1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * sunpm.c builds sunpm.o "power management framework" 28 * kernel-resident power management code. Implements power management 29 * policy 30 * Assumes: all backwards compat. device components wake up on & 31 * the pm_info pointer in dev_info is initially NULL 32 * 33 * PM - (device) Power Management 34 * 35 * Each device may have 0 or more components. If a device has no components, 36 * then it can't be power managed. Each component has 2 or more 37 * power states. 38 * 39 * "Backwards Compatible" (bc) devices: 40 * There are two different types of devices from the point of view of this 41 * code. The original type, left over from the original PM implementation on 42 * the voyager platform are known in this code as "backwards compatible" 43 * devices (PM_ISBC(dip) returns true). 44 * They are recognized by the pm code by the lack of a pm-components property 45 * and a call made by the driver to pm_create_components(9F). 46 * For these devices, component 0 is special, and represents the power state 47 * of the device. If component 0 is to be set to power level 0 (off), then 48 * the framework must first call into the driver's detach(9E) routine with 49 * DDI_PM_SUSPEND, to get the driver to save the hardware state of the device. 50 * After setting component 0 from 0 to a non-zero power level, a call must be 51 * made into the driver's attach(9E) routine with DDI_PM_RESUME. 52 * 53 * Currently, the only way to get a bc device power managed is via a set of 54 * ioctls (PM_DIRECT_PM, PM_SET_CURRENT_POWER) issued to /dev/pm. 55 * 56 * For non-bc devices, the driver describes the components by exporting a 57 * pm-components(9P) property that tells how many components there are, 58 * tells what each component's power state values are, and provides human 59 * readable strings (currently unused) for each component name and power state. 60 * Devices which export pm-components(9P) are automatically power managed 61 * whenever autopm is enabled (via PM_START_PM ioctl issued by pmconfig(1M) 62 * after parsing power.conf(4)). The exception to this rule is that power 63 * manageable CPU devices may be automatically managed independently of autopm 64 * by either enabling or disabling (via PM_START_CPUPM and PM_STOP_CPUPM 65 * ioctls) cpupm. If the CPU devices are not managed independently, then they 66 * are managed by autopm. In either case, for automatically power managed 67 * devices, all components are considered independent of each other, and it is 68 * up to the driver to decide when a transition requires saving or restoring 69 * hardware state. 70 * 71 * Each device component also has a threshold time associated with each power 72 * transition (see power.conf(4)), and a busy/idle state maintained by the 73 * driver calling pm_idle_component(9F) and pm_busy_component(9F). 74 * Components are created idle. 75 * 76 * The PM framework provides several functions: 77 * -implement PM policy as described in power.conf(4) 78 * Policy is set by pmconfig(1M) issuing pm ioctls based on power.conf(4). 79 * Policies consist of: 80 * -set threshold values (defaults if none provided by pmconfig) 81 * -set dependencies among devices 82 * -enable/disable autopm 83 * -enable/disable cpupm 84 * -turn down idle components based on thresholds (if autopm or cpupm is 85 * enabled) (aka scanning) 86 * -maintain power states based on dependencies among devices 87 * -upon request, or when the frame buffer powers off, attempt to turn off 88 * all components that are idle or become idle over the next (10 sec) 89 * period in an attempt to get down to an EnergyStar compliant state 90 * -prevent powering off of a device which exported the 91 * pm-no-involuntary-power-cycles property without active involvement of 92 * the device's driver (so no removing power when the device driver is 93 * not attached) 94 * -provide a mechanism for a device driver to request that a device's component 95 * be brought back to the power level necessary for the use of the device 96 * -allow a process to directly control the power levels of device components 97 * (via ioctls issued to /dev/pm--see usr/src/uts/common/io/pm.c) 98 * -ensure that the console frame buffer is powered up before being referenced 99 * via prom_printf() or other prom calls that might generate console output 100 * -maintain implicit dependencies (e.g. parent must be powered up if child is) 101 * -provide "backwards compatible" behavior for devices without pm-components 102 * property 103 * 104 * Scanning: 105 * Whenever autopm or cpupm is enabled, the framework attempts to bring each 106 * component of each managed device to its lowest power based on the threshold 107 * of idleness associated with each transition and the busy/idle state of the 108 * component. 109 * 110 * The actual work of this is done by pm_scan_dev(), which cycles through each 111 * component of a device, checking its idleness against its current threshold, 112 * and calling pm_set_power() as appropriate to change the power level. 113 * This function also indicates when it would next be profitable to scan the 114 * device again, and a new scan is scheduled after that time. 115 * 116 * Dependencies: 117 * It is possible to establish a dependency between the power states of two 118 * otherwise unrelated devices. This is currently done to ensure that the 119 * cdrom is always up whenever the console framebuffer is up, so that the user 120 * can insert a cdrom and see a popup as a result. 121 * 122 * The dependency terminology used in power.conf(4) is not easy to understand, 123 * so we've adopted a different terminology in the implementation. We write 124 * of a "keeps up" and a "kept up" device. A relationship can be established 125 * where one device keeps up another. That means that if the keepsup device 126 * has any component that is at a non-zero power level, all components of the 127 * "kept up" device must be brought to full power. This relationship is 128 * asynchronous. When the keeping device is powered up, a request is queued 129 * to a worker thread to bring up the kept device. The caller does not wait. 130 * Scan will not turn down a kept up device. 131 * 132 * Direct PM: 133 * A device may be directly power managed by a process. If a device is 134 * directly pm'd, then it will not be scanned, and dependencies will not be 135 * enforced. * If a directly pm'd device's driver requests a power change (via 136 * pm_raise_power(9F)), then the request is blocked and notification is sent 137 * to the controlling process, which must issue the requested power change for 138 * the driver to proceed. 139 * 140 */ 141 142 #include <sys/types.h> 143 #include <sys/errno.h> 144 #include <sys/callb.h> /* callback registration during CPR */ 145 #include <sys/conf.h> /* driver flags and functions */ 146 #include <sys/open.h> /* OTYP_CHR definition */ 147 #include <sys/stat.h> /* S_IFCHR definition */ 148 #include <sys/pathname.h> /* name -> dev_info xlation */ 149 #include <sys/ddi_impldefs.h> /* dev_info node fields */ 150 #include <sys/kmem.h> /* memory alloc stuff */ 151 #include <sys/debug.h> 152 #include <sys/archsystm.h> 153 #include <sys/pm.h> 154 #include <sys/ddi.h> 155 #include <sys/sunddi.h> 156 #include <sys/sunndi.h> 157 #include <sys/sunpm.h> 158 #include <sys/epm.h> 159 #include <sys/vfs.h> 160 #include <sys/mode.h> 161 #include <sys/mkdev.h> 162 #include <sys/promif.h> 163 #include <sys/consdev.h> 164 #include <sys/esunddi.h> 165 #include <sys/modctl.h> 166 #include <sys/fs/ufs_fs.h> 167 #include <sys/note.h> 168 #include <sys/taskq.h> 169 #include <sys/bootconf.h> 170 #include <sys/reboot.h> 171 #include <sys/spl.h> 172 #include <sys/disp.h> 173 #include <sys/sobject.h> 174 #include <sys/sunmdi.h> 175 #include <sys/systm.h> 176 #include <sys/cpuvar.h> 177 #include <sys/cyclic.h> 178 #include <sys/uadmin.h> 179 #include <sys/srn.h> 180 181 182 /* 183 * PM LOCKING 184 * The list of locks: 185 * Global pm mutex locks. 186 * 187 * pm_scan_lock: 188 * It protects the timeout id of the scan thread, and the value 189 * of autopm_enabled and cpupm. This lock is not held 190 * concurrently with any other PM locks. 191 * 192 * pm_clone_lock: Protects the clone list and count of poll events 193 * pending for the pm driver. 194 * Lock ordering: 195 * pm_clone_lock -> pm_pscc_interest_rwlock, 196 * pm_clone_lock -> pm_pscc_direct_rwlock. 197 * 198 * pm_rsvp_lock: 199 * Used to synchronize the data structures used for processes 200 * to rendezvous with state change information when doing 201 * direct PM. 202 * Lock ordering: 203 * pm_rsvp_lock -> pm_pscc_interest_rwlock, 204 * pm_rsvp_lock -> pm_pscc_direct_rwlock, 205 * pm_rsvp_lock -> pm_clone_lock. 206 * 207 * ppm_lock: protects the list of registered ppm drivers 208 * Lock ordering: 209 * ppm_lock -> ppm driver unit_lock 210 * 211 * pm_compcnt_lock: 212 * Protects count of components that are not at their lowest 213 * power level. 214 * Lock ordering: 215 * pm_compcnt_lock -> ppm_lock. 216 * 217 * pm_dep_thread_lock: 218 * Protects work list for pm_dep_thread. Not taken concurrently 219 * with any other pm lock. 220 * 221 * pm_remdrv_lock: 222 * Serializes the operation of removing noinvol data structure 223 * entries for a branch of the tree when a driver has been 224 * removed from the system (modctl_rem_major). 