1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 65 * ready. The zone is made visible after the ZSD constructor callbacks are 66 * executed. A zone remains in this state until it transitions into 67 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 68 * 69 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 70 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 71 * state. 72 * 73 * ZONE_IS_RUNNING: The zone is open for business: zsched has 74 * successfully started init. A zone remains in this state until 75 * zone_shutdown() is called. 76 * 77 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 78 * killing all processes running in the zone. The zone remains 79 * in this state until there are no more user processes running in the zone. 80 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 81 * Since zone_shutdown() is restartable, it may be called successfully 82 * multiple times for the same zone_t. Setting of the zone's state to 83 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 84 * the zone's status without worrying about it being a moving target. 85 * 86 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 87 * are no more user processes in the zone. The zone remains in this 88 * state until there are no more kernel threads associated with the 89 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 90 * fail. 91 * 92 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 93 * have exited. zone_shutdown() returns. Henceforth it is not possible to 94 * join the zone or create kernel threads therein. 95 * 96 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 97 * remains in this state until zsched exits. Calls to zone_find_by_*() 98 * return NULL from now on. 99 * 100 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 101 * processes or threads doing work on behalf of the zone. The zone is 102 * removed from the list of active zones. zone_destroy() returns, and 103 * the zone can be recreated. 104 * 105 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 106 * callbacks are executed, and all memory associated with the zone is 107 * freed. 108 * 109 * Threads can wait for the zone to enter a requested state by using 110 * zone_status_wait() or zone_status_timedwait() with the desired 111 * state passed in as an argument. Zone state transitions are 112 * uni-directional; it is not possible to move back to an earlier state. 113 * 114 * 115 * Zone-Specific Data: 116 * 117 * Subsystems needing to maintain zone-specific data can store that 118 * data using the ZSD mechanism. This provides a zone-specific data 119 * store, similar to thread-specific data (see pthread_getspecific(3C) 120 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 121 * to register callbacks to be invoked when a zone is created, shut 122 * down, or destroyed. This can be used to initialize zone-specific 123 * data for new zones and to clean up when zones go away. 124 * 125 * 126 * Data Structures: 127 * 128 * The per-zone structure (zone_t) is reference counted, and freed 129 * when all references are released. zone_hold and zone_rele can be 130 * used to adjust the reference count. In addition, reference counts 131 * associated with the cred_t structure are tracked separately using 132 * zone_cred_hold and zone_cred_rele. 133 * 134 * Pointers to active zone_t's are stored in two hash tables; one 135 * for searching by id, the other for searching by name. Lookups 136 * can be performed on either basis, using zone_find_by_id and 137 * zone_find_by_name. Both return zone_t pointers with the zone 138 * held, so zone_rele should be called when the pointer is no longer 139 * needed. Zones can also be searched by path; zone_find_by_path 140 * returns the zone with which a path name is associated (global 141 * zone if the path is not within some other zone's file system 142 * hierarchy). This currently requires iterating through each zone, 143 * so it is slower than an id or name search via a hash table. 144 * 145 * 146 * Locking: 147 * 148 * zonehash_lock: This is a top-level global lock used to protect the 149 * zone hash tables and lists. Zones cannot be created or destroyed 150 * while this lock is held. 151 * zone_status_lock: This is a global lock protecting zone state. 152 * Zones cannot change state while this lock is held. It also 153 * protects the list of kernel threads associated with a zone. 154 * zone_lock: This is a per-zone lock used to protect several fields of 155 * the zone_t (see <sys/zone.h> for details). In addition, holding 156 * this lock means that the zone cannot go away. 157 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 158 * related to the zone.max-lwps rctl. 159 * zone_mem_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-locked-memory and zone.max-swap rctls. 161 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 162 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 163 * list (a list of zones in the ZONE_IS_DEAD state). 164 * 165 * Ordering requirements: 166 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 167 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 168 * 169 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 170 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 171 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 172 * 173 * Blocking memory allocations are permitted while holding any of the 174 * zone locks. 175 * 176 * 177 * System Call Interface: 178 * 179 * The zone subsystem can be managed and queried from user level with 180 * the following system calls (all subcodes of the primary "zone" 181 * system call): 182 * - zone_create: creates a zone with selected attributes (name, 183 * root path, privileges, resource controls, ZFS datasets) 184 * - zone_enter: allows the current process to enter a zone 185 * - zone_getattr: reports attributes of a zone 186 * - zone_setattr: set attributes of a zone 187 * - zone_boot: set 'init' running for the zone 188 * - zone_list: lists all zones active in the system 189 * - zone_lookup: looks up zone id based on name 190 * - zone_shutdown: initiates shutdown process (see states above) 191 * - zone_destroy: completes shutdown process (see states above) 192 * 193 */ 194 195 #include <sys/priv_impl.h> 196 #include <sys/cred.h> 197 #include <c2/audit.h> 198 #include <sys/debug.h> 199 #include <sys/file.h> 200 #include <sys/kmem.h> 201 #include <sys/kstat.h> 202 #include <sys/mutex.h> 203 #include <sys/note.h> 204 #include <sys/pathname.h> 205 #include <sys/proc.h> 206 #include <sys/project.h> 207 #include <sys/sysevent.h> 208 #include <sys/task.h> 209 #include <sys/systm.h> 210 #include <sys/types.h> 211 #include <sys/utsname.h> 212 #include <sys/vnode.h> 213 #include <sys/vfs.h> 214 #include <sys/systeminfo.h> 215 #include <sys/policy.h> 216 #include <sys/cred_impl.h> 217 #include <sys/contract_impl.h> 218 #include <sys/contract/process_impl.h> 219 #include <sys/class.h> 220 #include <sys/pool.h> 221 #include <sys/pool_pset.h> 222 #include <sys/pset.h> 223 #include <sys/sysmacros.h> 224 #include <sys/callb.h> 225 #include <sys/vmparam.h> 226 #include <sys/corectl.h> 227 #include <sys/ipc_impl.h> 228 229 #include <sys/door.h> 230 #include <sys/cpuvar.h> 231 232 #include <sys/uadmin.h> 233 #include <sys/session.h> 234 #include <sys/cmn_err.h> 235 #include <sys/modhash.h> 236 #include <sys/sunddi.h> 237 #include <sys/nvpair.h> 238 #include <sys/rctl.h> 239 #include <sys/fss.h> 240 #include <sys/brand.h> 241 #include <sys/zone.h> 242 #include <net/if.h> 243 #include <sys/cpucaps.h> 244 #include <vm/seg.h> 245 246 /* 247 * cv used to signal that all references to the zone have been released. This 248 * needs to be global since there may be multiple waiters, and the first to 249 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 250 */ 251 static kcondvar_t zone_destroy_cv; 252 /* 253 * Lock used to serialize access to zone_cv. This could have been per-zone, 254 * but then we'd need another lock for zone_destroy_cv, and why bother? 255 */ 256 static kmutex_t zone_status_lock; 257 258 /* 259 * ZSD-related global variables. 260 */ 261 static kmutex_t zsd_key_lock; /* protects the following two */ 262 /* 263 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 264 */ 265 static zone_key_t zsd_keyval = 0; 266 /* 267 * Global list of registered keys. We use this when a new zone is created. 268 */ 269 static list_t zsd_registered_keys; 270 271 int zone_hash_size = 256; 272 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 273 static kmutex_t zonehash_lock; 274 static uint_t zonecount; 275 static id_space_t *zoneid_space; 276 277 /* 278 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 279 * kernel proper runs, and which manages all other zones. 280 * 281 * Although not declared as static, the variable "zone0" should not be used 282 * except for by code that needs to reference the global zone early on in boot, 283 * before it is fully initialized. All other consumers should use 284 * 'global_zone'. 285 */ 286 zone_t zone0; 287 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 288 289 /* 290 * List of active zones, protected by zonehash_lock. 291 */ 292 static list_t zone_active; 293 294 /* 295 * List of destroyed zones that still have outstanding cred references. 296 * Used for debugging. Uses a separate lock to avoid lock ordering 297 * problems in zone_free. 298 */ 299 static list_t zone_deathrow; 300 static kmutex_t zone_deathrow_lock; 301 302 /* number of zones is limited by virtual interface limit in IP */ 303 uint_t maxzones = 8192; 304 305 /* Event channel to sent zone state change notifications */ 306 evchan_t *zone_event_chan; 307 308 /* 309 * This table holds the mapping from kernel zone states to 310 * states visible in the state notification API. 311 * The idea is that we only expose "obvious" states and 312 * do not expose states which are just implementation details. 313 */ 314 const char *zone_status_table[] = { 315 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 316 ZONE_EVENT_READY, /* ready */ 317 ZONE_EVENT_READY, /* booting */ 318 ZONE_EVENT_RUNNING, /* running */ 319 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 320 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 321 ZONE_EVENT_SHUTTING_DOWN, /* down */ 322 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 323 ZONE_EVENT_UNINITIALIZED, /* dead */ 324 }; 325 326 /* 327 * This isn't static so lint doesn't complain. 328 */ 329 rctl_hndl_t rc_zone_cpu_shares; 330 rctl_hndl_t rc_zone_locked_mem; 331 rctl_hndl_t rc_zone_max_swap; 332 rctl_hndl_t rc_zone_cpu_cap; 333 rctl_hndl_t rc_zone_nlwps; 334 rctl_hndl_t rc_zone_shmmax; 335 rctl_hndl_t rc_zone_shmmni; 336 rctl_hndl_t rc_zone_semmni; 337 rctl_hndl_t rc_zone_msgmni; 338 /* 339 * Synchronization primitives used to synchronize between mounts and zone 340 * creation/destruction. 341 */ 342 static int mounts_in_progress; 343 static kcondvar_t mount_cv; 344 static kmutex_t mount_lock; 345 346 const char * const zone_default_initname = "/sbin/init"; 347 static char * const zone_prefix = "/zone/"; 348 static int zone_shutdown(zoneid_t zoneid); 349 static int zone_add_datalink(zoneid_t, char *); 350 static int zone_remove_datalink(zoneid_t, char *); 351 static int zone_check_datalink(zoneid_t *, char *); 352 static int zone_list_datalink(zoneid_t, int *, char *); 353 354 /* 355 * Bump this number when you alter the zone syscall interfaces; this is 356 * because we need to have support for previous API versions in libc 357 * to support patching; libc calls into the kernel to determine this number. 358 * 359 * Version 1 of the API is the version originally shipped with Solaris 10 360 * Version 2 alters the zone_create system call in order to support more 361 * arguments by moving the args into a structure; and to do better 362 * error reporting when zone_create() fails. 363 * Version 3 alters the zone_create system call in order to support the 364 * import of ZFS datasets to zones. 365 * Version 4 alters the zone_create system call in order to support 366 * Trusted Extensions. 367 * Version 5 alters the zone_boot system call, and converts its old 368 * bootargs parameter to be set by the zone_setattr API instead. 369 * Version 6 adds the flag argument to zone_create. 370 */ 371 static const int ZONE_SYSCALL_API_VERSION = 6; 372 373 /* 374 * Certain filesystems (such as NFS and autofs) need to know which zone 375 * the mount is being placed in. Because of this, we need to be able to 376 * ensure that a zone isn't in the process of being created such that 377 * nfs_mount() thinks it is in the global zone, while by the time it 378 * gets added the list of mounted zones, it ends up on zoneA's mount 379 * list. 380 * 381 * The following functions: block_mounts()/resume_mounts() and 382 * mount_in_progress()/mount_completed() are used by zones and the VFS 383 * layer (respectively) to synchronize zone creation and new mounts. 384 * 385 * The semantics are like a reader-reader lock such that there may 386 * either be multiple mounts (or zone creations, if that weren't 387 * serialized by zonehash_lock) in progress at the same time, but not 388 * both. 389 * 390 * We use cv's so the user can ctrl-C out of the operation if it's 391 * taking too long. 392 * 393 * The semantics are such that there is unfair bias towards the 394 * "current" operation. This means that zone creations may starve if 395 * there is a rapid succession of new mounts coming in to the system, or 396 * there is a remote possibility that zones will be created at such a 397 * rate that new mounts will not be able to proceed. 398 */ 399 /* 400 * Prevent new mounts from progressing to the point of calling 401 * VFS_MOUNT(). If there are already mounts in this "region", wait for 402 * them to complete. 403 */ 404 static int 405 block_mounts(void) 406 { 407 int retval = 0; 408 409 /* 410 * Since it may block for a long time, block_mounts() shouldn't be 411 * called with zonehash_lock held. 412 */ 413 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 414 mutex_enter(&mount_lock); 415 while (mounts_in_progress > 0) { 416 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 417 goto signaled; 418 } 419 /* 420 * A negative value of mounts_in_progress indicates that mounts 421 * have been blocked by (-mounts_in_progress) different callers. 422 */ 423 mounts_in_progress--; 424 retval = 1; 425 signaled: 426 mutex_exit(&mount_lock); 427 return (retval); 428 } 429 430 /* 431 * The VFS layer may progress with new mounts as far as we're concerned. 432 * Allow them to progress if we were the last obstacle. 433 */ 434 static void 435 resume_mounts(void) 436 { 437 mutex_enter(&mount_lock); 438 if (++mounts_in_progress == 0) 439 cv_broadcast(&mount_cv); 440 mutex_exit(&mount_lock); 441 } 442 443 /* 444 * The VFS layer is busy with a mount; zones should wait until all 445 * mounts are completed to progress. 446 */ 447 void 448 mount_in_progress(void) 449 { 450 mutex_enter(&mount_lock); 451 while (mounts_in_progress < 0) 452 cv_wait(&mount_cv, &mount_lock); 453 mounts_in_progress++; 454 mutex_exit(&mount_lock); 455 } 456 457 /* 458 * VFS is done with one mount; wake up any waiting block_mounts() 459 * callers if this is the last mount. 460 */ 461 void 462 mount_completed(void) 463 { 464 mutex_enter(&mount_lock); 465 if (--mounts_in_progress == 0) 466 cv_broadcast(&mount_cv); 467 mutex_exit(&mount_lock); 468 } 469 470 /* 471 * ZSD routines. 472 * 473 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 474 * defined by the pthread_key_create() and related interfaces. 475 * 476 * Kernel subsystems may register one or more data items and/or 477 * callbacks to be executed when a zone is created, shutdown, or 478 * destroyed. 479 * 480 * Unlike the thread counterpart, destructor callbacks will be executed 481 * even if the data pointer is NULL and/or there are no constructor 482 * callbacks, so it is the responsibility of such callbacks to check for 483 * NULL data values if necessary. 484 * 485 * The locking strategy and overall picture is as follows: 486 * 487 * When someone calls zone_key_create(), a template ZSD entry is added to the 488 * global list "zsd_registered_keys", protected by zsd_key_lock. The 489 * constructor callback is called immediately on all existing zones, and a 490 * copy of the ZSD entry added to the per-zone zone_zsd list (protected by 491 * zone_lock). As this operation requires the list of zones, the list of 492 * registered keys, and the per-zone list of ZSD entries to remain constant 493 * throughout the entire operation, it must grab zonehash_lock, zone_lock for 494 * all existing zones, and zsd_key_lock, in that order. Similar locking is 495 * needed when zone_key_delete() is called. It is thus sufficient to hold 496 * zsd_key_lock *or* zone_lock to prevent additions to or removals from the 497 * per-zone zone_zsd list. 498 * 499 * Note that this implementation does not make a copy of the ZSD entry if a 500 * constructor callback is not provided. A zone_getspecific() on such an 501 * uninitialized ZSD entry will return NULL. 502 * 503 * When new zones are created constructor callbacks for all registered ZSD 504 * entries will be called. 505 * 506 * The framework does not provide any locking around zone_getspecific() and 507 * zone_setspecific() apart from that needed for internal consistency, so 508 * callers interested in atomic "test-and-set" semantics will need to provide 509 * their own locking. 510 */ 511 void 512 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 513 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 514 { 515 struct zsd_entry *zsdp; 516 struct zsd_entry *t; 517 struct zone *zone; 518 519 zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP); 520 zsdp->zsd_data = NULL; 521 zsdp->zsd_create = create; 522 zsdp->zsd_shutdown = shutdown; 523 zsdp->zsd_destroy = destroy; 524 525 mutex_enter(&zonehash_lock); /* stop the world */ 526 for (zone = list_head(&zone_active); zone != NULL; 527 zone = list_next(&zone_active, zone)) 528 mutex_enter(&zone->zone_lock); /* lock all zones */ 529 530 mutex_enter(&zsd_key_lock); 531 *keyp = zsdp->zsd_key = ++zsd_keyval; 532 ASSERT(zsd_keyval != 0); 533 list_insert_tail(&zsd_registered_keys, zsdp); 534 mutex_exit(&zsd_key_lock); 535 536 if (create != NULL) { 537 for (zone = list_head(&zone_active); zone != NULL; 538 zone = list_next(&zone_active, zone)) { 539 t = kmem_alloc(sizeof (*t), KM_SLEEP); 540 t->zsd_key = *keyp; 541 t->zsd_data = (*create)(zone->zone_id); 542 t->zsd_create = create; 543 t->zsd_shutdown = shutdown; 544 t->zsd_destroy = destroy; 545 list_insert_tail(&zone->zone_zsd, t); 546 } 547 } 548 for (zone = list_head(&zone_active); zone != NULL; 549 zone = list_next(&zone_active, zone)) 550 mutex_exit(&zone->zone_lock); 551 mutex_exit(&zonehash_lock); 552 } 553 554 /* 555 * Helper function to find the zsd_entry associated with the key in the 556 * given list. 557 */ 558 static struct zsd_entry * 559 zsd_find(list_t *l, zone_key_t key) 560 { 561 struct zsd_entry *zsd; 562 563 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 564 if (zsd->zsd_key == key) { 565 /* 566 * Move to head of list to keep list in MRU order. 567 */ 568 if (zsd != list_head(l)) { 569 list_remove(l, zsd); 570 list_insert_head(l, zsd); 571 } 572 return (zsd); 573 } 574 } 575 return (NULL); 576 } 577 578 /* 579 * Function called when a module is being unloaded, or otherwise wishes 580 * to unregister its ZSD key and callbacks. 581 */ 582 int 583 zone_key_delete(zone_key_t key) 584 { 585 struct zsd_entry *zsdp = NULL; 586 zone_t *zone; 587 588 mutex_enter(&zonehash_lock); /* Zone create/delete waits for us */ 589 for (zone = list_head(&zone_active); zone != NULL; 590 zone = list_next(&zone_active, zone)) 591 mutex_enter(&zone->zone_lock); /* lock all zones */ 592 593 mutex_enter(&zsd_key_lock); 594 zsdp = zsd_find(&zsd_registered_keys, key); 595 if (zsdp == NULL) 596 goto notfound; 597 list_remove(&zsd_registered_keys, zsdp); 598 mutex_exit(&zsd_key_lock); 599 600 for (zone = list_head(&zone_active); zone != NULL; 601 zone = list_next(&zone_active, zone)) { 602 struct zsd_entry *del; 603 void *data; 604 605 if (!(zone->zone_flags & ZF_DESTROYED)) { 606 del = zsd_find(&zone->zone_zsd, key); 607 if (del != NULL) { 608 data = del->zsd_data; 609 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 610 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 611 list_remove(&zone->zone_zsd, del); 612 kmem_free(del, sizeof (*del)); 613 } else { 614 data = NULL; 615 } 616 if (zsdp->zsd_shutdown) 617 zsdp->zsd_shutdown(zone->zone_id, data); 618 if (zsdp->zsd_destroy) 619 zsdp->zsd_destroy(zone->zone_id, data); 620 } 621 mutex_exit(&zone->zone_lock); 622 } 623 mutex_exit(&zonehash_lock); 624 kmem_free(zsdp, sizeof (*zsdp)); 625 return (0); 626 627 notfound: 628 mutex_exit(&zsd_key_lock); 629 for (zone = list_head(&zone_active); zone != NULL; 630 zone = list_next(&zone_active, zone)) 631 mutex_exit(&zone->zone_lock); 632 mutex_exit(&zonehash_lock); 633 return (-1); 634 } 635 636 /* 637 * ZSD counterpart of pthread_setspecific(). 