  *   happen that the service thread will win the race condition on the pool
121  *   lock and it will decrement the count even before the interrupt thread
122  *   increments it (so the count can be temporarily negative).
123  *
124  * svc_poll().
125  *   In order to avoid unnecessary locking, which causes performance
126  *   problems, we always look for a pending request on the current transport.
127  *   If there is none we take a hint from the pool's `xprt-ready' queue.
128  *   If the queue had an overflow we switch to the `drain' mode checking
129  *   each transport  in the pool's transport list. Once we find a
130  *   master transport handle with a pending request we latch the request
131  *   lock on this transport and return to svc_run(). If the request
132  *   belongs to a transport different than the one the service thread is
133  *   linked to we need to unlink and link again.
134  *
135  *   A service thread goes asleep when there are no pending
136  *   requests on the transports registered on the pool's transports.
137  *   All the pool's threads sleep on the same condition variable.
138  *   If a thread has been sleeping for too long period of time
139  *   (by default 5 seconds) it wakes up and exits.  Also when a transport
140  *   is closing sleeping threads wake up to unlink from this transport.
141  *
142  * The `xprt-ready' queue.
143  *   If a service thread finds no request on a transport it is currently linked
144  *   to it will find another transport with a pending request. To make
145  *   this search more efficient each pool has an `xprt-ready' queue.
146  *   The queue is a FIFO. When the interrupt routine queues a request it also
147  *   inserts a pointer to the transport into the `xprt-ready' queue. A
148  *   thread looking for a transport with a pending request can pop up a
149  *   transport and check for a request. The request can be already gone
150  *   since it could be taken by a thread linked to that transport. In such a
151  *   case we try the next hint. The `xprt-ready' queue has fixed size (by
152  *   default 256 nodes). If it overflows svc_poll() has to switch to the
153  *   less efficient but safe `drain' mode and walk through the pool's
154  *   transport list.
155  *
156  *   Both the svc_poll() loop and the `xprt-ready' queue are optimized
157  *   for the peak load case that is for the situation when the queue is not
158  *   empty, there are all the time few pending requests, and a service
159  *   thread which has just processed a request does not go asleep but picks
160  *   up immediately the next request.
161  *
162  * Thread creator.
163  *   Each pool has a thread creator associated with it. The creator thread
164  *   sleeps on a condition variable and waits for a signal to create a
165  *   service thread. The actual thread creation is done in userland by
166  *   the method described in "Pools" above.
167  *
168  *   Signaling threads should turn on the `creator signaled' flag, and
169  *   can avoid sending signals when the flag is on. The flag is cleared
170  *   when the thread is created.
171  *
172  *   When the pool is in closing state (ie it has been already unregistered
173  *   from the pool list) the last thread on the last transport in the pool
174  *   should turn the p_creator_exit flag on. The creator thread will
175  *   clean up the pool structure and exit.
176  *
177  * Thread reservation; Detaching service threads.
178  *   A service thread can detach itself to block for an extended amount
179  *   of time. However, to keep the service active we need to guarantee
180  *   at least pool->p_redline non-detached threads that can process incoming
181  *   requests. This, the maximum number of detached and reserved threads is
182  *   p->p_maxthreads - p->p_redline. A service thread should first acquire
183  *   a reservation, and if the reservation was granted it can detach itself.
184  *   If a reservation was granted but the thread does not detach itself
185  *   it should cancel the reservation before it returns to svc_run().
186  */
187 
188 #include <sys/param.h>
189 #include <sys/types.h>
190 #include <rpc/types.h>
191 #include <sys/socket.h>
192 #include <sys/time.h>
193 #include <sys/tiuser.h>
194 #include <sys/t_kuser.h>
195 #include <netinet/in.h>
196 #include <rpc/xdr.h>
197 #include <rpc/auth.h>
198 #include <rpc/clnt.h>
199 #include <rpc/rpc_msg.h>
200 #include <rpc/svc.h>
201 #include <sys/proc.h>
202 #include <sys/user.h>
203 #include <sys/stream.h>
204 #include <sys/strsubr.h>
205 #include <sys/tihdr.h>
206 #include <sys/debug.h>
207 #include <sys/cmn_err.h>
208 #include <sys/file.h>
209 #include <sys/systm.h>
210 #include <sys/callb.h>
211 #include <sys/vtrace.h>
212 #include <sys/zone.h>
213 #include <nfs/nfs.h>
214 
215 #define	RQCRED_SIZE	400	/* this size is excessive */
216 
217 /*
218  * Defines for svc_poll()
219  */
220 #define	SVC_EXPRTGONE ((SVCMASTERXPRT *)1)	/* Transport is closing */
221 #define	SVC_ETIMEDOUT ((SVCMASTERXPRT *)2)	/* Timeout */
222 #define	SVC_EINTR ((SVCMASTERXPRT *)3)		/* Interrupted by signal */
223 
224 /*
225  * Default stack size for service threads.
226  */
227 #define	DEFAULT_SVC_RUN_STKSIZE		(0)	/* default kernel stack */
228 
229 int    svc_default_stksize = DEFAULT_SVC_RUN_STKSIZE;
230 
231 /*
232  * Default polling timeout for service threads.
233  * Multiplied by hz when used.
234  */
235 #define	DEFAULT_SVC_POLL_TIMEOUT	(5)	/* seconds */
236 
237 clock_t svc_default_timeout = DEFAULT_SVC_POLL_TIMEOUT;
238 
239 /*
240  * Size of the `xprt-ready' queue.
241  */
242 #define	DEFAULT_SVC_QSIZE		(256)	/* qnodes */
243 
244 size_t svc_default_qsize = DEFAULT_SVC_QSIZE;
245 
246 /*
247  * Default limit for the number of service threads.
248  */
249 #define	DEFAULT_SVC_MAXTHREADS		(INT16_MAX)
250 
251 int    svc_default_maxthreads = DEFAULT_SVC_MAXTHREADS;
252 
253 /*
254  * Maximum number of requests from the same transport (in `drain' mode).
255  */
256 #define	DEFAULT_SVC_MAX_SAME_XPRT	(8)
257 
258 int    svc_default_max_same_xprt = DEFAULT_SVC_MAX_SAME_XPRT;
259 
260 
261 /*
262  * Default `Redline' of non-detached threads.
263  * Total number of detached and reserved threads in an RPC server
264  * thread pool is limited to pool->p_maxthreads - svc_redline.
265  */
266 #define	DEFAULT_SVC_REDLINE		(1)
267 
268 int    svc_default_redline = DEFAULT_SVC_REDLINE;
269 
270 /*
271  * A node for the `xprt-ready' queue.
272  * See below.
273  */
274 struct __svcxprt_qnode {
275 	__SVCXPRT_QNODE	*q_next;
276 	SVCMASTERXPRT	*q_xprt;
277 };
278 
279 /*
280  * Global SVC variables (private).
281  */
282 struct svc_globals {
283 	SVCPOOL		*svc_pools;
284 	kmutex_t	svc_plock;
285 };
286 
287 /*
288  * Debug variable to check for rdma based
289  * transport startup and cleanup. Contorlled
290  * through /etc/system. Off by default.
291  */
292 int rdma_check = 0;
293 
294 /*
295  * Authentication parameters list.
296  */
297 static caddr_t rqcred_head;
298 static kmutex_t rqcred_lock;
299 
300 /*
301  * Pointers to transport specific `rele' routines in rpcmod (set from rpcmod).
302  */
303 void	(*rpc_rele)(queue_t *, mblk_t *) = NULL;
304 void	(*mir_rele)(queue_t *, mblk_t *) = NULL;
305 
306 /* ARGSUSED */
307 void
308 rpc_rdma_rele(queue_t *q, mblk_t *mp)
309 {
310 }
311 void    (*rdma_rele)(queue_t *, mblk_t *) = rpc_rdma_rele;
312 
313 
314 /*
315  * This macro picks which `rele' routine to use, based on the transport type.
316  */
317 #define	RELE_PROC(xprt) \
318 	((xprt)->xp_type == T_RDMA ? rdma_rele : \
319 	(((xprt)->xp_type == T_CLTS) ? rpc_rele : mir_rele))
320 
321 /*
322  * If true, then keep quiet about version mismatch.
323  * This macro is for broadcast RPC only. We have no broadcast RPC in
324  * kernel now but one may define a flag in the transport structure
325  * and redefine this macro.
326  */
327 #define	version_keepquiet(xprt)	(FALSE)
328 
329 /*
330  * ZSD key used to retrieve zone-specific svc globals
331  */
332 static zone_key_t svc_zone_key;
333 
334 static void svc_callout_free(SVCMASTERXPRT *);
335 static void svc_xprt_qinit(SVCPOOL *, size_t);
336 static void svc_xprt_qdestroy(SVCPOOL *);
337 static void svc_thread_creator(SVCPOOL *);
338 static void svc_creator_signal(SVCPOOL *);
339 static void svc_creator_signalexit(SVCPOOL *);
340 static void svc_pool_unregister(struct svc_globals *, SVCPOOL *);
341 static int svc_run(SVCPOOL *);
342 
343 /* ARGSUSED */
344 static void *
345 svc_zoneinit(zoneid_t zoneid)
346 {
347 	struct svc_globals *svc;
348 
349 	svc = kmem_alloc(sizeof (*svc), KM_SLEEP);
350 	mutex_init(&svc->svc_plock, NULL, MUTEX_DEFAULT, NULL);
351 	svc->svc_pools = NULL;
352 	return (svc);
353 }
354 
355 /* ARGSUSED */
356 static void
357 svc_zoneshutdown(zoneid_t zoneid, void *arg)
358 {
359 	struct svc_globals *svc = arg;
360 	SVCPOOL *pool;
361 
362 	mutex_enter(&svc->svc_plock);
363 	while ((pool = svc->svc_pools) != NULL) {
364 		svc_pool_unregister(svc, pool);
365 	}
366 	mutex_exit(&svc->svc_plock);
367 }
368 
369 /* ARGSUSED */
370 static void
371 svc_zonefini(zoneid_t zoneid, void *arg)
372 {
373 	struct svc_globals *svc = arg;
374 
375 	ASSERT(svc->svc_pools == NULL);
376 	mutex_destroy(&svc->svc_plock);
377 	kmem_free(svc, sizeof (*svc));
378 }
379 
380 /*
381  * Global SVC init routine.
382  * Initialize global generic and transport type specific structures
383  * used by the kernel RPC server side. This routine is called only
384  * once when the module is being loaded.
385  */
386 void
387 svc_init()
388 {
389 	zone_key_create(&svc_zone_key, svc_zoneinit, svc_zoneshutdown,
390 	    svc_zonefini);
391 	svc_cots_init();
392 	svc_clts_init();
393 }
394 
395 /*
396  * Destroy the SVCPOOL structure.
397  */
398 static void
399 svc_pool_cleanup(SVCPOOL *pool)
400 {
401 	ASSERT(pool->p_threads + pool->p_detached_threads == 0);
402 	ASSERT(pool->p_lcount == 0);
403 	ASSERT(pool->p_closing);
404 
405 	/*
406 	 * Call the user supplied shutdown function.  This is done
407 	 * here so the user of the pool will be able to cleanup
408 	 * service related resources.
