xref: /titanic_51/usr/src/uts/common/os/vmem.c (revision 381a2a9a387f449fab7d0c7e97c4184c26963abf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Big Theory Statement for the virtual memory allocator.
31  *
32  * For a more complete description of the main ideas, see:
33  *
34  *	Jeff Bonwick and Jonathan Adams,
35  *
36  *	Magazines and vmem: Extending the Slab Allocator to Many CPUs and
37  *	Arbitrary Resources.
38  *
39  *	Proceedings of the 2001 Usenix Conference.
40  *	Available as http://www.usenix.org/event/usenix01/bonwick.html
41  *
42  *
43  * 1. General Concepts
44  * -------------------
45  *
46  * 1.1 Overview
47  * ------------
48  * We divide the kernel address space into a number of logically distinct
49  * pieces, or *arenas*: text, data, heap, stack, and so on.  Within these
50  * arenas we often subdivide further; for example, we use heap addresses
51  * not only for the kernel heap (kmem_alloc() space), but also for DVMA,
52  * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip.
53  * The kernel address space, therefore, is most accurately described as
54  * a tree of arenas in which each node of the tree *imports* some subset
55  * of its parent.  The virtual memory allocator manages these arenas and
56  * supports their natural hierarchical structure.
57  *
58  * 1.2 Arenas
59  * ----------
60  * An arena is nothing more than a set of integers.  These integers most
61  * commonly represent virtual addresses, but in fact they can represent
62  * anything at all.  For example, we could use an arena containing the
63  * integers minpid through maxpid to allocate process IDs.  vmem_create()
64  * and vmem_destroy() create and destroy vmem arenas.  In order to
65  * differentiate between arenas used for adresses and arenas used for
66  * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create().  This
67  * prevents identifier exhaustion from being diagnosed as general memory
68  * failure.
69  *
70  * 1.3 Spans
71  * ---------
72  * We represent the integers in an arena as a collection of *spans*, or
73  * contiguous ranges of integers.  For example, the kernel heap consists
74  * of just one span: [kernelheap, ekernelheap).  Spans can be added to an
75  * arena in two ways: explicitly, by vmem_add(), or implicitly, by
76  * importing, as described in Section 1.5 below.
77  *
78  * 1.4 Segments
79  * ------------
80  * Spans are subdivided into *segments*, each of which is either allocated
81  * or free.  A segment, like a span, is a contiguous range of integers.
82  * Each allocated segment [addr, addr + size) represents exactly one
83  * vmem_alloc(size) that returned addr.  Free segments represent the space
84  * between allocated segments.  If two free segments are adjacent, we
85  * coalesce them into one larger segment; that is, if segments [a, b) and
86  * [b, c) are both free, we merge them into a single segment [a, c).
87  * The segments within a span are linked together in increasing-address order
88  * so we can easily determine whether coalescing is possible.
89  *
90  * Segments never cross span boundaries.  When all segments within
91  * an imported span become free, we return the span to its source.
92  *
93  * 1.5 Imported Memory
94  * -------------------
95  * As mentioned in the overview, some arenas are logical subsets of
96  * other arenas.  For example, kmem_va_arena (a virtual address cache
97  * that satisfies most kmem_slab_create() requests) is just a subset
98  * of heap_arena (the kernel heap) that provides caching for the most
99  * common slab sizes.  When kmem_va_arena runs out of virtual memory,
100  * it *imports* more from the heap; we say that heap_arena is the
101  * *vmem source* for kmem_va_arena.  vmem_create() allows you to
102  * specify any existing vmem arena as the source for your new arena.
103  * Topologically, since every arena is a child of at most one source,
104  * the set of all arenas forms a collection of trees.
105  *
106  * 1.6 Constrained Allocations
107  * ---------------------------
108  * Some vmem clients are quite picky about the kind of address they want.
109  * For example, the DVMA code may need an address that is at a particular
110  * phase with respect to some alignment (to get good cache coloring), or
111  * that lies within certain limits (the addressable range of a device),
112  * or that doesn't cross some boundary (a DMA counter restriction) --
113  * or all of the above.  vmem_xalloc() allows the client to specify any
114  * or all of these constraints.
115  *
116  * 1.7 The Vmem Quantum
117  * --------------------
118  * Every arena has a notion of 'quantum', specified at vmem_create() time,
119  * that defines the arena's minimum unit of currency.  Most commonly the
120  * quantum is either 1 or PAGESIZE, but any power of 2 is legal.
121  * All vmem allocations are guaranteed to be quantum-aligned.
122  *
123  * 1.8 Quantum Caching
124  * -------------------
125  * A vmem arena may be so hot (frequently used) that the scalability of vmem
126  * allocation is a significant concern.  We address this by allowing the most
127  * common allocation sizes to be serviced by the kernel memory allocator,
128  * which provides low-latency per-cpu caching.  The qcache_max argument to
129  * vmem_create() specifies the largest allocation size to cache.
130  *
131  * 1.9 Relationship to Kernel Memory Allocator
132  * -------------------------------------------
133  * Every kmem cache has a vmem arena as its slab supplier.  The kernel memory
134  * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs.
135  *
136  *
137  * 2. Implementation
138  * -----------------
139  *
140  * 2.1 Segment lists and markers
141  * -----------------------------
142  * The segment structure (vmem_seg_t) contains two doubly-linked lists.
143  *
144  * The arena list (vs_anext/vs_aprev) links all segments in the arena.
145  * In addition to the allocated and free segments, the arena contains
146  * special marker segments at span boundaries.  Span markers simplify
147  * coalescing and importing logic by making it easy to tell both when
148  * we're at a span boundary (so we don't coalesce across it), and when
149  * a span is completely free (its neighbors will both be span markers).
150  *
151  * Imported spans will have vs_import set.
152  *
153  * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type:
154  * (1) for allocated segments, vs_knext is the hash chain linkage;
155  * (2) for free segments, vs_knext is the freelist linkage;
156  * (3) for span marker segments, vs_knext is the next span marker.
157  *
158  * 2.2 Allocation hashing
159  * ----------------------
160  * We maintain a hash table of all allocated segments, hashed by address.
161  * This allows vmem_free() to discover the target segment in constant time.
162  * vmem_update() periodically resizes hash tables to keep hash chains short.
163  *
164  * 2.3 Freelist management
165  * -----------------------
166  * We maintain power-of-2 freelists for free segments, i.e. free segments
167  * of size >= 2^n reside in vmp->vm_freelist[n].  To ensure constant-time
168  * allocation, vmem_xalloc() looks not in the first freelist that *might*
169  * satisfy the allocation, but in the first freelist that *definitely*
170  * satisfies the allocation (unless VM_BESTFIT is specified, or all larger
171  * freelists are empty).  For example, a 1000-byte allocation will be
172  * satisfied not from the 512..1023-byte freelist, whose members *might*
173  * contains a 1000-byte segment, but from a 1024-byte or larger freelist,
174  * the first member of which will *definitely* satisfy the allocation.
175  * This ensures that vmem_xalloc() works in constant time.
176  *
177  * We maintain a bit map to determine quickly which freelists are non-empty.
178  * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty.
179  *
180  * The different freelists are linked together into one large freelist,
181  * with the freelist heads serving as markers.  Freelist markers simplify
182  * the maintenance of vm_freemap by making it easy to tell when we're taking
183  * the last member of a freelist (both of its neighbors will be markers).
184  *
185  * 2.4 Vmem Locking
186  * ----------------
187  * For simplicity, all arena state is protected by a per-arena lock.
188  * For very hot arenas, use quantum caching for scalability.
189  *
190  * 2.5 Vmem Population
191  * -------------------
192  * Any internal vmem routine that might need to allocate new segment
193  * structures must prepare in advance by calling vmem_populate(), which
194  * will preallocate enough vmem_seg_t's to get is through the entire
195  * operation without dropping the arena lock.
196  *
197  * 2.6 Auditing
198  * ------------
199  * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well.
200  * Since virtual addresses cannot be scribbled on, there is no equivalent
201  * in vmem to redzone checking, deadbeef, or other kmem debugging features.
202  * Moreover, we do not audit frees because segment coalescing destroys the
203  * association between an address and its segment structure.  Auditing is
204  * thus intended primarily to keep track of who's consuming the arena.