638 */ 639 int 640 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 641 { 642 struct zsd_entry *t; 643 struct zsd_entry *zsdp = NULL; 644 645 mutex_enter(&zone->zone_lock); 646 t = zsd_find(&zone->zone_zsd, key); 647 if (t != NULL) { 648 /* 649 * Replace old value with new 650 */ 651 t->zsd_data = (void *)data; 652 mutex_exit(&zone->zone_lock); 653 return (0); 654 } 655 /* 656 * If there was no previous value, go through the list of registered 657 * keys. 658 * 659 * We avoid grabbing zsd_key_lock until we are sure we need it; this is 660 * necessary for shutdown callbacks to be able to execute without fear 661 * of deadlock. 662 */ 663 mutex_enter(&zsd_key_lock); 664 zsdp = zsd_find(&zsd_registered_keys, key); 665 if (zsdp == NULL) { /* Key was not registered */ 666 mutex_exit(&zsd_key_lock); 667 mutex_exit(&zone->zone_lock); 668 return (-1); 669 } 670 671 /* 672 * Add a zsd_entry to this zone, using the template we just retrieved 673 * to initialize the constructor and destructor(s). 674 */ 675 t = kmem_alloc(sizeof (*t), KM_SLEEP); 676 t->zsd_key = key; 677 t->zsd_data = (void *)data; 678 t->zsd_create = zsdp->zsd_create; 679 t->zsd_shutdown = zsdp->zsd_shutdown; 680 t->zsd_destroy = zsdp->zsd_destroy; 681 list_insert_tail(&zone->zone_zsd, t); 682 mutex_exit(&zsd_key_lock); 683 mutex_exit(&zone->zone_lock); 684 return (0); 685 } 686 687 /* 688 * ZSD counterpart of pthread_getspecific(). 689 */ 690 void * 691 zone_getspecific(zone_key_t key, zone_t *zone) 692 { 693 struct zsd_entry *t; 694 void *data; 695 696 mutex_enter(&zone->zone_lock); 697 t = zsd_find(&zone->zone_zsd, key); 698 data = (t == NULL ? NULL : t->zsd_data); 699 mutex_exit(&zone->zone_lock); 700 return (data); 701 } 702 703 /* 704 * Function used to initialize a zone's list of ZSD callbacks and data 705 * when the zone is being created. The callbacks are initialized from 706 * the template list (zsd_registered_keys), and the constructor 707 * callback executed (if one exists). 708 * 709 * This is called before the zone is made publicly available, hence no 710 * need to grab zone_lock. 711 * 712 * Although we grab and release zsd_key_lock, new entries cannot be 713 * added to or removed from the zsd_registered_keys list until we 714 * release zonehash_lock, so there isn't a window for a 715 * zone_key_create() to come in after we've dropped zsd_key_lock but 716 * before the zone is added to the zone list, such that the constructor 717 * callbacks aren't executed for the new zone. 718 */ 719 static void 720 zone_zsd_configure(zone_t *zone) 721 { 722 struct zsd_entry *zsdp; 723 struct zsd_entry *t; 724 zoneid_t zoneid = zone->zone_id; 725 726 ASSERT(MUTEX_HELD(&zonehash_lock)); 727 ASSERT(list_head(&zone->zone_zsd) == NULL); 728 mutex_enter(&zsd_key_lock); 729 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 730 zsdp = list_next(&zsd_registered_keys, zsdp)) { 731 if (zsdp->zsd_create != NULL) { 732 t = kmem_alloc(sizeof (*t), KM_SLEEP); 733 t->zsd_key = zsdp->zsd_key; 734 t->zsd_create = zsdp->zsd_create; 735 t->zsd_data = (*t->zsd_create)(zoneid); 736 t->zsd_shutdown = zsdp->zsd_shutdown; 737 t->zsd_destroy = zsdp->zsd_destroy; 738 list_insert_tail(&zone->zone_zsd, t); 739 } 740 } 741 mutex_exit(&zsd_key_lock); 742 } 743 744 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 745 746 /* 747 * Helper function to execute shutdown or destructor callbacks. 748 */ 749 static void 750 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 751 { 752 struct zsd_entry *zsdp; 753 struct zsd_entry *t; 754 zoneid_t zoneid = zone->zone_id; 755 756 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 757 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 758 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 759 760 mutex_enter(&zone->zone_lock); 761 if (ct == ZSD_DESTROY) { 762 if (zone->zone_flags & ZF_DESTROYED) { 763 /* 764 * Make sure destructors are only called once. 765 */ 766 mutex_exit(&zone->zone_lock); 767 return; 768 } 769 zone->zone_flags |= ZF_DESTROYED; 770 } 771 mutex_exit(&zone->zone_lock); 772 773 /* 774 * Both zsd_key_lock and zone_lock need to be held in order to add or 775 * remove a ZSD key, (either globally as part of 776 * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is 777 * possible through zone_setspecific()), so it's sufficient to hold 778 * zsd_key_lock here. 779 * 780 * This is a good thing, since we don't want to recursively try to grab 781 * zone_lock if a callback attempts to do something like a crfree() or 782 * zone_rele(). 783 */ 784 mutex_enter(&zsd_key_lock); 785 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 786 zsdp = list_next(&zsd_registered_keys, zsdp)) { 787 zone_key_t key = zsdp->zsd_key; 788 789 /* Skip if no callbacks registered */ 790 if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL) 791 continue; 792 if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL) 793 continue; 794 /* 795 * Call the callback with the zone-specific data if we can find 796 * any, otherwise with NULL. 797 */ 798 t = zsd_find(&zone->zone_zsd, key); 799 if (t != NULL) { 800 if (ct == ZSD_SHUTDOWN) { 801 t->zsd_shutdown(zoneid, t->zsd_data); 802 } else { 803 ASSERT(ct == ZSD_DESTROY); 804 t->zsd_destroy(zoneid, t->zsd_data); 805 } 806 } else { 807 if (ct == ZSD_SHUTDOWN) { 808 zsdp->zsd_shutdown(zoneid, NULL); 809 } else { 810 ASSERT(ct == ZSD_DESTROY); 811 zsdp->zsd_destroy(zoneid, NULL); 812 } 813 } 814 } 815 mutex_exit(&zsd_key_lock); 816 } 817 818 /* 819 * Called when the zone is going away; free ZSD-related memory, and 820 * destroy the zone_zsd list. 821 */ 822 static void 823 zone_free_zsd(zone_t *zone) 824 { 825 struct zsd_entry *t, *next; 826 827 /* 828 * Free all the zsd_entry's we had on this zone. 829 */ 830 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 831 next = list_next(&zone->zone_zsd, t); 832 list_remove(&zone->zone_zsd, t); 833 kmem_free(t, sizeof (*t)); 834 } 835 list_destroy(&zone->zone_zsd); 836 } 837 838 /* 839 * Frees memory associated with the zone dataset list. 840 */ 841 static void 842 zone_free_datasets(zone_t *zone) 843 { 844 zone_dataset_t *t, *next; 845 846 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 847 next = list_next(&zone->zone_datasets, t); 848 list_remove(&zone->zone_datasets, t); 849 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 850 kmem_free(t, sizeof (*t)); 851 } 852 list_destroy(&zone->zone_datasets); 853 } 854 855 /* 856 * zone.cpu-shares resource control support. 857 */ 858 /*ARGSUSED*/ 859 static rctl_qty_t 860 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 861 { 862 ASSERT(MUTEX_HELD(&p->p_lock)); 863 return (p->p_zone->zone_shares); 864 } 865 866 /*ARGSUSED*/ 867 static int 868 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 869 rctl_qty_t nv) 870 { 871 ASSERT(MUTEX_HELD(&p->p_lock)); 872 ASSERT(e->rcep_t == RCENTITY_ZONE); 873 if (e->rcep_p.zone == NULL) 874 return (0); 875 876 e->rcep_p.zone->zone_shares = nv; 877 return (0); 878 } 879 880 static rctl_ops_t zone_cpu_shares_ops = { 881 rcop_no_action, 882 zone_cpu_shares_usage, 883 zone_cpu_shares_set, 884 rcop_no_test 885 }; 886 887 /* 888 * zone.cpu-cap resource control support. 889 */ 890 /*ARGSUSED*/ 891 static rctl_qty_t 892 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 893 { 894 ASSERT(MUTEX_HELD(&p->p_lock)); 895 return (cpucaps_zone_get(p->p_zone)); 896 } 897 898 /*ARGSUSED*/ 899 static int 900 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 901 rctl_qty_t nv) 902 { 903 zone_t *zone = e->rcep_p.zone; 904 905 ASSERT(MUTEX_HELD(&p->p_lock)); 906 ASSERT(e->rcep_t == RCENTITY_ZONE); 907 908 if (zone == NULL) 909 return (0); 910 911 /* 912 * set cap to the new value. 913 */ 914 return (cpucaps_zone_set(zone, nv)); 915 } 916 917 static rctl_ops_t zone_cpu_cap_ops = { 918 rcop_no_action, 919 zone_cpu_cap_get, 920 zone_cpu_cap_set, 921 rcop_no_test 922 }; 923 924 /*ARGSUSED*/ 925 static rctl_qty_t 926 zone_lwps_usage(rctl_t *r, proc_t *p) 927 { 928 rctl_qty_t nlwps; 929 zone_t *zone = p->p_zone; 930 931 ASSERT(MUTEX_HELD(&p->p_lock)); 932 933 mutex_enter(&zone->zone_nlwps_lock); 934 nlwps = zone->zone_nlwps; 935 mutex_exit(&zone->zone_nlwps_lock); 936 937 return (nlwps); 938 } 939 940 /*ARGSUSED*/ 941 static int 942 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 943 rctl_qty_t incr, uint_t flags) 944 { 945 rctl_qty_t nlwps; 946 947 ASSERT(MUTEX_HELD(&p->p_lock)); 948 ASSERT(e->rcep_t == RCENTITY_ZONE); 949 if (e->rcep_p.zone == NULL) 950 return (0); 951 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 952 nlwps = e->rcep_p.zone->zone_nlwps; 953 954 if (nlwps + incr > rcntl->rcv_value) 955 return (1); 956 957 return (0); 958 } 959 960 /*ARGSUSED*/ 961 static int 962 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 963 { 964 ASSERT(MUTEX_HELD(&p->p_lock)); 965 ASSERT(e->rcep_t == RCENTITY_ZONE); 966 if (e->rcep_p.zone == NULL) 967 return (0); 968 e->rcep_p.zone->zone_nlwps_ctl = nv; 969 return (0); 970 } 971 972 static rctl_ops_t zone_lwps_ops = { 973 rcop_no_action, 974 zone_lwps_usage, 975 zone_lwps_set, 976 zone_lwps_test, 977 }; 978 979 /*ARGSUSED*/ 980 static int 981 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 982 rctl_qty_t incr, uint_t flags) 983 { 984 rctl_qty_t v; 985 ASSERT(MUTEX_HELD(&p->p_lock)); 986 ASSERT(e->rcep_t == RCENTITY_ZONE); 987 v = e->rcep_p.zone->zone_shmmax + incr; 988 if (v > rval->rcv_value) 989 return (1); 990 return (0); 991 } 992 993 static rctl_ops_t zone_shmmax_ops = { 994 rcop_no_action, 995 rcop_no_usage, 996 rcop_no_set, 997 zone_shmmax_test 998 }; 999 1000 /*ARGSUSED*/ 1001 static int 1002 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1003 rctl_qty_t incr, uint_t flags) 1004 { 1005 rctl_qty_t v; 1006 ASSERT(MUTEX_HELD(&p->p_lock)); 1007 ASSERT(e->rcep_t == RCENTITY_ZONE); 1008 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1009 if (v > rval->rcv_value) 1010 return (1); 1011 return (0); 1012 } 1013 1014 static rctl_ops_t zone_shmmni_ops = { 1015 rcop_no_action, 1016 rcop_no_usage, 1017 rcop_no_set, 1018 zone_shmmni_test 1019 }; 1020 1021 /*ARGSUSED*/ 1022 static int 1023 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1024 rctl_qty_t incr, uint_t flags) 1025 { 1026 rctl_qty_t v; 1027 ASSERT(MUTEX_HELD(&p->p_lock)); 1028 ASSERT(e->rcep_t == RCENTITY_ZONE); 1029 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1030 if (v > rval->rcv_value) 1031 return (1); 1032 return (0); 1033 } 1034 1035 static rctl_ops_t zone_semmni_ops = { 1036 rcop_no_action, 1037 rcop_no_usage, 1038 rcop_no_set, 1039 zone_semmni_test 1040 }; 1041 1042 /*ARGSUSED*/ 1043 static int 1044 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1045 rctl_qty_t incr, uint_t flags) 1046 { 1047 rctl_qty_t v; 1048 ASSERT(MUTEX_HELD(&p->p_lock)); 1049 ASSERT(e->rcep_t == RCENTITY_ZONE); 1050 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1051 if (v > rval->rcv_value) 1052 return (1); 1053 return (0); 1054 } 1055 1056 static rctl_ops_t zone_msgmni_ops = { 1057 rcop_no_action, 1058 rcop_no_usage, 1059 rcop_no_set, 1060 zone_msgmni_test 1061 }; 1062 1063 /*ARGSUSED*/ 1064 static rctl_qty_t 1065 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1066 { 1067 rctl_qty_t q; 1068 ASSERT(MUTEX_HELD(&p->p_lock)); 1069 mutex_enter(&p->p_zone->zone_mem_lock); 1070 q = p->p_zone->zone_locked_mem; 1071 mutex_exit(&p->p_zone->zone_mem_lock); 1072 return (q); 1073 } 1074 1075 /*ARGSUSED*/ 1076 static int 1077 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1078 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1079 { 1080 rctl_qty_t q; 1081 zone_t *z; 1082 1083 z = e->rcep_p.zone; 1084 ASSERT(MUTEX_HELD(&p->p_lock)); 1085 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1086 q = z->zone_locked_mem; 1087 if (q + incr > rcntl->rcv_value) 1088 return (1); 1089 return (0); 1090 } 1091 1092 /*ARGSUSED*/ 1093 static int 1094 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1095 rctl_qty_t nv) 1096 { 1097 ASSERT(MUTEX_HELD(&p->p_lock)); 1098 ASSERT(e->rcep_t == RCENTITY_ZONE); 1099 if (e->rcep_p.zone == NULL) 1100 return (0); 1101 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1102 return (0); 1103 } 1104 1105 static rctl_ops_t zone_locked_mem_ops = { 1106 rcop_no_action, 1107 zone_locked_mem_usage, 1108 zone_locked_mem_set, 1109 zone_locked_mem_test 1110 }; 1111 1112 /*ARGSUSED*/ 1113 static rctl_qty_t 1114 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1115 { 1116 rctl_qty_t q; 1117 zone_t *z = p->p_zone; 1118 1119 ASSERT(MUTEX_HELD(&p->p_lock)); 1120 mutex_enter(&z->zone_mem_lock); 1121 q = z->zone_max_swap; 1122 mutex_exit(&z->zone_mem_lock); 1123 return (q); 1124 } 1125 1126 /*ARGSUSED*/ 1127 static int 1128 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1129 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1130 { 1131 rctl_qty_t q; 1132 zone_t *z; 1133 1134 z = e->rcep_p.zone; 1135 ASSERT(MUTEX_HELD(&p->p_lock)); 1136 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1137 q = z->zone_max_swap; 1138 if (q + incr > rcntl->rcv_value) 1139 return (1); 1140 return (0); 1141 } 1142 1143 /*ARGSUSED*/ 1144 static int 1145 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1146 rctl_qty_t nv) 1147 { 1148 ASSERT(MUTEX_HELD(&p->p_lock)); 1149 ASSERT(e->rcep_t == RCENTITY_ZONE); 1150 if (e->rcep_p.zone == NULL) 1151 return (0); 1152 e->rcep_p.zone->zone_max_swap_ctl = nv; 1153 return (0); 1154 } 1155 1156 static rctl_ops_t zone_max_swap_ops = { 1157 rcop_no_action, 1158 zone_max_swap_usage, 1159 zone_max_swap_set, 1160 zone_max_swap_test 1161 }; 1162 1163 /* 1164 * Helper function to brand the zone with a unique ID. 1165 */ 1166 static void 1167 zone_uniqid(zone_t *zone) 1168 { 1169 static uint64_t uniqid = 0; 1170 1171 ASSERT(MUTEX_HELD(&zonehash_lock)); 1172 zone->zone_uniqid = uniqid++; 1173 } 1174 1175 /* 1176 * Returns a held pointer to the "kcred" for the specified zone. 1177 */ 1178 struct cred * 1179 zone_get_kcred(zoneid_t zoneid) 1180 { 1181 zone_t *zone; 1182 cred_t *cr; 1183 1184 if ((zone = zone_find_by_id(zoneid)) == NULL) 1185 return (NULL); 1186 cr = zone->zone_kcred; 1187 crhold(cr); 1188 zone_rele(zone); 1189 return (cr); 1190 } 1191 1192 static int 1193 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1194 { 1195 zone_t *zone = ksp->ks_private; 1196 zone_kstat_t *zk = ksp->ks_data; 1197 1198 if (rw == KSTAT_WRITE) 1199 return (EACCES); 1200 1201 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1202 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1203 return (0); 1204 } 1205 1206 static int 1207 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1208 { 1209 zone_t *zone = ksp->ks_private; 1210 zone_kstat_t *zk = ksp->ks_data; 1211 1212 if (rw == KSTAT_WRITE) 1213 return (EACCES); 1214 1215 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1216 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1217 return (0); 1218 } 1219 1220 static void 1221 zone_kstat_create(zone_t *zone) 1222 { 1223 kstat_t *ksp; 1224 zone_kstat_t *zk; 1225 1226 ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED, 1227 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1228 KSTAT_FLAG_VIRTUAL); 1229 1230 if (ksp == NULL) 1231 return; 1232 1233 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1234 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1235 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1236 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1237 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1238 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1239 ksp->ks_update = zone_lockedmem_kstat_update; 1240 ksp->ks_private = zone; 1241 kstat_install(ksp); 1242 1243 zone->zone_lockedmem_kstat = ksp; 1244 1245 ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED, 1246 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1247 KSTAT_FLAG_VIRTUAL); 1248 1249 if (ksp == NULL) 1250 return; 1251 1252 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1253 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1254 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1255 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1256 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1257 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1258 ksp->ks_update = zone_swapresv_kstat_update; 1259 ksp->ks_private = zone; 1260 kstat_install(ksp); 1261 1262 zone->zone_swapresv_kstat = ksp; 1263 } 1264 1265 static void 1266 zone_kstat_delete(zone_t *zone) 1267 { 1268 void *data; 1269 1270 if (zone->zone_lockedmem_kstat != NULL) { 1271 data = zone->zone_lockedmem_kstat->ks_data; 1272 kstat_delete(zone->zone_lockedmem_kstat); 1273 kmem_free(data, sizeof (zone_kstat_t)); 1274 } 1275 if (zone->zone_swapresv_kstat != NULL) { 1276 data = zone->zone_swapresv_kstat->ks_data; 1277 kstat_delete(zone->zone_swapresv_kstat); 1278 kmem_free(data, sizeof (zone_kstat_t)); 1279 } 1280 } 1281 1282 /* 1283 * Called very early on in boot to initialize the ZSD list so that 1284 * zone_key_create() can be called before zone_init(). It also initializes 1285 * portions of zone0 which may be used before zone_init() is called. The 1286 * variable "global_zone" will be set when zone0 is fully initialized by 1287 * zone_init(). 1288 */ 1289 void 1290 zone_zsd_init(void) 1291 { 1292 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1293 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1294 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1295 offsetof(struct zsd_entry, zsd_linkage)); 1296 list_create(&zone_active, sizeof (zone_t), 1297 offsetof(zone_t, zone_linkage)); 1298 list_create(&zone_deathrow, sizeof (zone_t), 1299 offsetof(zone_t, zone_linkage)); 1300 1301 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1302 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1303 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1304 zone0.zone_shares = 1; 1305 zone0.zone_nlwps = 0; 1306 zone0.zone_nlwps_ctl = INT_MAX; 1307 zone0.zone_locked_mem = 0; 1308 zone0.zone_locked_mem_ctl = UINT64_MAX; 1309 ASSERT(zone0.zone_max_swap == 0); 1310 zone0.zone_max_swap_ctl = UINT64_MAX; 1311 zone0.zone_shmmax = 0; 1312 zone0.zone_ipc.ipcq_shmmni = 0; 1313 zone0.zone_ipc.ipcq_semmni = 0; 1314 zone0.zone_ipc.ipcq_msgmni = 0; 1315 zone0.zone_name = GLOBAL_ZONENAME; 1316 zone0.zone_nodename = utsname.nodename; 1317 zone0.zone_domain = srpc_domain; 1318 zone0.zone_ref = 1; 1319 zone0.zone_id = GLOBAL_ZONEID; 1320 zone0.zone_status = ZONE_IS_RUNNING; 1321 zone0.zone_rootpath = "/"; 1322 zone0.zone_rootpathlen = 2; 1323 zone0.zone_psetid = ZONE_PS_INVAL; 1324 zone0.zone_ncpus = 0; 1325 zone0.zone_ncpus_online = 0; 1326 zone0.zone_proc_initpid = 1; 1327 zone0.zone_initname = initname; 1328 zone0.zone_lockedmem_kstat = NULL; 1329 zone0.zone_swapresv_kstat = NULL; 1330 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1331 offsetof(struct zsd_entry, zsd_linkage)); 1332 list_insert_head(&zone_active, &zone0); 1333 1334 /* 1335 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1336 * to anything meaningful. It is assigned to be 'rootdir' in 1337 * vfs_mountroot(). 1338 */ 1339 zone0.zone_rootvp = NULL; 1340 zone0.zone_vfslist = NULL; 1341 zone0.zone_bootargs = initargs; 1342 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1343 /* 1344 * The global zone has all privileges 1345 */ 1346 priv_fillset(zone0.zone_privset); 1347 /* 1348 * Add p0 to the global zone 1349 */ 1350 zone0.zone_zsched = &p0; 1351 p0.p_zone = &zone0; 1352 } 1353 1354 /* 1355 * Compute a hash value based on the contents of the label and the DOI. The 1356 * hash algorithm is somewhat arbitrary, but is based on the observation that 1357 * humans will likely pick labels that differ by amounts that work out to be 1358 * multiples of the number of hash chains, and thus stirring in some primes 1359 * should help. 1360 */ 1361 static uint_t 1362 hash_bylabel(void *hdata, mod_hash_key_t key) 1363 { 1364 const ts_label_t *lab = (ts_label_t *)key; 1365 const uint32_t *up, *ue; 1366 uint_t hash; 1367 int i; 1368 1369 _NOTE(ARGUNUSED(hdata)); 1370 1371 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1372 /* we depend on alignment of label, but not representation */ 1373 up = (const uint32_t *)&lab->tsl_label; 1374 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1375 i = 1; 1376 while (up < ue) { 1377 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1378 hash += *up + (*up << ((i % 16) + 1)); 1379 up++; 1380 i++; 1381 } 1382 return (hash); 1383 } 1384 1385 /* 1386 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1387 * equal). This may need to be changed if less than / greater than is ever 1388 * needed. 