225 * Lock ordering: 226 * pm_remdrv_lock -> pm_noinvol_rwlock. 227 * 228 * pm_cfb_lock: (High level spin lock) 229 * Protects the count of how many components of the console 230 * frame buffer are off (so we know if we have to bring up the 231 * console as a result of a prom_printf, etc. 232 * No other locks are taken while holding this lock. 233 * 234 * pm_loan_lock: 235 * Protects the lock_loan list. List is used to record that one 236 * thread has acquired a power lock but has launched another thread 237 * to complete its processing. An entry in the list indicates that 238 * the worker thread can borrow the lock held by the other thread, 239 * which must block on the completion of the worker. Use is 240 * specific to module loading. 241 * No other locks are taken while holding this lock. 242 * 243 * Global PM rwlocks 244 * 245 * pm_thresh_rwlock: 246 * Protects the list of thresholds recorded for future use (when 247 * devices attach). 248 * Lock ordering: 249 * pm_thresh_rwlock -> devi_pm_lock 250 * 251 * pm_noinvol_rwlock: 252 * Protects list of detached nodes that had noinvol registered. 253 * No other PM locks are taken while holding pm_noinvol_rwlock. 254 * 255 * pm_pscc_direct_rwlock: 256 * Protects the list that maps devices being directly power 257 * managed to the processes that manage them. 258 * Lock ordering: 259 * pm_pscc_direct_rwlock -> psce_lock 260 * 261 * pm_pscc_interest_rwlock; 262 * Protects the list that maps state change events to processes 263 * that want to know about them. 264 * Lock ordering: 265 * pm_pscc_interest_rwlock -> psce_lock 266 * 267 * per-dip locks: 268 * 269 * Each node has these per-dip locks, which are only used if the device is 270 * a candidate for power management (e.g. has pm components) 271 * 272 * devi_pm_lock: 273 * Protects all power management state of the node except for 274 * power level, which is protected by ndi_devi_enter(). 275 * Encapsulated in macros PM_LOCK_DIP()/PM_UNLOCK_DIP(). 276 * Lock ordering: 277 * devi_pm_lock -> pm_rsvp_lock, 278 * devi_pm_lock -> pm_dep_thread_lock, 279 * devi_pm_lock -> pm_noinvol_rwlock, 280 * devi_pm_lock -> power lock 281 * 282 * power lock (ndi_devi_enter()): 283 * Since changing power level is possibly a slow operation (30 284 * seconds to spin up a disk drive), this is locked separately. 285 * Since a call into the driver to change the power level of one 286 * component may result in a call back into the framework to change 287 * the power level of another, this lock allows re-entrancy by 288 * the same thread (ndi_devi_enter is used for this because 289 * the USB framework uses ndi_devi_enter in its power entry point, 290 * and use of any other lock would produce a deadlock. 291 * 292 * devi_pm_busy_lock: 293 * This lock protects the integrity of the busy count. It is 294 * only taken by pm_busy_component() and pm_idle_component and 295 * some code that adjust the busy time after the timer gets set 296 * up or after a CPR operation. It is per-dip to keep from 297 * single-threading all the disk drivers on a system. 298 * It could be per component instead, but most devices have 299 * only one component. 300 * No other PM locks are taken while holding this lock. 301 * 302 */ 303 304 static int stdout_is_framebuffer; 305 static kmutex_t e_pm_power_lock; 306 static kmutex_t pm_loan_lock; 307 kmutex_t pm_scan_lock; 308 callb_id_t pm_cpr_cb_id; 309 callb_id_t pm_panic_cb_id; 310 callb_id_t pm_halt_cb_id; 311 int pm_comps_notlowest; /* no. of comps not at lowest power */ 312 int pm_powering_down; /* cpr is source of DDI_SUSPEND calls */ 313 314 clock_t pm_id_ticks = 5; /* ticks to wait before scan during idle-down */ 315 clock_t pm_default_min_scan = PM_DEFAULT_MIN_SCAN; 316 clock_t pm_cpu_min_scan = PM_CPU_MIN_SCAN; 317 318 #define PM_MIN_SCAN(dip) (PM_ISCPU(dip) ? pm_cpu_min_scan : \ 319 pm_default_min_scan) 320 321 static int pm_busop_set_power(dev_info_t *, 322 void *, pm_bus_power_op_t, void *, void *); 323 static int pm_busop_match_request(dev_info_t *, void *); 324 static int pm_all_to_normal_nexus(dev_info_t *, pm_canblock_t); 325 static void e_pm_set_max_power(dev_info_t *, int, int); 326 static int e_pm_get_max_power(dev_info_t *, int); 327 328 /* 329 * Dependency Processing is done thru a seperate thread. 330 */ 331 kmutex_t pm_dep_thread_lock; 332 kcondvar_t pm_dep_thread_cv; 333 pm_dep_wk_t *pm_dep_thread_workq = NULL; 334 pm_dep_wk_t *pm_dep_thread_tail = NULL; 335 336 /* 337 * Autopm must be turned on by a PM_START_PM ioctl, so we don't end up 338 * power managing things in single user mode that have been suppressed via 339 * power.conf entries. Protected by pm_scan_lock. 340 */ 341 int autopm_enabled; 342 343 /* 344 * cpupm is turned on and off, by the PM_START_CPUPM and PM_STOP_CPUPM ioctls, 345 * to define the power management behavior of CPU devices separate from 346 * autopm. Protected by pm_scan_lock. 347 */ 348 pm_cpupm_t cpupm = PM_CPUPM_NOTSET; 349 350 /* 351 * Defines the default mode of operation for CPU power management, 352 * either the polling implementation, or the event based dispatcher driven 353 * implementation. 354 */ 355 pm_cpupm_t cpupm_default_mode = PM_CPUPM_EVENT; 356 357 /* 358 * AutoS3 depends on autopm being enabled, and must be enabled by 359 * PM_START_AUTOS3 command. 360 */ 361 int autoS3_enabled; 362 363 #if !defined(__sparc) 364 /* 365 * on sparc these live in fillsysinfo.c 366 * 367 * If this variable is non-zero, cpr should return "not supported" when 368 * it is queried even though it would normally be supported on this platform. 369 */ 370 int cpr_supported_override; 371 372 /* 373 * Some platforms may need to support CPR even in the absence of 374 * having the correct platform id information. If this 375 * variable is non-zero, cpr should proceed even in the absence 376 * of otherwise being qualified. 377 */ 378 int cpr_platform_enable = 0; 379 380 #endif 381 382 /* 383 * pm_S3_enabled indicates that we believe the platform can support S3, 384 * which we get from pmconfig(1M) 385 */ 386 int pm_S3_enabled; 387 388 /* 389 * This flag is true while processes are stopped for a checkpoint/resume. 390 * Controlling processes of direct pm'd devices are not available to 391 * participate in power level changes, so we bypass them when this is set. 392 */ 393 static int pm_processes_stopped; 394 395 #ifdef DEBUG 396 397 /* 398 * see common/sys/epm.h for PMD_* values 399 */ 400 401 uint_t pm_debug = 0; 402 403 /* 404 * If pm_divertdebug is set, then no prom_printf calls will be made by 405 * PMD(), which will prevent debug output from bringing up the console 406 * frame buffer. Clearing this variable before setting pm_debug will result 407 * in PMD output going to the console. 408 * 409 * pm_divertdebug is incremented in pm_set_power() if dip == cfb_dip to avoid 410 * deadlocks and decremented at the end of pm_set_power() 411 */ 412 uint_t pm_divertdebug = 1; 413 volatile uint_t pm_debug_to_console = 0; 414 kmutex_t pm_debug_lock; /* protects pm_divertdebug */ 415 416 void prdeps(char *); 417 #endif 418 419 /* Globals */ 420 421 /* 422 * List of recorded thresholds and dependencies 423 */ 424 pm_thresh_rec_t *pm_thresh_head; 425 krwlock_t pm_thresh_rwlock; 426 427 pm_pdr_t *pm_dep_head; 428 static int pm_unresolved_deps = 0; 429 static int pm_prop_deps = 0; 430 431 /* 432 * List of devices that exported no-involuntary-power-cycles property 433 */ 434 pm_noinvol_t *pm_noinvol_head; 435 436 /* 437 * Locks used in noinvol processing 438 */ 439 krwlock_t pm_noinvol_rwlock; 440 kmutex_t pm_remdrv_lock; 441 442 int pm_default_idle_threshold = PM_DEFAULT_SYS_IDLENESS; 443 int pm_system_idle_threshold; 444 int pm_cpu_idle_threshold; 445 446 /* 447 * By default nexus has 0 threshold, and depends on its children to keep it up 448 */ 449 int pm_default_nexus_threshold = 0; 450 451 /* 452 * Data structures shared with common/io/pm.c 453 */ 454 kmutex_t pm_clone_lock; 455 kcondvar_t pm_clones_cv[PM_MAX_CLONE]; 456 uint_t pm_poll_cnt[PM_MAX_CLONE]; /* count of events for poll */ 457 unsigned char pm_interest[PM_MAX_CLONE]; 458 struct pollhead pm_pollhead; 459 460 /* 461 * Data structures shared with common/io/srn.c 462 */ 463 kmutex_t srn_clone_lock; /* protects srn_signal, srn_inuse */ 464 void (*srn_signal)(int type, int event); 465 int srn_inuse; /* stop srn detach */ 466 467 extern int hz; 468 extern char *platform_module_list[]; 469 470 /* 471 * Wrappers for use in ddi_walk_devs 472 */ 473 474 static int pm_set_dev_thr_walk(dev_info_t *, void *); 475 static int pm_restore_direct_lvl_walk(dev_info_t *, void *); 476 static int pm_save_direct_lvl_walk(dev_info_t *, void *); 477 static int pm_discard_dep_walk(dev_info_t *, void *); 478 #ifdef DEBUG 479 static int pm_desc_pwrchk_walk(dev_info_t *, void *); 480 #endif 481 482 /* 483 * Routines for managing noinvol devices 484 */ 485 int pm_noinvol_update(int, int, int, char *, dev_info_t *); 486 void pm_noinvol_update_node(dev_info_t *, 487 pm_bp_noinvol_t *req); 488 489 kmutex_t pm_rsvp_lock; 490 kmutex_t pm_compcnt_lock; 491 krwlock_t pm_pscc_direct_rwlock; 492 krwlock_t pm_pscc_interest_rwlock; 493 494 #define PSC_INTEREST 0 /* belongs to interest psc list */ 495 #define PSC_DIRECT 1 /* belongs to direct psc list */ 496 497 pscc_t *pm_pscc_interest; 498 pscc_t *pm_pscc_direct; 499 500 #define PM_MAJOR(dip) ddi_driver_major(dip) 501 #define PM_IS_NEXUS(dip) ((PM_MAJOR(dip) == DDI_MAJOR_T_NONE) ? 