xref: /titanic_51/usr/src/uts/common/os/vmem.c (revision 6def3553daaea99d3558cb94db34178e1617bfe4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Big Theory Statement for the virtual memory allocator.
30  *
31  * For a more complete description of the main ideas, see:
32  *
33  *	Jeff Bonwick and Jonathan Adams,
34  *
35  *	Magazines and vmem: Extending the Slab Allocator to Many CPUs and
36  *	Arbitrary Resources.
37  *
38  *	Proceedings of the 2001 Usenix Conference.
39  *	Available as http://www.usenix.org/event/usenix01/bonwick.html
40  *
41  *
42  * 1. General Concepts
43  * -------------------
44  *
45  * 1.1 Overview
46  * ------------
47  * We divide the kernel address space into a number of logically distinct
48  * pieces, or *arenas*: text, data, heap, stack, and so on.  Within these
49  * arenas we often subdivide further; for example, we use heap addresses
50  * not only for the kernel heap (kmem_alloc() space), but also for DVMA,
51  * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip.
52  * The kernel address space, therefore, is most accurately described as
53  * a tree of arenas in which each node of the tree *imports* some subset
54  * of its parent.  The virtual memory allocator manages these arenas and
55  * supports their natural hierarchical structure.
56  *
57  * 1.2 Arenas
58  * ----------
59  * An arena is nothing more than a set of integers.  These integers most
60  * commonly represent virtual addresses, but in fact they can represent
61  * anything at all.  For example, we could use an arena containing the
62  * integers minpid through maxpid to allocate process IDs.  vmem_create()
63  * and vmem_destroy() create and destroy vmem arenas.  In order to
64  * differentiate between arenas used for adresses and arenas used for
65  * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create().  This
66  * prevents identifier exhaustion from being diagnosed as general memory
67  * failure.
68  *
69  * 1.3 Spans
70  * ---------
71  * We represent the integers in an arena as a collection of *spans*, or
72  * contiguous ranges of integers.  For example, the kernel heap consists
73  * of just one span: [kernelheap, ekernelheap).  Spans can be added to an
74  * arena in two ways: explicitly, by vmem_add(), or implicitly, by
75  * importing, as described in Section 1.5 below.
76  *
77  * 1.4 Segments
78  * ------------
79  * Spans are subdivided into *segments*, each of which is either allocated
80  * or free.  A segment, like a span, is a contiguous range of integers.
81  * Each allocated segment [addr, addr + size) represents exactly one
82  * vmem_alloc(size) that returned addr.  Free segments represent the space
83  * between allocated segments.  If two free segments are adjacent, we
84  * coalesce them into one larger segment; that is, if segments [a, b) and
85  * [b, c) are both free, we merge them into a single segment [a, c).
86  * The segments within a span are linked together in increasing-address order
87  * so we can easily determine whether coalescing is possible.
88  *
89  * Segments never cross span boundaries.  When all segments within
90  * an imported span become free, we return the span to its source.
91  *
92  * 1.5 Imported Memory
93  * -------------------
94  * As mentioned in the overview, some arenas are logical subsets of
95  * other arenas.  For example, kmem_va_arena (a virtual address cache
96  * that satisfies most kmem_slab_create() requests) is just a subset
97  * of heap_arena (the kernel heap) that provides caching for the most
98  * common slab sizes.  When kmem_va_arena runs out of virtual memory,
99  * it *imports* more from the heap; we say that heap_arena is the
100  * *vmem source* for kmem_va_arena.  vmem_create() allows you to
101  * specify any existing vmem arena as the source for your new arena.
102  * Topologically, since every arena is a child of at most one source,
103  * the set of all arenas forms a collection of trees.
104  *
105  * 1.6 Constrained Allocations
106  * ---------------------------
107  * Some vmem clients are quite picky about the kind of address they want.
108  * For example, the DVMA code may need an address that is at a particular
109  * phase with respect to some alignment (to get good cache coloring), or
110  * that lies within certain limits (the addressable range of a device),
111  * or that doesn't cross some boundary (a DMA counter restriction) --
112  * or all of the above.  vmem_xalloc() allows the client to specify any
113  * or all of these constraints.
114  *
115  * 1.7 The Vmem Quantum
116  * --------------------
117  * Every arena has a notion of 'quantum', specified at vmem_create() time,
118  * that defines the arena's minimum unit of currency.  Most commonly the
119  * quantum is either 1 or PAGESIZE, but any power of 2 is legal.
120  * All vmem allocations are guaranteed to be quantum-aligned.
121  *
122  * 1.8 Quantum Caching
123  * -------------------
124  * A vmem arena may be so hot (frequently used) that the scalability of vmem
125  * allocation is a significant concern.  We address this by allowing the most
126  * common allocation sizes to be serviced by the kernel memory allocator,
127  * which provides low-latency per-cpu caching.  The qcache_max argument to
128  * vmem_create() specifies the largest allocation size to cache.
129  *
130  * 1.9 Relationship to Kernel Memory Allocator
131  * -------------------------------------------
132  * Every kmem cache has a vmem arena as its slab supplier.  The kernel memory
133  * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs.
134  *
135  *
136  * 2. Implementation
137  * -----------------
138  *
139  * 2.1 Segment lists and markers
140  * -----------------------------
141  * The segment structure (vmem_seg_t) contains two doubly-linked lists.
142  *
143  * The arena list (vs_anext/vs_aprev) links all segments in the arena.
144  * In addition to the allocated and free segments, the arena contains
145  * special marker segments at span boundaries.  Span markers simplify
146  * coalescing and importing logic by making it easy to tell both when
147  * we're at a span boundary (so we don't coalesce across it), and when
148  * a span is completely free (its neighbors will both be span markers).
149  *
150  * Imported spans will have vs_import set.
151  *
152  * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type:
153  * (1) for allocated segments, vs_knext is the hash chain linkage;
154  * (2) for free segments, vs_knext is the freelist linkage;
155  * (3) for span marker segments, vs_knext is the next span marker.
156  *
157  * 2.2 Allocation hashing
158  * ----------------------
159  * We maintain a hash table of all allocated segments, hashed by address.
160  * This allows vmem_free() to discover the target segment in constant time.
161  * vmem_update() periodically resizes hash tables to keep hash chains short.
162  *
163  * 2.3 Freelist management
164  * -----------------------
165  * We maintain power-of-2 freelists for free segments, i.e. free segments
166  * of size >= 2^n reside in vmp->vm_freelist[n].  To ensure constant-time
167  * allocation, vmem_xalloc() looks not in the first freelist that *might*
168  * satisfy the allocation, but in the first freelist that *definitely*
169  * satisfies the allocation (unless VM_BESTFIT is specified, or all larger
170  * freelists are empty).  For example, a 1000-byte allocation will be
171  * satisfied not from the 512..1023-byte freelist, whose members *might*
172  * contains a 1000-byte segment, but from a 1024-byte or larger freelist,
173  * the first member of which will *definitely* satisfy the allocation.
174  * This ensures that vmem_xalloc() works in constant time.
175  *
176  * We maintain a bit map to determine quickly which freelists are non-empty.
177  * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty.
178  *
179  * The different freelists are linked together into one large freelist,
180  * with the freelist heads serving as markers.  Freelist markers simplify
181  * the maintenance of vm_freemap by making it easy to tell when we're taking
182  * the last member of a freelist (both of its neighbors will be markers).
183  *
184  * 2.4 Vmem Locking
185  * ----------------
186  * For simplicity, all arena state is protected by a per-arena lock.
187  * For very hot arenas, use quantum caching for scalability.
188  *
189  * 2.5 Vmem Population
190  * -------------------
191  * Any internal vmem routine that might need to allocate new segment
192  * structures must prepare in advance by calling vmem_populate(), which
193  * will preallocate enough vmem_seg_t's to get is through the entire
194  * operation without dropping the arena lock.
195  *
196  * 2.6 Auditing
197  * ------------
198  * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well.
199  * Since virtual addresses cannot be scribbled on, there is no equivalent
200  * in vmem to redzone checking, deadbeef, or other kmem debugging features.
201  * Moreover, we do not audit frees because segment coalescing destroys the
202  * association between an address and its segment structure.  Auditing is
203  * thus intended primarily to keep track of who's consuming the arena.