1389 */ 1390 static int 1391 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1392 { 1393 ts_label_t *lab1 = (ts_label_t *)key1; 1394 ts_label_t *lab2 = (ts_label_t *)key2; 1395 1396 return (label_equal(lab1, lab2) ? 0 : 1); 1397 } 1398 1399 /* 1400 * Called by main() to initialize the zones framework. 1401 */ 1402 void 1403 zone_init(void) 1404 { 1405 rctl_dict_entry_t *rde; 1406 rctl_val_t *dval; 1407 rctl_set_t *set; 1408 rctl_alloc_gp_t *gp; 1409 rctl_entity_p_t e; 1410 int res; 1411 1412 ASSERT(curproc == &p0); 1413 1414 /* 1415 * Create ID space for zone IDs. ID 0 is reserved for the 1416 * global zone. 1417 */ 1418 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1419 1420 /* 1421 * Initialize generic zone resource controls, if any. 1422 */ 1423 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1424 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1425 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1426 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 1427 1428 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 1429 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 1430 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 1431 RCTL_GLOBAL_INFINITE, 1432 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 1433 1434 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1435 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1436 INT_MAX, INT_MAX, &zone_lwps_ops); 1437 /* 1438 * System V IPC resource controls 1439 */ 1440 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1441 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1442 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1443 1444 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1445 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1446 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1447 1448 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1449 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1450 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1451 1452 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1453 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1454 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1455 1456 /* 1457 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1458 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1459 */ 1460 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1461 bzero(dval, sizeof (rctl_val_t)); 1462 dval->rcv_value = 1; 1463 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1464 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1465 dval->rcv_action_recip_pid = -1; 1466 1467 rde = rctl_dict_lookup("zone.cpu-shares"); 1468 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1469 1470 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1471 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1472 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1473 &zone_locked_mem_ops); 1474 1475 rc_zone_max_swap = rctl_register("zone.max-swap", 1476 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1477 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1478 &zone_max_swap_ops); 1479 1480 /* 1481 * Initialize the ``global zone''. 1482 */ 1483 set = rctl_set_create(); 1484 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1485 mutex_enter(&p0.p_lock); 1486 e.rcep_p.zone = &zone0; 1487 e.rcep_t = RCENTITY_ZONE; 1488 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1489 gp); 1490 1491 zone0.zone_nlwps = p0.p_lwpcnt; 1492 zone0.zone_ntasks = 1; 1493 mutex_exit(&p0.p_lock); 1494 zone0.zone_restart_init = B_TRUE; 1495 zone0.zone_brand = &native_brand; 1496 rctl_prealloc_destroy(gp); 1497 /* 1498 * pool_default hasn't been initialized yet, so we let pool_init() 1499 * take care of making sure the global zone is in the default pool. 1500 */ 1501 1502 /* 1503 * Initialize global zone kstats 1504 */ 1505 zone_kstat_create(&zone0); 1506 1507 /* 1508 * Initialize zone label. 1509 * mlp are initialized when tnzonecfg is loaded. 1510 */ 1511 zone0.zone_slabel = l_admin_low; 1512 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1513 label_hold(l_admin_low); 1514 1515 mutex_enter(&zonehash_lock); 1516 zone_uniqid(&zone0); 1517 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1518 1519 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1520 mod_hash_null_valdtor); 1521 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1522 zone_hash_size, mod_hash_null_valdtor); 1523 /* 1524 * maintain zonehashbylabel only for labeled systems 1525 */ 1526 if (is_system_labeled()) 1527 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1528 zone_hash_size, mod_hash_null_keydtor, 1529 mod_hash_null_valdtor, hash_bylabel, NULL, 1530 hash_labelkey_cmp, KM_SLEEP); 1531 zonecount = 1; 1532 1533 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1534 (mod_hash_val_t)&zone0); 1535 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1536 (mod_hash_val_t)&zone0); 1537 if (is_system_labeled()) { 1538 zone0.zone_flags |= ZF_HASHED_LABEL; 1539 (void) mod_hash_insert(zonehashbylabel, 1540 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1541 } 1542 mutex_exit(&zonehash_lock); 1543 1544 /* 1545 * We avoid setting zone_kcred until now, since kcred is initialized 1546 * sometime after zone_zsd_init() and before zone_init(). 1547 */ 1548 zone0.zone_kcred = kcred; 1549 /* 1550 * The global zone is fully initialized (except for zone_rootvp which 1551 * will be set when the root filesystem is mounted). 1552 */ 1553 global_zone = &zone0; 1554 1555 /* 1556 * Setup an event channel to send zone status change notifications on 1557 */ 1558 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1559 EVCH_CREAT); 1560 1561 if (res) 1562 panic("Sysevent_evc_bind failed during zone setup.\n"); 1563 1564 } 1565 1566 static void 1567 zone_free(zone_t *zone) 1568 { 1569 ASSERT(zone != global_zone); 1570 ASSERT(zone->zone_ntasks == 0); 1571 ASSERT(zone->zone_nlwps == 0); 1572 ASSERT(zone->zone_cred_ref == 0); 1573 ASSERT(zone->zone_kcred == NULL); 1574 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1575 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1576 1577 /* 1578 * Remove any zone caps. 1579 */ 1580 cpucaps_zone_remove(zone); 1581 1582 ASSERT(zone->zone_cpucap == NULL); 1583 1584 /* remove from deathrow list */ 1585 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1586 ASSERT(zone->zone_ref == 0); 1587 mutex_enter(&zone_deathrow_lock); 1588 list_remove(&zone_deathrow, zone); 1589 mutex_exit(&zone_deathrow_lock); 1590 } 1591 1592 zone_free_zsd(zone); 1593 zone_free_datasets(zone); 1594 1595 if (zone->zone_rootvp != NULL) 1596 VN_RELE(zone->zone_rootvp); 1597 if (zone->zone_rootpath) 1598 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 1599 if (zone->zone_name != NULL) 1600 kmem_free(zone->zone_name, ZONENAME_MAX); 1601 if (zone->zone_slabel != NULL) 1602 label_rele(zone->zone_slabel); 1603 if (zone->zone_nodename != NULL) 1604 kmem_free(zone->zone_nodename, _SYS_NMLN); 1605 if (zone->zone_domain != NULL) 1606 kmem_free(zone->zone_domain, _SYS_NMLN); 1607 if (zone->zone_privset != NULL) 1608 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 1609 if (zone->zone_rctls != NULL) 1610 rctl_set_free(zone->zone_rctls); 1611 if (zone->zone_bootargs != NULL) 1612 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 1613 if (zone->zone_initname != NULL) 1614 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 1615 id_free(zoneid_space, zone->zone_id); 1616 mutex_destroy(&zone->zone_lock); 1617 cv_destroy(&zone->zone_cv); 1618 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 1619 kmem_free(zone, sizeof (zone_t)); 1620 } 1621 1622 /* 1623 * See block comment at the top of this file for information about zone 1624 * status values. 1625 */ 1626 /* 1627 * Convenience function for setting zone status. 1628 */ 1629 static void 1630 zone_status_set(zone_t *zone, zone_status_t status) 1631 { 1632 1633 nvlist_t *nvl = NULL; 1634 ASSERT(MUTEX_HELD(&zone_status_lock)); 1635 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 1636 status >= zone_status_get(zone)); 1637 1638 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 1639 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 1640 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 1641 zone_status_table[status]) || 1642 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 1643 zone_status_table[zone->zone_status]) || 1644 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 1645 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 1646 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 1647 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 1648 #ifdef DEBUG 1649 (void) printf( 1650 "Failed to allocate and send zone state change event.\n"); 1651 #endif 1652 } 1653 nvlist_free(nvl); 1654 1655 zone->zone_status = status; 1656 1657 cv_broadcast(&zone->zone_cv); 1658 } 1659 1660 /* 1661 * Public function to retrieve the zone status. The zone status may 1662 * change after it is retrieved. 1663 */ 1664 zone_status_t 1665 zone_status_get(zone_t *zone) 1666 { 1667 return (zone->zone_status); 1668 } 1669 1670 static int 1671 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 1672 { 1673 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 1674 int err = 0; 1675 1676 ASSERT(zone != global_zone); 1677 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 1678 goto done; /* EFAULT or ENAMETOOLONG */ 1679 1680 if (zone->zone_bootargs != NULL) 1681 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 1682 1683 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 1684 (void) strcpy(zone->zone_bootargs, bootargs); 1685 1686 done: 1687 kmem_free(bootargs, BOOTARGS_MAX); 1688 return (err); 1689 } 1690 1691 static int 1692 zone_set_brand(zone_t *zone, const char *brand) 1693 { 1694 struct brand_attr *attrp; 1695 brand_t *bp; 1696 1697 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 1698 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 1699 kmem_free(attrp, sizeof (struct brand_attr)); 1700 return (EFAULT); 1701 } 1702 1703 bp = brand_register_zone(attrp); 1704 kmem_free(attrp, sizeof (struct brand_attr)); 1705 if (bp == NULL) 1706 return (EINVAL); 1707 1708 /* 1709 * This is the only place where a zone can change it's brand. 1710 * We already need to hold zone_status_lock to check the zone 1711 * status, so we'll just use that lock to serialize zone 1712 * branding requests as well. 1713 */ 1714 mutex_enter(&zone_status_lock); 1715 1716 /* Re-Branding is not allowed and the zone can't be booted yet */ 1717 if ((ZONE_IS_BRANDED(zone)) || 1718 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 1719 mutex_exit(&zone_status_lock); 1720 brand_unregister_zone(bp); 1721 return (EINVAL); 1722 } 1723 1724 if (is_system_labeled() && 1725 strncmp(attrp->ba_brandname, NATIVE_BRAND_NAME, MAXNAMELEN) != 0) { 1726 mutex_exit(&zone_status_lock); 1727 brand_unregister_zone(bp); 1728 return (EPERM); 1729 } 1730 1731 zone->zone_brand = bp; 1732 mutex_exit(&zone_status_lock); 1733 return (0); 1734 } 1735 1736 static int 1737 zone_set_initname(zone_t *zone, const char *zone_initname) 1738 { 1739 char initname[INITNAME_SZ]; 1740 size_t len; 1741 int err = 0; 1742 1743 ASSERT(zone != global_zone); 1744 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 1745 return (err); /* EFAULT or ENAMETOOLONG */ 1746 1747 if (zone->zone_initname != NULL) 1748 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 1749 1750 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 1751 (void) strcpy(zone->zone_initname, initname); 1752 return (0); 1753 } 1754 1755 static int 1756 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 1757 { 1758 uint64_t mcap; 1759 int err = 0; 1760 1761 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 1762 zone->zone_phys_mcap = mcap; 1763 1764 return (err); 1765 } 1766 1767 static int 1768 zone_set_sched_class(zone_t *zone, const char *new_class) 1769 { 1770 char sched_class[PC_CLNMSZ]; 1771 id_t classid; 1772 int err; 1773 1774 ASSERT(zone != global_zone); 1775 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 1776 return (err); /* EFAULT or ENAMETOOLONG */ 1777 1778 if (getcid(sched_class, &classid) != 0 || classid == syscid) 1779 return (set_errno(EINVAL)); 1780 zone->zone_defaultcid = classid; 1781 ASSERT(zone->zone_defaultcid > 0 && 1782 zone->zone_defaultcid < loaded_classes); 1783 1784 return (0); 1785 } 1786 1787 /* 1788 * Block indefinitely waiting for (zone_status >= status) 1789 */ 1790 void 1791 zone_status_wait(zone_t *zone, zone_status_t status) 1792 { 1793 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1794 1795 mutex_enter(&zone_status_lock); 1796 while (zone->zone_status < status) { 1797 cv_wait(&zone->zone_cv, &zone_status_lock); 1798 } 1799 mutex_exit(&zone_status_lock); 1800 } 1801 1802 /* 1803 * Private CPR-safe version of zone_status_wait(). 1804 */ 1805 static void 1806 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 1807 { 1808 callb_cpr_t cprinfo; 1809 1810 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1811 1812 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 1813 str); 1814 mutex_enter(&zone_status_lock); 1815 while (zone->zone_status < status) { 1816 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1817 cv_wait(&zone->zone_cv, &zone_status_lock); 1818 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 1819 } 1820 /* 1821 * zone_status_lock is implicitly released by the following. 1822 */ 1823 CALLB_CPR_EXIT(&cprinfo); 1824 } 1825 1826 /* 1827 * Block until zone enters requested state or signal is received. Return (0) 1828 * if signaled, non-zero otherwise. 1829 */ 1830 int 1831 zone_status_wait_sig(zone_t *zone, zone_status_t status) 1832 { 1833 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1834 1835 mutex_enter(&zone_status_lock); 1836 while (zone->zone_status < status) { 1837 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 1838 mutex_exit(&zone_status_lock); 1839 return (0); 1840 } 1841 } 1842 mutex_exit(&zone_status_lock); 1843 return (1); 1844 } 1845 1846 /* 1847 * Block until the zone enters the requested state or the timeout expires, 1848 * whichever happens first. Return (-1) if operation timed out, time remaining 1849 * otherwise. 1850 */ 1851 clock_t 1852 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 1853 { 1854 clock_t timeleft = 0; 1855 1856 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1857 1858 mutex_enter(&zone_status_lock); 1859 while (zone->zone_status < status && timeleft != -1) { 1860 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 1861 } 1862 mutex_exit(&zone_status_lock); 1863 return (timeleft); 1864 } 1865 1866 /* 1867 * Block until the zone enters the requested state, the current process is 1868 * signaled, or the timeout expires, whichever happens first. Return (-1) if 1869 * operation timed out, 0 if signaled, time remaining otherwise. 1870 */ 1871 clock_t 1872 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 1873 { 1874 clock_t timeleft = tim - lbolt; 1875 1876 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1877 1878 mutex_enter(&zone_status_lock); 1879 while (zone->zone_status < status) { 1880 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 1881 tim); 1882 if (timeleft <= 0) 1883 break; 1884 } 1885 mutex_exit(&zone_status_lock); 1886 return (timeleft); 1887 } 1888 1889 /* 1890 * Zones have two reference counts: one for references from credential 1891 * structures (zone_cred_ref), and one (zone_ref) for everything else. 1892 * This is so we can allow a zone to be rebooted while there are still 1893 * outstanding cred references, since certain drivers cache dblks (which 1894 * implicitly results in cached creds). We wait for zone_ref to drop to 1895 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 1896 * later freed when the zone_cred_ref drops to 0, though nothing other 1897 * than the zone id and privilege set should be accessed once the zone 1898 * is "dead". 1899 * 1900 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 1901 * to force halt/reboot to block waiting for the zone_cred_ref to drop 1902 * to 0. This can be useful to flush out other sources of cached creds 1903 * that may be less innocuous than the driver case. 1904 */ 1905 1906 int zone_wait_for_cred = 0; 1907 1908 static void 1909 zone_hold_locked(zone_t *z) 1910 { 1911 ASSERT(MUTEX_HELD(&z->zone_lock)); 1912 z->zone_ref++; 1913 ASSERT(z->zone_ref != 0); 1914 } 1915 1916 void 1917 zone_hold(zone_t *z) 1918 { 1919 mutex_enter(&z->zone_lock); 1920 zone_hold_locked(z); 1921 mutex_exit(&z->zone_lock); 1922 } 1923 1924 /* 1925 * If the non-cred ref count drops to 1 and either the cred ref count 1926 * is 0 or we aren't waiting for cred references, the zone is ready to 1927 * be destroyed. 1928 */ 1929 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 1930 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 1931 1932 void 1933 zone_rele(zone_t *z) 1934 { 1935 boolean_t wakeup; 1936 1937 mutex_enter(&z->zone_lock); 1938 ASSERT(z->zone_ref != 0); 1939 z->zone_ref--; 1940 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1941 /* no more refs, free the structure */ 1942 mutex_exit(&z->zone_lock); 1943 zone_free(z); 1944 return; 1945 } 1946 /* signal zone_destroy so the zone can finish halting */ 1947 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 1948 mutex_exit(&z->zone_lock); 1949 1950 if (wakeup) { 1951 /* 1952 * Grabbing zonehash_lock here effectively synchronizes with 1953 * zone_destroy() to avoid missed signals. 1954 */ 1955 mutex_enter(&zonehash_lock); 1956 cv_broadcast(&zone_destroy_cv); 1957 mutex_exit(&zonehash_lock); 1958 } 1959 } 1960 1961 void 1962 zone_cred_hold(zone_t *z) 1963 { 1964 mutex_enter(&z->zone_lock); 1965 z->zone_cred_ref++; 1966 ASSERT(z->zone_cred_ref != 0); 1967 mutex_exit(&z->zone_lock); 1968 } 1969 1970 void 1971 zone_cred_rele(zone_t *z) 1972 { 1973 boolean_t wakeup; 1974 1975 mutex_enter(&z->zone_lock); 1976 ASSERT(z->zone_cred_ref != 0); 1977 z->zone_cred_ref--; 1978 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1979 /* no more refs, free the structure */ 1980 mutex_exit(&z->zone_lock); 1981 zone_free(z); 1982 return; 1983 } 1984 /* 1985 * If zone_destroy is waiting for the cred references to drain 1986 * out, and they have, signal it. 1987 */ 1988 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 1989 zone_status_get(z) >= ZONE_IS_DEAD); 1990 mutex_exit(&z->zone_lock); 1991 1992 if (wakeup) { 1993 /* 1994 * Grabbing zonehash_lock here effectively synchronizes with 1995 * zone_destroy() to avoid missed signals. 1996 */ 1997 mutex_enter(&zonehash_lock); 1998 cv_broadcast(&zone_destroy_cv); 1999 mutex_exit(&zonehash_lock); 2000 } 2001 } 2002 2003 void 2004 zone_task_hold(zone_t *z) 2005 { 2006 mutex_enter(&z->zone_lock); 2007 z->zone_ntasks++; 2008 ASSERT(z->zone_ntasks != 0); 2009 mutex_exit(&z->zone_lock); 2010 } 2011 2012 void 2013 zone_task_rele(zone_t *zone) 2014 { 2015 uint_t refcnt; 2016 2017 mutex_enter(&zone->zone_lock); 2018 ASSERT(zone->zone_ntasks != 0); 2019 refcnt = --zone->zone_ntasks; 2020 if (refcnt > 1) { /* Common case */ 2021 mutex_exit(&zone->zone_lock); 2022 return; 2023 } 2024 zone_hold_locked(zone); /* so we can use the zone_t later */ 2025 mutex_exit(&zone->zone_lock); 2026 if (refcnt == 1) { 2027 /* 2028 * See if the zone is shutting down. 2029 */ 2030 mutex_enter(&zone_status_lock); 2031 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2032 goto out; 2033 } 2034 2035 /* 2036 * Make sure the ntasks didn't change since we 2037 * dropped zone_lock. 2038 */ 2039 mutex_enter(&zone->zone_lock); 2040 if (refcnt != zone->zone_ntasks) { 2041 mutex_exit(&zone->zone_lock); 2042 goto out; 2043 } 2044 mutex_exit(&zone->zone_lock); 2045 2046 /* 2047 * No more user processes in the zone. The zone is empty. 2048 */ 2049 zone_status_set(zone, ZONE_IS_EMPTY); 2050 goto out; 2051 } 2052 2053 ASSERT(refcnt == 0); 2054 /* 2055 * zsched has exited; the zone is dead. 2056 */ 2057 zone->zone_zsched = NULL; /* paranoia */ 2058 mutex_enter(&zone_status_lock); 2059 zone_status_set(zone, ZONE_IS_DEAD); 2060 out: 2061 mutex_exit(&zone_status_lock); 2062 zone_rele(zone); 2063 } 2064 2065 zoneid_t 2066 getzoneid(void) 2067 { 2068 return (curproc->p_zone->zone_id); 2069 } 2070 2071 /* 2072 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2073 * check the validity of a zone's state. 