409 	 */
410 	if (pool->p_shutdown != NULL)
411 		(pool->p_shutdown)();
412 
413 	/* Destroy `xprt-ready' queue */
414 	svc_xprt_qdestroy(pool);
415 
416 	/* Destroy transport list */
417 	rw_destroy(&pool->p_lrwlock);
418 
419 	/* Destroy locks and condition variables */
420 	mutex_destroy(&pool->p_thread_lock);
421 	mutex_destroy(&pool->p_req_lock);
422 	cv_destroy(&pool->p_req_cv);
423 
424 	/* Destroy creator's locks and condition variables */
425 	mutex_destroy(&pool->p_creator_lock);
426 	cv_destroy(&pool->p_creator_cv);
427 	mutex_destroy(&pool->p_user_lock);
428 	cv_destroy(&pool->p_user_cv);
429 
430 	/* Free pool structure */
431 	kmem_free(pool, sizeof (SVCPOOL));
432 }
433 
434 /*
435  * If all the transports and service threads are already gone
436  * signal the creator thread to clean up and exit.
437  */
438 static bool_t
439 svc_pool_tryexit(SVCPOOL *pool)
440 {
441 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
442 	ASSERT(pool->p_closing);
443 
444 	if (pool->p_threads + pool->p_detached_threads == 0) {
445 		rw_enter(&pool->p_lrwlock, RW_READER);
446 		if (pool->p_lcount == 0) {
447 			/*
448 			 * Release the locks before sending a signal.
449 			 */
450 			rw_exit(&pool->p_lrwlock);
451 			mutex_exit(&pool->p_thread_lock);
452 
453 			/*
454 			 * Notify the creator thread to clean up and exit
455 			 *
456 			 * NOTICE: No references to the pool beyond this point!
457 			 *		   The pool is being destroyed.
458 			 */
459 			ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
460 			svc_creator_signalexit(pool);
461 
462 			return (TRUE);
463 		}
464 		rw_exit(&pool->p_lrwlock);
465 	}
466 
467 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
468 	return (FALSE);
469 }
470 
471 /*
472  * Find a pool with a given id.
473  */
474 static SVCPOOL *
475 svc_pool_find(struct svc_globals *svc, int id)
476 {
477 	SVCPOOL *pool;
478 
479 	ASSERT(MUTEX_HELD(&svc->svc_plock));
480 
481 	/*
482 	 * Search the list for a pool with a matching id
483 	 * and register the transport handle with that pool.
484 	 */
485 	for (pool = svc->svc_pools; pool; pool = pool->p_next)
486 		if (pool->p_id == id)
487 			return (pool);
488 
489 	return (NULL);
490 }
491 
492 /*
493  * PSARC 2003/523 Contract Private Interface
494  * svc_do_run
495  * Changes must be reviewed by Solaris File Sharing
496  * Changes must be communicated to contract-2003-523@sun.com
497  */
498 int
499 svc_do_run(int id)
500 {
501 	SVCPOOL *pool;
502 	int err = 0;
503 	struct svc_globals *svc;
504 
505 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
506 	mutex_enter(&svc->svc_plock);
507 
508 	pool = svc_pool_find(svc, id);
509 
510 	mutex_exit(&svc->svc_plock);
511 
512 	if (pool == NULL)
513 		return (ENOENT);
514 
515 	/*
516 	 * Increment counter of pool threads now
517 	 * that a thread has been created.
518 	 */
519 	mutex_enter(&pool->p_thread_lock);
520 	pool->p_threads++;
521 	mutex_exit(&pool->p_thread_lock);
522 
523 	/* Give work to the new thread. */
524 	err = svc_run(pool);
525 
526 	return (err);
527 }
528 
529 /*
530  * Unregister a pool from the pool list.
531  * Set the closing state. If all the transports and service threads
532  * are already gone signal the creator thread to clean up and exit.
533  */
534 static void
535 svc_pool_unregister(struct svc_globals *svc, SVCPOOL *pool)
536 {
537 	SVCPOOL *next = pool->p_next;
538 	SVCPOOL *prev = pool->p_prev;
539 
540 	ASSERT(MUTEX_HELD(&svc->svc_plock));
541 
542 	/* Remove from the list */
543 	if (pool == svc->svc_pools)
544 		svc->svc_pools = next;
545 	if (next)
546 		next->p_prev = prev;
547 	if (prev)
548 		prev->p_next = next;
549 	pool->p_next = pool->p_prev = NULL;
550 
551 	/*
552 	 * Offline the pool. Mark the pool as closing.
553 	 * If there are no transports in this pool notify
554 	 * the creator thread to clean it up and exit.
555 	 */
556 	mutex_enter(&pool->p_thread_lock);
557 	if (pool->p_offline != NULL)
558 		(pool->p_offline)();
559 	pool->p_closing = TRUE;
560 	if (svc_pool_tryexit(pool))
561 		return;
562 	mutex_exit(&pool->p_thread_lock);
563 }
564 
565 /*
566  * Register a pool with a given id in the global doubly linked pool list.
567  * - if there is a pool with the same id in the list then unregister it
568  * - insert the new pool into the list.
569  */
570 static void
571 svc_pool_register(struct svc_globals *svc, SVCPOOL *pool, int id)
572 {
573 	SVCPOOL *old_pool;
574 
575 	/*
576 	 * If there is a pool with the same id then remove it from
577 	 * the list and mark the pool as closing.
578 	 */
579 	mutex_enter(&svc->svc_plock);
580 
581 	if (old_pool = svc_pool_find(svc, id))
582 		svc_pool_unregister(svc, old_pool);
583 
584 	/* Insert into the doubly linked list */
585 	pool->p_id = id;
586 	pool->p_next = svc->svc_pools;
587 	pool->p_prev = NULL;
588 	if (svc->svc_pools)
589 		svc->svc_pools->p_prev = pool;
590 	svc->svc_pools = pool;
591 
592 	mutex_exit(&svc->svc_plock);
593 }
594 
595 /*
596  * Initialize a newly created pool structure
597  */
598 static int
599 svc_pool_init(SVCPOOL *pool, uint_t maxthreads, uint_t redline,
600 	uint_t qsize, uint_t timeout, uint_t stksize, uint_t max_same_xprt)
601 {
602 	klwp_t *lwp = ttolwp(curthread);
603 
604 	ASSERT(pool);
605 
606 	if (maxthreads == 0)
607 		maxthreads = svc_default_maxthreads;
608 	if (redline == 0)
609 		redline = svc_default_redline;
610 	if (qsize == 0)
611 		qsize = svc_default_qsize;
612 	if (timeout == 0)
613 		timeout = svc_default_timeout;
614 	if (stksize == 0)
615 		stksize = svc_default_stksize;
616 	if (max_same_xprt == 0)
617 		max_same_xprt = svc_default_max_same_xprt;
618 
619 	if (maxthreads < redline)
620 		return (EINVAL);
621 
622 	/* Allocate and initialize the `xprt-ready' queue */
623 	svc_xprt_qinit(pool, qsize);
624 
625 	/* Initialize doubly-linked xprt list */
626 	rw_init(&pool->p_lrwlock, NULL, RW_DEFAULT, NULL);
627 
628 	/*
629 	 * Setting lwp_childstksz on the current lwp so that
630 	 * descendants of this lwp get the modified stacksize, if
631 	 * it is defined. It is important that either this lwp or
632 	 * one of its descendants do the actual servicepool thread
633 	 * creation to maintain the stacksize inheritance.
634 	 */
635 	if (lwp != NULL)
636 		lwp->lwp_childstksz = stksize;
637 
638 	/* Initialize thread limits, locks and condition variables */
639 	pool->p_maxthreads = maxthreads;
640 	pool->p_redline = redline;
641 	pool->p_timeout = timeout * hz;
642 	pool->p_stksize = stksize;
643 	pool->p_max_same_xprt = max_same_xprt;
644 	mutex_init(&pool->p_thread_lock, NULL, MUTEX_DEFAULT, NULL);
645 	mutex_init(&pool->p_req_lock, NULL, MUTEX_DEFAULT, NULL);
646 	cv_init(&pool->p_req_cv, NULL, CV_DEFAULT, NULL);
647 
648 	/* Initialize userland creator */
649 	pool->p_user_exit = FALSE;
650 	pool->p_signal_create_thread = FALSE;
651 	pool->p_user_waiting = FALSE;
652 	mutex_init(&pool->p_user_lock, NULL, MUTEX_DEFAULT, NULL);
653 	cv_init(&pool->p_user_cv, NULL, CV_DEFAULT, NULL);
654 
655 	/* Initialize the creator and start the creator thread */
656 	pool->p_creator_exit = FALSE;
657 	mutex_init(&pool->p_creator_lock, NULL, MUTEX_DEFAULT, NULL);
658 	cv_init(&pool->p_creator_cv, NULL, CV_DEFAULT, NULL);
659 
660 	(void) zthread_create(NULL, pool->p_stksize, svc_thread_creator,
661 	    pool, 0, minclsyspri);
662 
663 	return (0);
664 }
665 
666 /*
667  * PSARC 2003/523 Contract Private Interface
668  * svc_pool_create
669  * Changes must be reviewed by Solaris File Sharing
670  * Changes must be communicated to contract-2003-523@sun.com
671  *
672  * Create an kernel RPC server-side thread/transport pool.
673  *
674  * This is public interface for creation of a server RPC thread pool
675  * for a given service provider. Transports registered with the pool's id
676  * will be served by a pool's threads. This function is called from the
677  * nfssys() system call.
678  */
679 int
680 svc_pool_create(struct svcpool_args *args)
681 {
682 	SVCPOOL *pool;
683 	int error;
684 	struct svc_globals *svc;
685 
686 	/*
687 	 * Caller should check credentials in a way appropriate
688 	 * in the context of the call.
689 	 */
690 
691 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
692 	/* Allocate a new pool */
693 	pool = kmem_zalloc(sizeof (SVCPOOL), KM_SLEEP);
694 
695 	/*
696 	 * Initialize the pool structure and create a creator thread.
697 	 */
698 	error = svc_pool_init(pool, args->maxthreads, args->redline,
699 	    args->qsize, args->timeout, args->stksize, args->max_same_xprt);
700 
701 	if (error) {
702 		kmem_free(pool, sizeof (SVCPOOL));
703 		return (error);
704 	}
705 
706 	/* Register the pool with the global pool list */
707 	svc_pool_register(svc, pool, args->id);
708 
709 	return (0);
710 }
711 
712 int
713 svc_pool_control(int id, int cmd, void *arg)
714 {
715 	SVCPOOL *pool;
716 	struct svc_globals *svc;
717 
718 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
719 
720 	switch (cmd) {
721 	case SVCPSET_SHUTDOWN_PROC:
722 		/*
723 		 * Search the list for a pool with a matching id
724 		 * and register the transport handle with that pool.
725 		 */
726 		mutex_enter(&svc->svc_plock);
727 
728 		if ((pool = svc_pool_find(svc, id)) == NULL) {
729 			mutex_exit(&svc->svc_plock);
730 			return (ENOENT);
731 		}
732 		/*
733 		 * Grab the transport list lock before releasing the
734 		 * pool list lock
735 		 */
736 		rw_enter(&pool->p_lrwlock, RW_WRITER);
737 		mutex_exit(&svc->svc_plock);
738 
739 		pool->p_shutdown = *((void (*)())arg);
740 
741 		rw_exit(&pool->p_lrwlock);
742 
743 		return (0);
744 	case SVCPSET_UNREGISTER_PROC:
745 		/*
746 		 * Search the list for a pool with a matching id
747 		 * and register the unregister callback handle with that pool.