204  * Debugging support could certainly be extended in the future if it proves
205  * necessary, but we do so much live checking via the allocation hash table
206  * that even non-DEBUG systems get quite a bit of sanity checking already.
207  */
208 
209 #include <sys/vmem_impl.h>
210 #include <sys/kmem.h>
211 #include <sys/kstat.h>
212 #include <sys/param.h>
213 #include <sys/systm.h>
214 #include <sys/atomic.h>
215 #include <sys/bitmap.h>
216 #include <sys/sysmacros.h>
217 #include <sys/cmn_err.h>
218 #include <sys/debug.h>
219 #include <sys/panic.h>
220 
221 #define	VMEM_INITIAL		10	/* early vmem arenas */
222 #define	VMEM_SEG_INITIAL	200	/* early segments */
223 
224 /*
225  * Adding a new span to an arena requires two segment structures: one to
226  * represent the span, and one to represent the free segment it contains.
227  */
228 #define	VMEM_SEGS_PER_SPAN_CREATE	2
229 
230 /*
231  * Allocating a piece of an existing segment requires 0-2 segment structures
232  * depending on how much of the segment we're allocating.
233  *
234  * To allocate the entire segment, no new segment structures are needed; we
235  * simply move the existing segment structure from the freelist to the
236  * allocation hash table.
237  *
238  * To allocate a piece from the left or right end of the segment, we must
239  * split the segment into two pieces (allocated part and remainder), so we
240  * need one new segment structure to represent the remainder.
241  *
242  * To allocate from the middle of a segment, we need two new segment strucures
243  * to represent the remainders on either side of the allocated part.
244  */
245 #define	VMEM_SEGS_PER_EXACT_ALLOC	0
246 #define	VMEM_SEGS_PER_LEFT_ALLOC	1
247 #define	VMEM_SEGS_PER_RIGHT_ALLOC	1
248 #define	VMEM_SEGS_PER_MIDDLE_ALLOC	2
249 
250 /*
251  * vmem_populate() preallocates segment structures for vmem to do its work.
252  * It must preallocate enough for the worst case, which is when we must import
253  * a new span and then allocate from the middle of it.
254  */
255 #define	VMEM_SEGS_PER_ALLOC_MAX		\
256 	(VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
257 
258 /*
259  * The segment structures themselves are allocated from vmem_seg_arena, so
260  * we have a recursion problem when vmem_seg_arena needs to populate itself.
261  * We address this by working out the maximum number of segment structures
262  * this act will require, and multiplying by the maximum number of threads
263  * that we'll allow to do it simultaneously.
264  *
265  * The worst-case segment consumption to populate vmem_seg_arena is as
266  * follows (depicted as a stack trace to indicate why events are occurring):
267  *
268  * (In order to lower the fragmentation in the heap_arena, we specify a
269  * minimum import size for the vmem_metadata_arena which is the same size
270  * as the kmem_va quantum cache allocations.  This causes the worst-case
271  * allocation from the vmem_metadata_arena to be 3 segments.)
272  *
273  * vmem_alloc(vmem_seg_arena)		-> 2 segs (span create + exact alloc)
274  *  segkmem_alloc(vmem_metadata_arena)
275  *   vmem_alloc(vmem_metadata_arena)	-> 3 segs (span create + left alloc)
276  *    vmem_alloc(heap_arena)		-> 1 seg (left alloc)
277  *   page_create()
278  *   hat_memload()
279  *    kmem_cache_alloc()
280  *     kmem_slab_create()
281  *	vmem_alloc(hat_memload_arena)	-> 2 segs (span create + exact alloc)
282  *	 segkmem_alloc(heap_arena)
283  *	  vmem_alloc(heap_arena)	-> 1 seg (left alloc)
284  *	  page_create()
285  *	  hat_memload()		-> (hat layer won't recurse further)
286  *
287  * The worst-case consumption for each arena is 3 segment structures.
288  * Of course, a 3-seg reserve could easily be blown by multiple threads.
289  * Therefore, we serialize all allocations from vmem_seg_arena (which is OK
290  * because they're rare).  We cannot allow a non-blocking allocation to get
291  * tied up behind a blocking allocation, however, so we use separate locks
292  * for VM_SLEEP and VM_NOSLEEP allocations.  In addition, if the system is
293  * panicking then we must keep enough resources for panic_thread to do its
294  * work.  Thus we have at most three threads trying to allocate from
295  * vmem_seg_arena, and each thread consumes at most three segment structures,
296  * so we must maintain a 9-seg reserve.
297  */
298 #define	VMEM_POPULATE_RESERVE	9
299 
300 /*
301  * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
302  * so that it can satisfy the worst-case allocation *and* participate in
303  * worst-case allocation from vmem_seg_arena.
304  */
305 #define	VMEM_MINFREE	(VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
306 
307 static vmem_t vmem0[VMEM_INITIAL];
308 static vmem_t *vmem_populator[VMEM_INITIAL];
309 static uint32_t vmem_id;
310 static uint32_t vmem_populators;
311 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
312 static vmem_seg_t *vmem_segfree;
313 static kmutex_t vmem_list_lock;
314 static kmutex_t vmem_segfree_lock;
315 static kmutex_t vmem_sleep_lock;
316 static kmutex_t vmem_nosleep_lock;
317 static kmutex_t vmem_panic_lock;
318 static vmem_t *vmem_list;
319 static vmem_t *vmem_metadata_arena;
320 static vmem_t *vmem_seg_arena;
321 static vmem_t *vmem_hash_arena;
322 static vmem_t *vmem_vmem_arena;
323 static long vmem_update_interval = 15;	/* vmem_update() every 15 seconds */
324 uint32_t vmem_mtbf;		/* mean time between failures [default: off] */
325 size_t vmem_seg_size = sizeof (vmem_seg_t);
326 
327 static vmem_kstat_t vmem_kstat_template = {
328 	{ "mem_inuse",		KSTAT_DATA_UINT64 },
329 	{ "mem_import",		KSTAT_DATA_UINT64 },
330 	{ "mem_total",		KSTAT_DATA_UINT64 },
331 	{ "vmem_source",	KSTAT_DATA_UINT32 },
332 	{ "alloc",		KSTAT_DATA_UINT64 },
333 	{ "free",		KSTAT_DATA_UINT64 },
334 	{ "wait",		KSTAT_DATA_UINT64 },
335 	{ "fail",		KSTAT_DATA_UINT64 },
336 	{ "lookup",		KSTAT_DATA_UINT64 },
337 	{ "search",		KSTAT_DATA_UINT64 },
338 	{ "populate_wait",	KSTAT_DATA_UINT64 },
339 	{ "populate_fail",	KSTAT_DATA_UINT64 },
340 	{ "contains",		KSTAT_DATA_UINT64 },
341 	{ "contains_search",	KSTAT_DATA_UINT64 },
342 };
343 
344 /*
345  * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
346  */
347 #define	VMEM_INSERT(vprev, vsp, type)					\
348 {									\
349 	vmem_seg_t *vnext = (vprev)->vs_##type##next;			\
350 	(vsp)->vs_##type##next = (vnext);				\
351 	(vsp)->vs_##type##prev = (vprev);				\
352 	(vprev)->vs_##type##next = (vsp);				\
353 	(vnext)->vs_##type##prev = (vsp);				\
354 }
355 
356 #define	VMEM_DELETE(vsp, type)						\
357 {									\
358 	vmem_seg_t *vprev = (vsp)->vs_##type##prev;			\
359 	vmem_seg_t *vnext = (vsp)->vs_##type##next;			\
360 	(vprev)->vs_##type##next = (vnext);				\
361 	(vnext)->vs_##type##prev = (vprev);				\
362 }
363 
364 /*
365  * Get a vmem_seg_t from the global segfree list.
366  */
367 static vmem_seg_t *
368 vmem_getseg_global(void)
369 {
370 	vmem_seg_t *vsp;
371 
372 	mutex_enter(&vmem_segfree_lock);
373 	if ((vsp = vmem_segfree) != NULL)
374 		vmem_segfree = vsp->vs_knext;
375 	mutex_exit(&vmem_segfree_lock);
376 
377 	return (vsp);
378 }
379 
380 /*
381  * Put a vmem_seg_t on the global segfree list.