205  * Debugging support could certainly be extended in the future if it proves
206  * necessary, but we do so much live checking via the allocation hash table
207  * that even non-DEBUG systems get quite a bit of sanity checking already.
208  */
209 
210 #include <sys/vmem_impl.h>
211 #include <sys/kmem.h>
212 #include <sys/kstat.h>
213 #include <sys/param.h>
214 #include <sys/systm.h>
215 #include <sys/atomic.h>
216 #include <sys/bitmap.h>
217 #include <sys/sysmacros.h>
218 #include <sys/cmn_err.h>
219 #include <sys/debug.h>
220 #include <sys/panic.h>
221 
222 #define	VMEM_INITIAL		10	/* early vmem arenas */
223 #define	VMEM_SEG_INITIAL	200	/* early segments */
224 
225 /*
226  * Adding a new span to an arena requires two segment structures: one to
227  * represent the span, and one to represent the free segment it contains.
228  */
229 #define	VMEM_SEGS_PER_SPAN_CREATE	2
230 
231 /*
232  * Allocating a piece of an existing segment requires 0-2 segment structures
233  * depending on how much of the segment we're allocating.
234  *
235  * To allocate the entire segment, no new segment structures are needed; we
236  * simply move the existing segment structure from the freelist to the
237  * allocation hash table.
238  *
239  * To allocate a piece from the left or right end of the segment, we must
240  * split the segment into two pieces (allocated part and remainder), so we
241  * need one new segment structure to represent the remainder.
242  *
243  * To allocate from the middle of a segment, we need two new segment strucures
244  * to represent the remainders on either side of the allocated part.
245  */
246 #define	VMEM_SEGS_PER_EXACT_ALLOC	0
247 #define	VMEM_SEGS_PER_LEFT_ALLOC	1
248 #define	VMEM_SEGS_PER_RIGHT_ALLOC	1
249 #define	VMEM_SEGS_PER_MIDDLE_ALLOC	2
250 
251 /*
252  * vmem_populate() preallocates segment structures for vmem to do its work.
253  * It must preallocate enough for the worst case, which is when we must import
254  * a new span and then allocate from the middle of it.
255  */
256 #define	VMEM_SEGS_PER_ALLOC_MAX		\
257 	(VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
258 
259 /*
260  * The segment structures themselves are allocated from vmem_seg_arena, so
261  * we have a recursion problem when vmem_seg_arena needs to populate itself.
262  * We address this by working out the maximum number of segment structures
263  * this act will require, and multiplying by the maximum number of threads
264  * that we'll allow to do it simultaneously.
265  *
266  * The worst-case segment consumption to populate vmem_seg_arena is as
267  * follows (depicted as a stack trace to indicate why events are occurring):
268  *
269  * (In order to lower the fragmentation in the heap_arena, we specify a
270  * minimum import size for the vmem_metadata_arena which is the same size
271  * as the kmem_va quantum cache allocations.  This causes the worst-case
272  * allocation from the vmem_metadata_arena to be 3 segments.)
273  *
274  * vmem_alloc(vmem_seg_arena)		-> 2 segs (span create + exact alloc)
275  *  segkmem_alloc(vmem_metadata_arena)
276  *   vmem_alloc(vmem_metadata_arena)	-> 3 segs (span create + left alloc)
277  *    vmem_alloc(heap_arena)		-> 1 seg (left alloc)
278  *   page_create()
279  *   hat_memload()
280  *    kmem_cache_alloc()
281  *     kmem_slab_create()
282  *	vmem_alloc(hat_memload_arena)	-> 2 segs (span create + exact alloc)
283  *	 segkmem_alloc(heap_arena)
284  *	  vmem_alloc(heap_arena)	-> 1 seg (left alloc)
285  *	  page_create()
286  *	  hat_memload()		-> (hat layer won't recurse further)
287  *
288  * The worst-case consumption for each arena is 3 segment structures.
289  * Of course, a 3-seg reserve could easily be blown by multiple threads.
290  * Therefore, we serialize all allocations from vmem_seg_arena (which is OK
291  * because they're rare).  We cannot allow a non-blocking allocation to get
292  * tied up behind a blocking allocation, however, so we use separate locks
293  * for VM_SLEEP and VM_NOSLEEP allocations.  In addition, if the system is
294  * panicking then we must keep enough resources for panic_thread to do its
295  * work.  Thus we have at most three threads trying to allocate from
296  * vmem_seg_arena, and each thread consumes at most three segment structures,
297  * so we must maintain a 9-seg reserve.
298  */
299 #define	VMEM_POPULATE_RESERVE	9
300 
301 /*
302  * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
303  * so that it can satisfy the worst-case allocation *and* participate in
304  * worst-case allocation from vmem_seg_arena.
305  */
306 #define	VMEM_MINFREE	(VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
307 
308 static vmem_t vmem0[VMEM_INITIAL];
309 static vmem_t *vmem_populator[VMEM_INITIAL];
310 static uint32_t vmem_id;
311 static uint32_t vmem_populators;
312 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
313 static vmem_seg_t *vmem_segfree;
314 static kmutex_t vmem_list_lock;
315 static kmutex_t vmem_segfree_lock;
316 static kmutex_t vmem_sleep_lock;
317 static kmutex_t vmem_nosleep_lock;
318 static kmutex_t vmem_panic_lock;
319 static vmem_t *vmem_list;
320 static vmem_t *vmem_metadata_arena;
321 static vmem_t *vmem_seg_arena;
322 static vmem_t *vmem_hash_arena;
323 static vmem_t *vmem_vmem_arena;
324 static long vmem_update_interval = 15;	/* vmem_update() every 15 seconds */
325 uint32_t vmem_mtbf;		/* mean time between failures [default: off] */
326 size_t vmem_seg_size = sizeof (vmem_seg_t);
327 
328 static vmem_kstat_t vmem_kstat_template = {
329 	{ "mem_inuse",		KSTAT_DATA_UINT64 },
330 	{ "mem_import",		KSTAT_DATA_UINT64 },
331 	{ "mem_total",		KSTAT_DATA_UINT64 },
332 	{ "vmem_source",	KSTAT_DATA_UINT32 },
333 	{ "alloc",		KSTAT_DATA_UINT64 },
334 	{ "free",		KSTAT_DATA_UINT64 },
335 	{ "wait",		KSTAT_DATA_UINT64 },
336 	{ "fail",		KSTAT_DATA_UINT64 },
337 	{ "lookup",		KSTAT_DATA_UINT64 },
338 	{ "search",		KSTAT_DATA_UINT64 },
339 	{ "populate_wait",	KSTAT_DATA_UINT64 },
340 	{ "populate_fail",	KSTAT_DATA_UINT64 },
341 	{ "contains",		KSTAT_DATA_UINT64 },
342 	{ "contains_search",	KSTAT_DATA_UINT64 },
343 };
344 
345 /*
346  * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
347  */
348 #define	VMEM_INSERT(vprev, vsp, type)					\
349 {									\
350 	vmem_seg_t *vnext = (vprev)->vs_##type##next;			\
351 	(vsp)->vs_##type##next = (vnext);				\
352 	(vsp)->vs_##type##prev = (vprev);				\
353 	(vprev)->vs_##type##next = (vsp);				\
354 	(vnext)->vs_##type##prev = (vsp);				\
355 }
356 
357 #define	VMEM_DELETE(vsp, type)						\
358 {									\
359 	vmem_seg_t *vprev = (vsp)->vs_##type##prev;			\
360 	vmem_seg_t *vnext = (vsp)->vs_##type##next;			\
361 	(vprev)->vs_##type##next = (vnext);				\
362 	(vnext)->vs_##type##prev = (vprev);				\
363 }
364 
365 /*
366  * Get a vmem_seg_t from the global segfree list.
367  */
368 static vmem_seg_t *
369 vmem_getseg_global(void)
370 {
371 	vmem_seg_t *vsp;
372 
373 	mutex_enter(&vmem_segfree_lock);
374 	if ((vsp = vmem_segfree) != NULL)
375 		vmem_segfree = vsp->vs_knext;
376 	mutex_exit(&vmem_segfree_lock);
377 
378 	return (vsp);
379 }
380 
381 /*
382  * Put a vmem_seg_t on the global segfree list.