748 		 */
749 		mutex_enter(&svc->svc_plock);
750 
751 		if ((pool = svc_pool_find(svc, id)) == NULL) {
752 			mutex_exit(&svc->svc_plock);
753 			return (ENOENT);
754 		}
755 		/*
756 		 * Grab the transport list lock before releasing the
757 		 * pool list lock
758 		 */
759 		rw_enter(&pool->p_lrwlock, RW_WRITER);
760 		mutex_exit(&svc->svc_plock);
761 
762 		pool->p_offline = *((void (*)())arg);
763 
764 		rw_exit(&pool->p_lrwlock);
765 
766 		return (0);
767 	default:
768 		return (EINVAL);
769 	}
770 }
771 
772 /*
773  * Pool's transport list manipulation routines.
774  * - svc_xprt_register()
775  * - svc_xprt_unregister()
776  *
777  * svc_xprt_register() is called from svc_tli_kcreate() to
778  * insert a new master transport handle into the doubly linked
779  * list of server transport handles (one list per pool).
780  *
781  * The list is used by svc_poll(), when it operates in `drain'
782  * mode, to search for a next transport with a pending request.
783  */
784 
785 int
786 svc_xprt_register(SVCMASTERXPRT *xprt, int id)
787 {
788 	SVCMASTERXPRT *prev, *next;
789 	SVCPOOL *pool;
790 	struct svc_globals *svc;
791 
792 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
793 	/*
794 	 * Search the list for a pool with a matching id
795 	 * and register the transport handle with that pool.
796 	 */
797 	mutex_enter(&svc->svc_plock);
798 
799 	if ((pool = svc_pool_find(svc, id)) == NULL) {
800 		mutex_exit(&svc->svc_plock);
801 		return (ENOENT);
802 	}
803 
804 	/* Grab the transport list lock before releasing the pool list lock */
805 	rw_enter(&pool->p_lrwlock, RW_WRITER);
806 	mutex_exit(&svc->svc_plock);
807 
808 	/* Don't register new transports when the pool is in closing state */
809 	if (pool->p_closing) {
810 		rw_exit(&pool->p_lrwlock);
811 		return (EBUSY);
812 	}
813 
814 	/*
815 	 * Initialize xp_pool to point to the pool.
816 	 * We don't want to go through the pool list every time.
817 	 */
818 	xprt->xp_pool = pool;
819 
820 	/*
821 	 * Insert a transport handle into the list.
822 	 * The list head points to the most recently inserted transport.
823 	 */
824 	if (pool->p_lhead == NULL)
825 		pool->p_lhead = xprt->xp_prev = xprt->xp_next = xprt;
826 	else {
827 		next = pool->p_lhead;
828 		prev = pool->p_lhead->xp_prev;
829 
830 		xprt->xp_next = next;
831 		xprt->xp_prev = prev;
832 
833 		pool->p_lhead = prev->xp_next = next->xp_prev = xprt;
834 	}
835 
836 	/* Increment the transports count */
837 	pool->p_lcount++;
838 
839 	rw_exit(&pool->p_lrwlock);
840 	return (0);
841 }
842 
843 /*
844  * Called from svc_xprt_cleanup() to remove a master transport handle
845  * from the pool's list of server transports (when a transport is
846  * being destroyed).
847  */
848 void
849 svc_xprt_unregister(SVCMASTERXPRT *xprt)
850 {
851 	SVCPOOL *pool = xprt->xp_pool;
852 
853 	/*
854 	 * Unlink xprt from the list.
855 	 * If the list head points to this xprt then move it
856 	 * to the next xprt or reset to NULL if this is the last
857 	 * xprt in the list.
858 	 */
859 	rw_enter(&pool->p_lrwlock, RW_WRITER);
860 
861 	if (xprt == xprt->xp_next)
862 		pool->p_lhead = NULL;
863 	else {
864 		SVCMASTERXPRT *next = xprt->xp_next;
865 		SVCMASTERXPRT *prev = xprt->xp_prev;
866 
867 		next->xp_prev = prev;
868 		prev->xp_next = next;
869 
870 		if (pool->p_lhead == xprt)
871 			pool->p_lhead = next;
872 	}
873 
874 	xprt->xp_next = xprt->xp_prev = NULL;
875 
876 	/* Decrement list count */
877 	pool->p_lcount--;
878 
879 	rw_exit(&pool->p_lrwlock);
880 }
881 
882 static void
883 svc_xprt_qdestroy(SVCPOOL *pool)
884 {
885 	mutex_destroy(&pool->p_qend_lock);
886 	kmem_free(pool->p_qbody, pool->p_qsize * sizeof (__SVCXPRT_QNODE));
887 }
888 
889 /*
890  * Initialize an `xprt-ready' queue for a given pool.
891  */
892 static void
893 svc_xprt_qinit(SVCPOOL *pool, size_t qsize)
894 {
895 	int i;
896 
897 	pool->p_qsize = qsize;
898 	pool->p_qbody = kmem_zalloc(pool->p_qsize * sizeof (__SVCXPRT_QNODE),
899 	    KM_SLEEP);
900 
901 	for (i = 0; i < pool->p_qsize - 1; i++)
902 		pool->p_qbody[i].q_next = &(pool->p_qbody[i+1]);
903 
904 	pool->p_qbody[pool->p_qsize-1].q_next = &(pool->p_qbody[0]);
905 	pool->p_qtop = &(pool->p_qbody[0]);
906 	pool->p_qend = &(pool->p_qbody[0]);
907 
908 	mutex_init(&pool->p_qend_lock, NULL, MUTEX_DEFAULT, NULL);
909 }
910 
911 /*
912  * Called from the svc_queuereq() interrupt routine to queue
913  * a hint for svc_poll() which transport has a pending request.
914  * - insert a pointer to xprt into the xprt-ready queue (FIFO)
915  * - if the xprt-ready queue is full turn the overflow flag on.
916  *
917  * NOTICE: pool->p_qtop is protected by the the pool's request lock
918  * and the caller (svc_queuereq()) must hold the lock.
919  */
920 static void
921 svc_xprt_qput(SVCPOOL *pool, SVCMASTERXPRT *xprt)
922 {
923 	ASSERT(MUTEX_HELD(&pool->p_req_lock));
924 
925 	/* If the overflow flag is there is nothing we can do */
926 	if (pool->p_qoverflow)
927 		return;
928 
929 	/* If the queue is full turn the overflow flag on and exit */
930 	if (pool->p_qtop->q_next == pool->p_qend) {
931 		mutex_enter(&pool->p_qend_lock);
932 		if (pool->p_qtop->q_next == pool->p_qend) {
933 			pool->p_qoverflow = TRUE;
934 			mutex_exit(&pool->p_qend_lock);
935 			return;
936 		}
937 		mutex_exit(&pool->p_qend_lock);
938 	}
939 
940 	/* Insert a hint and move pool->p_qtop */
941 	pool->p_qtop->q_xprt = xprt;
942 	pool->p_qtop = pool->p_qtop->q_next;
943 }
944 
945 /*
946  * Called from svc_poll() to get a hint which transport has a
947  * pending request. Returns a pointer to a transport or NULL if the
948  * `xprt-ready' queue is empty.
949  *
950  * Since we do not acquire the pool's request lock while checking if
951  * the queue is empty we may miss a request that is just being delivered.
952  * However this is ok since svc_poll() will retry again until the
953  * count indicates that there are pending requests for this pool.
954  */
955 static SVCMASTERXPRT *
956 svc_xprt_qget(SVCPOOL *pool)
957 {
958 	SVCMASTERXPRT *xprt;
959 
960 	mutex_enter(&pool->p_qend_lock);
961 	do {
962 		/*
963 		 * If the queue is empty return NULL.
964 		 * Since we do not acquire the pool's request lock which
965 		 * protects pool->p_qtop this is not exact check. However,
966 		 * this is safe - if we miss a request here svc_poll()
967 		 * will retry again.
968 		 */
969 		if (pool->p_qend == pool->p_qtop) {
970 			mutex_exit(&pool->p_qend_lock);
971 			return (NULL);
972 		}
973 
974 		/* Get a hint and move pool->p_qend */
975 		xprt = pool->p_qend->q_xprt;
976 		pool->p_qend = pool->p_qend->q_next;
977 
978 		/* Skip fields deleted by svc_xprt_qdelete()	 */
979 	} while (xprt == NULL);
980 	mutex_exit(&pool->p_qend_lock);
981 
982 	return (xprt);
983 }
984 
985 /*
986  * Reset an overflow in the xprt-ready queue after
987  * all the pending requests has been drained.
988  * This switches svc_poll back to getting hints from the
989  * xprt-ready queue.
990  *
991  * NOTICE: pool->p_qtop is protected by the the pool's request lock
992  * and the caller (svc_poll()) must hold the lock.
993  */
994 static void
995 svc_xprt_qreset(SVCPOOL *pool)
996 {
997 	ASSERT(MUTEX_HELD(&pool->p_req_lock));
998 
999 	pool->p_qend = pool->p_qtop;
1000 	pool->p_qoverflow = FALSE;
1001 }
1002 
1003 /*
1004  * Delete all the references to a transport handle that
1005  * is being destroyed from the xprt-ready queue.
1006  * Deleted pointers are replaced with NULLs.
1007  */
1008 static void
1009 svc_xprt_qdelete(SVCPOOL *pool, SVCMASTERXPRT *xprt)
1010 {
1011 	__SVCXPRT_QNODE *q = pool->p_qend;
1012 	__SVCXPRT_QNODE *qtop = pool->p_qtop;
1013 
1014 	/*
1015 	 * Delete all the references to xprt between the current
1016 	 * position of pool->p_qend and current pool->p_qtop.
1017 	 */
1018 	for (;;) {
1019 		if (q->q_xprt == xprt)
1020 			q->q_xprt = NULL;
1021 		if (q == qtop)
1022 			return;
1023 		q = q->q_next;
1024 	}
1025 }
1026 
1027 /*
1028  * Destructor for a master server transport handle.
1029  * - if there are no more non-detached threads linked to this transport
1030  *   then, if requested, call xp_closeproc (we don't wait for detached
1031  *   threads linked to this transport to complete).
1032  * - if there are no more threads linked to this
1033  *   transport then
1034  *   a) remove references to this transport from the xprt-ready queue
1035  *   b) remove a reference to this transport from the pool's transport list
1036  *   c) call a transport specific `destroy' function
1037  *   d) cancel remaining thread reservations.
1038  *
1039  * NOTICE: Caller must hold the transport's thread lock.
1040  */
1041 static void
1042 svc_xprt_cleanup(SVCMASTERXPRT *xprt, bool_t detached)
1043 {
1044 	ASSERT(MUTEX_HELD(&xprt->xp_thread_lock));
1045 	ASSERT(xprt->xp_wq == NULL);
1046 
1047 	/*
1048 	 * If called from the last non-detached thread
1049 	 * it should call the closeproc on this transport.
1050 	 */
1051 	if (!detached && xprt->xp_threads == 0 && xprt->xp_closeproc) {
1052 		(*(xprt->xp_closeproc)) (xprt);
1053 	}
1054 
1055 	if (xprt->xp_threads + xprt->xp_detached_threads > 0)
1056 		mutex_exit(&xprt->xp_thread_lock);
1057 	else {
1058 		/* Remove references to xprt from the `xprt-ready' queue */
1059 		svc_xprt_qdelete(xprt->xp_pool, xprt);
1060 
1061 		/* Unregister xprt from the pool's transport list */
1062 		svc_xprt_unregister(xprt);
1063 		svc_callout_free(xprt);
1064 		SVC_DESTROY(xprt);
1065 	}
1066 }
1067 
1068 /*
1069  * Find a dispatch routine for a given prog/vers pair.