382  */
383 static void
384 vmem_putseg_global(vmem_seg_t *vsp)
385 {
386 	mutex_enter(&vmem_segfree_lock);
387 	vsp->vs_knext = vmem_segfree;
388 	vmem_segfree = vsp;
389 	mutex_exit(&vmem_segfree_lock);
390 }
391 
392 /*
393  * Get a vmem_seg_t from vmp's segfree list.
394  */
395 static vmem_seg_t *
396 vmem_getseg(vmem_t *vmp)
397 {
398 	vmem_seg_t *vsp;
399 
400 	ASSERT(vmp->vm_nsegfree > 0);
401 
402 	vsp = vmp->vm_segfree;
403 	vmp->vm_segfree = vsp->vs_knext;
404 	vmp->vm_nsegfree--;
405 
406 	return (vsp);
407 }
408 
409 /*
410  * Put a vmem_seg_t on vmp's segfree list.
411  */
412 static void
413 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
414 {
415 	vsp->vs_knext = vmp->vm_segfree;
416 	vmp->vm_segfree = vsp;
417 	vmp->vm_nsegfree++;
418 }
419 
420 /*
421  * Add vsp to the appropriate freelist.
422  */
423 static void
424 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
425 {
426 	vmem_seg_t *vprev;
427 
428 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
429 
430 	vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
431 	vsp->vs_type = VMEM_FREE;
432 	vmp->vm_freemap |= VS_SIZE(vprev);
433 	VMEM_INSERT(vprev, vsp, k);
434 
435 	cv_broadcast(&vmp->vm_cv);
436 }
437 
438 /*
439  * Take vsp from the freelist.
440  */
441 static void
442 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
443 {
444 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
445 	ASSERT(vsp->vs_type == VMEM_FREE);
446 
447 	if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
448 		/*
449 		 * The segments on both sides of 'vsp' are freelist heads,
450 		 * so taking vsp leaves the freelist at vsp->vs_kprev empty.
451 		 */
452 		ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
453 		vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
454 	}
455 	VMEM_DELETE(vsp, k);
456 }
457 
458 /*
459  * Add vsp to the allocated-segment hash table and update kstats.
460  */
461 static void
462 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
463 {
464 	vmem_seg_t **bucket;
465 
466 	vsp->vs_type = VMEM_ALLOC;
467 	bucket = VMEM_HASH(vmp, vsp->vs_start);
468 	vsp->vs_knext = *bucket;
469 	*bucket = vsp;
470 
471 	if (vmem_seg_size == sizeof (vmem_seg_t)) {
472 		vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
473 		    VMEM_STACK_DEPTH);
474 		vsp->vs_thread = curthread;
475 		vsp->vs_timestamp = gethrtime();
476 	} else {
477 		vsp->vs_depth = 0;
478 	}
479 
480 	vmp->vm_kstat.vk_alloc.value.ui64++;
481 	vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp);
482 }
483 
484 /*
485  * Remove vsp from the allocated-segment hash table and update kstats.
486  */
487 static vmem_seg_t *
488 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
489 {
490 	vmem_seg_t *vsp, **prev_vspp;
491 
492 	prev_vspp = VMEM_HASH(vmp, addr);
493 	while ((vsp = *prev_vspp) != NULL) {
494 		if (vsp->vs_start == addr) {
495 			*prev_vspp = vsp->vs_knext;
496 			break;
497 		}
498 		vmp->vm_kstat.vk_lookup.value.ui64++;
499 		prev_vspp = &vsp->vs_knext;
500 	}
501 
502 	if (vsp == NULL)
503 		panic("vmem_hash_delete(%p, %lx, %lu): bad free",
504 		    vmp, addr, size);
505 	if (VS_SIZE(vsp) != size)
506 		panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)",
507 		    vmp, addr, size, VS_SIZE(vsp));
508 
509 	vmp->vm_kstat.vk_free.value.ui64++;
510 	vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size;
511 
512 	return (vsp);
513 }
514 
515 /*
516  * Create a segment spanning the range [start, end) and add it to the arena.
517  */
518 static vmem_seg_t *
519 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
520 {
521 	vmem_seg_t *newseg = vmem_getseg(vmp);
522 
523 	newseg->vs_start = start;
524 	newseg->vs_end = end;
525 	newseg->vs_type = 0;
526 	newseg->vs_import = 0;
527 
528 	VMEM_INSERT(vprev, newseg, a);
529 
530 	return (newseg);
531 }
532 
533 /*
534  * Remove segment vsp from the arena.
535  */
536 static void
537 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
538 {
539 	ASSERT(vsp->vs_type != VMEM_ROTOR);
540 	VMEM_DELETE(vsp, a);
541 
542 	vmem_putseg(vmp, vsp);
543 }
544 
545 /*
546  * Add the span [vaddr, vaddr + size) to vmp and update kstats.
547  */
548 static vmem_seg_t *
549 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
550 {
551 	vmem_seg_t *newseg, *span;
552 	uintptr_t start = (uintptr_t)vaddr;
553 	uintptr_t end = start + size;
554 
555 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
556 
557 	if ((start | end) & (vmp->vm_quantum - 1))
558 		panic("vmem_span_create(%p, %p, %lu): misaligned",
559 		    vmp, vaddr, size);
560 
561 	span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end);
562 	span->vs_type = VMEM_SPAN;
563 	span->vs_import = import;
564 	VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k);
565 
566 	newseg = vmem_seg_create(vmp, span, start, end);
567 	vmem_freelist_insert(vmp, newseg);
568 
569 	if (import)
570 		vmp->vm_kstat.vk_mem_import.value.ui64 += size;
571 	vmp->vm_kstat.vk_mem_total.value.ui64 += size;
572 
573 	return (newseg);
574 }
575 
576 /*
577  * Remove span vsp from vmp and update kstats.
578  */
579 static void
580 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
581 {
582 	vmem_seg_t *span = vsp->vs_aprev;
583 	size_t size = VS_SIZE(vsp);
584 
585 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
586 	ASSERT(span->vs_type == VMEM_SPAN);
587 
588 	if (span->vs_import)
589 		vmp->vm_kstat.vk_mem_import.value.ui64 -= size;
590 	vmp->vm_kstat.vk_mem_total.value.ui64 -= size;
591 
592 	VMEM_DELETE(span, k);
593 
594 	vmem_seg_destroy(vmp, vsp);
595 	vmem_seg_destroy(vmp, span);
596 }
597 
598 /*
599  * Allocate the subrange [addr, addr + size) from segment vsp.
600  * If there are leftovers on either side, place them on the freelist.
601  * Returns a pointer to the segment representing [addr, addr + size).
602  */
603 static vmem_seg_t *
604 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
605 {
606 	uintptr_t vs_start = vsp->vs_start;
607 	uintptr_t vs_end = vsp->vs_end;
608 	size_t vs_size = vs_end - vs_start;
609 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
610 	uintptr_t addr_end = addr + realsize;
611 
612 	ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
613 	ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
614 	ASSERT(vsp->vs_type == VMEM_FREE);
615 	ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
616 	ASSERT(addr - 1 <= addr_end - 1);
617 
618 	/*
619 	 * If we're allocating from the start of the segment, and the
620 	 * remainder will be on the same freelist, we can save quite
621 	 * a bit of work.
622 	 */
623 	if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
624 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
625 		vsp->vs_start = addr_end;
626 		vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
627 		vmem_hash_insert(vmp, vsp);
628 		return (vsp);
629 	}
630 
631 	vmem_freelist_delete(vmp, vsp);
632 
633 	if (vs_end != addr_end)
634 		vmem_freelist_insert(vmp,
635 		    vmem_seg_create(vmp, vsp, addr_end, vs_end));
636 
637 	if (vs_start != addr)
638 		vmem_freelist_insert(vmp,
639 		    vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
640 
641 	vsp->vs_start = addr;
642 	vsp->vs_end = addr + size;
643 
644 	vmem_hash_insert(vmp, vsp);
645 	return (vsp);
646 }
647 
648 /*
649  * Returns 1 if we are populating, 0 otherwise.
650  * Call it if we want to prevent recursion from HAT.