383  */
384 static void
385 vmem_putseg_global(vmem_seg_t *vsp)
386 {
387 	mutex_enter(&vmem_segfree_lock);
388 	vsp->vs_knext = vmem_segfree;
389 	vmem_segfree = vsp;
390 	mutex_exit(&vmem_segfree_lock);
391 }
392 
393 /*
394  * Get a vmem_seg_t from vmp's segfree list.
395  */
396 static vmem_seg_t *
397 vmem_getseg(vmem_t *vmp)
398 {
399 	vmem_seg_t *vsp;
400 
401 	ASSERT(vmp->vm_nsegfree > 0);
402 
403 	vsp = vmp->vm_segfree;
404 	vmp->vm_segfree = vsp->vs_knext;
405 	vmp->vm_nsegfree--;
406 
407 	return (vsp);
408 }
409 
410 /*
411  * Put a vmem_seg_t on vmp's segfree list.
412  */
413 static void
414 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
415 {
416 	vsp->vs_knext = vmp->vm_segfree;
417 	vmp->vm_segfree = vsp;
418 	vmp->vm_nsegfree++;
419 }
420 
421 /*
422  * Add vsp to the appropriate freelist.
423  */
424 static void
425 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
426 {
427 	vmem_seg_t *vprev;
428 
429 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
430 
431 	vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
432 	vsp->vs_type = VMEM_FREE;
433 	vmp->vm_freemap |= VS_SIZE(vprev);
434 	VMEM_INSERT(vprev, vsp, k);
435 
436 	cv_broadcast(&vmp->vm_cv);
437 }
438 
439 /*
440  * Take vsp from the freelist.
441  */
442 static void
443 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
444 {
445 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
446 	ASSERT(vsp->vs_type == VMEM_FREE);
447 
448 	if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
449 		/*
450 		 * The segments on both sides of 'vsp' are freelist heads,
451 		 * so taking vsp leaves the freelist at vsp->vs_kprev empty.
452 		 */
453 		ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
454 		vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
455 	}
456 	VMEM_DELETE(vsp, k);
457 }
458 
459 /*
460  * Add vsp to the allocated-segment hash table and update kstats.
461  */
462 static void
463 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
464 {
465 	vmem_seg_t **bucket;
466 
467 	vsp->vs_type = VMEM_ALLOC;
468 	bucket = VMEM_HASH(vmp, vsp->vs_start);
469 	vsp->vs_knext = *bucket;
470 	*bucket = vsp;
471 
472 	if (vmem_seg_size == sizeof (vmem_seg_t)) {
473 		vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
474 		    VMEM_STACK_DEPTH);
475 		vsp->vs_thread = curthread;
476 		vsp->vs_timestamp = gethrtime();
477 	} else {
478 		vsp->vs_depth = 0;
479 	}
480 
481 	vmp->vm_kstat.vk_alloc.value.ui64++;
482 	vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp);
483 }
484 
485 /*
486  * Remove vsp from the allocated-segment hash table and update kstats.
487  */
488 static vmem_seg_t *
489 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
490 {
491 	vmem_seg_t *vsp, **prev_vspp;
492 
493 	prev_vspp = VMEM_HASH(vmp, addr);
494 	while ((vsp = *prev_vspp) != NULL) {
495 		if (vsp->vs_start == addr) {
496 			*prev_vspp = vsp->vs_knext;
497 			break;
498 		}
499 		vmp->vm_kstat.vk_lookup.value.ui64++;
500 		prev_vspp = &vsp->vs_knext;
501 	}
502 
503 	if (vsp == NULL)
504 		panic("vmem_hash_delete(%p, %lx, %lu): bad free",
505 		    vmp, addr, size);
506 	if (VS_SIZE(vsp) != size)
507 		panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)",
508 		    vmp, addr, size, VS_SIZE(vsp));
509 
510 	vmp->vm_kstat.vk_free.value.ui64++;
511 	vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size;
512 
513 	return (vsp);
514 }
515 
516 /*
517  * Create a segment spanning the range [start, end) and add it to the arena.
518  */
519 static vmem_seg_t *
520 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
521 {
522 	vmem_seg_t *newseg = vmem_getseg(vmp);
523 
524 	newseg->vs_start = start;
525 	newseg->vs_end = end;
526 	newseg->vs_type = 0;
527 	newseg->vs_import = 0;
528 
529 	VMEM_INSERT(vprev, newseg, a);
530 
531 	return (newseg);
532 }
533 
534 /*
535  * Remove segment vsp from the arena.
536  */
537 static void
538 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
539 {
540 	ASSERT(vsp->vs_type != VMEM_ROTOR);
541 	VMEM_DELETE(vsp, a);
542 
543 	vmem_putseg(vmp, vsp);
544 }
545 
546 /*
547  * Add the span [vaddr, vaddr + size) to vmp and update kstats.
548  */
549 static vmem_seg_t *
550 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
551 {
552 	vmem_seg_t *newseg, *span;
553 	uintptr_t start = (uintptr_t)vaddr;
554 	uintptr_t end = start + size;
555 
556 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
557 
558 	if ((start | end) & (vmp->vm_quantum - 1))
559 		panic("vmem_span_create(%p, %p, %lu): misaligned",
560 		    vmp, vaddr, size);
561 
562 	span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end);
563 	span->vs_type = VMEM_SPAN;
564 	span->vs_import = import;
565 	VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k);
566 
567 	newseg = vmem_seg_create(vmp, span, start, end);
568 	vmem_freelist_insert(vmp, newseg);
569 
570 	if (import)
571 		vmp->vm_kstat.vk_mem_import.value.ui64 += size;
572 	vmp->vm_kstat.vk_mem_total.value.ui64 += size;
573 
574 	return (newseg);
575 }
576 
577 /*
578  * Remove span vsp from vmp and update kstats.
579  */
580 static void
581 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
582 {
583 	vmem_seg_t *span = vsp->vs_aprev;
584 	size_t size = VS_SIZE(vsp);
585 
586 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
587 	ASSERT(span->vs_type == VMEM_SPAN);
588 
589 	if (span->vs_import)
590 		vmp->vm_kstat.vk_mem_import.value.ui64 -= size;
591 	vmp->vm_kstat.vk_mem_total.value.ui64 -= size;
592 
593 	VMEM_DELETE(span, k);
594 
595 	vmem_seg_destroy(vmp, vsp);
596 	vmem_seg_destroy(vmp, span);
597 }
598 
599 /*
600  * Allocate the subrange [addr, addr + size) from segment vsp.
601  * If there are leftovers on either side, place them on the freelist.
602  * Returns a pointer to the segment representing [addr, addr + size).
603  */
604 static vmem_seg_t *
605 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
606 {
607 	uintptr_t vs_start = vsp->vs_start;
608 	uintptr_t vs_end = vsp->vs_end;
609 	size_t vs_size = vs_end - vs_start;
610 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
611 	uintptr_t addr_end = addr + realsize;
612 
613 	ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
614 	ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
615 	ASSERT(vsp->vs_type == VMEM_FREE);
616 	ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
617 	ASSERT(addr - 1 <= addr_end - 1);
618 
619 	/*
620 	 * If we're allocating from the start of the segment, and the
621 	 * remainder will be on the same freelist, we can save quite
622 	 * a bit of work.
623 	 */
624 	if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
625 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
626 		vsp->vs_start = addr_end;
627 		vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
628 		vmem_hash_insert(vmp, vsp);
629 		return (vsp);
630 	}
631 
632 	vmem_freelist_delete(vmp, vsp);
633 
634 	if (vs_end != addr_end)
635 		vmem_freelist_insert(vmp,
636 		    vmem_seg_create(vmp, vsp, addr_end, vs_end));
637 
638 	if (vs_start != addr)
639 		vmem_freelist_insert(vmp,
640 		    vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
641 
642 	vsp->vs_start = addr;
643 	vsp->vs_end = addr + size;
644 
645 	vmem_hash_insert(vmp, vsp);
646 	return (vsp);
647 }
648 
649 /*
650  * Returns 1 if we are populating, 0 otherwise.
651  * Call it if we want to prevent recursion from HAT.