2074 */ 2075 static zone_t * 2076 zone_find_all_by_id(zoneid_t zoneid) 2077 { 2078 mod_hash_val_t hv; 2079 zone_t *zone = NULL; 2080 2081 ASSERT(MUTEX_HELD(&zonehash_lock)); 2082 2083 if (mod_hash_find(zonehashbyid, 2084 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2085 zone = (zone_t *)hv; 2086 return (zone); 2087 } 2088 2089 static zone_t * 2090 zone_find_all_by_label(const ts_label_t *label) 2091 { 2092 mod_hash_val_t hv; 2093 zone_t *zone = NULL; 2094 2095 ASSERT(MUTEX_HELD(&zonehash_lock)); 2096 2097 /* 2098 * zonehashbylabel is not maintained for unlabeled systems 2099 */ 2100 if (!is_system_labeled()) 2101 return (NULL); 2102 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2103 zone = (zone_t *)hv; 2104 return (zone); 2105 } 2106 2107 static zone_t * 2108 zone_find_all_by_name(char *name) 2109 { 2110 mod_hash_val_t hv; 2111 zone_t *zone = NULL; 2112 2113 ASSERT(MUTEX_HELD(&zonehash_lock)); 2114 2115 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2116 zone = (zone_t *)hv; 2117 return (zone); 2118 } 2119 2120 /* 2121 * Public interface for looking up a zone by zoneid. Only returns the zone if 2122 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2123 * Caller must call zone_rele() once it is done with the zone. 2124 * 2125 * The zone may begin the zone_destroy() sequence immediately after this 2126 * function returns, but may be safely used until zone_rele() is called. 2127 */ 2128 zone_t * 2129 zone_find_by_id(zoneid_t zoneid) 2130 { 2131 zone_t *zone; 2132 zone_status_t status; 2133 2134 mutex_enter(&zonehash_lock); 2135 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2136 mutex_exit(&zonehash_lock); 2137 return (NULL); 2138 } 2139 status = zone_status_get(zone); 2140 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2141 /* 2142 * For all practical purposes the zone doesn't exist. 2143 */ 2144 mutex_exit(&zonehash_lock); 2145 return (NULL); 2146 } 2147 zone_hold(zone); 2148 mutex_exit(&zonehash_lock); 2149 return (zone); 2150 } 2151 2152 /* 2153 * Similar to zone_find_by_id, but using zone label as the key. 2154 */ 2155 zone_t * 2156 zone_find_by_label(const ts_label_t *label) 2157 { 2158 zone_t *zone; 2159 zone_status_t status; 2160 2161 mutex_enter(&zonehash_lock); 2162 if ((zone = zone_find_all_by_label(label)) == NULL) { 2163 mutex_exit(&zonehash_lock); 2164 return (NULL); 2165 } 2166 2167 status = zone_status_get(zone); 2168 if (status > ZONE_IS_DOWN) { 2169 /* 2170 * For all practical purposes the zone doesn't exist. 2171 */ 2172 mutex_exit(&zonehash_lock); 2173 return (NULL); 2174 } 2175 zone_hold(zone); 2176 mutex_exit(&zonehash_lock); 2177 return (zone); 2178 } 2179 2180 /* 2181 * Similar to zone_find_by_id, but using zone name as the key. 2182 */ 2183 zone_t * 2184 zone_find_by_name(char *name) 2185 { 2186 zone_t *zone; 2187 zone_status_t status; 2188 2189 mutex_enter(&zonehash_lock); 2190 if ((zone = zone_find_all_by_name(name)) == NULL) { 2191 mutex_exit(&zonehash_lock); 2192 return (NULL); 2193 } 2194 status = zone_status_get(zone); 2195 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2196 /* 2197 * For all practical purposes the zone doesn't exist. 2198 */ 2199 mutex_exit(&zonehash_lock); 2200 return (NULL); 2201 } 2202 zone_hold(zone); 2203 mutex_exit(&zonehash_lock); 2204 return (zone); 2205 } 2206 2207 /* 2208 * Similar to zone_find_by_id(), using the path as a key. For instance, 2209 * if there is a zone "foo" rooted at /foo/root, and the path argument 2210 * is "/foo/root/proc", it will return the held zone_t corresponding to 2211 * zone "foo". 2212 * 2213 * zone_find_by_path() always returns a non-NULL value, since at the 2214 * very least every path will be contained in the global zone. 2215 * 2216 * As with the other zone_find_by_*() functions, the caller is 2217 * responsible for zone_rele()ing the return value of this function. 2218 */ 2219 zone_t * 2220 zone_find_by_path(const char *path) 2221 { 2222 zone_t *zone; 2223 zone_t *zret = NULL; 2224 zone_status_t status; 2225 2226 if (path == NULL) { 2227 /* 2228 * Call from rootconf(). 2229 */ 2230 zone_hold(global_zone); 2231 return (global_zone); 2232 } 2233 ASSERT(*path == '/'); 2234 mutex_enter(&zonehash_lock); 2235 for (zone = list_head(&zone_active); zone != NULL; 2236 zone = list_next(&zone_active, zone)) { 2237 if (ZONE_PATH_VISIBLE(path, zone)) 2238 zret = zone; 2239 } 2240 ASSERT(zret != NULL); 2241 status = zone_status_get(zret); 2242 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2243 /* 2244 * Zone practically doesn't exist. 2245 */ 2246 zret = global_zone; 2247 } 2248 zone_hold(zret); 2249 mutex_exit(&zonehash_lock); 2250 return (zret); 2251 } 2252 2253 /* 2254 * Get the number of cpus visible to this zone. The system-wide global 2255 * 'ncpus' is returned if pools are disabled, the caller is in the 2256 * global zone, or a NULL zone argument is passed in. 2257 */ 2258 int 2259 zone_ncpus_get(zone_t *zone) 2260 { 2261 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2262 2263 return (myncpus != 0 ? myncpus : ncpus); 2264 } 2265 2266 /* 2267 * Get the number of online cpus visible to this zone. The system-wide 2268 * global 'ncpus_online' is returned if pools are disabled, the caller 2269 * is in the global zone, or a NULL zone argument is passed in. 2270 */ 2271 int 2272 zone_ncpus_online_get(zone_t *zone) 2273 { 2274 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 2275 2276 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 2277 } 2278 2279 /* 2280 * Return the pool to which the zone is currently bound. 2281 */ 2282 pool_t * 2283 zone_pool_get(zone_t *zone) 2284 { 2285 ASSERT(pool_lock_held()); 2286 2287 return (zone->zone_pool); 2288 } 2289 2290 /* 2291 * Set the zone's pool pointer and update the zone's visibility to match 2292 * the resources in the new pool. 2293 */ 2294 void 2295 zone_pool_set(zone_t *zone, pool_t *pool) 2296 { 2297 ASSERT(pool_lock_held()); 2298 ASSERT(MUTEX_HELD(&cpu_lock)); 2299 2300 zone->zone_pool = pool; 2301 zone_pset_set(zone, pool->pool_pset->pset_id); 2302 } 2303 2304 /* 2305 * Return the cached value of the id of the processor set to which the 2306 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 2307 * facility is disabled. 2308 */ 2309 psetid_t 2310 zone_pset_get(zone_t *zone) 2311 { 2312 ASSERT(MUTEX_HELD(&cpu_lock)); 2313 2314 return (zone->zone_psetid); 2315 } 2316 2317 /* 2318 * Set the cached value of the id of the processor set to which the zone 2319 * is currently bound. Also update the zone's visibility to match the 2320 * resources in the new processor set. 2321 */ 2322 void 2323 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2324 { 2325 psetid_t oldpsetid; 2326 2327 ASSERT(MUTEX_HELD(&cpu_lock)); 2328 oldpsetid = zone_pset_get(zone); 2329 2330 if (oldpsetid == newpsetid) 2331 return; 2332 /* 2333 * Global zone sees all. 2334 */ 2335 if (zone != global_zone) { 2336 zone->zone_psetid = newpsetid; 2337 if (newpsetid != ZONE_PS_INVAL) 2338 pool_pset_visibility_add(newpsetid, zone); 2339 if (oldpsetid != ZONE_PS_INVAL) 2340 pool_pset_visibility_remove(oldpsetid, zone); 2341 } 2342 /* 2343 * Disabling pools, so we should start using the global values 2344 * for ncpus and ncpus_online. 2345 */ 2346 if (newpsetid == ZONE_PS_INVAL) { 2347 zone->zone_ncpus = 0; 2348 zone->zone_ncpus_online = 0; 2349 } 2350 } 2351 2352 /* 2353 * Walk the list of active zones and issue the provided callback for 2354 * each of them. 2355 * 2356 * Caller must not be holding any locks that may be acquired under 2357 * zonehash_lock. See comment at the beginning of the file for a list of 2358 * common locks and their interactions with zones. 2359 */ 2360 int 2361 zone_walk(int (*cb)(zone_t *, void *), void *data) 2362 { 2363 zone_t *zone; 2364 int ret = 0; 2365 zone_status_t status; 2366 2367 mutex_enter(&zonehash_lock); 2368 for (zone = list_head(&zone_active); zone != NULL; 2369 zone = list_next(&zone_active, zone)) { 2370 /* 2371 * Skip zones that shouldn't be externally visible. 2372 */ 2373 status = zone_status_get(zone); 2374 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2375 continue; 2376 /* 2377 * Bail immediately if any callback invocation returns a 2378 * non-zero value. 2379 */ 2380 ret = (*cb)(zone, data); 2381 if (ret != 0) 2382 break; 2383 } 2384 mutex_exit(&zonehash_lock); 2385 return (ret); 2386 } 2387 2388 static int 2389 zone_set_root(zone_t *zone, const char *upath) 2390 { 2391 vnode_t *vp; 2392 int trycount; 2393 int error = 0; 2394 char *path; 2395 struct pathname upn, pn; 2396 size_t pathlen; 2397 2398 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2399 return (error); 2400 2401 pn_alloc(&pn); 2402 2403 /* prevent infinite loop */ 2404 trycount = 10; 2405 for (;;) { 2406 if (--trycount <= 0) { 2407 error = ESTALE; 2408 goto out; 2409 } 2410 2411 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2412 /* 2413 * VOP_ACCESS() may cover 'vp' with a new 2414 * filesystem, if 'vp' is an autoFS vnode. 2415 * Get the new 'vp' if so. 2416 */ 2417 if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 && 2418 (!vn_ismntpt(vp) || 2419 (error = traverse(&vp)) == 0)) { 2420 pathlen = pn.pn_pathlen + 2; 2421 path = kmem_alloc(pathlen, KM_SLEEP); 2422 (void) strncpy(path, pn.pn_path, 2423 pn.pn_pathlen + 1); 2424 path[pathlen - 2] = '/'; 2425 path[pathlen - 1] = '\0'; 2426 pn_free(&pn); 2427 pn_free(&upn); 2428 2429 /* Success! */ 2430 break; 2431 } 2432 VN_RELE(vp); 2433 } 2434 if (error != ESTALE) 2435 goto out; 2436 } 2437 2438 ASSERT(error == 0); 2439 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2440 zone->zone_rootpath = path; 2441 zone->zone_rootpathlen = pathlen; 2442 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2443 zone->zone_flags |= ZF_IS_SCRATCH; 2444 return (0); 2445 2446 out: 2447 pn_free(&pn); 2448 pn_free(&upn); 2449 return (error); 2450 } 2451 2452 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2453 ((c) >= 'a' && (c) <= 'z') || \ 2454 ((c) >= 'A' && (c) <= 'Z')) 2455 2456 static int 2457 zone_set_name(zone_t *zone, const char *uname) 2458 { 2459 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2460 size_t len; 2461 int i, err; 2462 2463 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2464 kmem_free(kname, ZONENAME_MAX); 2465 return (err); /* EFAULT or ENAMETOOLONG */ 2466 } 2467 2468 /* must be less than ZONENAME_MAX */ 2469 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2470 kmem_free(kname, ZONENAME_MAX); 2471 return (EINVAL); 2472 } 2473 2474 /* 2475 * Name must start with an alphanumeric and must contain only 2476 * alphanumerics, '-', '_' and '.'. 2477 */ 2478 if (!isalnum(kname[0])) { 2479 kmem_free(kname, ZONENAME_MAX); 2480 return (EINVAL); 2481 } 2482 for (i = 1; i < len - 1; i++) { 2483 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2484 kname[i] != '.') { 2485 kmem_free(kname, ZONENAME_MAX); 2486 return (EINVAL); 2487 } 2488 } 2489 2490 zone->zone_name = kname; 2491 return (0); 2492 } 2493 2494 /* 2495 * Similar to thread_create(), but makes sure the thread is in the appropriate 2496 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2497 */ 2498 /*ARGSUSED*/ 2499 kthread_t * 2500 zthread_create( 2501 caddr_t stk, 2502 size_t stksize, 2503 void (*proc)(), 2504 void *arg, 2505 size_t len, 2506 pri_t pri) 2507 { 2508 kthread_t *t; 2509 zone_t *zone = curproc->p_zone; 2510 proc_t *pp = zone->zone_zsched; 2511 2512 zone_hold(zone); /* Reference to be dropped when thread exits */ 2513 2514 /* 2515 * No-one should be trying to create threads if the zone is shutting 2516 * down and there aren't any kernel threads around. See comment 2517 * in zthread_exit(). 2518 */ 2519 ASSERT(!(zone->zone_kthreads == NULL && 2520 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2521 /* 2522 * Create a thread, but don't let it run until we've finished setting 2523 * things up. 2524 */ 2525 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2526 ASSERT(t->t_forw == NULL); 2527 mutex_enter(&zone_status_lock); 2528 if (zone->zone_kthreads == NULL) { 2529 t->t_forw = t->t_back = t; 2530 } else { 2531 kthread_t *tx = zone->zone_kthreads; 2532 2533 t->t_forw = tx; 2534 t->t_back = tx->t_back; 2535 tx->t_back->t_forw = t; 2536 tx->t_back = t; 2537 } 2538 zone->zone_kthreads = t; 2539 mutex_exit(&zone_status_lock); 2540 2541 mutex_enter(&pp->p_lock); 2542 t->t_proc_flag |= TP_ZTHREAD; 2543 project_rele(t->t_proj); 2544 t->t_proj = project_hold(pp->p_task->tk_proj); 2545 2546 /* 2547 * Setup complete, let it run. 2548 */ 2549 thread_lock(t); 2550 t->t_schedflag |= TS_ALLSTART; 2551 setrun_locked(t); 2552 thread_unlock(t); 2553 2554 mutex_exit(&pp->p_lock); 2555 2556 return (t); 2557 } 2558 2559 /* 2560 * Similar to thread_exit(). Must be called by threads created via 2561 * zthread_exit(). 2562 */ 2563 void 2564 zthread_exit(void) 2565 { 2566 kthread_t *t = curthread; 2567 proc_t *pp = curproc; 2568 zone_t *zone = pp->p_zone; 2569 2570 mutex_enter(&zone_status_lock); 2571 2572 /* 2573 * Reparent to p0 2574 */ 2575 kpreempt_disable(); 2576 mutex_enter(&pp->p_lock); 2577 t->t_proc_flag &= ~TP_ZTHREAD; 2578 t->t_procp = &p0; 2579 hat_thread_exit(t); 2580 mutex_exit(&pp->p_lock); 2581 kpreempt_enable(); 2582 2583 if (t->t_back == t) { 2584 ASSERT(t->t_forw == t); 2585 /* 2586 * If the zone is empty, once the thread count 2587 * goes to zero no further kernel threads can be 2588 * created. This is because if the creator is a process 2589 * in the zone, then it must have exited before the zone 2590 * state could be set to ZONE_IS_EMPTY. 2591 * Otherwise, if the creator is a kernel thread in the 2592 * zone, the thread count is non-zero. 2593 * 2594 * This really means that non-zone kernel threads should 2595 * not create zone kernel threads. 2596 */ 2597 zone->zone_kthreads = NULL; 2598 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 2599 zone_status_set(zone, ZONE_IS_DOWN); 2600 /* 2601 * Remove any CPU caps on this zone. 2602 */ 2603 cpucaps_zone_remove(zone); 2604 } 2605 } else { 2606 t->t_forw->t_back = t->t_back; 2607 t->t_back->t_forw = t->t_forw; 2608 if (zone->zone_kthreads == t) 2609 zone->zone_kthreads = t->t_forw; 2610 } 2611 mutex_exit(&zone_status_lock); 2612 zone_rele(zone); 2613 thread_exit(); 2614 /* NOTREACHED */ 2615 } 2616 2617 static void 2618 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 2619 { 2620 vnode_t *oldvp; 2621 2622 /* we're going to hold a reference here to the directory */ 2623 VN_HOLD(vp); 2624 2625 #ifdef C2_AUDIT 2626 if (audit_active) /* update abs cwd/root path see c2audit.c */ 2627 audit_chdirec(vp, vpp); 2628 #endif 2629 2630 mutex_enter(&pp->p_lock); 2631 oldvp = *vpp; 2632 *vpp = vp; 2633 mutex_exit(&pp->p_lock); 2634 if (oldvp != NULL) 2635 VN_RELE(oldvp); 2636 } 2637 2638 /* 2639 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 2640 */ 2641 static int 2642 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 2643 { 2644 nvpair_t *nvp = NULL; 2645 boolean_t priv_set = B_FALSE; 2646 boolean_t limit_set = B_FALSE; 2647 boolean_t action_set = B_FALSE; 2648 2649 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2650 const char *name; 2651 uint64_t ui64; 2652 2653 name = nvpair_name(nvp); 2654 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 2655 return (EINVAL); 2656 (void) nvpair_value_uint64(nvp, &ui64); 2657 if (strcmp(name, "privilege") == 0) { 2658 /* 2659 * Currently only privileged values are allowed, but 2660 * this may change in the future. 2661 */ 2662 if (ui64 != RCPRIV_PRIVILEGED) 2663 return (EINVAL); 2664 rv->rcv_privilege = ui64; 2665 priv_set = B_TRUE; 2666 } else if (strcmp(name, "limit") == 0) { 2667 rv->rcv_value = ui64; 2668 limit_set = B_TRUE; 2669 } else if (strcmp(name, "action") == 0) { 2670 if (ui64 != RCTL_LOCAL_NOACTION && 2671 ui64 != RCTL_LOCAL_DENY) 2672 return (EINVAL); 2673 rv->rcv_flagaction = ui64; 2674 action_set = B_TRUE; 2675 } else { 2676 return (EINVAL); 2677 } 2678 } 2679 2680 if (!(priv_set && limit_set && action_set)) 2681 return (EINVAL); 2682 rv->rcv_action_signal = 0; 2683 rv->rcv_action_recipient = NULL; 2684 rv->rcv_action_recip_pid = -1; 2685 rv->rcv_firing_time = 0; 2686 2687 return (0); 2688 } 2689 2690 /* 2691 * Non-global zone version of start_init. 2692 */ 2693 void 2694 zone_start_init(void) 2695 { 2696 proc_t *p = ttoproc(curthread); 2697 zone_t *z = p->p_zone; 2698 2699 ASSERT(!INGLOBALZONE(curproc)); 2700 2701 /* 2702 * For all purposes (ZONE_ATTR_INITPID and restart_init), 2703 * storing just the pid of init is sufficient. 2704 */ 2705 z->zone_proc_initpid = p->p_pid; 2706 2707 /* 2708 * We maintain zone_boot_err so that we can return the cause of the 2709 * failure back to the caller of the zone_boot syscall. 2710 */ 2711 p->p_zone->zone_boot_err = start_init_common(); 2712 2713 mutex_enter(&zone_status_lock); 2714 if (z->zone_boot_err != 0) { 2715 /* 2716 * Make sure we are still in the booting state-- we could have 2717 * raced and already be shutting down, or even further along. 2718 */ 2719 if (zone_status_get(z) == ZONE_IS_BOOTING) { 2720 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 2721 } 2722 mutex_exit(&zone_status_lock); 2723 /* It's gone bad, dispose of the process */ 2724 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 2725 mutex_enter(&p->p_lock); 2726 ASSERT(p->p_flag & SEXITLWPS); 2727 lwp_exit(); 2728 } 2729 } else { 2730 if (zone_status_get(z) == ZONE_IS_BOOTING) 2731 zone_status_set(z, ZONE_IS_RUNNING); 2732 mutex_exit(&zone_status_lock); 2733 /* cause the process to return to userland. */ 2734 lwp_rtt(); 2735 } 2736 } 2737 2738 struct zsched_arg { 2739 zone_t *zone; 2740 nvlist_t *nvlist; 2741 }; 2742 2743 /* 2744 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 2745 * anything to do with scheduling, but rather with the fact that 2746 * per-zone kernel threads are parented to zsched, just like regular 2747 * kernel threads are parented to sched (p0). 2748 * 2749 * zsched is also responsible for launching init for the zone. 2750 */ 2751 static void 2752 zsched(void *arg) 2753 { 2754 struct zsched_arg *za = arg; 2755 proc_t *pp = curproc; 2756 proc_t *initp = proc_init; 2757 zone_t *zone = za->zone; 2758 cred_t *cr, *oldcred; 2759 rctl_set_t *set; 2760 rctl_alloc_gp_t *gp; 2761 contract_t *ct = NULL; 2762 task_t *tk, *oldtk; 2763 rctl_entity_p_t e; 2764 kproject_t *pj; 2765 2766 nvlist_t *nvl = za->nvlist; 2767 nvpair_t *nvp = NULL; 2768 2769 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 2770 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 2771 PTOU(pp)->u_argc = 0; 2772 PTOU(pp)->u_argv = NULL; 2773 PTOU(pp)->u_envp = NULL; 2774 closeall(P_FINFO(pp)); 2775 2776 /* 2777 * We are this zone's "zsched" process. As the zone isn't generally 2778 * visible yet we don't need to grab any locks before initializing its 2779 * zone_proc pointer. 2780 */ 2781 zone_hold(zone); /* this hold is released by zone_destroy() */ 2782 zone->zone_zsched = pp; 2783 mutex_enter(&pp->p_lock); 2784 pp->p_zone = zone; 2785 mutex_exit(&pp->p_lock); 2786 2787 /* 2788 * Disassociate process from its 'parent'; parent ourselves to init 2789 * (pid 1) and change other values as needed. 2790 */ 2791 sess_create(); 2792 2793 mutex_enter(&pidlock); 2794 proc_detach(pp); 2795 pp->p_ppid = 1; 2796 pp->p_flag |= SZONETOP; 2797 pp->p_ancpid = 1; 2798 pp->p_parent = initp; 2799 pp->p_psibling = NULL; 2800 if (initp->p_child) 2801 initp->p_child->p_psibling = pp; 2802 pp->p_sibling = initp->p_child; 2803 initp->p_child = pp; 2804 2805 /* Decrement what newproc() incremented. */ 2806 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 2807 /* 2808 * Our credentials are about to become kcred-like, so we don't care 2809 * about the caller's ruid. 2810 */ 2811 upcount_inc(crgetruid(kcred), zone->zone_id); 2812 mutex_exit(&pidlock); 2813 2814 /* 2815 * getting out of global zone, so decrement lwp counts 2816 */ 2817 pj = pp->p_task->tk_proj; 2818 mutex_enter(&global_zone->zone_nlwps_lock); 2819 pj->kpj_nlwps -= pp->p_lwpcnt; 2820 global_zone->zone_nlwps -= pp->p_lwpcnt; 2821 mutex_exit(&global_zone->zone_nlwps_lock); 2822 2823 /* 2824 * Decrement locked memory counts on old zone and project. 2825 */ 2826 mutex_enter(&global_zone->zone_mem_lock); 2827 global_zone->zone_locked_mem -= pp->p_locked_mem; 2828 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 2829 mutex_exit(&global_zone->zone_mem_lock); 2830 2831 /* 2832 * Create and join a new task in project '0' of this zone. 2833 * 2834 * We don't need to call holdlwps() since we know we're the only lwp in 2835 * this process. 2836 * 2837 * task_join() returns with p_lock held. 2838 */ 2839 tk = task_create(0, zone); 2840 mutex_enter(&cpu_lock); 2841 oldtk = task_join(tk, 0); 2842 2843 pj = pp->p_task->tk_proj; 2844 2845 mutex_enter(&zone->zone_mem_lock); 2846 zone->zone_locked_mem += pp->p_locked_mem; 2847 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 2848 mutex_exit(&zone->zone_mem_lock); 2849 2850 /* 2851 * add lwp counts to zsched's zone, and increment project's task count 2852 * due to the task created in the above tasksys_settaskid 2853 */ 2854 2855 mutex_enter(&zone->zone_nlwps_lock); 2856 pj->kpj_nlwps += pp->p_lwpcnt; 2857 pj->kpj_ntasks += 1; 2858 zone->zone_nlwps += pp->p_lwpcnt; 2859 mutex_exit(&zone->zone_nlwps_lock); 2860 2861 mutex_exit(&curproc->p_lock); 2862 mutex_exit(&cpu_lock); 2863 task_rele(oldtk); 2864 2865 /* 2866 * The process was created by a process in the global zone, hence the 2867 * credentials are wrong. We might as well have kcred-ish credentials. 