651  */
652 int
653 vmem_is_populator()
654 {
655 	return (mutex_owner(&vmem_sleep_lock) == curthread ||
656 	    mutex_owner(&vmem_nosleep_lock) == curthread ||
657 	    mutex_owner(&vmem_panic_lock) == curthread);
658 }
659 
660 /*
661  * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
662  */
663 static int
664 vmem_populate(vmem_t *vmp, int vmflag)
665 {
666 	char *p;
667 	vmem_seg_t *vsp;
668 	ssize_t nseg;
669 	size_t size;
670 	kmutex_t *lp;
671 	int i;
672 
673 	while (vmp->vm_nsegfree < VMEM_MINFREE &&
674 	    (vsp = vmem_getseg_global()) != NULL)
675 		vmem_putseg(vmp, vsp);
676 
677 	if (vmp->vm_nsegfree >= VMEM_MINFREE)
678 		return (1);
679 
680 	/*
681 	 * If we're already populating, tap the reserve.
682 	 */
683 	if (vmem_is_populator()) {
684 		ASSERT(vmp->vm_cflags & VMC_POPULATOR);
685 		return (1);
686 	}
687 
688 	mutex_exit(&vmp->vm_lock);
689 
690 	if (panic_thread == curthread)
691 		lp = &vmem_panic_lock;
692 	else if (vmflag & VM_NOSLEEP)
693 		lp = &vmem_nosleep_lock;
694 	else
695 		lp = &vmem_sleep_lock;
696 
697 	mutex_enter(lp);
698 
699 	nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
700 	size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
701 	nseg = size / vmem_seg_size;
702 
703 	/*
704 	 * The following vmem_alloc() may need to populate vmem_seg_arena
705 	 * and all the things it imports from.  When doing so, it will tap
706 	 * each arena's reserve to prevent recursion (see the block comment
707 	 * above the definition of VMEM_POPULATE_RESERVE).
708 	 */
709 	p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS);
710 	if (p == NULL) {
711 		mutex_exit(lp);
712 		mutex_enter(&vmp->vm_lock);
713 		vmp->vm_kstat.vk_populate_fail.value.ui64++;
714 		return (0);
715 	}
716 
717 	/*
718 	 * Restock the arenas that may have been depleted during population.
719 	 */
720 	for (i = 0; i < vmem_populators; i++) {
721 		mutex_enter(&vmem_populator[i]->vm_lock);
722 		while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
723 			vmem_putseg(vmem_populator[i],
724 			    (vmem_seg_t *)(p + --nseg * vmem_seg_size));
725 		mutex_exit(&vmem_populator[i]->vm_lock);
726 	}
727 
728 	mutex_exit(lp);
729 	mutex_enter(&vmp->vm_lock);
730 
731 	/*
732 	 * Now take our own segments.
733 	 */
734 	ASSERT(nseg >= VMEM_MINFREE);
735 	while (vmp->vm_nsegfree < VMEM_MINFREE)
736 		vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
737 
738 	/*
739 	 * Give the remainder to charity.
740 	 */
741 	while (nseg > 0)
742 		vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
743 
744 	return (1);
745 }
746 
747 /*
748  * Advance a walker from its previous position to 'afterme'.
749  * Note: may drop and reacquire vmp->vm_lock.
750  */
751 static void
752 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
753 {
754 	vmem_seg_t *vprev = walker->vs_aprev;
755 	vmem_seg_t *vnext = walker->vs_anext;
756 	vmem_seg_t *vsp = NULL;
757 
758 	VMEM_DELETE(walker, a);
759 
760 	if (afterme != NULL)
761 		VMEM_INSERT(afterme, walker, a);
762 
763 	/*
764 	 * The walker segment's presence may have prevented its neighbors
765 	 * from coalescing.  If so, coalesce them now.
766 	 */
767 	if (vprev->vs_type == VMEM_FREE) {
768 		if (vnext->vs_type == VMEM_FREE) {
769 			ASSERT(vprev->vs_end == vnext->vs_start);
770 			vmem_freelist_delete(vmp, vnext);
771 			vmem_freelist_delete(vmp, vprev);
772 			vprev->vs_end = vnext->vs_end;
773 			vmem_freelist_insert(vmp, vprev);
774 			vmem_seg_destroy(vmp, vnext);
775 		}
776 		vsp = vprev;
777 	} else if (vnext->vs_type == VMEM_FREE) {
778 		vsp = vnext;
779 	}
780 
781 	/*
782 	 * vsp could represent a complete imported span,
783 	 * in which case we must return it to the source.
784 	 */
785 	if (vsp != NULL && vsp->vs_aprev->vs_import &&
786 	    vmp->vm_source_free != NULL &&
787 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
788 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
789 		void *vaddr = (void *)vsp->vs_start;
790 		size_t size = VS_SIZE(vsp);
791 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
792 		vmem_freelist_delete(vmp, vsp);
793 		vmem_span_destroy(vmp, vsp);
794 		mutex_exit(&vmp->vm_lock);
795 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
796 		mutex_enter(&vmp->vm_lock);
797 	}
798 }
799 
800 /*
801  * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
802  * in an arena, so that we avoid reusing addresses for as long as possible.
803  * This helps to catch used-after-freed bugs.  It's also the perfect policy
804  * for allocating things like process IDs, where we want to cycle through
805  * all values in order.
806  */
807 static void *
808 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
809 {
810 	vmem_seg_t *vsp, *rotor;
811 	uintptr_t addr;
812 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
813 	size_t vs_size;
814 
815 	mutex_enter(&vmp->vm_lock);
816 
817 	if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
818 		mutex_exit(&vmp->vm_lock);
819 		return (NULL);
820 	}
821 
822 	/*
823 	 * The common case is that the segment right after the rotor is free,
824 	 * and large enough that extracting 'size' bytes won't change which
825 	 * freelist it's on.  In this case we can avoid a *lot* of work.
826 	 * Instead of the normal vmem_seg_alloc(), we just advance the start
827 	 * address of the victim segment.  Instead of moving the rotor, we
828 	 * create the new segment structure *behind the rotor*, which has
829 	 * the same effect.  And finally, we know we don't have to coalesce
830 	 * the rotor's neighbors because the new segment lies between them.
831 	 */
832 	rotor = &vmp->vm_rotor;
833 	vsp = rotor->vs_anext;
834 	if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
835 	    P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
836 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
837 		addr = vsp->vs_start;
838 		vsp->vs_start = addr + realsize;
839 		vmem_hash_insert(vmp,
840 		    vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
841 		mutex_exit(&vmp->vm_lock);
842 		return ((void *)addr);
843 	}
844 
845 	/*
846 	 * Starting at the rotor, look for a segment large enough to
847 	 * satisfy the allocation.
848 	 */
849 	for (;;) {
850 		vmp->vm_kstat.vk_search.value.ui64++;
851 		if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
852 			break;
853 		vsp = vsp->vs_anext;
854 		if (vsp == rotor) {
855 			/*
856 			 * We've come full circle.  One possibility is that the
857 			 * there's actually enough space, but the rotor itself
858 			 * is preventing the allocation from succeeding because
859 			 * it's sitting between two free segments.  Therefore,
860 			 * we advance the rotor and see if that liberates a
861 			 * suitable segment.
862 			 */
863 			vmem_advance(vmp, rotor, rotor->vs_anext);
864 			vsp = rotor->vs_aprev;
865 			if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
866 				break;
867 			/*
868 			 * If there's a lower arena we can import from, or it's
869 			 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
870 			 * Otherwise, wait until another thread frees something.
871 			 */
872 			if (vmp->vm_source_alloc != NULL ||
873 			    (vmflag & VM_NOSLEEP)) {
874 				mutex_exit(&vmp->vm_lock);
875 				return (vmem_xalloc(vmp, size, vmp->vm_quantum,
876 				    0, 0, NULL, NULL, vmflag & VM_KMFLAGS));
877 			}
878 			vmp->vm_kstat.vk_wait.value.ui64++;
879 			cv_wait(&vmp->vm_cv, &vmp->vm_lock);
880 			vsp = rotor->vs_anext;
881 		}
882 	}
883 
884 	/*
885 	 * We found a segment.  Extract enough space to satisfy the allocation.
