xref: /titanic_51/usr/src/uts/common/os/zone.c (revision 8f514e743bde41fe7e0ca48510a6d4c40ca51c23)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * Zones
28  *
29  *   A zone is a named collection of processes, namespace constraints,
30  *   and other system resources which comprise a secure and manageable
31  *   application containment facility.
32  *
33  *   Zones (represented by the reference counted zone_t) are tracked in
34  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
35  *   (zoneid_t) are used to track zone association.  Zone IDs are
36  *   dynamically generated when the zone is created; if a persistent
37  *   identifier is needed (core files, accounting logs, audit trail,
38  *   etc.), the zone name should be used.
39  *
40  *
41  *   Global Zone:
42  *
43  *   The global zone (zoneid 0) is automatically associated with all
44  *   system resources that have not been bound to a user-created zone.
45  *   This means that even systems where zones are not in active use
46  *   have a global zone, and all processes, mounts, etc. are
47  *   associated with that zone.  The global zone is generally
48  *   unconstrained in terms of privileges and access, though the usual
49  *   credential and privilege based restrictions apply.
50  *
51  *
52  *   Zone States:
53  *
54  *   The states in which a zone may be in and the transitions are as
55  *   follows:
56  *
57  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
58  *   initialized zone is added to the list of active zones on the system but
59  *   isn't accessible.
60  *
61  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
62  *   not yet completed. Not possible to enter the zone, but attributes can
63  *   be retrieved.
64  *
65  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
66  *   ready.  The zone is made visible after the ZSD constructor callbacks are
67  *   executed.  A zone remains in this state until it transitions into
68  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
69  *
70  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
71  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
72  *   state.
73  *
74  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
75  *   successfully started init.   A zone remains in this state until
76  *   zone_shutdown() is called.
77  *
78  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
79  *   killing all processes running in the zone. The zone remains
80  *   in this state until there are no more user processes running in the zone.
81  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
82  *   Since zone_shutdown() is restartable, it may be called successfully
83  *   multiple times for the same zone_t.  Setting of the zone's state to
84  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
85  *   the zone's status without worrying about it being a moving target.
86  *
87  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
88  *   are no more user processes in the zone.  The zone remains in this
89  *   state until there are no more kernel threads associated with the
90  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
91  *   fail.
92  *
93  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
94  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
95  *   join the zone or create kernel threads therein.
96  *
97  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
98  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
99  *   return NULL from now on.
100  *
101  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
102  *   processes or threads doing work on behalf of the zone.  The zone is
103  *   removed from the list of active zones.  zone_destroy() returns, and
104  *   the zone can be recreated.
105  *
106  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
107  *   callbacks are executed, and all memory associated with the zone is
108  *   freed.
109  *
110  *   Threads can wait for the zone to enter a requested state by using
111  *   zone_status_wait() or zone_status_timedwait() with the desired
112  *   state passed in as an argument.  Zone state transitions are
113  *   uni-directional; it is not possible to move back to an earlier state.
114  *
115  *
116  *   Zone-Specific Data:
117  *
118  *   Subsystems needing to maintain zone-specific data can store that
119  *   data using the ZSD mechanism.  This provides a zone-specific data
120  *   store, similar to thread-specific data (see pthread_getspecific(3C)
121  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
122  *   to register callbacks to be invoked when a zone is created, shut
123  *   down, or destroyed.  This can be used to initialize zone-specific
124  *   data for new zones and to clean up when zones go away.
125  *
126  *
127  *   Data Structures:
128  *
129  *   The per-zone structure (zone_t) is reference counted, and freed
130  *   when all references are released.  zone_hold and zone_rele can be
131  *   used to adjust the reference count.  In addition, reference counts
132  *   associated with the cred_t structure are tracked separately using
133  *   zone_cred_hold and zone_cred_rele.
134  *
135  *   Pointers to active zone_t's are stored in two hash tables; one
136  *   for searching by id, the other for searching by name.  Lookups
137  *   can be performed on either basis, using zone_find_by_id and
138  *   zone_find_by_name.  Both return zone_t pointers with the zone
139  *   held, so zone_rele should be called when the pointer is no longer
140  *   needed.  Zones can also be searched by path; zone_find_by_path
141  *   returns the zone with which a path name is associated (global
142  *   zone if the path is not within some other zone's file system
143  *   hierarchy).  This currently requires iterating through each zone,
144  *   so it is slower than an id or name search via a hash table.
145  *
146  *
147  *   Locking:
148  *
149  *   zonehash_lock: This is a top-level global lock used to protect the
150  *       zone hash tables and lists.  Zones cannot be created or destroyed
151  *       while this lock is held.
152  *   zone_status_lock: This is a global lock protecting zone state.
153  *       Zones cannot change state while this lock is held.  It also
154  *       protects the list of kernel threads associated with a zone.
155  *   zone_lock: This is a per-zone lock used to protect several fields of
156  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
157  *       this lock means that the zone cannot go away.
158  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
159  *	 related to the zone.max-lwps rctl.
160  *   zone_mem_lock: This is a per-zone lock used to protect the fields
161  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
162  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
163  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
164  *       list (a list of zones in the ZONE_IS_DEAD state).
165  *
166  *   Ordering requirements:
167  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
168  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
169  *
170  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
171  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
172  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
173  *
174  *   Blocking memory allocations are permitted while holding any of the
175  *   zone locks.
176  *
177  *
178  *   System Call Interface:
179  *
180  *   The zone subsystem can be managed and queried from user level with
181  *   the following system calls (all subcodes of the primary "zone"
182  *   system call):
183  *   - zone_create: creates a zone with selected attributes (name,
184  *     root path, privileges, resource controls, ZFS datasets)
185  *   - zone_enter: allows the current process to enter a zone
186  *   - zone_getattr: reports attributes of a zone
187  *   - zone_setattr: set attributes of a zone
188  *   - zone_boot: set 'init' running for the zone
189  *   - zone_list: lists all zones active in the system
190  *   - zone_lookup: looks up zone id based on name
191  *   - zone_shutdown: initiates shutdown process (see states above)
192  *   - zone_destroy: completes shutdown process (see states above)
193  *
194  */
195 
196 #include <sys/priv_impl.h>
197 #include <sys/cred.h>
198 #include <c2/audit.h>
199 #include <sys/debug.h>
200 #include <sys/file.h>
201 #include <sys/kmem.h>
202 #include <sys/kstat.h>
203 #include <sys/mutex.h>
204 #include <sys/note.h>
205 #include <sys/pathname.h>
206 #include <sys/proc.h>
207 #include <sys/project.h>
208 #include <sys/sysevent.h>
209 #include <sys/task.h>
210 #include <sys/systm.h>
211 #include <sys/types.h>
212 #include <sys/utsname.h>
213 #include <sys/vnode.h>
214 #include <sys/vfs.h>
215 #include <sys/systeminfo.h>
216 #include <sys/policy.h>
217 #include <sys/cred_impl.h>
218 #include <sys/contract_impl.h>
219 #include <sys/contract/process_impl.h>
220 #include <sys/class.h>
221 #include <sys/pool.h>
222 #include <sys/pool_pset.h>
223 #include <sys/pset.h>
224 #include <sys/sysmacros.h>
225 #include <sys/callb.h>
226 #include <sys/vmparam.h>
227 #include <sys/corectl.h>
228 #include <sys/ipc_impl.h>
229 #include <sys/klpd.h>
230 
231 #include <sys/door.h>
232 #include <sys/cpuvar.h>
233 #include <sys/sdt.h>
234 
235 #include <sys/uadmin.h>
236 #include <sys/session.h>
237 #include <sys/cmn_err.h>
238 #include <sys/modhash.h>
239 #include <sys/sunddi.h>
240 #include <sys/nvpair.h>
241 #include <sys/rctl.h>
242 #include <sys/fss.h>
243 #include <sys/brand.h>
244 #include <sys/zone.h>
245 #include <net/if.h>
246 #include <sys/cpucaps.h>
247 #include <vm/seg.h>
248 #include <sys/mac.h>
249 
250 /* List of data link IDs which are accessible from the zone */
251 typedef struct zone_dl {
252 	datalink_id_t	zdl_id;
253 	list_node_t	zdl_linkage;
254 } zone_dl_t;
255 
256 /*
257  * cv used to signal that all references to the zone have been released.  This
258  * needs to be global since there may be multiple waiters, and the first to
259  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
260  */
261 static kcondvar_t zone_destroy_cv;
262 /*
263  * Lock used to serialize access to zone_cv.  This could have been per-zone,
264  * but then we'd need another lock for zone_destroy_cv, and why bother?
265  */
266 static kmutex_t zone_status_lock;
267 
268 /*
269  * ZSD-related global variables.
270  */
271 static kmutex_t zsd_key_lock;	/* protects the following two */
272 /*
273  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
274  */
275 static zone_key_t zsd_keyval = 0;
276 /*
277  * Global list of registered keys.  We use this when a new zone is created.
278  */
279 static list_t zsd_registered_keys;
280 
281 int zone_hash_size = 256;
282 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
283 static kmutex_t zonehash_lock;
284 static uint_t zonecount;
285 static id_space_t *zoneid_space;
286 
287 /*
288  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
289  * kernel proper runs, and which manages all other zones.
290  *
291  * Although not declared as static, the variable "zone0" should not be used
292  * except for by code that needs to reference the global zone early on in boot,
293  * before it is fully initialized.  All other consumers should use
294  * 'global_zone'.
295  */
296 zone_t zone0;
297 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
298 
299 /*
300  * List of active zones, protected by zonehash_lock.
301  */
302 static list_t zone_active;
303 
304 /*
305  * List of destroyed zones that still have outstanding cred references.
306  * Used for debugging.  Uses a separate lock to avoid lock ordering
307  * problems in zone_free.
308  */
309 static list_t zone_deathrow;
310 static kmutex_t zone_deathrow_lock;
311 
312 /* number of zones is limited by virtual interface limit in IP */
313 uint_t maxzones = 8192;
314 
315 /* Event channel to sent zone state change notifications */
316 evchan_t *zone_event_chan;
317 
318 /*
319  * This table holds the mapping from kernel zone states to
320  * states visible in the state notification API.
321  * The idea is that we only expose "obvious" states and
322  * do not expose states which are just implementation details.
323  */
324 const char  *zone_status_table[] = {
325 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
326 	ZONE_EVENT_INITIALIZED,		/* initialized */
327 	ZONE_EVENT_READY,		/* ready */
328 	ZONE_EVENT_READY,		/* booting */
329 	ZONE_EVENT_RUNNING,		/* running */
330 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
331 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
332 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
333 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
334 	ZONE_EVENT_UNINITIALIZED,	/* dead */
335 };
336 
337 /*
338  * This isn't static so lint doesn't complain.
339  */
340 rctl_hndl_t rc_zone_cpu_shares;
341 rctl_hndl_t rc_zone_locked_mem;
342 rctl_hndl_t rc_zone_max_swap;
343 rctl_hndl_t rc_zone_cpu_cap;
344 rctl_hndl_t rc_zone_nlwps;
345 rctl_hndl_t rc_zone_shmmax;
346 rctl_hndl_t rc_zone_shmmni;
347 rctl_hndl_t rc_zone_semmni;
348 rctl_hndl_t rc_zone_msgmni;
349 /*
350  * Synchronization primitives used to synchronize between mounts and zone
351  * creation/destruction.
352  */
353 static int mounts_in_progress;
354 static kcondvar_t mount_cv;
355 static kmutex_t mount_lock;
356 
357 const char * const zone_default_initname = "/sbin/init";
358 static char * const zone_prefix = "/zone/";
359 static int zone_shutdown(zoneid_t zoneid);
360 static int zone_add_datalink(zoneid_t, datalink_id_t);
361 static int zone_remove_datalink(zoneid_t, datalink_id_t);
362 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
363 
364 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
365 
366 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
367 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
368 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
369 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
370     zone_key_t);
371 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
372 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
373     kmutex_t *);
374 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
375     kmutex_t *);
376 
377 /*
378  * Bump this number when you alter the zone syscall interfaces; this is
379  * because we need to have support for previous API versions in libc
380  * to support patching; libc calls into the kernel to determine this number.
381  *
382  * Version 1 of the API is the version originally shipped with Solaris 10
383  * Version 2 alters the zone_create system call in order to support more
384  *     arguments by moving the args into a structure; and to do better
385  *     error reporting when zone_create() fails.
386  * Version 3 alters the zone_create system call in order to support the
387  *     import of ZFS datasets to zones.
388  * Version 4 alters the zone_create system call in order to support
389  *     Trusted Extensions.
390  * Version 5 alters the zone_boot system call, and converts its old
391  *     bootargs parameter to be set by the zone_setattr API instead.
392  * Version 6 adds the flag argument to zone_create.
393  */
394 static const int ZONE_SYSCALL_API_VERSION = 6;
395 
396 /*
397  * Certain filesystems (such as NFS and autofs) need to know which zone
398  * the mount is being placed in.  Because of this, we need to be able to
399  * ensure that a zone isn't in the process of being created such that
400  * nfs_mount() thinks it is in the global zone, while by the time it
401  * gets added the list of mounted zones, it ends up on zoneA's mount
402  * list.
403  *
404  * The following functions: block_mounts()/resume_mounts() and
405  * mount_in_progress()/mount_completed() are used by zones and the VFS
406  * layer (respectively) to synchronize zone creation and new mounts.
407  *
408  * The semantics are like a reader-reader lock such that there may
409  * either be multiple mounts (or zone creations, if that weren't
410  * serialized by zonehash_lock) in progress at the same time, but not
411  * both.
412  *
413  * We use cv's so the user can ctrl-C out of the operation if it's
414  * taking too long.
415  *
416  * The semantics are such that there is unfair bias towards the
417  * "current" operation.  This means that zone creations may starve if
418  * there is a rapid succession of new mounts coming in to the system, or
419  * there is a remote possibility that zones will be created at such a
420  * rate that new mounts will not be able to proceed.
421  */
422 /*
423  * Prevent new mounts from progressing to the point of calling
424  * VFS_MOUNT().  If there are already mounts in this "region", wait for
425  * them to complete.
426  */
427 static int
428 block_mounts(void)
429 {
430 	int retval = 0;
431 
432 	/*
433 	 * Since it may block for a long time, block_mounts() shouldn't be
434 	 * called with zonehash_lock held.
435 	 */
436 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
437 	mutex_enter(&mount_lock);
438 	while (mounts_in_progress > 0) {
439 		if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
440 			goto signaled;
441 	}
442 	/*
443 	 * A negative value of mounts_in_progress indicates that mounts
444 	 * have been blocked by (-mounts_in_progress) different callers.
445 	 */
446 	mounts_in_progress--;
447 	retval = 1;
448 signaled:
449 	mutex_exit(&mount_lock);
450 	return (retval);
451 }
452 
453 /*
454  * The VFS layer may progress with new mounts as far as we're concerned.
455  * Allow them to progress if we were the last obstacle.
456  */
457 static void
458 resume_mounts(void)
459 {
460 	mutex_enter(&mount_lock);
461 	if (++mounts_in_progress == 0)
462 		cv_broadcast(&mount_cv);
463 	mutex_exit(&mount_lock);
464 }
465 
466 /*
467  * The VFS layer is busy with a mount; zones should wait until all
468  * mounts are completed to progress.
469  */
470 void
471 mount_in_progress(void)
472 {
473 	mutex_enter(&mount_lock);
474 	while (mounts_in_progress < 0)
475 		cv_wait(&mount_cv, &mount_lock);
476 	mounts_in_progress++;
477 	mutex_exit(&mount_lock);
478 }
479 
480 /*
481  * VFS is done with one mount; wake up any waiting block_mounts()
482  * callers if this is the last mount.
483  */
484 void
485 mount_completed(void)
486 {
487 	mutex_enter(&mount_lock);
488 	if (--mounts_in_progress == 0)
489 		cv_broadcast(&mount_cv);
490 	mutex_exit(&mount_lock);
491 }
492 
493 /*
494  * ZSD routines.
495  *
496  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
497  * defined by the pthread_key_create() and related interfaces.
498  *
499  * Kernel subsystems may register one or more data items and/or
500  * callbacks to be executed when a zone is created, shutdown, or
501  * destroyed.
502  *
503  * Unlike the thread counterpart, destructor callbacks will be executed
504  * even if the data pointer is NULL and/or there are no constructor
505  * callbacks, so it is the responsibility of such callbacks to check for
506  * NULL data values if necessary.
507  *
508  * The locking strategy and overall picture is as follows:
509  *
510  * When someone calls zone_key_create(), a template ZSD entry is added to the
511  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
512  * holding that lock all the existing zones are marked as
513  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
514  * zone_zsd list (protected by zone_lock). The global list is updated first
515  * (under zone_key_lock) to make sure that newly created zones use the
516  * most recent list of keys. Then under zonehash_lock we walk the zones
517  * and mark them.  Similar locking is used in zone_key_delete().
518  *
519  * The actual create, shutdown, and destroy callbacks are done without
520  * holding any lock. And zsd_flags are used to ensure that the operations
521  * completed so that when zone_key_create (and zone_create) is done, as well as
522  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
523  * are completed.
524  *
525  * When new zones are created constructor callbacks for all registered ZSD
526  * entries will be called. That also uses the above two phases of marking
527  * what needs to be done, and then running the callbacks without holding
528  * any locks.
529  *
530  * The framework does not provide any locking around zone_getspecific() and
531  * zone_setspecific() apart from that needed for internal consistency, so
532  * callers interested in atomic "test-and-set" semantics will need to provide
533  * their own locking.
534  */
535 
536 /*
537  * Helper function to find the zsd_entry associated with the key in the
538  * given list.
539  */
540 static struct zsd_entry *
541 zsd_find(list_t *l, zone_key_t key)
542 {
543 	struct zsd_entry *zsd;
544 
545 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
546 		if (zsd->zsd_key == key) {
547 			return (zsd);
548 		}
549 	}
550 	return (NULL);
551 }
552 
553 /*
554  * Helper function to find the zsd_entry associated with the key in the
555  * given list. Move it to the front of the list.
556  */
557 static struct zsd_entry *
558 zsd_find_mru(list_t *l, zone_key_t key)
559 {
560 	struct zsd_entry *zsd;
561 
562 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
563 		if (zsd->zsd_key == key) {
564 			/*
565 			 * Move to head of list to keep list in MRU order.
566 			 */
567 			if (zsd != list_head(l)) {
568 				list_remove(l, zsd);
569 				list_insert_head(l, zsd);
570 			}
571 			return (zsd);
572 		}
573 	}
574 	return (NULL);
575 }
576 
577 void
578 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
579     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
580 {
581 	struct zsd_entry *zsdp;
582 	struct zsd_entry *t;
583 	struct zone *zone;
584 	zone_key_t  key;
585 
586 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
587 	zsdp->zsd_data = NULL;
588 	zsdp->zsd_create = create;
589 	zsdp->zsd_shutdown = shutdown;
590 	zsdp->zsd_destroy = destroy;
591 
592 	/*
593 	 * Insert in global list of callbacks. Makes future zone creations
594 	 * see it.
595 	 */
596 	mutex_enter(&zsd_key_lock);
597 	key = zsdp->zsd_key = ++zsd_keyval;
598 	ASSERT(zsd_keyval != 0);
599 	list_insert_tail(&zsd_registered_keys, zsdp);
600 	mutex_exit(&zsd_key_lock);
601 
602 	/*
603 	 * Insert for all existing zones and mark them as needing
604 	 * a create callback.
605 	 */
606 	mutex_enter(&zonehash_lock);	/* stop the world */
607 	for (zone = list_head(&zone_active); zone != NULL;
608 	    zone = list_next(&zone_active, zone)) {
609 		zone_status_t status;
610 
611 		mutex_enter(&zone->zone_lock);
612 
613 		/* Skip zones that are on the way down or not yet up */
614 		status = zone_status_get(zone);
615 		if (status >= ZONE_IS_DOWN ||
616 		    status == ZONE_IS_UNINITIALIZED) {
617 			mutex_exit(&zone->zone_lock);
618 			continue;
619 		}
620 
621 		t = zsd_find_mru(&zone->zone_zsd, key);
622 		if (t != NULL) {
623 			/*
624 			 * A zsd_configure already inserted it after
625 			 * we dropped zsd_key_lock above.
626 			 */
627 			mutex_exit(&zone->zone_lock);
628 			continue;
629 		}
630 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
631 		t->zsd_key = key;
632 		t->zsd_create = create;
633 		t->zsd_shutdown = shutdown;
634 		t->zsd_destroy = destroy;
635 		if (create != NULL) {
636 			t->zsd_flags = ZSD_CREATE_NEEDED;
637 			DTRACE_PROBE2(zsd__create__needed,
638 			    zone_t *, zone, zone_key_t, key);
639 		}
640 		list_insert_tail(&zone->zone_zsd, t);
641 		mutex_exit(&zone->zone_lock);
642 	}
643 	mutex_exit(&zonehash_lock);
644 
645 	if (create != NULL) {
646 		/* Now call the create callback for this key */
647 		zsd_apply_all_zones(zsd_apply_create, key);
648 	}
649 	/*
650 	 * It is safe for consumers to use the key now, make it
651 	 * globally visible. Specifically zone_getspecific() will
652 	 * always successfully return the zone specific data associated
653 	 * with the key.
654 	 */
655 	*keyp = key;
656 
657 }
658 
659 /*
660  * Function called when a module is being unloaded, or otherwise wishes
661  * to unregister its ZSD key and callbacks.
662  *
663  * Remove from the global list and determine the functions that need to
664  * be called under a global lock. Then call the functions without
665  * holding any locks. Finally free up the zone_zsd entries. (The apply
666  * functions need to access the zone_zsd entries to find zsd_data etc.)
667  */
668 int
669 zone_key_delete(zone_key_t key)
670 {
671 	struct zsd_entry *zsdp = NULL;
672 	zone_t *zone;
673 
674 	mutex_enter(&zsd_key_lock);
675 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
676 	if (zsdp == NULL) {
677 		mutex_exit(&zsd_key_lock);
678 		return (-1);
679 	}
680 	list_remove(&zsd_registered_keys, zsdp);
681 	mutex_exit(&zsd_key_lock);
682 
683 	mutex_enter(&zonehash_lock);
684 	for (zone = list_head(&zone_active); zone != NULL;
685 	    zone = list_next(&zone_active, zone)) {
686 		struct zsd_entry *del;
687 
688 		mutex_enter(&zone->zone_lock);
689 		del = zsd_find_mru(&zone->zone_zsd, key);
690 		if (del == NULL) {
691 			/*
692 			 * Somebody else got here first e.g the zone going
693 			 * away.
694 			 */
695 			mutex_exit(&zone->zone_lock);
696 			continue;
697 		}
698 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
699 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
700 		if (del->zsd_shutdown != NULL &&
701 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
702 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
703 			DTRACE_PROBE2(zsd__shutdown__needed,
704 			    zone_t *, zone, zone_key_t, key);
705 		}
706 		if (del->zsd_destroy != NULL &&
707 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
708 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
709 			DTRACE_PROBE2(zsd__destroy__needed,
710 			    zone_t *, zone, zone_key_t, key);
711 		}
712 		mutex_exit(&zone->zone_lock);
713 	}
714 	mutex_exit(&zonehash_lock);
715 	kmem_free(zsdp, sizeof (*zsdp));
716 
717 	/* Now call the shutdown and destroy callback for this key */
718 	zsd_apply_all_zones(zsd_apply_shutdown, key);
719 	zsd_apply_all_zones(zsd_apply_destroy, key);
720 
721 	/* Now we can free up the zsdp structures in each zone */
722 	mutex_enter(&zonehash_lock);
723 	for (zone = list_head(&zone_active); zone != NULL;
724 	    zone = list_next(&zone_active, zone)) {
725 		struct zsd_entry *del;
726 
727 		mutex_enter(&zone->zone_lock);
728 		del = zsd_find(&zone->zone_zsd, key);
729 		if (del != NULL) {
730 			list_remove(&zone->zone_zsd, del);
731 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
732 			kmem_free(del, sizeof (*del));
733 		}
734 		mutex_exit(&zone->zone_lock);
735 	}
736 	mutex_exit(&zonehash_lock);
737 
738 	return (0);
739 }
740 
741 /*
742  * ZSD counterpart of pthread_setspecific().
743  *
744  * Since all zsd callbacks, including those with no create function,
745  * have an entry in zone_zsd, if the key is registered it is part of
746  * the zone_zsd list.
747  * Return an error if the key wasn't registerd.
748  */
749 int
750 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
751 {
752 	struct zsd_entry *t;
753 
754 	mutex_enter(&zone->zone_lock);
755 	t = zsd_find_mru(&zone->zone_zsd, key);
756 	if (t != NULL) {
757 		/*
758 		 * Replace old value with new
759 		 */
760 		t->zsd_data = (void *)data;
761 		mutex_exit(&zone->zone_lock);
762 		return (0);
763 	}
764 	mutex_exit(&zone->zone_lock);
765 	return (-1);
766 }
767 
768 /*
769  * ZSD counterpart of pthread_getspecific().
770  */
771 void *
772 zone_getspecific(zone_key_t key, zone_t *zone)
773 {
774 	struct zsd_entry *t;
775 	void *data;
776 
777 	mutex_enter(&zone->zone_lock);
778 	t = zsd_find_mru(&zone->zone_zsd, key);
779 	data = (t == NULL ? NULL : t->zsd_data);
780 	mutex_exit(&zone->zone_lock);
781 	return (data);
782 }
783 
784 /*
785  * Function used to initialize a zone's list of ZSD callbacks and data
786  * when the zone is being created.  The callbacks are initialized from
787  * the template list (zsd_registered_keys). The constructor callback is
788  * executed later (once the zone exists and with locks dropped).