0 : \ 502 NEXUS_DRV(devopsp[PM_MAJOR(dip)])) 503 #define POWERING_ON(old, new) ((old) == 0 && (new) != 0) 504 #define POWERING_OFF(old, new) ((old) != 0 && (new) == 0) 505 506 #define PM_INCR_NOTLOWEST(dip) { \ 507 mutex_enter(&pm_compcnt_lock); \ 508 if (!PM_IS_NEXUS(dip) || \ 509 (DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\ 510 if (pm_comps_notlowest == 0) \ 511 pm_ppm_notify_all_lowest(dip, PM_NOT_ALL_LOWEST);\ 512 pm_comps_notlowest++; \ 513 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr notlowest->%d\n",\ 514 pmf, PM_DEVICE(dip), pm_comps_notlowest)) \ 515 } \ 516 mutex_exit(&pm_compcnt_lock); \ 517 } 518 #define PM_DECR_NOTLOWEST(dip) { \ 519 mutex_enter(&pm_compcnt_lock); \ 520 if (!PM_IS_NEXUS(dip) || \ 521 (DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\ 522 ASSERT(pm_comps_notlowest); \ 523 pm_comps_notlowest--; \ 524 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr notlowest to " \ 525 "%d\n", pmf, PM_DEVICE(dip), pm_comps_notlowest))\ 526 if (pm_comps_notlowest == 0) \ 527 pm_ppm_notify_all_lowest(dip, PM_ALL_LOWEST); \ 528 } \ 529 mutex_exit(&pm_compcnt_lock); \ 530 } 531 532 /* 533 * console frame-buffer power-management is not enabled when 534 * debugging services are present. to override, set pm_cfb_override 535 * to non-zero. 536 */ 537 uint_t pm_cfb_comps_off = 0; /* PM_LEVEL_UNKNOWN is considered on */ 538 kmutex_t pm_cfb_lock; 539 int pm_cfb_enabled = 1; /* non-zero allows pm of console frame buffer */ 540 #ifdef DEBUG 541 int pm_cfb_override = 1; /* non-zero allows pm of cfb with debuggers */ 542 #else 543 int pm_cfb_override = 0; /* non-zero allows pm of cfb with debuggers */ 544 #endif 545 546 static dev_info_t *cfb_dip = 0; 547 static dev_info_t *cfb_dip_detaching = 0; 548 uint_t cfb_inuse = 0; 549 static ddi_softintr_t pm_soft_id; 550 static clock_t pm_soft_pending; 551 int pm_scans_disabled = 0; 552 553 /* 554 * A structure to record the fact that one thread has borrowed a lock held 555 * by another thread. The context requires that the lender block on the 556 * completion of the borrower. 557 */ 558 typedef struct lock_loan { 559 struct lock_loan *pmlk_next; 560 kthread_t *pmlk_borrower; 561 kthread_t *pmlk_lender; 562 dev_info_t *pmlk_dip; 563 } lock_loan_t; 564 static lock_loan_t lock_loan_head; /* list head is a dummy element */ 565 566 #ifdef DEBUG 567 #ifdef PMDDEBUG 568 #define PMD_FUNC(func, name) char *(func) = (name); 569 #else /* !PMDDEBUG */ 570 #define PMD_FUNC(func, name) 571 #endif /* PMDDEBUG */ 572 #else /* !DEBUG */ 573 #define PMD_FUNC(func, name) 574 #endif /* DEBUG */ 575 576 577 /* 578 * Must be called before first device (including pseudo) attach 579 */ 580 void 581 pm_init_locks(void) 582 { 583 mutex_init(&pm_scan_lock, NULL, MUTEX_DRIVER, NULL); 584 mutex_init(&pm_rsvp_lock, NULL, MUTEX_DRIVER, NULL); 585 mutex_init(&pm_compcnt_lock, NULL, MUTEX_DRIVER, NULL); 586 mutex_init(&pm_dep_thread_lock, NULL, MUTEX_DRIVER, NULL); 587 mutex_init(&pm_remdrv_lock, NULL, MUTEX_DRIVER, NULL); 588 mutex_init(&pm_loan_lock, NULL, MUTEX_DRIVER, NULL); 589 rw_init(&pm_thresh_rwlock, NULL, RW_DEFAULT, NULL); 590 rw_init(&pm_noinvol_rwlock, NULL, RW_DEFAULT, NULL); 591 cv_init(&pm_dep_thread_cv, NULL, CV_DEFAULT, NULL); 592 } 593 594 static int pm_reset_timestamps(dev_info_t *, void *); 595 596 static boolean_t 597 pm_cpr_callb(void *arg, int code) 598 { 599 _NOTE(ARGUNUSED(arg)) 600 static int auto_save; 601 static pm_cpupm_t cpupm_save; 602 603 switch (code) { 604 case CB_CODE_CPR_CHKPT: 605 /* 606 * Cancel scan or wait for scan in progress to finish 607 * Other threads may be trying to restart the scan, so we 608 * have to keep at it unil it sticks 609 */ 610 mutex_enter(&pm_scan_lock); 611 ASSERT(!pm_scans_disabled); 612 pm_scans_disabled = 1; 613 auto_save = autopm_enabled; 614 autopm_enabled = 0; 615 cpupm_save = cpupm; 616 cpupm = PM_CPUPM_NOTSET; 617 mutex_exit(&pm_scan_lock); 618 ddi_walk_devs(ddi_root_node(), pm_scan_stop_walk, NULL); 619 break; 620 621 case CB_CODE_CPR_RESUME: 622 ASSERT(!autopm_enabled); 623 ASSERT(cpupm == PM_CPUPM_NOTSET); 624 ASSERT(pm_scans_disabled); 625 pm_scans_disabled = 0; 626 /* 627 * Call pm_reset_timestamps to reset timestamps of each 628 * device to the time when the system is resumed so that their 629 * idleness can be re-calculated. That's to avoid devices from 630 * being powered down right after resume if the system was in 631 * suspended mode long enough. 632 */ 633 ddi_walk_devs(ddi_root_node(), pm_reset_timestamps, NULL); 634 635 autopm_enabled = auto_save; 636 cpupm = cpupm_save; 637 /* 638 * If there is any auto-pm device, get the scanning 639 * going. Otherwise don't bother. 640 */ 641 ddi_walk_devs(ddi_root_node(), pm_rescan_walk, NULL); 642 break; 643 } 644 return (B_TRUE); 645 } 646 647 /* 648 * This callback routine is called when there is a system panic. This function 649 * exists for prototype matching. 650 */ 651 static boolean_t 652 pm_panic_callb(void *arg, int code) 653 { 654 _NOTE(ARGUNUSED(arg, code)) 655 void pm_cfb_check_and_powerup(void); 656 PMD(PMD_CFB, ("pm_panic_callb\n")) 657 pm_cfb_check_and_powerup(); 658 return (B_TRUE); 659 } 660 661 static boolean_t 662 pm_halt_callb(void *arg, int code) 663 { 664 _NOTE(ARGUNUSED(arg, code)) 665 return (B_TRUE); 666 } 667 668 static void pm_dep_thread(void); 669 670 /* 671 * This needs to be called after the root and platform drivers are loaded 672 * and be single-threaded with respect to driver attach/detach 673 */ 674 void 675 pm_init(void) 676 { 677 PMD_FUNC(pmf, "pm_init") 678 char **mod; 679 extern pri_t minclsyspri; 680 681 pm_comps_notlowest = 0; 682 pm_system_idle_threshold = pm_default_idle_threshold; 683 pm_cpu_idle_threshold = 0; 684 685 pm_cpr_cb_id = callb_add(pm_cpr_callb, (void *)NULL, 686 CB_CL_CPR_PM, "pm_cpr"); 687 pm_panic_cb_id = callb_add(pm_panic_callb, (void *)NULL, 688 CB_CL_PANIC, "pm_panic"); 689 pm_halt_cb_id = callb_add(pm_halt_callb, (void *)NULL, 690 CB_CL_HALT, "pm_halt"); 691 692 /* 693 * Create a thread to do dependency processing. 694 */ 695 (void) thread_create(NULL, 0, (void (*)())pm_dep_thread, NULL, 0, &p0, 696 TS_RUN, minclsyspri); 697 698 /* 699 * loadrootmodules already loaded these ppm drivers, now get them 700 * attached so they can claim the root drivers as they attach 701 */ 702 for (mod = platform_module_list; *mod; mod++) { 703 if (i_ddi_attach_hw_nodes(*mod) != DDI_SUCCESS) { 704 cmn_err(CE_WARN, "!cannot load platform pm driver %s\n", 705 *mod); 706 } else { 707 PMD(PMD_DHR, ("%s: %s (%s)\n", pmf, *mod, 708 ddi_major_to_name(ddi_name_to_major(*mod)))) 709 } 710 } 711 } 712 713 /* 714 * pm_scan_init - create pm scan data structure. Called (if autopm or cpupm 715 * enabled) when device becomes power managed or after a failed detach and 716 * when autopm is started via PM_START_PM or PM_START_CPUPM ioctls, and after 717 * a CPR resume to get all the devices scanning again. 718 */ 719 void 720 pm_scan_init(dev_info_t *dip) 721 { 722 PMD_FUNC(pmf, "scan_init") 723 pm_scan_t *scanp; 724 725 ASSERT(!PM_ISBC(dip)); 726 727 PM_LOCK_DIP(dip); 728 scanp = PM_GET_PM_SCAN(dip); 729 if (!scanp) { 730 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): create scan data\n", 731 pmf, PM_DEVICE(dip))) 732 scanp = kmem_zalloc(sizeof (pm_scan_t), KM_SLEEP); 733 DEVI(dip)->devi_pm_scan = scanp; 734 } else if (scanp->ps_scan_flags & PM_SCAN_STOP) { 735 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): " 736 "clear PM_SCAN_STOP flag\n", pmf, PM_DEVICE(dip))) 737 scanp->ps_scan_flags &= ~PM_SCAN_STOP; 738 } 739 PM_UNLOCK_DIP(dip); 740 } 741 742 /* 743 * pm_scan_fini - remove pm scan data structure when stopping pm on the device 744 */ 745 void 746 pm_scan_fini(dev_info_t *dip) 747 { 748 PMD_FUNC(pmf, "scan_fini") 749 pm_scan_t *scanp; 750 751 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 752 ASSERT(!PM_ISBC(dip)); 753 PM_LOCK_DIP(dip); 754 scanp = PM_GET_PM_SCAN(dip); 755 if (!scanp) { 756 PM_UNLOCK_DIP(dip); 757 return; 758 } 759 760 ASSERT(!scanp->ps_scan_id && !(scanp->ps_scan_flags & 761 (PM_SCANNING | PM_SCAN_DISPATCHED | PM_SCAN_AGAIN))); 762 763 kmem_free(scanp, sizeof (pm_scan_t)); 764 DEVI(dip)->devi_pm_scan = NULL; 765 PM_UNLOCK_DIP(dip); 766 } 767 768 /* 769 * Given a pointer to a component struct, return the current power level 770 * (struct contains index unless it is a continuous level). 