886 	 */
887 	addr = vsp->vs_start;
888 	vsp = vmem_seg_alloc(vmp, vsp, addr, size);
889 	ASSERT(vsp->vs_type == VMEM_ALLOC &&
890 	    vsp->vs_start == addr && vsp->vs_end == addr + size);
891 
892 	/*
893 	 * Advance the rotor to right after the newly-allocated segment.
894 	 * That's where the next VM_NEXTFIT allocation will begin searching.
895 	 */
896 	vmem_advance(vmp, rotor, vsp);
897 	mutex_exit(&vmp->vm_lock);
898 	return ((void *)addr);
899 }
900 
901 /*
902  * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its
903  * freelist.  If size is not a power-of-2, it can return a false-negative.
904  *
905  * Used to decide if a newly imported span is superfluous after re-acquiring
906  * the arena lock.
907  */
908 static int
909 vmem_canalloc(vmem_t *vmp, size_t size)
910 {
911 	int hb;
912 	int flist = 0;
913 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
914 
915 	if ((size & (size - 1)) == 0)
916 		flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
917 	else if ((hb = highbit(size)) < VMEM_FREELISTS)
918 		flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
919 
920 	return (flist);
921 }
922 
923 /*
924  * Allocate size bytes at offset phase from an align boundary such that the
925  * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
926  * that does not straddle a nocross-aligned boundary.
927  */
928 void *
929 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase,
930 	size_t nocross, void *minaddr, void *maxaddr, int vmflag)
931 {
932 	vmem_seg_t *vsp;
933 	vmem_seg_t *vbest = NULL;
934 	uintptr_t addr, taddr, start, end;
935 	uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum;
936 	void *vaddr, *xvaddr = NULL;
937 	size_t xsize;
938 	int hb, flist, resv;
939 	uint32_t mtbf;
940 
941 	if ((align | phase | nocross) & (vmp->vm_quantum - 1))
942 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
943 		    "parameters not vm_quantum aligned",
944 		    (void *)vmp, size, align_arg, phase, nocross,
945 		    minaddr, maxaddr, vmflag);
946 
947 	if (nocross != 0 &&
948 	    (align > nocross || P2ROUNDUP(phase + size, align) > nocross))
949 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
950 		    "overconstrained allocation",
951 		    (void *)vmp, size, align_arg, phase, nocross,
952 		    minaddr, maxaddr, vmflag);
953 
954 	if (phase >= align || (align & (align - 1)) != 0 ||
955 	    (nocross & (nocross - 1)) != 0)
956 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
957 		    "parameters inconsistent or invalid",
958 		    (void *)vmp, size, align_arg, phase, nocross,
959 		    minaddr, maxaddr, vmflag);
960 
961 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
962 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
963 		return (NULL);
964 
965 	mutex_enter(&vmp->vm_lock);
966 	for (;;) {
967 		if (vmp->vm_nsegfree < VMEM_MINFREE &&
968 		    !vmem_populate(vmp, vmflag))
969 			break;
970 do_alloc:
971 		/*
972 		 * highbit() returns the highest bit + 1, which is exactly
973 		 * what we want: we want to search the first freelist whose
974 		 * members are *definitely* large enough to satisfy our
975 		 * allocation.  However, there are certain cases in which we
976 		 * want to look at the next-smallest freelist (which *might*
977 		 * be able to satisfy the allocation):
978 		 *
979 		 * (1)	The size is exactly a power of 2, in which case
980 		 *	the smaller freelist is always big enough;
981 		 *
982 		 * (2)	All other freelists are empty;
983 		 *
984 		 * (3)	We're in the highest possible freelist, which is
985 		 *	always empty (e.g. the 4GB freelist on 32-bit systems);
986 		 *
987 		 * (4)	We're doing a best-fit or first-fit allocation.
988 		 */
989 		if ((size & (size - 1)) == 0) {
990 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
991 		} else {
992 			hb = highbit(size);
993 			if ((vmp->vm_freemap >> hb) == 0 ||
994 			    hb == VMEM_FREELISTS ||
995 			    (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
996 				hb--;
997 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
998 		}
999 
1000 		for (vbest = NULL, vsp = (flist == 0) ? NULL :
1001 		    vmp->vm_freelist[flist - 1].vs_knext;
1002 		    vsp != NULL; vsp = vsp->vs_knext) {
1003 			vmp->vm_kstat.vk_search.value.ui64++;
1004 			if (vsp->vs_start == 0) {
1005 				/*
1006 				 * We're moving up to a larger freelist,
1007 				 * so if we've already found a candidate,
1008 				 * the fit can't possibly get any better.
1009 				 */
1010 				if (vbest != NULL)
1011 					break;
1012 				/*
1013 				 * Find the next non-empty freelist.
1014 				 */
1015 				flist = lowbit(P2ALIGN(vmp->vm_freemap,
1016 				    VS_SIZE(vsp)));
1017 				if (flist-- == 0)
1018 					break;
1019 				vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
1020 				ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
1021 				continue;
1022 			}
1023 			if (vsp->vs_end - 1 < (uintptr_t)minaddr)
1024 				continue;
1025 			if (vsp->vs_start > (uintptr_t)maxaddr - 1)
1026 				continue;
1027 			start = MAX(vsp->vs_start, (uintptr_t)minaddr);
1028 			end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
1029 			taddr = P2PHASEUP(start, align, phase);
1030 			if (P2CROSS(taddr, taddr + size - 1, nocross))
1031 				taddr +=
1032 				    P2ROUNDUP(P2NPHASE(taddr, nocross), align);
1033 			if ((taddr - start) + size > end - start ||
1034 			    (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
1035 				continue;
1036 			vbest = vsp;
1037 			addr = taddr;
1038 			if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
1039 				break;
1040 		}
1041 		if (vbest != NULL)
1042 			break;
1043 		ASSERT(xvaddr == NULL);
1044 		if (size == 0)
1045 			panic("vmem_xalloc(): size == 0");
1046 		if (vmp->vm_source_alloc != NULL && nocross == 0 &&
1047 		    minaddr == NULL && maxaddr == NULL) {
1048 			size_t aneeded, asize;
1049 			size_t aquantum = MAX(vmp->vm_quantum,
1050 			    vmp->vm_source->vm_quantum);
1051 			size_t aphase = phase;
1052 			if ((align > aquantum) &&
1053 			    !(vmp->vm_cflags & VMC_XALIGN)) {
1054 				aphase = (P2PHASE(phase, aquantum) != 0) ?
1055 				    align - vmp->vm_quantum : align - aquantum;
1056 				ASSERT(aphase >= phase);
1057 			}
1058 			aneeded = MAX(size + aphase, vmp->vm_min_import);
1059 			asize = P2ROUNDUP(aneeded, aquantum);
1060 
1061 			/*
1062 			 * Determine how many segment structures we'll consume.
1063 			 * The calculation must be precise because if we're
1064 			 * here on behalf of vmem_populate(), we are taking
1065 			 * segments from a very limited reserve.
1066 			 */
1067 			if (size == asize && !(vmp->vm_cflags & VMC_XALLOC))
1068 				resv = VMEM_SEGS_PER_SPAN_CREATE +
1069 				    VMEM_SEGS_PER_EXACT_ALLOC;
1070 			else if (phase == 0 &&
1071 			    align <= vmp->vm_source->vm_quantum)
1072 				resv = VMEM_SEGS_PER_SPAN_CREATE +
1073 				    VMEM_SEGS_PER_LEFT_ALLOC;
1074 			else
1075 				resv = VMEM_SEGS_PER_ALLOC_MAX;
1076 
1077 			ASSERT(vmp->vm_nsegfree >= resv);
1078 			vmp->vm_nsegfree -= resv;	/* reserve our segs */
1079 			mutex_exit(&vmp->vm_lock);
1080 			if (vmp->vm_cflags & VMC_XALLOC) {
1081 				size_t oasize = asize;
1082 				vaddr = ((vmem_ximport_t *)
1083 				    vmp->vm_source_alloc)(vmp->vm_source,
1084 				    &asize, align, vmflag & VM_KMFLAGS);
1085 				ASSERT(asize >= oasize);
1086 				ASSERT(P2PHASE(asize,
1087 				    vmp->vm_source->vm_quantum) == 0);
1088 				ASSERT(!(vmp->vm_cflags & VMC_XALIGN) ||
1089 				    IS_P2ALIGNED(vaddr, align));
1090 			} else {
1091 				vaddr = vmp->vm_source_alloc(vmp->vm_source,
1092 				    asize, vmflag & VM_KMFLAGS);
1093 			}
1094 			mutex_enter(&vmp->vm_lock);
1095 			vmp->vm_nsegfree += resv;	/* claim reservation */
1096 			aneeded = size + align - vmp->vm_quantum;
1097 			aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum);
1098 			if (vaddr != NULL) {
1099 				/*
1100 				 * Since we dropped the vmem lock while
1101 				 * calling the import function, other
1102 				 * threads could have imported space
1103 				 * and made our import unnecessary.  In
1104 				 * order to save space, we return
1105 				 * excess imports immediately.