652  */
653 int
654 vmem_is_populator()
655 {
656 	return (mutex_owner(&vmem_sleep_lock) == curthread ||
657 	    mutex_owner(&vmem_nosleep_lock) == curthread ||
658 	    mutex_owner(&vmem_panic_lock) == curthread);
659 }
660 
661 /*
662  * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
663  */
664 static int
665 vmem_populate(vmem_t *vmp, int vmflag)
666 {
667 	char *p;
668 	vmem_seg_t *vsp;
669 	ssize_t nseg;
670 	size_t size;
671 	kmutex_t *lp;
672 	int i;
673 
674 	while (vmp->vm_nsegfree < VMEM_MINFREE &&
675 	    (vsp = vmem_getseg_global()) != NULL)
676 		vmem_putseg(vmp, vsp);
677 
678 	if (vmp->vm_nsegfree >= VMEM_MINFREE)
679 		return (1);
680 
681 	/*
682 	 * If we're already populating, tap the reserve.
683 	 */
684 	if (vmem_is_populator()) {
685 		ASSERT(vmp->vm_cflags & VMC_POPULATOR);
686 		return (1);
687 	}
688 
689 	mutex_exit(&vmp->vm_lock);
690 
691 	if (panic_thread == curthread)
692 		lp = &vmem_panic_lock;
693 	else if (vmflag & VM_NOSLEEP)
694 		lp = &vmem_nosleep_lock;
695 	else
696 		lp = &vmem_sleep_lock;
697 
698 	mutex_enter(lp);
699 
700 	nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
701 	size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
702 	nseg = size / vmem_seg_size;
703 
704 	/*
705 	 * The following vmem_alloc() may need to populate vmem_seg_arena
706 	 * and all the things it imports from.  When doing so, it will tap
707 	 * each arena's reserve to prevent recursion (see the block comment
708 	 * above the definition of VMEM_POPULATE_RESERVE).
709 	 */
710 	p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS);
711 	if (p == NULL) {
712 		mutex_exit(lp);
713 		mutex_enter(&vmp->vm_lock);
714 		vmp->vm_kstat.vk_populate_fail.value.ui64++;
715 		return (0);
716 	}
717 
718 	/*
719 	 * Restock the arenas that may have been depleted during population.
720 	 */
721 	for (i = 0; i < vmem_populators; i++) {
722 		mutex_enter(&vmem_populator[i]->vm_lock);
723 		while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
724 			vmem_putseg(vmem_populator[i],
725 			    (vmem_seg_t *)(p + --nseg * vmem_seg_size));
726 		mutex_exit(&vmem_populator[i]->vm_lock);
727 	}
728 
729 	mutex_exit(lp);
730 	mutex_enter(&vmp->vm_lock);
731 
732 	/*
733 	 * Now take our own segments.
734 	 */
735 	ASSERT(nseg >= VMEM_MINFREE);
736 	while (vmp->vm_nsegfree < VMEM_MINFREE)
737 		vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
738 
739 	/*
740 	 * Give the remainder to charity.
741 	 */
742 	while (nseg > 0)
743 		vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
744 
745 	return (1);
746 }
747 
748 /*
749  * Advance a walker from its previous position to 'afterme'.
750  * Note: may drop and reacquire vmp->vm_lock.
751  */
752 static void
753 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
754 {
755 	vmem_seg_t *vprev = walker->vs_aprev;
756 	vmem_seg_t *vnext = walker->vs_anext;
757 	vmem_seg_t *vsp = NULL;
758 
759 	VMEM_DELETE(walker, a);
760 
761 	if (afterme != NULL)
762 		VMEM_INSERT(afterme, walker, a);
763 
764 	/*
765 	 * The walker segment's presence may have prevented its neighbors
766 	 * from coalescing.  If so, coalesce them now.
767 	 */
768 	if (vprev->vs_type == VMEM_FREE) {
769 		if (vnext->vs_type == VMEM_FREE) {
770 			ASSERT(vprev->vs_end == vnext->vs_start);
771 			vmem_freelist_delete(vmp, vnext);
772 			vmem_freelist_delete(vmp, vprev);
773 			vprev->vs_end = vnext->vs_end;
774 			vmem_freelist_insert(vmp, vprev);
775 			vmem_seg_destroy(vmp, vnext);
776 		}
777 		vsp = vprev;
778 	} else if (vnext->vs_type == VMEM_FREE) {
779 		vsp = vnext;
780 	}
781 
782 	/*
783 	 * vsp could represent a complete imported span,
784 	 * in which case we must return it to the source.
785 	 */
786 	if (vsp != NULL && vsp->vs_aprev->vs_import &&
787 	    vmp->vm_source_free != NULL &&
788 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
789 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
790 		void *vaddr = (void *)vsp->vs_start;
791 		size_t size = VS_SIZE(vsp);
792 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
793 		vmem_freelist_delete(vmp, vsp);
794 		vmem_span_destroy(vmp, vsp);
795 		mutex_exit(&vmp->vm_lock);
796 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
797 		mutex_enter(&vmp->vm_lock);
798 	}
799 }
800 
801 /*
802  * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
803  * in an arena, so that we avoid reusing addresses for as long as possible.
804  * This helps to catch used-after-freed bugs.  It's also the perfect policy
805  * for allocating things like process IDs, where we want to cycle through
806  * all values in order.
807  */
808 static void *
809 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
810 {
811 	vmem_seg_t *vsp, *rotor;
812 	uintptr_t addr;
813 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
814 	size_t vs_size;
815 
816 	mutex_enter(&vmp->vm_lock);
817 
818 	if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
819 		mutex_exit(&vmp->vm_lock);
820 		return (NULL);
821 	}
822 
823 	/*
824 	 * The common case is that the segment right after the rotor is free,
825 	 * and large enough that extracting 'size' bytes won't change which
826 	 * freelist it's on.  In this case we can avoid a *lot* of work.
827 	 * Instead of the normal vmem_seg_alloc(), we just advance the start
828 	 * address of the victim segment.  Instead of moving the rotor, we
829 	 * create the new segment structure *behind the rotor*, which has
830 	 * the same effect.  And finally, we know we don't have to coalesce
831 	 * the rotor's neighbors because the new segment lies between them.
832 	 */
833 	rotor = &vmp->vm_rotor;
834 	vsp = rotor->vs_anext;
835 	if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
836 	    P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
837 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
838 		addr = vsp->vs_start;
839 		vsp->vs_start = addr + realsize;
840 		vmem_hash_insert(vmp,
841 		    vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
842 		mutex_exit(&vmp->vm_lock);
843 		return ((void *)addr);
844 	}
845 
846 	/*
847 	 * Starting at the rotor, look for a segment large enough to
848 	 * satisfy the allocation.
849 	 */
850 	for (;;) {
851 		vmp->vm_kstat.vk_search.value.ui64++;
852 		if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
853 			break;
854 		vsp = vsp->vs_anext;
855 		if (vsp == rotor) {
856 			/*
857 			 * We've come full circle.  One possibility is that the
858 			 * there's actually enough space, but the rotor itself
859 			 * is preventing the allocation from succeeding because
860 			 * it's sitting between two free segments.  Therefore,
861 			 * we advance the rotor and see if that liberates a
862 			 * suitable segment.
863 			 */
864 			vmem_advance(vmp, rotor, rotor->vs_anext);
865 			vsp = rotor->vs_aprev;
866 			if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
867 				break;
868 			/*
869 			 * If there's a lower arena we can import from, or it's
870 			 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
871 			 * Otherwise, wait until another thread frees something.
872 			 */
873 			if (vmp->vm_source_alloc != NULL ||
874 			    (vmflag & VM_NOSLEEP)) {
875 				mutex_exit(&vmp->vm_lock);
876 				return (vmem_xalloc(vmp, size, vmp->vm_quantum,
877 				    0, 0, NULL, NULL, vmflag & VM_KMFLAGS));
878 			}
879 			vmp->vm_kstat.vk_wait.value.ui64++;
880 			cv_wait(&vmp->vm_cv, &vmp->vm_lock);
881 			vsp = rotor->vs_anext;
882 		}
883 	}
884 
885 	/*
886 	 * We found a segment.  Extract enough space to satisfy the allocation.