2868 */ 2869 cr = zone->zone_kcred; 2870 crhold(cr); 2871 mutex_enter(&pp->p_crlock); 2872 oldcred = pp->p_cred; 2873 pp->p_cred = cr; 2874 mutex_exit(&pp->p_crlock); 2875 crfree(oldcred); 2876 2877 /* 2878 * Hold credentials again (for thread) 2879 */ 2880 crhold(cr); 2881 2882 /* 2883 * p_lwpcnt can't change since this is a kernel process. 2884 */ 2885 crset(pp, cr); 2886 2887 /* 2888 * Chroot 2889 */ 2890 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 2891 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 2892 2893 /* 2894 * Initialize zone's rctl set. 2895 */ 2896 set = rctl_set_create(); 2897 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2898 mutex_enter(&pp->p_lock); 2899 e.rcep_p.zone = zone; 2900 e.rcep_t = RCENTITY_ZONE; 2901 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 2902 mutex_exit(&pp->p_lock); 2903 rctl_prealloc_destroy(gp); 2904 2905 /* 2906 * Apply the rctls passed in to zone_create(). This is basically a list 2907 * assignment: all of the old values are removed and the new ones 2908 * inserted. That is, if an empty list is passed in, all values are 2909 * removed. 2910 */ 2911 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2912 rctl_dict_entry_t *rde; 2913 rctl_hndl_t hndl; 2914 char *name; 2915 nvlist_t **nvlarray; 2916 uint_t i, nelem; 2917 int error; /* For ASSERT()s */ 2918 2919 name = nvpair_name(nvp); 2920 hndl = rctl_hndl_lookup(name); 2921 ASSERT(hndl != -1); 2922 rde = rctl_dict_lookup_hndl(hndl); 2923 ASSERT(rde != NULL); 2924 2925 for (; /* ever */; ) { 2926 rctl_val_t oval; 2927 2928 mutex_enter(&pp->p_lock); 2929 error = rctl_local_get(hndl, NULL, &oval, pp); 2930 mutex_exit(&pp->p_lock); 2931 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 2932 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 2933 if (oval.rcv_privilege == RCPRIV_SYSTEM) 2934 break; 2935 mutex_enter(&pp->p_lock); 2936 error = rctl_local_delete(hndl, &oval, pp); 2937 mutex_exit(&pp->p_lock); 2938 ASSERT(error == 0); 2939 } 2940 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2941 ASSERT(error == 0); 2942 for (i = 0; i < nelem; i++) { 2943 rctl_val_t *nvalp; 2944 2945 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2946 error = nvlist2rctlval(nvlarray[i], nvalp); 2947 ASSERT(error == 0); 2948 /* 2949 * rctl_local_insert can fail if the value being 2950 * inserted is a duplicate; this is OK. 2951 */ 2952 mutex_enter(&pp->p_lock); 2953 if (rctl_local_insert(hndl, nvalp, pp) != 0) 2954 kmem_cache_free(rctl_val_cache, nvalp); 2955 mutex_exit(&pp->p_lock); 2956 } 2957 } 2958 /* 2959 * Tell the world that we're done setting up. 2960 * 2961 * At this point we want to set the zone status to ZONE_IS_READY 2962 * and atomically set the zone's processor set visibility. Once 2963 * we drop pool_lock() this zone will automatically get updated 2964 * to reflect any future changes to the pools configuration. 2965 */ 2966 pool_lock(); 2967 mutex_enter(&cpu_lock); 2968 mutex_enter(&zonehash_lock); 2969 zone_uniqid(zone); 2970 zone_zsd_configure(zone); 2971 if (pool_state == POOL_ENABLED) 2972 zone_pset_set(zone, pool_default->pool_pset->pset_id); 2973 mutex_enter(&zone_status_lock); 2974 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2975 zone_status_set(zone, ZONE_IS_READY); 2976 mutex_exit(&zone_status_lock); 2977 mutex_exit(&zonehash_lock); 2978 mutex_exit(&cpu_lock); 2979 pool_unlock(); 2980 2981 /* 2982 * Once we see the zone transition to the ZONE_IS_BOOTING state, 2983 * we launch init, and set the state to running. 2984 */ 2985 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 2986 2987 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 2988 id_t cid; 2989 2990 /* 2991 * Ok, this is a little complicated. We need to grab the 2992 * zone's pool's scheduling class ID; note that by now, we 2993 * are already bound to a pool if we need to be (zoneadmd 2994 * will have done that to us while we're in the READY 2995 * state). *But* the scheduling class for the zone's 'init' 2996 * must be explicitly passed to newproc, which doesn't 2997 * respect pool bindings. 2998 * 2999 * We hold the pool_lock across the call to newproc() to 3000 * close the obvious race: the pool's scheduling class 3001 * could change before we manage to create the LWP with 3002 * classid 'cid'. 3003 */ 3004 pool_lock(); 3005 if (zone->zone_defaultcid > 0) 3006 cid = zone->zone_defaultcid; 3007 else 3008 cid = pool_get_class(zone->zone_pool); 3009 if (cid == -1) 3010 cid = defaultcid; 3011 3012 /* 3013 * If this fails, zone_boot will ultimately fail. The 3014 * state of the zone will be set to SHUTTING_DOWN-- userland 3015 * will have to tear down the zone, and fail, or try again. 3016 */ 3017 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3018 minclsyspri - 1, &ct)) != 0) { 3019 mutex_enter(&zone_status_lock); 3020 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3021 mutex_exit(&zone_status_lock); 3022 } 3023 pool_unlock(); 3024 } 3025 3026 /* 3027 * Wait for zone_destroy() to be called. This is what we spend 3028 * most of our life doing. 3029 */ 3030 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3031 3032 if (ct) 3033 /* 3034 * At this point the process contract should be empty. 3035 * (Though if it isn't, it's not the end of the world.) 3036 */ 3037 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3038 3039 /* 3040 * Allow kcred to be freed when all referring processes 3041 * (including this one) go away. We can't just do this in 3042 * zone_free because we need to wait for the zone_cred_ref to 3043 * drop to 0 before calling zone_free, and the existence of 3044 * zone_kcred will prevent that. Thus, we call crfree here to 3045 * balance the crdup in zone_create. The crhold calls earlier 3046 * in zsched will be dropped when the thread and process exit. 3047 */ 3048 crfree(zone->zone_kcred); 3049 zone->zone_kcred = NULL; 3050 3051 exit(CLD_EXITED, 0); 3052 } 3053 3054 /* 3055 * Helper function to determine if there are any submounts of the 3056 * provided path. Used to make sure the zone doesn't "inherit" any 3057 * mounts from before it is created. 3058 */ 3059 static uint_t 3060 zone_mount_count(const char *rootpath) 3061 { 3062 vfs_t *vfsp; 3063 uint_t count = 0; 3064 size_t rootpathlen = strlen(rootpath); 3065 3066 /* 3067 * Holding zonehash_lock prevents race conditions with 3068 * vfs_list_add()/vfs_list_remove() since we serialize with 3069 * zone_find_by_path(). 3070 */ 3071 ASSERT(MUTEX_HELD(&zonehash_lock)); 3072 /* 3073 * The rootpath must end with a '/' 3074 */ 3075 ASSERT(rootpath[rootpathlen - 1] == '/'); 3076 3077 /* 3078 * This intentionally does not count the rootpath itself if that 3079 * happens to be a mount point. 3080 */ 3081 vfs_list_read_lock(); 3082 vfsp = rootvfs; 3083 do { 3084 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3085 rootpathlen) == 0) 3086 count++; 3087 vfsp = vfsp->vfs_next; 3088 } while (vfsp != rootvfs); 3089 vfs_list_unlock(); 3090 return (count); 3091 } 3092 3093 /* 3094 * Helper function to make sure that a zone created on 'rootpath' 3095 * wouldn't end up containing other zones' rootpaths. 3096 */ 3097 static boolean_t 3098 zone_is_nested(const char *rootpath) 3099 { 3100 zone_t *zone; 3101 size_t rootpathlen = strlen(rootpath); 3102 size_t len; 3103 3104 ASSERT(MUTEX_HELD(&zonehash_lock)); 3105 3106 for (zone = list_head(&zone_active); zone != NULL; 3107 zone = list_next(&zone_active, zone)) { 3108 if (zone == global_zone) 3109 continue; 3110 len = strlen(zone->zone_rootpath); 3111 if (strncmp(rootpath, zone->zone_rootpath, 3112 MIN(rootpathlen, len)) == 0) 3113 return (B_TRUE); 3114 } 3115 return (B_FALSE); 3116 } 3117 3118 static int 3119 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3120 size_t zone_privssz) 3121 { 3122 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3123 3124 if (zone_privssz < sizeof (priv_set_t)) 3125 return (set_errno(ENOMEM)); 3126 3127 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3128 kmem_free(privs, sizeof (priv_set_t)); 3129 return (EFAULT); 3130 } 3131 3132 zone->zone_privset = privs; 3133 return (0); 3134 } 3135 3136 /* 3137 * We make creative use of nvlists to pass in rctls from userland. The list is 3138 * a list of the following structures: 3139 * 3140 * (name = rctl_name, value = nvpair_list_array) 3141 * 3142 * Where each element of the nvpair_list_array is of the form: 3143 * 3144 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3145 * (name = "limit", value = uint64_t), 3146 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3147 */ 3148 static int 3149 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3150 { 3151 nvpair_t *nvp = NULL; 3152 nvlist_t *nvl = NULL; 3153 char *kbuf; 3154 int error; 3155 rctl_val_t rv; 3156 3157 *nvlp = NULL; 3158 3159 if (buflen == 0) 3160 return (0); 3161 3162 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3163 return (ENOMEM); 3164 if (copyin(ubuf, kbuf, buflen)) { 3165 error = EFAULT; 3166 goto out; 3167 } 3168 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3169 /* 3170 * nvl may have been allocated/free'd, but the value set to 3171 * non-NULL, so we reset it here. 3172 */ 3173 nvl = NULL; 3174 error = EINVAL; 3175 goto out; 3176 } 3177 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3178 rctl_dict_entry_t *rde; 3179 rctl_hndl_t hndl; 3180 nvlist_t **nvlarray; 3181 uint_t i, nelem; 3182 char *name; 3183 3184 error = EINVAL; 3185 name = nvpair_name(nvp); 3186 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3187 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3188 goto out; 3189 } 3190 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3191 goto out; 3192 } 3193 rde = rctl_dict_lookup_hndl(hndl); 3194 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3195 ASSERT(error == 0); 3196 for (i = 0; i < nelem; i++) { 3197 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3198 goto out; 3199 } 3200 if (rctl_invalid_value(rde, &rv)) { 3201 error = EINVAL; 3202 goto out; 3203 } 3204 } 3205 error = 0; 3206 *nvlp = nvl; 3207 out: 3208 kmem_free(kbuf, buflen); 3209 if (error && nvl != NULL) 3210 nvlist_free(nvl); 3211 return (error); 3212 } 3213 3214 int 3215 zone_create_error(int er_error, int er_ext, int *er_out) { 3216 if (er_out != NULL) { 3217 if (copyout(&er_ext, er_out, sizeof (int))) { 3218 return (set_errno(EFAULT)); 3219 } 3220 } 3221 return (set_errno(er_error)); 3222 } 3223 3224 static int 3225 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 3226 { 3227 ts_label_t *tsl; 3228 bslabel_t blab; 3229 3230 /* Get label from user */ 3231 if (copyin(lab, &blab, sizeof (blab)) != 0) 3232 return (EFAULT); 3233 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 3234 if (tsl == NULL) 3235 return (ENOMEM); 3236 3237 zone->zone_slabel = tsl; 3238 return (0); 3239 } 3240 3241 /* 3242 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 3243 */ 3244 static int 3245 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 3246 { 3247 char *kbuf; 3248 char *dataset, *next; 3249 zone_dataset_t *zd; 3250 size_t len; 3251 3252 if (ubuf == NULL || buflen == 0) 3253 return (0); 3254 3255 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3256 return (ENOMEM); 3257 3258 if (copyin(ubuf, kbuf, buflen) != 0) { 3259 kmem_free(kbuf, buflen); 3260 return (EFAULT); 3261 } 3262 3263 dataset = next = kbuf; 3264 for (;;) { 3265 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 3266 3267 next = strchr(dataset, ','); 3268 3269 if (next == NULL) 3270 len = strlen(dataset); 3271 else 3272 len = next - dataset; 3273 3274 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 3275 bcopy(dataset, zd->zd_dataset, len); 3276 zd->zd_dataset[len] = '\0'; 3277 3278 list_insert_head(&zone->zone_datasets, zd); 3279 3280 if (next == NULL) 3281 break; 3282 3283 dataset = next + 1; 3284 } 3285 3286 kmem_free(kbuf, buflen); 3287 return (0); 3288 } 3289 3290 /* 3291 * System call to create/initialize a new zone named 'zone_name', rooted 3292 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 3293 * and initialized with the zone-wide rctls described in 'rctlbuf', and 3294 * with labeling set by 'match', 'doi', and 'label'. 3295 * 3296 * If extended error is non-null, we may use it to return more detailed 3297 * error information. 3298 */ 3299 static zoneid_t 3300 zone_create(const char *zone_name, const char *zone_root, 3301 const priv_set_t *zone_privs, size_t zone_privssz, 3302 caddr_t rctlbuf, size_t rctlbufsz, 3303 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 3304 int match, uint32_t doi, const bslabel_t *label, 3305 int flags) 3306 { 3307 struct zsched_arg zarg; 3308 nvlist_t *rctls = NULL; 3309 proc_t *pp = curproc; 3310 zone_t *zone, *ztmp; 3311 zoneid_t zoneid; 3312 int error; 3313 int error2 = 0; 3314 char *str; 3315 cred_t *zkcr; 3316 boolean_t insert_label_hash; 3317 3318 if (secpolicy_zone_config(CRED()) != 0) 3319 return (set_errno(EPERM)); 3320 3321 /* can't boot zone from within chroot environment */ 3322 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3323 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3324 extended_error)); 3325 3326 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3327 zoneid = zone->zone_id = id_alloc(zoneid_space); 3328 zone->zone_status = ZONE_IS_UNINITIALIZED; 3329 zone->zone_pool = pool_default; 3330 zone->zone_pool_mod = gethrtime(); 3331 zone->zone_psetid = ZONE_PS_INVAL; 3332 zone->zone_ncpus = 0; 3333 zone->zone_ncpus_online = 0; 3334 zone->zone_restart_init = B_TRUE; 3335 zone->zone_brand = &native_brand; 3336 zone->zone_initname = NULL; 3337 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3338 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3339 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 3340 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3341 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3342 offsetof(struct zsd_entry, zsd_linkage)); 3343 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3344 offsetof(zone_dataset_t, zd_linkage)); 3345 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3346 3347 if (flags & ZCF_NET_EXCL) { 3348 zone->zone_flags |= ZF_NET_EXCL; 3349 } 3350 3351 if ((error = zone_set_name(zone, zone_name)) != 0) { 3352 zone_free(zone); 3353 return (zone_create_error(error, 0, extended_error)); 3354 } 3355 3356 if ((error = zone_set_root(zone, zone_root)) != 0) { 3357 zone_free(zone); 3358 return (zone_create_error(error, 0, extended_error)); 3359 } 3360 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3361 zone_free(zone); 3362 return (zone_create_error(error, 0, extended_error)); 3363 } 3364 3365 /* initialize node name to be the same as zone name */ 3366 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3367 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3368 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3369 3370 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3371 zone->zone_domain[0] = '\0'; 3372 zone->zone_shares = 1; 3373 zone->zone_shmmax = 0; 3374 zone->zone_ipc.ipcq_shmmni = 0; 3375 zone->zone_ipc.ipcq_semmni = 0; 3376 zone->zone_ipc.ipcq_msgmni = 0; 3377 zone->zone_bootargs = NULL; 3378 zone->zone_initname = 3379 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3380 (void) strcpy(zone->zone_initname, zone_default_initname); 3381 zone->zone_nlwps = 0; 3382 zone->zone_nlwps_ctl = INT_MAX; 3383 zone->zone_locked_mem = 0; 3384 zone->zone_locked_mem_ctl = UINT64_MAX; 3385 zone->zone_max_swap = 0; 3386 zone->zone_max_swap_ctl = UINT64_MAX; 3387 zone0.zone_lockedmem_kstat = NULL; 3388 zone0.zone_swapresv_kstat = NULL; 3389 3390 /* 3391 * Zsched initializes the rctls. 3392 */ 3393 zone->zone_rctls = NULL; 3394 3395 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3396 zone_free(zone); 3397 return (zone_create_error(error, 0, extended_error)); 3398 } 3399 3400 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3401 zone_free(zone); 3402 return (set_errno(error)); 3403 } 3404 3405 /* 3406 * Read in the trusted system parameters: 3407 * match flag and sensitivity label. 3408 */ 3409 zone->zone_match = match; 3410 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3411 /* Fail if requested to set doi to anything but system's doi */ 3412 if (doi != 0 && doi != default_doi) { 3413 zone_free(zone); 3414 return (set_errno(EINVAL)); 3415 } 3416 /* Always apply system's doi to the zone */ 3417 error = zone_set_label(zone, label, default_doi); 3418 if (error != 0) { 3419 zone_free(zone); 3420 return (set_errno(error)); 3421 } 3422 insert_label_hash = B_TRUE; 3423 } else { 3424 /* all zones get an admin_low label if system is not labeled */ 3425 zone->zone_slabel = l_admin_low; 3426 label_hold(l_admin_low); 3427 insert_label_hash = B_FALSE; 3428 } 3429 3430 /* 3431 * Stop all lwps since that's what normally happens as part of fork(). 3432 * This needs to happen before we grab any locks to avoid deadlock 3433 * (another lwp in the process could be waiting for the held lock). 3434 */ 3435 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3436 zone_free(zone); 3437 if (rctls) 3438 nvlist_free(rctls); 3439 return (zone_create_error(error, 0, extended_error)); 3440 } 3441 3442 if (block_mounts() == 0) { 3443 mutex_enter(&pp->p_lock); 3444 if (curthread != pp->p_agenttp) 3445 continuelwps(pp); 3446 mutex_exit(&pp->p_lock); 3447 zone_free(zone); 3448 if (rctls) 3449 nvlist_free(rctls); 3450 return (zone_create_error(error, 0, extended_error)); 3451 } 3452 3453 /* 3454 * Set up credential for kernel access. After this, any errors 3455 * should go through the dance in errout rather than calling 3456 * zone_free directly. 3457 */ 3458 zone->zone_kcred = crdup(kcred); 3459 crsetzone(zone->zone_kcred, zone); 3460 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3461 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3462 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3463 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3464 3465 mutex_enter(&zonehash_lock); 3466 /* 3467 * Make sure zone doesn't already exist. 3468 * 3469 * If the system and zone are labeled, 3470 * make sure no other zone exists that has the same label. 3471 */ 3472 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3473 (insert_label_hash && 3474 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3475 zone_status_t status; 3476 3477 status = zone_status_get(ztmp); 3478 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3479 error = EEXIST; 3480 else 3481 error = EBUSY; 3482 goto errout; 3483 } 3484 3485 /* 3486 * Don't allow zone creations which would cause one zone's rootpath to 3487 * be accessible from that of another (non-global) zone. 3488 */ 3489 if (zone_is_nested(zone->zone_rootpath)) { 3490 error = EBUSY; 3491 goto errout; 3492 } 3493 3494 ASSERT(zonecount != 0); /* check for leaks */ 3495 if (zonecount + 1 > maxzones) { 3496 error = ENOMEM; 3497 goto errout; 3498 } 3499 3500 if (zone_mount_count(zone->zone_rootpath) != 0) { 3501 error = EBUSY; 3502 error2 = ZE_AREMOUNTS; 3503 goto errout; 3504 } 3505 3506 /* 3507 * Zone is still incomplete, but we need to drop all locks while 3508 * zsched() initializes this zone's kernel process. We 3509 * optimistically add the zone to the hashtable and associated 3510 * lists so a parallel zone_create() doesn't try to create the 3511 * same zone. 3512 */ 3513 zonecount++; 3514 (void) mod_hash_insert(zonehashbyid, 3515 (mod_hash_key_t)(uintptr_t)zone->zone_id, 3516 (mod_hash_val_t)(uintptr_t)zone); 3517 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 3518 (void) strcpy(str, zone->zone_name); 3519 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 3520 (mod_hash_val_t)(uintptr_t)zone); 3521 if (insert_label_hash) { 3522 (void) mod_hash_insert(zonehashbylabel, 3523 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 3524 zone->zone_flags |= ZF_HASHED_LABEL; 3525 } 3526 3527 /* 3528 * Insert into active list. At this point there are no 'hold's 3529 * on the zone, but everyone else knows not to use it, so we can 3530 * continue to use it. zsched() will do a zone_hold() if the 3531 * newproc() is successful. 3532 */ 3533 list_insert_tail(&zone_active, zone); 3534 mutex_exit(&zonehash_lock); 3535 3536 zarg.zone = zone; 3537 zarg.nvlist = rctls; 3538 /* 3539 * The process, task, and project rctls are probably wrong; 3540 * we need an interface to get the default values of all rctls, 3541 * and initialize zsched appropriately. I'm not sure that that 3542 * makes much of a difference, though. 