1070  * This function is called from svc_getreq() to search the callout
1071  * table for an entry with a matching RPC program number `prog'
1072  * and a version range that covers `vers'.
1073  * - if it finds a matching entry it returns pointer to the dispatch routine
1074  * - otherwise it returns NULL and, if `minp' or `maxp' are not NULL,
1075  *   fills them with, respectively, lowest version and highest version
1076  *   supported for the program `prog'
1077  */
1078 static SVC_DISPATCH *
1079 svc_callout_find(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
1080     rpcvers_t *vers_min, rpcvers_t *vers_max)
1081 {
1082 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1083 	int i;
1084 
1085 	*vers_min = ~(rpcvers_t)0;
1086 	*vers_max = 0;
1087 
1088 	for (i = 0; i < sct->sct_size; i++) {
1089 		SVC_CALLOUT *sc = &sct->sct_sc[i];
1090 
1091 		if (prog == sc->sc_prog) {
1092 			if (vers >= sc->sc_versmin && vers <= sc->sc_versmax)
1093 				return (sc->sc_dispatch);
1094 
1095 			if (*vers_max < sc->sc_versmax)
1096 				*vers_max = sc->sc_versmax;
1097 			if (*vers_min > sc->sc_versmin)
1098 				*vers_min = sc->sc_versmin;
1099 		}
1100 	}
1101 
1102 	return (NULL);
1103 }
1104 
1105 /*
1106  * Optionally free callout table allocated for this transport by
1107  * the service provider.
1108  */
1109 static void
1110 svc_callout_free(SVCMASTERXPRT *xprt)
1111 {
1112 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1113 
1114 	if (sct->sct_free) {
1115 		kmem_free(sct->sct_sc, sct->sct_size * sizeof (SVC_CALLOUT));
1116 		kmem_free(sct, sizeof (SVC_CALLOUT_TABLE));
1117 	}
1118 }
1119 
1120 /*
1121  * Send a reply to an RPC request
1122  *
1123  * PSARC 2003/523 Contract Private Interface
1124  * svc_sendreply
1125  * Changes must be reviewed by Solaris File Sharing
1126  * Changes must be communicated to contract-2003-523@sun.com
1127  */
1128 bool_t
1129 svc_sendreply(const SVCXPRT *clone_xprt, const xdrproc_t xdr_results,
1130     const caddr_t xdr_location)
1131 {
1132 	struct rpc_msg rply;
1133 
1134 	rply.rm_direction = REPLY;
1135 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1136 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1137 	rply.acpted_rply.ar_stat = SUCCESS;
1138 	rply.acpted_rply.ar_results.where = xdr_location;
1139 	rply.acpted_rply.ar_results.proc = xdr_results;
1140 
1141 	return (SVC_REPLY((SVCXPRT *)clone_xprt, &rply));
1142 }
1143 
1144 /*
1145  * No procedure error reply
1146  *
1147  * PSARC 2003/523 Contract Private Interface
1148  * svcerr_noproc
1149  * Changes must be reviewed by Solaris File Sharing
1150  * Changes must be communicated to contract-2003-523@sun.com
1151  */
1152 void
1153 svcerr_noproc(const SVCXPRT *clone_xprt)
1154 {
1155 	struct rpc_msg rply;
1156 
1157 	rply.rm_direction = REPLY;
1158 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1159 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1160 	rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1161 	SVC_FREERES((SVCXPRT *)clone_xprt);
1162 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1163 }
1164 
1165 /*
1166  * Can't decode arguments error reply
1167  *
1168  * PSARC 2003/523 Contract Private Interface
1169  * svcerr_decode
1170  * Changes must be reviewed by Solaris File Sharing
1171  * Changes must be communicated to contract-2003-523@sun.com
1172  */
1173 void
1174 svcerr_decode(const SVCXPRT *clone_xprt)
1175 {
1176 	struct rpc_msg rply;
1177 
1178 	rply.rm_direction = REPLY;
1179 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1180 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1181 	rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1182 	SVC_FREERES((SVCXPRT *)clone_xprt);
1183 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1184 }
1185 
1186 /*
1187  * Some system error
1188  */
1189 void
1190 svcerr_systemerr(const SVCXPRT *clone_xprt)
1191 {
1192 	struct rpc_msg rply;
1193 
1194 	rply.rm_direction = REPLY;
1195 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1196 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1197 	rply.acpted_rply.ar_stat = SYSTEM_ERR;
1198 	SVC_FREERES((SVCXPRT *)clone_xprt);
1199 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1200 }
1201 
1202 /*
1203  * Authentication error reply
1204  */
1205 void
1206 svcerr_auth(const SVCXPRT *clone_xprt, const enum auth_stat why)
1207 {
1208 	struct rpc_msg rply;
1209 
1210 	rply.rm_direction = REPLY;
1211 	rply.rm_reply.rp_stat = MSG_DENIED;
1212 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1213 	rply.rjcted_rply.rj_why = why;
1214 	SVC_FREERES((SVCXPRT *)clone_xprt);
1215 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1216 }
1217 
1218 /*
1219  * Authentication too weak error reply
1220  */
1221 void
1222 svcerr_weakauth(const SVCXPRT *clone_xprt)
1223 {
1224 	svcerr_auth((SVCXPRT *)clone_xprt, AUTH_TOOWEAK);
1225 }
1226 
1227 /*
1228  * Program unavailable error reply
1229  *
1230  * PSARC 2003/523 Contract Private Interface
1231  * svcerr_noprog
1232  * Changes must be reviewed by Solaris File Sharing
1233  * Changes must be communicated to contract-2003-523@sun.com
1234  */
1235 void
1236 svcerr_noprog(const SVCXPRT *clone_xprt)
1237 {
1238 	struct rpc_msg rply;
1239 
1240 	rply.rm_direction = REPLY;
1241 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1242 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1243 	rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1244 	SVC_FREERES((SVCXPRT *)clone_xprt);
1245 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1246 }
1247 
1248 /*
1249  * Program version mismatch error reply
1250  *
1251  * PSARC 2003/523 Contract Private Interface
1252  * svcerr_progvers
1253  * Changes must be reviewed by Solaris File Sharing
1254  * Changes must be communicated to contract-2003-523@sun.com
1255  */
1256 void
1257 svcerr_progvers(const SVCXPRT *clone_xprt,
1258     const rpcvers_t low_vers, const rpcvers_t high_vers)
1259 {
1260 	struct rpc_msg rply;
1261 
1262 	rply.rm_direction = REPLY;
1263 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1264 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1265 	rply.acpted_rply.ar_stat = PROG_MISMATCH;
1266 	rply.acpted_rply.ar_vers.low = low_vers;
1267 	rply.acpted_rply.ar_vers.high = high_vers;
1268 	SVC_FREERES((SVCXPRT *)clone_xprt);
1269 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1270 }
1271 
1272 /*
1273  * Get server side input from some transport.
1274  *
1275  * Statement of authentication parameters management:
1276  * This function owns and manages all authentication parameters, specifically
1277  * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1278  * the "cooked" credentials (rqst->rq_clntcred).
1279  * However, this function does not know the structure of the cooked
1280  * credentials, so it make the following assumptions:
1281  *   a) the structure is contiguous (no pointers), and
1282  *   b) the cred structure size does not exceed RQCRED_SIZE bytes.
1283  * In all events, all three parameters are freed upon exit from this routine.
1284  * The storage is trivially managed on the call stack in user land, but
1285  * is malloced in kernel land.
1286  *
1287  * Note: the xprt's xp_svc_lock is not held while the service's dispatch
1288  * routine is running.	If we decide to implement svc_unregister(), we'll
1289  * need to decide whether it's okay for a thread to unregister a service
1290  * while a request is being processed.	If we decide that this is a
1291  * problem, we can probably use some sort of reference counting scheme to
1292  * keep the callout entry from going away until the request has completed.
1293  */
1294 static void
1295 svc_getreq(
1296 	SVCXPRT *clone_xprt,	/* clone transport handle */
1297 	mblk_t *mp)
1298 {
1299 	struct rpc_msg msg;
1300 	struct svc_req r;
1301 	char  *cred_area;	/* too big to allocate on call stack */
1302 
1303 	TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_START,
1304 	    "svc_getreq_start:");
1305 
1306 	ASSERT(clone_xprt->xp_master != NULL);
1307 
1308 	/*
1309 	 * Firstly, allocate the authentication parameters' storage
1310 	 */
1311 	mutex_enter(&rqcred_lock);
1312 	if (rqcred_head) {
1313 		cred_area = rqcred_head;
1314 
1315 		/* LINTED pointer alignment */
1316 		rqcred_head = *(caddr_t *)rqcred_head;
1317 		mutex_exit(&rqcred_lock);
1318 	} else {
1319 		mutex_exit(&rqcred_lock);
1320 		cred_area = kmem_alloc(2 * MAX_AUTH_BYTES + RQCRED_SIZE,
1321 		    KM_SLEEP);
1322 	}
1323 	msg.rm_call.cb_cred.oa_base = cred_area;
1324 	msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1325 	r.rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1326 
1327 	/*
1328 	 * Now receive a message from the transport.
1329 	 */
1330 	if (SVC_RECV(clone_xprt, mp, &msg)) {
1331 		void (*dispatchroutine) (struct svc_req *, SVCXPRT *);
1332 		rpcvers_t vers_min;
1333 		rpcvers_t vers_max;
1334 		bool_t no_dispatch;
1335 		enum auth_stat why;
1336 
1337 		/*
1338 		 * Find the registered program and call its
1339 		 * dispatch routine.
1340 		 */
1341 		r.rq_xprt = clone_xprt;
1342 		r.rq_prog = msg.rm_call.cb_prog;
1343 		r.rq_vers = msg.rm_call.cb_vers;
1344 		r.rq_proc = msg.rm_call.cb_proc;
1345 		r.rq_cred = msg.rm_call.cb_cred;
1346 
1347 		/*
1348 		 * First authenticate the message.
1349 		 */
1350 		TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_START,
1351 		    "svc_getreq_auth_start:");
1352 		if ((why = sec_svc_msg(&r, &msg, &no_dispatch)) != AUTH_OK) {
1353 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1354 			    "svc_getreq_auth_end:(%S)", "failed");
1355 			svcerr_auth(clone_xprt, why);
1356 			/*
1357 			 * Free the arguments.
1358 			 */
1359 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1360 		} else if (no_dispatch) {
1361 			/*
1362 			 * XXX - when bug id 4053736 is done, remove
1363 			 * the SVC_FREEARGS() call.
1364 			 */
1365 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1366 		} else {
1367 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1368 			    "svc_getreq_auth_end:(%S)", "good");
1369 
1370 			dispatchroutine = svc_callout_find(clone_xprt,
1371 			    r.rq_prog, r.rq_vers, &vers_min, &vers_max);
1372 
1373 			if (dispatchroutine) {
1374 				(*dispatchroutine) (&r, clone_xprt);
1375 			} else {
1376 				/*
1377 				 * If we got here, the program or version
1378 				 * is not served ...
1379 				 */
1380 				if (vers_max == 0 ||
1381 				    version_keepquiet(clone_xprt))
1382 					svcerr_noprog(clone_xprt);
1383 				else
1384 					svcerr_progvers(clone_xprt, vers_min,
1385 					    vers_max);
1386 
1387 				/*
1388 				 * Free the arguments. For successful calls
1389 				 * this is done by the dispatch routine.