789  */
790 static void
791 zone_zsd_configure(zone_t *zone)
792 {
793 	struct zsd_entry *zsdp;
794 	struct zsd_entry *t;
795 
796 	ASSERT(MUTEX_HELD(&zonehash_lock));
797 	ASSERT(list_head(&zone->zone_zsd) == NULL);
798 	mutex_enter(&zone->zone_lock);
799 	mutex_enter(&zsd_key_lock);
800 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
801 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
802 		/*
803 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
804 		 * should not have added anything to it.
805 		 */
806 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
807 
808 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
809 		t->zsd_key = zsdp->zsd_key;
810 		t->zsd_create = zsdp->zsd_create;
811 		t->zsd_shutdown = zsdp->zsd_shutdown;
812 		t->zsd_destroy = zsdp->zsd_destroy;
813 		if (zsdp->zsd_create != NULL) {
814 			t->zsd_flags = ZSD_CREATE_NEEDED;
815 			DTRACE_PROBE2(zsd__create__needed,
816 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
817 		}
818 		list_insert_tail(&zone->zone_zsd, t);
819 	}
820 	mutex_exit(&zsd_key_lock);
821 	mutex_exit(&zone->zone_lock);
822 }
823 
824 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
825 
826 /*
827  * Helper function to execute shutdown or destructor callbacks.
828  */
829 static void
830 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
831 {
832 	struct zsd_entry *t;
833 
834 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
835 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
836 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
837 
838 	/*
839 	 * Run the callback solely based on what is registered for the zone
840 	 * in zone_zsd. The global list can change independently of this
841 	 * as keys are registered and unregistered and we don't register new
842 	 * callbacks for a zone that is in the process of going away.
843 	 */
844 	mutex_enter(&zone->zone_lock);
845 	for (t = list_head(&zone->zone_zsd); t != NULL;
846 	    t = list_next(&zone->zone_zsd, t)) {
847 		zone_key_t key = t->zsd_key;
848 
849 		/* Skip if no callbacks registered */
850 
851 		if (ct == ZSD_SHUTDOWN) {
852 			if (t->zsd_shutdown != NULL &&
853 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
854 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
855 				DTRACE_PROBE2(zsd__shutdown__needed,
856 				    zone_t *, zone, zone_key_t, key);
857 			}
858 		} else {
859 			if (t->zsd_destroy != NULL &&
860 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
861 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
862 				DTRACE_PROBE2(zsd__destroy__needed,
863 				    zone_t *, zone, zone_key_t, key);
864 			}
865 		}
866 	}
867 	mutex_exit(&zone->zone_lock);
868 
869 	/* Now call the shutdown and destroy callback for this key */
870 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
871 	zsd_apply_all_keys(zsd_apply_destroy, zone);
872 
873 }
874 
875 /*
876  * Called when the zone is going away; free ZSD-related memory, and
877  * destroy the zone_zsd list.
878  */
879 static void
880 zone_free_zsd(zone_t *zone)
881 {
882 	struct zsd_entry *t, *next;
883 
884 	/*
885 	 * Free all the zsd_entry's we had on this zone.
886 	 */
887 	mutex_enter(&zone->zone_lock);
888 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
889 		next = list_next(&zone->zone_zsd, t);
890 		list_remove(&zone->zone_zsd, t);
891 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
892 		kmem_free(t, sizeof (*t));
893 	}
894 	list_destroy(&zone->zone_zsd);
895 	mutex_exit(&zone->zone_lock);
896 
897 }
898 
899 /*
900  * Apply a function to all zones for particular key value.
901  *
902  * The applyfn has to drop zonehash_lock if it does some work, and
903  * then reacquire it before it returns.
904  * When the lock is dropped we don't follow list_next even
905  * if it is possible to do so without any hazards. This is
906  * because we want the design to allow for the list of zones
907  * to change in any arbitrary way during the time the
908  * lock was dropped.
909  *
910  * It is safe to restart the loop at list_head since the applyfn
911  * changes the zsd_flags as it does work, so a subsequent
912  * pass through will have no effect in applyfn, hence the loop will terminate
913  * in at worst O(N^2).
914  */
915 static void
916 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
917 {
918 	zone_t *zone;
919 
920 	mutex_enter(&zonehash_lock);
921 	zone = list_head(&zone_active);
922 	while (zone != NULL) {
923 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
924 			/* Lock dropped - restart at head */
925 			zone = list_head(&zone_active);
926 		} else {
927 			zone = list_next(&zone_active, zone);
928 		}
929 	}
930 	mutex_exit(&zonehash_lock);
931 }
932 
933 /*
934  * Apply a function to all keys for a particular zone.
935  *
936  * The applyfn has to drop zonehash_lock if it does some work, and
937  * then reacquire it before it returns.
938  * When the lock is dropped we don't follow list_next even
939  * if it is possible to do so without any hazards. This is
940  * because we want the design to allow for the list of zsd callbacks
941  * to change in any arbitrary way during the time the
942  * lock was dropped.
943  *
944  * It is safe to restart the loop at list_head since the applyfn
945  * changes the zsd_flags as it does work, so a subsequent
946  * pass through will have no effect in applyfn, hence the loop will terminate
947  * in at worst O(N^2).
948  */
949 static void
950 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
951 {
952 	struct zsd_entry *t;
953 
954 	mutex_enter(&zone->zone_lock);
955 	t = list_head(&zone->zone_zsd);
956 	while (t != NULL) {
957 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
958 			/* Lock dropped - restart at head */
959 			t = list_head(&zone->zone_zsd);
960 		} else {
961 			t = list_next(&zone->zone_zsd, t);
962 		}
963 	}
964 	mutex_exit(&zone->zone_lock);
965 }
966 
967 /*
968  * Call the create function for the zone and key if CREATE_NEEDED
969  * is set.
970  * If some other thread gets here first and sets CREATE_INPROGRESS, then
971  * we wait for that thread to complete so that we can ensure that
972  * all the callbacks are done when we've looped over all zones/keys.
973  *
974  * When we call the create function, we drop the global held by the
975  * caller, and return true to tell the caller it needs to re-evalute the
976  * state.
977  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
978  * remains held on exit.
979  */
980 static boolean_t
981 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
982     zone_t *zone, zone_key_t key)
983 {
984 	void *result;
985 	struct zsd_entry *t;
986 	boolean_t dropped;
987 
988 	if (lockp != NULL) {
989 		ASSERT(MUTEX_HELD(lockp));
990 	}
991 	if (zone_lock_held) {
992 		ASSERT(MUTEX_HELD(&zone->zone_lock));
993 	} else {
994 		mutex_enter(&zone->zone_lock);
995 	}
996 
997 	t = zsd_find(&zone->zone_zsd, key);
998 	if (t == NULL) {
999 		/*
1000 		 * Somebody else got here first e.g the zone going
1001 		 * away.
1002 		 */
1003 		if (!zone_lock_held)
1004 			mutex_exit(&zone->zone_lock);
1005 		return (B_FALSE);
1006 	}
1007 	dropped = B_FALSE;
1008 	if (zsd_wait_for_inprogress(zone, t, lockp))
1009 		dropped = B_TRUE;
1010 
1011 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1012 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1013 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1014 		DTRACE_PROBE2(zsd__create__inprogress,
1015 		    zone_t *, zone, zone_key_t, key);
1016 		mutex_exit(&zone->zone_lock);
1017 		if (lockp != NULL)
1018 			mutex_exit(lockp);
1019 
1020 		dropped = B_TRUE;
1021 		ASSERT(t->zsd_create != NULL);
1022 		DTRACE_PROBE2(zsd__create__start,
1023 		    zone_t *, zone, zone_key_t, key);
1024 
1025 		result = (*t->zsd_create)(zone->zone_id);
1026 
1027 		DTRACE_PROBE2(zsd__create__end,
1028 		    zone_t *, zone, voidn *, result);
1029 
1030 		ASSERT(result != NULL);
1031 		if (lockp != NULL)
1032 			mutex_enter(lockp);
1033 		mutex_enter(&zone->zone_lock);
1034 		t->zsd_data = result;
1035 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1036 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1037 		cv_broadcast(&t->zsd_cv);
1038 		DTRACE_PROBE2(zsd__create__completed,
1039 		    zone_t *, zone, zone_key_t, key);
1040 	}
1041 	if (!zone_lock_held)
1042 		mutex_exit(&zone->zone_lock);
1043 	return (dropped);
1044 }
1045 
1046 /*
1047  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1048  * is set.
1049  * If some other thread gets here first and sets *_INPROGRESS, then
1050  * we wait for that thread to complete so that we can ensure that
1051  * all the callbacks are done when we've looped over all zones/keys.
1052  *
1053  * When we call the shutdown function, we drop the global held by the
1054  * caller, and return true to tell the caller it needs to re-evalute the
1055  * state.
1056  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1057  * remains held on exit.
1058  */
1059 static boolean_t
1060 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1061     zone_t *zone, zone_key_t key)
1062 {
1063 	struct zsd_entry *t;
1064 	void *data;
1065 	boolean_t dropped;
1066 
1067 	if (lockp != NULL) {
1068 		ASSERT(MUTEX_HELD(lockp));
1069 	}
1070 	if (zone_lock_held) {
1071 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1072 	} else {
1073 		mutex_enter(&zone->zone_lock);
1074 	}
1075 
1076 	t = zsd_find(&zone->zone_zsd, key);
1077 	if (t == NULL) {
1078 		/*
1079 		 * Somebody else got here first e.g the zone going
1080 		 * away.
1081 		 */
1082 		if (!zone_lock_held)
1083 			mutex_exit(&zone->zone_lock);
1084 		return (B_FALSE);
1085 	}
1086 	dropped = B_FALSE;
1087 	if (zsd_wait_for_creator(zone, t, lockp))
1088 		dropped = B_TRUE;
1089 
1090 	if (zsd_wait_for_inprogress(zone, t, lockp))
1091 		dropped = B_TRUE;
1092 
1093 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1094 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1095 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1096 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1097 		    zone_t *, zone, zone_key_t, key);
1098 		mutex_exit(&zone->zone_lock);
1099 		if (lockp != NULL)
1100 			mutex_exit(lockp);
1101 		dropped = B_TRUE;
1102 
1103 		ASSERT(t->zsd_shutdown != NULL);
1104 		data = t->zsd_data;
1105 
1106 		DTRACE_PROBE2(zsd__shutdown__start,
1107 		    zone_t *, zone, zone_key_t, key);
1108 
1109 		(t->zsd_shutdown)(zone->zone_id, data);
1110 		DTRACE_PROBE2(zsd__shutdown__end,
1111 		    zone_t *, zone, zone_key_t, key);
1112 
1113 		if (lockp != NULL)
1114 			mutex_enter(lockp);
1115 		mutex_enter(&zone->zone_lock);
1116 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1117 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1118 		cv_broadcast(&t->zsd_cv);
1119 		DTRACE_PROBE2(zsd__shutdown__completed,
1120 		    zone_t *, zone, zone_key_t, key);
1121 	}
1122 	if (!zone_lock_held)
1123 		mutex_exit(&zone->zone_lock);
1124 	return (dropped);
1125 }
1126 
1127 /*
1128  * Call the destroy function for the zone and key if DESTROY_NEEDED
1129  * is set.
1130  * If some other thread gets here first and sets *_INPROGRESS, then
1131  * we wait for that thread to complete so that we can ensure that
1132  * all the callbacks are done when we've looped over all zones/keys.
1133  *
1134  * When we call the destroy function, we drop the global held by the
1135  * caller, and return true to tell the caller it needs to re-evalute the
1136  * state.
1137  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1138  * remains held on exit.
1139  */
1140 static boolean_t
1141 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1142     zone_t *zone, zone_key_t key)
1143 {
1144 	struct zsd_entry *t;
1145 	void *data;
1146 	boolean_t dropped;
1147 
1148 	if (lockp != NULL) {
1149 		ASSERT(MUTEX_HELD(lockp));
1150 	}
1151 	if (zone_lock_held) {
1152 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1153 	} else {
1154 		mutex_enter(&zone->zone_lock);
1155 	}
1156 
1157 	t = zsd_find(&zone->zone_zsd, key);
1158 	if (t == NULL) {
1159 		/*
1160 		 * Somebody else got here first e.g the zone going
1161 		 * away.
1162 		 */
1163 		if (!zone_lock_held)
1164 			mutex_exit(&zone->zone_lock);
1165 		return (B_FALSE);
1166 	}
1167 	dropped = B_FALSE;
1168 	if (zsd_wait_for_creator(zone, t, lockp))
1169 		dropped = B_TRUE;
1170 
1171 	if (zsd_wait_for_inprogress(zone, t, lockp))
1172 		dropped = B_TRUE;
1173 
1174 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1175 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1176 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1177 		DTRACE_PROBE2(zsd__destroy__inprogress,
1178 		    zone_t *, zone, zone_key_t, key);
1179 		mutex_exit(&zone->zone_lock);
1180 		if (lockp != NULL)
1181 			mutex_exit(lockp);
1182 		dropped = B_TRUE;
1183 
1184 		ASSERT(t->zsd_destroy != NULL);
1185 		data = t->zsd_data;
1186 		DTRACE_PROBE2(zsd__destroy__start,
1187 		    zone_t *, zone, zone_key_t, key);
1188 
1189 		(t->zsd_destroy)(zone->zone_id, data);
1190 		DTRACE_PROBE2(zsd__destroy__end,
1191 		    zone_t *, zone, zone_key_t, key);
1192 
1193 		if (lockp != NULL)
1194 			mutex_enter(lockp);
1195 		mutex_enter(&zone->zone_lock);
1196 		t->zsd_data = NULL;
1197 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1198 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1199 		cv_broadcast(&t->zsd_cv);
1200 		DTRACE_PROBE2(zsd__destroy__completed,
1201 		    zone_t *, zone, zone_key_t, key);
1202 	}
1203 	if (!zone_lock_held)
1204 		mutex_exit(&zone->zone_lock);
1205 	return (dropped);
1206 }
1207 
1208 /*
1209  * Wait for any CREATE_NEEDED flag to be cleared.
1210  * Returns true if lockp was temporarily dropped while waiting.
1211  */
1212 static boolean_t
1213 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1214 {
1215 	boolean_t dropped = B_FALSE;
1216 
1217 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1218 		DTRACE_PROBE2(zsd__wait__for__creator,
1219 		    zone_t *, zone, struct zsd_entry *, t);
1220 		if (lockp != NULL) {
1221 			dropped = B_TRUE;
1222 			mutex_exit(lockp);
1223 		}
1224 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1225 		if (lockp != NULL) {
1226 			/* First drop zone_lock to preserve order */
1227 			mutex_exit(&zone->zone_lock);
1228 			mutex_enter(lockp);
1229 			mutex_enter(&zone->zone_lock);
1230 		}
1231 	}
1232 	return (dropped);
1233 }
1234 
1235 /*
1236  * Wait for any INPROGRESS flag to be cleared.
1237  * Returns true if lockp was temporarily dropped while waiting.
1238  */
1239 static boolean_t
1240 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1241 {
1242 	boolean_t dropped = B_FALSE;
1243 
1244 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1245 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1246 		    zone_t *, zone, struct zsd_entry *, t);
1247 		if (lockp != NULL) {
1248 			dropped = B_TRUE;
1249 			mutex_exit(lockp);
1250 		}
1251 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1252 		if (lockp != NULL) {
1253 			/* First drop zone_lock to preserve order */
1254 			mutex_exit(&zone->zone_lock);
1255 			mutex_enter(lockp);
1256 			mutex_enter(&zone->zone_lock);
1257 		}
1258 	}
1259 	return (dropped);
1260 }
1261 
1262 /*
1263  * Frees memory associated with the zone dataset list.
1264  */
1265 static void
1266 zone_free_datasets(zone_t *zone)
1267 {
1268 	zone_dataset_t *t, *next;
1269 
1270 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1271 		next = list_next(&zone->zone_datasets, t);
1272 		list_remove(&zone->zone_datasets, t);
1273 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1274 		kmem_free(t, sizeof (*t));
1275 	}
1276 	list_destroy(&zone->zone_datasets);
1277 }
1278 
1279 /*
1280  * zone.cpu-shares resource control support.
1281  */
1282 /*ARGSUSED*/
1283 static rctl_qty_t
1284 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1285 {
1286 	ASSERT(MUTEX_HELD(&p->p_lock));
1287 	return (p->p_zone->zone_shares);
1288 }
1289 
1290 /*ARGSUSED*/
1291 static int
1292 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1293     rctl_qty_t nv)
1294 {
1295 	ASSERT(MUTEX_HELD(&p->p_lock));
1296 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1297 	if (e->rcep_p.zone == NULL)
1298 		return (0);
1299 
1300 	e->rcep_p.zone->zone_shares = nv;
1301 	return (0);
1302 }
1303 
1304 static rctl_ops_t zone_cpu_shares_ops = {
1305 	rcop_no_action,
1306 	zone_cpu_shares_usage,
1307 	zone_cpu_shares_set,
1308 	rcop_no_test
1309 };
1310 
1311 /*
1312  * zone.cpu-cap resource control support.
1313  */
1314 /*ARGSUSED*/
1315 static rctl_qty_t
1316 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1317 {
1318 	ASSERT(MUTEX_HELD(&p->p_lock));
1319 	return (cpucaps_zone_get(p->p_zone));
1320 }
1321 
1322 /*ARGSUSED*/
1323 static int
1324 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1325     rctl_qty_t nv)
1326 {
1327 	zone_t *zone = e->rcep_p.zone;
1328 
1329 	ASSERT(MUTEX_HELD(&p->p_lock));
1330 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1331 
1332 	if (zone == NULL)
1333 		return (0);
1334 
1335 	/*
1336 	 * set cap to the new value.
1337 	 */
1338 	return (cpucaps_zone_set(zone, nv));
1339 }
1340 
1341 static rctl_ops_t zone_cpu_cap_ops = {
1342 	rcop_no_action,
1343 	zone_cpu_cap_get,
1344 	zone_cpu_cap_set,
1345 	rcop_no_test
1346 };
1347 
1348 /*ARGSUSED*/
1349 static rctl_qty_t
1350 zone_lwps_usage(rctl_t *r, proc_t *p)
1351 {
1352 	rctl_qty_t nlwps;
1353 	zone_t *zone = p->p_zone;
1354 
1355 	ASSERT(MUTEX_HELD(&p->p_lock));
1356 
1357 	mutex_enter(&zone->zone_nlwps_lock);
1358 	nlwps = zone->zone_nlwps;
1359 	mutex_exit(&zone->zone_nlwps_lock);
1360 
1361 	return (nlwps);
1362 }
1363 
1364 /*ARGSUSED*/
1365 static int
1366 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1367     rctl_qty_t incr, uint_t flags)
1368 {
1369 	rctl_qty_t nlwps;
1370 
1371 	ASSERT(MUTEX_HELD(&p->p_lock));
1372 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1373 	if (e->rcep_p.zone == NULL)
1374 		return (0);
1375 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1376 	nlwps = e->rcep_p.zone->zone_nlwps;
1377 
1378 	if (nlwps + incr > rcntl->rcv_value)
1379 		return (1);
1380 
1381 	return (0);
1382 }
1383 
1384 /*ARGSUSED*/
1385 static int
1386 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1387 {
1388 	ASSERT(MUTEX_HELD(&p->p_lock));
1389 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1390 	if (e->rcep_p.zone == NULL)
1391 		return (0);
1392 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1393 	return (0);
1394 }
1395 
1396 static rctl_ops_t zone_lwps_ops = {
1397 	rcop_no_action,
1398 	zone_lwps_usage,
1399 	zone_lwps_set,
1400 	zone_lwps_test,
1401 };
1402 
1403 /*ARGSUSED*/
1404 static int
1405 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1406     rctl_qty_t incr, uint_t flags)
1407 {
1408 	rctl_qty_t v;
1409 	ASSERT(MUTEX_HELD(&p->p_lock));
1410 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1411 	v = e->rcep_p.zone->zone_shmmax + incr;
1412 	if (v > rval->rcv_value)
1413 		return (1);
1414 	return (0);
1415 }
1416 
1417 static rctl_ops_t zone_shmmax_ops = {
1418 	rcop_no_action,
1419 	rcop_no_usage,
1420 	rcop_no_set,
1421 	zone_shmmax_test
1422 };
1423 
1424 /*ARGSUSED*/
1425 static int
1426 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1427     rctl_qty_t incr, uint_t flags)
1428 {
1429 	rctl_qty_t v;
1430 	ASSERT(MUTEX_HELD(&p->p_lock));
1431 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1432 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1433 	if (v > rval->rcv_value)
1434 		return (1);
1435 	return (0);
1436 }
1437 
1438 static rctl_ops_t zone_shmmni_ops = {
1439 	rcop_no_action,
1440 	rcop_no_usage,
1441 	rcop_no_set,
1442 	zone_shmmni_test
1443 };
1444 
1445 /*ARGSUSED*/
1446 static int
1447 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1448     rctl_qty_t incr, uint_t flags)
1449 {
1450 	rctl_qty_t v;
1451 	ASSERT(MUTEX_HELD(&p->p_lock));
1452 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1453 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1454 	if (v > rval->rcv_value)
1455 		return (1);
1456 	return (0);
1457 }
1458 
1459 static rctl_ops_t zone_semmni_ops = {
1460 	rcop_no_action,
1461 	rcop_no_usage,
1462 	rcop_no_set,
1463 	zone_semmni_test
1464 };
1465 
1466 /*ARGSUSED*/
1467 static int
1468 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1469     rctl_qty_t incr, uint_t flags)
1470 {
1471 	rctl_qty_t v;
1472 	ASSERT(MUTEX_HELD(&p->p_lock));
1473 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1474 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1475 	if (v > rval->rcv_value)
1476 		return (1);
1477 	return (0);
1478 }
1479 
1480 static rctl_ops_t zone_msgmni_ops = {
1481 	rcop_no_action,
1482 	rcop_no_usage,
1483 	rcop_no_set,
1484 	zone_msgmni_test
1485 };
1486 
1487 /*ARGSUSED*/
1488 static rctl_qty_t
1489 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1490 {
1491 	rctl_qty_t q;
1492 	ASSERT(MUTEX_HELD(&p->p_lock));
1493 	mutex_enter(&p->p_zone->zone_mem_lock);
1494 	q = p->p_zone->zone_locked_mem;
1495 	mutex_exit(&p->p_zone->zone_mem_lock);
1496 	return (q);
1497 }
1498 
1499 /*ARGSUSED*/
1500 static int
1501 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1502     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1503 {
1504 	rctl_qty_t q;
1505 	zone_t *z;
1506 
1507 	z = e->rcep_p.zone;
1508 	ASSERT(MUTEX_HELD(&p->p_lock));
1509 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1510 	q = z->zone_locked_mem;
1511 	if (q + incr > rcntl->rcv_value)
1512 		return (1);
1513 	return (0);
1514 }
1515 
1516 /*ARGSUSED*/
1517 static int
1518 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1519     rctl_qty_t nv)
1520 {
1521 	ASSERT(MUTEX_HELD(&p->p_lock));
1522 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1523 	if (e->rcep_p.zone == NULL)
1524 		return (0);
1525 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1526 	return (0);
1527 }
1528 
1529 static rctl_ops_t zone_locked_mem_ops = {
1530 	rcop_no_action,
1531 	zone_locked_mem_usage,
1532 	zone_locked_mem_set,
1533 	zone_locked_mem_test
1534 };
1535 
1536 /*ARGSUSED*/
1537 static rctl_qty_t
1538 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1539 {
1540 	rctl_qty_t q;
1541 	zone_t *z = p->p_zone;
1542 
1543 	ASSERT(MUTEX_HELD(&p->p_lock));
1544 	mutex_enter(&z->zone_mem_lock);
1545 	q = z->zone_max_swap;
1546 	mutex_exit(&z->zone_mem_lock);
1547 	return (q);
1548 }
1549 
1550 /*ARGSUSED*/
1551 static int
1552 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1553     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1554 {
1555 	rctl_qty_t q;
1556 	zone_t *z;
1557 
1558 	z = e->rcep_p.zone;
1559 	ASSERT(MUTEX_HELD(&p->p_lock));
1560 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1561 	q = z->zone_max_swap;
1562 	if (q + incr > rcntl->rcv_value)
1563 		return (1);
1564 	return (0);
1565 }
1566 
1567 /*ARGSUSED*/
1568 static int
1569 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1570     rctl_qty_t nv)
1571 {
1572 	ASSERT(MUTEX_HELD(&p->p_lock));
1573 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1574 	if (e->rcep_p.zone == NULL)
1575 		return (0);
1576 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1577 	return (0);
1578 }
1579 
1580 static rctl_ops_t zone_max_swap_ops = {
1581 	rcop_no_action,
1582 	zone_max_swap_usage,
1583 	zone_max_swap_set,
1584 	zone_max_swap_test
1585 };
1586 
1587 /*
1588  * Helper function to brand the zone with a unique ID.
1589  */
1590 static void
1591 zone_uniqid(zone_t *zone)
1592 {
1593 	static uint64_t uniqid = 0;
1594 
1595 	ASSERT(MUTEX_HELD(&zonehash_lock));
1596 	zone->zone_uniqid = uniqid++;
1597 }
1598 
1599 /*
1600  * Returns a held pointer to the "kcred" for the specified zone.