3543 */ 3544 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 3545 /* 3546 * We need to undo all globally visible state. 3547 */ 3548 mutex_enter(&zonehash_lock); 3549 list_remove(&zone_active, zone); 3550 if (zone->zone_flags & ZF_HASHED_LABEL) { 3551 ASSERT(zone->zone_slabel != NULL); 3552 (void) mod_hash_destroy(zonehashbylabel, 3553 (mod_hash_key_t)zone->zone_slabel); 3554 } 3555 (void) mod_hash_destroy(zonehashbyname, 3556 (mod_hash_key_t)(uintptr_t)zone->zone_name); 3557 (void) mod_hash_destroy(zonehashbyid, 3558 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3559 ASSERT(zonecount > 1); 3560 zonecount--; 3561 goto errout; 3562 } 3563 3564 /* 3565 * Zone creation can't fail from now on. 3566 */ 3567 3568 /* 3569 * Create zone kstats 3570 */ 3571 zone_kstat_create(zone); 3572 3573 /* 3574 * Let the other lwps continue. 3575 */ 3576 mutex_enter(&pp->p_lock); 3577 if (curthread != pp->p_agenttp) 3578 continuelwps(pp); 3579 mutex_exit(&pp->p_lock); 3580 3581 /* 3582 * Wait for zsched to finish initializing the zone. 3583 */ 3584 zone_status_wait(zone, ZONE_IS_READY); 3585 /* 3586 * The zone is fully visible, so we can let mounts progress. 3587 */ 3588 resume_mounts(); 3589 if (rctls) 3590 nvlist_free(rctls); 3591 3592 return (zoneid); 3593 3594 errout: 3595 mutex_exit(&zonehash_lock); 3596 /* 3597 * Let the other lwps continue. 3598 */ 3599 mutex_enter(&pp->p_lock); 3600 if (curthread != pp->p_agenttp) 3601 continuelwps(pp); 3602 mutex_exit(&pp->p_lock); 3603 3604 resume_mounts(); 3605 if (rctls) 3606 nvlist_free(rctls); 3607 /* 3608 * There is currently one reference to the zone, a cred_ref from 3609 * zone_kcred. To free the zone, we call crfree, which will call 3610 * zone_cred_rele, which will call zone_free. 3611 */ 3612 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 3613 ASSERT(zone->zone_kcred->cr_ref == 1); 3614 ASSERT(zone->zone_ref == 0); 3615 zkcr = zone->zone_kcred; 3616 zone->zone_kcred = NULL; 3617 crfree(zkcr); /* triggers call to zone_free */ 3618 return (zone_create_error(error, error2, extended_error)); 3619 } 3620 3621 /* 3622 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 3623 * the heavy lifting. initname is the path to the program to launch 3624 * at the "top" of the zone; if this is NULL, we use the system default, 3625 * which is stored at zone_default_initname. 3626 */ 3627 static int 3628 zone_boot(zoneid_t zoneid) 3629 { 3630 int err; 3631 zone_t *zone; 3632 3633 if (secpolicy_zone_config(CRED()) != 0) 3634 return (set_errno(EPERM)); 3635 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3636 return (set_errno(EINVAL)); 3637 3638 mutex_enter(&zonehash_lock); 3639 /* 3640 * Look for zone under hash lock to prevent races with calls to 3641 * zone_shutdown, zone_destroy, etc. 3642 */ 3643 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3644 mutex_exit(&zonehash_lock); 3645 return (set_errno(EINVAL)); 3646 } 3647 3648 mutex_enter(&zone_status_lock); 3649 if (zone_status_get(zone) != ZONE_IS_READY) { 3650 mutex_exit(&zone_status_lock); 3651 mutex_exit(&zonehash_lock); 3652 return (set_errno(EINVAL)); 3653 } 3654 zone_status_set(zone, ZONE_IS_BOOTING); 3655 mutex_exit(&zone_status_lock); 3656 3657 zone_hold(zone); /* so we can use the zone_t later */ 3658 mutex_exit(&zonehash_lock); 3659 3660 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 3661 zone_rele(zone); 3662 return (set_errno(EINTR)); 3663 } 3664 3665 /* 3666 * Boot (starting init) might have failed, in which case the zone 3667 * will go to the SHUTTING_DOWN state; an appropriate errno will 3668 * be placed in zone->zone_boot_err, and so we return that. 3669 */ 3670 err = zone->zone_boot_err; 3671 zone_rele(zone); 3672 return (err ? set_errno(err) : 0); 3673 } 3674 3675 /* 3676 * Kills all user processes in the zone, waiting for them all to exit 3677 * before returning. 3678 */ 3679 static int 3680 zone_empty(zone_t *zone) 3681 { 3682 int waitstatus; 3683 3684 /* 3685 * We need to drop zonehash_lock before killing all 3686 * processes, otherwise we'll deadlock with zone_find_* 3687 * which can be called from the exit path. 3688 */ 3689 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 3690 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 3691 ZONE_IS_EMPTY)) == -1) { 3692 killall(zone->zone_id); 3693 } 3694 /* 3695 * return EINTR if we were signaled 3696 */ 3697 if (waitstatus == 0) 3698 return (EINTR); 3699 return (0); 3700 } 3701 3702 /* 3703 * This function implements the policy for zone visibility. 3704 * 3705 * In standard Solaris, a non-global zone can only see itself. 3706 * 3707 * In Trusted Extensions, a labeled zone can lookup any zone whose label 3708 * it dominates. For this test, the label of the global zone is treated as 3709 * admin_high so it is special-cased instead of being checked for dominance. 3710 * 3711 * Returns true if zone attributes are viewable, false otherwise. 3712 */ 3713 static boolean_t 3714 zone_list_access(zone_t *zone) 3715 { 3716 3717 if (curproc->p_zone == global_zone || 3718 curproc->p_zone == zone) { 3719 return (B_TRUE); 3720 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3721 bslabel_t *curproc_label; 3722 bslabel_t *zone_label; 3723 3724 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 3725 zone_label = label2bslabel(zone->zone_slabel); 3726 3727 if (zone->zone_id != GLOBAL_ZONEID && 3728 bldominates(curproc_label, zone_label)) { 3729 return (B_TRUE); 3730 } else { 3731 return (B_FALSE); 3732 } 3733 } else { 3734 return (B_FALSE); 3735 } 3736 } 3737 3738 /* 3739 * Systemcall to start the zone's halt sequence. By the time this 3740 * function successfully returns, all user processes and kernel threads 3741 * executing in it will have exited, ZSD shutdown callbacks executed, 3742 * and the zone status set to ZONE_IS_DOWN. 3743 * 3744 * It is possible that the call will interrupt itself if the caller is the 3745 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 3746 */ 3747 static int 3748 zone_shutdown(zoneid_t zoneid) 3749 { 3750 int error; 3751 zone_t *zone; 3752 zone_status_t status; 3753 3754 if (secpolicy_zone_config(CRED()) != 0) 3755 return (set_errno(EPERM)); 3756 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3757 return (set_errno(EINVAL)); 3758 3759 /* 3760 * Block mounts so that VFS_MOUNT() can get an accurate view of 3761 * the zone's status with regards to ZONE_IS_SHUTTING down. 3762 * 3763 * e.g. NFS can fail the mount if it determines that the zone 3764 * has already begun the shutdown sequence. 3765 */ 3766 if (block_mounts() == 0) 3767 return (set_errno(EINTR)); 3768 mutex_enter(&zonehash_lock); 3769 /* 3770 * Look for zone under hash lock to prevent races with other 3771 * calls to zone_shutdown and zone_destroy. 3772 */ 3773 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3774 mutex_exit(&zonehash_lock); 3775 resume_mounts(); 3776 return (set_errno(EINVAL)); 3777 } 3778 mutex_enter(&zone_status_lock); 3779 status = zone_status_get(zone); 3780 /* 3781 * Fail if the zone isn't fully initialized yet. 3782 */ 3783 if (status < ZONE_IS_READY) { 3784 mutex_exit(&zone_status_lock); 3785 mutex_exit(&zonehash_lock); 3786 resume_mounts(); 3787 return (set_errno(EINVAL)); 3788 } 3789 /* 3790 * If conditions required for zone_shutdown() to return have been met, 3791 * return success. 3792 */ 3793 if (status >= ZONE_IS_DOWN) { 3794 mutex_exit(&zone_status_lock); 3795 mutex_exit(&zonehash_lock); 3796 resume_mounts(); 3797 return (0); 3798 } 3799 /* 3800 * If zone_shutdown() hasn't been called before, go through the motions. 3801 * If it has, there's nothing to do but wait for the kernel threads to 3802 * drain. 3803 */ 3804 if (status < ZONE_IS_EMPTY) { 3805 uint_t ntasks; 3806 3807 mutex_enter(&zone->zone_lock); 3808 if ((ntasks = zone->zone_ntasks) != 1) { 3809 /* 3810 * There's still stuff running. 3811 */ 3812 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3813 } 3814 mutex_exit(&zone->zone_lock); 3815 if (ntasks == 1) { 3816 /* 3817 * The only way to create another task is through 3818 * zone_enter(), which will block until we drop 3819 * zonehash_lock. The zone is empty. 3820 */ 3821 if (zone->zone_kthreads == NULL) { 3822 /* 3823 * Skip ahead to ZONE_IS_DOWN 3824 */ 3825 zone_status_set(zone, ZONE_IS_DOWN); 3826 } else { 3827 zone_status_set(zone, ZONE_IS_EMPTY); 3828 } 3829 } 3830 } 3831 zone_hold(zone); /* so we can use the zone_t later */ 3832 mutex_exit(&zone_status_lock); 3833 mutex_exit(&zonehash_lock); 3834 resume_mounts(); 3835 3836 if (error = zone_empty(zone)) { 3837 zone_rele(zone); 3838 return (set_errno(error)); 3839 } 3840 /* 3841 * After the zone status goes to ZONE_IS_DOWN this zone will no 3842 * longer be notified of changes to the pools configuration, so 3843 * in order to not end up with a stale pool pointer, we point 3844 * ourselves at the default pool and remove all resource 3845 * visibility. This is especially important as the zone_t may 3846 * languish on the deathrow for a very long time waiting for 3847 * cred's to drain out. 3848 * 3849 * This rebinding of the zone can happen multiple times 3850 * (presumably due to interrupted or parallel systemcalls) 3851 * without any adverse effects. 3852 */ 3853 if (pool_lock_intr() != 0) { 3854 zone_rele(zone); 3855 return (set_errno(EINTR)); 3856 } 3857 if (pool_state == POOL_ENABLED) { 3858 mutex_enter(&cpu_lock); 3859 zone_pool_set(zone, pool_default); 3860 /* 3861 * The zone no longer needs to be able to see any cpus. 3862 */ 3863 zone_pset_set(zone, ZONE_PS_INVAL); 3864 mutex_exit(&cpu_lock); 3865 } 3866 pool_unlock(); 3867 3868 /* 3869 * ZSD shutdown callbacks can be executed multiple times, hence 3870 * it is safe to not be holding any locks across this call. 3871 */ 3872 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 3873 3874 mutex_enter(&zone_status_lock); 3875 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 3876 zone_status_set(zone, ZONE_IS_DOWN); 3877 mutex_exit(&zone_status_lock); 3878 3879 /* 3880 * Wait for kernel threads to drain. 3881 */ 3882 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 3883 zone_rele(zone); 3884 return (set_errno(EINTR)); 3885 } 3886 3887 /* 3888 * Zone can be become down/destroyable even if the above wait 3889 * returns EINTR, so any code added here may never execute. 3890 * (i.e. don't add code here) 3891 */ 3892 3893 zone_rele(zone); 3894 return (0); 3895 } 3896 3897 /* 3898 * Systemcall entry point to finalize the zone halt process. The caller 3899 * must have already successfully called zone_shutdown(). 3900 * 3901 * Upon successful completion, the zone will have been fully destroyed: 3902 * zsched will have exited, destructor callbacks executed, and the zone 3903 * removed from the list of active zones. 3904 */ 3905 static int 3906 zone_destroy(zoneid_t zoneid) 3907 { 3908 uint64_t uniqid; 3909 zone_t *zone; 3910 zone_status_t status; 3911 3912 if (secpolicy_zone_config(CRED()) != 0) 3913 return (set_errno(EPERM)); 3914 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3915 return (set_errno(EINVAL)); 3916 3917 mutex_enter(&zonehash_lock); 3918 /* 3919 * Look for zone under hash lock to prevent races with other 3920 * calls to zone_destroy. 3921 */ 3922 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3923 mutex_exit(&zonehash_lock); 3924 return (set_errno(EINVAL)); 3925 } 3926 3927 if (zone_mount_count(zone->zone_rootpath) != 0) { 3928 mutex_exit(&zonehash_lock); 3929 return (set_errno(EBUSY)); 3930 } 3931 mutex_enter(&zone_status_lock); 3932 status = zone_status_get(zone); 3933 if (status < ZONE_IS_DOWN) { 3934 mutex_exit(&zone_status_lock); 3935 mutex_exit(&zonehash_lock); 3936 return (set_errno(EBUSY)); 3937 } else if (status == ZONE_IS_DOWN) { 3938 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 3939 } 3940 mutex_exit(&zone_status_lock); 3941 zone_hold(zone); 3942 mutex_exit(&zonehash_lock); 3943 3944 /* 3945 * wait for zsched to exit 3946 */ 3947 zone_status_wait(zone, ZONE_IS_DEAD); 3948 zone_zsd_callbacks(zone, ZSD_DESTROY); 3949 zone->zone_netstack = NULL; 3950 uniqid = zone->zone_uniqid; 3951 zone_rele(zone); 3952 zone = NULL; /* potentially free'd */ 3953 3954 mutex_enter(&zonehash_lock); 3955 for (; /* ever */; ) { 3956 boolean_t unref; 3957 3958 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 3959 zone->zone_uniqid != uniqid) { 3960 /* 3961 * The zone has gone away. Necessary conditions 3962 * are met, so we return success. 3963 */ 3964 mutex_exit(&zonehash_lock); 3965 return (0); 3966 } 3967 mutex_enter(&zone->zone_lock); 3968 unref = ZONE_IS_UNREF(zone); 3969 mutex_exit(&zone->zone_lock); 3970 if (unref) { 3971 /* 3972 * There is only one reference to the zone -- that 3973 * added when the zone was added to the hashtables -- 3974 * and things will remain this way until we drop 3975 * zonehash_lock... we can go ahead and cleanup the 3976 * zone. 3977 */ 3978 break; 3979 } 3980 3981 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 3982 /* Signaled */ 3983 mutex_exit(&zonehash_lock); 3984 return (set_errno(EINTR)); 3985 } 3986 3987 } 3988 3989 /* 3990 * Remove CPU cap for this zone now since we're not going to 3991 * fail below this point. 3992 */ 3993 cpucaps_zone_remove(zone); 3994 3995 /* Get rid of the zone's kstats */ 3996 zone_kstat_delete(zone); 3997 3998 /* Say goodbye to brand framework. */ 3999 brand_unregister_zone(zone->zone_brand); 4000 4001 /* 4002 * It is now safe to let the zone be recreated; remove it from the 4003 * lists. The memory will not be freed until the last cred 4004 * reference goes away. 4005 */ 4006 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4007 zonecount--; 4008 /* remove from active list and hash tables */ 4009 list_remove(&zone_active, zone); 4010 (void) mod_hash_destroy(zonehashbyname, 4011 (mod_hash_key_t)zone->zone_name); 4012 (void) mod_hash_destroy(zonehashbyid, 4013 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4014 if (zone->zone_flags & ZF_HASHED_LABEL) 4015 (void) mod_hash_destroy(zonehashbylabel, 4016 (mod_hash_key_t)zone->zone_slabel); 4017 mutex_exit(&zonehash_lock); 4018 4019 /* 4020 * Release the root vnode; we're not using it anymore. Nor should any 4021 * other thread that might access it exist. 4022 */ 4023 if (zone->zone_rootvp != NULL) { 4024 VN_RELE(zone->zone_rootvp); 4025 zone->zone_rootvp = NULL; 4026 } 4027 4028 /* add to deathrow list */ 4029 mutex_enter(&zone_deathrow_lock); 4030 list_insert_tail(&zone_deathrow, zone); 4031 mutex_exit(&zone_deathrow_lock); 4032 4033 /* 4034 * Drop last reference (which was added by zsched()), this will 4035 * free the zone unless there are outstanding cred references. 4036 */ 4037 zone_rele(zone); 4038 return (0); 4039 } 4040 4041 /* 4042 * Systemcall entry point for zone_getattr(2). 4043 */ 4044 static ssize_t 4045 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4046 { 4047 size_t size; 4048 int error = 0, err; 4049 zone_t *zone; 4050 char *zonepath; 4051 char *outstr; 4052 zone_status_t zone_status; 4053 pid_t initpid; 4054 boolean_t global = (curzone == global_zone); 4055 boolean_t inzone = (curzone->zone_id == zoneid); 4056 ushort_t flags; 4057 4058 mutex_enter(&zonehash_lock); 4059 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4060 mutex_exit(&zonehash_lock); 4061 return (set_errno(EINVAL)); 4062 } 4063 zone_status = zone_status_get(zone); 4064 if (zone_status < ZONE_IS_READY) { 4065 mutex_exit(&zonehash_lock); 4066 return (set_errno(EINVAL)); 4067 } 4068 zone_hold(zone); 4069 mutex_exit(&zonehash_lock); 4070 4071 /* 4072 * If not in the global zone, don't show information about other zones, 4073 * unless the system is labeled and the local zone's label dominates 4074 * the other zone. 4075 */ 4076 if (!zone_list_access(zone)) { 4077 zone_rele(zone); 4078 return (set_errno(EINVAL)); 4079 } 4080 4081 switch (attr) { 4082 case ZONE_ATTR_ROOT: 4083 if (global) { 4084 /* 4085 * Copy the path to trim the trailing "/" (except for 4086 * the global zone). 4087 */ 4088 if (zone != global_zone) 4089 size = zone->zone_rootpathlen - 1; 4090 else 4091 size = zone->zone_rootpathlen; 4092 zonepath = kmem_alloc(size, KM_SLEEP); 4093 bcopy(zone->zone_rootpath, zonepath, size); 4094 zonepath[size - 1] = '\0'; 4095 } else { 4096 if (inzone || !is_system_labeled()) { 4097 /* 4098 * Caller is not in the global zone. 4099 * if the query is on the current zone 4100 * or the system is not labeled, 4101 * just return faked-up path for current zone. 4102 */ 4103 zonepath = "/"; 4104 size = 2; 4105 } else { 4106 /* 4107 * Return related path for current zone. 4108 */ 4109 int prefix_len = strlen(zone_prefix); 4110 int zname_len = strlen(zone->zone_name); 4111 4112 size = prefix_len + zname_len + 1; 4113 zonepath = kmem_alloc(size, KM_SLEEP); 4114 bcopy(zone_prefix, zonepath, prefix_len); 4115 bcopy(zone->zone_name, zonepath + 4116 prefix_len, zname_len); 4117 zonepath[size - 1] = '\0'; 4118 } 4119 } 4120 if (bufsize > size) 4121 bufsize = size; 4122 if (buf != NULL) { 4123 err = copyoutstr(zonepath, buf, bufsize, NULL); 4124 if (err != 0 && err != ENAMETOOLONG) 4125 error = EFAULT; 4126 } 4127 if (global || (is_system_labeled() && !inzone)) 4128 kmem_free(zonepath, size); 4129 break; 4130 4131 case ZONE_ATTR_NAME: 4132 size = strlen(zone->zone_name) + 1; 4133 if (bufsize > size) 4134 bufsize = size; 4135 if (buf != NULL) { 4136 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 4137 if (err != 0 && err != ENAMETOOLONG) 4138 error = EFAULT; 4139 } 4140 break; 4141 4142 case ZONE_ATTR_STATUS: 4143 /* 4144 * Since we're not holding zonehash_lock, the zone status 4145 * may be anything; leave it up to userland to sort it out. 4146 */ 4147 size = sizeof (zone_status); 4148 if (bufsize > size) 4149 bufsize = size; 4150 zone_status = zone_status_get(zone); 4151 if (buf != NULL && 4152 copyout(&zone_status, buf, bufsize) != 0) 4153 error = EFAULT; 4154 break; 4155 case ZONE_ATTR_FLAGS: 4156 size = sizeof (zone->zone_flags); 4157 if (bufsize > size) 4158 bufsize = size; 4159 flags = zone->zone_flags; 4160 if (buf != NULL && 4161 copyout(&flags, buf, bufsize) != 0) 4162 error = EFAULT; 4163 break; 4164 case ZONE_ATTR_PRIVSET: 4165 size = sizeof (priv_set_t); 4166 if (bufsize > size) 4167 bufsize = size; 4168 if (buf != NULL && 4169 copyout(zone->zone_privset, buf, bufsize) != 0) 4170 error = EFAULT; 4171 break; 4172 case ZONE_ATTR_UNIQID: 4173 size = sizeof (zone->zone_uniqid); 4174 if (bufsize > size) 4175 bufsize = size; 4176 if (buf != NULL && 4177 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 4178 error = EFAULT; 4179 break; 4180 case ZONE_ATTR_POOLID: 4181 { 4182 pool_t *pool; 4183 poolid_t poolid; 4184 4185 if (pool_lock_intr() != 0) { 4186 error = EINTR; 4187 break; 4188 } 4189 pool = zone_pool_get(zone); 4190 poolid = pool->pool_id; 4191 pool_unlock(); 4192 size = sizeof (poolid); 4193 if (bufsize > size) 4194 bufsize = size; 4195 if (buf != NULL && copyout(&poolid, buf, size) != 0) 4196 error = EFAULT; 4197 } 4198 break; 4199 case ZONE_ATTR_SLBL: 4200 size = sizeof (bslabel_t); 4201 if (bufsize > size) 4202 bufsize = size; 4203 if (zone->zone_slabel == NULL) 4204 error = EINVAL; 4205 else if (buf != NULL && 4206 copyout(label2bslabel(zone->zone_slabel), buf, 4207 bufsize) != 0) 4208 error = EFAULT; 4209 break; 4210 case ZONE_ATTR_INITPID: 4211 size = sizeof (initpid); 4212 if (bufsize > size) 4213 bufsize = size; 4214 initpid = zone->zone_proc_initpid; 4215 if (initpid == -1) { 4216 error = ESRCH; 4217 break; 4218 } 4219 if (buf != NULL && 4220 copyout(&initpid, buf, bufsize) != 0) 4221 error = EFAULT; 4222 break; 4223 case ZONE_ATTR_BRAND: 4224 size = strlen(zone->zone_brand->b_name) + 1; 4225 4226 if (bufsize > size) 4227 bufsize = size; 4228 if (buf != NULL) { 4229 err = copyoutstr(zone->zone_brand->b_name, buf, 4230 bufsize, NULL); 4231 if (err != 0 && err != ENAMETOOLONG) 4232 error = EFAULT; 4233 } 4234 break; 4235 case ZONE_ATTR_INITNAME: 4236 size = strlen(zone->zone_initname) + 1; 4237 if (bufsize > size) 4238 bufsize = size; 4239 if (buf != NULL) { 4240 err = copyoutstr(zone->zone_initname, buf, bufsize, 4241 NULL); 4242 if (err != 0 && err != ENAMETOOLONG) 4243 error = EFAULT; 4244 } 4245 break; 4246 case ZONE_ATTR_BOOTARGS: 4247 if (zone->zone_bootargs == NULL) 4248 outstr = ""; 4249 else 4250 outstr = zone->zone_bootargs; 4251 size = strlen(outstr) + 1; 4252 if (bufsize > size) 4253 bufsize = size; 4254 if (buf != NULL) { 4255 err = copyoutstr(outstr, buf, bufsize, NULL); 4256 if (err != 0 && err != ENAMETOOLONG) 4257 error = EFAULT; 4258 } 4259 break; 4260 case ZONE_ATTR_PHYS_MCAP: 4261 size = sizeof (zone->zone_phys_mcap); 4262 if (bufsize > size) 4263 bufsize = size; 4264 if (buf != NULL && 4265 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 4266 error = EFAULT; 4267 break; 4268 case ZONE_ATTR_SCHED_CLASS: 4269 mutex_enter(&class_lock); 4270 4271 if (zone->zone_defaultcid >= loaded_classes) 4272 outstr = ""; 4273 else 4274 outstr = sclass[zone->zone_defaultcid].cl_name; 4275 size = strlen(outstr) + 1; 4276 if (bufsize > size) 4277 bufsize = size; 4278 if (buf != NULL) { 4279 err = copyoutstr(outstr, buf, bufsize, NULL); 4280 if (err != 0 && err != ENAMETOOLONG) 4281 error = EFAULT; 4282 } 4283 4284 mutex_exit(&class_lock); 4285 break; 4286 default: 4287 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 4288 size = bufsize; 4289 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 4290 } else { 4291 error = EINVAL; 4292 } 4293 } 4294 zone_rele(zone); 4295 4296 if (error) 4297 return (set_errno(error)); 4298 return ((ssize_t)size); 4299 } 4300 4301 /* 4302 * Systemcall entry point for zone_setattr(2). 