1390 				 */
1391 				(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1392 				/* Fall through to ... */
1393 			}
1394 			/*
1395 			 * Call cleanup procedure for RPCSEC_GSS.
1396 			 * This is a hack since there is currently no
1397 			 * op, such as SVC_CLEANAUTH. rpc_gss_cleanup
1398 			 * should only be called for a non null proc.
1399 			 * Null procs in RPC GSS are overloaded to
1400 			 * provide context setup and control. The main
1401 			 * purpose of rpc_gss_cleanup is to decrement the
1402 			 * reference count associated with the cached
1403 			 * GSS security context. We should never get here
1404 			 * for an RPCSEC_GSS null proc since *no_dispatch
1405 			 * would have been set to true from sec_svc_msg above.
1406 			 */
1407 			if (r.rq_cred.oa_flavor == RPCSEC_GSS)
1408 				rpc_gss_cleanup(clone_xprt);
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * Free authentication parameters' storage
1414 	 */
1415 	mutex_enter(&rqcred_lock);
1416 	/* LINTED pointer alignment */
1417 	*(caddr_t *)cred_area = rqcred_head;
1418 	rqcred_head = cred_area;
1419 	mutex_exit(&rqcred_lock);
1420 }
1421 
1422 /*
1423  * Allocate new clone transport handle.
1424  */
1425 static SVCXPRT *
1426 svc_clone_init(void)
1427 {
1428 	SVCXPRT *clone_xprt;
1429 
1430 	clone_xprt = kmem_zalloc(sizeof (SVCXPRT), KM_SLEEP);
1431 	clone_xprt->xp_cred = crget();
1432 	return (clone_xprt);
1433 }
1434 
1435 /*
1436  * Free memory allocated by svc_clone_init.
1437  */
1438 static void
1439 svc_clone_free(SVCXPRT *clone_xprt)
1440 {
1441 	/* Fre credentials from crget() */
1442 	if (clone_xprt->xp_cred)
1443 		crfree(clone_xprt->xp_cred);
1444 
1445 	kmem_free(clone_xprt, sizeof (SVCXPRT));
1446 }
1447 
1448 /*
1449  * Link a per-thread clone transport handle to a master
1450  * - increment a thread reference count on the master
1451  * - copy some of the master's fields to the clone
1452  * - call a transport specific clone routine.
1453  */
1454 static void
1455 svc_clone_link(SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1456 {
1457 	cred_t *cred = clone_xprt->xp_cred;
1458 
1459 	ASSERT(cred);
1460 
1461 	/*
1462 	 * Bump up master's thread count.
1463 	 * Linking a per-thread clone transport handle to a master
1464 	 * associates a service thread with the master.
1465 	 */
1466 	mutex_enter(&xprt->xp_thread_lock);
1467 	xprt->xp_threads++;
1468 	mutex_exit(&xprt->xp_thread_lock);
1469 
1470 	/* Clear everything */
1471 	bzero(clone_xprt, sizeof (SVCXPRT));
1472 
1473 	/* Set pointer to the master transport stucture */
1474 	clone_xprt->xp_master = xprt;
1475 
1476 	/* Structure copy of all the common fields */
1477 	clone_xprt->xp_xpc = xprt->xp_xpc;
1478 
1479 	/* Restore per-thread fields (xp_cred) */
1480 	clone_xprt->xp_cred = cred;
1481 
1482 	/*
1483 	 * NOTICE: There is no transport-type specific code now.
1484 	 *	   If you want to add a transport-type specific cloning code
1485 	 *	   add one more operation (e.g. xp_clone()) to svc_ops,
1486 	 *	   implement it for each transport type, and call it here
1487 	 *	   through an appropriate macro (e.g. SVC_CLONE()).
1488 	 */
1489 }
1490 
1491 /*
1492  * Unlink a non-detached clone transport handle from a master
1493  * - decrement a thread reference count on the master
1494  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1495  *   if this is the last non-detached/absolute thread on this transport
1496  *   then it will close/destroy the transport
1497  * - call transport specific function to destroy the clone handle
1498  * - clear xp_master to avoid recursion.
1499  */
1500 static void
1501 svc_clone_unlink(SVCXPRT *clone_xprt)
1502 {
1503 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1504 
1505 	/* This cannot be a detached thread */
1506 	ASSERT(!clone_xprt->xp_detached);
1507 	ASSERT(xprt->xp_threads > 0);
1508 
1509 	/* Decrement a reference count on the transport */
1510 	mutex_enter(&xprt->xp_thread_lock);
1511 	xprt->xp_threads--;
1512 
1513 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1514 	if (xprt->xp_wq)
1515 		mutex_exit(&xprt->xp_thread_lock);
1516 	else
1517 		svc_xprt_cleanup(xprt, FALSE);
1518 
1519 	/* Call a transport specific clone `destroy' function */
1520 	SVC_CLONE_DESTROY(clone_xprt);
1521 
1522 	/* Clear xp_master */
1523 	clone_xprt->xp_master = NULL;
1524 }
1525 
1526 /*
1527  * Unlink a detached clone transport handle from a master
1528  * - decrement the thread count on the master
1529  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1530  *   if this is the last thread on this transport then it will destroy
1531  *   the transport.
1532  * - call a transport specific function to destroy the clone handle
1533  * - clear xp_master to avoid recursion.
1534  */
1535 static void
1536 svc_clone_unlinkdetached(SVCXPRT *clone_xprt)
1537 {
1538 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1539 
1540 	/* This must be a detached thread */
1541 	ASSERT(clone_xprt->xp_detached);
1542 	ASSERT(xprt->xp_detached_threads > 0);
1543 	ASSERT(xprt->xp_threads + xprt->xp_detached_threads > 0);
1544 
1545 	/* Grab xprt->xp_thread_lock and decrement link counts */
1546 	mutex_enter(&xprt->xp_thread_lock);
1547 	xprt->xp_detached_threads--;
1548 
1549 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1550 	if (xprt->xp_wq)
1551 		mutex_exit(&xprt->xp_thread_lock);
1552 	else
1553 		svc_xprt_cleanup(xprt, TRUE);
1554 
1555 	/* Call transport specific clone `destroy' function */
1556 	SVC_CLONE_DESTROY(clone_xprt);
1557 
1558 	/* Clear xp_master */
1559 	clone_xprt->xp_master = NULL;
1560 }
1561 
1562 /*
1563  * Try to exit a non-detached service thread
1564  * - check if there are enough threads left
1565  * - if this thread (ie its clone transport handle) are linked
1566  *   to a master transport then unlink it
1567  * - free the clone structure
1568  * - return to userland for thread exit
1569  *
1570  * If this is the last non-detached or the last thread on this
1571  * transport then the call to svc_clone_unlink() will, respectively,
1572  * close and/or destroy the transport.
1573  */
1574 static void
1575 svc_thread_exit(SVCPOOL *pool, SVCXPRT *clone_xprt)
1576 {
1577 	if (clone_xprt->xp_master)
1578 		svc_clone_unlink(clone_xprt);
1579 	svc_clone_free(clone_xprt);
1580 
1581 	mutex_enter(&pool->p_thread_lock);
1582 	pool->p_threads--;
1583 	if (pool->p_closing && svc_pool_tryexit(pool))
1584 		/* return -  thread exit will be handled at user level */
1585 		return;
1586 	mutex_exit(&pool->p_thread_lock);
1587 
1588 	/* return -  thread exit will be handled at user level */
1589 }
1590 
1591 /*
1592  * Exit a detached service thread that returned to svc_run
1593  * - decrement the `detached thread' count for the pool
1594  * - unlink the detached clone transport handle from the master
1595  * - free the clone structure
1596  * - return to userland for thread exit
1597  *
1598  * If this is the last thread on this transport then the call
1599  * to svc_clone_unlinkdetached() will destroy the transport.
1600  */
1601 static void
1602 svc_thread_exitdetached(SVCPOOL *pool, SVCXPRT *clone_xprt)
1603 {
1604 	/* This must be a detached thread */
1605 	ASSERT(clone_xprt->xp_master);
1606 	ASSERT(clone_xprt->xp_detached);
1607 	ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
1608 
1609 	svc_clone_unlinkdetached(clone_xprt);
1610 	svc_clone_free(clone_xprt);
1611 
1612 	mutex_enter(&pool->p_thread_lock);
1613 
1614 	ASSERT(pool->p_reserved_threads >= 0);
1615 	ASSERT(pool->p_detached_threads > 0);
1616 
1617 	pool->p_detached_threads--;
1618 	if (pool->p_closing && svc_pool_tryexit(pool))
1619 		/* return -  thread exit will be handled at user level */
1620 		return;
1621 	mutex_exit(&pool->p_thread_lock);
1622 
1623 	/* return -  thread exit will be handled at user level */
1624 }
1625 
1626 /*
1627  * PSARC 2003/523 Contract Private Interface
1628  * svc_wait
1629  * Changes must be reviewed by Solaris File Sharing
1630  * Changes must be communicated to contract-2003-523@sun.com
1631  */
1632 int
1633 svc_wait(int id)
1634 {
1635 	SVCPOOL *pool;
1636 	int	err = 0;
1637 	struct svc_globals *svc;
1638 
1639 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
1640 	mutex_enter(&svc->svc_plock);
1641 	pool = svc_pool_find(svc, id);
1642 	mutex_exit(&svc->svc_plock);
1643 
1644 	if (pool == NULL)
1645 		return (ENOENT);
1646 
1647 	mutex_enter(&pool->p_user_lock);
1648 
1649 	/* Check if there's already a user thread waiting on this pool */
1650 	if (pool->p_user_waiting) {
1651 		mutex_exit(&pool->p_user_lock);
1652 		return (EBUSY);
1653 	}
1654 
1655 	pool->p_user_waiting = TRUE;
1656 
1657 	/* Go to sleep, waiting for the signaled flag. */
1658 	while (!pool->p_signal_create_thread && !pool->p_user_exit) {
1659 		if (cv_wait_sig(&pool->p_user_cv, &pool->p_user_lock) == 0) {
1660 			/* Interrupted, return to handle exit or signal */
1661 			pool->p_user_waiting = FALSE;
1662 			pool->p_signal_create_thread = FALSE;
1663 			mutex_exit(&pool->p_user_lock);
1664 
1665 			/*
1666 			 * Thread has been interrupted and therefore
1667 			 * the service daemon is leaving as well so
1668 			 * let's go ahead and remove the service
1669 			 * pool at this time.
1670 			 */
1671 			mutex_enter(&svc->svc_plock);
1672 			svc_pool_unregister(svc, pool);
1673 			mutex_exit(&svc->svc_plock);
1674 
1675 			return (EINTR);
1676 		}
1677 	}
1678 
1679 	pool->p_signal_create_thread = FALSE;
1680 	pool->p_user_waiting = FALSE;
1681 
1682 	/*
1683 	 * About to exit the service pool. Set return value
1684 	 * to let the userland code know our intent. Signal
1685 	 * svc_thread_creator() so that it can clean up the
1686 	 * pool structure.
1687 	 */
1688 	if (pool->p_user_exit) {
1689 		err = ECANCELED;
1690 		cv_signal(&pool->p_user_cv);
1691 	}
1692 
1693 	mutex_exit(&pool->p_user_lock);
1694 
1695 	/* Return to userland with error code, for possible thread creation. */
1696 	return (err);
1697 }
1698 
1699 /*
1700  * `Service threads' creator thread.
1701  * The creator thread waits for a signal to create new thread.
