xref: /titanic_51/usr/src/uts/common/os/urw.c (revision a29e56d91db891741f1af9f6bbd3e3c3cac5f19b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	  All Rights Reserved   */
28 
29 #include <sys/atomic.h>
30 #include <sys/errno.h>
31 #include <sys/stat.h>
32 #include <sys/modctl.h>
33 #include <sys/conf.h>
34 #include <sys/systm.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/cpuvar.h>
38 #include <sys/kmem.h>
39 #include <sys/strsubr.h>
40 #include <sys/sysmacros.h>
41 #include <sys/frame.h>
42 #include <sys/stack.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/policy.h>
46 #include <sys/ontrap.h>
47 #include <sys/vmsystm.h>
48 #include <sys/prsystm.h>
49 
50 #include <vm/as.h>
51 #include <vm/seg.h>
52 #include <vm/seg_dev.h>
53 #include <vm/seg_vn.h>
54 #include <vm/seg_spt.h>
55 #include <vm/seg_kmem.h>
56 
57 extern struct seg_ops segdev_ops;	/* needs a header file */
58 extern struct seg_ops segspt_shmops;	/* needs a header file */
59 
60 static int
61 page_valid(struct seg *seg, caddr_t addr)
62 {
63 	struct segvn_data *svd;
64 	vnode_t *vp;
65 	vattr_t vattr;
66 
67 	/*
68 	 * Fail if the page doesn't map to a page in the underlying
69 	 * mapped file, if an underlying mapped file exists.
70 	 */
71 	vattr.va_mask = AT_SIZE;
72 	if (seg->s_ops == &segvn_ops &&
73 	    SEGOP_GETVP(seg, addr, &vp) == 0 &&
74 	    vp != NULL && vp->v_type == VREG &&
75 	    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
76 		u_offset_t size = roundup(vattr.va_size, (u_offset_t)PAGESIZE);
77 		u_offset_t offset = SEGOP_GETOFFSET(seg, addr);
78 
79 		if (offset >= size)
80 			return (0);
81 	}
82 
83 	/*
84 	 * Fail if this is an ISM shared segment and the address is
85 	 * not within the real size of the spt segment that backs it.
86 	 */
87 	if (seg->s_ops == &segspt_shmops &&
88 	    addr >= seg->s_base + spt_realsize(seg))
89 		return (0);
90 
91 	/*
92 	 * Fail if the segment is mapped from /dev/null.
93 	 * The key is that the mapping comes from segdev and the
94 	 * type is neither MAP_SHARED nor MAP_PRIVATE.
95 	 */
96 	if (seg->s_ops == &segdev_ops &&
97 	    ((SEGOP_GETTYPE(seg, addr) & (MAP_SHARED | MAP_PRIVATE)) == 0))
98 		return (0);
99 
100 	/*
101 	 * Fail if the page is a MAP_NORESERVE page that has
102 	 * not actually materialized.
103 	 * We cheat by knowing that segvn is the only segment
104 	 * driver that supports MAP_NORESERVE.
105 	 */
106 	if (seg->s_ops == &segvn_ops &&
107 	    (svd = (struct segvn_data *)seg->s_data) != NULL &&
108 	    (svd->vp == NULL || svd->vp->v_type != VREG) &&
109 	    (svd->flags & MAP_NORESERVE)) {
110 		/*
111 		 * Guilty knowledge here.  We know that
112 		 * segvn_incore returns more than just the
113 		 * low-order bit that indicates the page is
114 		 * actually in memory.  If any bits are set,
115 		 * then there is backing store for the page.
116 		 */
117 		char incore = 0;
118 		(void) SEGOP_INCORE(seg, addr, PAGESIZE, &incore);
119 		if (incore == 0)
120 			return (0);
121 	}
122 	return (1);
123 }
124 
125 /*
126  * Map address "addr" in address space "as" into a kernel virtual address.
127  * The memory is guaranteed to be resident and locked down.
128  */
129 static caddr_t
130 mapin(struct as *as, caddr_t addr, int writing)
131 {
132 	page_t *pp;
133 	caddr_t kaddr;
134 	pfn_t pfnum;
135 
136 	/*
137 	 * NB: Because of past mistakes, we have bits being returned
138 	 * by getpfnum that are actually the page type bits of the pte.
139 	 * When the object we are trying to map is a memory page with
140 	 * a page structure everything is ok and we can use the optimal
141 	 * method, ppmapin.  Otherwise, we have to do something special.
142 	 */
143 	pfnum = hat_getpfnum(as->a_hat, addr);
144 	if (pf_is_memory(pfnum)) {
145 		pp = page_numtopp_nolock(pfnum);
146 		if (pp != NULL) {
147 			ASSERT(PAGE_LOCKED(pp));
148 			kaddr = ppmapin(pp, writing ?
149 			    (PROT_READ | PROT_WRITE) : PROT_READ, (caddr_t)-1);
150 			return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
151 		}
152 	}
153 
154 	/*
155 	 * Oh well, we didn't have a page struct for the object we were
156 	 * trying to map in; ppmapin doesn't handle devices, but allocating a
157 	 * heap address allows ppmapout to free virutal space when done.
158 	 */
159 	kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
160 
161 	hat_devload(kas.a_hat, kaddr, PAGESIZE, pfnum,
162 	    writing ? (PROT_READ | PROT_WRITE) : PROT_READ, HAT_LOAD_LOCK);
163 
164 	return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
165 }
166 
167 /*ARGSUSED*/
168 static void
169 mapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing)
170 {
171 	vaddr = (caddr_t)(uintptr_t)((uintptr_t)vaddr & PAGEMASK);
172 	ppmapout(vaddr);
173 }
174 
175 /*
176  * Perform I/O to a given process. This will return EIO if we detect
177  * corrupt memory and ENXIO if there is no such mapped address in the
178  * user process's address space.