4303 */ 4304 /*ARGSUSED*/ 4305 static int 4306 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4307 { 4308 zone_t *zone; 4309 zone_status_t zone_status; 4310 int err; 4311 4312 if (secpolicy_zone_config(CRED()) != 0) 4313 return (set_errno(EPERM)); 4314 4315 /* 4316 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 4317 * global zone. 4318 */ 4319 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 4320 return (set_errno(EINVAL)); 4321 } 4322 4323 mutex_enter(&zonehash_lock); 4324 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4325 mutex_exit(&zonehash_lock); 4326 return (set_errno(EINVAL)); 4327 } 4328 zone_hold(zone); 4329 mutex_exit(&zonehash_lock); 4330 4331 /* 4332 * At present most attributes can only be set on non-running, 4333 * non-global zones. 4334 */ 4335 zone_status = zone_status_get(zone); 4336 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) 4337 goto done; 4338 4339 switch (attr) { 4340 case ZONE_ATTR_INITNAME: 4341 err = zone_set_initname(zone, (const char *)buf); 4342 break; 4343 case ZONE_ATTR_BOOTARGS: 4344 err = zone_set_bootargs(zone, (const char *)buf); 4345 break; 4346 case ZONE_ATTR_BRAND: 4347 err = zone_set_brand(zone, (const char *)buf); 4348 break; 4349 case ZONE_ATTR_PHYS_MCAP: 4350 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 4351 break; 4352 case ZONE_ATTR_SCHED_CLASS: 4353 err = zone_set_sched_class(zone, (const char *)buf); 4354 break; 4355 default: 4356 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 4357 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 4358 else 4359 err = EINVAL; 4360 } 4361 4362 done: 4363 zone_rele(zone); 4364 return (err != 0 ? set_errno(err) : 0); 4365 } 4366 4367 /* 4368 * Return zero if the process has at least one vnode mapped in to its 4369 * address space which shouldn't be allowed to change zones. 4370 * 4371 * Also return zero if the process has any shared mappings which reserve 4372 * swap. This is because the counting for zone.max-swap does not allow swap 4373 * revervation to be shared between zones. zone swap reservation is counted 4374 * on zone->zone_max_swap. 4375 */ 4376 static int 4377 as_can_change_zones(void) 4378 { 4379 proc_t *pp = curproc; 4380 struct seg *seg; 4381 struct as *as = pp->p_as; 4382 vnode_t *vp; 4383 int allow = 1; 4384 4385 ASSERT(pp->p_as != &kas); 4386 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 4387 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 4388 4389 /* 4390 * Cannot enter zone with shared anon memory which 4391 * reserves swap. See comment above. 4392 */ 4393 if (seg_can_change_zones(seg) == B_FALSE) { 4394 allow = 0; 4395 break; 4396 } 4397 /* 4398 * if we can't get a backing vnode for this segment then skip 4399 * it. 4400 */ 4401 vp = NULL; 4402 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 4403 continue; 4404 if (!vn_can_change_zones(vp)) { /* bail on first match */ 4405 allow = 0; 4406 break; 4407 } 4408 } 4409 AS_LOCK_EXIT(as, &as->a_lock); 4410 return (allow); 4411 } 4412 4413 /* 4414 * Count swap reserved by curproc's address space 4415 */ 4416 static size_t 4417 as_swresv(void) 4418 { 4419 proc_t *pp = curproc; 4420 struct seg *seg; 4421 struct as *as = pp->p_as; 4422 size_t swap = 0; 4423 4424 ASSERT(pp->p_as != &kas); 4425 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 4426 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 4427 swap += seg_swresv(seg); 4428 4429 return (swap); 4430 } 4431 4432 /* 4433 * Systemcall entry point for zone_enter(). 4434 * 4435 * The current process is injected into said zone. In the process 4436 * it will change its project membership, privileges, rootdir/cwd, 4437 * zone-wide rctls, and pool association to match those of the zone. 4438 * 4439 * The first zone_enter() called while the zone is in the ZONE_IS_READY 4440 * state will transition it to ZONE_IS_RUNNING. Processes may only 4441 * enter a zone that is "ready" or "running". 4442 */ 4443 static int 4444 zone_enter(zoneid_t zoneid) 4445 { 4446 zone_t *zone; 4447 vnode_t *vp; 4448 proc_t *pp = curproc; 4449 contract_t *ct; 4450 cont_process_t *ctp; 4451 task_t *tk, *oldtk; 4452 kproject_t *zone_proj0; 4453 cred_t *cr, *newcr; 4454 pool_t *oldpool, *newpool; 4455 sess_t *sp; 4456 uid_t uid; 4457 zone_status_t status; 4458 int err = 0; 4459 rctl_entity_p_t e; 4460 size_t swap; 4461 kthread_id_t t; 4462 4463 if (secpolicy_zone_config(CRED()) != 0) 4464 return (set_errno(EPERM)); 4465 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4466 return (set_errno(EINVAL)); 4467 4468 /* 4469 * Stop all lwps so we don't need to hold a lock to look at 4470 * curproc->p_zone. This needs to happen before we grab any 4471 * locks to avoid deadlock (another lwp in the process could 4472 * be waiting for the held lock). 4473 */ 4474 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 4475 return (set_errno(EINTR)); 4476 4477 /* 4478 * Make sure we're not changing zones with files open or mapped in 4479 * to our address space which shouldn't be changing zones. 4480 */ 4481 if (!files_can_change_zones()) { 4482 err = EBADF; 4483 goto out; 4484 } 4485 if (!as_can_change_zones()) { 4486 err = EFAULT; 4487 goto out; 4488 } 4489 4490 mutex_enter(&zonehash_lock); 4491 if (pp->p_zone != global_zone) { 4492 mutex_exit(&zonehash_lock); 4493 err = EINVAL; 4494 goto out; 4495 } 4496 4497 zone = zone_find_all_by_id(zoneid); 4498 if (zone == NULL) { 4499 mutex_exit(&zonehash_lock); 4500 err = EINVAL; 4501 goto out; 4502 } 4503 4504 /* 4505 * To prevent processes in a zone from holding contracts on 4506 * extrazonal resources, and to avoid process contract 4507 * memberships which span zones, contract holders and processes 4508 * which aren't the sole members of their encapsulating process 4509 * contracts are not allowed to zone_enter. 4510 */ 4511 ctp = pp->p_ct_process; 4512 ct = &ctp->conp_contract; 4513 mutex_enter(&ct->ct_lock); 4514 mutex_enter(&pp->p_lock); 4515 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 4516 mutex_exit(&pp->p_lock); 4517 mutex_exit(&ct->ct_lock); 4518 mutex_exit(&zonehash_lock); 4519 pool_unlock(); 4520 err = EINVAL; 4521 goto out; 4522 } 4523 4524 /* 4525 * Moreover, we don't allow processes whose encapsulating 4526 * process contracts have inherited extrazonal contracts. 4527 * While it would be easier to eliminate all process contracts 4528 * with inherited contracts, we need to be able to give a 4529 * restarted init (or other zone-penetrating process) its 4530 * predecessor's contracts. 4531 */ 4532 if (ctp->conp_ninherited != 0) { 4533 contract_t *next; 4534 for (next = list_head(&ctp->conp_inherited); next; 4535 next = list_next(&ctp->conp_inherited, next)) { 4536 if (contract_getzuniqid(next) != zone->zone_uniqid) { 4537 mutex_exit(&pp->p_lock); 4538 mutex_exit(&ct->ct_lock); 4539 mutex_exit(&zonehash_lock); 4540 pool_unlock(); 4541 err = EINVAL; 4542 goto out; 4543 } 4544 } 4545 } 4546 mutex_exit(&pp->p_lock); 4547 mutex_exit(&ct->ct_lock); 4548 4549 status = zone_status_get(zone); 4550 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 4551 /* 4552 * Can't join 4553 */ 4554 mutex_exit(&zonehash_lock); 4555 err = EINVAL; 4556 goto out; 4557 } 4558 4559 /* 4560 * Make sure new priv set is within the permitted set for caller 4561 */ 4562 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 4563 mutex_exit(&zonehash_lock); 4564 err = EPERM; 4565 goto out; 4566 } 4567 /* 4568 * We want to momentarily drop zonehash_lock while we optimistically 4569 * bind curproc to the pool it should be running in. This is safe 4570 * since the zone can't disappear (we have a hold on it). 4571 */ 4572 zone_hold(zone); 4573 mutex_exit(&zonehash_lock); 4574 4575 /* 4576 * Grab pool_lock to keep the pools configuration from changing 4577 * and to stop ourselves from getting rebound to another pool 4578 * until we join the zone. 4579 */ 4580 if (pool_lock_intr() != 0) { 4581 zone_rele(zone); 4582 err = EINTR; 4583 goto out; 4584 } 4585 ASSERT(secpolicy_pool(CRED()) == 0); 4586 /* 4587 * Bind ourselves to the pool currently associated with the zone. 4588 */ 4589 oldpool = curproc->p_pool; 4590 newpool = zone_pool_get(zone); 4591 if (pool_state == POOL_ENABLED && newpool != oldpool && 4592 (err = pool_do_bind(newpool, P_PID, P_MYID, 4593 POOL_BIND_ALL)) != 0) { 4594 pool_unlock(); 4595 zone_rele(zone); 4596 goto out; 4597 } 4598 4599 /* 4600 * Grab cpu_lock now; we'll need it later when we call 4601 * task_join(). 4602 */ 4603 mutex_enter(&cpu_lock); 4604 mutex_enter(&zonehash_lock); 4605 /* 4606 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 4607 */ 4608 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 4609 /* 4610 * Can't join anymore. 4611 */ 4612 mutex_exit(&zonehash_lock); 4613 mutex_exit(&cpu_lock); 4614 if (pool_state == POOL_ENABLED && 4615 newpool != oldpool) 4616 (void) pool_do_bind(oldpool, P_PID, P_MYID, 4617 POOL_BIND_ALL); 4618 pool_unlock(); 4619 zone_rele(zone); 4620 err = EINVAL; 4621 goto out; 4622 } 4623 4624 /* 4625 * a_lock must be held while transfering locked memory and swap 4626 * reservation from the global zone to the non global zone because 4627 * asynchronous faults on the processes' address space can lock 4628 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 4629 * segments respectively. 4630 */ 4631 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 4632 swap = as_swresv(); 4633 mutex_enter(&pp->p_lock); 4634 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 4635 /* verify that we do not exceed and task or lwp limits */ 4636 mutex_enter(&zone->zone_nlwps_lock); 4637 /* add new lwps to zone and zone's proj0 */ 4638 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 4639 zone->zone_nlwps += pp->p_lwpcnt; 4640 /* add 1 task to zone's proj0 */ 4641 zone_proj0->kpj_ntasks += 1; 4642 mutex_exit(&zone->zone_nlwps_lock); 4643 4644 mutex_enter(&zone->zone_mem_lock); 4645 zone->zone_locked_mem += pp->p_locked_mem; 4646 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 4647 zone->zone_max_swap += swap; 4648 mutex_exit(&zone->zone_mem_lock); 4649 4650 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 4651 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 4652 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 4653 4654 /* remove lwps from proc's old zone and old project */ 4655 mutex_enter(&pp->p_zone->zone_nlwps_lock); 4656 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 4657 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 4658 mutex_exit(&pp->p_zone->zone_nlwps_lock); 4659 4660 mutex_enter(&pp->p_zone->zone_mem_lock); 4661 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 4662 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 4663 pp->p_zone->zone_max_swap -= swap; 4664 mutex_exit(&pp->p_zone->zone_mem_lock); 4665 4666 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 4667 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 4668 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 4669 4670 mutex_exit(&pp->p_lock); 4671 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 4672 4673 /* 4674 * Joining the zone cannot fail from now on. 4675 * 4676 * This means that a lot of the following code can be commonized and 4677 * shared with zsched(). 4678 */ 4679 4680 /* 4681 * Reset the encapsulating process contract's zone. 4682 */ 4683 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 4684 contract_setzuniqid(ct, zone->zone_uniqid); 4685 4686 /* 4687 * Create a new task and associate the process with the project keyed 4688 * by (projid,zoneid). 4689 * 4690 * We might as well be in project 0; the global zone's projid doesn't 4691 * make much sense in a zone anyhow. 4692 * 4693 * This also increments zone_ntasks, and returns with p_lock held. 4694 */ 4695 tk = task_create(0, zone); 4696 oldtk = task_join(tk, 0); 4697 mutex_exit(&cpu_lock); 4698 4699 pp->p_flag |= SZONETOP; 4700 pp->p_zone = zone; 4701 4702 /* 4703 * call RCTLOP_SET functions on this proc 4704 */ 4705 e.rcep_p.zone = zone; 4706 e.rcep_t = RCENTITY_ZONE; 4707 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 4708 RCD_CALLBACK); 4709 mutex_exit(&pp->p_lock); 4710 4711 /* 4712 * We don't need to hold any of zsched's locks here; not only do we know 4713 * the process and zone aren't going away, we know its session isn't 4714 * changing either. 4715 * 4716 * By joining zsched's session here, we mimic the behavior in the 4717 * global zone of init's sid being the pid of sched. We extend this 4718 * to all zlogin-like zone_enter()'ing processes as well. 4719 */ 4720 mutex_enter(&pidlock); 4721 sp = zone->zone_zsched->p_sessp; 4722 sess_hold(zone->zone_zsched); 4723 mutex_enter(&pp->p_lock); 4724 pgexit(pp); 4725 sess_rele(pp->p_sessp, B_TRUE); 4726 pp->p_sessp = sp; 4727 pgjoin(pp, zone->zone_zsched->p_pidp); 4728 4729 /* 4730 * If any threads are scheduled to be placed on zone wait queue they 4731 * should abandon the idea since the wait queue is changing. 4732 * We need to be holding pidlock & p_lock to do this. 4733 */ 4734 if ((t = pp->p_tlist) != NULL) { 4735 do { 4736 thread_lock(t); 4737 /* 4738 * Kick this thread so that he doesn't sit 4739 * on a wrong wait queue. 4740 */ 4741 if (ISWAITING(t)) 4742 setrun_locked(t); 4743 4744 if (t->t_schedflag & TS_ANYWAITQ) 4745 t->t_schedflag &= ~ TS_ANYWAITQ; 4746 4747 thread_unlock(t); 4748 } while ((t = t->t_forw) != pp->p_tlist); 4749 } 4750 4751 /* 4752 * If there is a default scheduling class for the zone and it is not 4753 * the class we are currently in, change all of the threads in the 4754 * process to the new class. We need to be holding pidlock & p_lock 4755 * when we call parmsset so this is a good place to do it. 4756 */ 4757 if (zone->zone_defaultcid > 0 && 4758 zone->zone_defaultcid != curthread->t_cid) { 4759 pcparms_t pcparms; 4760 4761 pcparms.pc_cid = zone->zone_defaultcid; 4762 pcparms.pc_clparms[0] = 0; 4763 4764 /* 4765 * If setting the class fails, we still want to enter the zone. 4766 */ 4767 if ((t = pp->p_tlist) != NULL) { 4768 do { 4769 (void) parmsset(&pcparms, t); 4770 } while ((t = t->t_forw) != pp->p_tlist); 4771 } 4772 } 4773 4774 mutex_exit(&pp->p_lock); 4775 mutex_exit(&pidlock); 4776 4777 mutex_exit(&zonehash_lock); 4778 /* 4779 * We're firmly in the zone; let pools progress. 4780 */ 4781 pool_unlock(); 4782 task_rele(oldtk); 4783 /* 4784 * We don't need to retain a hold on the zone since we already 4785 * incremented zone_ntasks, so the zone isn't going anywhere. 4786 */ 4787 zone_rele(zone); 4788 4789 /* 4790 * Chroot 4791 */ 4792 vp = zone->zone_rootvp; 4793 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 4794 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 4795 4796 /* 4797 * Change process credentials 4798 */ 4799 newcr = cralloc(); 4800 mutex_enter(&pp->p_crlock); 4801 cr = pp->p_cred; 4802 crcopy_to(cr, newcr); 4803 crsetzone(newcr, zone); 4804 pp->p_cred = newcr; 4805 4806 /* 4807 * Restrict all process privilege sets to zone limit 4808 */ 4809 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 4810 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 4811 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 4812 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 4813 mutex_exit(&pp->p_crlock); 4814 crset(pp, newcr); 4815 4816 /* 4817 * Adjust upcount to reflect zone entry. 4818 */ 4819 uid = crgetruid(newcr); 4820 mutex_enter(&pidlock); 4821 upcount_dec(uid, GLOBAL_ZONEID); 4822 upcount_inc(uid, zoneid); 4823 mutex_exit(&pidlock); 4824 4825 /* 4826 * Set up core file path and content. 4827 */ 4828 set_core_defaults(); 4829 4830 out: 4831 /* 4832 * Let the other lwps continue. 4833 */ 4834 mutex_enter(&pp->p_lock); 4835 if (curthread != pp->p_agenttp) 4836 continuelwps(pp); 4837 mutex_exit(&pp->p_lock); 4838 4839 return (err != 0 ? set_errno(err) : 0); 4840 } 4841 4842 /* 4843 * Systemcall entry point for zone_list(2). 4844 * 4845 * Processes running in a (non-global) zone only see themselves. 4846 * On labeled systems, they see all zones whose label they dominate. 4847 */ 4848 static int 4849 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 4850 { 4851 zoneid_t *zoneids; 4852 zone_t *zone, *myzone; 4853 uint_t user_nzones, real_nzones; 4854 uint_t domi_nzones; 4855 int error; 4856 4857 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 4858 return (set_errno(EFAULT)); 4859 4860 myzone = curproc->p_zone; 4861 if (myzone != global_zone) { 4862 bslabel_t *mybslab; 4863 4864 if (!is_system_labeled()) { 4865 /* just return current zone */ 4866 real_nzones = domi_nzones = 1; 4867 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 4868 zoneids[0] = myzone->zone_id; 4869 } else { 4870 /* return all zones that are dominated */ 4871 mutex_enter(&zonehash_lock); 4872 real_nzones = zonecount; 4873 domi_nzones = 0; 4874 if (real_nzones > 0) { 4875 zoneids = kmem_alloc(real_nzones * 4876 sizeof (zoneid_t), KM_SLEEP); 4877 mybslab = label2bslabel(myzone->zone_slabel); 4878 for (zone = list_head(&zone_active); 4879 zone != NULL; 4880 zone = list_next(&zone_active, zone)) { 4881 if (zone->zone_id == GLOBAL_ZONEID) 4882 continue; 4883 if (zone != myzone && 4884 (zone->zone_flags & ZF_IS_SCRATCH)) 4885 continue; 4886 /* 4887 * Note that a label always dominates 4888 * itself, so myzone is always included 4889 * in the list. 4890 */ 4891 if (bldominates(mybslab, 4892 label2bslabel(zone->zone_slabel))) { 4893 zoneids[domi_nzones++] = 4894 zone->zone_id; 4895 } 4896 } 4897 } 4898 mutex_exit(&zonehash_lock); 4899 } 4900 } else { 4901 mutex_enter(&zonehash_lock); 4902 real_nzones = zonecount; 4903 domi_nzones = 0; 4904 if (real_nzones > 0) { 4905 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 4906 KM_SLEEP); 4907 for (zone = list_head(&zone_active); zone != NULL; 4908 zone = list_next(&zone_active, zone)) 4909 zoneids[domi_nzones++] = zone->zone_id; 4910 ASSERT(domi_nzones == real_nzones); 4911 } 4912 mutex_exit(&zonehash_lock); 4913 } 4914 4915 /* 4916 * If user has allocated space for fewer entries than we found, then 4917 * return only up to his limit. Either way, tell him exactly how many 4918 * we found. 4919 */ 4920 if (domi_nzones < user_nzones) 4921 user_nzones = domi_nzones; 4922 error = 0; 4923 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 4924 error = EFAULT; 4925 } else if (zoneidlist != NULL && user_nzones != 0) { 4926 if (copyout(zoneids, zoneidlist, 4927 user_nzones * sizeof (zoneid_t)) != 0) 4928 error = EFAULT; 4929 } 4930 4931 if (real_nzones > 0) 4932 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 4933 4934 if (error != 0) 4935 return (set_errno(error)); 4936 else 4937 return (0); 4938 } 4939 4940 /* 4941 * Systemcall entry point for zone_lookup(2). 4942 * 4943 * Non-global zones are only able to see themselves and (on labeled systems) 4944 * the zones they dominate. 4945 */ 4946 static zoneid_t 4947 zone_lookup(const char *zone_name) 4948 { 4949 char *kname; 4950 zone_t *zone; 4951 zoneid_t zoneid; 4952 int err; 4953 4954 if (zone_name == NULL) { 4955 /* return caller's zone id */ 4956 return (getzoneid()); 4957 } 4958 4959 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 4960 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 4961 kmem_free(kname, ZONENAME_MAX); 4962 return (set_errno(err)); 4963 } 4964 4965 mutex_enter(&zonehash_lock); 4966 zone = zone_find_all_by_name(kname); 4967 kmem_free(kname, ZONENAME_MAX); 4968 /* 4969 * In a non-global zone, can only lookup global and own name. 4970 * In Trusted Extensions zone label dominance rules apply. 