1601  */
1602 struct cred *
1603 zone_get_kcred(zoneid_t zoneid)
1604 {
1605 	zone_t *zone;
1606 	cred_t *cr;
1607 
1608 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1609 		return (NULL);
1610 	cr = zone->zone_kcred;
1611 	crhold(cr);
1612 	zone_rele(zone);
1613 	return (cr);
1614 }
1615 
1616 static int
1617 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1618 {
1619 	zone_t *zone = ksp->ks_private;
1620 	zone_kstat_t *zk = ksp->ks_data;
1621 
1622 	if (rw == KSTAT_WRITE)
1623 		return (EACCES);
1624 
1625 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1626 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1627 	return (0);
1628 }
1629 
1630 static int
1631 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1632 {
1633 	zone_t *zone = ksp->ks_private;
1634 	zone_kstat_t *zk = ksp->ks_data;
1635 
1636 	if (rw == KSTAT_WRITE)
1637 		return (EACCES);
1638 
1639 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1640 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1641 	return (0);
1642 }
1643 
1644 static void
1645 zone_kstat_create(zone_t *zone)
1646 {
1647 	kstat_t *ksp;
1648 	zone_kstat_t *zk;
1649 
1650 	ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED,
1651 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1652 	    KSTAT_FLAG_VIRTUAL);
1653 
1654 	if (ksp == NULL)
1655 		return;
1656 
1657 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1658 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1659 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1660 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1661 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1662 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1663 	ksp->ks_update = zone_lockedmem_kstat_update;
1664 	ksp->ks_private = zone;
1665 	kstat_install(ksp);
1666 
1667 	zone->zone_lockedmem_kstat = ksp;
1668 
1669 	ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED,
1670 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1671 	    KSTAT_FLAG_VIRTUAL);
1672 
1673 	if (ksp == NULL)
1674 		return;
1675 
1676 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1677 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1678 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1679 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1680 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1681 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1682 	ksp->ks_update = zone_swapresv_kstat_update;
1683 	ksp->ks_private = zone;
1684 	kstat_install(ksp);
1685 
1686 	zone->zone_swapresv_kstat = ksp;
1687 }
1688 
1689 static void
1690 zone_kstat_delete(zone_t *zone)
1691 {
1692 	void *data;
1693 
1694 	if (zone->zone_lockedmem_kstat != NULL) {
1695 		data = zone->zone_lockedmem_kstat->ks_data;
1696 		kstat_delete(zone->zone_lockedmem_kstat);
1697 		kmem_free(data, sizeof (zone_kstat_t));
1698 	}
1699 	if (zone->zone_swapresv_kstat != NULL) {
1700 		data = zone->zone_swapresv_kstat->ks_data;
1701 		kstat_delete(zone->zone_swapresv_kstat);
1702 		kmem_free(data, sizeof (zone_kstat_t));
1703 	}
1704 }
1705 
1706 /*
1707  * Called very early on in boot to initialize the ZSD list so that
1708  * zone_key_create() can be called before zone_init().  It also initializes
1709  * portions of zone0 which may be used before zone_init() is called.  The
1710  * variable "global_zone" will be set when zone0 is fully initialized by
1711  * zone_init().
1712  */
1713 void
1714 zone_zsd_init(void)
1715 {
1716 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1717 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1718 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1719 	    offsetof(struct zsd_entry, zsd_linkage));
1720 	list_create(&zone_active, sizeof (zone_t),
1721 	    offsetof(zone_t, zone_linkage));
1722 	list_create(&zone_deathrow, sizeof (zone_t),
1723 	    offsetof(zone_t, zone_linkage));
1724 
1725 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1726 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1727 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1728 	zone0.zone_shares = 1;
1729 	zone0.zone_nlwps = 0;
1730 	zone0.zone_nlwps_ctl = INT_MAX;
1731 	zone0.zone_locked_mem = 0;
1732 	zone0.zone_locked_mem_ctl = UINT64_MAX;
1733 	ASSERT(zone0.zone_max_swap == 0);
1734 	zone0.zone_max_swap_ctl = UINT64_MAX;
1735 	zone0.zone_shmmax = 0;
1736 	zone0.zone_ipc.ipcq_shmmni = 0;
1737 	zone0.zone_ipc.ipcq_semmni = 0;
1738 	zone0.zone_ipc.ipcq_msgmni = 0;
1739 	zone0.zone_name = GLOBAL_ZONENAME;
1740 	zone0.zone_nodename = utsname.nodename;
1741 	zone0.zone_domain = srpc_domain;
1742 	zone0.zone_hostid = HW_INVALID_HOSTID;
1743 	zone0.zone_ref = 1;
1744 	zone0.zone_id = GLOBAL_ZONEID;
1745 	zone0.zone_status = ZONE_IS_RUNNING;
1746 	zone0.zone_rootpath = "/";
1747 	zone0.zone_rootpathlen = 2;
1748 	zone0.zone_psetid = ZONE_PS_INVAL;
1749 	zone0.zone_ncpus = 0;
1750 	zone0.zone_ncpus_online = 0;
1751 	zone0.zone_proc_initpid = 1;
1752 	zone0.zone_initname = initname;
1753 	zone0.zone_lockedmem_kstat = NULL;
1754 	zone0.zone_swapresv_kstat = NULL;
1755 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
1756 	    offsetof(struct zsd_entry, zsd_linkage));
1757 	list_insert_head(&zone_active, &zone0);
1758 
1759 	/*
1760 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
1761 	 * to anything meaningful.  It is assigned to be 'rootdir' in
1762 	 * vfs_mountroot().
1763 	 */
1764 	zone0.zone_rootvp = NULL;
1765 	zone0.zone_vfslist = NULL;
1766 	zone0.zone_bootargs = initargs;
1767 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
1768 	/*
1769 	 * The global zone has all privileges
1770 	 */
1771 	priv_fillset(zone0.zone_privset);
1772 	/*
1773 	 * Add p0 to the global zone
1774 	 */
1775 	zone0.zone_zsched = &p0;
1776 	p0.p_zone = &zone0;
1777 }
1778 
1779 /*
1780  * Compute a hash value based on the contents of the label and the DOI.  The
1781  * hash algorithm is somewhat arbitrary, but is based on the observation that
1782  * humans will likely pick labels that differ by amounts that work out to be
1783  * multiples of the number of hash chains, and thus stirring in some primes
1784  * should help.
1785  */
1786 static uint_t
1787 hash_bylabel(void *hdata, mod_hash_key_t key)
1788 {
1789 	const ts_label_t *lab = (ts_label_t *)key;
1790 	const uint32_t *up, *ue;
1791 	uint_t hash;
1792 	int i;
1793 
1794 	_NOTE(ARGUNUSED(hdata));
1795 
1796 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
1797 	/* we depend on alignment of label, but not representation */
1798 	up = (const uint32_t *)&lab->tsl_label;
1799 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
1800 	i = 1;
1801 	while (up < ue) {
1802 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
1803 		hash += *up + (*up << ((i % 16) + 1));
1804 		up++;
1805 		i++;
1806 	}
1807 	return (hash);
1808 }
1809 
1810 /*
1811  * All that mod_hash cares about here is zero (equal) versus non-zero (not
1812  * equal).  This may need to be changed if less than / greater than is ever
1813  * needed.
1814  */
1815 static int
1816 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1817 {
1818 	ts_label_t *lab1 = (ts_label_t *)key1;
1819 	ts_label_t *lab2 = (ts_label_t *)key2;
1820 
1821 	return (label_equal(lab1, lab2) ? 0 : 1);
1822 }
1823 
1824 /*
1825  * Called by main() to initialize the zones framework.
1826  */
1827 void
1828 zone_init(void)
1829 {
1830 	rctl_dict_entry_t *rde;
1831 	rctl_val_t *dval;
1832 	rctl_set_t *set;
1833 	rctl_alloc_gp_t *gp;
1834 	rctl_entity_p_t e;
1835 	int res;
1836 
1837 	ASSERT(curproc == &p0);
1838 
1839 	/*
1840 	 * Create ID space for zone IDs.  ID 0 is reserved for the
1841 	 * global zone.
1842 	 */
1843 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
1844 
1845 	/*
1846 	 * Initialize generic zone resource controls, if any.
1847 	 */
1848 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
1849 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
1850 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
1851 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
1852 
1853 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
1854 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
1855 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
1856 	    RCTL_GLOBAL_INFINITE,
1857 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
1858 
1859 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
1860 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
1861 	    INT_MAX, INT_MAX, &zone_lwps_ops);
1862 	/*
1863 	 * System V IPC resource controls
1864 	 */
1865 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
1866 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1867 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
1868 
1869 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
1870 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1871 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
1872 
1873 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
1874 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1875 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
1876 
1877 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
1878 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1879 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
1880 
1881 	/*
1882 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
1883 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
1884 	 */
1885 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
1886 	bzero(dval, sizeof (rctl_val_t));
1887 	dval->rcv_value = 1;
1888 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
1889 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
1890 	dval->rcv_action_recip_pid = -1;
1891 
1892 	rde = rctl_dict_lookup("zone.cpu-shares");
1893 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
1894 
1895 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
1896 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
1897 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1898 	    &zone_locked_mem_ops);
1899 
1900 	rc_zone_max_swap = rctl_register("zone.max-swap",
1901 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
1902 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1903 	    &zone_max_swap_ops);
1904 
1905 	/*
1906 	 * Initialize the ``global zone''.
1907 	 */
1908 	set = rctl_set_create();
1909 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
1910 	mutex_enter(&p0.p_lock);
1911 	e.rcep_p.zone = &zone0;
1912 	e.rcep_t = RCENTITY_ZONE;
1913 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
1914 	    gp);
1915 
1916 	zone0.zone_nlwps = p0.p_lwpcnt;
1917 	zone0.zone_ntasks = 1;
1918 	mutex_exit(&p0.p_lock);
1919 	zone0.zone_restart_init = B_TRUE;
1920 	zone0.zone_brand = &native_brand;
1921 	rctl_prealloc_destroy(gp);
1922 	/*
1923 	 * pool_default hasn't been initialized yet, so we let pool_init()
1924 	 * take care of making sure the global zone is in the default pool.
1925 	 */
1926 
1927 	/*
1928 	 * Initialize global zone kstats
1929 	 */
1930 	zone_kstat_create(&zone0);
1931 
1932 	/*
1933 	 * Initialize zone label.
1934 	 * mlp are initialized when tnzonecfg is loaded.
1935 	 */
1936 	zone0.zone_slabel = l_admin_low;
1937 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
1938 	label_hold(l_admin_low);
1939 
1940 	/*
1941 	 * Initialise the lock for the database structure used by mntfs.
1942 	 */
1943 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
1944 
1945 	mutex_enter(&zonehash_lock);
1946 	zone_uniqid(&zone0);
1947 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
1948 
1949 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
1950 	    mod_hash_null_valdtor);
1951 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
1952 	    zone_hash_size, mod_hash_null_valdtor);
1953 	/*
1954 	 * maintain zonehashbylabel only for labeled systems
1955 	 */
1956 	if (is_system_labeled())
1957 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
1958 		    zone_hash_size, mod_hash_null_keydtor,
1959 		    mod_hash_null_valdtor, hash_bylabel, NULL,
1960 		    hash_labelkey_cmp, KM_SLEEP);
1961 	zonecount = 1;
1962 
1963 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
1964 	    (mod_hash_val_t)&zone0);
1965 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
1966 	    (mod_hash_val_t)&zone0);
1967 	if (is_system_labeled()) {
1968 		zone0.zone_flags |= ZF_HASHED_LABEL;
1969 		(void) mod_hash_insert(zonehashbylabel,
1970 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
1971 	}
1972 	mutex_exit(&zonehash_lock);
1973 
1974 	/*
1975 	 * We avoid setting zone_kcred until now, since kcred is initialized
1976 	 * sometime after zone_zsd_init() and before zone_init().
1977 	 */
1978 	zone0.zone_kcred = kcred;
1979 	/*
1980 	 * The global zone is fully initialized (except for zone_rootvp which
1981 	 * will be set when the root filesystem is mounted).
1982 	 */
1983 	global_zone = &zone0;
1984 
1985 	/*
1986 	 * Setup an event channel to send zone status change notifications on
1987 	 */
1988 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
1989 	    EVCH_CREAT);
1990 
1991 	if (res)
1992 		panic("Sysevent_evc_bind failed during zone setup.\n");
1993 
1994 }
1995 
1996 static void
1997 zone_free(zone_t *zone)
1998 {
1999 	ASSERT(zone != global_zone);
2000 	ASSERT(zone->zone_ntasks == 0);
2001 	ASSERT(zone->zone_nlwps == 0);
2002 	ASSERT(zone->zone_cred_ref == 0);
2003 	ASSERT(zone->zone_kcred == NULL);
2004 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2005 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2006 
2007 	/*
2008 	 * Remove any zone caps.
2009 	 */
2010 	cpucaps_zone_remove(zone);
2011 
2012 	ASSERT(zone->zone_cpucap == NULL);
2013 
2014 	/* remove from deathrow list */
2015 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2016 		ASSERT(zone->zone_ref == 0);
2017 		mutex_enter(&zone_deathrow_lock);
2018 		list_remove(&zone_deathrow, zone);
2019 		mutex_exit(&zone_deathrow_lock);
2020 	}
2021 
2022 	zone_free_zsd(zone);
2023 	zone_free_datasets(zone);
2024 	list_destroy(&zone->zone_dl_list);
2025 
2026 	if (zone->zone_rootvp != NULL)
2027 		VN_RELE(zone->zone_rootvp);
2028 	if (zone->zone_rootpath)
2029 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2030 	if (zone->zone_name != NULL)
2031 		kmem_free(zone->zone_name, ZONENAME_MAX);
2032 	if (zone->zone_slabel != NULL)
2033 		label_rele(zone->zone_slabel);
2034 	if (zone->zone_nodename != NULL)
2035 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2036 	if (zone->zone_domain != NULL)
2037 		kmem_free(zone->zone_domain, _SYS_NMLN);
2038 	if (zone->zone_privset != NULL)
2039 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2040 	if (zone->zone_rctls != NULL)
2041 		rctl_set_free(zone->zone_rctls);
2042 	if (zone->zone_bootargs != NULL)
2043 		kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1);
2044 	if (zone->zone_initname != NULL)
2045 		kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1);
2046 	if (zone->zone_pfexecd != NULL)
2047 		klpd_freelist(&zone->zone_pfexecd);
2048 	id_free(zoneid_space, zone->zone_id);
2049 	mutex_destroy(&zone->zone_lock);
2050 	cv_destroy(&zone->zone_cv);
2051 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2052 	rw_destroy(&zone->zone_mntfs_db_lock);
2053 	kmem_free(zone, sizeof (zone_t));
2054 }
2055 
2056 /*
2057  * See block comment at the top of this file for information about zone
2058  * status values.
2059  */
2060 /*
2061  * Convenience function for setting zone status.
2062  */
2063 static void
2064 zone_status_set(zone_t *zone, zone_status_t status)
2065 {
2066 
2067 	nvlist_t *nvl = NULL;
2068 	ASSERT(MUTEX_HELD(&zone_status_lock));
2069 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2070 	    status >= zone_status_get(zone));
2071 
2072 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2073 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2074 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2075 	    zone_status_table[status]) ||
2076 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2077 	    zone_status_table[zone->zone_status]) ||
2078 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2079 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2080 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2081 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2082 #ifdef DEBUG
2083 		(void) printf(
2084 		    "Failed to allocate and send zone state change event.\n");
2085 #endif
2086 	}
2087 	nvlist_free(nvl);
2088 
2089 	zone->zone_status = status;
2090 
2091 	cv_broadcast(&zone->zone_cv);
2092 }
2093 
2094 /*
2095  * Public function to retrieve the zone status.  The zone status may
2096  * change after it is retrieved.
2097  */
2098 zone_status_t
2099 zone_status_get(zone_t *zone)
2100 {
2101 	return (zone->zone_status);
2102 }
2103 
2104 static int
2105 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2106 {
2107 	char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2108 	int err = 0;
2109 
2110 	ASSERT(zone != global_zone);
2111 	if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0)
2112 		goto done;	/* EFAULT or ENAMETOOLONG */
2113 
2114 	if (zone->zone_bootargs != NULL)
2115 		kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1);
2116 
2117 	zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP);
2118 	(void) strcpy(zone->zone_bootargs, bootargs);
2119 
2120 done:
2121 	kmem_free(bootargs, BOOTARGS_MAX);
2122 	return (err);
2123 }
2124 
2125 static int
2126 zone_set_brand(zone_t *zone, const char *brand)
2127 {
2128 	struct brand_attr *attrp;
2129 	brand_t *bp;
2130 
2131 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2132 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2133 		kmem_free(attrp, sizeof (struct brand_attr));
2134 		return (EFAULT);
2135 	}
2136 
2137 	bp = brand_register_zone(attrp);
2138 	kmem_free(attrp, sizeof (struct brand_attr));
2139 	if (bp == NULL)
2140 		return (EINVAL);
2141 
2142 	/*
2143 	 * This is the only place where a zone can change it's brand.
2144 	 * We already need to hold zone_status_lock to check the zone
2145 	 * status, so we'll just use that lock to serialize zone
2146 	 * branding requests as well.
2147 	 */
2148 	mutex_enter(&zone_status_lock);
2149 
2150 	/* Re-Branding is not allowed and the zone can't be booted yet */
2151 	if ((ZONE_IS_BRANDED(zone)) ||
2152 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2153 		mutex_exit(&zone_status_lock);
2154 		brand_unregister_zone(bp);
2155 		return (EINVAL);
2156 	}
2157 
2158 	/* set up the brand specific data */
2159 	zone->zone_brand = bp;
2160 	ZBROP(zone)->b_init_brand_data(zone);
2161 
2162 	mutex_exit(&zone_status_lock);
2163 	return (0);
2164 }
2165 
2166 static int
2167 zone_set_initname(zone_t *zone, const char *zone_initname)
2168 {
2169 	char initname[INITNAME_SZ];
2170 	size_t len;
2171 	int err = 0;
2172 
2173 	ASSERT(zone != global_zone);
2174 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2175 		return (err);	/* EFAULT or ENAMETOOLONG */
2176 
2177 	if (zone->zone_initname != NULL)
2178 		kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1);
2179 
2180 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2181 	(void) strcpy(zone->zone_initname, initname);
2182 	return (0);
2183 }
2184 
2185 static int
2186 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2187 {
2188 	uint64_t mcap;
2189 	int err = 0;
2190 
2191 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2192 		zone->zone_phys_mcap = mcap;
2193 
2194 	return (err);
2195 }
2196 
2197 static int
2198 zone_set_sched_class(zone_t *zone, const char *new_class)
2199 {
2200 	char sched_class[PC_CLNMSZ];
2201 	id_t classid;
2202 	int err;
2203 
2204 	ASSERT(zone != global_zone);
2205 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2206 		return (err);	/* EFAULT or ENAMETOOLONG */
2207 
2208 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2209 		return (set_errno(EINVAL));
2210 	zone->zone_defaultcid = classid;
2211 	ASSERT(zone->zone_defaultcid > 0 &&
2212 	    zone->zone_defaultcid < loaded_classes);
2213 
2214 	return (0);
2215 }
2216 
2217 /*
2218  * Block indefinitely waiting for (zone_status >= status)
2219  */
2220 void
2221 zone_status_wait(zone_t *zone, zone_status_t status)
2222 {
2223 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2224 
2225 	mutex_enter(&zone_status_lock);
2226 	while (zone->zone_status < status) {
2227 		cv_wait(&zone->zone_cv, &zone_status_lock);
2228 	}
2229 	mutex_exit(&zone_status_lock);
2230 }
2231 
2232 /*
2233  * Private CPR-safe version of zone_status_wait().
2234  */
2235 static void
2236 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2237 {
2238 	callb_cpr_t cprinfo;
2239 
2240 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2241 
2242 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2243 	    str);
2244 	mutex_enter(&zone_status_lock);
2245 	while (zone->zone_status < status) {
2246 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2247 		cv_wait(&zone->zone_cv, &zone_status_lock);
2248 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2249 	}
2250 	/*
2251 	 * zone_status_lock is implicitly released by the following.
2252 	 */
2253 	CALLB_CPR_EXIT(&cprinfo);
2254 }
2255 
2256 /*
2257  * Block until zone enters requested state or signal is received.  Return (0)
2258  * if signaled, non-zero otherwise.
2259  */
2260 int
2261 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2262 {
2263 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2264 
2265 	mutex_enter(&zone_status_lock);
2266 	while (zone->zone_status < status) {
2267 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2268 			mutex_exit(&zone_status_lock);
2269 			return (0);
2270 		}
2271 	}
2272 	mutex_exit(&zone_status_lock);
2273 	return (1);
2274 }
2275 
2276 /*
2277  * Block until the zone enters the requested state or the timeout expires,
2278  * whichever happens first.  Return (-1) if operation timed out, time remaining
2279  * otherwise.
2280  */
2281 clock_t
2282 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2283 {
2284 	clock_t timeleft = 0;
2285 
2286 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2287 
2288 	mutex_enter(&zone_status_lock);
2289 	while (zone->zone_status < status && timeleft != -1) {
2290 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2291 	}
2292 	mutex_exit(&zone_status_lock);
2293 	return (timeleft);
2294 }
2295 
2296 /*
2297  * Block until the zone enters the requested state, the current process is
2298  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2299  * operation timed out, 0 if signaled, time remaining otherwise.
2300  */
2301 clock_t
2302 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2303 {
2304 	clock_t timeleft = tim - ddi_get_lbolt();
2305 
2306 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2307 
2308 	mutex_enter(&zone_status_lock);
2309 	while (zone->zone_status < status) {
2310 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2311 		    tim);
2312 		if (timeleft <= 0)
2313 			break;
2314 	}
2315 	mutex_exit(&zone_status_lock);
2316 	return (timeleft);
2317 }
2318 
2319 /*
2320  * Zones have two reference counts: one for references from credential
2321  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2322  * This is so we can allow a zone to be rebooted while there are still
2323  * outstanding cred references, since certain drivers cache dblks (which
2324  * implicitly results in cached creds).  We wait for zone_ref to drop to
2325  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2326  * later freed when the zone_cred_ref drops to 0, though nothing other
2327  * than the zone id and privilege set should be accessed once the zone
2328  * is "dead".
2329  *
2330  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2331  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2332  * to 0.  This can be useful to flush out other sources of cached creds
2333  * that may be less innocuous than the driver case.
2334  */
2335 
2336 int zone_wait_for_cred = 0;
2337 
2338 static void
2339 zone_hold_locked(zone_t *z)
2340 {
2341 	ASSERT(MUTEX_HELD(&z->zone_lock));
2342 	z->zone_ref++;
2343 	ASSERT(z->zone_ref != 0);
2344 }
2345 
2346 void
2347 zone_hold(zone_t *z)
2348 {
2349 	mutex_enter(&z->zone_lock);
2350 	zone_hold_locked(z);
2351 	mutex_exit(&z->zone_lock);
2352 }
2353 
2354 /*
2355  * If the non-cred ref count drops to 1 and either the cred ref count
2356  * is 0 or we aren't waiting for cred references, the zone is ready to
2357  * be destroyed.
2358  */
2359 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2360 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2361 
2362 void
2363 zone_rele(zone_t *z)
2364 {
2365 	boolean_t wakeup;
2366 
2367 	mutex_enter(&z->zone_lock);
2368 	ASSERT(z->zone_ref != 0);
2369 	z->zone_ref--;
2370 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2371 		/* no more refs, free the structure */
2372 		mutex_exit(&z->zone_lock);
2373 		zone_free(z);
2374 		return;
2375 	}
2376 	/* signal zone_destroy so the zone can finish halting */
2377 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2378 	mutex_exit(&z->zone_lock);
2379 
2380 	if (wakeup) {
2381 		/*
2382 		 * Grabbing zonehash_lock here effectively synchronizes with
2383 		 * zone_destroy() to avoid missed signals.
2384 		 */
2385 		mutex_enter(&zonehash_lock);
2386 		cv_broadcast(&zone_destroy_cv);
2387 		mutex_exit(&zonehash_lock);
2388 	}
2389 }
2390 
2391 void
2392 zone_cred_hold(zone_t *z)
2393 {
2394 	mutex_enter(&z->zone_lock);
2395 	z->zone_cred_ref++;
2396 	ASSERT(z->zone_cred_ref != 0);
2397 	mutex_exit(&z->zone_lock);
2398 }
2399 
2400 void
2401 zone_cred_rele(zone_t *z)
2402 {
2403 	boolean_t wakeup;
2404 
2405 	mutex_enter(&z->zone_lock);
2406 	ASSERT(z->zone_cred_ref != 0);
2407 	z->zone_cred_ref--;
2408 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2409 		/* no more refs, free the structure */
2410 		mutex_exit(&z->zone_lock);
2411 		zone_free(z);
2412 		return;
2413 	}
2414 	/*
2415 	 * If zone_destroy is waiting for the cred references to drain
2416 	 * out, and they have, signal it.
2417 	 */
2418 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2419 	    zone_status_get(z) >= ZONE_IS_DEAD);
2420 	mutex_exit(&z->zone_lock);
2421 
2422 	if (wakeup) {
2423 		/*
2424 		 * Grabbing zonehash_lock here effectively synchronizes with
2425 		 * zone_destroy() to avoid missed signals.
2426 		 */
2427 		mutex_enter(&zonehash_lock);
2428 		cv_broadcast(&zone_destroy_cv);
2429 		mutex_exit(&zonehash_lock);
2430 	}
2431 }
2432 
2433 void
2434 zone_task_hold(zone_t *z)
2435 {
2436 	mutex_enter(&z->zone_lock);
2437 	z->zone_ntasks++;
2438 	ASSERT(z->zone_ntasks != 0);
2439 	mutex_exit(&z->zone_lock);
2440 }
2441 
2442 void
2443 zone_task_rele(zone_t *zone)
2444 {
2445 	uint_t refcnt;
2446 
2447 	mutex_enter(&zone->zone_lock);
2448 	ASSERT(zone->zone_ntasks != 0);
2449 	refcnt = --zone->zone_ntasks;
2450 	if (refcnt > 1)	{	/* Common case */
2451 		mutex_exit(&zone->zone_lock);
2452 		return;
2453 	}
2454 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2455 	mutex_exit(&zone->zone_lock);
2456 	if (refcnt == 1) {
2457 		/*
2458 		 * See if the zone is shutting down.