1702  */
1703 static void
1704 svc_thread_creator(SVCPOOL *pool)
1705 {
1706 	callb_cpr_t cpr_info;	/* CPR info for the creator thread */
1707 
1708 	CALLB_CPR_INIT(&cpr_info, &pool->p_creator_lock, callb_generic_cpr,
1709 	    "svc_thread_creator");
1710 
1711 	for (;;) {
1712 		mutex_enter(&pool->p_creator_lock);
1713 
1714 		/* Check if someone set the exit flag */
1715 		if (pool->p_creator_exit)
1716 			break;
1717 
1718 		/* Clear the `signaled' flag and go asleep */
1719 		pool->p_creator_signaled = FALSE;
1720 
1721 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1722 		cv_wait(&pool->p_creator_cv, &pool->p_creator_lock);
1723 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1724 
1725 		/* Check if someone signaled to exit */
1726 		if (pool->p_creator_exit)
1727 			break;
1728 
1729 		mutex_exit(&pool->p_creator_lock);
1730 
1731 		mutex_enter(&pool->p_thread_lock);
1732 
1733 		/*
1734 		 * When the pool is in closing state and all the transports
1735 		 * are gone the creator should not create any new threads.
1736 		 */
1737 		if (pool->p_closing) {
1738 			rw_enter(&pool->p_lrwlock, RW_READER);
1739 			if (pool->p_lcount == 0) {
1740 				rw_exit(&pool->p_lrwlock);
1741 				mutex_exit(&pool->p_thread_lock);
1742 				continue;
1743 			}
1744 			rw_exit(&pool->p_lrwlock);
1745 		}
1746 
1747 		/*
1748 		 * Create a new service thread now.
1749 		 */
1750 		ASSERT(pool->p_reserved_threads >= 0);
1751 		ASSERT(pool->p_detached_threads >= 0);
1752 
1753 		if (pool->p_threads + pool->p_detached_threads <
1754 		    pool->p_maxthreads) {
1755 			/*
1756 			 * Signal the service pool wait thread
1757 			 * only if it hasn't already been signaled.
1758 			 */
1759 			mutex_enter(&pool->p_user_lock);
1760 			if (pool->p_signal_create_thread == FALSE) {
1761 				pool->p_signal_create_thread = TRUE;
1762 				cv_signal(&pool->p_user_cv);
1763 			}
1764 			mutex_exit(&pool->p_user_lock);
1765 
1766 		}
1767 
1768 		mutex_exit(&pool->p_thread_lock);
1769 	}
1770 
1771 	/*
1772 	 * Pool is closed. Cleanup and exit.
1773 	 */
1774 
1775 	/* Signal userland creator thread that it can stop now. */
1776 	mutex_enter(&pool->p_user_lock);
1777 	pool->p_user_exit = TRUE;
1778 	cv_broadcast(&pool->p_user_cv);
1779 	mutex_exit(&pool->p_user_lock);
1780 
1781 	/* Wait for svc_wait() to be done with the pool */
1782 	mutex_enter(&pool->p_user_lock);
1783 	while (pool->p_user_waiting) {
1784 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1785 		cv_wait(&pool->p_user_cv, &pool->p_user_lock);
1786 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1787 	}
1788 	mutex_exit(&pool->p_user_lock);
1789 
1790 	CALLB_CPR_EXIT(&cpr_info);
1791 	svc_pool_cleanup(pool);
1792 	zthread_exit();
1793 }
1794 
1795 /*
1796  * If the creator thread  is idle signal it to create
1797  * a new service thread.
1798  */
1799 static void
1800 svc_creator_signal(SVCPOOL *pool)
1801 {
1802 	mutex_enter(&pool->p_creator_lock);
1803 	if (pool->p_creator_signaled == FALSE) {
1804 		pool->p_creator_signaled = TRUE;
1805 		cv_signal(&pool->p_creator_cv);
1806 	}
1807 	mutex_exit(&pool->p_creator_lock);
1808 }
1809 
1810 /*
1811  * Notify the creator thread to clean up and exit.
1812  */
1813 static void
1814 svc_creator_signalexit(SVCPOOL *pool)
1815 {
1816 	mutex_enter(&pool->p_creator_lock);
1817 	pool->p_creator_exit = TRUE;
1818 	cv_signal(&pool->p_creator_cv);
1819 	mutex_exit(&pool->p_creator_lock);
1820 }
1821 
1822 /*
1823  * Polling part of the svc_run().
1824  * - search for a transport with a pending request
1825  * - when one is found then latch the request lock and return to svc_run()
1826  * - if there is no request go asleep and wait for a signal
1827  * - handle two exceptions:
1828  *   a) current transport is closing
1829  *   b) timeout waiting for a new request
1830  *   in both cases return to svc_run()
1831  */
1832 static SVCMASTERXPRT *
1833 svc_poll(SVCPOOL *pool, SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1834 {
1835 	/*
1836 	 * Main loop iterates until
1837 	 * a) we find a pending request,
1838 	 * b) detect that the current transport is closing
1839 	 * c) time out waiting for a new request.
1840 	 */
1841 	for (;;) {
1842 		SVCMASTERXPRT *next;
1843 		clock_t timeleft;
1844 
1845 		/*
1846 		 * Step 1.
1847 		 * Check if there is a pending request on the current
1848 		 * transport handle so that we can avoid cloning.
1849 		 * If so then decrement the `pending-request' count for
1850 		 * the pool and return to svc_run().
1851 		 *
1852 		 * We need to prevent a potential starvation. When
1853 		 * a selected transport has all pending requests coming in
1854 		 * all the time then the service threads will never switch to
1855 		 * another transport. With a limited number of service
1856 		 * threads some transports may be never serviced.
1857 		 * To prevent such a scenario we pick up at most
1858 		 * pool->p_max_same_xprt requests from the same transport
1859 		 * and then take a hint from the xprt-ready queue or walk
1860 		 * the transport list.
1861 		 */
1862 		if (xprt && xprt->xp_req_head && (!pool->p_qoverflow ||
1863 		    clone_xprt->xp_same_xprt++ < pool->p_max_same_xprt)) {
1864 			mutex_enter(&xprt->xp_req_lock);
1865 			if (xprt->xp_req_head) {
1866 				mutex_enter(&pool->p_req_lock);
1867 				pool->p_reqs--;
1868 				mutex_exit(&pool->p_req_lock);
1869 
1870 				return (xprt);
1871 			}
1872 			mutex_exit(&xprt->xp_req_lock);
1873 		}
1874 		clone_xprt->xp_same_xprt = 0;
1875 
1876 		/*
1877 		 * Step 2.
1878 		 * If there is no request on the current transport try to
1879 		 * find another transport with a pending request.
1880 		 */
1881 		mutex_enter(&pool->p_req_lock);
1882 		pool->p_walkers++;
1883 		mutex_exit(&pool->p_req_lock);
1884 
1885 		/*
1886 		 * Make sure that transports will not be destroyed just
1887 		 * while we are checking them.
1888 		 */
1889 		rw_enter(&pool->p_lrwlock, RW_READER);
1890 
1891 		for (;;) {
1892 			SVCMASTERXPRT *hint;
1893 
1894 			/*
1895 			 * Get the next transport from the xprt-ready queue.
1896 			 * This is a hint. There is no guarantee that the
1897 			 * transport still has a pending request since it
1898 			 * could be picked up by another thread in step 1.
1899 			 *
1900 			 * If the transport has a pending request then keep
1901 			 * it locked. Decrement the `pending-requests' for
1902 			 * the pool and `walking-threads' counts, and return
1903 			 * to svc_run().
1904 			 */
1905 			hint = svc_xprt_qget(pool);
1906 
1907 			if (hint && hint->xp_req_head) {
1908 				mutex_enter(&hint->xp_req_lock);
1909 				if (hint->xp_req_head) {
1910 					rw_exit(&pool->p_lrwlock);
1911 
1912 					mutex_enter(&pool->p_req_lock);
1913 					pool->p_reqs--;
1914 					pool->p_walkers--;
1915 					mutex_exit(&pool->p_req_lock);
1916 
1917 					return (hint);
1918 				}
1919 				mutex_exit(&hint->xp_req_lock);
1920 			}
1921 
1922 			/*
1923 			 * If there was no hint in the xprt-ready queue then
1924 			 * - if there is less pending requests than polling
1925 			 *   threads go asleep
1926 			 * - otherwise check if there was an overflow in the
1927 			 *   xprt-ready queue; if so, then we need to break
1928 			 *   the `drain' mode
1929 			 */
1930 			if (hint == NULL) {
1931 				if (pool->p_reqs < pool->p_walkers) {
1932 					mutex_enter(&pool->p_req_lock);
1933 					if (pool->p_reqs < pool->p_walkers)
1934 						goto sleep;
1935 					mutex_exit(&pool->p_req_lock);
1936 				}
1937 				if (pool->p_qoverflow) {
1938 					break;
1939 				}
1940 			}
1941 		}
1942 
1943 		/*
1944 		 * If there was an overflow in the xprt-ready queue then we
1945 		 * need to switch to the `drain' mode, i.e. walk through the
1946 		 * pool's transport list and search for a transport with a
1947 		 * pending request. If we manage to drain all the pending
1948 		 * requests then we can clear the overflow flag. This will
1949 		 * switch svc_poll() back to taking hints from the xprt-ready
1950 		 * queue (which is generally more efficient).
1951 		 *
1952 		 * If there are no registered transports simply go asleep.
1953 		 */
1954 		if (xprt == NULL && pool->p_lhead == NULL) {
1955 			mutex_enter(&pool->p_req_lock);
1956 			goto sleep;
1957 		}
1958 
1959 		/*
1960 		 * `Walk' through the pool's list of master server
1961 		 * transport handles. Continue to loop until there are less
1962 		 * looping threads then pending requests.
1963 		 */
1964 		next = xprt ? xprt->xp_next : pool->p_lhead;
1965 
1966 		for (;;) {
1967 			/*
1968 			 * Check if there is a request on this transport.
1969 			 *
1970 			 * Since blocking on a locked mutex is very expensive
1971 			 * check for a request without a lock first. If we miss
1972 			 * a request that is just being delivered but this will
1973 			 * cost at most one full walk through the list.
1974 			 */
1975 			if (next->xp_req_head) {
1976 				/*
1977 				 * Check again, now with a lock.
1978 				 */
1979 				mutex_enter(&next->xp_req_lock);
1980 				if (next->xp_req_head) {
1981 					rw_exit(&pool->p_lrwlock);
1982 
1983 					mutex_enter(&pool->p_req_lock);
1984 					pool->p_reqs--;
1985 					pool->p_walkers--;
1986 					mutex_exit(&pool->p_req_lock);
1987 
1988 					return (next);
1989 				}
1990 				mutex_exit(&next->xp_req_lock);
1991 			}
1992 
1993 			/*
1994 			 * Continue to `walk' through the pool's
1995 			 * transport list until there is less requests
1996 			 * than walkers. Check this condition without
1997 			 * a lock first to avoid contention on a mutex.
1998 			 */
1999 			if (pool->p_reqs < pool->p_walkers) {
2000 				/*
2001 				 * Check again, now with the lock.
2002 				 * If all the pending requests have been
2003 				 * picked up than clear the overflow flag.
2004 				 */
2005 				mutex_enter(&pool->p_req_lock);
2006 				if (pool->p_reqs <= 0)
2007 					svc_xprt_qreset(pool);
2008 				if (pool->p_reqs < pool->p_walkers)
2009 					break;	/* goto sleep */
2010 				mutex_exit(&pool->p_req_lock);
2011 			}
2012 
2013 			next = next->xp_next;
2014 		}
2015 
2016 	sleep:
2017 		/*
2018 		 * No work to do. Stop the `walk' and go asleep.