4971 */ 4972 if (zone == NULL || 4973 zone_status_get(zone) < ZONE_IS_READY || 4974 !zone_list_access(zone)) { 4975 mutex_exit(&zonehash_lock); 4976 return (set_errno(EINVAL)); 4977 } else { 4978 zoneid = zone->zone_id; 4979 mutex_exit(&zonehash_lock); 4980 return (zoneid); 4981 } 4982 } 4983 4984 static int 4985 zone_version(int *version_arg) 4986 { 4987 int version = ZONE_SYSCALL_API_VERSION; 4988 4989 if (copyout(&version, version_arg, sizeof (int)) != 0) 4990 return (set_errno(EFAULT)); 4991 return (0); 4992 } 4993 4994 /* ARGSUSED */ 4995 long 4996 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 4997 { 4998 zone_def zs; 4999 5000 switch (cmd) { 5001 case ZONE_CREATE: 5002 if (get_udatamodel() == DATAMODEL_NATIVE) { 5003 if (copyin(arg1, &zs, sizeof (zone_def))) { 5004 return (set_errno(EFAULT)); 5005 } 5006 } else { 5007 #ifdef _SYSCALL32_IMPL 5008 zone_def32 zs32; 5009 5010 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 5011 return (set_errno(EFAULT)); 5012 } 5013 zs.zone_name = 5014 (const char *)(unsigned long)zs32.zone_name; 5015 zs.zone_root = 5016 (const char *)(unsigned long)zs32.zone_root; 5017 zs.zone_privs = 5018 (const struct priv_set *) 5019 (unsigned long)zs32.zone_privs; 5020 zs.zone_privssz = zs32.zone_privssz; 5021 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 5022 zs.rctlbufsz = zs32.rctlbufsz; 5023 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 5024 zs.zfsbufsz = zs32.zfsbufsz; 5025 zs.extended_error = 5026 (int *)(unsigned long)zs32.extended_error; 5027 zs.match = zs32.match; 5028 zs.doi = zs32.doi; 5029 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 5030 zs.flags = zs32.flags; 5031 #else 5032 panic("get_udatamodel() returned bogus result\n"); 5033 #endif 5034 } 5035 5036 return (zone_create(zs.zone_name, zs.zone_root, 5037 zs.zone_privs, zs.zone_privssz, 5038 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 5039 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 5040 zs.extended_error, zs.match, zs.doi, 5041 zs.label, zs.flags)); 5042 case ZONE_BOOT: 5043 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 5044 case ZONE_DESTROY: 5045 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 5046 case ZONE_GETATTR: 5047 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 5048 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5049 case ZONE_SETATTR: 5050 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 5051 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5052 case ZONE_ENTER: 5053 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 5054 case ZONE_LIST: 5055 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 5056 case ZONE_SHUTDOWN: 5057 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 5058 case ZONE_LOOKUP: 5059 return (zone_lookup((const char *)arg1)); 5060 case ZONE_VERSION: 5061 return (zone_version((int *)arg1)); 5062 case ZONE_ADD_DATALINK: 5063 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 5064 (char *)arg2)); 5065 case ZONE_DEL_DATALINK: 5066 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 5067 (char *)arg2)); 5068 case ZONE_CHECK_DATALINK: 5069 return (zone_check_datalink((zoneid_t *)arg1, (char *)arg2)); 5070 case ZONE_LIST_DATALINK: 5071 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 5072 (int *)arg2, (char *)arg3)); 5073 default: 5074 return (set_errno(EINVAL)); 5075 } 5076 } 5077 5078 struct zarg { 5079 zone_t *zone; 5080 zone_cmd_arg_t arg; 5081 }; 5082 5083 static int 5084 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 5085 { 5086 char *buf; 5087 size_t buflen; 5088 int error; 5089 5090 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 5091 buf = kmem_alloc(buflen, KM_SLEEP); 5092 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 5093 error = door_ki_open(buf, doorp); 5094 kmem_free(buf, buflen); 5095 return (error); 5096 } 5097 5098 static void 5099 zone_release_door(door_handle_t *doorp) 5100 { 5101 door_ki_rele(*doorp); 5102 *doorp = NULL; 5103 } 5104 5105 static void 5106 zone_ki_call_zoneadmd(struct zarg *zargp) 5107 { 5108 door_handle_t door = NULL; 5109 door_arg_t darg, save_arg; 5110 char *zone_name; 5111 size_t zone_namelen; 5112 zoneid_t zoneid; 5113 zone_t *zone; 5114 zone_cmd_arg_t arg; 5115 uint64_t uniqid; 5116 size_t size; 5117 int error; 5118 int retry; 5119 5120 zone = zargp->zone; 5121 arg = zargp->arg; 5122 kmem_free(zargp, sizeof (*zargp)); 5123 5124 zone_namelen = strlen(zone->zone_name) + 1; 5125 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 5126 bcopy(zone->zone_name, zone_name, zone_namelen); 5127 zoneid = zone->zone_id; 5128 uniqid = zone->zone_uniqid; 5129 /* 5130 * zoneadmd may be down, but at least we can empty out the zone. 5131 * We can ignore the return value of zone_empty() since we're called 5132 * from a kernel thread and know we won't be delivered any signals. 5133 */ 5134 ASSERT(curproc == &p0); 5135 (void) zone_empty(zone); 5136 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 5137 zone_rele(zone); 5138 5139 size = sizeof (arg); 5140 darg.rbuf = (char *)&arg; 5141 darg.data_ptr = (char *)&arg; 5142 darg.rsize = size; 5143 darg.data_size = size; 5144 darg.desc_ptr = NULL; 5145 darg.desc_num = 0; 5146 5147 save_arg = darg; 5148 /* 5149 * Since we're not holding a reference to the zone, any number of 5150 * things can go wrong, including the zone disappearing before we get a 5151 * chance to talk to zoneadmd. 5152 */ 5153 for (retry = 0; /* forever */; retry++) { 5154 if (door == NULL && 5155 (error = zone_lookup_door(zone_name, &door)) != 0) { 5156 goto next; 5157 } 5158 ASSERT(door != NULL); 5159 5160 if ((error = door_ki_upcall(door, &darg)) == 0) { 5161 break; 5162 } 5163 switch (error) { 5164 case EINTR: 5165 /* FALLTHROUGH */ 5166 case EAGAIN: /* process may be forking */ 5167 /* 5168 * Back off for a bit 5169 */ 5170 break; 5171 case EBADF: 5172 zone_release_door(&door); 5173 if (zone_lookup_door(zone_name, &door) != 0) { 5174 /* 5175 * zoneadmd may be dead, but it may come back to 5176 * life later. 5177 */ 5178 break; 5179 } 5180 break; 5181 default: 5182 cmn_err(CE_WARN, 5183 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 5184 error); 5185 goto out; 5186 } 5187 next: 5188 /* 5189 * If this isn't the same zone_t that we originally had in mind, 5190 * then this is the same as if two kadmin requests come in at 5191 * the same time: the first one wins. This means we lose, so we 5192 * bail. 5193 */ 5194 if ((zone = zone_find_by_id(zoneid)) == NULL) { 5195 /* 5196 * Problem is solved. 5197 */ 5198 break; 5199 } 5200 if (zone->zone_uniqid != uniqid) { 5201 /* 5202 * zoneid recycled 5203 */ 5204 zone_rele(zone); 5205 break; 5206 } 5207 /* 5208 * We could zone_status_timedwait(), but there doesn't seem to 5209 * be much point in doing that (plus, it would mean that 5210 * zone_free() isn't called until this thread exits). 5211 */ 5212 zone_rele(zone); 5213 delay(hz); 5214 darg = save_arg; 5215 } 5216 out: 5217 if (door != NULL) { 5218 zone_release_door(&door); 5219 } 5220 kmem_free(zone_name, zone_namelen); 5221 thread_exit(); 5222 } 5223 5224 /* 5225 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 5226 * kadmin(). The caller is a process in the zone. 5227 * 5228 * In order to shutdown the zone, we will hand off control to zoneadmd 5229 * (running in the global zone) via a door. We do a half-hearted job at 5230 * killing all processes in the zone, create a kernel thread to contact 5231 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 5232 * a form of generation number used to let zoneadmd (as well as 5233 * zone_destroy()) know exactly which zone they're re talking about. 5234 */ 5235 int 5236 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 5237 { 5238 struct zarg *zargp; 5239 zone_cmd_t zcmd; 5240 zone_t *zone; 5241 5242 zone = curproc->p_zone; 5243 ASSERT(getzoneid() != GLOBAL_ZONEID); 5244 5245 switch (cmd) { 5246 case A_SHUTDOWN: 5247 switch (fcn) { 5248 case AD_HALT: 5249 case AD_POWEROFF: 5250 zcmd = Z_HALT; 5251 break; 5252 case AD_BOOT: 5253 zcmd = Z_REBOOT; 5254 break; 5255 case AD_IBOOT: 5256 case AD_SBOOT: 5257 case AD_SIBOOT: 5258 case AD_NOSYNC: 5259 return (ENOTSUP); 5260 default: 5261 return (EINVAL); 5262 } 5263 break; 5264 case A_REBOOT: 5265 zcmd = Z_REBOOT; 5266 break; 5267 case A_FTRACE: 5268 case A_REMOUNT: 5269 case A_FREEZE: 5270 case A_DUMP: 5271 return (ENOTSUP); 5272 default: 5273 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 5274 return (EINVAL); 5275 } 5276 5277 if (secpolicy_zone_admin(credp, B_FALSE)) 5278 return (EPERM); 5279 mutex_enter(&zone_status_lock); 5280 5281 /* 5282 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 5283 * is in the zone. 5284 */ 5285 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 5286 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 5287 /* 5288 * This zone is already on its way down. 5289 */ 5290 mutex_exit(&zone_status_lock); 5291 return (0); 5292 } 5293 /* 5294 * Prevent future zone_enter()s 5295 */ 5296 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5297 mutex_exit(&zone_status_lock); 5298 5299 /* 5300 * Kill everyone now and call zoneadmd later. 5301 * zone_ki_call_zoneadmd() will do a more thorough job of this 5302 * later. 5303 */ 5304 killall(zone->zone_id); 5305 /* 5306 * Now, create the thread to contact zoneadmd and do the rest of the 5307 * work. This thread can't be created in our zone otherwise 5308 * zone_destroy() would deadlock. 5309 */ 5310 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 5311 zargp->arg.cmd = zcmd; 5312 zargp->arg.uniqid = zone->zone_uniqid; 5313 zargp->zone = zone; 5314 (void) strcpy(zargp->arg.locale, "C"); 5315 /* mdep was already copied in for us by uadmin */ 5316 if (mdep != NULL) 5317 (void) strlcpy(zargp->arg.bootbuf, mdep, 5318 sizeof (zargp->arg.bootbuf)); 5319 zone_hold(zone); 5320 5321 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 5322 TS_RUN, minclsyspri); 5323 exit(CLD_EXITED, 0); 5324 5325 return (EINVAL); 5326 } 5327 5328 /* 5329 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 5330 * status to ZONE_IS_SHUTTING_DOWN. 5331 */ 5332 void 5333 zone_shutdown_global(void) 5334 { 5335 ASSERT(curproc->p_zone == global_zone); 5336 5337 mutex_enter(&zone_status_lock); 5338 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 5339 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 5340 mutex_exit(&zone_status_lock); 5341 } 5342 5343 /* 5344 * Returns true if the named dataset is visible in the current zone. 5345 * The 'write' parameter is set to 1 if the dataset is also writable. 5346 */ 5347 int 5348 zone_dataset_visible(const char *dataset, int *write) 5349 { 5350 zone_dataset_t *zd; 5351 size_t len; 5352 zone_t *zone = curproc->p_zone; 5353 5354 if (dataset[0] == '\0') 5355 return (0); 5356 5357 /* 5358 * Walk the list once, looking for datasets which match exactly, or 5359 * specify a dataset underneath an exported dataset. If found, return 5360 * true and note that it is writable. 5361 */ 5362 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5363 zd = list_next(&zone->zone_datasets, zd)) { 5364 5365 len = strlen(zd->zd_dataset); 5366 if (strlen(dataset) >= len && 5367 bcmp(dataset, zd->zd_dataset, len) == 0 && 5368 (dataset[len] == '\0' || dataset[len] == '/' || 5369 dataset[len] == '@')) { 5370 if (write) 5371 *write = 1; 5372 return (1); 5373 } 5374 } 5375 5376 /* 5377 * Walk the list a second time, searching for datasets which are parents 5378 * of exported datasets. These should be visible, but read-only. 5379 * 5380 * Note that we also have to support forms such as 'pool/dataset/', with 5381 * a trailing slash. 5382 */ 5383 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5384 zd = list_next(&zone->zone_datasets, zd)) { 5385 5386 len = strlen(dataset); 5387 if (dataset[len - 1] == '/') 5388 len--; /* Ignore trailing slash */ 5389 if (len < strlen(zd->zd_dataset) && 5390 bcmp(dataset, zd->zd_dataset, len) == 0 && 5391 zd->zd_dataset[len] == '/') { 5392 if (write) 5393 *write = 0; 5394 return (1); 5395 } 5396 } 5397 5398 return (0); 5399 } 5400 5401 /* 5402 * zone_find_by_any_path() - 5403 * 5404 * kernel-private routine similar to zone_find_by_path(), but which 5405 * effectively compares against zone paths rather than zonerootpath 5406 * (i.e., the last component of zonerootpaths, which should be "root/", 5407 * are not compared.) This is done in order to accurately identify all 5408 * paths, whether zone-visible or not, including those which are parallel 5409 * to /root/, such as /dev/, /home/, etc... 5410 * 5411 * If the specified path does not fall under any zone path then global 5412 * zone is returned. 5413 * 5414 * The treat_abs parameter indicates whether the path should be treated as 5415 * an absolute path although it does not begin with "/". (This supports 5416 * nfs mount syntax such as host:any/path.) 5417 * 5418 * The caller is responsible for zone_rele of the returned zone. 5419 */ 5420 zone_t * 5421 zone_find_by_any_path(const char *path, boolean_t treat_abs) 5422 { 5423 zone_t *zone; 5424 int path_offset = 0; 5425 5426 if (path == NULL) { 5427 zone_hold(global_zone); 5428 return (global_zone); 5429 } 5430 5431 if (*path != '/') { 5432 ASSERT(treat_abs); 5433 path_offset = 1; 5434 } 5435 5436 mutex_enter(&zonehash_lock); 5437 for (zone = list_head(&zone_active); zone != NULL; 5438 zone = list_next(&zone_active, zone)) { 5439 char *c; 5440 size_t pathlen; 5441 char *rootpath_start; 5442 5443 if (zone == global_zone) /* skip global zone */ 5444 continue; 5445 5446 /* scan backwards to find start of last component */ 5447 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 5448 do { 5449 c--; 5450 } while (*c != '/'); 5451 5452 pathlen = c - zone->zone_rootpath + 1 - path_offset; 5453 rootpath_start = (zone->zone_rootpath + path_offset); 5454 if (strncmp(path, rootpath_start, pathlen) == 0) 5455 break; 5456 } 5457 if (zone == NULL) 5458 zone = global_zone; 5459 zone_hold(zone); 5460 mutex_exit(&zonehash_lock); 5461 return (zone); 5462 } 5463 5464 /* List of data link names which are accessible from the zone */ 5465 struct dlnamelist { 5466 char dlnl_name[LIFNAMSIZ]; 5467 struct dlnamelist *dlnl_next; 5468 }; 5469 5470 5471 /* 5472 * Check whether the datalink name (dlname) itself is present. 5473 * Return true if found. 5474 */ 5475 static boolean_t 5476 zone_dlname(zone_t *zone, char *dlname) 5477 { 5478 struct dlnamelist *dlnl; 5479 boolean_t found = B_FALSE; 5480 5481 mutex_enter(&zone->zone_lock); 5482 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 5483 if (strncmp(dlnl->dlnl_name, dlname, LIFNAMSIZ) == 0) { 5484 found = B_TRUE; 5485 break; 5486 } 5487 } 5488 mutex_exit(&zone->zone_lock); 5489 return (found); 5490 } 5491 5492 /* 5493 * Add an data link name for the zone. Does not check for duplicates. 5494 */ 5495 static int 5496 zone_add_datalink(zoneid_t zoneid, char *dlname) 5497 { 5498 struct dlnamelist *dlnl; 5499 zone_t *zone; 5500 zone_t *thiszone; 5501 int err; 5502 5503 dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP); 5504 if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) { 5505 kmem_free(dlnl, sizeof (struct dlnamelist)); 5506 return (set_errno(err)); 5507 } 5508 5509 thiszone = zone_find_by_id(zoneid); 5510 if (thiszone == NULL) { 5511 kmem_free(dlnl, sizeof (struct dlnamelist)); 5512 return (set_errno(ENXIO)); 5513 } 5514 5515 /* 5516 * Verify that the datalink name isn't already used by a different 5517 * zone while allowing duplicate entries for the same zone (e.g. due 5518 * to both using IPv4 and IPv6 on an interface) 5519 */ 5520 mutex_enter(&zonehash_lock); 5521 for (zone = list_head(&zone_active); zone != NULL; 5522 zone = list_next(&zone_active, zone)) { 5523 if (zone->zone_id == zoneid) 5524 continue; 5525 5526 if (zone_dlname(zone, dlnl->dlnl_name)) { 5527 mutex_exit(&zonehash_lock); 5528 zone_rele(thiszone); 5529 kmem_free(dlnl, sizeof (struct dlnamelist)); 5530 return (set_errno(EPERM)); 5531 } 5532 } 5533 mutex_enter(&thiszone->zone_lock); 5534 dlnl->dlnl_next = thiszone->zone_dl_list; 5535 thiszone->zone_dl_list = dlnl; 5536 mutex_exit(&thiszone->zone_lock); 5537 mutex_exit(&zonehash_lock); 5538 zone_rele(thiszone); 5539 return (0); 5540 } 5541 5542 static int 5543 zone_remove_datalink(zoneid_t zoneid, char *dlname) 5544 { 5545 struct dlnamelist *dlnl, *odlnl, **dlnlp; 5546 zone_t *zone; 5547 int err; 5548 5549 dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP); 5550 if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) { 5551 kmem_free(dlnl, sizeof (struct dlnamelist)); 5552 return (set_errno(err)); 5553 } 5554 zone = zone_find_by_id(zoneid); 5555 if (zone == NULL) { 5556 kmem_free(dlnl, sizeof (struct dlnamelist)); 5557 return (set_errno(EINVAL)); 5558 } 5559 5560 mutex_enter(&zone->zone_lock); 5561 /* Look for match */ 5562 dlnlp = &zone->zone_dl_list; 5563 while (*dlnlp != NULL) { 5564 if (strncmp(dlnl->dlnl_name, (*dlnlp)->dlnl_name, 5565 LIFNAMSIZ) == 0) 5566 goto found; 5567 dlnlp = &((*dlnlp)->dlnl_next); 5568 } 5569 mutex_exit(&zone->zone_lock); 5570 zone_rele(zone); 5571 kmem_free(dlnl, sizeof (struct dlnamelist)); 5572 return (set_errno(ENXIO)); 5573 5574 found: 5575 odlnl = *dlnlp; 5576 *dlnlp = (*dlnlp)->dlnl_next; 5577 kmem_free(odlnl, sizeof (struct dlnamelist)); 5578 5579 mutex_exit(&zone->zone_lock); 5580 zone_rele(zone); 5581 kmem_free(dlnl, sizeof (struct dlnamelist)); 5582 return (0); 5583 } 5584 5585 /* 5586 * Using the zoneidp as ALL_ZONES, we can lookup which zone is using datalink 5587 * name (dlname); otherwise we just check if the specified zoneidp has access 5588 * to the datalink name. 5589 */ 5590 static int 5591 zone_check_datalink(zoneid_t *zoneidp, char *dlname) 5592 { 5593 zoneid_t id; 5594 char *dln; 5595 zone_t *zone; 5596 int err = 0; 5597 boolean_t allzones = B_FALSE; 5598 5599 if (copyin(zoneidp, &id, sizeof (id)) != 0) { 5600 return (set_errno(EFAULT)); 5601 } 5602 dln = kmem_zalloc(LIFNAMSIZ, KM_SLEEP); 5603 if ((err = copyinstr(dlname, dln, LIFNAMSIZ, NULL)) != 0) { 5604 kmem_free(dln, LIFNAMSIZ); 5605 return (set_errno(err)); 5606 } 5607 5608 if (id == ALL_ZONES) 5609 allzones = B_TRUE; 5610 5611 /* 5612 * Check whether datalink name is already used. 5613 */ 5614 mutex_enter(&zonehash_lock); 5615 for (zone = list_head(&zone_active); zone != NULL; 5616 zone = list_next(&zone_active, zone)) { 5617 if (allzones || (id == zone->zone_id)) { 5618 if (!zone_dlname(zone, dln)) 5619 continue; 5620 if (allzones) 5621 err = copyout(&zone->zone_id, zoneidp, 5622 sizeof (*zoneidp)); 5623 5624 mutex_exit(&zonehash_lock); 5625 kmem_free(dln, LIFNAMSIZ); 5626 return (err ? set_errno(EFAULT) : 0); 5627 } 5628 } 5629 5630 /* datalink name is not found in any active zone. */ 5631 mutex_exit(&zonehash_lock); 5632 kmem_free(dln, LIFNAMSIZ); 5633 return (set_errno(ENXIO)); 5634 } 5635 5636 /* 5637 * Get the names of the datalinks assigned to a zone. 5638 * Here *nump is the number of datalinks, and the assumption 5639 * is that the caller will gurantee that the the supplied buffer is 5640 * big enough to hold at least #*nump datalink names, that is, 5641 * LIFNAMSIZ X *nump 5642 * On return, *nump will be the "new" number of datalinks, if it 5643 * ever changed. 5644 */ 5645 static int 5646 zone_list_datalink(zoneid_t zoneid, int *nump, char *buf) 5647 { 5648 int num, dlcount; 5649 zone_t *zone; 5650 struct dlnamelist *dlnl; 5651 char *ptr; 5652 5653 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 5654 return (set_errno(EFAULT)); 5655 5656 zone = zone_find_by_id(zoneid); 5657 if (zone == NULL) { 5658 return (set_errno(ENXIO)); 5659 } 5660 5661 num = 0; 5662 mutex_enter(&zone->zone_lock); 5663 ptr = buf; 5664 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 5665 /* 5666 * If the list changed and the new number is bigger 5667 * than what the caller supplied, just count, don't 5668 * do copyout 5669 */ 5670 if (++num > dlcount) 5671 continue; 5672 if (copyout(dlnl->dlnl_name, ptr, LIFNAMSIZ) != 0) { 5673 mutex_exit(&zone->zone_lock); 5674 zone_rele(zone); 5675 return (set_errno(EFAULT)); 5676 } 5677 ptr += LIFNAMSIZ; 5678 } 5679 mutex_exit(&zone->zone_lock); 5680 zone_rele(zone); 5681 5682 /* Increased or decreased, caller should be notified. */ 5683 if (num != dlcount) { 5684 if (copyout(&num, nump, sizeof (num)) != 0) { 5685 return (set_errno(EFAULT)); 5686 } 5687 } 5688 return (0); 5689 } 5690 5691 /* 5692 * Public interface for looking up a zone by zoneid. It's a customized version 5693 * for netstack_zone_create(), it: 5694 * 1. Doesn't acquire the zonehash_lock, since it is called from 5695 * zone_key_create() or zone_zsd_configure(), lock already held. 5696 * 2. Doesn't check the status of the zone. 5697 * 3. It will be called even before zone_init is called, in that case the 5698 * address of zone0 is returned directly, and netstack_zone_create() 5699 * will only assign a value to zone0.zone_netstack, won't break anything. 5700 */ 5701 zone_t * 5702 zone_find_by_id_nolock(zoneid_t zoneid) 5703 { 5704 ASSERT(MUTEX_HELD(&zonehash_lock)); 5705 5706 if (zonehashbyid == NULL) 5707 return (&zone0); 5708 else 5709 return (zone_find_all_by_id(zoneid)); 5710 } 5711