2459 		 */
2460 		mutex_enter(&zone_status_lock);
2461 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2462 			goto out;
2463 		}
2464 
2465 		/*
2466 		 * Make sure the ntasks didn't change since we
2467 		 * dropped zone_lock.
2468 		 */
2469 		mutex_enter(&zone->zone_lock);
2470 		if (refcnt != zone->zone_ntasks) {
2471 			mutex_exit(&zone->zone_lock);
2472 			goto out;
2473 		}
2474 		mutex_exit(&zone->zone_lock);
2475 
2476 		/*
2477 		 * No more user processes in the zone.  The zone is empty.
2478 		 */
2479 		zone_status_set(zone, ZONE_IS_EMPTY);
2480 		goto out;
2481 	}
2482 
2483 	ASSERT(refcnt == 0);
2484 	/*
2485 	 * zsched has exited; the zone is dead.
2486 	 */
2487 	zone->zone_zsched = NULL;		/* paranoia */
2488 	mutex_enter(&zone_status_lock);
2489 	zone_status_set(zone, ZONE_IS_DEAD);
2490 out:
2491 	mutex_exit(&zone_status_lock);
2492 	zone_rele(zone);
2493 }
2494 
2495 zoneid_t
2496 getzoneid(void)
2497 {
2498 	return (curproc->p_zone->zone_id);
2499 }
2500 
2501 /*
2502  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2503  * check the validity of a zone's state.
2504  */
2505 static zone_t *
2506 zone_find_all_by_id(zoneid_t zoneid)
2507 {
2508 	mod_hash_val_t hv;
2509 	zone_t *zone = NULL;
2510 
2511 	ASSERT(MUTEX_HELD(&zonehash_lock));
2512 
2513 	if (mod_hash_find(zonehashbyid,
2514 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2515 		zone = (zone_t *)hv;
2516 	return (zone);
2517 }
2518 
2519 static zone_t *
2520 zone_find_all_by_label(const ts_label_t *label)
2521 {
2522 	mod_hash_val_t hv;
2523 	zone_t *zone = NULL;
2524 
2525 	ASSERT(MUTEX_HELD(&zonehash_lock));
2526 
2527 	/*
2528 	 * zonehashbylabel is not maintained for unlabeled systems
2529 	 */
2530 	if (!is_system_labeled())
2531 		return (NULL);
2532 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2533 		zone = (zone_t *)hv;
2534 	return (zone);
2535 }
2536 
2537 static zone_t *
2538 zone_find_all_by_name(char *name)
2539 {
2540 	mod_hash_val_t hv;
2541 	zone_t *zone = NULL;
2542 
2543 	ASSERT(MUTEX_HELD(&zonehash_lock));
2544 
2545 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2546 		zone = (zone_t *)hv;
2547 	return (zone);
2548 }
2549 
2550 /*
2551  * Public interface for looking up a zone by zoneid.  Only returns the zone if
2552  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2553  * Caller must call zone_rele() once it is done with the zone.
2554  *
2555  * The zone may begin the zone_destroy() sequence immediately after this
2556  * function returns, but may be safely used until zone_rele() is called.
2557  */
2558 zone_t *
2559 zone_find_by_id(zoneid_t zoneid)
2560 {
2561 	zone_t *zone;
2562 	zone_status_t status;
2563 
2564 	mutex_enter(&zonehash_lock);
2565 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2566 		mutex_exit(&zonehash_lock);
2567 		return (NULL);
2568 	}
2569 	status = zone_status_get(zone);
2570 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2571 		/*
2572 		 * For all practical purposes the zone doesn't exist.
2573 		 */
2574 		mutex_exit(&zonehash_lock);
2575 		return (NULL);
2576 	}
2577 	zone_hold(zone);
2578 	mutex_exit(&zonehash_lock);
2579 	return (zone);
2580 }
2581 
2582 /*
2583  * Similar to zone_find_by_id, but using zone label as the key.
2584  */
2585 zone_t *
2586 zone_find_by_label(const ts_label_t *label)
2587 {
2588 	zone_t *zone;
2589 	zone_status_t status;
2590 
2591 	mutex_enter(&zonehash_lock);
2592 	if ((zone = zone_find_all_by_label(label)) == NULL) {
2593 		mutex_exit(&zonehash_lock);
2594 		return (NULL);
2595 	}
2596 
2597 	status = zone_status_get(zone);
2598 	if (status > ZONE_IS_DOWN) {
2599 		/*
2600 		 * For all practical purposes the zone doesn't exist.
2601 		 */
2602 		mutex_exit(&zonehash_lock);
2603 		return (NULL);
2604 	}
2605 	zone_hold(zone);
2606 	mutex_exit(&zonehash_lock);
2607 	return (zone);
2608 }
2609 
2610 /*
2611  * Similar to zone_find_by_id, but using zone name as the key.
2612  */
2613 zone_t *
2614 zone_find_by_name(char *name)
2615 {
2616 	zone_t *zone;
2617 	zone_status_t status;
2618 
2619 	mutex_enter(&zonehash_lock);
2620 	if ((zone = zone_find_all_by_name(name)) == NULL) {
2621 		mutex_exit(&zonehash_lock);
2622 		return (NULL);
2623 	}
2624 	status = zone_status_get(zone);
2625 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2626 		/*
2627 		 * For all practical purposes the zone doesn't exist.
2628 		 */
2629 		mutex_exit(&zonehash_lock);
2630 		return (NULL);
2631 	}
2632 	zone_hold(zone);
2633 	mutex_exit(&zonehash_lock);
2634 	return (zone);
2635 }
2636 
2637 /*
2638  * Similar to zone_find_by_id(), using the path as a key.  For instance,
2639  * if there is a zone "foo" rooted at /foo/root, and the path argument
2640  * is "/foo/root/proc", it will return the held zone_t corresponding to
2641  * zone "foo".
2642  *
2643  * zone_find_by_path() always returns a non-NULL value, since at the
2644  * very least every path will be contained in the global zone.
2645  *
2646  * As with the other zone_find_by_*() functions, the caller is
2647  * responsible for zone_rele()ing the return value of this function.
2648  */
2649 zone_t *
2650 zone_find_by_path(const char *path)
2651 {
2652 	zone_t *zone;
2653 	zone_t *zret = NULL;
2654 	zone_status_t status;
2655 
2656 	if (path == NULL) {
2657 		/*
2658 		 * Call from rootconf().
2659 		 */
2660 		zone_hold(global_zone);
2661 		return (global_zone);
2662 	}
2663 	ASSERT(*path == '/');
2664 	mutex_enter(&zonehash_lock);
2665 	for (zone = list_head(&zone_active); zone != NULL;
2666 	    zone = list_next(&zone_active, zone)) {
2667 		if (ZONE_PATH_VISIBLE(path, zone))
2668 			zret = zone;
2669 	}
2670 	ASSERT(zret != NULL);
2671 	status = zone_status_get(zret);
2672 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2673 		/*
2674 		 * Zone practically doesn't exist.
2675 		 */
2676 		zret = global_zone;
2677 	}
2678 	zone_hold(zret);
2679 	mutex_exit(&zonehash_lock);
2680 	return (zret);
2681 }
2682 
2683 /*
2684  * Get the number of cpus visible to this zone.  The system-wide global
2685  * 'ncpus' is returned if pools are disabled, the caller is in the
2686  * global zone, or a NULL zone argument is passed in.
2687  */
2688 int
2689 zone_ncpus_get(zone_t *zone)
2690 {
2691 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
2692 
2693 	return (myncpus != 0 ? myncpus : ncpus);
2694 }
2695 
2696 /*
2697  * Get the number of online cpus visible to this zone.  The system-wide
2698  * global 'ncpus_online' is returned if pools are disabled, the caller
2699  * is in the global zone, or a NULL zone argument is passed in.
2700  */
2701 int
2702 zone_ncpus_online_get(zone_t *zone)
2703 {
2704 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
2705 
2706 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
2707 }
2708 
2709 /*
2710  * Return the pool to which the zone is currently bound.
2711  */
2712 pool_t *
2713 zone_pool_get(zone_t *zone)
2714 {
2715 	ASSERT(pool_lock_held());
2716 
2717 	return (zone->zone_pool);
2718 }
2719 
2720 /*
2721  * Set the zone's pool pointer and update the zone's visibility to match
2722  * the resources in the new pool.
2723  */
2724 void
2725 zone_pool_set(zone_t *zone, pool_t *pool)
2726 {
2727 	ASSERT(pool_lock_held());
2728 	ASSERT(MUTEX_HELD(&cpu_lock));
2729 
2730 	zone->zone_pool = pool;
2731 	zone_pset_set(zone, pool->pool_pset->pset_id);
2732 }
2733 
2734 /*
2735  * Return the cached value of the id of the processor set to which the
2736  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
2737  * facility is disabled.
2738  */
2739 psetid_t
2740 zone_pset_get(zone_t *zone)
2741 {
2742 	ASSERT(MUTEX_HELD(&cpu_lock));
2743 
2744 	return (zone->zone_psetid);
2745 }
2746 
2747 /*
2748  * Set the cached value of the id of the processor set to which the zone
2749  * is currently bound.  Also update the zone's visibility to match the
2750  * resources in the new processor set.
2751  */
2752 void
2753 zone_pset_set(zone_t *zone, psetid_t newpsetid)
2754 {
2755 	psetid_t oldpsetid;
2756 
2757 	ASSERT(MUTEX_HELD(&cpu_lock));
2758 	oldpsetid = zone_pset_get(zone);
2759 
2760 	if (oldpsetid == newpsetid)
2761 		return;
2762 	/*
2763 	 * Global zone sees all.
2764 	 */
2765 	if (zone != global_zone) {
2766 		zone->zone_psetid = newpsetid;
2767 		if (newpsetid != ZONE_PS_INVAL)
2768 			pool_pset_visibility_add(newpsetid, zone);
2769 		if (oldpsetid != ZONE_PS_INVAL)
2770 			pool_pset_visibility_remove(oldpsetid, zone);
2771 	}
2772 	/*
2773 	 * Disabling pools, so we should start using the global values
2774 	 * for ncpus and ncpus_online.
2775 	 */
2776 	if (newpsetid == ZONE_PS_INVAL) {
2777 		zone->zone_ncpus = 0;
2778 		zone->zone_ncpus_online = 0;
2779 	}
2780 }
2781 
2782 /*
2783  * Walk the list of active zones and issue the provided callback for
2784  * each of them.
2785  *
2786  * Caller must not be holding any locks that may be acquired under
2787  * zonehash_lock.  See comment at the beginning of the file for a list of
2788  * common locks and their interactions with zones.
2789  */
2790 int
2791 zone_walk(int (*cb)(zone_t *, void *), void *data)
2792 {
2793 	zone_t *zone;
2794 	int ret = 0;
2795 	zone_status_t status;
2796 
2797 	mutex_enter(&zonehash_lock);
2798 	for (zone = list_head(&zone_active); zone != NULL;
2799 	    zone = list_next(&zone_active, zone)) {
2800 		/*
2801 		 * Skip zones that shouldn't be externally visible.
2802 		 */
2803 		status = zone_status_get(zone);
2804 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
2805 			continue;
2806 		/*
2807 		 * Bail immediately if any callback invocation returns a
2808 		 * non-zero value.
2809 		 */
2810 		ret = (*cb)(zone, data);
2811 		if (ret != 0)
2812 			break;
2813 	}
2814 	mutex_exit(&zonehash_lock);
2815 	return (ret);
2816 }
2817 
2818 static int
2819 zone_set_root(zone_t *zone, const char *upath)
2820 {
2821 	vnode_t *vp;
2822 	int trycount;
2823 	int error = 0;
2824 	char *path;
2825 	struct pathname upn, pn;
2826 	size_t pathlen;
2827 
2828 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
2829 		return (error);
2830 
2831 	pn_alloc(&pn);
2832 
2833 	/* prevent infinite loop */
2834 	trycount = 10;
2835 	for (;;) {
2836 		if (--trycount <= 0) {
2837 			error = ESTALE;
2838 			goto out;
2839 		}
2840 
2841 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
2842 			/*
2843 			 * VOP_ACCESS() may cover 'vp' with a new
2844 			 * filesystem, if 'vp' is an autoFS vnode.
2845 			 * Get the new 'vp' if so.
2846 			 */
2847 			if ((error =
2848 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
2849 			    (!vn_ismntpt(vp) ||
2850 			    (error = traverse(&vp)) == 0)) {
2851 				pathlen = pn.pn_pathlen + 2;
2852 				path = kmem_alloc(pathlen, KM_SLEEP);
2853 				(void) strncpy(path, pn.pn_path,
2854 				    pn.pn_pathlen + 1);
2855 				path[pathlen - 2] = '/';
2856 				path[pathlen - 1] = '\0';
2857 				pn_free(&pn);
2858 				pn_free(&upn);
2859 
2860 				/* Success! */
2861 				break;
2862 			}
2863 			VN_RELE(vp);
2864 		}
2865 		if (error != ESTALE)
2866 			goto out;
2867 	}
2868 
2869 	ASSERT(error == 0);
2870 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
2871 	zone->zone_rootpath = path;
2872 	zone->zone_rootpathlen = pathlen;
2873 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
2874 		zone->zone_flags |= ZF_IS_SCRATCH;
2875 	return (0);
2876 
2877 out:
2878 	pn_free(&pn);
2879 	pn_free(&upn);
2880 	return (error);
2881 }
2882 
2883 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
2884 			((c) >= 'a' && (c) <= 'z') || \
2885 			((c) >= 'A' && (c) <= 'Z'))
2886 
2887 static int
2888 zone_set_name(zone_t *zone, const char *uname)
2889 {
2890 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
2891 	size_t len;
2892 	int i, err;
2893 
2894 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
2895 		kmem_free(kname, ZONENAME_MAX);
2896 		return (err);	/* EFAULT or ENAMETOOLONG */
2897 	}
2898 
2899 	/* must be less than ZONENAME_MAX */
2900 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
2901 		kmem_free(kname, ZONENAME_MAX);
2902 		return (EINVAL);
2903 	}
2904 
2905 	/*
2906 	 * Name must start with an alphanumeric and must contain only
2907 	 * alphanumerics, '-', '_' and '.'.
2908 	 */
2909 	if (!isalnum(kname[0])) {
2910 		kmem_free(kname, ZONENAME_MAX);
2911 		return (EINVAL);
2912 	}
2913 	for (i = 1; i < len - 1; i++) {
2914 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
2915 		    kname[i] != '.') {
2916 			kmem_free(kname, ZONENAME_MAX);
2917 			return (EINVAL);
2918 		}
2919 	}
2920 
2921 	zone->zone_name = kname;
2922 	return (0);
2923 }
2924 
2925 /*
2926  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
2927  * is NULL or it points to a zone with no hostid emulation, then the machine's
2928  * hostid (i.e., the global zone's hostid) is returned.  This function returns
2929  * zero if neither the zone nor the host machine (global zone) have hostids.  It
2930  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
2931  * hostid and the machine's hostid is invalid.
2932  */
2933 uint32_t
2934 zone_get_hostid(zone_t *zonep)
2935 {
2936 	unsigned long machine_hostid;
2937 
2938 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
2939 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
2940 			return (HW_INVALID_HOSTID);
2941 		return ((uint32_t)machine_hostid);
2942 	}
2943 	return (zonep->zone_hostid);
2944 }
2945 
2946 /*
2947  * Similar to thread_create(), but makes sure the thread is in the appropriate
2948  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
2949  */
2950 /*ARGSUSED*/
2951 kthread_t *
2952 zthread_create(
2953     caddr_t stk,
2954     size_t stksize,
2955     void (*proc)(),
2956     void *arg,
2957     size_t len,
2958     pri_t pri)
2959 {
2960 	kthread_t *t;
2961 	zone_t *zone = curproc->p_zone;
2962 	proc_t *pp = zone->zone_zsched;
2963 
2964 	zone_hold(zone);	/* Reference to be dropped when thread exits */
2965 
2966 	/*
2967 	 * No-one should be trying to create threads if the zone is shutting
2968 	 * down and there aren't any kernel threads around.  See comment
2969 	 * in zthread_exit().
2970 	 */
2971 	ASSERT(!(zone->zone_kthreads == NULL &&
2972 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
2973 	/*
2974 	 * Create a thread, but don't let it run until we've finished setting
2975 	 * things up.
2976 	 */
2977 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
2978 	ASSERT(t->t_forw == NULL);
2979 	mutex_enter(&zone_status_lock);
2980 	if (zone->zone_kthreads == NULL) {
2981 		t->t_forw = t->t_back = t;
2982 	} else {
2983 		kthread_t *tx = zone->zone_kthreads;
2984 
2985 		t->t_forw = tx;
2986 		t->t_back = tx->t_back;
2987 		tx->t_back->t_forw = t;
2988 		tx->t_back = t;
2989 	}
2990 	zone->zone_kthreads = t;
2991 	mutex_exit(&zone_status_lock);
2992 
2993 	mutex_enter(&pp->p_lock);
2994 	t->t_proc_flag |= TP_ZTHREAD;
2995 	project_rele(t->t_proj);
2996 	t->t_proj = project_hold(pp->p_task->tk_proj);
2997 
2998 	/*
2999 	 * Setup complete, let it run.
3000 	 */
3001 	thread_lock(t);
3002 	t->t_schedflag |= TS_ALLSTART;
3003 	setrun_locked(t);
3004 	thread_unlock(t);
3005 
3006 	mutex_exit(&pp->p_lock);
3007 
3008 	return (t);
3009 }
3010 
3011 /*
3012  * Similar to thread_exit().  Must be called by threads created via
3013  * zthread_exit().
3014  */
3015 void
3016 zthread_exit(void)
3017 {
3018 	kthread_t *t = curthread;
3019 	proc_t *pp = curproc;
3020 	zone_t *zone = pp->p_zone;
3021 
3022 	mutex_enter(&zone_status_lock);
3023 
3024 	/*
3025 	 * Reparent to p0
3026 	 */
3027 	kpreempt_disable();
3028 	mutex_enter(&pp->p_lock);
3029 	t->t_proc_flag &= ~TP_ZTHREAD;
3030 	t->t_procp = &p0;
3031 	hat_thread_exit(t);
3032 	mutex_exit(&pp->p_lock);
3033 	kpreempt_enable();
3034 
3035 	if (t->t_back == t) {
3036 		ASSERT(t->t_forw == t);
3037 		/*
3038 		 * If the zone is empty, once the thread count
3039 		 * goes to zero no further kernel threads can be
3040 		 * created.  This is because if the creator is a process
3041 		 * in the zone, then it must have exited before the zone
3042 		 * state could be set to ZONE_IS_EMPTY.
3043 		 * Otherwise, if the creator is a kernel thread in the
3044 		 * zone, the thread count is non-zero.
3045 		 *
3046 		 * This really means that non-zone kernel threads should
3047 		 * not create zone kernel threads.
3048 		 */
3049 		zone->zone_kthreads = NULL;
3050 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3051 			zone_status_set(zone, ZONE_IS_DOWN);
3052 			/*
3053 			 * Remove any CPU caps on this zone.
3054 			 */
3055 			cpucaps_zone_remove(zone);
3056 		}
3057 	} else {
3058 		t->t_forw->t_back = t->t_back;
3059 		t->t_back->t_forw = t->t_forw;
3060 		if (zone->zone_kthreads == t)
3061 			zone->zone_kthreads = t->t_forw;
3062 	}
3063 	mutex_exit(&zone_status_lock);
3064 	zone_rele(zone);
3065 	thread_exit();
3066 	/* NOTREACHED */
3067 }
3068 
3069 static void
3070 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3071 {
3072 	vnode_t *oldvp;
3073 
3074 	/* we're going to hold a reference here to the directory */
3075 	VN_HOLD(vp);
3076 
3077 	/* update abs cwd/root path see c2/audit.c */
3078 	if (AU_AUDITING())
3079 		audit_chdirec(vp, vpp);
3080 
3081 	mutex_enter(&pp->p_lock);
3082 	oldvp = *vpp;
3083 	*vpp = vp;
3084 	mutex_exit(&pp->p_lock);
3085 	if (oldvp != NULL)
3086 		VN_RELE(oldvp);
3087 }
3088 
3089 /*
3090  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3091  */
3092 static int
3093 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3094 {
3095 	nvpair_t *nvp = NULL;
3096 	boolean_t priv_set = B_FALSE;
3097 	boolean_t limit_set = B_FALSE;
3098 	boolean_t action_set = B_FALSE;
3099 
3100 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3101 		const char *name;
3102 		uint64_t ui64;
3103 
3104 		name = nvpair_name(nvp);
3105 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3106 			return (EINVAL);
3107 		(void) nvpair_value_uint64(nvp, &ui64);
3108 		if (strcmp(name, "privilege") == 0) {
3109 			/*
3110 			 * Currently only privileged values are allowed, but
3111 			 * this may change in the future.
3112 			 */
3113 			if (ui64 != RCPRIV_PRIVILEGED)
3114 				return (EINVAL);
3115 			rv->rcv_privilege = ui64;
3116 			priv_set = B_TRUE;
3117 		} else if (strcmp(name, "limit") == 0) {
3118 			rv->rcv_value = ui64;
3119 			limit_set = B_TRUE;
3120 		} else if (strcmp(name, "action") == 0) {
3121 			if (ui64 != RCTL_LOCAL_NOACTION &&
3122 			    ui64 != RCTL_LOCAL_DENY)
3123 				return (EINVAL);
3124 			rv->rcv_flagaction = ui64;
3125 			action_set = B_TRUE;
3126 		} else {
3127 			return (EINVAL);
3128 		}
3129 	}
3130 
3131 	if (!(priv_set && limit_set && action_set))
3132 		return (EINVAL);
3133 	rv->rcv_action_signal = 0;
3134 	rv->rcv_action_recipient = NULL;
3135 	rv->rcv_action_recip_pid = -1;
3136 	rv->rcv_firing_time = 0;
3137 
3138 	return (0);
3139 }
3140 
3141 /*
3142  * Non-global zone version of start_init.
3143  */
3144 void
3145 zone_start_init(void)
3146 {
3147 	proc_t *p = ttoproc(curthread);
3148 	zone_t *z = p->p_zone;
3149 
3150 	ASSERT(!INGLOBALZONE(curproc));
3151 
3152 	/*
3153 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3154 	 * storing just the pid of init is sufficient.
3155 	 */
3156 	z->zone_proc_initpid = p->p_pid;
3157 
3158 	/*
3159 	 * We maintain zone_boot_err so that we can return the cause of the
3160 	 * failure back to the caller of the zone_boot syscall.
3161 	 */
3162 	p->p_zone->zone_boot_err = start_init_common();
3163 
3164 	/*
3165 	 * We will prevent booting zones from becoming running zones if the
3166 	 * global zone is shutting down.
3167 	 */
3168 	mutex_enter(&zone_status_lock);
3169 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3170 	    ZONE_IS_SHUTTING_DOWN) {
3171 		/*
3172 		 * Make sure we are still in the booting state-- we could have
3173 		 * raced and already be shutting down, or even further along.
3174 		 */
3175 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3176 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3177 		}
3178 		mutex_exit(&zone_status_lock);
3179 		/* It's gone bad, dispose of the process */
3180 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3181 			mutex_enter(&p->p_lock);
3182 			ASSERT(p->p_flag & SEXITLWPS);
3183 			lwp_exit();
3184 		}
3185 	} else {
3186 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3187 			zone_status_set(z, ZONE_IS_RUNNING);
3188 		mutex_exit(&zone_status_lock);
3189 		/* cause the process to return to userland. */
3190 		lwp_rtt();
3191 	}
3192 }
3193 
3194 struct zsched_arg {
3195 	zone_t *zone;
3196 	nvlist_t *nvlist;
3197 };
3198 
3199 /*
3200  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3201  * anything to do with scheduling, but rather with the fact that
3202  * per-zone kernel threads are parented to zsched, just like regular
3203  * kernel threads are parented to sched (p0).
3204  *
3205  * zsched is also responsible for launching init for the zone.
3206  */
3207 static void
3208 zsched(void *arg)
3209 {
3210 	struct zsched_arg *za = arg;
3211 	proc_t *pp = curproc;
3212 	proc_t *initp = proc_init;
3213 	zone_t *zone = za->zone;
3214 	cred_t *cr, *oldcred;
3215 	rctl_set_t *set;
3216 	rctl_alloc_gp_t *gp;
3217 	contract_t *ct = NULL;
3218 	task_t *tk, *oldtk;
3219 	rctl_entity_p_t e;
3220 	kproject_t *pj;
3221 
3222 	nvlist_t *nvl = za->nvlist;
3223 	nvpair_t *nvp = NULL;
3224 
3225 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3226 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3227 	PTOU(pp)->u_argc = 0;
3228 	PTOU(pp)->u_argv = NULL;
3229 	PTOU(pp)->u_envp = NULL;
3230 	closeall(P_FINFO(pp));
3231 
3232 	/*
3233 	 * We are this zone's "zsched" process.  As the zone isn't generally
3234 	 * visible yet we don't need to grab any locks before initializing its
3235 	 * zone_proc pointer.
3236 	 */
3237 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3238 	zone->zone_zsched = pp;
3239 	mutex_enter(&pp->p_lock);
3240 	pp->p_zone = zone;
3241 	mutex_exit(&pp->p_lock);
3242 
3243 	/*
3244 	 * Disassociate process from its 'parent'; parent ourselves to init
3245 	 * (pid 1) and change other values as needed.