1106 				 */
1107 				if (asize > aneeded &&
1108 				    vmp->vm_source_free != NULL &&
1109 				    vmem_canalloc(vmp, aneeded)) {
1110 					ASSERT(resv >=
1111 					    VMEM_SEGS_PER_MIDDLE_ALLOC);
1112 					xvaddr = vaddr;
1113 					xsize = asize;
1114 					goto do_alloc;
1115 				}
1116 				vbest = vmem_span_create(vmp, vaddr, asize, 1);
1117 				addr = P2PHASEUP(vbest->vs_start, align, phase);
1118 				break;
1119 			} else if (vmem_canalloc(vmp, aneeded)) {
1120 				/*
1121 				 * Our import failed, but another thread
1122 				 * added sufficient free memory to the arena
1123 				 * to satisfy our request.  Go back and
1124 				 * grab it.
1125 				 */
1126 				ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC);
1127 				goto do_alloc;
1128 			}
1129 		}
1130 
1131 		/*
1132 		 * If the requestor chooses to fail the allocation attempt
1133 		 * rather than reap wait and retry - get out of the loop.
1134 		 */
1135 		if (vmflag & VM_ABORT)
1136 			break;
1137 		mutex_exit(&vmp->vm_lock);
1138 		if (vmp->vm_cflags & VMC_IDENTIFIER)
1139 			kmem_reap_idspace();
1140 		else
1141 			kmem_reap();
1142 		mutex_enter(&vmp->vm_lock);
1143 		if (vmflag & VM_NOSLEEP)
1144 			break;
1145 		vmp->vm_kstat.vk_wait.value.ui64++;
1146 		cv_wait(&vmp->vm_cv, &vmp->vm_lock);
1147 	}
1148 	if (vbest != NULL) {
1149 		ASSERT(vbest->vs_type == VMEM_FREE);
1150 		ASSERT(vbest->vs_knext != vbest);
1151 		(void) vmem_seg_alloc(vmp, vbest, addr, size);
1152 		mutex_exit(&vmp->vm_lock);
1153 		if (xvaddr)
1154 			vmp->vm_source_free(vmp->vm_source, xvaddr, xsize);
1155 		ASSERT(P2PHASE(addr, align) == phase);
1156 		ASSERT(!P2CROSS(addr, addr + size - 1, nocross));
1157 		ASSERT(addr >= (uintptr_t)minaddr);
1158 		ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
1159 		return ((void *)addr);
1160 	}
1161 	vmp->vm_kstat.vk_fail.value.ui64++;
1162 	mutex_exit(&vmp->vm_lock);
1163 	if (vmflag & VM_PANIC)
1164 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
1165 		    "cannot satisfy mandatory allocation",
1166 		    (void *)vmp, size, align_arg, phase, nocross,
1167 		    minaddr, maxaddr, vmflag);
1168 	ASSERT(xvaddr == NULL);
1169 	return (NULL);
1170 }
1171 
1172 /*
1173  * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
1174  * allocation.  vmem_xalloc() and vmem_xfree() must always be paired because
1175  * both routines bypass the quantum caches.
1176  */
1177 void
1178 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
1179 {
1180 	vmem_seg_t *vsp, *vnext, *vprev;
1181 
1182 	mutex_enter(&vmp->vm_lock);
1183 
1184 	vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
1185 	vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
1186 
1187 	/*
1188 	 * Attempt to coalesce with the next segment.
1189 	 */
1190 	vnext = vsp->vs_anext;
1191 	if (vnext->vs_type == VMEM_FREE) {
1192 		ASSERT(vsp->vs_end == vnext->vs_start);
1193 		vmem_freelist_delete(vmp, vnext);
1194 		vsp->vs_end = vnext->vs_end;
1195 		vmem_seg_destroy(vmp, vnext);
1196 	}
1197 
1198 	/*
1199 	 * Attempt to coalesce with the previous segment.
1200 	 */
1201 	vprev = vsp->vs_aprev;
1202 	if (vprev->vs_type == VMEM_FREE) {
1203 		ASSERT(vprev->vs_end == vsp->vs_start);
1204 		vmem_freelist_delete(vmp, vprev);
1205 		vprev->vs_end = vsp->vs_end;
1206 		vmem_seg_destroy(vmp, vsp);
1207 		vsp = vprev;
1208 	}
1209 
1210 	/*
1211 	 * If the entire span is free, return it to the source.
1212 	 */
1213 	if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL &&
1214 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
1215 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
1216 		vaddr = (void *)vsp->vs_start;
1217 		size = VS_SIZE(vsp);
1218 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
1219 		vmem_span_destroy(vmp, vsp);
1220 		mutex_exit(&vmp->vm_lock);
1221 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
1222 	} else {
1223 		vmem_freelist_insert(vmp, vsp);
1224 		mutex_exit(&vmp->vm_lock);
1225 	}
1226 }
1227 
1228 /*
1229  * Allocate size bytes from arena vmp.  Returns the allocated address
1230  * on success, NULL on failure.  vmflag specifies VM_SLEEP or VM_NOSLEEP,
1231  * and may also specify best-fit, first-fit, or next-fit allocation policy
1232  * instead of the default instant-fit policy.  VM_SLEEP allocations are
1233  * guaranteed to succeed.
1234  */
1235 void *
1236 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1237 {
1238 	vmem_seg_t *vsp;
1239 	uintptr_t addr;
1240 	int hb;
1241 	int flist = 0;
1242 	uint32_t mtbf;
1243 
1244 	if (size - 1 < vmp->vm_qcache_max)
1245 		return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >>
1246 		    vmp->vm_qshift], vmflag & VM_KMFLAGS));
1247 
1248 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
1249 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
1250 		return (NULL);
1251 
1252 	if (vmflag & VM_NEXTFIT)
1253 		return (vmem_nextfit_alloc(vmp, size, vmflag));
1254 
1255 	if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
1256 		return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
1257 		    NULL, NULL, vmflag));
1258 
1259 	/*
1260 	 * Unconstrained instant-fit allocation from the segment list.
1261 	 */
1262 	mutex_enter(&vmp->vm_lock);
1263 
1264 	if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
1265 		if ((size & (size - 1)) == 0)
1266 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1267 		else if ((hb = highbit(size)) < VMEM_FREELISTS)
1268 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1269 	}
1270 
1271 	if (flist-- == 0) {
1272 		mutex_exit(&vmp->vm_lock);
1273 		return (vmem_xalloc(vmp, size, vmp->vm_quantum,
1274 		    0, 0, NULL, NULL, vmflag));
1275 	}
1276 
1277 	ASSERT(size <= (1UL << flist));
1278 	vsp = vmp->vm_freelist[flist].vs_knext;
1279 	addr = vsp->vs_start;
1280 	(void) vmem_seg_alloc(vmp, vsp, addr, size);
1281 	mutex_exit(&vmp->vm_lock);
1282 	return ((void *)addr);
1283 }
1284 
1285 /*
1286  * Free the segment [vaddr, vaddr + size).
1287  */
1288 void
1289 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1290 {
1291 	if (size - 1 < vmp->vm_qcache_max)
1292 		kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
1293 		    vaddr);
1294 	else
1295 		vmem_xfree(vmp, vaddr, size);
1296 }
1297 
1298 /*
1299  * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
1300  */
1301 int
1302 vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
1303 {
1304 	uintptr_t start = (uintptr_t)vaddr;
1305 	uintptr_t end = start + size;
1306 	vmem_seg_t *vsp;
1307 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1308 
1309 	mutex_enter(&vmp->vm_lock);
1310 	vmp->vm_kstat.vk_contains.value.ui64++;
1311 	for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
1312 		vmp->vm_kstat.vk_contains_search.value.ui64++;
1313 		ASSERT(vsp->vs_type == VMEM_SPAN);
1314 		if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
1315 			break;
1316 	}
1317 	mutex_exit(&vmp->vm_lock);
1318 	return (vsp != seg0);
1319 }
1320 
1321 /*
1322  * Add the span [vaddr, vaddr + size) to arena vmp.