887 	 */
888 	addr = vsp->vs_start;
889 	vsp = vmem_seg_alloc(vmp, vsp, addr, size);
890 	ASSERT(vsp->vs_type == VMEM_ALLOC &&
891 	    vsp->vs_start == addr && vsp->vs_end == addr + size);
892 
893 	/*
894 	 * Advance the rotor to right after the newly-allocated segment.
895 	 * That's where the next VM_NEXTFIT allocation will begin searching.
896 	 */
897 	vmem_advance(vmp, rotor, vsp);
898 	mutex_exit(&vmp->vm_lock);
899 	return ((void *)addr);
900 }
901 
902 /*
903  * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its
904  * freelist.  If size is not a power-of-2, it can return a false-negative.
905  *
906  * Used to decide if a newly imported span is superfluous after re-acquiring
907  * the arena lock.
908  */
909 static int
910 vmem_canalloc(vmem_t *vmp, size_t size)
911 {
912 	int hb;
913 	int flist = 0;
914 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
915 
916 	if ((size & (size - 1)) == 0)
917 		flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
918 	else if ((hb = highbit(size)) < VMEM_FREELISTS)
919 		flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
920 
921 	return (flist);
922 }
923 
924 /*
925  * Allocate size bytes at offset phase from an align boundary such that the
926  * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
927  * that does not straddle a nocross-aligned boundary.
928  */
929 void *
930 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase,
931 	size_t nocross, void *minaddr, void *maxaddr, int vmflag)
932 {
933 	vmem_seg_t *vsp;
934 	vmem_seg_t *vbest = NULL;
935 	uintptr_t addr, taddr, start, end;
936 	uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum;
937 	void *vaddr, *xvaddr = NULL;
938 	size_t xsize;
939 	int hb, flist, resv;
940 	uint32_t mtbf;
941 
942 	if ((align | phase | nocross) & (vmp->vm_quantum - 1))
943 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
944 		    "parameters not vm_quantum aligned",
945 		    (void *)vmp, size, align_arg, phase, nocross,
946 		    minaddr, maxaddr, vmflag);
947 
948 	if (nocross != 0 &&
949 	    (align > nocross || P2ROUNDUP(phase + size, align) > nocross))
950 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
951 		    "overconstrained allocation",
952 		    (void *)vmp, size, align_arg, phase, nocross,
953 		    minaddr, maxaddr, vmflag);
954 
955 	if (phase >= align || (align & (align - 1)) != 0 ||
956 	    (nocross & (nocross - 1)) != 0)
957 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
958 		    "parameters inconsistent or invalid",
959 		    (void *)vmp, size, align_arg, phase, nocross,
960 		    minaddr, maxaddr, vmflag);
961 
962 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
963 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
964 		return (NULL);
965 
966 	mutex_enter(&vmp->vm_lock);
967 	for (;;) {
968 		if (vmp->vm_nsegfree < VMEM_MINFREE &&
969 		    !vmem_populate(vmp, vmflag))
970 			break;
971 do_alloc:
972 		/*
973 		 * highbit() returns the highest bit + 1, which is exactly
974 		 * what we want: we want to search the first freelist whose
975 		 * members are *definitely* large enough to satisfy our
976 		 * allocation.  However, there are certain cases in which we
977 		 * want to look at the next-smallest freelist (which *might*
978 		 * be able to satisfy the allocation):
979 		 *
980 		 * (1)	The size is exactly a power of 2, in which case
981 		 *	the smaller freelist is always big enough;
982 		 *
983 		 * (2)	All other freelists are empty;
984 		 *
985 		 * (3)	We're in the highest possible freelist, which is
986 		 *	always empty (e.g. the 4GB freelist on 32-bit systems);
987 		 *
988 		 * (4)	We're doing a best-fit or first-fit allocation.
989 		 */
990 		if ((size & (size - 1)) == 0) {
991 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
992 		} else {
993 			hb = highbit(size);
994 			if ((vmp->vm_freemap >> hb) == 0 ||
995 			    hb == VMEM_FREELISTS ||
996 			    (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
997 				hb--;
998 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
999 		}
1000 
1001 		for (vbest = NULL, vsp = (flist == 0) ? NULL :
1002 		    vmp->vm_freelist[flist - 1].vs_knext;
1003 		    vsp != NULL; vsp = vsp->vs_knext) {
1004 			vmp->vm_kstat.vk_search.value.ui64++;
1005 			if (vsp->vs_start == 0) {
1006 				/*
1007 				 * We're moving up to a larger freelist,
1008 				 * so if we've already found a candidate,
1009 				 * the fit can't possibly get any better.
1010 				 */
1011 				if (vbest != NULL)
1012 					break;
1013 				/*
1014 				 * Find the next non-empty freelist.
1015 				 */
1016 				flist = lowbit(P2ALIGN(vmp->vm_freemap,
1017 				    VS_SIZE(vsp)));
1018 				if (flist-- == 0)
1019 					break;
1020 				vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
1021 				ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
1022 				continue;
1023 			}
1024 			if (vsp->vs_end - 1 < (uintptr_t)minaddr)
1025 				continue;
1026 			if (vsp->vs_start > (uintptr_t)maxaddr - 1)
1027 				continue;
1028 			start = MAX(vsp->vs_start, (uintptr_t)minaddr);
1029 			end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
1030 			taddr = P2PHASEUP(start, align, phase);
1031 			if (P2CROSS(taddr, taddr + size - 1, nocross))
1032 				taddr +=
1033 				    P2ROUNDUP(P2NPHASE(taddr, nocross), align);
1034 			if ((taddr - start) + size > end - start ||
1035 			    (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
1036 				continue;
1037 			vbest = vsp;
1038 			addr = taddr;
1039 			if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
1040 				break;
1041 		}
1042 		if (vbest != NULL)
1043 			break;
1044 		ASSERT(xvaddr == NULL);
1045 		if (size == 0)
1046 			panic("vmem_xalloc(): size == 0");
1047 		if (vmp->vm_source_alloc != NULL && nocross == 0 &&
1048 		    minaddr == NULL && maxaddr == NULL) {
1049 			size_t aneeded, asize;
1050 			size_t aquantum = MAX(vmp->vm_quantum,
1051 			    vmp->vm_source->vm_quantum);
1052 			size_t aphase = phase;
1053 			if (align > aquantum) {
1054 				aphase = (P2PHASE(phase, aquantum) != 0) ?
1055 				    align - vmp->vm_quantum : align - aquantum;
1056 				ASSERT(aphase >= phase);
1057 			}
1058 			aneeded = MAX(size + aphase, vmp->vm_min_import);
1059 			asize = P2ROUNDUP(aneeded, aquantum);
1060 
1061 			/*
1062 			 * Determine how many segment structures we'll consume.
1063 			 * The calculation must be precise because if we're
1064 			 * here on behalf of vmem_populate(), we are taking
1065 			 * segments from a very limited reserve.
1066 			 */
1067 			if (size == asize && !(vmp->vm_cflags & VMC_XALLOC))
1068 				resv = VMEM_SEGS_PER_SPAN_CREATE +
1069 				    VMEM_SEGS_PER_EXACT_ALLOC;
1070 			else if (phase == 0 &&
1071 			    align <= vmp->vm_source->vm_quantum)
1072 				resv = VMEM_SEGS_PER_SPAN_CREATE +
1073 				    VMEM_SEGS_PER_LEFT_ALLOC;
1074 			else
1075 				resv = VMEM_SEGS_PER_ALLOC_MAX;
1076 
1077 			ASSERT(vmp->vm_nsegfree >= resv);
1078 			vmp->vm_nsegfree -= resv;	/* reserve our segs */
1079 			mutex_exit(&vmp->vm_lock);
1080 			if (vmp->vm_cflags & VMC_XALLOC) {
1081 				size_t oasize = asize;
1082 				vaddr = ((vmem_ximport_t *)
1083 				    vmp->vm_source_alloc)(vmp->vm_source,
1084 				    &asize, vmflag & VM_KMFLAGS);
1085 				ASSERT(asize >= oasize);
1086 				ASSERT(P2PHASE(asize,
1087 				    vmp->vm_source->vm_quantum) == 0);
1088 			} else {
1089 				vaddr = vmp->vm_source_alloc(vmp->vm_source,
1090 				    asize, vmflag & VM_KMFLAGS);
1091 			}
1092 			mutex_enter(&vmp->vm_lock);
1093 			vmp->vm_nsegfree += resv;	/* claim reservation */
1094 			aneeded = size + align - vmp->vm_quantum;
1095 			aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum);
1096 			if (vaddr != NULL) {
1097 				/*
1098 				 * Since we dropped the vmem lock while
1099 				 * calling the import function, other
1100 				 * threads could have imported space
1101 				 * and made our import unnecessary.  In
1102 				 * order to save space, we return
1103 				 * excess imports immediately.