771 * Located here in hopes of getting both this and dev_is_needed into the 772 * cache together 773 */ 774 static int 775 cur_power(pm_component_t *cp) 776 { 777 if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN) 778 return (cp->pmc_cur_pwr); 779 780 return (cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]); 781 } 782 783 static char * 784 pm_decode_direction(int direction) 785 { 786 switch (direction) { 787 case PM_LEVEL_UPONLY: 788 return ("up"); 789 790 case PM_LEVEL_EXACT: 791 return ("exact"); 792 793 case PM_LEVEL_DOWNONLY: 794 return ("down"); 795 796 default: 797 return ("INVALID DIRECTION"); 798 } 799 } 800 801 char * 802 pm_decode_op(pm_bus_power_op_t op) 803 { 804 switch (op) { 805 case BUS_POWER_CHILD_PWRCHG: 806 return ("CHILD_PWRCHG"); 807 case BUS_POWER_NEXUS_PWRUP: 808 return ("NEXUS_PWRUP"); 809 case BUS_POWER_PRE_NOTIFICATION: 810 return ("PRE_NOTIFICATION"); 811 case BUS_POWER_POST_NOTIFICATION: 812 return ("POST_NOTIFICATION"); 813 case BUS_POWER_HAS_CHANGED: 814 return ("HAS_CHANGED"); 815 case BUS_POWER_NOINVOL: 816 return ("NOINVOL"); 817 default: 818 return ("UNKNOWN OP"); 819 } 820 } 821 822 /* 823 * Returns true if level is a possible (valid) power level for component 824 */ 825 int 826 e_pm_valid_power(dev_info_t *dip, int cmpt, int level) 827 { 828 PMD_FUNC(pmf, "e_pm_valid_power") 829 pm_component_t *cp = PM_CP(dip, cmpt); 830 int i; 831 int *ip = cp->pmc_comp.pmc_lvals; 832 int limit = cp->pmc_comp.pmc_numlevels; 833 834 if (level < 0) 835 return (0); 836 for (i = 0; i < limit; i++) { 837 if (level == *ip++) 838 return (1); 839 } 840 #ifdef DEBUG 841 if (pm_debug & PMD_FAIL) { 842 ip = cp->pmc_comp.pmc_lvals; 843 844 for (i = 0; i < limit; i++) 845 PMD(PMD_FAIL, ("%s: index=%d, level=%d\n", 846 pmf, i, *ip++)) 847 } 848 #endif 849 return (0); 850 } 851 852 static int pm_start(dev_info_t *dip); 853 /* 854 * Returns true if device is pm'd (after calling pm_start if need be) 855 */ 856 int 857 e_pm_valid_info(dev_info_t *dip, pm_info_t **infop) 858 { 859 pm_info_t *info; 860 861 /* 862 * Check if the device is power managed if not. 863 * To make the common case (device is power managed already) 864 * fast, we check without the lock. If device is not already 865 * power managed, then we take the lock and the long route through 866 * go get it managed. Devices never go unmanaged until they 867 * detach. 868 */ 869 info = PM_GET_PM_INFO(dip); 870 if (!info) { 871 if (!DEVI_IS_ATTACHING(dip)) { 872 return (0); 873 } 874 if (pm_start(dip) != DDI_SUCCESS) { 875 return (0); 876 } 877 info = PM_GET_PM_INFO(dip); 878 } 879 ASSERT(info); 880 if (infop != NULL) 881 *infop = info; 882 return (1); 883 } 884 885 int 886 e_pm_valid_comp(dev_info_t *dip, int cmpt, pm_component_t **cpp) 887 { 888 if (cmpt >= 0 && cmpt < PM_NUMCMPTS(dip)) { 889 if (cpp != NULL) 890 *cpp = PM_CP(dip, cmpt); 891 return (1); 892 } else { 893 return (0); 894 } 895 } 896 897 /* 898 * Internal guts of ddi_dev_is_needed and pm_raise/lower_power 899 */ 900 static int 901 dev_is_needed(dev_info_t *dip, int cmpt, int level, int direction) 902 { 903 PMD_FUNC(pmf, "din") 904 pm_component_t *cp; 905 char *pathbuf; 906 int result; 907 908 ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY); 909 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp) || 910 !e_pm_valid_power(dip, cmpt, level)) 911 return (DDI_FAILURE); 912 913 PMD(PMD_DIN, ("%s: %s@%s(%s#%d) cmpt=%d, dir=%s, new=%d, cur=%d\n", 914 pmf, PM_DEVICE(dip), cmpt, pm_decode_direction(direction), 915 level, cur_power(cp))) 916 917 if (pm_set_power(dip, cmpt, level, direction, 918 PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) { 919 if (direction == PM_LEVEL_UPONLY) { 920 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 921 (void) ddi_pathname(dip, pathbuf); 922 cmn_err(CE_WARN, "Device %s failed to power up.", 923 pathbuf); 924 kmem_free(pathbuf, MAXPATHLEN); 925 } 926 PMD(PMD_DIN | PMD_FAIL, ("%s: %s@%s(%s#%d) [%d] %s->%d failed, " 927 "errno %d\n", pmf, PM_DEVICE(dip), cmpt, 928 pm_decode_direction(direction), level, result)) 929 return (DDI_FAILURE); 930 } 931 932 PMD(PMD_RESCAN | PMD_DIN, ("%s: pm_rescan %s@%s(%s#%d)\n", pmf, 933 PM_DEVICE(dip))) 934 pm_rescan(dip); 935 return (DDI_SUCCESS); 936 } 937 938 /* 939 * We can get multiple pm_rescan() threads, if one of them discovers 940 * that no scan is running at the moment, it kicks it into action. 941 * Otherwise, it tells the current scanning thread to scan again when 942 * it is done by asserting the PM_SCAN_AGAIN flag. The PM_SCANNING and 943 * PM_SCAN_AGAIN flags are used to regulate scan, to make sure only one 944 * thread at a time runs the pm_scan_dev() code. 945 */ 946 void 947 pm_rescan(void *arg) 948 { 949 PMD_FUNC(pmf, "rescan") 950 dev_info_t *dip = (dev_info_t *)arg; 951 pm_info_t *info; 952 pm_scan_t *scanp; 953 timeout_id_t scanid; 954 955 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 956 PM_LOCK_DIP(dip); 957 info = PM_GET_PM_INFO(dip); 958 scanp = PM_GET_PM_SCAN(dip); 959 if (pm_scans_disabled || !PM_SCANABLE(dip) || !info || !scanp || 960 (scanp->ps_scan_flags & PM_SCAN_STOP)) { 961 PM_UNLOCK_DIP(dip); 962 return; 963 } 964 if (scanp->ps_scan_flags & PM_SCANNING) { 965 scanp->ps_scan_flags |= PM_SCAN_AGAIN; 966 PM_UNLOCK_DIP(dip); 967 return; 968 } else if (scanp->ps_scan_id) { 969 scanid = scanp->ps_scan_id; 970 scanp->ps_scan_id = 0; 971 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): cancel timeout scanid %lx\n", 972 pmf, PM_DEVICE(dip), (ulong_t)scanid)) 973 PM_UNLOCK_DIP(dip); 974 (void) untimeout(scanid); 975 PM_LOCK_DIP(dip); 976 } 977 978 /* 979 * Dispatching pm_scan during attach time is risky due to the fact that 980 * attach might soon fail and dip dissolved, and panic may happen while 981 * attempting to stop scan. So schedule a pm_rescan instead. 982 * (Note that if either of the first two terms are true, taskq_dispatch 983 * will not be invoked). 984 * 985 * Multiple pm_scan dispatching is unecessary and costly to keep track 986 * of. The PM_SCAN_DISPATCHED flag is used between pm_rescan and pm_scan 987 * to regulate the dispatching. 988 * 989 * Scan is stopped before the device is detached (in pm_detaching()) 990 * but it may get re-started during the post_detach processing if the 991 * driver fails to detach. 992 */ 993 if (DEVI_IS_ATTACHING(dip) || 994 (scanp->ps_scan_flags & PM_SCAN_DISPATCHED) || 995 !taskq_dispatch(system_taskq, pm_scan, (void *)dip, TQ_NOSLEEP)) { 996 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): attaching, pm_scan already " 997 "dispatched or dispatching failed\n", pmf, PM_DEVICE(dip))) 998 if (scanp->ps_scan_id) { 999 scanid = scanp->ps_scan_id; 1000 scanp->ps_scan_id = 0; 1001 PM_UNLOCK_DIP(dip); 1002 (void) untimeout(scanid); 1003 PM_LOCK_DIP(dip); 1004 if (scanp->ps_scan_id) { 1005 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): a competing " 1006 "thread scheduled pm_rescan, scanid %lx\n", 1007 pmf, PM_DEVICE(dip), 1008 (ulong_t)scanp->ps_scan_id)) 1009 PM_UNLOCK_DIP(dip); 1010 return; 1011 } 1012 } 1013 scanp->ps_scan_id = timeout(pm_rescan, (void *)dip, 1014 (scanp->ps_idle_down ? pm_id_ticks : 1015 (PM_MIN_SCAN(dip) * hz))); 1016 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): scheduled next pm_rescan, " 1017 "scanid %lx\n", pmf, PM_DEVICE(dip), 1018 (ulong_t)scanp->ps_scan_id)) 1019 } else { 1020 PMD(PMD_SCAN, ("%s: dispatched pm_scan for %s@%s(%s#%d)\n", 1021 pmf, PM_DEVICE(dip))) 1022 scanp->ps_scan_flags |= PM_SCAN_DISPATCHED; 1023 } 1024 PM_UNLOCK_DIP(dip); 1025 } 1026 1027 void 1028 pm_scan(void *arg) 1029 { 1030 PMD_FUNC(pmf, "scan") 1031 dev_info_t *dip = (dev_info_t *)arg; 1032 pm_scan_t *scanp; 1033 time_t nextscan; 1034 1035 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 1036 1037 PM_LOCK_DIP(dip); 1038 scanp = PM_GET_PM_SCAN(dip); 1039 ASSERT(scanp && PM_GET_PM_INFO(dip)); 1040 1041 if (pm_scans_disabled || !PM_SCANABLE(dip) || 1042 (scanp->ps_scan_flags & PM_SCAN_STOP)) { 1043 scanp->ps_scan_flags &= ~(PM_SCAN_AGAIN | PM_SCAN_DISPATCHED); 1044 PM_UNLOCK_DIP(dip); 1045 return; 1046 } 1047 1048 if (scanp->ps_idle_down) { 1049 /* 1050 * make sure we remember idledown was in affect until 1051 * we've completed the scan 1052 */ 1053 PMID_SET_SCANS(scanp->ps_idle_down) 1054 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown starts " 1055 "(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down)) 1056 } 1057 1058 /* possible having two threads running pm_scan() */ 1059 if (scanp->ps_scan_flags & PM_SCANNING) { 1060 scanp->ps_scan_flags |= PM_SCAN_AGAIN; 1061 PMD(PMD_SCAN, ("%s: scanning, will scan %s@%s(%s#%d) again\n", 1062 pmf, PM_DEVICE(dip))) 1063 scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED; 1064 PM_UNLOCK_DIP(dip); 1065 return; 1066 } 1067 1068 scanp->ps_scan_flags |= PM_SCANNING; 1069 scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED; 1070 do { 1071 scanp->ps_scan_flags &= ~PM_SCAN_AGAIN; 1072 PM_UNLOCK_DIP(dip); 1073 nextscan = pm_scan_dev(dip); 1074 PM_LOCK_DIP(dip); 1075 } while (scanp->ps_scan_flags & PM_SCAN_AGAIN); 1076 1077 ASSERT(scanp->ps_scan_flags & PM_SCANNING); 1078 scanp->ps_scan_flags &= ~PM_SCANNING; 1079 1080 if (scanp->ps_idle_down) { 1081 scanp->ps_idle_down &= ~PMID_SCANS; 1082 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown ends " 1083 "(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down)) 1084 } 1085 1086 /* schedule for next idle check */ 1087 if (nextscan != LONG_MAX) { 1088 if (nextscan > (LONG_MAX / hz)) 1089 nextscan = (LONG_MAX - 1) / hz; 1090 if (scanp->ps_scan_id) { 1091 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): while scanning " 1092 "another rescan scheduled scanid(%lx)\n", pmf, 1093 PM_DEVICE(dip), (ulong_t)scanp->ps_scan_id)) 1094 PM_UNLOCK_DIP(dip); 1095 return; 1096 } else if (!