1323  */
1324 void *
1325 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
1326 {
1327 	if (vaddr == NULL || size == 0)
1328 		panic("vmem_add(%p, %p, %lu): bad arguments", vmp, vaddr, size);
1329 
1330 	ASSERT(!vmem_contains(vmp, vaddr, size));
1331 
1332 	mutex_enter(&vmp->vm_lock);
1333 	if (vmem_populate(vmp, vmflag))
1334 		(void) vmem_span_create(vmp, vaddr, size, 0);
1335 	else
1336 		vaddr = NULL;
1337 	mutex_exit(&vmp->vm_lock);
1338 	return (vaddr);
1339 }
1340 
1341 /*
1342  * Walk the vmp arena, applying func to each segment matching typemask.
1343  * If VMEM_REENTRANT is specified, the arena lock is dropped across each
1344  * call to func(); otherwise, it is held for the duration of vmem_walk()
1345  * to ensure a consistent snapshot.  Note that VMEM_REENTRANT callbacks
1346  * are *not* necessarily consistent, so they may only be used when a hint
1347  * is adequate.
1348  */
1349 void
1350 vmem_walk(vmem_t *vmp, int typemask,
1351 	void (*func)(void *, void *, size_t), void *arg)
1352 {
1353 	vmem_seg_t *vsp;
1354 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1355 	vmem_seg_t walker;
1356 
1357 	if (typemask & VMEM_WALKER)
1358 		return;
1359 
1360 	bzero(&walker, sizeof (walker));
1361 	walker.vs_type = VMEM_WALKER;
1362 
1363 	mutex_enter(&vmp->vm_lock);
1364 	VMEM_INSERT(seg0, &walker, a);
1365 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
1366 		if (vsp->vs_type & typemask) {
1367 			void *start = (void *)vsp->vs_start;
1368 			size_t size = VS_SIZE(vsp);
1369 			if (typemask & VMEM_REENTRANT) {
1370 				vmem_advance(vmp, &walker, vsp);
1371 				mutex_exit(&vmp->vm_lock);
1372 				func(arg, start, size);
1373 				mutex_enter(&vmp->vm_lock);
1374 				vsp = &walker;
1375 			} else {
1376 				func(arg, start, size);
1377 			}
1378 		}
1379 	}
1380 	vmem_advance(vmp, &walker, NULL);
1381 	mutex_exit(&vmp->vm_lock);
1382 }
1383 
1384 /*
1385  * Return the total amount of memory whose type matches typemask.  Thus:
1386  *
1387  *	typemask VMEM_ALLOC yields total memory allocated (in use).
1388  *	typemask VMEM_FREE yields total memory free (available).
1389  *	typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
1390  */
1391 size_t
1392 vmem_size(vmem_t *vmp, int typemask)
1393 {
1394 	uint64_t size = 0;
1395 
1396 	if (typemask & VMEM_ALLOC)
1397 		size += vmp->vm_kstat.vk_mem_inuse.value.ui64;
1398 	if (typemask & VMEM_FREE)
1399 		size += vmp->vm_kstat.vk_mem_total.value.ui64 -
1400 		    vmp->vm_kstat.vk_mem_inuse.value.ui64;
1401 	return ((size_t)size);
1402 }
1403 
1404 /*
1405  * Create an arena called name whose initial span is [base, base + size).
1406  * The arena's natural unit of currency is quantum, so vmem_alloc()
1407  * guarantees quantum-aligned results.  The arena may import new spans
1408  * by invoking afunc() on source, and may return those spans by invoking
1409  * ffunc() on source.  To make small allocations fast and scalable,
1410  * the arena offers high-performance caching for each integer multiple
1411  * of quantum up to qcache_max.
1412  */
1413 static vmem_t *
1414 vmem_create_common(const char *name, void *base, size_t size, size_t quantum,
1415 	void *(*afunc)(vmem_t *, size_t, int),
1416 	void (*ffunc)(vmem_t *, void *, size_t),
1417 	vmem_t *source, size_t qcache_max, int vmflag)
1418 {
1419 	int i;
1420 	size_t nqcache;
1421 	vmem_t *vmp, *cur, **vmpp;
1422 	vmem_seg_t *vsp;
1423 	vmem_freelist_t *vfp;
1424 	uint32_t id = atomic_add_32_nv(&vmem_id, 1);
1425 
1426 	if (vmem_vmem_arena != NULL) {
1427 		vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
1428 		    vmflag & VM_KMFLAGS);
1429 	} else {
1430 		ASSERT(id <= VMEM_INITIAL);
1431 		vmp = &vmem0[id - 1];
1432 	}
1433 
1434 	/* An identifier arena must inherit from another identifier arena */
1435 	ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) ==
1436 	    (vmflag & VMC_IDENTIFIER)));
1437 
1438 	if (vmp == NULL)
1439 		return (NULL);
1440 	bzero(vmp, sizeof (vmem_t));
1441 
1442 	(void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
1443 	mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL);
1444 	cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL);
1445 	vmp->vm_cflags = vmflag;
1446 	vmflag &= VM_KMFLAGS;
1447 
1448 	vmp->vm_quantum = quantum;
1449 	vmp->vm_qshift = highbit(quantum) - 1;
1450 	nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
1451 
1452 	for (i = 0; i <= VMEM_FREELISTS; i++) {
1453 		vfp = &vmp->vm_freelist[i];
1454 		vfp->vs_end = 1UL << i;
1455 		vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
1456 		vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
1457 	}
1458 
1459 	vmp->vm_freelist[0].vs_kprev = NULL;
1460 	vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
1461 	vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
1462 	vmp->vm_hash_table = vmp->vm_hash0;
1463 	vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
1464 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1465 
1466 	vsp = &vmp->vm_seg0;
1467 	vsp->vs_anext = vsp;
1468 	vsp->vs_aprev = vsp;
1469 	vsp->vs_knext = vsp;
1470 	vsp->vs_kprev = vsp;
1471 	vsp->vs_type = VMEM_SPAN;
1472 
1473 	vsp = &vmp->vm_rotor;
1474 	vsp->vs_type = VMEM_ROTOR;
1475 	VMEM_INSERT(&vmp->vm_seg0, vsp, a);
1476 
1477 	bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t));
1478 
1479 	vmp->vm_id = id;
1480 	if (source != NULL)
1481 		vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id;
1482 	vmp->vm_source = source;
1483 	vmp->vm_source_alloc = afunc;
1484 	vmp->vm_source_free = ffunc;
1485 
1486 	/*
1487 	 * Some arenas (like vmem_metadata and kmem_metadata) cannot
1488 	 * use quantum caching to lower fragmentation.  Instead, we
1489 	 * increase their imports, giving a similar effect.