179  */
180 static int
181 urw(proc_t *p, int writing, void *buf, size_t len, uintptr_t a)
182 {
183 	caddr_t addr = (caddr_t)a;
184 	caddr_t page;
185 	caddr_t vaddr;
186 	struct seg *seg;
187 	int error = 0;
188 	int err = 0;
189 	uint_t prot;
190 	uint_t prot_rw = writing ? PROT_WRITE : PROT_READ;
191 	int protchanged;
192 	on_trap_data_t otd;
193 	int retrycnt;
194 	struct as *as = p->p_as;
195 	enum seg_rw rw;
196 
197 	/*
198 	 * Locate segment containing address of interest.
199 	 */
200 	page = (caddr_t)(uintptr_t)((uintptr_t)addr & PAGEMASK);
201 	retrycnt = 0;
202 	AS_LOCK_ENTER(as, RW_WRITER);
203 retry:
204 	if ((seg = as_segat(as, page)) == NULL ||
205 	    !page_valid(seg, page)) {
206 		AS_LOCK_EXIT(as);
207 		return (ENXIO);
208 	}
209 	SEGOP_GETPROT(seg, page, 0, &prot);
210 
211 	protchanged = 0;
212 	if ((prot & prot_rw) == 0) {
213 		protchanged = 1;
214 		err = SEGOP_SETPROT(seg, page, PAGESIZE, prot | prot_rw);
215 
216 		if (err == IE_RETRY) {
217 			protchanged = 0;
218 			ASSERT(retrycnt == 0);
219 			retrycnt++;
220 			goto retry;
221 		}
222 
223 		if (err != 0) {
224 			AS_LOCK_EXIT(as);
225 			return (ENXIO);
226 		}
227 	}
228 
229 	/*
230 	 * segvn may do a copy-on-write for F_SOFTLOCK/S_READ case to break
231 	 * sharing to avoid a copy on write of a softlocked page by another
232 	 * thread. But since we locked the address space as a writer no other
233 	 * thread can cause a copy on write. S_READ_NOCOW is passed as the
234 	 * access type to tell segvn that it's ok not to do a copy-on-write
235 	 * for this SOFTLOCK fault.
236 	 */
237 	if (writing)
238 		rw = S_WRITE;
239 	else if (seg->s_ops == &segvn_ops)
240 		rw = S_READ_NOCOW;
241 	else
242 		rw = S_READ;
243 
244 	if (SEGOP_FAULT(as->a_hat, seg, page, PAGESIZE, F_SOFTLOCK, rw)) {
245 		if (protchanged)
246 			(void) SEGOP_SETPROT(seg, page, PAGESIZE, prot);
247 		AS_LOCK_EXIT(as);
248 		return (ENXIO);
249 	}
250 	CPU_STATS_ADD_K(vm, softlock, 1);
251 
252 	/*
253 	 * Make sure we're not trying to read or write off the end of the page.
254 	 */
255 	ASSERT(len <= page + PAGESIZE - addr);
256 
257 	/*
258 	 * Map in the locked page, copy to our local buffer,
259 	 * then map the page out and unlock it.
260 	 */
261 	vaddr = mapin(as, addr, writing);
262 
263 	/*
264 	 * Since we are copying memory on behalf of the user process,
265 	 * protect against memory error correction faults.
266 	 */
267 	if (!on_trap(&otd, OT_DATA_EC)) {
268 		if (seg->s_ops == &segdev_ops) {
269 			/*
270 			 * Device memory can behave strangely; invoke
271 			 * a segdev-specific copy operation instead.
272 			 */
273 			if (writing) {
274 				if (segdev_copyto(seg, addr, buf, vaddr, len))
275 					error = ENXIO;
276 			} else {
277 				if (segdev_copyfrom(seg, addr, vaddr, buf, len))
278 					error = ENXIO;
279 			}
280 		} else {
281 			if (writing)
282 				bcopy(buf, vaddr, len);
283 			else
284 				bcopy(vaddr, buf, len);
285 		}
286 	} else {
287 		error = EIO;
288 	}
289 	no_trap();
290 
291 	/*
292 	 * If we're writing to an executable page, we may need to sychronize
293 	 * the I$ with the modifications we made through the D$.
294 	 */
295 	if (writing && (prot & PROT_EXEC))
296 		sync_icache(vaddr, (uint_t)len);
297 
298 	mapout(as, addr, vaddr, writing);
299 
300 	if (rw == S_READ_NOCOW)
301 		rw = S_READ;
302 
303 	(void) SEGOP_FAULT(as->a_hat, seg, page, PAGESIZE, F_SOFTUNLOCK, rw);
304 
305 	if (protchanged)
306 		(void) SEGOP_SETPROT(seg, page, PAGESIZE, prot);
307 
308 	AS_LOCK_EXIT(as);
309 
310 	return (error);
311 }
312 
313 int
314 uread(proc_t *p, void *buf, size_t len, uintptr_t a)
315 {
316 	return (urw(p, 0, buf, len, a));
317 }
318 
319 int
320 uwrite(proc_t *p, void *buf, size_t len, uintptr_t a)
321 {
322 	return (urw(p, 1, buf, len, a));
323 }
324