1104 				 */
1105 				if (asize > aneeded &&
1106 				    vmp->vm_source_free != NULL &&
1107 				    vmem_canalloc(vmp, aneeded)) {
1108 					ASSERT(resv >=
1109 					    VMEM_SEGS_PER_MIDDLE_ALLOC);
1110 					xvaddr = vaddr;
1111 					xsize = asize;
1112 					goto do_alloc;
1113 				}
1114 				vbest = vmem_span_create(vmp, vaddr, asize, 1);
1115 				addr = P2PHASEUP(vbest->vs_start, align, phase);
1116 				break;
1117 			} else if (vmem_canalloc(vmp, aneeded)) {
1118 				/*
1119 				 * Our import failed, but another thread
1120 				 * added sufficient free memory to the arena
1121 				 * to satisfy our request.  Go back and
1122 				 * grab it.
1123 				 */
1124 				ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC);
1125 				goto do_alloc;
1126 			}
1127 		}
1128 
1129 		/*
1130 		 * If the requestor chooses to fail the allocation attempt
1131 		 * rather than reap wait and retry - get out of the loop.
1132 		 */
1133 		if (vmflag & VM_ABORT)
1134 			break;
1135 		mutex_exit(&vmp->vm_lock);
1136 		if (vmp->vm_cflags & VMC_IDENTIFIER)
1137 			kmem_reap_idspace();
1138 		else
1139 			kmem_reap();
1140 		mutex_enter(&vmp->vm_lock);
1141 		if (vmflag & VM_NOSLEEP)
1142 			break;
1143 		vmp->vm_kstat.vk_wait.value.ui64++;
1144 		cv_wait(&vmp->vm_cv, &vmp->vm_lock);
1145 	}
1146 	if (vbest != NULL) {
1147 		ASSERT(vbest->vs_type == VMEM_FREE);
1148 		ASSERT(vbest->vs_knext != vbest);
1149 		(void) vmem_seg_alloc(vmp, vbest, addr, size);
1150 		mutex_exit(&vmp->vm_lock);
1151 		if (xvaddr)
1152 			vmp->vm_source_free(vmp->vm_source, xvaddr, xsize);
1153 		ASSERT(P2PHASE(addr, align) == phase);
1154 		ASSERT(!P2CROSS(addr, addr + size - 1, nocross));
1155 		ASSERT(addr >= (uintptr_t)minaddr);
1156 		ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
1157 		return ((void *)addr);
1158 	}
1159 	vmp->vm_kstat.vk_fail.value.ui64++;
1160 	mutex_exit(&vmp->vm_lock);
1161 	if (vmflag & VM_PANIC)
1162 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
1163 		    "cannot satisfy mandatory allocation",
1164 		    (void *)vmp, size, align_arg, phase, nocross,
1165 		    minaddr, maxaddr, vmflag);
1166 	ASSERT(xvaddr == NULL);
1167 	return (NULL);
1168 }
1169 
1170 /*
1171  * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
1172  * allocation.  vmem_xalloc() and vmem_xfree() must always be paired because
1173  * both routines bypass the quantum caches.
1174  */
1175 void
1176 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
1177 {
1178 	vmem_seg_t *vsp, *vnext, *vprev;
1179 
1180 	mutex_enter(&vmp->vm_lock);
1181 
1182 	vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
1183 	vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
1184 
1185 	/*
1186 	 * Attempt to coalesce with the next segment.
1187 	 */
1188 	vnext = vsp->vs_anext;
1189 	if (vnext->vs_type == VMEM_FREE) {
1190 		ASSERT(vsp->vs_end == vnext->vs_start);
1191 		vmem_freelist_delete(vmp, vnext);
1192 		vsp->vs_end = vnext->vs_end;
1193 		vmem_seg_destroy(vmp, vnext);
1194 	}
1195 
1196 	/*
1197 	 * Attempt to coalesce with the previous segment.
1198 	 */
1199 	vprev = vsp->vs_aprev;
1200 	if (vprev->vs_type == VMEM_FREE) {
1201 		ASSERT(vprev->vs_end == vsp->vs_start);
1202 		vmem_freelist_delete(vmp, vprev);
1203 		vprev->vs_end = vsp->vs_end;
1204 		vmem_seg_destroy(vmp, vsp);
1205 		vsp = vprev;
1206 	}
1207 
1208 	/*
1209 	 * If the entire span is free, return it to the source.
1210 	 */
1211 	if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL &&
1212 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
1213 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
1214 		vaddr = (void *)vsp->vs_start;
1215 		size = VS_SIZE(vsp);
1216 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
1217 		vmem_span_destroy(vmp, vsp);
1218 		mutex_exit(&vmp->vm_lock);
1219 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
1220 	} else {
1221 		vmem_freelist_insert(vmp, vsp);
1222 		mutex_exit(&vmp->vm_lock);
1223 	}
1224 }
1225 
1226 /*
1227  * Allocate size bytes from arena vmp.  Returns the allocated address
1228  * on success, NULL on failure.  vmflag specifies VM_SLEEP or VM_NOSLEEP,
1229  * and may also specify best-fit, first-fit, or next-fit allocation policy
1230  * instead of the default instant-fit policy.  VM_SLEEP allocations are
1231  * guaranteed to succeed.
1232  */
1233 void *
1234 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1235 {
1236 	vmem_seg_t *vsp;
1237 	uintptr_t addr;
1238 	int hb;
1239 	int flist = 0;
1240 	uint32_t mtbf;
1241 
1242 	if (size - 1 < vmp->vm_qcache_max)
1243 		return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >>
1244 		    vmp->vm_qshift], vmflag & VM_KMFLAGS));
1245 
1246 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
1247 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
1248 		return (NULL);
1249 
1250 	if (vmflag & VM_NEXTFIT)
1251 		return (vmem_nextfit_alloc(vmp, size, vmflag));
1252 
1253 	if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
1254 		return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
1255 		    NULL, NULL, vmflag));
1256 
1257 	/*
1258 	 * Unconstrained instant-fit allocation from the segment list.
1259 	 */
1260 	mutex_enter(&vmp->vm_lock);
1261 
1262 	if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
1263 		if ((size & (size - 1)) == 0)
1264 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1265 		else if ((hb = highbit(size)) < VMEM_FREELISTS)
1266 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1267 	}
1268 
1269 	if (flist-- == 0) {
1270 		mutex_exit(&vmp->vm_lock);
1271 		return (vmem_xalloc(vmp, size, vmp->vm_quantum,
1272 		    0, 0, NULL, NULL, vmflag));
1273 	}
1274 
1275 	ASSERT(size <= (1UL << flist));
1276 	vsp = vmp->vm_freelist[flist].vs_knext;
1277 	addr = vsp->vs_start;
1278 	(void) vmem_seg_alloc(vmp, vsp, addr, size);
1279 	mutex_exit(&vmp->vm_lock);
1280 	return ((void *)addr);
1281 }
1282 
1283 /*
1284  * Free the segment [vaddr, vaddr + size).
1285  */
1286 void
1287 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1288 {
1289 	if (size - 1 < vmp->vm_qcache_max)
1290 		kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
1291 		    vaddr);
1292 	else
1293 		vmem_xfree(vmp, vaddr, size);
1294 }
1295 
1296 /*
1297  * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
1298  */
1299 int
1300 vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
1301 {
1302 	uintptr_t start = (uintptr_t)vaddr;
1303 	uintptr_t end = start + size;
1304 	vmem_seg_t *vsp;
1305 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1306 
1307 	mutex_enter(&vmp->vm_lock);
1308 	vmp->vm_kstat.vk_contains.value.ui64++;
1309 	for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
1310 		vmp->vm_kstat.vk_contains_search.value.ui64++;
1311 		ASSERT(vsp->vs_type == VMEM_SPAN);
1312 		if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
1313 			break;
1314 	}
1315 	mutex_exit(&vmp->vm_lock);
1316 	return (vsp != seg0);
1317 }
1318 
1319 /*
1320  * Add the span [vaddr, vaddr + size) to arena vmp.