2019 		 * Decrement the `walking-threads' count for the pool.
2020 		 */
2021 		pool->p_walkers--;
2022 		rw_exit(&pool->p_lrwlock);
2023 
2024 		/*
2025 		 * Count us as asleep, mark this thread as safe
2026 		 * for suspend and wait for a request.
2027 		 */
2028 		pool->p_asleep++;
2029 		timeleft = cv_timedwait_sig(&pool->p_req_cv, &pool->p_req_lock,
2030 		    pool->p_timeout + lbolt);
2031 
2032 		/*
2033 		 * If the drowsy flag is on this means that
2034 		 * someone has signaled a wakeup. In such a case
2035 		 * the `asleep-threads' count has already updated
2036 		 * so just clear the flag.
2037 		 *
2038 		 * If the drowsy flag is off then we need to update
2039 		 * the `asleep-threads' count.
2040 		 */
2041 		if (pool->p_drowsy) {
2042 			pool->p_drowsy = FALSE;
2043 			/*
2044 			 * If the thread is here because it timedout,
2045 			 * instead of returning SVC_ETIMEDOUT, it is
2046 			 * time to do some more work.
2047 			 */
2048 			if (timeleft == -1)
2049 				timeleft = 1;
2050 		} else {
2051 			pool->p_asleep--;
2052 		}
2053 		mutex_exit(&pool->p_req_lock);
2054 
2055 		/*
2056 		 * If we received a signal while waiting for a
2057 		 * request, inform svc_run(), so that we can return
2058 		 * to user level and restart the call.
2059 		 */
2060 		if (timeleft == 0)
2061 			return (SVC_EINTR);
2062 
2063 		/*
2064 		 * If the current transport is gone then notify
2065 		 * svc_run() to unlink from it.
2066 		 */
2067 		if (xprt && xprt->xp_wq == NULL)
2068 			return (SVC_EXPRTGONE);
2069 
2070 		/*
2071 		 * If we have timed out waiting for a request inform
2072 		 * svc_run() that we probably don't need this thread.
2073 		 */
2074 		if (timeleft == -1)
2075 			return (SVC_ETIMEDOUT);
2076 	}
2077 }
2078 
2079 /*
2080  * Main loop of the kernel RPC server
2081  * - wait for input (find a transport with a pending request).
2082  * - dequeue the request
2083  * - call a registered server routine to process the requests
2084  *
2085  * There can many threads running concurrently in this loop
2086  * on the same or on different transports.
2087  */
2088 static int
2089 svc_run(SVCPOOL *pool)
2090 {
2091 	SVCMASTERXPRT *xprt = NULL;	/* master transport handle  */
2092 	SVCXPRT *clone_xprt;	/* clone for this thread    */
2093 	struct svc_globals *svc;
2094 	proc_t *p = ttoproc(curthread);
2095 
2096 	/* Allocate a clone transport handle for this thread */
2097 	clone_xprt = svc_clone_init();
2098 
2099 	/*
2100 	 * The loop iterates until the thread becomes
2101 	 * idle too long or the transport is gone.
2102 	 */
2103 	for (;;) {
2104 		SVCMASTERXPRT *next;
2105 		mblk_t *mp;
2106 
2107 		TRACE_0(TR_FAC_KRPC, TR_SVC_RUN, "svc_run");
2108 
2109 		/*
2110 		 * If the process is exiting/killed, return
2111 		 * immediately without processing any more
2112 		 * requests.
2113 		 */
2114 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
2115 			svc_thread_exit(pool, clone_xprt);
2116 
2117 			/*
2118 			 * Thread has been interrupted and therefore
2119 			 * the service daemon is leaving as well so
2120 			 * let's go ahead and remove the service
2121 			 * pool at this time.
2122 			 */
2123 			svc = zone_getspecific(svc_zone_key, curproc->p_zone);
2124 			mutex_enter(&svc->svc_plock);
2125 			svc_pool_unregister(svc, pool);
2126 			mutex_exit(&svc->svc_plock);
2127 
2128 			return (0);
2129 		}
2130 
2131 		/* Find a transport with a pending request */
2132 		next = svc_poll(pool, xprt, clone_xprt);
2133 
2134 		/*
2135 		 * If svc_poll() finds a transport with a request
2136 		 * it latches xp_req_lock on it. Therefore we need
2137 		 * to dequeue the request and release the lock as
2138 		 * soon as possible.
2139 		 */
2140 		ASSERT(next != NULL &&
2141 		    (next == SVC_EXPRTGONE ||
2142 		    next == SVC_ETIMEDOUT ||
2143 		    next == SVC_EINTR ||
2144 		    MUTEX_HELD(&next->xp_req_lock)));
2145 
2146 		/* Ooops! Current transport is closing. Unlink now */
2147 		if (next == SVC_EXPRTGONE) {
2148 			svc_clone_unlink(clone_xprt);
2149 			xprt = NULL;
2150 			continue;
2151 		}
2152 
2153 		/* Ooops! Timeout while waiting for a request. Exit */
2154 		if (next == SVC_ETIMEDOUT) {
2155 			svc_thread_exit(pool, clone_xprt);
2156 			return (0);
2157 		}
2158 
2159 		/*
2160 		 * Interrupted by a signal while waiting for a
2161 		 * request. Return to userspace and restart.
2162 		 */
2163 		if (next == SVC_EINTR) {
2164 			svc_thread_exit(pool, clone_xprt);
2165 
2166 			/*
2167 			 * Thread has been interrupted and therefore
2168 			 * the service daemon is leaving as well so
2169 			 * let's go ahead and remove the service
2170 			 * pool at this time.
2171 			 */
2172 			svc = zone_getspecific(svc_zone_key, curproc->p_zone);
2173 			mutex_enter(&svc->svc_plock);
2174 			svc_pool_unregister(svc, pool);
2175 			mutex_exit(&svc->svc_plock);
2176 
2177 			return (EINTR);
2178 		}
2179 
2180 		/*
2181 		 * De-queue the request and release the request lock
2182 		 * on this transport (latched by svc_poll()).
2183 		 */
2184 		mp = next->xp_req_head;
2185 		next->xp_req_head = mp->b_next;
2186 		mp->b_next = (mblk_t *)0;
2187 
2188 		TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_DEQ,
2189 		    "rpc_que_req_deq:pool %p mp %p", pool, mp);
2190 		mutex_exit(&next->xp_req_lock);
2191 
2192 		/*
2193 		 * If this is a new request on a current transport then
2194 		 * the clone structure is already properly initialized.
2195 		 * Otherwise, if the request is on a different transport,
2196 		 * unlink from the current master and link to
2197 		 * the one we got a request on.
2198 		 */
2199 		if (next != xprt) {
2200 			if (xprt)
2201 				svc_clone_unlink(clone_xprt);
2202 			svc_clone_link(next, clone_xprt);
2203 			xprt = next;
2204 		}
2205 
2206 		/*
2207 		 * If there are more requests and req_cv hasn't
2208 		 * been signaled yet then wake up one more thread now.
2209 		 *
2210 		 * We avoid signaling req_cv until the most recently
2211 		 * signaled thread wakes up and gets CPU to clear
2212 		 * the `drowsy' flag.
2213 		 */
2214 		if (!(pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2215 		    pool->p_asleep == 0)) {
2216 			mutex_enter(&pool->p_req_lock);
2217 
2218 			if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2219 			    pool->p_asleep == 0)
2220 				mutex_exit(&pool->p_req_lock);
2221 			else {
2222 				pool->p_asleep--;
2223 				pool->p_drowsy = TRUE;
2224 
2225 				cv_signal(&pool->p_req_cv);
2226 				mutex_exit(&pool->p_req_lock);
2227 			}
2228 		}
2229 
2230 		/*
2231 		 * If there are no asleep/signaled threads, we are
2232 		 * still below pool->p_maxthreads limit, and no thread is
2233 		 * currently being created then signal the creator
2234 		 * for one more service thread.
2235 		 *
2236 		 * The asleep and drowsy checks are not protected
2237 		 * by a lock since it hurts performance and a wrong
2238 		 * decision is not essential.
2239 		 */
2240 		if (pool->p_asleep == 0 && !pool->p_drowsy &&
2241 		    pool->p_threads + pool->p_detached_threads <
2242 		    pool->p_maxthreads)
2243 			svc_creator_signal(pool);
2244 
2245 		/*
2246 		 * Process the request.
2247 		 */
2248 		svc_getreq(clone_xprt, mp);
2249 
2250 		/* If thread had a reservation it should have been canceled */
2251 		ASSERT(!clone_xprt->xp_reserved);
2252 
2253 		/*
2254 		 * If the clone is marked detached then exit.
2255 		 * The rpcmod slot has already been released
2256 		 * when we detached this thread.
2257 		 */
2258 		if (clone_xprt->xp_detached) {
2259 			svc_thread_exitdetached(pool, clone_xprt);
2260 			return (0);
2261 		}
2262 
2263 		/*
2264 		 * Release our reference on the rpcmod
2265 		 * slot attached to xp_wq->q_ptr.
2266 		 */
2267 		(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL);
2268 	}
2269 	/* NOTREACHED */
2270 }
2271 
2272 /*
2273  * Flush any pending requests for the queue and
2274  * and free the associated mblks.
2275  */
2276 void
2277 svc_queueclean(queue_t *q)
2278 {
2279 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2280 	mblk_t *mp;
2281 
2282 	/*
2283 	 * clean up the requests
2284 	 */
2285 	mutex_enter(&xprt->xp_req_lock);
2286 	while ((mp = xprt->xp_req_head) != NULL) {
2287 		xprt->xp_req_head = mp->b_next;
2288 		mp->b_next = (mblk_t *)0;
2289 		(*RELE_PROC(xprt)) (xprt->xp_wq, mp);
2290 	}
2291 	mutex_exit(&xprt->xp_req_lock);
2292 }
2293 
2294 /*
2295  * This routine is called by rpcmod to inform kernel RPC that a
2296  * queue is closing. It is called after all the requests have been
2297  * picked up (that is after all the slots on the queue have
2298  * been released by kernel RPC). It is also guaranteed that no more
2299  * request will be delivered on this transport.
2300  *
2301  * - clear xp_wq to mark the master server transport handle as closing
2302  * - if there are no more threads on this transport close/destroy it
2303  * - otherwise, broadcast threads sleeping in svc_poll(); the last
2304  *   thread will close/destroy the transport.
2305  */
2306 void
2307 svc_queueclose(queue_t *q)
2308 {
2309 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2310 
2311 	if (xprt == NULL) {
2312 		/*
2313 		 * If there is no master xprt associated with this stream,
2314 		 * then there is nothing to do.  This happens regularly
2315 		 * with connection-oriented listening streams created by
2316 		 * nfsd.
2317 		 */
2318 		return;
2319 	}
2320 
2321 	mutex_enter(&xprt->xp_thread_lock);
2322 
2323 	ASSERT(xprt->xp_req_head == NULL);
2324 	ASSERT(xprt->xp_wq != NULL);
2325 
2326 	xprt->xp_wq = NULL;
2327 
2328 	if (xprt->xp_threads == 0) {
2329 		SVCPOOL *pool = xprt->xp_pool;
2330 
2331 		/*
2332 		 * svc_xprt_cleanup() destroys the transport
2333 		 * or releases the transport thread lock
2334 		 */
2335 		svc_xprt_cleanup(xprt, FALSE);
2336 
2337 		mutex_enter(&pool->p_thread_lock);
2338 
2339 		/*
2340 		 * If the pool is in closing state and this was
2341 		 * the last transport in the pool then signal the creator
2342 		 * thread to clean up and exit.