(scanp->ps_scan_flags & PM_SCAN_STOP)) { 1097 scanp->ps_scan_id = timeout(pm_rescan, (void *)dip, 1098 (clock_t)(nextscan * hz)); 1099 PMD(PMD_SCAN, ("%s: nextscan for %s@%s(%s#%d) in " 1100 "%lx sec, scanid(%lx) \n", pmf, PM_DEVICE(dip), 1101 (ulong_t)nextscan, (ulong_t)scanp->ps_scan_id)) 1102 } 1103 } 1104 PM_UNLOCK_DIP(dip); 1105 } 1106 1107 void 1108 pm_get_timestamps(dev_info_t *dip, time_t *valuep) 1109 { 1110 int components = PM_NUMCMPTS(dip); 1111 int i; 1112 1113 ASSERT(components > 0); 1114 PM_LOCK_BUSY(dip); /* so we get a consistent view */ 1115 for (i = 0; i < components; i++) { 1116 valuep[i] = PM_CP(dip, i)->pmc_timestamp; 1117 } 1118 PM_UNLOCK_BUSY(dip); 1119 } 1120 1121 /* 1122 * Returns true if device needs to be kept up because it exported the 1123 * "no-involuntary-power-cycles" property or we're pretending it did (console 1124 * fb case) or it is an ancestor of such a device and has used up the "one 1125 * free cycle" allowed when all such leaf nodes have voluntarily powered down 1126 * upon detach 1127 */ 1128 int 1129 pm_noinvol(dev_info_t *dip) 1130 { 1131 PMD_FUNC(pmf, "noinvol") 1132 1133 /* 1134 * This doesn't change over the life of a driver, so no locking needed 1135 */ 1136 if (PM_IS_CFB(dip)) { 1137 PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB %s@%s(%s#%d)\n", 1138 pmf, PM_DEVICE(dip))) 1139 return (1); 1140 } 1141 /* 1142 * Not an issue if no such kids 1143 */ 1144 if (DEVI(dip)->devi_pm_noinvolpm == 0) { 1145 #ifdef DEBUG 1146 if (DEVI(dip)->devi_pm_volpmd != 0) { 1147 dev_info_t *pdip = dip; 1148 do { 1149 PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d) noinvol %d " 1150 "volpmd %d\n", pmf, PM_DEVICE(pdip), 1151 DEVI(pdip)->devi_pm_noinvolpm, 1152 DEVI(pdip)->devi_pm_volpmd)) 1153 pdip = ddi_get_parent(pdip); 1154 } while (pdip); 1155 } 1156 #endif 1157 ASSERT(DEVI(dip)->devi_pm_volpmd == 0); 1158 return (0); 1159 } 1160 1161 /* 1162 * Since we now maintain the counts correct at every node, we no longer 1163 * need to look up the tree. An ancestor cannot use up the free cycle 1164 * without the children getting their counts adjusted. 1165 */ 1166 1167 #ifdef DEBUG 1168 if (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd) 1169 PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s@%s(%s#%d)\n", pmf, 1170 DEVI(dip)->devi_pm_noinvolpm, DEVI(dip)->devi_pm_volpmd, 1171 PM_DEVICE(dip))) 1172 #endif 1173 return (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd); 1174 } 1175 1176 static int cur_threshold(dev_info_t *, int); 1177 static int pm_next_lower_power(pm_component_t *, int); 1178 1179 /* 1180 * This function performs the actual scanning of the device. 1181 * It attempts to power off the indicated device's components if they have 1182 * been idle and other restrictions are met. 1183 * pm_scan_dev calculates and returns when the next scan should happen for 1184 * this device. 1185 */ 1186 time_t 1187 pm_scan_dev(dev_info_t *dip) 1188 { 1189 PMD_FUNC(pmf, "scan_dev") 1190 pm_scan_t *scanp; 1191 time_t *timestamp, idletime, now, thresh; 1192 time_t timeleft = 0; 1193 #ifdef PMDDEBUG 1194 int curpwr; 1195 #endif 1196 int i, nxtpwr, pwrndx, unused; 1197 size_t size; 1198 pm_component_t *cp; 1199 dev_info_t *pdip = ddi_get_parent(dip); 1200 int circ; 1201 clock_t min_scan = pm_default_min_scan; 1202 1203 /* 1204 * skip attaching device 1205 */ 1206 if (DEVI_IS_ATTACHING(dip)) { 1207 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) is attaching, timeleft(%lx)\n", 1208 pmf, PM_DEVICE(dip), min_scan)) 1209 return (min_scan); 1210 } 1211 1212 PM_LOCK_DIP(dip); 1213 scanp = PM_GET_PM_SCAN(dip); 1214 min_scan = PM_MIN_SCAN(dip); 1215 ASSERT(scanp && PM_GET_PM_INFO(dip)); 1216 1217 PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1218 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): kuc is %d\n", pmf, PM_DEVICE(dip), 1219 PM_KUC(dip))) 1220 1221 /* no scan under the following conditions */ 1222 if (pm_scans_disabled || !PM_SCANABLE(dip) || 1223 (scanp->ps_scan_flags & PM_SCAN_STOP) || 1224 (PM_KUC(dip) != 0) || 1225 PM_ISDIRECT(dip) || pm_noinvol(dip)) { 1226 PM_UNLOCK_DIP(dip); 1227 PMD(PMD_SCAN, ("%s: [END, %s@%s(%s#%d)] no scan, " 1228 "scan_disabled(%d), apm_enabled(%d), cpupm(%d), " 1229 "kuc(%d), %s directpm, %s pm_noinvol\n", 1230 pmf, PM_DEVICE(dip), pm_scans_disabled, autopm_enabled, 1231 cpupm, PM_KUC(dip), 1232 PM_ISDIRECT(dip) ? "is" : "is not", 1233 pm_noinvol(dip) ? "is" : "is not")) 1234 return (LONG_MAX); 1235 } 1236 PM_UNLOCK_DIP(dip); 1237 1238 if (!ndi_devi_tryenter(pdip, &circ)) { 1239 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) can't hold pdip", 1240 pmf, PM_DEVICE(pdip))) 1241 return ((time_t)1); 1242 } 1243 now = gethrestime_sec(); 1244 size = PM_NUMCMPTS(dip) * sizeof (time_t); 1245 timestamp = kmem_alloc(size, KM_SLEEP); 1246 pm_get_timestamps(dip, timestamp); 1247 1248 /* 1249 * Since we removed support for backwards compatible devices, 1250 * (see big comment at top of file) 1251 * it is no longer required to deal with component 0 last. 1252 */ 1253 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 1254 /* 1255 * If already off (an optimization, perhaps) 1256 */ 1257 cp = PM_CP(dip, i); 1258 pwrndx = cp->pmc_cur_pwr; 1259 #ifdef PMDDEBUG 1260 curpwr = (pwrndx == PM_LEVEL_UNKNOWN) ? 1261 PM_LEVEL_UNKNOWN : 1262 cp->pmc_comp.pmc_lvals[pwrndx]; 1263 #endif 1264 1265 if (pwrndx == 0) { 1266 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d off or " 1267 "lowest\n", pmf, PM_DEVICE(dip), i)) 1268 /* skip device if off or at its lowest */ 1269 continue; 1270 } 1271 1272 thresh = cur_threshold(dip, i); /* comp i threshold */ 1273 if ((timestamp[i] == 0) || (cp->pmc_busycount > 0)) { 1274 /* were busy or newly became busy by another thread */ 1275 if (timeleft == 0) 1276 timeleft = max(thresh, min_scan); 1277 else 1278 timeleft = min( 1279 timeleft, max(thresh, min_scan)); 1280 continue; 1281 } 1282 1283 idletime = now - timestamp[i]; /* idle time */ 1284 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d idle time %lx\n", 1285 pmf, PM_DEVICE(dip), i, idletime)) 1286 if (idletime >= thresh || PM_IS_PID(dip)) { 1287 nxtpwr = pm_next_lower_power(cp, pwrndx); 1288 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, %d->%d\n", 1289 pmf, PM_DEVICE(dip), i, curpwr, nxtpwr)) 1290 if (pm_set_power(dip, i, nxtpwr, PM_LEVEL_DOWNONLY, 1291 PM_CANBLOCK_FAIL, 1, &unused) != DDI_SUCCESS && 1292 PM_CURPOWER(dip, i) != nxtpwr) { 1293 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1294 "%d->%d Failed\n", pmf, PM_DEVICE(dip), 1295 i, curpwr, nxtpwr)) 1296 timeleft = min_scan; 1297 continue; 1298 } else { 1299 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1300 "%d->%d, GOOD curpwr %d\n", pmf, 1301 PM_DEVICE(dip), i, curpwr, nxtpwr, 1302 cur_power(cp))) 1303 1304 if (nxtpwr == 0) /* component went off */ 1305 continue; 1306 1307 /* 1308 * scan to next lower level 1309 */ 1310 if (timeleft == 0) 1311 timeleft = max( 1312 1, cur_threshold(dip, i)); 1313 else 1314 timeleft = min(timeleft, 1315 max(1, cur_threshold(dip, i))); 1316 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1317 "timeleft(%lx)\n", pmf, PM_DEVICE(dip), 1318 i, timeleft)) 1319 } 1320 } else { /* comp not idle long enough */ 1321 if (timeleft == 0) 1322 timeleft = thresh - idletime; 1323 else 1324 timeleft = min(timeleft, (thresh - idletime)); 1325 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, timeleft=" 1326 "%lx\n", pmf, PM_DEVICE(dip), i, timeleft)) 1327 } 1328 } 1329 ndi_devi_exit(pdip, circ); 1330 kmem_free(timestamp, size); 1331 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] timeleft(%lx)\n", pmf, 1332 PM_DEVICE(dip), timeleft)) 1333 1334 /* 1335 * if components are already at lowest level, timeleft is left 0 1336 */ 1337 return ((timeleft == 0) ? LONG_MAX : timeleft); 1338 } 1339 1340 /* 1341 * pm_scan_stop - cancel scheduled pm_rescan, 1342 * wait for termination of dispatched pm_scan thread 1343 * and active pm_scan_dev thread. 1344 */ 1345 void 1346 pm_scan_stop(dev_info_t *dip) 1347 { 1348 PMD_FUNC(pmf, "scan_stop") 1349 pm_scan_t *scanp; 1350 timeout_id_t scanid; 1351 1352 PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1353 PM_LOCK_DIP(dip); 1354 scanp = PM_GET_PM_SCAN(dip); 1355 if (!scanp) { 1356 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] scan not initialized\n", 1357 pmf, PM_DEVICE(dip))) 1358 PM_UNLOCK_DIP(dip); 1359 return; 1360 } 1361 scanp->ps_scan_flags |= PM_SCAN_STOP; 1362 1363 /* cancel scheduled scan taskq */ 1364 while (scanp->ps_scan_id) { 1365 scanid = scanp->ps_scan_id; 1366 scanp->ps_scan_id = 0; 1367 PM_UNLOCK_DIP(dip); 1368 (void) untimeout(scanid); 1369 PM_LOCK_DIP(dip); 1370 } 1371 1372 while (scanp->ps_scan_flags & (PM_SCANNING | PM_SCAN_DISPATCHED)) { 1373 PM_UNLOCK_DIP(dip); 1374 delay(1); 1375 PM_LOCK_DIP(dip); 1376 } 1377 PM_UNLOCK_DIP(dip); 1378 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1379 } 1380 1381 int 1382 pm_scan_stop_walk(dev_info_t *dip, void *arg) 1383 { 1384 _NOTE(ARGUNUSED(arg)) 1385 1386 if (!PM_GET_PM_SCAN(dip)) 1387 return (DDI_WALK_CONTINUE); 1388 ASSERT(!PM_ISBC(dip)); 1389 pm_scan_stop(dip); 1390 return (DDI_WALK_CONTINUE); 1391 } 1392 1393 /* 1394 * Converts a power level value to its index 1395 */ 1396 static int 1397 power_val_to_index(pm_component_t *cp, int val) 1398 { 1399 int limit, i, *ip; 1400 1401 ASSERT(val != PM_LEVEL_UPONLY && val != PM_LEVEL_DOWNONLY && 1402 val != PM_LEVEL_EXACT); 1403 /* convert power value into index (i) */ 1404 limit = cp->pmc_comp.pmc_numlevels; 1405 ip = cp->pmc_comp.pmc_lvals; 1406 for (i = 0; i < limit; i++) 1407 if (val == *ip++) 1408 return (i); 1409 return (-1); 1410 } 1411 1412 /* 1413 * Converts a numeric power level to a printable string 1414 */ 1415 static char * 1416 power_val_to_string(pm_component_t *cp, int val) 1417 { 1418 int index; 1419 1420 if (val == PM_LEVEL_UPONLY) 1421 return ("<UPONLY>"); 1422 