1321  */
1322 void *
1323 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
1324 {
1325 	if (vaddr == NULL || size == 0)
1326 		panic("vmem_add(%p, %p, %lu): bad arguments", vmp, vaddr, size);
1327 
1328 	ASSERT(!vmem_contains(vmp, vaddr, size));
1329 
1330 	mutex_enter(&vmp->vm_lock);
1331 	if (vmem_populate(vmp, vmflag))
1332 		(void) vmem_span_create(vmp, vaddr, size, 0);
1333 	else
1334 		vaddr = NULL;
1335 	mutex_exit(&vmp->vm_lock);
1336 	return (vaddr);
1337 }
1338 
1339 /*
1340  * Walk the vmp arena, applying func to each segment matching typemask.
1341  * If VMEM_REENTRANT is specified, the arena lock is dropped across each
1342  * call to func(); otherwise, it is held for the duration of vmem_walk()
1343  * to ensure a consistent snapshot.  Note that VMEM_REENTRANT callbacks
1344  * are *not* necessarily consistent, so they may only be used when a hint
1345  * is adequate.
1346  */
1347 void
1348 vmem_walk(vmem_t *vmp, int typemask,
1349 	void (*func)(void *, void *, size_t), void *arg)
1350 {
1351 	vmem_seg_t *vsp;
1352 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1353 	vmem_seg_t walker;
1354 
1355 	if (typemask & VMEM_WALKER)
1356 		return;
1357 
1358 	bzero(&walker, sizeof (walker));
1359 	walker.vs_type = VMEM_WALKER;
1360 
1361 	mutex_enter(&vmp->vm_lock);
1362 	VMEM_INSERT(seg0, &walker, a);
1363 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
1364 		if (vsp->vs_type & typemask) {
1365 			void *start = (void *)vsp->vs_start;
1366 			size_t size = VS_SIZE(vsp);
1367 			if (typemask & VMEM_REENTRANT) {
1368 				vmem_advance(vmp, &walker, vsp);
1369 				mutex_exit(&vmp->vm_lock);
1370 				func(arg, start, size);
1371 				mutex_enter(&vmp->vm_lock);
1372 				vsp = &walker;
1373 			} else {
1374 				func(arg, start, size);
1375 			}
1376 		}
1377 	}
1378 	vmem_advance(vmp, &walker, NULL);
1379 	mutex_exit(&vmp->vm_lock);
1380 }
1381 
1382 /*
1383  * Return the total amount of memory whose type matches typemask.  Thus:
1384  *
1385  *	typemask VMEM_ALLOC yields total memory allocated (in use).
1386  *	typemask VMEM_FREE yields total memory free (available).
1387  *	typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
1388  */
1389 size_t
1390 vmem_size(vmem_t *vmp, int typemask)
1391 {
1392 	uint64_t size = 0;
1393 
1394 	if (typemask & VMEM_ALLOC)
1395 		size += vmp->vm_kstat.vk_mem_inuse.value.ui64;
1396 	if (typemask & VMEM_FREE)
1397 		size += vmp->vm_kstat.vk_mem_total.value.ui64 -
1398 		    vmp->vm_kstat.vk_mem_inuse.value.ui64;
1399 	return ((size_t)size);
1400 }
1401 
1402 /*
1403  * Create an arena called name whose initial span is [base, base + size).
1404  * The arena's natural unit of currency is quantum, so vmem_alloc()
1405  * guarantees quantum-aligned results.  The arena may import new spans
1406  * by invoking afunc() on source, and may return those spans by invoking
1407  * ffunc() on source.  To make small allocations fast and scalable,
1408  * the arena offers high-performance caching for each integer multiple
1409  * of quantum up to qcache_max.
1410  */
1411 static vmem_t *
1412 vmem_create_common(const char *name, void *base, size_t size, size_t quantum,
1413 	void *(*afunc)(vmem_t *, size_t, int),
1414 	void (*ffunc)(vmem_t *, void *, size_t),
1415 	vmem_t *source, size_t qcache_max, int vmflag)
1416 {
1417 	int i;
1418 	size_t nqcache;
1419 	vmem_t *vmp, *cur, **vmpp;
1420 	vmem_seg_t *vsp;
1421 	vmem_freelist_t *vfp;
1422 	uint32_t id = atomic_add_32_nv(&vmem_id, 1);
1423 
1424 	if (vmem_vmem_arena != NULL) {
1425 		vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
1426 		    vmflag & VM_KMFLAGS);
1427 	} else {
1428 		ASSERT(id <= VMEM_INITIAL);
1429 		vmp = &vmem0[id - 1];
1430 	}
1431 
1432 	/* An identifier arena must inherit from another identifier arena */
1433 	ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) ==
1434 	    (vmflag & VMC_IDENTIFIER)));
1435 
1436 	if (vmp == NULL)
1437 		return (NULL);
1438 	bzero(vmp, sizeof (vmem_t));
1439 
1440 	(void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
1441 	mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL);
1442 	cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL);
1443 	vmp->vm_cflags = vmflag;
1444 	vmflag &= VM_KMFLAGS;
1445 
1446 	vmp->vm_quantum = quantum;
1447 	vmp->vm_qshift = highbit(quantum) - 1;
1448 	nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
1449 
1450 	for (i = 0; i <= VMEM_FREELISTS; i++) {
1451 		vfp = &vmp->vm_freelist[i];
1452 		vfp->vs_end = 1UL << i;
1453 		vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
1454 		vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
1455 	}
1456 
1457 	vmp->vm_freelist[0].vs_kprev = NULL;
1458 	vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
1459 	vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
1460 	vmp->vm_hash_table = vmp->vm_hash0;
1461 	vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
1462 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1463 
1464 	vsp = &vmp->vm_seg0;
1465 	vsp->vs_anext = vsp;
1466 	vsp->vs_aprev = vsp;
1467 	vsp->vs_knext = vsp;
1468 	vsp->vs_kprev = vsp;
1469 	vsp->vs_type = VMEM_SPAN;
1470 
1471 	vsp = &vmp->vm_rotor;
1472 	vsp->vs_type = VMEM_ROTOR;
1473 	VMEM_INSERT(&vmp->vm_seg0, vsp, a);
1474 
1475 	bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t));
1476 
1477 	vmp->vm_id = id;
1478 	if (source != NULL)
1479 		vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id;
1480 	vmp->vm_source = source;
1481 	vmp->vm_source_alloc = afunc;
1482 	vmp->vm_source_free = ffunc;
1483 
1484 	/*
1485 	 * Some arenas (like vmem_metadata and kmem_metadata) cannot
1486 	 * use quantum caching to lower fragmentation.  Instead, we
1487 	 * increase their imports, giving a similar effect.