2343 		 */
2344 		if (pool->p_closing && svc_pool_tryexit(pool)) {
2345 			return;
2346 		}
2347 		mutex_exit(&pool->p_thread_lock);
2348 	} else {
2349 		/*
2350 		 * Wakeup threads sleeping in svc_poll() so that they
2351 		 * unlink from the transport
2352 		 */
2353 		mutex_enter(&xprt->xp_pool->p_req_lock);
2354 		cv_broadcast(&xprt->xp_pool->p_req_cv);
2355 		mutex_exit(&xprt->xp_pool->p_req_lock);
2356 
2357 		/*
2358 		 *  NOTICE: No references to the master transport structure
2359 		 *	    beyond this point!
2360 		 */
2361 		mutex_exit(&xprt->xp_thread_lock);
2362 	}
2363 }
2364 
2365 /*
2366  * Interrupt `request delivery' routine called from rpcmod
2367  * - put a request at the tail of the transport request queue
2368  * - insert a hint for svc_poll() into the xprt-ready queue
2369  * - increment the `pending-requests' count for the pool
2370  * - wake up a thread sleeping in svc_poll() if necessary
2371  * - if all the threads are running ask the creator for a new one.
2372  */
2373 void
2374 svc_queuereq(queue_t *q, mblk_t *mp)
2375 {
2376 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2377 	SVCPOOL *pool = xprt->xp_pool;
2378 
2379 	TRACE_0(TR_FAC_KRPC, TR_SVC_QUEUEREQ_START, "svc_queuereq_start");
2380 
2381 	/*
2382 	 * Step 1.
2383 	 * Grab the transport's request lock and put
2384 	 * the request at the tail of the transport's
2385 	 * request queue.
2386 	 */
2387 	mutex_enter(&xprt->xp_req_lock);
2388 	if (xprt->xp_req_head == NULL)
2389 		xprt->xp_req_head = mp;
2390 	else
2391 		xprt->xp_req_tail->b_next = mp;
2392 	xprt->xp_req_tail = mp;
2393 
2394 	mutex_exit(&xprt->xp_req_lock);
2395 
2396 	/*
2397 	 * Step 2.
2398 	 * Grab the pool request lock, insert a hint into
2399 	 * the xprt-ready queue, increment `pending-requests'
2400 	 * count for the pool, and wake up a thread sleeping
2401 	 * in svc_poll() if necessary.
2402 	 */
2403 	mutex_enter(&pool->p_req_lock);
2404 
2405 	/* Insert pointer to this transport into the xprt-ready queue */
2406 	svc_xprt_qput(pool, xprt);
2407 
2408 	/* Increment the `pending-requests' count for the pool */
2409 	pool->p_reqs++;
2410 
2411 	TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_ENQ,
2412 	    "rpc_que_req_enq:pool %p mp %p", pool, mp);
2413 
2414 	/*
2415 	 * If there are more requests and req_cv hasn't
2416 	 * been signaled yet then wake up one more thread now.
2417 	 *
2418 	 * We avoid signaling req_cv until the most recently
2419 	 * signaled thread wakes up and gets CPU to clear
2420 	 * the `drowsy' flag.
2421 	 */
2422 	if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2423 	    pool->p_asleep == 0) {
2424 		mutex_exit(&pool->p_req_lock);
2425 	} else {
2426 		pool->p_drowsy = TRUE;
2427 		pool->p_asleep--;
2428 
2429 		/*
2430 		 * Signal wakeup and drop the request lock.
2431 		 */
2432 		cv_signal(&pool->p_req_cv);
2433 		mutex_exit(&pool->p_req_lock);
2434 	}
2435 
2436 	/*
2437 	 * Step 3.
2438 	 * If there are no asleep/signaled threads, we are
2439 	 * still below pool->p_maxthreads limit, and no thread is
2440 	 * currently being created then signal the creator
2441 	 * for one more service thread.
2442 	 *
2443 	 * The asleep and drowsy checks are not not protected
2444 	 * by a lock since it hurts performance and a wrong
2445 	 * decision is not essential.
2446 	 */
2447 	if (pool->p_asleep == 0 && !pool->p_drowsy &&
2448 		pool->p_threads + pool->p_detached_threads < pool->p_maxthreads)
2449 		svc_creator_signal(pool);
2450 
2451 	TRACE_1(TR_FAC_KRPC, TR_SVC_QUEUEREQ_END,
2452 	    "svc_queuereq_end:(%S)", "end");
2453 }
2454 
2455 /*
2456  * Reserve a service thread so that it can be detached later.
2457  * This reservation is required to make sure that when it tries to
2458  * detach itself the total number of detached threads does not exceed
2459  * pool->p_maxthreads - pool->p_redline (i.e. that we can have
2460  * up to pool->p_redline non-detached threads).
2461  *
2462  * If the thread does not detach itself later, it should cancel the
2463  * reservation before returning to svc_run().
2464  *
2465  * - check if there is room for more reserved/detached threads
2466  * - if so, then increment the `reserved threads' count for the pool
2467  * - mark the thread as reserved (setting the flag in the clone transport
2468  *   handle for this thread
2469  * - returns 1 if the reservation succeeded, 0 if it failed.
2470  */
2471 int
2472 svc_reserve_thread(SVCXPRT *clone_xprt)
2473 {
2474 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2475 
2476 	/* Recursive reservations are not allowed */
2477 	ASSERT(!clone_xprt->xp_reserved);
2478 	ASSERT(!clone_xprt->xp_detached);
2479 
2480 	/* Check pool counts if there is room for reservation */
2481 	mutex_enter(&pool->p_thread_lock);
2482 	if (pool->p_reserved_threads + pool->p_detached_threads >=
2483 		pool->p_maxthreads - pool->p_redline) {
2484 		mutex_exit(&pool->p_thread_lock);
2485 		return (0);
2486 	}
2487 	pool->p_reserved_threads++;
2488 	mutex_exit(&pool->p_thread_lock);
2489 
2490 	/* Mark the thread (clone handle) as reserved */
2491 	clone_xprt->xp_reserved = TRUE;
2492 
2493 	return (1);
2494 }
2495 
2496 /*
2497  * Cancel a reservation for a thread.
2498  * - decrement the `reserved threads' count for the pool
2499  * - clear the flag in the clone transport handle for this thread.
2500  */
2501 void
2502 svc_unreserve_thread(SVCXPRT *clone_xprt)
2503 {
2504 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2505 
2506 	/* Thread must have a reservation */
2507 	ASSERT(clone_xprt->xp_reserved);
2508 	ASSERT(!clone_xprt->xp_detached);
2509 
2510 	/* Decrement global count */
2511 	mutex_enter(&pool->p_thread_lock);
2512 	pool->p_reserved_threads--;
2513 	mutex_exit(&pool->p_thread_lock);
2514 
2515 	/* Clear reservation flag */
2516 	clone_xprt->xp_reserved = FALSE;
2517 }
2518 
2519 /*
2520  * Detach a thread from its transport, so that it can block for an
2521  * extended time.  Because the transport can be closed after the thread is
2522  * detached, the thread should have already sent off a reply if it was
2523  * going to send one.
2524  *
2525  * - decrement `non-detached threads' count and increment `detached threads'
2526  *   counts for the transport
2527  * - decrement the  `non-detached threads' and `reserved threads'
2528  *   counts and increment the `detached threads' count for the pool
2529  * - release the rpcmod slot
2530  * - mark the clone (thread) as detached.
2531  *
2532  * No need to return a pointer to the thread's CPR information, since
2533  * the thread has a userland identity.
2534  *
2535  * NOTICE: a thread must not detach itself without making a prior reservation
2536  *	   through svc_thread_reserve().
2537  */
2538 callb_cpr_t *
2539 svc_detach_thread(SVCXPRT *clone_xprt)
2540 {
2541 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
2542 	SVCPOOL *pool = xprt->xp_pool;
2543 
2544 	/* Thread must have a reservation */
2545 	ASSERT(clone_xprt->xp_reserved);
2546 	ASSERT(!clone_xprt->xp_detached);
2547 
2548 	/* Bookkeeping for this transport */
2549 	mutex_enter(&xprt->xp_thread_lock);
2550 	xprt->xp_threads--;
2551 	xprt->xp_detached_threads++;
2552 	mutex_exit(&xprt->xp_thread_lock);
2553 
2554 	/* Bookkeeping for the pool */
2555 	mutex_enter(&pool->p_thread_lock);
2556 	pool->p_threads--;
2557 	pool->p_reserved_threads--;
2558 	pool->p_detached_threads++;
2559 	mutex_exit(&pool->p_thread_lock);
2560 
2561 	/* Release an rpcmod slot for this request */
2562 	(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL);
2563 
2564 	/* Mark the clone (thread) as detached */
2565 	clone_xprt->xp_reserved = FALSE;
2566 	clone_xprt->xp_detached = TRUE;
2567 
2568 	return (NULL);
2569 }
2570 
2571 /*
2572  * This routine is responsible for extracting RDMA plugin master XPRT,
2573  * unregister from the SVCPOOL and initiate plugin specific cleanup.
2574  * It is passed a list/group of rdma transports as records which are
2575  * active in a given registered or unregistered kRPC thread pool. Its shuts
2576  * all active rdma transports in that pool. If the thread active on the trasport
2577  * happens to be last thread for that pool, it will signal the creater thread
2578  * to cleanup the pool and destroy the xprt in svc_queueclose()
2579  */
2580 void
2581 rdma_stop(rdma_xprt_group_t rdma_xprts)
2582 {
2583 	SVCMASTERXPRT *xprt;
2584 	rdma_xprt_record_t *curr_rec;
2585 	queue_t *q;
2586 	mblk_t *mp;
2587 	int i;
2588 
2589 	if (rdma_xprts.rtg_count == 0)
2590 		return;
2591 
2592 	for (i = 0; i < rdma_xprts.rtg_count; i++) {
2593 		curr_rec = rdma_xprts.rtg_listhead;
2594 		rdma_xprts.rtg_listhead = curr_rec->rtr_next;
2595 		curr_rec->rtr_next = NULL;
2596 		xprt = curr_rec->rtr_xprt_ptr;
2597 		q = xprt->xp_wq;
2598 		svc_rdma_kstop(xprt);
2599 
2600 		mutex_enter(&xprt->xp_req_lock);
2601 		while ((mp = xprt->xp_req_head) != NULL) {
2602 			xprt->xp_req_head = mp->b_next;
2603 			mp->b_next = (mblk_t *)0;
2604 			if (mp)
2605 				freemsg(mp);
2606 		}
2607 		mutex_exit(&xprt->xp_req_lock);
2608 		svc_queueclose(q);
2609 #ifdef	DEBUG
2610 		if (rdma_check)
2611 			cmn_err(CE_NOTE, "rdma_stop: Exited svc_queueclose\n");
2612 #endif
2613 		/*
2614 		 * Free the rdma transport record for the expunged rdma
2615 		 * based master transport handle.
2616 		 */
2617 		kmem_free(curr_rec, sizeof (rdma_xprt_record_t));
2618 		if (!rdma_xprts.rtg_listhead)
2619 			break;
2620 	}
2621 }
2622