1423 if (val == PM_LEVEL_UNKNOWN || 1424 (index = power_val_to_index(cp, val)) == -1) 1425 return ("<LEVEL_UNKNOWN>"); 1426 1427 return (cp->pmc_comp.pmc_lnames[index]); 1428 } 1429 1430 /* 1431 * Return true if this node has been claimed by a ppm. 1432 */ 1433 static int 1434 pm_ppm_claimed(dev_info_t *dip) 1435 { 1436 return (PPM(dip) != NULL); 1437 } 1438 1439 /* 1440 * A node which was voluntarily power managed has just used up its "free cycle" 1441 * and need is volpmd field cleared, and the same done to all its descendents 1442 */ 1443 static void 1444 pm_clear_volpm_dip(dev_info_t *dip) 1445 { 1446 PMD_FUNC(pmf, "clear_volpm_dip") 1447 1448 if (dip == NULL) 1449 return; 1450 PMD(PMD_NOINVOL, ("%s: clear volpm from %s@%s(%s#%d)\n", pmf, 1451 PM_DEVICE(dip))) 1452 DEVI(dip)->devi_pm_volpmd = 0; 1453 for (dip = ddi_get_child(dip); dip; dip = ddi_get_next_sibling(dip)) { 1454 pm_clear_volpm_dip(dip); 1455 } 1456 } 1457 1458 /* 1459 * A node which was voluntarily power managed has used up the "free cycles" 1460 * for the subtree that it is the root of. Scan through the list of detached 1461 * nodes and adjust the counts of any that are descendents of the node. 1462 */ 1463 static void 1464 pm_clear_volpm_list(dev_info_t *dip) 1465 { 1466 PMD_FUNC(pmf, "clear_volpm_list") 1467 char *pathbuf; 1468 size_t len; 1469 pm_noinvol_t *ip; 1470 1471 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1472 (void) ddi_pathname(dip, pathbuf); 1473 len = strlen(pathbuf); 1474 PMD(PMD_NOINVOL, ("%s: clear volpm list %s\n", pmf, pathbuf)) 1475 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 1476 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 1477 PMD(PMD_NOINVOL, ("%s: clear volpm: ni_path %s\n", pmf, 1478 ip->ni_path)) 1479 if (strncmp(pathbuf, ip->ni_path, len) == 0 && 1480 ip->ni_path[len] == '/') { 1481 PMD(PMD_NOINVOL, ("%s: clear volpm: %s\n", pmf, 1482 ip->ni_path)) 1483 ip->ni_volpmd = 0; 1484 ip->ni_wasvolpmd = 0; 1485 } 1486 } 1487 kmem_free(pathbuf, MAXPATHLEN); 1488 rw_exit(&pm_noinvol_rwlock); 1489 } 1490 1491 /* 1492 * Powers a device, suspending or resuming the driver if it is a backward 1493 * compatible device, calling into ppm to change power level. 1494 * Called with the component's power lock held. 1495 */ 1496 static int 1497 power_dev(dev_info_t *dip, int comp, int level, int old_level, 1498 pm_canblock_t canblock, pm_ppm_devlist_t **devlist) 1499 { 1500 PMD_FUNC(pmf, "power_dev") 1501 power_req_t power_req; 1502 int power_op_ret; /* DDI_SUCCESS or DDI_FAILURE */ 1503 int resume_needed = 0; 1504 int suspended = 0; 1505 int result; 1506 #ifdef PMDDEBUG 1507 struct pm_component *cp = PM_CP(dip, comp); 1508 #endif 1509 int bc = PM_ISBC(dip); 1510 int pm_all_components_off(dev_info_t *); 1511 int clearvolpmd = 0; 1512 char pathbuf[MAXNAMELEN]; 1513 #ifdef PMDDEBUG 1514 char *ppmname, *ppmaddr; 1515 #endif 1516 /* 1517 * If this is comp 0 of a backwards compat device and we are 1518 * going to take the power away, we need to detach it with 1519 * DDI_PM_SUSPEND command. 1520 */ 1521 if (bc && comp == 0 && POWERING_OFF(old_level, level)) { 1522 if (devi_detach(dip, DDI_PM_SUSPEND) != DDI_SUCCESS) { 1523 /* We could not suspend before turning cmpt zero off */ 1524 PMD(PMD_ERROR, ("%s: could not suspend %s@%s(%s#%d)\n", 1525 pmf, PM_DEVICE(dip))) 1526 return (DDI_FAILURE); 1527 } else { 1528 DEVI(dip)->devi_pm_flags |= PMC_SUSPENDED; 1529 suspended++; 1530 } 1531 } 1532 power_req.request_type = PMR_PPM_SET_POWER; 1533 power_req.req.ppm_set_power_req.who = dip; 1534 power_req.req.ppm_set_power_req.cmpt = comp; 1535 power_req.req.ppm_set_power_req.old_level = old_level; 1536 power_req.req.ppm_set_power_req.new_level = level; 1537 power_req.req.ppm_set_power_req.canblock = canblock; 1538 power_req.req.ppm_set_power_req.cookie = NULL; 1539 #ifdef PMDDEBUG 1540 if (pm_ppm_claimed(dip)) { 1541 ppmname = PM_NAME(PPM(dip)); 1542 ppmaddr = PM_ADDR(PPM(dip)); 1543 1544 } else { 1545 ppmname = "noppm"; 1546 ppmaddr = "0"; 1547 } 1548 PMD(PMD_PPM, ("%s: %s@%s(%s#%d):%s[%d] %s (%d) -> %s (%d) via %s@%s\n", 1549 pmf, PM_DEVICE(dip), cp->pmc_comp.pmc_name, comp, 1550 power_val_to_string(cp, old_level), old_level, 1551 power_val_to_string(cp, level), level, ppmname, ppmaddr)) 1552 #endif 1553 /* 1554 * If non-bc noinvolpm device is turning first comp on, or noinvolpm 1555 * bc device comp 0 is powering on, then we count it as a power cycle 1556 * against its voluntary count. 1557 */ 1558 if (DEVI(dip)->devi_pm_volpmd && 1559 (!bc && pm_all_components_off(dip) && level != 0) || 1560 (bc && comp == 0 && POWERING_ON(old_level, level))) 1561 clearvolpmd = 1; 1562 if ((power_op_ret = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 1563 &power_req, &result)) == DDI_SUCCESS) { 1564 /* 1565 * Now do involuntary pm accounting; If we've just cycled power 1566 * on a voluntarily pm'd node, and by inference on its entire 1567 * subtree, we need to set the subtree (including those nodes 1568 * already detached) volpmd counts to 0, and subtract out the 1569 * value of the current node's volpmd count from the ancestors 1570 */ 1571 if (clearvolpmd) { 1572 int volpmd = DEVI(dip)->devi_pm_volpmd; 1573 pm_clear_volpm_dip(dip); 1574 pm_clear_volpm_list(dip); 1575 if (volpmd) { 1576 (void) ddi_pathname(dip, pathbuf); 1577 (void) pm_noinvol_update(PM_BP_NOINVOL_POWER, 1578 volpmd, 0, pathbuf, dip); 1579 } 1580 } 1581 } else { 1582 PMD(PMD_FAIL, ("%s: can't set comp %d (%s) of %s@%s(%s#%d) " 1583 "to level %d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name, 1584 PM_DEVICE(dip), level, power_val_to_string(cp, level))) 1585 } 1586 /* 1587 * If some other devices were also powered up (e.g. other cpus in 1588 * the same domain) return a pointer to that list 1589 */ 1590 if (devlist) { 1591 *devlist = (pm_ppm_devlist_t *) 1592 power_req.req.ppm_set_power_req.cookie; 1593 } 1594 /* 1595 * We will have to resume the device if the device is backwards compat 1596 * device and either of the following is true: 1597 * -This is comp 0 and we have successfully powered it up 1598 * -This is comp 0 and we have failed to power it down. Resume is 1599 * needed because we have suspended it above 1600 */ 1601 1602 if (bc && comp == 0) { 1603 ASSERT(PM_ISDIRECT(dip) || DEVI_IS_DETACHING(dip)); 1604 if (power_op_ret == DDI_SUCCESS) { 1605 if (POWERING_ON(old_level, level)) { 1606 /* 1607 * It must be either suspended or resumed 1608 * via pm_power_has_changed path 1609 */ 1610 ASSERT((DEVI(dip)->devi_pm_flags & 1611 PMC_SUSPENDED) || 1612 (PM_CP(dip, comp)->pmc_flags & 1613 PM_PHC_WHILE_SET_POWER)); 1614 1615 resume_needed = suspended; 1616 } 1617 } else { 1618 if (POWERING_OFF(old_level, level)) { 1619 /* 1620 * It must be either suspended or resumed 1621 * via pm_power_has_changed path 1622 */ 1623 ASSERT((DEVI(dip)->devi_pm_flags & 1624 PMC_SUSPENDED) || 1625 (PM_CP(dip, comp)->pmc_flags & 1626 PM_PHC_WHILE_SET_POWER)); 1627 1628 resume_needed = suspended; 1629 } 1630 } 1631 } 1632 if (resume_needed) { 1633 ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED); 1634 /* ppm is not interested in DDI_PM_RESUME */ 1635 if ((power_op_ret = devi_attach(dip, DDI_PM_RESUME)) == 1636 DDI_SUCCESS) { 1637 DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED; 1638 } else 1639 cmn_err(CE_WARN, "!pm: Can't resume %s@%s(%s#%d)", 1640 PM_DEVICE(dip)); 1641 } 1642 return (power_op_ret); 1643 } 1644 1645 /* 1646 * Return true if we are the owner or a borrower of the devi lock. See 1647 * pm_lock_power_single() about borrowing the lock. 1648 */ 1649 static int 1650 pm_devi_lock_held(dev_info_t *dip) 1651 { 1652 lock_loan_t *cur; 1653 1654 if (DEVI_BUSY_OWNED(dip)) 1655 return (1); 1656 1657 /* return false if no locks borrowed */ 1658 if (lock_loan_head.pmlk_next == NULL) 1659 return (0); 1660 1661 mutex_enter(&pm_loan_lock); 1662 /* see if our thread is registered as a lock borrower. */ 1663 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 1664 if (cur->pmlk_borrower == curthread) 1665 break; 1666 mutex_exit(&pm_loan_lock); 1667 1668 return (cur != NULL && cur->pmlk_lender == DEVI(dip)->devi_busy_thread); 1669 } 1670 1671 /* 1672 * pm_set_power: adjusts power level of device. Assumes device is power 1673 * manageable & component exists. 1674 * 1675 * Cases which require us to bring up devices we keep up ("wekeepups") for 1676 * backwards compatible devices: 1677 * component 0 is off and we're bringing it up from 0 1678 * bring up wekeepup first 1679 * and recursively when component 0 is off and we bring some other 1680 * component up from 0 1681 * For devices which are not backward compatible, our dependency notion is much 1682 * simpler. Unless all components are off, then wekeeps must be on. 1683 * We don't treat component 0 differently. 1684 * Canblock tells how to deal with a direct pm'd device. 1685 * Scan arg tells us if we were called from scan, in which case we don't need 1686 * to go back to the root node and walk down to change power. 