3246 	 */
3247 	sess_create();
3248 
3249 	mutex_enter(&pidlock);
3250 	proc_detach(pp);
3251 	pp->p_ppid = 1;
3252 	pp->p_flag |= SZONETOP;
3253 	pp->p_ancpid = 1;
3254 	pp->p_parent = initp;
3255 	pp->p_psibling = NULL;
3256 	if (initp->p_child)
3257 		initp->p_child->p_psibling = pp;
3258 	pp->p_sibling = initp->p_child;
3259 	initp->p_child = pp;
3260 
3261 	/* Decrement what newproc() incremented. */
3262 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3263 	/*
3264 	 * Our credentials are about to become kcred-like, so we don't care
3265 	 * about the caller's ruid.
3266 	 */
3267 	upcount_inc(crgetruid(kcred), zone->zone_id);
3268 	mutex_exit(&pidlock);
3269 
3270 	/*
3271 	 * getting out of global zone, so decrement lwp counts
3272 	 */
3273 	pj = pp->p_task->tk_proj;
3274 	mutex_enter(&global_zone->zone_nlwps_lock);
3275 	pj->kpj_nlwps -= pp->p_lwpcnt;
3276 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3277 	mutex_exit(&global_zone->zone_nlwps_lock);
3278 
3279 	/*
3280 	 * Decrement locked memory counts on old zone and project.
3281 	 */
3282 	mutex_enter(&global_zone->zone_mem_lock);
3283 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3284 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3285 	mutex_exit(&global_zone->zone_mem_lock);
3286 
3287 	/*
3288 	 * Create and join a new task in project '0' of this zone.
3289 	 *
3290 	 * We don't need to call holdlwps() since we know we're the only lwp in
3291 	 * this process.
3292 	 *
3293 	 * task_join() returns with p_lock held.
3294 	 */
3295 	tk = task_create(0, zone);
3296 	mutex_enter(&cpu_lock);
3297 	oldtk = task_join(tk, 0);
3298 
3299 	pj = pp->p_task->tk_proj;
3300 
3301 	mutex_enter(&zone->zone_mem_lock);
3302 	zone->zone_locked_mem += pp->p_locked_mem;
3303 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3304 	mutex_exit(&zone->zone_mem_lock);
3305 
3306 	/*
3307 	 * add lwp counts to zsched's zone, and increment project's task count
3308 	 * due to the task created in the above tasksys_settaskid
3309 	 */
3310 
3311 	mutex_enter(&zone->zone_nlwps_lock);
3312 	pj->kpj_nlwps += pp->p_lwpcnt;
3313 	pj->kpj_ntasks += 1;
3314 	zone->zone_nlwps += pp->p_lwpcnt;
3315 	mutex_exit(&zone->zone_nlwps_lock);
3316 
3317 	mutex_exit(&curproc->p_lock);
3318 	mutex_exit(&cpu_lock);
3319 	task_rele(oldtk);
3320 
3321 	/*
3322 	 * The process was created by a process in the global zone, hence the
3323 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3324 	 */
3325 	cr = zone->zone_kcred;
3326 	crhold(cr);
3327 	mutex_enter(&pp->p_crlock);
3328 	oldcred = pp->p_cred;
3329 	pp->p_cred = cr;
3330 	mutex_exit(&pp->p_crlock);
3331 	crfree(oldcred);
3332 
3333 	/*
3334 	 * Hold credentials again (for thread)
3335 	 */
3336 	crhold(cr);
3337 
3338 	/*
3339 	 * p_lwpcnt can't change since this is a kernel process.
3340 	 */
3341 	crset(pp, cr);
3342 
3343 	/*
3344 	 * Chroot
3345 	 */
3346 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3347 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3348 
3349 	/*
3350 	 * Initialize zone's rctl set.
3351 	 */
3352 	set = rctl_set_create();
3353 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3354 	mutex_enter(&pp->p_lock);
3355 	e.rcep_p.zone = zone;
3356 	e.rcep_t = RCENTITY_ZONE;
3357 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3358 	mutex_exit(&pp->p_lock);
3359 	rctl_prealloc_destroy(gp);
3360 
3361 	/*
3362 	 * Apply the rctls passed in to zone_create().  This is basically a list
3363 	 * assignment: all of the old values are removed and the new ones
3364 	 * inserted.  That is, if an empty list is passed in, all values are
3365 	 * removed.
3366 	 */
3367 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3368 		rctl_dict_entry_t *rde;
3369 		rctl_hndl_t hndl;
3370 		char *name;
3371 		nvlist_t **nvlarray;
3372 		uint_t i, nelem;
3373 		int error;	/* For ASSERT()s */
3374 
3375 		name = nvpair_name(nvp);
3376 		hndl = rctl_hndl_lookup(name);
3377 		ASSERT(hndl != -1);
3378 		rde = rctl_dict_lookup_hndl(hndl);
3379 		ASSERT(rde != NULL);
3380 
3381 		for (; /* ever */; ) {
3382 			rctl_val_t oval;
3383 
3384 			mutex_enter(&pp->p_lock);
3385 			error = rctl_local_get(hndl, NULL, &oval, pp);
3386 			mutex_exit(&pp->p_lock);
3387 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3388 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3389 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3390 				break;
3391 			mutex_enter(&pp->p_lock);
3392 			error = rctl_local_delete(hndl, &oval, pp);
3393 			mutex_exit(&pp->p_lock);
3394 			ASSERT(error == 0);
3395 		}
3396 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3397 		ASSERT(error == 0);
3398 		for (i = 0; i < nelem; i++) {
3399 			rctl_val_t *nvalp;
3400 
3401 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3402 			error = nvlist2rctlval(nvlarray[i], nvalp);
3403 			ASSERT(error == 0);
3404 			/*
3405 			 * rctl_local_insert can fail if the value being
3406 			 * inserted is a duplicate; this is OK.
3407 			 */
3408 			mutex_enter(&pp->p_lock);
3409 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
3410 				kmem_cache_free(rctl_val_cache, nvalp);
3411 			mutex_exit(&pp->p_lock);
3412 		}
3413 	}
3414 	/*
3415 	 * Tell the world that we're done setting up.
3416 	 *
3417 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3418 	 * and atomically set the zone's processor set visibility.  Once
3419 	 * we drop pool_lock() this zone will automatically get updated
3420 	 * to reflect any future changes to the pools configuration.
3421 	 *
3422 	 * Note that after we drop the locks below (zonehash_lock in
3423 	 * particular) other operations such as a zone_getattr call can
3424 	 * now proceed and observe the zone. That is the reason for doing a
3425 	 * state transition to the INITIALIZED state.
3426 	 */
3427 	pool_lock();
3428 	mutex_enter(&cpu_lock);
3429 	mutex_enter(&zonehash_lock);
3430 	zone_uniqid(zone);
3431 	zone_zsd_configure(zone);
3432 	if (pool_state == POOL_ENABLED)
3433 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
3434 	mutex_enter(&zone_status_lock);
3435 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3436 	zone_status_set(zone, ZONE_IS_INITIALIZED);
3437 	mutex_exit(&zone_status_lock);
3438 	mutex_exit(&zonehash_lock);
3439 	mutex_exit(&cpu_lock);
3440 	pool_unlock();
3441 
3442 	/* Now call the create callback for this key */
3443 	zsd_apply_all_keys(zsd_apply_create, zone);
3444 
3445 	/* The callbacks are complete. Mark ZONE_IS_READY */
3446 	mutex_enter(&zone_status_lock);
3447 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3448 	zone_status_set(zone, ZONE_IS_READY);
3449 	mutex_exit(&zone_status_lock);
3450 
3451 	/*
3452 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3453 	 * we launch init, and set the state to running.
3454 	 */
3455 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3456 
3457 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3458 		id_t cid;
3459 
3460 		/*
3461 		 * Ok, this is a little complicated.  We need to grab the
3462 		 * zone's pool's scheduling class ID; note that by now, we
3463 		 * are already bound to a pool if we need to be (zoneadmd
3464 		 * will have done that to us while we're in the READY
3465 		 * state).  *But* the scheduling class for the zone's 'init'
3466 		 * must be explicitly passed to newproc, which doesn't
3467 		 * respect pool bindings.
3468 		 *
3469 		 * We hold the pool_lock across the call to newproc() to
3470 		 * close the obvious race: the pool's scheduling class
3471 		 * could change before we manage to create the LWP with
3472 		 * classid 'cid'.
3473 		 */
3474 		pool_lock();
3475 		if (zone->zone_defaultcid > 0)
3476 			cid = zone->zone_defaultcid;
3477 		else
3478 			cid = pool_get_class(zone->zone_pool);
3479 		if (cid == -1)
3480 			cid = defaultcid;
3481 
3482 		/*
3483 		 * If this fails, zone_boot will ultimately fail.  The
3484 		 * state of the zone will be set to SHUTTING_DOWN-- userland
3485 		 * will have to tear down the zone, and fail, or try again.
3486 		 */
3487 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3488 		    minclsyspri - 1, &ct, 0)) != 0) {
3489 			mutex_enter(&zone_status_lock);
3490 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3491 			mutex_exit(&zone_status_lock);
3492 		}
3493 		pool_unlock();
3494 	}
3495 
3496 	/*
3497 	 * Wait for zone_destroy() to be called.  This is what we spend
3498 	 * most of our life doing.
3499 	 */
3500 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3501 
3502 	if (ct)
3503 		/*
3504 		 * At this point the process contract should be empty.
3505 		 * (Though if it isn't, it's not the end of the world.)
3506 		 */
3507 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3508 
3509 	/*
3510 	 * Allow kcred to be freed when all referring processes
3511 	 * (including this one) go away.  We can't just do this in
3512 	 * zone_free because we need to wait for the zone_cred_ref to
3513 	 * drop to 0 before calling zone_free, and the existence of
3514 	 * zone_kcred will prevent that.  Thus, we call crfree here to
3515 	 * balance the crdup in zone_create.  The crhold calls earlier
3516 	 * in zsched will be dropped when the thread and process exit.
3517 	 */
3518 	crfree(zone->zone_kcred);
3519 	zone->zone_kcred = NULL;
3520 
3521 	exit(CLD_EXITED, 0);
3522 }
3523 
3524 /*
3525  * Helper function to determine if there are any submounts of the
3526  * provided path.  Used to make sure the zone doesn't "inherit" any
3527  * mounts from before it is created.
3528  */
3529 static uint_t
3530 zone_mount_count(const char *rootpath)
3531 {
3532 	vfs_t *vfsp;
3533 	uint_t count = 0;
3534 	size_t rootpathlen = strlen(rootpath);
3535 
3536 	/*
3537 	 * Holding zonehash_lock prevents race conditions with
3538 	 * vfs_list_add()/vfs_list_remove() since we serialize with
3539 	 * zone_find_by_path().
3540 	 */
3541 	ASSERT(MUTEX_HELD(&zonehash_lock));
3542 	/*
3543 	 * The rootpath must end with a '/'
3544 	 */
3545 	ASSERT(rootpath[rootpathlen - 1] == '/');
3546 
3547 	/*
3548 	 * This intentionally does not count the rootpath itself if that
3549 	 * happens to be a mount point.
3550 	 */
3551 	vfs_list_read_lock();
3552 	vfsp = rootvfs;
3553 	do {
3554 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
3555 		    rootpathlen) == 0)
3556 			count++;
3557 		vfsp = vfsp->vfs_next;
3558 	} while (vfsp != rootvfs);
3559 	vfs_list_unlock();
3560 	return (count);
3561 }
3562 
3563 /*
3564  * Helper function to make sure that a zone created on 'rootpath'
3565  * wouldn't end up containing other zones' rootpaths.
3566  */
3567 static boolean_t
3568 zone_is_nested(const char *rootpath)
3569 {
3570 	zone_t *zone;
3571 	size_t rootpathlen = strlen(rootpath);
3572 	size_t len;
3573 
3574 	ASSERT(MUTEX_HELD(&zonehash_lock));
3575 
3576 	/*
3577 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
3578 	 */
3579 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
3580 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
3581 		return (B_TRUE);
3582 
3583 	for (zone = list_head(&zone_active); zone != NULL;
3584 	    zone = list_next(&zone_active, zone)) {
3585 		if (zone == global_zone)
3586 			continue;
3587 		len = strlen(zone->zone_rootpath);
3588 		if (strncmp(rootpath, zone->zone_rootpath,
3589 		    MIN(rootpathlen, len)) == 0)
3590 			return (B_TRUE);
3591 	}
3592 	return (B_FALSE);
3593 }
3594 
3595 static int
3596 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
3597     size_t zone_privssz)
3598 {
3599 	priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
3600 
3601 	if (zone_privssz < sizeof (priv_set_t))
3602 		return (set_errno(ENOMEM));
3603 
3604 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
3605 		kmem_free(privs, sizeof (priv_set_t));
3606 		return (EFAULT);
3607 	}
3608 
3609 	zone->zone_privset = privs;
3610 	return (0);
3611 }
3612 
3613 /*
3614  * We make creative use of nvlists to pass in rctls from userland.  The list is
3615  * a list of the following structures:
3616  *
3617  * (name = rctl_name, value = nvpair_list_array)
3618  *
3619  * Where each element of the nvpair_list_array is of the form:
3620  *
3621  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
3622  * 	(name = "limit", value = uint64_t),
3623  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
3624  */
3625 static int
3626 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
3627 {
3628 	nvpair_t *nvp = NULL;
3629 	nvlist_t *nvl = NULL;
3630 	char *kbuf;
3631 	int error;
3632 	rctl_val_t rv;
3633 
3634 	*nvlp = NULL;
3635 
3636 	if (buflen == 0)
3637 		return (0);
3638 
3639 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3640 		return (ENOMEM);
3641 	if (copyin(ubuf, kbuf, buflen)) {
3642 		error = EFAULT;
3643 		goto out;
3644 	}
3645 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
3646 		/*
3647 		 * nvl may have been allocated/free'd, but the value set to
3648 		 * non-NULL, so we reset it here.
3649 		 */
3650 		nvl = NULL;
3651 		error = EINVAL;
3652 		goto out;
3653 	}
3654 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3655 		rctl_dict_entry_t *rde;
3656 		rctl_hndl_t hndl;
3657 		nvlist_t **nvlarray;
3658 		uint_t i, nelem;
3659 		char *name;
3660 
3661 		error = EINVAL;
3662 		name = nvpair_name(nvp);
3663 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
3664 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
3665 			goto out;
3666 		}
3667 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
3668 			goto out;
3669 		}
3670 		rde = rctl_dict_lookup_hndl(hndl);
3671 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3672 		ASSERT(error == 0);
3673 		for (i = 0; i < nelem; i++) {
3674 			if (error = nvlist2rctlval(nvlarray[i], &rv))
3675 				goto out;
3676 		}
3677 		if (rctl_invalid_value(rde, &rv)) {
3678 			error = EINVAL;
3679 			goto out;
3680 		}
3681 	}
3682 	error = 0;
3683 	*nvlp = nvl;
3684 out:
3685 	kmem_free(kbuf, buflen);
3686 	if (error && nvl != NULL)
3687 		nvlist_free(nvl);
3688 	return (error);
3689 }
3690 
3691 int
3692 zone_create_error(int er_error, int er_ext, int *er_out) {
3693 	if (er_out != NULL) {
3694 		if (copyout(&er_ext, er_out, sizeof (int))) {
3695 			return (set_errno(EFAULT));
3696 		}
3697 	}
3698 	return (set_errno(er_error));
3699 }
3700 
3701 static int
3702 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
3703 {
3704 	ts_label_t *tsl;
3705 	bslabel_t blab;
3706 
3707 	/* Get label from user */
3708 	if (copyin(lab, &blab, sizeof (blab)) != 0)
3709 		return (EFAULT);
3710 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
3711 	if (tsl == NULL)
3712 		return (ENOMEM);
3713 
3714 	zone->zone_slabel = tsl;
3715 	return (0);
3716 }
3717 
3718 /*
3719  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
3720  */
3721 static int
3722 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
3723 {
3724 	char *kbuf;
3725 	char *dataset, *next;
3726 	zone_dataset_t *zd;
3727 	size_t len;
3728 
3729 	if (ubuf == NULL || buflen == 0)
3730 		return (0);
3731 
3732 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3733 		return (ENOMEM);
3734 
3735 	if (copyin(ubuf, kbuf, buflen) != 0) {
3736 		kmem_free(kbuf, buflen);
3737 		return (EFAULT);
3738 	}
3739 
3740 	dataset = next = kbuf;
3741 	for (;;) {
3742 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
3743 
3744 		next = strchr(dataset, ',');
3745 
3746 		if (next == NULL)
3747 			len = strlen(dataset);
3748 		else
3749 			len = next - dataset;
3750 
3751 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
3752 		bcopy(dataset, zd->zd_dataset, len);
3753 		zd->zd_dataset[len] = '\0';
3754 
3755 		list_insert_head(&zone->zone_datasets, zd);
3756 
3757 		if (next == NULL)
3758 			break;
3759 
3760 		dataset = next + 1;
3761 	}
3762 
3763 	kmem_free(kbuf, buflen);
3764 	return (0);
3765 }
3766 
3767 /*
3768  * System call to create/initialize a new zone named 'zone_name', rooted
3769  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
3770  * and initialized with the zone-wide rctls described in 'rctlbuf', and
3771  * with labeling set by 'match', 'doi', and 'label'.
3772  *
3773  * If extended error is non-null, we may use it to return more detailed
3774  * error information.
3775  */
3776 static zoneid_t
3777 zone_create(const char *zone_name, const char *zone_root,
3778     const priv_set_t *zone_privs, size_t zone_privssz,
3779     caddr_t rctlbuf, size_t rctlbufsz,
3780     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
3781     int match, uint32_t doi, const bslabel_t *label,
3782     int flags)
3783 {
3784 	struct zsched_arg zarg;
3785 	nvlist_t *rctls = NULL;
3786 	proc_t *pp = curproc;
3787 	zone_t *zone, *ztmp;
3788 	zoneid_t zoneid;
3789 	int error;
3790 	int error2 = 0;
3791 	char *str;
3792 	cred_t *zkcr;
3793 	boolean_t insert_label_hash;
3794 
3795 	if (secpolicy_zone_config(CRED()) != 0)
3796 		return (set_errno(EPERM));
3797 
3798 	/* can't boot zone from within chroot environment */
3799 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
3800 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
3801 		    extended_error));
3802 
3803 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
3804 	zoneid = zone->zone_id = id_alloc(zoneid_space);
3805 	zone->zone_status = ZONE_IS_UNINITIALIZED;
3806 	zone->zone_pool = pool_default;
3807 	zone->zone_pool_mod = gethrtime();
3808 	zone->zone_psetid = ZONE_PS_INVAL;
3809 	zone->zone_ncpus = 0;
3810 	zone->zone_ncpus_online = 0;
3811 	zone->zone_restart_init = B_TRUE;
3812 	zone->zone_brand = &native_brand;
3813 	zone->zone_initname = NULL;
3814 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
3815 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
3816 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
3817 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
3818 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
3819 	    offsetof(struct zsd_entry, zsd_linkage));
3820 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
3821 	    offsetof(zone_dataset_t, zd_linkage));
3822 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
3823 	    offsetof(zone_dl_t, zdl_linkage));
3824 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
3825 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
3826 
3827 	if (flags & ZCF_NET_EXCL) {
3828 		zone->zone_flags |= ZF_NET_EXCL;
3829 	}
3830 
3831 	if ((error = zone_set_name(zone, zone_name)) != 0) {
3832 		zone_free(zone);
3833 		return (zone_create_error(error, 0, extended_error));
3834 	}
3835 
3836 	if ((error = zone_set_root(zone, zone_root)) != 0) {
3837 		zone_free(zone);
3838 		return (zone_create_error(error, 0, extended_error));
3839 	}
3840 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
3841 		zone_free(zone);
3842 		return (zone_create_error(error, 0, extended_error));
3843 	}
3844 
3845 	/* initialize node name to be the same as zone name */
3846 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
3847 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
3848 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
3849 
3850 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
3851 	zone->zone_domain[0] = '\0';
3852 	zone->zone_hostid = HW_INVALID_HOSTID;
3853 	zone->zone_shares = 1;
3854 	zone->zone_shmmax = 0;
3855 	zone->zone_ipc.ipcq_shmmni = 0;
3856 	zone->zone_ipc.ipcq_semmni = 0;
3857 	zone->zone_ipc.ipcq_msgmni = 0;
3858 	zone->zone_bootargs = NULL;
3859 	zone->zone_initname =
3860 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
3861 	(void) strcpy(zone->zone_initname, zone_default_initname);
3862 	zone->zone_nlwps = 0;
3863 	zone->zone_nlwps_ctl = INT_MAX;
3864 	zone->zone_locked_mem = 0;
3865 	zone->zone_locked_mem_ctl = UINT64_MAX;
3866 	zone->zone_max_swap = 0;
3867 	zone->zone_max_swap_ctl = UINT64_MAX;
3868 	zone0.zone_lockedmem_kstat = NULL;
3869 	zone0.zone_swapresv_kstat = NULL;
3870 
3871 	/*
3872 	 * Zsched initializes the rctls.
3873 	 */
3874 	zone->zone_rctls = NULL;
3875 
3876 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
3877 		zone_free(zone);
3878 		return (zone_create_error(error, 0, extended_error));
3879 	}
3880 
3881 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
3882 		zone_free(zone);
3883 		return (set_errno(error));
3884 	}
3885 
3886 	/*
3887 	 * Read in the trusted system parameters:
3888 	 * match flag and sensitivity label.
3889 	 */
3890 	zone->zone_match = match;
3891 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
3892 		/* Fail if requested to set doi to anything but system's doi */
3893 		if (doi != 0 && doi != default_doi) {
3894 			zone_free(zone);
3895 			return (set_errno(EINVAL));
3896 		}
3897 		/* Always apply system's doi to the zone */
3898 		error = zone_set_label(zone, label, default_doi);
3899 		if (error != 0) {
3900 			zone_free(zone);
3901 			return (set_errno(error));
3902 		}
3903 		insert_label_hash = B_TRUE;
3904 	} else {
3905 		/* all zones get an admin_low label if system is not labeled */
3906 		zone->zone_slabel = l_admin_low;
3907 		label_hold(l_admin_low);
3908 		insert_label_hash = B_FALSE;
3909 	}
3910 
3911 	/*
3912 	 * Stop all lwps since that's what normally happens as part of fork().
3913 	 * This needs to happen before we grab any locks to avoid deadlock
3914 	 * (another lwp in the process could be waiting for the held lock).
3915 	 */
3916 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
3917 		zone_free(zone);
3918 		if (rctls)
3919 			nvlist_free(rctls);
3920 		return (zone_create_error(error, 0, extended_error));
3921 	}
3922 
3923 	if (block_mounts() == 0) {
3924 		mutex_enter(&pp->p_lock);
3925 		if (curthread != pp->p_agenttp)
3926 			continuelwps(pp);
3927 		mutex_exit(&pp->p_lock);
3928 		zone_free(zone);
3929 		if (rctls)
3930 			nvlist_free(rctls);
3931 		return (zone_create_error(error, 0, extended_error));
3932 	}
3933 
3934 	/*
3935 	 * Set up credential for kernel access.  After this, any errors
3936 	 * should go through the dance in errout rather than calling
3937 	 * zone_free directly.
3938 	 */
3939 	zone->zone_kcred = crdup(kcred);
3940 	crsetzone(zone->zone_kcred, zone);
3941 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
3942 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
3943 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
3944 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
3945 
3946 	mutex_enter(&zonehash_lock);
3947 	/*
3948 	 * Make sure zone doesn't already exist.
3949 	 *
3950 	 * If the system and zone are labeled,
3951 	 * make sure no other zone exists that has the same label.
3952 	 */
3953 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
3954 	    (insert_label_hash &&
3955 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
3956 		zone_status_t status;
3957 
3958 		status = zone_status_get(ztmp);
3959 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
3960 			error = EEXIST;
3961 		else
3962 			error = EBUSY;
3963 
3964 		if (insert_label_hash)
3965 			error2 = ZE_LABELINUSE;
3966 
3967 		goto errout;
3968 	}
3969 
3970 	/*
3971 	 * Don't allow zone creations which would cause one zone's rootpath to
3972 	 * be accessible from that of another (non-global) zone.
3973 	 */
3974 	if (zone_is_nested(zone->zone_rootpath)) {
3975 		error = EBUSY;
3976 		goto errout;
3977 	}
3978 
3979 	ASSERT(zonecount != 0);		/* check for leaks */
3980 	if (zonecount + 1 > maxzones) {
3981 		error = ENOMEM;
3982 		goto errout;
3983 	}
3984 
3985 	if (zone_mount_count(zone->zone_rootpath) != 0) {
3986 		error = EBUSY;
3987 		error2 = ZE_AREMOUNTS;
3988 		goto errout;
3989 	}
3990 
3991 	/*
3992 	 * Zone is still incomplete, but we need to drop all locks while
3993 	 * zsched() initializes this zone's kernel process.  We
3994 	 * optimistically add the zone to the hashtable and associated
3995 	 * lists so a parallel zone_create() doesn't try to create the
3996 	 * same zone.
3997 	 */
3998 	zonecount++;
3999 	(void) mod_hash_insert(zonehashbyid,
4000 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4001 	    (mod_hash_val_t)(uintptr_t)zone);
4002 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4003 	(void) strcpy(str, zone->zone_name);
4004 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4005 	    (mod_hash_val_t)(uintptr_t)zone);
4006 	if (insert_label_hash) {
4007 		(void) mod_hash_insert(zonehashbylabel,
4008 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4009 		zone->zone_flags |= ZF_HASHED_LABEL;
4010 	}
4011 
4012 	/*
4013 	 * Insert into active list.  At this point there are no 'hold's
4014 	 * on the zone, but everyone else knows not to use it, so we can
4015 	 * continue to use it.  zsched() will do a zone_hold() if the
4016 	 * newproc() is successful.