1490 	 */
1491 	if (vmp->vm_cflags & VMC_NO_QCACHE) {
1492 		vmp->vm_min_import =
1493 		    VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift);
1494 		nqcache = 0;
1495 	}
1496 
1497 	if (nqcache != 0) {
1498 		ASSERT(!(vmflag & VM_NOSLEEP));
1499 		vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
1500 		for (i = 0; i < nqcache; i++) {
1501 			char buf[VMEM_NAMELEN + 21];
1502 			(void) sprintf(buf, "%s_%lu", vmp->vm_name,
1503 			    (i + 1) * quantum);
1504 			vmp->vm_qcache[i] = kmem_cache_create(buf,
1505 			    (i + 1) * quantum, quantum, NULL, NULL, NULL,
1506 			    NULL, vmp, KMC_QCACHE | KMC_NOTOUCH);
1507 		}
1508 	}
1509 
1510 	if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name,
1511 	    "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) /
1512 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) {
1513 		vmp->vm_ksp->ks_data = &vmp->vm_kstat;
1514 		kstat_install(vmp->vm_ksp);
1515 	}
1516 
1517 	mutex_enter(&vmem_list_lock);
1518 	vmpp = &vmem_list;
1519 	while ((cur = *vmpp) != NULL)
1520 		vmpp = &cur->vm_next;
1521 	*vmpp = vmp;
1522 	mutex_exit(&vmem_list_lock);
1523 
1524 	if (vmp->vm_cflags & VMC_POPULATOR) {
1525 		ASSERT(vmem_populators < VMEM_INITIAL);
1526 		vmem_populator[atomic_add_32_nv(&vmem_populators, 1) - 1] = vmp;
1527 		mutex_enter(&vmp->vm_lock);
1528 		(void) vmem_populate(vmp, vmflag | VM_PANIC);
1529 		mutex_exit(&vmp->vm_lock);
1530 	}
1531 
1532 	if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
1533 		vmem_destroy(vmp);
1534 		return (NULL);
1535 	}
1536 
1537 	return (vmp);
1538 }
1539 
1540 vmem_t *
1541 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum,
1542     vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1543     size_t qcache_max, int vmflag)
1544 {
1545 	ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC)));
1546 	vmflag &= ~(VMC_POPULATOR | VMC_XALLOC);
1547 
1548 	return (vmem_create_common(name, base, size, quantum,
1549 	    (vmem_alloc_t *)afunc, ffunc, source, qcache_max,
1550 	    vmflag | VMC_XALLOC));
1551 }
1552 
1553 vmem_t *
1554 vmem_create(const char *name, void *base, size_t size, size_t quantum,
1555     vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1556     size_t qcache_max, int vmflag)
1557 {
1558 	ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN)));
1559 	vmflag &= ~(VMC_XALLOC | VMC_XALIGN);
1560 
1561 	return (vmem_create_common(name, base, size, quantum,
1562 	    afunc, ffunc, source, qcache_max, vmflag));
1563 }
1564 
1565 /*
1566  * Destroy arena vmp.
1567  */
1568 void
1569 vmem_destroy(vmem_t *vmp)
1570 {
1571 	vmem_t *cur, **vmpp;
1572 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1573 	vmem_seg_t *vsp;
1574 	size_t leaked;
1575 	int i;
1576 
1577 	mutex_enter(&vmem_list_lock);
1578 	vmpp = &vmem_list;
1579 	while ((cur = *vmpp) != vmp)
1580 		vmpp = &cur->vm_next;
1581 	*vmpp = vmp->vm_next;
1582 	mutex_exit(&vmem_list_lock);
1583 
1584 	for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1585 		if (vmp->vm_qcache[i])
1586 			kmem_cache_destroy(vmp->vm_qcache[i]);
1587 
1588 	leaked = vmem_size(vmp, VMEM_ALLOC);
1589 	if (leaked != 0)
1590 		cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s",
1591 		    vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ?
1592 		    "identifiers" : "bytes");
1593 
1594 	if (vmp->vm_hash_table != vmp->vm_hash0)
1595 		vmem_free(vmem_hash_arena, vmp->vm_hash_table,
1596 		    (vmp->vm_hash_mask + 1) * sizeof (void *));
1597 
1598 	/*
1599 	 * Give back the segment structures for anything that's left in the
1600 	 * arena, e.g. the primary spans and their free segments.
1601 	 */
1602 	VMEM_DELETE(&vmp->vm_rotor, a);
1603 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
1604 		vmem_putseg_global(vsp);
1605 
1606 	while (vmp->vm_nsegfree > 0)
1607 		vmem_putseg_global(vmem_getseg(vmp));
1608 
1609 	kstat_delete(vmp->vm_ksp);
1610 
1611 	mutex_destroy(&vmp->vm_lock);
1612 	cv_destroy(&vmp->vm_cv);
1613 	vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
1614 }
1615 
1616 /*
1617  * Resize vmp's hash table to keep the average lookup depth near 1.0.
1618  */
1619 static void
1620 vmem_hash_rescale(vmem_t *vmp)
1621 {
1622 	vmem_seg_t **old_table, **new_table, *vsp;
1623 	size_t old_size, new_size, h, nseg;
1624 
1625 	nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 -
1626 	    vmp->vm_kstat.vk_free.value.ui64);
1627 
1628 	new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
1629 	old_size = vmp->vm_hash_mask + 1;
1630 
1631 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
1632 		return;
1633 
1634 	new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
1635 	    VM_NOSLEEP);
1636 	if (new_table == NULL)
1637 		return;
1638 	bzero(new_table, new_size * sizeof (void *));
1639 
1640 	mutex_enter(&vmp->vm_lock);
1641 
1642 	old_size = vmp->vm_hash_mask + 1;
1643 	old_table = vmp->vm_hash_table;
1644 
1645 	vmp->vm_hash_mask = new_size - 1;
1646 	vmp->vm_hash_table = new_table;
1647 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1648 
1649 	for (h = 0; h < old_size; h++) {
1650 		vsp = old_table[h];
1651 		while (vsp != NULL) {
1652 			uintptr_t addr = vsp->vs_start;
1653 			vmem_seg_t *next_vsp = vsp->vs_knext;
1654 			vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
1655 			vsp->vs_knext = *hash_bucket;
1656 			*hash_bucket = vsp;
1657 			vsp = next_vsp;
1658 		}
1659 	}
1660 
1661 	mutex_exit(&vmp->vm_lock);
1662 
1663 	if (old_table != vmp->vm_hash0)
1664 		vmem_free(vmem_hash_arena, old_table,
1665 		    old_size * sizeof (void *));
1666 }
1667 
1668 /*
1669  * Perform periodic maintenance on all vmem arenas.
1670  */
1671 void
1672 vmem_update(void *dummy)
1673 {
1674 	vmem_t *vmp;
1675 
1676 	mutex_enter(&vmem_list_lock);
1677 	for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
1678 		/*
1679 		 * If threads are waiting for resources, wake them up
1680 		 * periodically so they can issue another kmem_reap()
1681 		 * to reclaim resources cached by the slab allocator.
1682 		 */
1683 		cv_broadcast(&vmp->vm_cv);
1684 
1685 		/*
1686 		 * Rescale the hash table to keep the hash chains short.
1687 		 */
1688 		vmem_hash_rescale(vmp);
1689 	}
1690 	mutex_exit(&vmem_list_lock);
1691 
1692 	(void) timeout(vmem_update, dummy, vmem_update_interval * hz);
1693 }
1694 
1695 /*
1696  * Prepare vmem for use.
1697  */
1698 vmem_t *
1699 vmem_init(const char *heap_name,
1700 	void *heap_start, size_t heap_size, size_t heap_quantum,
1701 	void *(*heap_alloc)(vmem_t *, size_t, int),
1702 	void (*heap_free)(vmem_t *, void *, size_t))
1703 {
1704 	uint32_t id;
1705 	int nseg = VMEM_SEG_INITIAL;
1706 	vmem_t *heap;
1707 
1708 	while (--nseg >= 0)
1709 		vmem_putseg_global(&vmem_seg0[nseg]);
1710 
1711 	heap = vmem_create(heap_name,
1712 	    heap_start, heap_size, heap_quantum,
1713 	    NULL, NULL, NULL, 0,
1714 	    VM_SLEEP | VMC_POPULATOR);
1715 
1716 	vmem_metadata_arena = vmem_create("vmem_metadata",
1717 	    NULL, 0, heap_quantum,
1718 	    vmem_alloc, vmem_free, heap, 8 * heap_quantum,
1719 	    VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE);
1720 
1721 	vmem_seg_arena = vmem_create("vmem_seg",
1722 	    NULL, 0, heap_quantum,
1723 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1724 	    VM_SLEEP | VMC_POPULATOR);
1725 
1726 	vmem_hash_arena = vmem_create("vmem_hash",
1727 	    NULL, 0, 8,
1728 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1729 	    VM_SLEEP);
1730 
1731 	vmem_vmem_arena = vmem_create("vmem_vmem",
1732 	    vmem0, sizeof (vmem0), 1,
1733 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1734 	    VM_SLEEP);
1735 
1736 	for (id = 0; id < vmem_id; id++)
1737 		(void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1738 		    1, 0, 0, &vmem0[id], &vmem0[id + 1],
1739 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1740 
1741 	return (heap);
1742 }
1743