1687 */ 1688 int 1689 pm_set_power(dev_info_t *dip, int comp, int level, int direction, 1690 pm_canblock_t canblock, int scan, int *retp) 1691 { 1692 PMD_FUNC(pmf, "set_power") 1693 char *pathbuf; 1694 pm_bp_child_pwrchg_t bpc; 1695 pm_sp_misc_t pspm; 1696 int ret = DDI_SUCCESS; 1697 int unused = DDI_SUCCESS; 1698 dev_info_t *pdip = ddi_get_parent(dip); 1699 1700 #ifdef DEBUG 1701 int diverted = 0; 1702 1703 /* 1704 * This prevents operations on the console from calling prom_printf and 1705 * either deadlocking or bringing up the console because of debug 1706 * output 1707 */ 1708 if (dip == cfb_dip) { 1709 diverted++; 1710 mutex_enter(&pm_debug_lock); 1711 pm_divertdebug++; 1712 mutex_exit(&pm_debug_lock); 1713 } 1714 #endif 1715 ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY || 1716 direction == PM_LEVEL_EXACT); 1717 PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d, dir=%s, new=%d\n", 1718 pmf, PM_DEVICE(dip), comp, pm_decode_direction(direction), level)) 1719 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1720 (void) ddi_pathname(dip, pathbuf); 1721 bpc.bpc_dip = dip; 1722 bpc.bpc_path = pathbuf; 1723 bpc.bpc_comp = comp; 1724 bpc.bpc_olevel = PM_CURPOWER(dip, comp); 1725 bpc.bpc_nlevel = level; 1726 pspm.pspm_direction = direction; 1727 pspm.pspm_errnop = retp; 1728 pspm.pspm_canblock = canblock; 1729 pspm.pspm_scan = scan; 1730 bpc.bpc_private = &pspm; 1731 1732 /* 1733 * If a config operation is being done (we've locked the parent) or 1734 * we already hold the power lock (we've locked the node) 1735 * then we can operate directly on the node because we have already 1736 * brought up all the ancestors, otherwise, we have to go back to the 1737 * top of the tree. 1738 */ 1739 if (pm_devi_lock_held(pdip) || pm_devi_lock_held(dip)) 1740 ret = pm_busop_set_power(dip, NULL, BUS_POWER_CHILD_PWRCHG, 1741 (void *)&bpc, (void *)&unused); 1742 else 1743 ret = pm_busop_bus_power(ddi_root_node(), NULL, 1744 BUS_POWER_CHILD_PWRCHG, (void *)&bpc, (void *)&unused); 1745 #ifdef DEBUG 1746 if (ret != DDI_SUCCESS || *retp != DDI_SUCCESS) { 1747 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) can't change power, ret=%d, " 1748 "errno=%d\n", pmf, PM_DEVICE(dip), ret, *retp)) 1749 } 1750 if (diverted) { 1751 mutex_enter(&pm_debug_lock); 1752 pm_divertdebug--; 1753 mutex_exit(&pm_debug_lock); 1754 } 1755 #endif 1756 kmem_free(pathbuf, MAXPATHLEN); 1757 return (ret); 1758 } 1759 1760 /* 1761 * If holddip is set, then if a dip is found we return with the node held. 1762 * 1763 * This code uses the same locking scheme as e_ddi_hold_devi_by_path 1764 * (resolve_pathname), but it does not drive attach. 1765 */ 1766 dev_info_t * 1767 pm_name_to_dip(char *pathname, int holddip) 1768 { 1769 struct pathname pn; 1770 char *component; 1771 dev_info_t *parent, *child; 1772 int circ; 1773 1774 if ((pathname == NULL) || (*pathname != '/')) 1775 return (NULL); 1776 1777 /* setup pathname and allocate component */ 1778 if (pn_get(pathname, UIO_SYSSPACE, &pn)) 1779 return (NULL); 1780 component = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1781 1782 /* start at top, process '/' component */ 1783 parent = child = ddi_root_node(); 1784 ndi_hold_devi(parent); 1785 pn_skipslash(&pn); 1786 ASSERT(i_ddi_devi_attached(parent)); 1787 1788 /* process components of pathname */ 1789 while (pn_pathleft(&pn)) { 1790 (void) pn_getcomponent(&pn, component); 1791 1792 /* enter parent and search for component child */ 1793 ndi_devi_enter(parent, &circ); 1794 child = ndi_devi_findchild(parent, component); 1795 if ((child == NULL) || !i_ddi_devi_attached(child)) { 1796 child = NULL; 1797 ndi_devi_exit(parent, circ); 1798 ndi_rele_devi(parent); 1799 goto out; 1800 } 1801 1802 /* attached child found, hold child and release parent */ 1803 ndi_hold_devi(child); 1804 ndi_devi_exit(parent, circ); 1805 ndi_rele_devi(parent); 1806 1807 /* child becomes parent, and process next component */ 1808 parent = child; 1809 pn_skipslash(&pn); 1810 1811 /* loop with active ndi_devi_hold of child->parent */ 1812 } 1813 1814 out: 1815 pn_free(&pn); 1816 kmem_free(component, MAXNAMELEN); 1817 1818 /* if we are not asked to return with hold, drop current hold */ 1819 if (child && !holddip) 1820 ndi_rele_devi(child); 1821 return (child); 1822 } 1823 1824 /* 1825 * Search for a dependency and mark it unsatisfied 1826 */ 1827 static void 1828 pm_unsatisfy(char *keeper, char *kept) 1829 { 1830 PMD_FUNC(pmf, "unsatisfy") 1831 pm_pdr_t *dp; 1832 1833 PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf, keeper, kept)) 1834 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1835 if (!dp->pdr_isprop) { 1836 if (strcmp(dp->pdr_keeper, keeper) == 0 && 1837 (dp->pdr_kept_count > 0) && 1838 strcmp(dp->pdr_kept_paths[0], kept) == 0) { 1839 if (dp->pdr_satisfied) { 1840 dp->pdr_satisfied = 0; 1841 pm_unresolved_deps++; 1842 PMD(PMD_KEEPS, ("%s: clear satisfied, " 1843 "pm_unresolved_deps now %d\n", pmf, 1844 pm_unresolved_deps)) 1845 } 1846 } 1847 } 1848 } 1849 } 1850 1851 /* 1852 * Device dip is being un power managed, it keeps up count other devices. 1853 * We need to release any hold we have on the kept devices, and also 1854 * mark the dependency no longer satisfied. 1855 */ 1856 static void 1857 pm_unkeeps(int count, char *keeper, char **keptpaths, int pwr) 1858 { 1859 PMD_FUNC(pmf, "unkeeps") 1860 int i, j; 1861 dev_info_t *kept; 1862 dev_info_t *dip; 1863 struct pm_component *cp; 1864 int keeper_on = 0, circ; 1865 1866 PMD(PMD_KEEPS, ("%s: count=%d, keeper=%s, keptpaths=%p\n", pmf, count, 1867 keeper, (void *)keptpaths)) 1868 /* 1869 * Try to grab keeper. Keeper may have gone away by now, 1870 * in this case, used the passed in value pwr 1871 */ 1872 dip = pm_name_to_dip(keeper, 1); 1873 for (i = 0; i < count; i++) { 1874 /* Release power hold */ 1875 kept = pm_name_to_dip(keptpaths[i], 1); 1876 if (kept) { 1877 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)[%d]\n", pmf, 1878 PM_DEVICE(kept), i)) 1879 /* 1880 * We need to check if we skipped a bringup here 1881 * because we could have failed the bringup 1882 * (ie DIRECT PM device) and have 1883 * not increment the count. 1884 */ 1885 if ((dip != NULL) && (PM_GET_PM_INFO(dip) != NULL)) { 1886 keeper_on = 0; 1887 PM_LOCK_POWER(dip, &circ); 1888 for (j = 0; j < PM_NUMCMPTS(dip); j++) { 1889 cp = &DEVI(dip)->devi_pm_components[j]; 1890 if (cur_power(cp)) { 1891 keeper_on++; 1892 break; 1893 } 1894 } 1895 if (keeper_on && (PM_SKBU(kept) == 0)) { 1896 pm_rele_power(kept); 1897 DEVI(kept)->devi_pm_flags 1898 &= ~PMC_SKIP_BRINGUP; 1899 } 1900 PM_UNLOCK_POWER(dip, circ); 1901 } else if (pwr) { 1902 if (PM_SKBU(kept) == 0) { 1903 pm_rele_power(kept); 1904 DEVI(kept)->devi_pm_flags 1905 &= ~PMC_SKIP_BRINGUP; 1906 } 1907 } 1908 ddi_release_devi(kept); 1909 } 1910 /* 1911 * mark this dependency not satisfied 1912 */ 1913 pm_unsatisfy(keeper, keptpaths[i]); 1914 } 1915 if (dip) 1916 ddi_release_devi(dip); 1917 } 1918 1919 /* 1920 * Device kept is being un power managed, it is kept up by keeper. 1921 * We need to mark the dependency no longer satisfied. 1922 */ 1923 static void 1924 pm_unkepts(char *kept, char *keeper) 1925 { 1926 PMD_FUNC(pmf, "unkepts") 1927 PMD(PMD_KEEPS, ("%s: kept=%s, keeper=%s\n", pmf, kept, keeper)) 1928 ASSERT(keeper != NULL); 1929 /* 1930 * mark this dependency not satisfied 1931 */ 1932 pm_unsatisfy(keeper, kept); 1933 } 1934 1935 /* 1936 * Removes dependency information and hold on the kepts, if the path is a 1937 * path of a keeper. 1938 */ 1939 static void 1940 pm_free_keeper(char *path, int pwr) 1941 { 1942 pm_pdr_t *dp; 1943 int i; 1944 size_t length; 1945 1946 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1947 if (strcmp(dp->pdr_keeper, path) != 0) 1948 continue; 1949 /* 1950 * Remove all our kept holds and the dependency records, 1951 * then free up the kept lists. 1952 */ 1953 pm_unkeeps(dp->pdr_kept_count, path, dp->pdr_kept_paths, pwr); 1954 if (dp->pdr_kept_count) { 1955 for (i = 0; i < dp->pdr_kept_count; i++) { 1956 length = strlen(dp->pdr_kept_paths[i]); 1957 kmem_free(dp->pdr_kept_paths[i], length + 1); 1958 } 1959 kmem_free(dp->pdr_kept_paths, 1960 dp->pdr_kept_count * sizeof (char **)); 1961 dp->pdr_kept_paths = NULL; 1962 dp->pdr_kept_count = 0; 1963 } 1964 } 1965 } 1966 1967 /* 1968 * Removes the device represented by path from the list of kepts, if the 1969 * path is a path of a kept 1970 */ 1971 static void 1972 pm_free_kept(char *path) 1973 { 1974 pm_pdr_t *dp; 1975 int i; 1976 int j, count; 1977 size_t length; 1978 char **paths; 1979 1980 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1981 if (dp->pdr_kept_count == 0) 1982 continue; 1983 count = dp->pdr_kept_count; 1984 /* Remove this device from the kept path lists */ 1985 for (i = 0; i < count; i++) { 1986 if (strcmp(dp->pdr_kept_paths[i], path) == 0) { 1987 pm_unkepts(path, dp->pdr_keeper); 1988 length = strlen(dp->pdr_kept_paths[i]) + 1; 1989 kmem_free(dp->pdr_kept_paths[i], length); 1990 dp->pdr_kept_paths[i] = NULL; 1991 dp->pdr_kept_count--; 1992 } 1993 } 1994 /* Compact the kept paths array */ 1995 if (dp->pdr_kept_count) { 1996 length = dp->pdr_kept_count * sizeof (char **); 1997 paths = kmem_zalloc(length, KM_SLEEP); 1998 j = 0; 1999 for (i = 0; i < count; i++) { 2000 if (dp->pdr_kept_paths[i] != NULL) { 2001 paths[j] = dp->pdr_kept_paths[i]; 2002 j++; 2003 } 2004 } 2005 ASSERT(j == dp->pdr_kept_count); 2006 } 2007 /* Now free the old array and point to the new one */ 2008 kmem_free(dp->pdr_kept_paths, count * sizeof (char **)); 2009 if (dp->pdr_kept_count) 2010 dp->pdr_kept_paths = paths; 2011 else 2012 dp->pdr_kept_paths = NULL; 2013 } 2014 } 2015 2016 /* 2017 * Free the dependency information for a device. 