1488 	 */
1489 	if (vmp->vm_cflags & VMC_NO_QCACHE) {
1490 		vmp->vm_min_import =
1491 		    VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift);
1492 		nqcache = 0;
1493 	}
1494 
1495 	if (nqcache != 0) {
1496 		ASSERT(!(vmflag & VM_NOSLEEP));
1497 		vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
1498 		for (i = 0; i < nqcache; i++) {
1499 			char buf[VMEM_NAMELEN + 21];
1500 			(void) sprintf(buf, "%s_%lu", vmp->vm_name,
1501 			    (i + 1) * quantum);
1502 			vmp->vm_qcache[i] = kmem_cache_create(buf,
1503 			    (i + 1) * quantum, quantum, NULL, NULL, NULL,
1504 			    NULL, vmp, KMC_QCACHE | KMC_NOTOUCH);
1505 		}
1506 	}
1507 
1508 	if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name,
1509 	    "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) /
1510 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) {
1511 		vmp->vm_ksp->ks_data = &vmp->vm_kstat;
1512 		kstat_install(vmp->vm_ksp);
1513 	}
1514 
1515 	mutex_enter(&vmem_list_lock);
1516 	vmpp = &vmem_list;
1517 	while ((cur = *vmpp) != NULL)
1518 		vmpp = &cur->vm_next;
1519 	*vmpp = vmp;
1520 	mutex_exit(&vmem_list_lock);
1521 
1522 	if (vmp->vm_cflags & VMC_POPULATOR) {
1523 		ASSERT(vmem_populators < VMEM_INITIAL);
1524 		vmem_populator[atomic_add_32_nv(&vmem_populators, 1) - 1] = vmp;
1525 		mutex_enter(&vmp->vm_lock);
1526 		(void) vmem_populate(vmp, vmflag | VM_PANIC);
1527 		mutex_exit(&vmp->vm_lock);
1528 	}
1529 
1530 	if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
1531 		vmem_destroy(vmp);
1532 		return (NULL);
1533 	}
1534 
1535 	return (vmp);
1536 }
1537 
1538 vmem_t *
1539 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum,
1540     vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1541     size_t qcache_max, int vmflag)
1542 {
1543 	ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC)));
1544 	vmflag &= ~(VMC_POPULATOR | VMC_XALLOC);
1545 
1546 	return (vmem_create_common(name, base, size, quantum,
1547 	    (vmem_alloc_t *)afunc, ffunc, source, qcache_max,
1548 	    vmflag | VMC_XALLOC));
1549 }
1550 
1551 vmem_t *
1552 vmem_create(const char *name, void *base, size_t size, size_t quantum,
1553     vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1554     size_t qcache_max, int vmflag)
1555 {
1556 	ASSERT(!(vmflag & VMC_XALLOC));
1557 	vmflag &= ~VMC_XALLOC;
1558 
1559 	return (vmem_create_common(name, base, size, quantum,
1560 	    afunc, ffunc, source, qcache_max, vmflag));
1561 }
1562 
1563 /*
1564  * Destroy arena vmp.
1565  */
1566 void
1567 vmem_destroy(vmem_t *vmp)
1568 {
1569 	vmem_t *cur, **vmpp;
1570 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1571 	vmem_seg_t *vsp;
1572 	size_t leaked;
1573 	int i;
1574 
1575 	mutex_enter(&vmem_list_lock);
1576 	vmpp = &vmem_list;
1577 	while ((cur = *vmpp) != vmp)
1578 		vmpp = &cur->vm_next;
1579 	*vmpp = vmp->vm_next;
1580 	mutex_exit(&vmem_list_lock);
1581 
1582 	for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1583 		if (vmp->vm_qcache[i])
1584 			kmem_cache_destroy(vmp->vm_qcache[i]);
1585 
1586 	leaked = vmem_size(vmp, VMEM_ALLOC);
1587 	if (leaked != 0)
1588 		cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s",
1589 		    vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ?
1590 		    "identifiers" : "bytes");
1591 
1592 	if (vmp->vm_hash_table != vmp->vm_hash0)
1593 		vmem_free(vmem_hash_arena, vmp->vm_hash_table,
1594 		    (vmp->vm_hash_mask + 1) * sizeof (void *));
1595 
1596 	/*
1597 	 * Give back the segment structures for anything that's left in the
1598 	 * arena, e.g. the primary spans and their free segments.
1599 	 */
1600 	VMEM_DELETE(&vmp->vm_rotor, a);
1601 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
1602 		vmem_putseg_global(vsp);
1603 
1604 	while (vmp->vm_nsegfree > 0)
1605 		vmem_putseg_global(vmem_getseg(vmp));
1606 
1607 	kstat_delete(vmp->vm_ksp);
1608 
1609 	mutex_destroy(&vmp->vm_lock);
1610 	cv_destroy(&vmp->vm_cv);
1611 	vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
1612 }
1613 
1614 /*
1615  * Resize vmp's hash table to keep the average lookup depth near 1.0.
1616  */
1617 static void
1618 vmem_hash_rescale(vmem_t *vmp)
1619 {
1620 	vmem_seg_t **old_table, **new_table, *vsp;
1621 	size_t old_size, new_size, h, nseg;
1622 
1623 	nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 -
1624 	    vmp->vm_kstat.vk_free.value.ui64);
1625 
1626 	new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
1627 	old_size = vmp->vm_hash_mask + 1;
1628 
1629 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
1630 		return;
1631 
1632 	new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
1633 	    VM_NOSLEEP);
1634 	if (new_table == NULL)
1635 		return;
1636 	bzero(new_table, new_size * sizeof (void *));
1637 
1638 	mutex_enter(&vmp->vm_lock);
1639 
1640 	old_size = vmp->vm_hash_mask + 1;
1641 	old_table = vmp->vm_hash_table;
1642 
1643 	vmp->vm_hash_mask = new_size - 1;
1644 	vmp->vm_hash_table = new_table;
1645 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1646 
1647 	for (h = 0; h < old_size; h++) {
1648 		vsp = old_table[h];
1649 		while (vsp != NULL) {
1650 			uintptr_t addr = vsp->vs_start;
1651 			vmem_seg_t *next_vsp = vsp->vs_knext;
1652 			vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
1653 			vsp->vs_knext = *hash_bucket;
1654 			*hash_bucket = vsp;
1655 			vsp = next_vsp;
1656 		}
1657 	}
1658 
1659 	mutex_exit(&vmp->vm_lock);
1660 
1661 	if (old_table != vmp->vm_hash0)
1662 		vmem_free(vmem_hash_arena, old_table,
1663 		    old_size * sizeof (void *));
1664 }
1665 
1666 /*
1667  * Perform periodic maintenance on all vmem arenas.
1668  */
1669 void
1670 vmem_update(void *dummy)
1671 {
1672 	vmem_t *vmp;
1673 
1674 	mutex_enter(&vmem_list_lock);
1675 	for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
1676 		/*
1677 		 * If threads are waiting for resources, wake them up
1678 		 * periodically so they can issue another kmem_reap()
1679 		 * to reclaim resources cached by the slab allocator.
1680 		 */
1681 		cv_broadcast(&vmp->vm_cv);
1682 
1683 		/*
1684 		 * Rescale the hash table to keep the hash chains short.
1685 		 */
1686 		vmem_hash_rescale(vmp);
1687 	}
1688 	mutex_exit(&vmem_list_lock);
1689 
1690 	(void) timeout(vmem_update, dummy, vmem_update_interval * hz);
1691 }
1692 
1693 /*
1694  * Prepare vmem for use.
1695  */
1696 vmem_t *
1697 vmem_init(const char *heap_name,
1698 	void *heap_start, size_t heap_size, size_t heap_quantum,
1699 	void *(*heap_alloc)(vmem_t *, size_t, int),
1700 	void (*heap_free)(vmem_t *, void *, size_t))
1701 {
1702 	uint32_t id;
1703 	int nseg = VMEM_SEG_INITIAL;
1704 	vmem_t *heap;
1705 
1706 	while (--nseg >= 0)
1707 		vmem_putseg_global(&vmem_seg0[nseg]);
1708 
1709 	heap = vmem_create(heap_name,
1710 	    heap_start, heap_size, heap_quantum,
1711 	    NULL, NULL, NULL, 0,
1712 	    VM_SLEEP | VMC_POPULATOR);
1713 
1714 	vmem_metadata_arena = vmem_create("vmem_metadata",
1715 	    NULL, 0, heap_quantum,
1716 	    vmem_alloc, vmem_free, heap, 8 * heap_quantum,
1717 	    VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE);
1718 
1719 	vmem_seg_arena = vmem_create("vmem_seg",
1720 	    NULL, 0, heap_quantum,
1721 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1722 	    VM_SLEEP | VMC_POPULATOR);
1723 
1724 	vmem_hash_arena = vmem_create("vmem_hash",
1725 	    NULL, 0, 8,
1726 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1727 	    VM_SLEEP);
1728 
1729 	vmem_vmem_arena = vmem_create("vmem_vmem",
1730 	    vmem0, sizeof (vmem0), 1,
1731 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1732 	    VM_SLEEP);
1733 
1734 	for (id = 0; id < vmem_id; id++)
1735 		(void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1736 		    1, 0, 0, &vmem0[id], &vmem0[id + 1],
1737 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1738 
1739 	return (heap);
1740 }
1741