4017 	 */
4018 	list_insert_tail(&zone_active, zone);
4019 	mutex_exit(&zonehash_lock);
4020 
4021 	zarg.zone = zone;
4022 	zarg.nvlist = rctls;
4023 	/*
4024 	 * The process, task, and project rctls are probably wrong;
4025 	 * we need an interface to get the default values of all rctls,
4026 	 * and initialize zsched appropriately.  I'm not sure that that
4027 	 * makes much of a difference, though.
4028 	 */
4029 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4030 	if (error != 0) {
4031 		/*
4032 		 * We need to undo all globally visible state.
4033 		 */
4034 		mutex_enter(&zonehash_lock);
4035 		list_remove(&zone_active, zone);
4036 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4037 			ASSERT(zone->zone_slabel != NULL);
4038 			(void) mod_hash_destroy(zonehashbylabel,
4039 			    (mod_hash_key_t)zone->zone_slabel);
4040 		}
4041 		(void) mod_hash_destroy(zonehashbyname,
4042 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4043 		(void) mod_hash_destroy(zonehashbyid,
4044 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4045 		ASSERT(zonecount > 1);
4046 		zonecount--;
4047 		goto errout;
4048 	}
4049 
4050 	/*
4051 	 * Zone creation can't fail from now on.
4052 	 */
4053 
4054 	/*
4055 	 * Create zone kstats
4056 	 */
4057 	zone_kstat_create(zone);
4058 
4059 	/*
4060 	 * Let the other lwps continue.
4061 	 */
4062 	mutex_enter(&pp->p_lock);
4063 	if (curthread != pp->p_agenttp)
4064 		continuelwps(pp);
4065 	mutex_exit(&pp->p_lock);
4066 
4067 	/*
4068 	 * Wait for zsched to finish initializing the zone.
4069 	 */
4070 	zone_status_wait(zone, ZONE_IS_READY);
4071 	/*
4072 	 * The zone is fully visible, so we can let mounts progress.
4073 	 */
4074 	resume_mounts();
4075 	if (rctls)
4076 		nvlist_free(rctls);
4077 
4078 	return (zoneid);
4079 
4080 errout:
4081 	mutex_exit(&zonehash_lock);
4082 	/*
4083 	 * Let the other lwps continue.
4084 	 */
4085 	mutex_enter(&pp->p_lock);
4086 	if (curthread != pp->p_agenttp)
4087 		continuelwps(pp);
4088 	mutex_exit(&pp->p_lock);
4089 
4090 	resume_mounts();
4091 	if (rctls)
4092 		nvlist_free(rctls);
4093 	/*
4094 	 * There is currently one reference to the zone, a cred_ref from
4095 	 * zone_kcred.  To free the zone, we call crfree, which will call
4096 	 * zone_cred_rele, which will call zone_free.
4097 	 */
4098 	ASSERT(zone->zone_cred_ref == 1);	/* for zone_kcred */
4099 	ASSERT(zone->zone_kcred->cr_ref == 1);
4100 	ASSERT(zone->zone_ref == 0);
4101 	zkcr = zone->zone_kcred;
4102 	zone->zone_kcred = NULL;
4103 	crfree(zkcr);				/* triggers call to zone_free */
4104 	return (zone_create_error(error, error2, extended_error));
4105 }
4106 
4107 /*
4108  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4109  * the heavy lifting.  initname is the path to the program to launch
4110  * at the "top" of the zone; if this is NULL, we use the system default,
4111  * which is stored at zone_default_initname.
4112  */
4113 static int
4114 zone_boot(zoneid_t zoneid)
4115 {
4116 	int err;
4117 	zone_t *zone;
4118 
4119 	if (secpolicy_zone_config(CRED()) != 0)
4120 		return (set_errno(EPERM));
4121 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4122 		return (set_errno(EINVAL));
4123 
4124 	mutex_enter(&zonehash_lock);
4125 	/*
4126 	 * Look for zone under hash lock to prevent races with calls to
4127 	 * zone_shutdown, zone_destroy, etc.
4128 	 */
4129 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4130 		mutex_exit(&zonehash_lock);
4131 		return (set_errno(EINVAL));
4132 	}
4133 
4134 	mutex_enter(&zone_status_lock);
4135 	if (zone_status_get(zone) != ZONE_IS_READY) {
4136 		mutex_exit(&zone_status_lock);
4137 		mutex_exit(&zonehash_lock);
4138 		return (set_errno(EINVAL));
4139 	}
4140 	zone_status_set(zone, ZONE_IS_BOOTING);
4141 	mutex_exit(&zone_status_lock);
4142 
4143 	zone_hold(zone);	/* so we can use the zone_t later */
4144 	mutex_exit(&zonehash_lock);
4145 
4146 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4147 		zone_rele(zone);
4148 		return (set_errno(EINTR));
4149 	}
4150 
4151 	/*
4152 	 * Boot (starting init) might have failed, in which case the zone
4153 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4154 	 * be placed in zone->zone_boot_err, and so we return that.
4155 	 */
4156 	err = zone->zone_boot_err;
4157 	zone_rele(zone);
4158 	return (err ? set_errno(err) : 0);
4159 }
4160 
4161 /*
4162  * Kills all user processes in the zone, waiting for them all to exit
4163  * before returning.
4164  */
4165 static int
4166 zone_empty(zone_t *zone)
4167 {
4168 	int waitstatus;
4169 
4170 	/*
4171 	 * We need to drop zonehash_lock before killing all
4172 	 * processes, otherwise we'll deadlock with zone_find_*
4173 	 * which can be called from the exit path.
4174 	 */
4175 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4176 	while ((waitstatus = zone_status_timedwait_sig(zone,
4177 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4178 		killall(zone->zone_id);
4179 	}
4180 	/*
4181 	 * return EINTR if we were signaled
4182 	 */
4183 	if (waitstatus == 0)
4184 		return (EINTR);
4185 	return (0);
4186 }
4187 
4188 /*
4189  * This function implements the policy for zone visibility.
4190  *
4191  * In standard Solaris, a non-global zone can only see itself.
4192  *
4193  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4194  * it dominates. For this test, the label of the global zone is treated as
4195  * admin_high so it is special-cased instead of being checked for dominance.
4196  *
4197  * Returns true if zone attributes are viewable, false otherwise.
4198  */
4199 static boolean_t
4200 zone_list_access(zone_t *zone)
4201 {
4202 
4203 	if (curproc->p_zone == global_zone ||
4204 	    curproc->p_zone == zone) {
4205 		return (B_TRUE);
4206 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4207 		bslabel_t *curproc_label;
4208 		bslabel_t *zone_label;
4209 
4210 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4211 		zone_label = label2bslabel(zone->zone_slabel);
4212 
4213 		if (zone->zone_id != GLOBAL_ZONEID &&
4214 		    bldominates(curproc_label, zone_label)) {
4215 			return (B_TRUE);
4216 		} else {
4217 			return (B_FALSE);
4218 		}
4219 	} else {
4220 		return (B_FALSE);
4221 	}
4222 }
4223 
4224 /*
4225  * Systemcall to start the zone's halt sequence.  By the time this
4226  * function successfully returns, all user processes and kernel threads
4227  * executing in it will have exited, ZSD shutdown callbacks executed,
4228  * and the zone status set to ZONE_IS_DOWN.
4229  *
4230  * It is possible that the call will interrupt itself if the caller is the
4231  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4232  */
4233 static int
4234 zone_shutdown(zoneid_t zoneid)
4235 {
4236 	int error;
4237 	zone_t *zone;
4238 	zone_status_t status;
4239 
4240 	if (secpolicy_zone_config(CRED()) != 0)
4241 		return (set_errno(EPERM));
4242 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4243 		return (set_errno(EINVAL));
4244 
4245 	/*
4246 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4247 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4248 	 *
4249 	 * e.g. NFS can fail the mount if it determines that the zone
4250 	 * has already begun the shutdown sequence.
4251 	 */
4252 	if (block_mounts() == 0)
4253 		return (set_errno(EINTR));
4254 	mutex_enter(&zonehash_lock);
4255 	/*
4256 	 * Look for zone under hash lock to prevent races with other
4257 	 * calls to zone_shutdown and zone_destroy.
4258 	 */
4259 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4260 		mutex_exit(&zonehash_lock);
4261 		resume_mounts();
4262 		return (set_errno(EINVAL));
4263 	}
4264 	mutex_enter(&zone_status_lock);
4265 	status = zone_status_get(zone);
4266 	/*
4267 	 * Fail if the zone isn't fully initialized yet.
4268 	 */
4269 	if (status < ZONE_IS_READY) {
4270 		mutex_exit(&zone_status_lock);
4271 		mutex_exit(&zonehash_lock);
4272 		resume_mounts();
4273 		return (set_errno(EINVAL));
4274 	}
4275 	/*
4276 	 * If conditions required for zone_shutdown() to return have been met,
4277 	 * return success.
4278 	 */
4279 	if (status >= ZONE_IS_DOWN) {
4280 		mutex_exit(&zone_status_lock);
4281 		mutex_exit(&zonehash_lock);
4282 		resume_mounts();
4283 		return (0);
4284 	}
4285 	/*
4286 	 * If zone_shutdown() hasn't been called before, go through the motions.
4287 	 * If it has, there's nothing to do but wait for the kernel threads to
4288 	 * drain.
4289 	 */
4290 	if (status < ZONE_IS_EMPTY) {
4291 		uint_t ntasks;
4292 
4293 		mutex_enter(&zone->zone_lock);
4294 		if ((ntasks = zone->zone_ntasks) != 1) {
4295 			/*
4296 			 * There's still stuff running.
4297 			 */
4298 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4299 		}
4300 		mutex_exit(&zone->zone_lock);
4301 		if (ntasks == 1) {
4302 			/*
4303 			 * The only way to create another task is through
4304 			 * zone_enter(), which will block until we drop
4305 			 * zonehash_lock.  The zone is empty.
4306 			 */
4307 			if (zone->zone_kthreads == NULL) {
4308 				/*
4309 				 * Skip ahead to ZONE_IS_DOWN
4310 				 */
4311 				zone_status_set(zone, ZONE_IS_DOWN);
4312 			} else {
4313 				zone_status_set(zone, ZONE_IS_EMPTY);
4314 			}
4315 		}
4316 	}
4317 	zone_hold(zone);	/* so we can use the zone_t later */
4318 	mutex_exit(&zone_status_lock);
4319 	mutex_exit(&zonehash_lock);
4320 	resume_mounts();
4321 
4322 	if (error = zone_empty(zone)) {
4323 		zone_rele(zone);
4324 		return (set_errno(error));
4325 	}
4326 	/*
4327 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
4328 	 * longer be notified of changes to the pools configuration, so
4329 	 * in order to not end up with a stale pool pointer, we point
4330 	 * ourselves at the default pool and remove all resource
4331 	 * visibility.  This is especially important as the zone_t may
4332 	 * languish on the deathrow for a very long time waiting for
4333 	 * cred's to drain out.
4334 	 *
4335 	 * This rebinding of the zone can happen multiple times
4336 	 * (presumably due to interrupted or parallel systemcalls)
4337 	 * without any adverse effects.
4338 	 */
4339 	if (pool_lock_intr() != 0) {
4340 		zone_rele(zone);
4341 		return (set_errno(EINTR));
4342 	}
4343 	if (pool_state == POOL_ENABLED) {
4344 		mutex_enter(&cpu_lock);
4345 		zone_pool_set(zone, pool_default);
4346 		/*
4347 		 * The zone no longer needs to be able to see any cpus.
4348 		 */
4349 		zone_pset_set(zone, ZONE_PS_INVAL);
4350 		mutex_exit(&cpu_lock);
4351 	}
4352 	pool_unlock();
4353 
4354 	/*
4355 	 * ZSD shutdown callbacks can be executed multiple times, hence
4356 	 * it is safe to not be holding any locks across this call.
4357 	 */
4358 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4359 
4360 	mutex_enter(&zone_status_lock);
4361 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4362 		zone_status_set(zone, ZONE_IS_DOWN);
4363 	mutex_exit(&zone_status_lock);
4364 
4365 	/*
4366 	 * Wait for kernel threads to drain.
4367 	 */
4368 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4369 		zone_rele(zone);
4370 		return (set_errno(EINTR));
4371 	}
4372 
4373 	/*
4374 	 * Zone can be become down/destroyable even if the above wait
4375 	 * returns EINTR, so any code added here may never execute.
4376 	 * (i.e. don't add code here)
4377 	 */
4378 
4379 	zone_rele(zone);
4380 	return (0);
4381 }
4382 
4383 /*
4384  * Systemcall entry point to finalize the zone halt process.  The caller
4385  * must have already successfully called zone_shutdown().
4386  *
4387  * Upon successful completion, the zone will have been fully destroyed:
4388  * zsched will have exited, destructor callbacks executed, and the zone
4389  * removed from the list of active zones.
4390  */
4391 static int
4392 zone_destroy(zoneid_t zoneid)
4393 {
4394 	uint64_t uniqid;
4395 	zone_t *zone;
4396 	zone_status_t status;
4397 
4398 	if (secpolicy_zone_config(CRED()) != 0)
4399 		return (set_errno(EPERM));
4400 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4401 		return (set_errno(EINVAL));
4402 
4403 	mutex_enter(&zonehash_lock);
4404 	/*
4405 	 * Look for zone under hash lock to prevent races with other
4406 	 * calls to zone_destroy.
4407 	 */
4408 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4409 		mutex_exit(&zonehash_lock);
4410 		return (set_errno(EINVAL));
4411 	}
4412 
4413 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4414 		mutex_exit(&zonehash_lock);
4415 		return (set_errno(EBUSY));
4416 	}
4417 	mutex_enter(&zone_status_lock);
4418 	status = zone_status_get(zone);
4419 	if (status < ZONE_IS_DOWN) {
4420 		mutex_exit(&zone_status_lock);
4421 		mutex_exit(&zonehash_lock);
4422 		return (set_errno(EBUSY));
4423 	} else if (status == ZONE_IS_DOWN) {
4424 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
4425 	}
4426 	mutex_exit(&zone_status_lock);
4427 	zone_hold(zone);
4428 	mutex_exit(&zonehash_lock);
4429 
4430 	/*
4431 	 * wait for zsched to exit
4432 	 */
4433 	zone_status_wait(zone, ZONE_IS_DEAD);
4434 	zone_zsd_callbacks(zone, ZSD_DESTROY);
4435 	zone->zone_netstack = NULL;
4436 	uniqid = zone->zone_uniqid;
4437 	zone_rele(zone);
4438 	zone = NULL;	/* potentially free'd */
4439 
4440 	mutex_enter(&zonehash_lock);
4441 	for (; /* ever */; ) {
4442 		boolean_t unref;
4443 
4444 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
4445 		    zone->zone_uniqid != uniqid) {
4446 			/*
4447 			 * The zone has gone away.  Necessary conditions
4448 			 * are met, so we return success.
4449 			 */
4450 			mutex_exit(&zonehash_lock);
4451 			return (0);
4452 		}
4453 		mutex_enter(&zone->zone_lock);
4454 		unref = ZONE_IS_UNREF(zone);
4455 		mutex_exit(&zone->zone_lock);
4456 		if (unref) {
4457 			/*
4458 			 * There is only one reference to the zone -- that
4459 			 * added when the zone was added to the hashtables --
4460 			 * and things will remain this way until we drop
4461 			 * zonehash_lock... we can go ahead and cleanup the
4462 			 * zone.
4463 			 */
4464 			break;
4465 		}
4466 
4467 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
4468 			/* Signaled */
4469 			mutex_exit(&zonehash_lock);
4470 			return (set_errno(EINTR));
4471 		}
4472 
4473 	}
4474 
4475 	/*
4476 	 * Remove CPU cap for this zone now since we're not going to
4477 	 * fail below this point.
4478 	 */
4479 	cpucaps_zone_remove(zone);
4480 
4481 	/* Get rid of the zone's kstats */
4482 	zone_kstat_delete(zone);
4483 
4484 	/* remove the pfexecd doors */
4485 	if (zone->zone_pfexecd != NULL) {
4486 		klpd_freelist(&zone->zone_pfexecd);
4487 		zone->zone_pfexecd = NULL;
4488 	}
4489 
4490 	/* free brand specific data */
4491 	if (ZONE_IS_BRANDED(zone))
4492 		ZBROP(zone)->b_free_brand_data(zone);
4493 
4494 	/* Say goodbye to brand framework. */
4495 	brand_unregister_zone(zone->zone_brand);
4496 
4497 	/*
4498 	 * It is now safe to let the zone be recreated; remove it from the
4499 	 * lists.  The memory will not be freed until the last cred
4500 	 * reference goes away.
4501 	 */
4502 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
4503 	zonecount--;
4504 	/* remove from active list and hash tables */
4505 	list_remove(&zone_active, zone);
4506 	(void) mod_hash_destroy(zonehashbyname,
4507 	    (mod_hash_key_t)zone->zone_name);
4508 	(void) mod_hash_destroy(zonehashbyid,
4509 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4510 	if (zone->zone_flags & ZF_HASHED_LABEL)
4511 		(void) mod_hash_destroy(zonehashbylabel,
4512 		    (mod_hash_key_t)zone->zone_slabel);
4513 	mutex_exit(&zonehash_lock);
4514 
4515 	/*
4516 	 * Release the root vnode; we're not using it anymore.  Nor should any
4517 	 * other thread that might access it exist.
4518 	 */
4519 	if (zone->zone_rootvp != NULL) {
4520 		VN_RELE(zone->zone_rootvp);
4521 		zone->zone_rootvp = NULL;
4522 	}
4523 
4524 	/* add to deathrow list */
4525 	mutex_enter(&zone_deathrow_lock);
4526 	list_insert_tail(&zone_deathrow, zone);
4527 	mutex_exit(&zone_deathrow_lock);
4528 
4529 	/*
4530 	 * Drop last reference (which was added by zsched()), this will
4531 	 * free the zone unless there are outstanding cred references.
4532 	 */
4533 	zone_rele(zone);
4534 	return (0);
4535 }
4536 
4537 /*
4538  * Systemcall entry point for zone_getattr(2).
4539  */
4540 static ssize_t
4541 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
4542 {
4543 	size_t size;
4544 	int error = 0, err;
4545 	zone_t *zone;
4546 	char *zonepath;
4547 	char *outstr;
4548 	zone_status_t zone_status;
4549 	pid_t initpid;
4550 	boolean_t global = (curzone == global_zone);
4551 	boolean_t inzone = (curzone->zone_id == zoneid);
4552 	ushort_t flags;
4553 
4554 	mutex_enter(&zonehash_lock);
4555 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4556 		mutex_exit(&zonehash_lock);
4557 		return (set_errno(EINVAL));
4558 	}
4559 	zone_status = zone_status_get(zone);
4560 	if (zone_status < ZONE_IS_INITIALIZED) {
4561 		mutex_exit(&zonehash_lock);
4562 		return (set_errno(EINVAL));
4563 	}
4564 	zone_hold(zone);
4565 	mutex_exit(&zonehash_lock);
4566 
4567 	/*
4568 	 * If not in the global zone, don't show information about other zones,
4569 	 * unless the system is labeled and the local zone's label dominates
4570 	 * the other zone.
4571 	 */
4572 	if (!zone_list_access(zone)) {
4573 		zone_rele(zone);
4574 		return (set_errno(EINVAL));
4575 	}
4576 
4577 	switch (attr) {
4578 	case ZONE_ATTR_ROOT:
4579 		if (global) {
4580 			/*
4581 			 * Copy the path to trim the trailing "/" (except for
4582 			 * the global zone).
4583 			 */
4584 			if (zone != global_zone)
4585 				size = zone->zone_rootpathlen - 1;
4586 			else
4587 				size = zone->zone_rootpathlen;
4588 			zonepath = kmem_alloc(size, KM_SLEEP);
4589 			bcopy(zone->zone_rootpath, zonepath, size);
4590 			zonepath[size - 1] = '\0';
4591 		} else {
4592 			if (inzone || !is_system_labeled()) {
4593 				/*
4594 				 * Caller is not in the global zone.
4595 				 * if the query is on the current zone
4596 				 * or the system is not labeled,
4597 				 * just return faked-up path for current zone.
4598 				 */
4599 				zonepath = "/";
4600 				size = 2;
4601 			} else {
4602 				/*
4603 				 * Return related path for current zone.
4604 				 */
4605 				int prefix_len = strlen(zone_prefix);
4606 				int zname_len = strlen(zone->zone_name);
4607 
4608 				size = prefix_len + zname_len + 1;
4609 				zonepath = kmem_alloc(size, KM_SLEEP);
4610 				bcopy(zone_prefix, zonepath, prefix_len);
4611 				bcopy(zone->zone_name, zonepath +
4612 				    prefix_len, zname_len);
4613 				zonepath[size - 1] = '\0';
4614 			}
4615 		}
4616 		if (bufsize > size)
4617 			bufsize = size;
4618 		if (buf != NULL) {
4619 			err = copyoutstr(zonepath, buf, bufsize, NULL);
4620 			if (err != 0 && err != ENAMETOOLONG)
4621 				error = EFAULT;
4622 		}
4623 		if (global || (is_system_labeled() && !inzone))
4624 			kmem_free(zonepath, size);
4625 		break;
4626 
4627 	case ZONE_ATTR_NAME:
4628 		size = strlen(zone->zone_name) + 1;
4629 		if (bufsize > size)
4630 			bufsize = size;
4631 		if (buf != NULL) {
4632 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
4633 			if (err != 0 && err != ENAMETOOLONG)
4634 				error = EFAULT;
4635 		}
4636 		break;
4637 
4638 	case ZONE_ATTR_STATUS:
4639 		/*
4640 		 * Since we're not holding zonehash_lock, the zone status
4641 		 * may be anything; leave it up to userland to sort it out.
4642 		 */
4643 		size = sizeof (zone_status);
4644 		if (bufsize > size)
4645 			bufsize = size;
4646 		zone_status = zone_status_get(zone);
4647 		if (buf != NULL &&
4648 		    copyout(&zone_status, buf, bufsize) != 0)
4649 			error = EFAULT;
4650 		break;
4651 	case ZONE_ATTR_FLAGS:
4652 		size = sizeof (zone->zone_flags);
4653 		if (bufsize > size)
4654 			bufsize = size;
4655 		flags = zone->zone_flags;
4656 		if (buf != NULL &&
4657 		    copyout(&flags, buf, bufsize) != 0)
4658 			error = EFAULT;
4659 		break;
4660 	case ZONE_ATTR_PRIVSET:
4661 		size = sizeof (priv_set_t);
4662 		if (bufsize > size)
4663 			bufsize = size;
4664 		if (buf != NULL &&
4665 		    copyout(zone->zone_privset, buf, bufsize) != 0)
4666 			error = EFAULT;
4667 		break;
4668 	case ZONE_ATTR_UNIQID:
4669 		size = sizeof (zone->zone_uniqid);
4670 		if (bufsize > size)
4671 			bufsize = size;
4672 		if (buf != NULL &&
4673 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
4674 			error = EFAULT;
4675 		break;
4676 	case ZONE_ATTR_POOLID:
4677 		{
4678 			pool_t *pool;
4679 			poolid_t poolid;
4680 
4681 			if (pool_lock_intr() != 0) {
4682 				error = EINTR;
4683 				break;
4684 			}
4685 			pool = zone_pool_get(zone);
4686 			poolid = pool->pool_id;
4687 			pool_unlock();
4688 			size = sizeof (poolid);
4689 			if (bufsize > size)
4690 				bufsize = size;
4691 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
4692 				error = EFAULT;
4693 		}
4694 		break;
4695 	case ZONE_ATTR_SLBL:
4696 		size = sizeof (bslabel_t);
4697 		if (bufsize > size)
4698 			bufsize = size;
4699 		if (zone->zone_slabel == NULL)
4700 			error = EINVAL;
4701 		else if (buf != NULL &&
4702 		    copyout(label2bslabel(zone->zone_slabel), buf,
4703 		    bufsize) != 0)
4704 			error = EFAULT;
4705 		break;
4706 	case ZONE_ATTR_INITPID:
4707 		size = sizeof (initpid);
4708 		if (bufsize > size)
4709 			bufsize = size;
4710 		initpid = zone->zone_proc_initpid;
4711 		if (initpid == -1) {
4712 			error = ESRCH;
4713 			break;
4714 		}
4715 		if (buf != NULL &&
4716 		    copyout(&initpid, buf, bufsize) != 0)
4717 			error = EFAULT;
4718 		break;
4719 	case ZONE_ATTR_BRAND:
4720 		size = strlen(zone->zone_brand->b_name) + 1;
4721 
4722 		if (bufsize > size)
4723 			bufsize = size;
4724 		if (buf != NULL) {
4725 			err = copyoutstr(zone->zone_brand->b_name, buf,
4726 			    bufsize, NULL);
4727 			if (err != 0 && err != ENAMETOOLONG)
4728 				error = EFAULT;
4729 		}
4730 		break;
4731 	case ZONE_ATTR_INITNAME:
4732 		size = strlen(zone->zone_initname) + 1;
4733 		if (bufsize > size)
4734 			bufsize = size;
4735 		if (buf != NULL) {
4736 			err = copyoutstr(zone->zone_initname, buf, bufsize,
4737 			    NULL);
4738 			if (err != 0 && err != ENAMETOOLONG)
4739 				error = EFAULT;
4740 		}
4741 		break;
4742 	case ZONE_ATTR_BOOTARGS:
4743 		if (zone->zone_bootargs == NULL)
4744 			outstr = "";
4745 		else
4746 			outstr = zone->zone_bootargs;
4747 		size = strlen(outstr) + 1;
4748 		if (bufsize > size)
4749 			bufsize = size;
4750 		if (buf != NULL) {
4751 			err = copyoutstr(outstr, buf, bufsize, NULL);
4752 			if (err != 0 && err != ENAMETOOLONG)
4753 				error = EFAULT;
4754 		}
4755 		break;
4756 	case ZONE_ATTR_PHYS_MCAP:
4757 		size = sizeof (zone->zone_phys_mcap);
4758 		if (bufsize > size)
4759 			bufsize = size;
4760 		if (buf != NULL &&
4761 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
4762 			error = EFAULT;
4763 		break;
4764 	case ZONE_ATTR_SCHED_CLASS:
4765 		mutex_enter(&class_lock);
4766 
4767 		if (zone->zone_defaultcid >= loaded_classes)
4768 			outstr = "";
4769 		else
4770 			outstr = sclass[zone->zone_defaultcid].cl_name;
4771 		size = strlen(outstr) + 1;
4772 		if (bufsize > size)
4773 			bufsize = size;
4774 		if (buf != NULL) {
4775 			err = copyoutstr(outstr, buf, bufsize, NULL);
4776 			if (err != 0 && err != ENAMETOOLONG)
4777 				error = EFAULT;
4778 		}
4779 
4780 		mutex_exit(&class_lock);
4781 		break;
4782 	case ZONE_ATTR_HOSTID:
4783 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
4784 		    bufsize == sizeof (zone->zone_hostid)) {
4785 			size = sizeof (zone->zone_hostid);
4786 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
4787 			    bufsize) != 0)
4788 				error = EFAULT;
4789 		} else {
4790 			error = EINVAL;
4791 		}
4792 		break;
4793 	default:
4794 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
4795 			size = bufsize;
4796 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
4797 		} else {
4798 			error = EINVAL;
4799 		}
4800 	}
4801 	zone_rele(zone);
4802 
4803 	if (error)
4804 		return (set_errno(error));
4805 	return ((ssize_t)size);
4806 }
4807 
4808 /*
4809  * Systemcall entry point for zone_setattr(2).
4810  */
4811 /*ARGSUSED*/
4812 static int
4813 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
4814 {
4815 	zone_t *zone;
4816 	zone_status_t zone_status;
4817 	int err;
4818 
4819 	if (secpolicy_zone_config(CRED()) != 0)
4820 		return (set_errno(EPERM));
4821 
4822 	/*
4823 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
4824 	 * global zone.
4825 	 */
4826 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
4827 		return (set_errno(EINVAL));
4828 	}
4829 
4830 	mutex_enter(&zonehash_lock);
4831 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4832 		mutex_exit(&zonehash_lock);
4833 		return (set_errno(EINVAL));
4834 	}
4835 	zone_hold(zone);
4836 	mutex_exit(&zonehash_lock);
4837 
4838 	/*
4839 	 * At present most attributes can only be set on non-running,
4840 	 * non-global zones.
4841 	 */
4842 	zone_status = zone_status_get(zone);
4843 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY)
4844 		goto done;
4845 
4846 	switch (attr) {
4847 	case ZONE_ATTR_INITNAME:
4848 		err = zone_set_initname(zone, (const char *)buf);
4849 		break;
4850 	case ZONE_ATTR_BOOTARGS:
4851 		err = zone_set_bootargs(zone, (const char *)buf);
4852 		break;
4853 	case ZONE_ATTR_BRAND:
4854 		err = zone_set_brand(zone, (const char *)buf);
4855 		break;
4856 	case ZONE_ATTR_PHYS_MCAP:
4857 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
4858 		break;
4859 	case ZONE_ATTR_SCHED_CLASS:
4860 		err = zone_set_sched_class(zone, (const char *)buf);
4861 		break;
4862 	case ZONE_ATTR_HOSTID:
4863 		if (bufsize == sizeof (zone->zone_hostid)) {
4864 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
4865 				err = 0;
4866 			else
4867 				err = EFAULT;
4868 		} else {
4869 			err = EINVAL;
4870 		}
4871 		break;
4872 	default:
4873 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
4874 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
4875 		else
4876 			err = EINVAL;
4877 	}
4878 
4879 done:
4880 	zone_rele(zone);
4881 	return (err != 0 ? set_errno(err) : 0);
4882 }
4883 
4884 /*
4885  * Return zero if the process has at least one vnode mapped in to its
4886  * address space which shouldn't be allowed to change zones.
4887  *
4888  * Also return zero if the process has any shared mappings which reserve
4889  * swap.  This is because the counting for zone.max-swap does not allow swap
4890  * reservation to be shared between zones.  zone swap reservation is counted
4891  * on zone->zone_max_swap.
4892  */
4893 static int
4894 as_can_change_zones(void)
4895 {
4896 	proc_t *pp = curproc;
4897 	struct seg *seg;
4898 	struct as *as = pp->p_as;
4899 	vnode_t *vp;
4900 	int allow = 1;
4901 
4902 	ASSERT(pp->p_as != &kas);
4903 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
4904 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
4905 
4906 		/*
4907 		 * Cannot enter zone with shared anon memory which
4908 		 * reserves swap.  See comment above.
4909 		 */
4910 		if (seg_can_change_zones(seg) == B_FALSE) {
4911 			allow = 0;
4912 			break;
4913 		}
4914 		/*
4915 		 * if we can't get a backing vnode for this segment then skip
4916 		 * it.
4917 		 */
4918 		vp = NULL;
4919 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
4920 			continue;
4921 		if (!vn_can_change_zones(vp)) { /* bail on first match */
4922 			allow = 0;
4923 			break;
4924 		}
4925 	}
4926 	AS_LOCK_EXIT(as, &as->a_lock);
4927 	return (allow);
4928 }
4929 
4930 /*
4931  * Count swap reserved by curproc's address space
4932  */
4933 static size_t
4934 as_swresv(void)
4935 {
4936 	proc_t *pp = curproc;
4937 	struct seg *seg;
4938 	struct as *as = pp->p_as;
4939 	size_t swap = 0;
4940 
4941 	ASSERT(pp->p_as != &kas);
4942 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
4943 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
4944 		swap += seg_swresv(seg);
4945 
4946 	return (swap);
4947 }
4948 
4949 /*
4950  * Systemcall entry point for zone_enter().
4951  *
4952  * The current process is injected into said zone.  In the process
4953  * it will change its project membership, privileges, rootdir/cwd,
4954  * zone-wide rctls, and pool association to match those of the zone.
4955  *
4956  * The first zone_enter() called while the zone is in the ZONE_IS_READY
4957  * state will transition it to ZONE_IS_RUNNING.  Processes may only
4958  * enter a zone that is "ready" or "running".
4959  */
4960 static int
4961 zone_enter(zoneid_t zoneid)
4962 {
4963 	zone_t *zone;
4964 	vnode_t *vp;
4965 	proc_t *pp = curproc;
4966 	contract_t *ct;
4967 	cont_process_t *ctp;
4968 	task_t *tk, *oldtk;
4969 	kproject_t *zone_proj0;
4970 	cred_t *cr, *newcr;
4971 	pool_t *oldpool, *newpool;
4972 	sess_t *sp;
4973 	uid_t uid;
4974 	zone_status_t status;
4975 	int err = 0;
4976 	rctl_entity_p_t e;
4977 	size_t swap;
4978 	kthread_id_t t;
4979 
4980 	if (secpolicy_zone_config(CRED()) != 0)
4981 		return (set_errno(EPERM));
4982 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4983 		return (set_errno(EINVAL));
4984 
4985 	/*
4986 	 * Stop all lwps so we don't need to hold a lock to look at
4987 	 * curproc->p_zone.  This needs to happen before we grab any
4988 	 * locks to avoid deadlock (another lwp in the process could
4989 	 * be waiting for the held lock).
4990 	 */
4991 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
4992 		return (set_errno(EINTR));
4993 
4994 	/*
4995 	 * Make sure we're not changing zones with files open or mapped in
4996 	 * to our address space which shouldn't be changing zones.
4997 	 */
4998 	if (!files_can_change_zones()) {
4999 		err = EBADF;
5000 		goto out;
5001 	}
5002 	if (!as_can_change_zones()) {
5003 		err = EFAULT;
5004 		goto out;
5005 	}
5006 
5007 	mutex_enter(&zonehash_lock);
5008 	if (pp->p_zone != global_zone) {
5009 		mutex_exit(&zonehash_lock);
5010 		err = EINVAL;
5011 		goto out;
5012 	}
5013 
5014 	zone = zone_find_all_by_id(zoneid);
5015 	if (zone == NULL) {
5016 		mutex_exit(&zonehash_lock);
5017 		err = EINVAL;
5018 		goto out;
5019 	}
5020 
5021 	/*
5022 	 * To prevent processes in a zone from holding contracts on
5023 	 * extrazonal resources, and to avoid process contract
5024 	 * memberships which span zones, contract holders and processes
5025 	 * which aren't the sole members of their encapsulating process
5026 	 * contracts are not allowed to zone_enter.
5027 	 */
5028 	ctp = pp->p_ct_process;
5029 	ct = &ctp->conp_contract;
5030 	mutex_enter(&ct->ct_lock);
5031 	mutex_enter(&pp->p_lock);
5032 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5033 		mutex_exit(&pp->p_lock);
5034 		mutex_exit(&ct->ct_lock);
5035 		mutex_exit(&zonehash_lock);
5036 		err = EINVAL;
5037 		goto out;
5038 	}
5039 
5040 	/*
5041 	 * Moreover, we don't allow processes whose encapsulating
5042 	 * process contracts have inherited extrazonal contracts.
5043 	 * While it would be easier to eliminate all process contracts
5044 	 * with inherited contracts, we need to be able to give a
5045 	 * restarted init (or other zone-penetrating process) its
5046 	 * predecessor's contracts.
5047 	 */
5048 	if (ctp->conp_ninherited != 0) {
5049 		contract_t *next;
5050 		for (next = list_head(&ctp->conp_inherited); next;
5051 		    next = list_next(&ctp->conp_inherited, next)) {
5052 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5053 				mutex_exit(&pp->p_lock);
5054 				mutex_exit(&ct->ct_lock);
5055 				mutex_exit(&zonehash_lock);
5056 				err = EINVAL;
5057 				goto out;
5058 			}
5059 		}
5060 	}
5061 
5062 	mutex_exit(&pp->p_lock);
5063 	mutex_exit(&ct->ct_lock);
5064 
5065 	status = zone_status_get(zone);
5066 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5067 		/*
5068 		 * Can't join
5069 		 */
5070 		mutex_exit(&zonehash_lock);
5071 		err = EINVAL;
5072 		goto out;
5073 	}
5074 
5075 	/*
5076 	 * Make sure new priv set is within the permitted set for caller
5077 	 */
5078 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5079 		mutex_exit(&zonehash_lock);
5080 		err = EPERM;
5081 		goto out;
5082 	}
5083 	/*
5084 	 * We want to momentarily drop zonehash_lock while we optimistically
5085 	 * bind curproc to the pool it should be running in.  This is safe
5086 	 * since the zone can't disappear (we have a hold on it).
5087 	 */
5088 	zone_hold(zone);
5089 	mutex_exit(&zonehash_lock);
5090 
5091 	/*
5092 	 * Grab pool_lock to keep the pools configuration from changing
5093 	 * and to stop ourselves from getting rebound to another pool
5094 	 * until we join the zone.
5095 	 */
5096 	if (pool_lock_intr() != 0) {
5097 		zone_rele(zone);
5098 		err = EINTR;
5099 		goto out;
5100 	}
5101 	ASSERT(secpolicy_pool(CRED()) == 0);
5102 	/*
5103 	 * Bind ourselves to the pool currently associated with the zone.
5104 	 */
5105 	oldpool = curproc->p_pool;
5106 	newpool = zone_pool_get(zone);
5107 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
5108 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
5109 	    POOL_BIND_ALL)) != 0) {
5110 		pool_unlock();
5111 		zone_rele(zone);
5112 		goto out;
5113 	}
5114 
5115 	/*
5116 	 * Grab cpu_lock now; we'll need it later when we call
5117 	 * task_join().
5118 	 */
5119 	mutex_enter(&cpu_lock);
5120 	mutex_enter(&zonehash_lock);
5121 	/*
5122 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5123 	 */
5124 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5125 		/*
5126 		 * Can't join anymore.
5127 		 */
5128 		mutex_exit(&zonehash_lock);
5129 		mutex_exit(&cpu_lock);
5130 		if (pool_state == POOL_ENABLED &&
5131 		    newpool != oldpool)
5132 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
5133 			    POOL_BIND_ALL);
5134 		pool_unlock();
5135 		zone_rele(zone);
5136 		err = EINVAL;
5137 		goto out;
5138 	}
5139 
5140 	/*
5141 	 * a_lock must be held while transfering locked memory and swap
5142 	 * reservation from the global zone to the non global zone because
5143 	 * asynchronous faults on the processes' address space can lock
5144 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5145 	 * segments respectively.
5146 	 */
5147 	AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER);
5148 	swap = as_swresv();
5149 	mutex_enter(&pp->p_lock);
5150 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5151 	/* verify that we do not exceed and task or lwp limits */
5152 	mutex_enter(&zone->zone_nlwps_lock);
5153 	/* add new lwps to zone and zone's proj0 */
5154 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5155 	zone->zone_nlwps += pp->p_lwpcnt;
5156 	/* add 1 task to zone's proj0 */
5157 	zone_proj0->kpj_ntasks += 1;
5158 	mutex_exit(&zone->zone_nlwps_lock);
5159 
5160 	mutex_enter(&zone->zone_mem_lock);
5161 	zone->zone_locked_mem += pp->p_locked_mem;
5162 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5163 	zone->zone_max_swap += swap;
5164 	mutex_exit(&zone->zone_mem_lock);
5165 
5166 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5167 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5168 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5169 
5170 	/* remove lwps from proc's old zone and old project */
5171 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
5172 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5173 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5174 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
5175 
5176 	mutex_enter(&pp->p_zone->zone_mem_lock);
5177 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5178 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5179 	pp->p_zone->zone_max_swap -= swap;
5180 	mutex_exit(&pp->p_zone->zone_mem_lock);
5181 
5182 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5183 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5184 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5185 
5186 	pp->p_flag |= SZONETOP;
5187 	pp->p_zone = zone;
5188 	mutex_exit(&pp->p_lock);
5189 	AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock);
5190 
5191 	/*
5192 	 * Joining the zone cannot fail from now on.
5193 	 *
5194 	 * This means that a lot of the following code can be commonized and
5195 	 * shared with zsched().
5196 	 */
5197 
5198 	/*
5199 	 * If the process contract fmri was inherited, we need to
5200 	 * flag this so that any contract status will not leak
5201 	 * extra zone information, svc_fmri in this case
5202 	 */
5203 	if (ctp->conp_svc_ctid != ct->ct_id) {
5204 		mutex_enter(&ct->ct_lock);
5205 		ctp->conp_svc_zone_enter = ct->ct_id;
5206 		mutex_exit(&ct->ct_lock);
5207 	}
5208 
5209 	/*
5210 	 * Reset the encapsulating process contract's zone.
5211 	 */
5212 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5213 	contract_setzuniqid(ct, zone->zone_uniqid);
5214 
5215 	/*
5216 	 * Create a new task and associate the process with the project keyed
5217 	 * by (projid,zoneid).
5218 	 *
5219 	 * We might as well be in project 0; the global zone's projid doesn't
5220 	 * make much sense in a zone anyhow.
5221 	 *
5222 	 * This also increments zone_ntasks, and returns with p_lock held.
5223 	 */
5224 	tk = task_create(0, zone);
5225 	oldtk = task_join(tk, 0);
5226 	mutex_exit(&cpu_lock);
5227 
5228 	/*
5229 	 * call RCTLOP_SET functions on this proc
5230 	 */
5231 	e.rcep_p.zone = zone;
5232 	e.rcep_t = RCENTITY_ZONE;
5233 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5234 	    RCD_CALLBACK);
5235 	mutex_exit(&pp->p_lock);
5236 
5237 	/*
5238 	 * We don't need to hold any of zsched's locks here; not only do we know
5239 	 * the process and zone aren't going away, we know its session isn't
5240 	 * changing either.
5241 	 *
5242 	 * By joining zsched's session here, we mimic the behavior in the
5243 	 * global zone of init's sid being the pid of sched.  We extend this
5244 	 * to all zlogin-like zone_enter()'ing processes as well.
5245 	 */
5246 	mutex_enter(&pidlock);
5247 	sp = zone->zone_zsched->p_sessp;
5248 	sess_hold(zone->zone_zsched);
5249 	mutex_enter(&pp->p_lock);
5250 	pgexit(pp);
5251 	sess_rele(pp->p_sessp, B_TRUE);
5252 	pp->p_sessp = sp;
5253 	pgjoin(pp, zone->zone_zsched->p_pidp);
5254 
5255 	/*
5256 	 * If any threads are scheduled to be placed on zone wait queue they
5257 	 * should abandon the idea since the wait queue is changing.
5258 	 * We need to be holding pidlock & p_lock to do this.
5259 	 */
5260 	if ((t = pp->p_tlist) != NULL) {
5261 		do {
5262 			thread_lock(t);
5263 			/*
5264 			 * Kick this thread so that he doesn't sit
5265 			 * on a wrong wait queue.
5266 			 */
5267 			if (ISWAITING(t))
5268 				setrun_locked(t);
5269 
5270 			if (t->t_schedflag & TS_ANYWAITQ)
5271 				t->t_schedflag &= ~ TS_ANYWAITQ;
5272 
5273 			thread_unlock(t);
5274 		} while ((t = t->t_forw) != pp->p_tlist);
5275 	}
5276 
5277 	/*
5278 	 * If there is a default scheduling class for the zone and it is not
5279 	 * the class we are currently in, change all of the threads in the
5280 	 * process to the new class.  We need to be holding pidlock & p_lock
5281 	 * when we call parmsset so this is a good place to do it.
5282 	 */
5283 	if (zone->zone_defaultcid > 0 &&
5284 	    zone->zone_defaultcid != curthread->t_cid) {
5285 		pcparms_t pcparms;
5286 
5287 		pcparms.pc_cid = zone->zone_defaultcid;
5288 		pcparms.pc_clparms[0] = 0;
5289 
5290 		/*
5291 		 * If setting the class fails, we still want to enter the zone.
5292 		 */
5293 		if ((t = pp->p_tlist) != NULL) {
5294 			do {
5295 				(void) parmsset(&pcparms, t);
5296 			} while ((t = t->t_forw) != pp->p_tlist);
5297 		}
5298 	}
5299 
5300 	mutex_exit(&pp->p_lock);
5301 	mutex_exit(&pidlock);
5302 
5303 	mutex_exit(&zonehash_lock);
5304 	/*
5305 	 * We're firmly in the zone; let pools progress.
5306 	 */
5307 	pool_unlock();
5308 	task_rele(oldtk);
5309 	/*
5310 	 * We don't need to retain a hold on the zone since we already
5311 	 * incremented zone_ntasks, so the zone isn't going anywhere.
5312 	 */
5313 	zone_rele(zone);
5314 
5315 	/*
5316 	 * Chroot
5317 	 */
5318 	vp = zone->zone_rootvp;
5319 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
5320 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
5321 
5322 	/*
5323 	 * Change process credentials
5324 	 */
5325 	newcr = cralloc();
5326 	mutex_enter(&pp->p_crlock);
5327 	cr = pp->p_cred;
5328 	crcopy_to(cr, newcr);
5329 	crsetzone(newcr, zone);
5330 	pp->p_cred = newcr;
5331 
5332 	/*
5333 	 * Restrict all process privilege sets to zone limit
5334 	 */
5335 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
5336 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
5337 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
5338 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
5339 	mutex_exit(&pp->p_crlock);
5340 	crset(pp, newcr);
5341 
5342 	/*
5343 	 * Adjust upcount to reflect zone entry.
5344 	 */
5345 	uid = crgetruid(newcr);
5346 	mutex_enter(&pidlock);
5347 	upcount_dec(uid, GLOBAL_ZONEID);
5348 	upcount_inc(uid, zoneid);
5349 	mutex_exit(&pidlock);
5350 
5351 	/*
5352 	 * Set up core file path and content.
5353 	 */
5354 	set_core_defaults();
5355 
5356 out:
5357 	/*
5358 	 * Let the other lwps continue.
5359 	 */
5360 	mutex_enter(&pp->p_lock);
5361 	if (curthread != pp->p_agenttp)
5362 		continuelwps(pp);
5363 	mutex_exit(&pp->p_lock);
5364 
5365 	return (err != 0 ? set_errno(err) : 0);
5366 }
5367 
5368 /*
5369  * Systemcall entry point for zone_list(2).
5370  *
5371  * Processes running in a (non-global) zone only see themselves.
5372  * On labeled systems, they see all zones whose label they dominate.
5373  */
5374 static int
5375 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
5376 {
5377 	zoneid_t *zoneids;
5378 	zone_t *zone, *myzone;
5379 	uint_t user_nzones, real_nzones;
5380 	uint_t domi_nzones;
5381 	int error;
5382 
5383 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
5384 		return (set_errno(EFAULT));
5385 
5386 	myzone = curproc->p_zone;
5387 	if (myzone != global_zone) {
5388 		bslabel_t *mybslab;
5389 
5390 		if (!is_system_labeled()) {
5391 			/* just return current zone */
5392 			real_nzones = domi_nzones = 1;
5393 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
5394 			zoneids[0] = myzone->zone_id;
5395 		} else {
5396 			/* return all zones that are dominated */
5397 			mutex_enter(&zonehash_lock);
5398 			real_nzones = zonecount;
5399 			domi_nzones = 0;
5400 			if (real_nzones > 0) {
5401 				zoneids = kmem_alloc(real_nzones *
5402 				    sizeof (zoneid_t), KM_SLEEP);
5403 				mybslab = label2bslabel(myzone->zone_slabel);
5404 				for (zone = list_head(&zone_active);
5405 				    zone != NULL;
5406 				    zone = list_next(&zone_active, zone)) {
5407 					if (zone->zone_id == GLOBAL_ZONEID)
5408 						continue;
5409 					if (zone != myzone &&
5410 					    (zone->zone_flags & ZF_IS_SCRATCH))
5411 						continue;
5412 					/*
5413 					 * Note that a label always dominates
5414 					 * itself, so myzone is always included
5415 					 * in the list.
5416 					 */
5417 					if (bldominates(mybslab,
5418 					    label2bslabel(zone->zone_slabel))) {
5419 						zoneids[domi_nzones++] =
5420 						    zone->zone_id;
5421 					}
5422 				}
5423 			}
5424 			mutex_exit(&zonehash_lock);
5425 		}
5426 	} else {
5427 		mutex_enter(&zonehash_lock);
5428 		real_nzones = zonecount;
5429 		domi_nzones = 0;
5430 		if (real_nzones > 0) {
5431 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
5432 			    KM_SLEEP);
5433 			for (zone = list_head(&zone_active); zone != NULL;
5434 			    zone = list_next(&zone_active, zone))
5435 				zoneids[domi_nzones++] = zone->zone_id;
5436 			ASSERT(domi_nzones == real_nzones);
5437 		}
5438 		mutex_exit(&zonehash_lock);
5439 	}
5440 
5441 	/*
5442 	 * If user has allocated space for fewer entries than we found, then
5443 	 * return only up to his limit.  Either way, tell him exactly how many
5444 	 * we found.
5445 	 */
5446 	if (domi_nzones < user_nzones)
5447 		user_nzones = domi_nzones;
5448 	error = 0;
5449 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
5450 		error = EFAULT;
5451 	} else if (zoneidlist != NULL && user_nzones != 0) {
5452 		if (copyout(zoneids, zoneidlist,
5453 		    user_nzones * sizeof (zoneid_t)) != 0)
5454 			error = EFAULT;
5455 	}
5456 
5457 	if (real_nzones > 0)
5458 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
5459 
5460 	if (error != 0)
5461 		return (set_errno(error));
5462 	else
5463 		return (0);
5464 }
5465 
5466 /*
5467  * Systemcall entry point for zone_lookup(2).
5468  *
5469  * Non-global zones are only able to see themselves and (on labeled systems)
5470  * the zones they dominate.
5471  */
5472 static zoneid_t
5473 zone_lookup(const char *zone_name)
5474 {
5475 	char *kname;
5476 	zone_t *zone;
5477 	zoneid_t zoneid;
5478 	int err;
5479 
5480 	if (zone_name == NULL) {
5481 		/* return caller's zone id */
5482 		return (getzoneid());
5483 	}
5484 
5485 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
5486 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
5487 		kmem_free(kname, ZONENAME_MAX);
5488 		return (set_errno(err));
5489 	}
5490 
5491 	mutex_enter(&zonehash_lock);
5492 	zone = zone_find_all_by_name(kname);
5493 	kmem_free(kname, ZONENAME_MAX);
5494 	/*
5495 	 * In a non-global zone, can only lookup global and own name.
5496 	 * In Trusted Extensions zone label dominance rules apply.
5497 	 */
5498 	if (zone == NULL ||
5499 	    zone_status_get(zone) < ZONE_IS_READY ||
5500 	    !zone_list_access(zone)) {
5501 		mutex_exit(&zonehash_lock);
5502 		return (set_errno(EINVAL));
5503 	} else {
5504 		zoneid = zone->zone_id;
5505 		mutex_exit(&zonehash_lock);
5506 		return (zoneid);
5507 	}
5508 }
5509 
5510 static int
5511 zone_version(int *version_arg)
5512 {
5513 	int version = ZONE_SYSCALL_API_VERSION;
5514 
5515 	if (copyout(&version, version_arg, sizeof (int)) != 0)
5516 		return (set_errno(EFAULT));
5517 	return (0);
5518 }
5519 
5520 /* ARGSUSED */
5521 long
5522 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
5523 {
5524 	zone_def zs;
5525 	int err;
5526 
5527 	switch (cmd) {
5528 	case ZONE_CREATE:
5529 		if (get_udatamodel() == DATAMODEL_NATIVE) {
5530 			if (copyin(arg1, &zs, sizeof (zone_def))) {
5531 				return (set_errno(EFAULT));
5532 			}
5533 		} else {
5534 #ifdef _SYSCALL32_IMPL
5535 			zone_def32 zs32;
5536 
5537 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
5538 				return (set_errno(EFAULT));
5539 			}
5540 			zs.zone_name =
5541 			    (const char *)(unsigned long)zs32.zone_name;
5542 			zs.zone_root =
5543 			    (const char *)(unsigned long)zs32.zone_root;
5544 			zs.zone_privs =
5545 			    (const struct priv_set *)
5546 			    (unsigned long)zs32.zone_privs;
5547 			zs.zone_privssz = zs32.zone_privssz;
5548 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
5549 			zs.rctlbufsz = zs32.rctlbufsz;
5550 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
5551 			zs.zfsbufsz = zs32.zfsbufsz;
5552 			zs.extended_error =
5553 			    (int *)(unsigned long)zs32.extended_error;
5554 			zs.match = zs32.match;
5555 			zs.doi = zs32.doi;
5556 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
5557 			zs.flags = zs32.flags;
5558 #else
5559 			panic("get_udatamodel() returned bogus result\n");
5560 #endif
5561 		}
5562 
5563 		return (zone_create(zs.zone_name, zs.zone_root,
5564 		    zs.zone_privs, zs.zone_privssz,
5565 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
5566 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
5567 		    zs.extended_error, zs.match, zs.doi,
5568 		    zs.label, zs.flags));
5569 	case ZONE_BOOT:
5570 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
5571 	case ZONE_DESTROY:
5572 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
5573 	case ZONE_GETATTR:
5574 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
5575 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
5576 	case ZONE_SETATTR:
5577 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
5578 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
5579 	case ZONE_ENTER:
5580 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
5581 	case ZONE_LIST:
5582 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
5583 	case ZONE_SHUTDOWN:
5584 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
5585 	case ZONE_LOOKUP:
5586 		return (zone_lookup((const char *)arg1));
5587 	case ZONE_VERSION:
5588 		return (zone_version((int *)arg1));
5589 	case ZONE_ADD_DATALINK:
5590 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
5591 		    (datalink_id_t)(uintptr_t)arg2));
5592 	case ZONE_DEL_DATALINK:
5593 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
5594 		    (datalink_id_t)(uintptr_t)arg2));
5595 	case ZONE_CHECK_DATALINK: {
5596 		zoneid_t	zoneid;
5597 		boolean_t	need_copyout;
5598 
5599 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
5600 			return (EFAULT);
5601 		need_copyout = (zoneid == ALL_ZONES);
5602 		err = zone_check_datalink(&zoneid,
5603 		    (datalink_id_t)(uintptr_t)arg2);
5604 		if (err == 0 && need_copyout) {
5605 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
5606 				err = EFAULT;
5607 		}
5608 		return (err == 0 ? 0 : set_errno(err));
5609 	}
5610 	case ZONE_LIST_DATALINK:
5611 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
5612 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
5613 	default:
5614 		return (set_errno(EINVAL));
5615 	}
5616 }
5617 
5618 struct zarg {
5619 	zone_t *zone;
5620 	zone_cmd_arg_t arg;
5621 };
5622 
5623 static int
5624 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
5625 {
5626 	char *buf;
5627 	size_t buflen;
5628 	int error;
5629 
5630 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
5631 	buf = kmem_alloc(buflen, KM_SLEEP);
5632 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
5633 	error = door_ki_open(buf, doorp);
5634 	kmem_free(buf, buflen);
5635 	return (error);
5636 }
5637 
5638 static void
5639 zone_release_door(door_handle_t *doorp)
5640 {
5641 	door_ki_rele(*doorp);
5642 	*doorp = NULL;
5643 }
5644 
5645 static void
5646 zone_ki_call_zoneadmd(struct zarg *zargp)
5647 {
5648 	door_handle_t door = NULL;
5649 	door_arg_t darg, save_arg;
5650 	char *zone_name;
5651 	size_t zone_namelen;
5652 	zoneid_t zoneid;
5653 	zone_t *zone;
5654 	zone_cmd_arg_t arg;
5655 	uint64_t uniqid;
5656 	size_t size;
5657 	int error;
5658 	int retry;
5659 
5660 	zone = zargp->zone;
5661 	arg = zargp->arg;
5662 	kmem_free(zargp, sizeof (*zargp));
5663 
5664 	zone_namelen = strlen(zone->zone_name) + 1;
5665 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
5666 	bcopy(zone->zone_name, zone_name, zone_namelen);
5667 	zoneid = zone->zone_id;
5668 	uniqid = zone->zone_uniqid;
5669 	/*
5670 	 * zoneadmd may be down, but at least we can empty out the zone.
5671 	 * We can ignore the return value of zone_empty() since we're called
5672 	 * from a kernel thread and know we won't be delivered any signals.
5673 	 */
5674 	ASSERT(curproc == &p0);
5675 	(void) zone_empty(zone);
5676 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
5677 	zone_rele(zone);
5678 
5679 	size = sizeof (arg);
5680 	darg.rbuf = (char *)&arg;
5681 	darg.data_ptr = (char *)&arg;
5682 	darg.rsize = size;
5683 	darg.data_size = size;
5684 	darg.desc_ptr = NULL;
5685 	darg.desc_num = 0;
5686 
5687 	save_arg = darg;
5688 	/*
5689 	 * Since we're not holding a reference to the zone, any number of
5690 	 * things can go wrong, including the zone disappearing before we get a
5691 	 * chance to talk to zoneadmd.
5692 	 */
5693 	for (retry = 0; /* forever */; retry++) {
5694 		if (door == NULL &&
5695 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
5696 			goto next;
5697 		}
5698 		ASSERT(door != NULL);
5699 
5700 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
5701 		    SIZE_MAX, 0)) == 0) {
5702 			break;
5703 		}
5704 		switch (error) {
5705 		case EINTR:
5706 			/* FALLTHROUGH */
5707 		case EAGAIN:	/* process may be forking */
5708 			/*
5709 			 * Back off for a bit
5710 			 */
5711 			break;
5712 		case EBADF:
5713 			zone_release_door(&door);
5714 			if (zone_lookup_door(zone_name, &door) != 0) {
5715 				/*
5716 				 * zoneadmd may be dead, but it may come back to
5717 				 * life later.
5718 				 */
5719 				break;
5720 			}
5721 			break;
5722 		default:
5723 			cmn_err(CE_WARN,
5724 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
5725 			    error);
5726 			goto out;
5727 		}
5728 next:
5729 		/*
5730 		 * If this isn't the same zone_t that we originally had in mind,
5731 		 * then this is the same as if two kadmin requests come in at
5732 		 * the same time: the first one wins.  This means we lose, so we
5733 		 * bail.
5734 		 */
5735 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
5736 			/*
5737 			 * Problem is solved.
5738 			 */
5739 			break;
5740 		}
5741 		if (zone->zone_uniqid != uniqid) {
5742 			/*
5743 			 * zoneid recycled
5744 			 */
5745 			zone_rele(zone);
5746 			break;
5747 		}
5748 		/*
5749 		 * We could zone_status_timedwait(), but there doesn't seem to
5750 		 * be much point in doing that (plus, it would mean that
5751 		 * zone_free() isn't called until this thread exits).
5752 		 */
5753 		zone_rele(zone);
5754 		delay(hz);
5755 		darg = save_arg;
5756 	}
5757 out:
5758 	if (door != NULL) {
5759 		zone_release_door(&door);
5760 	}
5761 	kmem_free(zone_name, zone_namelen);
5762 	thread_exit();
5763 }
5764 
5765 /*
5766  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
5767  * kadmin().  The caller is a process in the zone.
5768  *
5769  * In order to shutdown the zone, we will hand off control to zoneadmd
5770  * (running in the global zone) via a door.  We do a half-hearted job at
5771  * killing all processes in the zone, create a kernel thread to contact
5772  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
5773  * a form of generation number used to let zoneadmd (as well as
5774  * zone_destroy()) know exactly which zone they're re talking about.
5775  */
5776 int
5777 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
5778 {
5779 	struct zarg *zargp;
5780 	zone_cmd_t zcmd;
5781 	zone_t *zone;
5782 
5783 	zone = curproc->p_zone;
5784 	ASSERT(getzoneid() != GLOBAL_ZONEID);
5785 
5786 	switch (cmd) {
5787 	case A_SHUTDOWN:
5788 		switch (fcn) {
5789 		case AD_HALT:
5790 		case AD_POWEROFF:
5791 			zcmd = Z_HALT;
5792 			break;
5793 		case AD_BOOT:
5794 			zcmd = Z_REBOOT;
5795 			break;
5796 		case AD_IBOOT:
5797 		case AD_SBOOT:
5798 		case AD_SIBOOT:
5799 		case AD_NOSYNC:
5800 			return (ENOTSUP);
5801 		default:
5802 			return (EINVAL);
5803 		}
5804 		break;
5805 	case A_REBOOT:
5806 		zcmd = Z_REBOOT;
5807 		break;
5808 	case A_FTRACE:
5809 	case A_REMOUNT:
5810 	case A_FREEZE:
5811 	case A_DUMP:
5812 	case A_CONFIG:
5813 		return (ENOTSUP);
5814 	default:
5815 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
5816 		return (EINVAL);
5817 	}
5818 
5819 	if (secpolicy_zone_admin(credp, B_FALSE))
5820 		return (EPERM);
5821 	mutex_enter(&zone_status_lock);
5822 
5823 	/*
5824 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
5825 	 * is in the zone.
5826 	 */
5827 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
5828 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
5829 		/*
5830 		 * This zone is already on its way down.
5831 		 */
5832 		mutex_exit(&zone_status_lock);
5833 		return (0);
5834 	}
5835 	/*
5836 	 * Prevent future zone_enter()s
5837 	 */
5838 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
5839 	mutex_exit(&zone_status_lock);
5840 
5841 	/*
5842 	 * Kill everyone now and call zoneadmd later.
5843 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
5844 	 * later.
5845 	 */
5846 	killall(zone->zone_id);
5847 	/*
5848 	 * Now, create the thread to contact zoneadmd and do the rest of the
5849 	 * work.  This thread can't be created in our zone otherwise
5850 	 * zone_destroy() would deadlock.
5851 	 */
5852 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
5853 	zargp->arg.cmd = zcmd;
5854 	zargp->arg.uniqid = zone->zone_uniqid;
5855 	zargp->zone = zone;
5856 	(void) strcpy(zargp->arg.locale, "C");
5857 	/* mdep was already copied in for us by uadmin */
5858 	if (mdep != NULL)
5859 		(void) strlcpy(zargp->arg.bootbuf, mdep,
5860 		    sizeof (zargp->arg.bootbuf));
5861 	zone_hold(zone);
5862 
5863 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
5864 	    TS_RUN, minclsyspri);
5865 	exit(CLD_EXITED, 0);
5866 
5867 	return (EINVAL);
5868 }
5869 
5870 /*
5871  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
5872  * status to ZONE_IS_SHUTTING_DOWN.
5873  *
5874  * This function also shuts down all running zones to ensure that they won't
5875  * fork new processes.
5876  */
5877 void
5878 zone_shutdown_global(void)
5879 {
5880 	zone_t *current_zonep;
5881 
5882 	ASSERT(INGLOBALZONE(curproc));
5883 	mutex_enter(&zonehash_lock);
5884 	mutex_enter(&zone_status_lock);
5885 
5886 	/* Modify the global zone's status first. */
5887 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
5888 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
5889 
5890 	/*
5891 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
5892 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
5893 	 * could cause assertions to fail (e.g., assertions about a zone's
5894 	 * state during initialization, readying, or booting) or produce races.
5895 	 * We'll let threads continue to initialize and ready new zones: they'll
5896 	 * fail to boot the new zones when they see that the global zone is
5897 	 * shutting down.
5898 	 */
5899 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
5900 	    current_zonep = list_next(&zone_active, current_zonep)) {
5901 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
5902 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
5903 	}
5904 	mutex_exit(&zone_status_lock);
5905 	mutex_exit(&zonehash_lock);
5906 }
5907 
5908 /*
5909  * Returns true if the named dataset is visible in the current zone.
5910  * The 'write' parameter is set to 1 if the dataset is also writable.
5911  */
5912 int
5913 zone_dataset_visible(const char *dataset, int *write)
5914 {
5915 	static int zfstype = -1;
5916 	zone_dataset_t *zd;
5917 	size_t len;
5918 	zone_t *zone = curproc->p_zone;
5919 	const char *name = NULL;
5920 	vfs_t *vfsp = NULL;
5921 
5922 	if (dataset[0] == '\0')
5923 		return (0);
5924 
5925 	/*
5926 	 * Walk the list once, looking for datasets which match exactly, or
5927 	 * specify a dataset underneath an exported dataset.  If found, return
5928 	 * true and note that it is writable.
5929 	 */
5930 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
5931 	    zd = list_next(&zone->zone_datasets, zd)) {
5932 
5933 		len = strlen(zd->zd_dataset);
5934 		if (strlen(dataset) >= len &&
5935 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
5936 		    (dataset[len] == '\0' || dataset[len] == '/' ||
5937 		    dataset[len] == '@')) {
5938 			if (write)
5939 				*write = 1;
5940 			return (1);
5941 		}
5942 	}
5943 
5944 	/*
5945 	 * Walk the list a second time, searching for datasets which are parents
5946 	 * of exported datasets.  These should be visible, but read-only.
5947 	 *
5948 	 * Note that we also have to support forms such as 'pool/dataset/', with
5949 	 * a trailing slash.
5950 	 */
5951 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
5952 	    zd = list_next(&zone->zone_datasets, zd)) {
5953 
5954 		len = strlen(dataset);
5955 		if (dataset[len - 1] == '/')
5956 			len--;	/* Ignore trailing slash */
5957 		if (len < strlen(zd->zd_dataset) &&
5958 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
5959 		    zd->zd_dataset[len] == '/') {
5960 			if (write)
5961 				*write = 0;
5962 			return (1);
5963 		}
5964 	}
5965 
5966 	/*
5967 	 * We reach here if the given dataset is not found in the zone_dataset
5968 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
5969 	 * instead of delegation. For this we search for the dataset in the
5970 	 * zone_vfslist of this zone. If found, return true and note that it is
5971 	 * not writable.
5972 	 */
5973 
5974 	/*
5975 	 * Initialize zfstype if it is not initialized yet.
5976 	 */
5977 	if (zfstype == -1) {
5978 		struct vfssw *vswp = vfs_getvfssw("zfs");
5979 		zfstype = vswp - vfssw;
5980 		vfs_unrefvfssw(vswp);
5981 	}
5982 
5983 	vfs_list_read_lock();
5984 	vfsp = zone->zone_vfslist;
5985 	do {
5986 		ASSERT(vfsp);
5987 		if (vfsp->vfs_fstype == zfstype) {
5988 			name = refstr_value(vfsp->vfs_resource);
5989 
5990 			/*
5991 			 * Check if we have an exact match.
5992 			 */
5993 			if (strcmp(dataset, name) == 0) {
5994 				vfs_list_unlock();
5995 				if (write)
5996 					*write = 0;
5997 				return (1);
5998 			}
5999 			/*
6000 			 * We need to check if we are looking for parents of
6001 			 * a dataset. These should be visible, but read-only.
6002 			 */
6003 			len = strlen(dataset);
6004 			if (dataset[len - 1] == '/')
6005 				len--;
6006 
6007 			if (len < strlen(name) &&
6008 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6009 				vfs_list_unlock();
6010 				if (write)
6011 					*write = 0;
6012 				return (1);
6013 			}
6014 		}
6015 		vfsp = vfsp->vfs_zone_next;
6016 	} while (vfsp != zone->zone_vfslist);
6017 
6018 	vfs_list_unlock();
6019 	return (0);
6020 }
6021 
6022 /*
6023  * zone_find_by_any_path() -
6024  *
6025  * kernel-private routine similar to zone_find_by_path(), but which
6026  * effectively compares against zone paths rather than zonerootpath
6027  * (i.e., the last component of zonerootpaths, which should be "root/",
6028  * are not compared.)  This is done in order to accurately identify all
6029  * paths, whether zone-visible or not, including those which are parallel
6030  * to /root/, such as /dev/, /home/, etc...
6031  *
6032  * If the specified path does not fall under any zone path then global
6033  * zone is returned.
6034  *
6035  * The treat_abs parameter indicates whether the path should be treated as
6036  * an absolute path although it does not begin with "/".  (This supports
6037  * nfs mount syntax such as host:any/path.)
6038  *
6039  * The caller is responsible for zone_rele of the returned zone.
6040  */
6041 zone_t *
6042 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6043 {
6044 	zone_t *zone;
6045 	int path_offset = 0;
6046 
6047 	if (path == NULL) {
6048 		zone_hold(global_zone);
6049 		return (global_zone);
6050 	}
6051 
6052 	if (*path != '/') {
6053 		ASSERT(treat_abs);
6054 		path_offset = 1;
6055 	}
6056 
6057 	mutex_enter(&zonehash_lock);
6058 	for (zone = list_head(&zone_active); zone != NULL;
6059 	    zone = list_next(&zone_active, zone)) {
6060 		char	*c;
6061 		size_t	pathlen;
6062 		char *rootpath_start;
6063 
6064 		if (zone == global_zone)	/* skip global zone */
6065 			continue;
6066 
6067 		/* scan backwards to find start of last component */
6068 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6069 		do {
6070 			c--;
6071 		} while (*c != '/');
6072 
6073 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6074 		rootpath_start = (zone->zone_rootpath + path_offset);
6075 		if (strncmp(path, rootpath_start, pathlen) == 0)
6076 			break;
6077 	}
6078 	if (zone == NULL)
6079 		zone = global_zone;
6080 	zone_hold(zone);
6081 	mutex_exit(&zonehash_lock);
6082 	return (zone);
6083 }
6084 
6085 /*
6086  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
6087  * zone_dl_t pointer if found, and NULL otherwise.
6088  */
6089 static zone_dl_t *
6090 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6091 {
6092 	zone_dl_t *zdl;
6093 
6094 	ASSERT(mutex_owned(&zone->zone_lock));
6095 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6096 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6097 		if (zdl->zdl_id == linkid)
6098 			break;
6099 	}
6100 	return (zdl);
6101 }
6102 
6103 static boolean_t
6104 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6105 {
6106 	boolean_t exists;
6107 
6108 	mutex_enter(&zone->zone_lock);
6109 	exists = (zone_find_dl(zone, linkid) != NULL);
6110 	mutex_exit(&zone->zone_lock);
6111 	return (exists);
6112 }
6113 
6114 /*
6115  * Add an data link name for the zone.
6116  */
6117 static int
6118 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6119 {
6120 	zone_dl_t *zdl;
6121 	zone_t *zone;
6122 	zone_t *thiszone;
6123 
6124 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6125 		return (set_errno(ENXIO));
6126 
6127 	/* Verify that the datalink ID doesn't already belong to a zone. */
6128 	mutex_enter(&zonehash_lock);
6129 	for (zone = list_head(&zone_active); zone != NULL;
6130 	    zone = list_next(&zone_active, zone)) {
6131 		if (zone_dl_exists(zone, linkid)) {
6132 			mutex_exit(&zonehash_lock);
6133 			zone_rele(thiszone);
6134 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6135 		}
6136 	}
6137 
6138 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6139 	zdl->zdl_id = linkid;
6140 	mutex_enter(&thiszone->zone_lock);
6141 	list_insert_head(&thiszone->zone_dl_list, zdl);
6142 	mutex_exit(&thiszone->zone_lock);
6143 	mutex_exit(&zonehash_lock);
6144 	zone_rele(thiszone);
6145 	return (0);
6146 }
6147 
6148 static int
6149 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6150 {
6151 	zone_dl_t *zdl;
6152 	zone_t *zone;
6153 	int err = 0;
6154 
6155 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6156 		return (set_errno(EINVAL));
6157 
6158 	mutex_enter(&zone->zone_lock);
6159 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6160 		err = ENXIO;
6161 	} else {
6162 		list_remove(&zone->zone_dl_list, zdl);
6163 		kmem_free(zdl, sizeof (zone_dl_t));
6164 	}
6165 	mutex_exit(&zone->zone_lock);
6166 	zone_rele(zone);
6167 	return (err == 0 ? 0 : set_errno(err));
6168 }
6169 
6170 /*
6171  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6172  * the linkid.  Otherwise we just check if the specified zoneidp has been
6173  * assigned the supplied linkid.
6174  */
6175 int
6176 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6177 {
6178 	zone_t *zone;
6179 	int err = ENXIO;
6180 
6181 	if (*zoneidp != ALL_ZONES) {
6182 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6183 			if (zone_dl_exists(zone, linkid))
6184 				err = 0;
6185 			zone_rele(zone);
6186 		}
6187 		return (err);
6188 	}
6189 
6190 	mutex_enter(&zonehash_lock);
6191 	for (zone = list_head(&zone_active); zone != NULL;
6192 	    zone = list_next(&zone_active, zone)) {
6193 		if (zone_dl_exists(zone, linkid)) {
6194 			*zoneidp = zone->zone_id;
6195 			err = 0;
6196 			break;
6197 		}
6198 	}
6199 	mutex_exit(&zonehash_lock);
6200 	return (err);
6201 }
6202 
6203 /*
6204  * Get the list of datalink IDs assigned to a zone.
6205  *
6206  * On input, *nump is the number of datalink IDs that can fit in the supplied
6207  * idarray.  Upon return, *nump is either set to the number of datalink IDs
6208  * that were placed in the array if the array was large enough, or to the
6209  * number of datalink IDs that the function needs to place in the array if the
6210  * array is too small.
6211  */
6212 static int
6213 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6214 {
6215 	uint_t num, dlcount;
6216 	zone_t *zone;
6217 	zone_dl_t *zdl;
6218 	datalink_id_t *idptr = idarray;
6219 
6220 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6221 		return (set_errno(EFAULT));
6222 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6223 		return (set_errno(ENXIO));
6224 
6225 	num = 0;
6226 	mutex_enter(&zone->zone_lock);
6227 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6228 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6229 		/*
6230 		 * If the list is bigger than what the caller supplied, just
6231 		 * count, don't do copyout.
6232 		 */
6233 		if (++num > dlcount)
6234 			continue;
6235 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6236 			mutex_exit(&zone->zone_lock);
6237 			zone_rele(zone);
6238 			return (set_errno(EFAULT));
6239 		}
6240 		idptr++;
6241 	}
6242 	mutex_exit(&zone->zone_lock);
6243 	zone_rele(zone);
6244 
6245 	/* Increased or decreased, caller should be notified. */
6246 	if (num != dlcount) {
6247 		if (copyout(&num, nump, sizeof (num)) != 0)
6248 			return (set_errno(EFAULT));
6249 	}
6250 	return (0);
6251 }
6252 
6253 /*
6254  * Public interface for looking up a zone by zoneid. It's a customized version
6255  * for netstack_zone_create(). It can only be called from the zsd create
6256  * callbacks, since it doesn't have reference on the zone structure hence if
6257  * it is called elsewhere the zone could disappear after the zonehash_lock
6258  * is dropped.
6259  *
6260  * Furthermore it
6261  * 1. Doesn't check the status of the zone.
6262  * 2. It will be called even before zone_init is called, in that case the
6263  *    address of zone0 is returned directly, and netstack_zone_create()
6264  *    will only assign a value to zone0.zone_netstack, won't break anything.
6265  * 3. Returns without the zone being held.
6266  */
6267 zone_t *
6268 zone_find_by_id_nolock(zoneid_t zoneid)
6269 {
6270 	zone_t *zone;
6271 
6272 	mutex_enter(&zonehash_lock);
6273 	if (zonehashbyid == NULL)
6274 		zone = &zone0;
6275 	else
6276 		zone = zone_find_all_by_id(zoneid);
6277 	mutex_exit(&zonehash_lock);
6278 	return (zone);
6279 }
6280 
6281 /*
6282  * Walk the datalinks for a given zone
6283  */
6284 int
6285 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
6286     void *data)
6287 {
6288 	zone_t		*zone;
6289 	zone_dl_t	*zdl;
6290 	datalink_id_t	*idarray;
6291 	uint_t		idcount = 0;
6292 	int		i, ret = 0;
6293 
6294 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6295 		return (ENOENT);
6296 
6297 	/*
6298 	 * We first build an array of linkid's so that we can walk these and
6299 	 * execute the callback with the zone_lock dropped.
6300 	 */
6301 	mutex_enter(&zone->zone_lock);
6302 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6303 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6304 		idcount++;
6305 	}
6306 
6307 	if (idcount == 0) {
6308 		mutex_exit(&zone->zone_lock);
6309 		zone_rele(zone);
6310 		return (0);
6311 	}
6312 
6313 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
6314 	if (idarray == NULL) {
6315 		mutex_exit(&zone->zone_lock);
6316 		zone_rele(zone);
6317 		return (ENOMEM);
6318 	}
6319 
6320 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6321 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
6322 		idarray[i] = zdl->zdl_id;
6323 	}
6324 
6325 	mutex_exit(&zone->zone_lock);
6326 
6327 	for (i = 0; i < idcount && ret == 0; i++) {
6328 		if ((ret = (*cb)(idarray[i], data)) != 0)
6329 			break;
6330 	}
6331 
6332 	zone_rele(zone);
6333 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
6334 	return (ret);
6335 }
6336