2018 */ 2019 void 2020 pm_free_keeps(char *path, int pwr) 2021 { 2022 PMD_FUNC(pmf, "free_keeps") 2023 2024 #ifdef DEBUG 2025 int doprdeps = 0; 2026 void prdeps(char *); 2027 2028 PMD(PMD_KEEPS, ("%s: %s\n", pmf, path)) 2029 if (pm_debug & PMD_KEEPS) { 2030 doprdeps = 1; 2031 prdeps("pm_free_keeps before"); 2032 } 2033 #endif 2034 /* 2035 * First assume we are a keeper and remove all our kepts. 2036 */ 2037 pm_free_keeper(path, pwr); 2038 /* 2039 * Now assume we a kept device, and remove all our records. 2040 */ 2041 pm_free_kept(path); 2042 #ifdef DEBUG 2043 if (doprdeps) { 2044 prdeps("pm_free_keeps after"); 2045 } 2046 #endif 2047 } 2048 2049 static int 2050 pm_is_kept(char *path) 2051 { 2052 pm_pdr_t *dp; 2053 int i; 2054 2055 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 2056 if (dp->pdr_kept_count == 0) 2057 continue; 2058 for (i = 0; i < dp->pdr_kept_count; i++) { 2059 if (strcmp(dp->pdr_kept_paths[i], path) == 0) 2060 return (1); 2061 } 2062 } 2063 return (0); 2064 } 2065 2066 static void 2067 e_pm_hold_rele_power(dev_info_t *dip, int cnt) 2068 { 2069 PMD_FUNC(pmf, "hold_rele_power") 2070 int circ; 2071 2072 if ((dip == NULL) || 2073 (PM_GET_PM_INFO(dip) == NULL) || PM_ISBC(dip)) 2074 return; 2075 2076 PM_LOCK_POWER(dip, &circ); 2077 ASSERT(cnt >= 0 && PM_KUC(dip) >= 0 || cnt < 0 && PM_KUC(dip) > 0); 2078 PMD(PMD_KIDSUP, ("%s: kidsupcnt for %s@%s(%s#%d) %d->%d\n", pmf, 2079 PM_DEVICE(dip), PM_KUC(dip), (PM_KUC(dip) + cnt))) 2080 2081 PM_KUC(dip) += cnt; 2082 2083 ASSERT(PM_KUC(dip) >= 0); 2084 PM_UNLOCK_POWER(dip, circ); 2085 2086 if (cnt < 0 && PM_KUC(dip) == 0) 2087 pm_rescan(dip); 2088 } 2089 2090 #define MAX_PPM_HANDLERS 4 2091 2092 kmutex_t ppm_lock; /* in case we ever do multi-threaded startup */ 2093 2094 struct ppm_callbacks { 2095 int (*ppmc_func)(dev_info_t *); 2096 dev_info_t *ppmc_dip; 2097 } ppm_callbacks[MAX_PPM_HANDLERS + 1]; 2098 2099 2100 /* 2101 * This routine calls into all the registered ppms to notify them 2102 * that either all components of power-managed devices are at their 2103 * lowest levels or no longer all are at their lowest levels. 2104 */ 2105 static void 2106 pm_ppm_notify_all_lowest(dev_info_t *dip, int mode) 2107 { 2108 struct ppm_callbacks *ppmcp; 2109 power_req_t power_req; 2110 int result = 0; 2111 2112 power_req.request_type = PMR_PPM_ALL_LOWEST; 2113 power_req.req.ppm_all_lowest_req.mode = mode; 2114 mutex_enter(&ppm_lock); 2115 for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++) 2116 (void) pm_ctlops((dev_info_t *)ppmcp->ppmc_dip, dip, 2117 DDI_CTLOPS_POWER, &power_req, &result); 2118 mutex_exit(&ppm_lock); 2119 if (mode == PM_ALL_LOWEST) { 2120 if (autoS3_enabled) { 2121 PMD(PMD_SX, ("pm_ppm_notify_all_lowest triggering " 2122 "autos3\n")) 2123 mutex_enter(&srn_clone_lock); 2124 if (srn_signal) { 2125 srn_inuse++; 2126 PMD(PMD_SX, ("(*srn_signal)(AUTOSX, 3)\n")) 2127 (*srn_signal)(SRN_TYPE_AUTOSX, 3); 2128 srn_inuse--; 2129 } else { 2130 PMD(PMD_SX, ("srn_signal NULL\n")) 2131 } 2132 mutex_exit(&srn_clone_lock); 2133 } else { 2134 PMD(PMD_SX, ("pm_ppm_notify_all_lowest autos3 " 2135 "disabled\n")); 2136 } 2137 } 2138 } 2139 2140 static void 2141 pm_set_pm_info(dev_info_t *dip, void *value) 2142 { 2143 DEVI(dip)->devi_pm_info = value; 2144 } 2145 2146 pm_rsvp_t *pm_blocked_list; 2147 2148 /* 2149 * Look up an entry in the blocked list by dip and component 2150 */ 2151 static pm_rsvp_t * 2152 pm_rsvp_lookup(dev_info_t *dip, int comp) 2153 { 2154 pm_rsvp_t *p; 2155 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 2156 for (p = pm_blocked_list; p; p = p->pr_next) 2157 if (p->pr_dip == dip && p->pr_comp == comp) { 2158 return (p); 2159 } 2160 return (NULL); 2161 } 2162 2163 /* 2164 * Called when a device which is direct power managed (or the parent or 2165 * dependent of such a device) changes power, or when a pm clone is closed 2166 * that was direct power managing a device. This call results in pm_blocked() 2167 * (below) returning. 2168 */ 2169 void 2170 pm_proceed(dev_info_t *dip, int cmd, int comp, int newlevel) 2171 { 2172 PMD_FUNC(pmf, "proceed") 2173 pm_rsvp_t *found = NULL; 2174 pm_rsvp_t *p; 2175 2176 mutex_enter(&pm_rsvp_lock); 2177 switch (cmd) { 2178 /* 2179 * we're giving up control, let any pending op continue 2180 */ 2181 case PMP_RELEASE: 2182 for (p = pm_blocked_list; p; p = p->pr_next) { 2183 if (dip == p->pr_dip) { 2184 p->pr_retval = PMP_RELEASE; 2185 PMD(PMD_DPM, ("%s: RELEASE %s@%s(%s#%d)\n", 2186 pmf, PM_DEVICE(dip))) 2187 cv_signal(&p->pr_cv); 2188 } 2189 } 2190 break; 2191 2192 /* 2193 * process has done PM_SET_CURRENT_POWER; let a matching request 2194 * succeed and a non-matching request for the same device fail 2195 */ 2196 case PMP_SETPOWER: 2197 found = pm_rsvp_lookup(dip, comp); 2198 if (!found) /* if driver not waiting */ 2199 break; 2200 /* 2201 * This cannot be pm_lower_power, since that can only happen 2202 * during detach or probe 2203 */ 2204 if (found->pr_newlevel <= newlevel) { 2205 found->pr_retval = PMP_SUCCEED; 2206 PMD(PMD_DPM, ("%s: SUCCEED %s@%s(%s#%d)\n", pmf, 2207 PM_DEVICE(dip))) 2208 } else { 2209 found->pr_retval = PMP_FAIL; 2210 PMD(PMD_DPM, ("%s: FAIL %s@%s(%s#%d)\n", pmf, 2211 PM_DEVICE(dip))) 2212 } 2213 cv_signal(&found->pr_cv); 2214 break; 2215 2216 default: 2217 panic("pm_proceed unknown cmd %d", cmd); 2218 } 2219 mutex_exit(&pm_rsvp_lock); 2220 } 2221 2222 /* 2223 * This routine dispatches new work to the dependency thread. Caller must 2224 * be prepared to block for memory if necessary. 2225 */ 2226 void 2227 pm_dispatch_to_dep_thread(int cmd, char *keeper, char *kept, int wait, 2228 int *res, int cached_pwr) 2229 { 2230 pm_dep_wk_t *new_work; 2231 2232 new_work = kmem_zalloc(sizeof (pm_dep_wk_t), KM_SLEEP); 2233 new_work->pdw_type = cmd; 2234 new_work->pdw_wait = wait; 2235 new_work->pdw_done = 0; 2236 new_work->pdw_ret = 0; 2237 new_work->pdw_pwr = cached_pwr; 2238 cv_init(&new_work->pdw_cv, NULL, CV_DEFAULT, NULL); 2239 if (keeper != NULL) { 2240 new_work->pdw_keeper = kmem_zalloc(strlen(keeper) + 1, 2241 KM_SLEEP); 2242 (void) strcpy(new_work->pdw_keeper, keeper); 2243 } 2244 if (kept != NULL) { 2245 new_work->pdw_kept = kmem_zalloc(strlen(kept) + 1, KM_SLEEP); 2246 (void) strcpy(new_work->pdw_kept, kept); 2247 } 2248 mutex_enter(&pm_dep_thread_lock); 2249 if (pm_dep_thread_workq == NULL) { 2250 pm_dep_thread_workq = new_work; 2251 pm_dep_thread_tail = new_work; 2252 new_work->pdw_next = NULL; 2253 } else { 2254 pm_dep_thread_tail->pdw_next = new_work; 2255 pm_dep_thread_tail = new_work; 2256 new_work->pdw_next = NULL; 2257 } 2258 cv_signal(&pm_dep_thread_cv); 2259 /* If caller asked for it, wait till it is done. */ 2260 if (wait) { 2261 while (!new_work->pdw_done) 2262 cv_wait(&new_work->pdw_cv, &pm_dep_thread_lock); 2263 /* 2264 * Pass return status, if any, back. 2265 */ 2266 if (res != NULL) 2267 *res = new_work->pdw_ret; 2268 /* 2269 * If we asked to wait, it is our job to free the request 2270 * structure. 2271 */ 2272 if (new_work->pdw_keeper) 2273 kmem_free(new_work->pdw_keeper, 2274 strlen(new_work->pdw_keeper) + 1); 2275 if (new_work->pdw_kept) 2276 kmem_free(new_work->pdw_kept, 2277 strlen(new_work->pdw_kept) + 1); 2278 kmem_free(new_work, sizeof (pm_dep_wk_t)); 2279 } 2280 mutex_exit(&pm_dep_thread_lock); 2281 } 2282 2283 /* 2284 * Release the pm resource for this device. 2285 */ 2286 void 2287 pm_rem_info(dev_info_t *dip) 2288 { 2289 PMD_FUNC(pmf, "rem_info") 2290 int i, count = 0; 2291 pm_info_t *info = PM_GET_PM_INFO(dip); 2292 dev_info_t *pdip = ddi_get_parent(dip); 2293 char *pathbuf; 2294 int work_type = PM_DEP_WK_DETACH; 2295 2296 ASSERT(info); 2297 2298 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 2299 if (PM_ISDIRECT(dip)) { 2300 info->pmi_dev_pm_state &= ~PM_DIRECT; 2301 ASSERT(info->pmi_clone); 2302 info->pmi_clone = 0; 2303 pm_proceed(dip, PMP_RELEASE, -1, -1); 2304 } 2305 ASSERT(!PM_GET_PM_SCAN(dip)); 2306 2307 /* 2308 * Now adjust parent's kidsupcnt. BC nodes we check only comp 0, 2309 * Others we check all components. BC node that has already 2310 * called pm_destroy_components() has zero component count. 2311 * Parents that get notification are not adjusted because their 2312 * kidsupcnt is always 0 (or 1 during configuration). 2313 */ 2314 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d) has %d components\n", pmf, 2315 PM_DEVICE(dip), PM_NUMCMPTS(dip))) 2316 2317 /* node is detached, so we can examine power without locking */ 2318 if (PM_ISBC(dip)) { 2319 count = (PM_CURPOWER(dip, 0) != 0); 2320 } else { 2321 for (i = 0; i < PM_NUMCMPTS(dip); i++) 2322 count += (PM_CURPOWER(dip, i) != 0); 2323 } 2324 2325 if (PM_NUMCMPTS(dip) && pdip && !PM_WANTS_NOTIFICATION(pdip)) 2326 e_pm_hold_rele_power(pdip, -count); 2327 2328 /* Schedule a request to clean up dependency records */ 2329 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 2330 (void) ddi_pathname(dip, pathbuf); 2331 pm_dispatch_to_dep_thread(work_type, pathbuf, pathbuf, 2332 PM_DEP_NOWAIT, NULL, (count > 0)); 2333 kmem_free(pathbuf, MAXPATHLEN); 2334 2335 /* 2336 * Adjust the pm_comps_notlowest count since this device is 2337 * not being power-managed anymore. 2338 */ 2339 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 2340 if (PM_CURPOWER(dip, i) != 0) 2341 PM_DECR_NOTLOWEST(dip); 2342 } 2343 /* 2344 * Once we clear the info pointer, it looks like it is not power 2345 * managed to everybody else. 2346 */ 2347 pm_set_pm_info(dip, NULL); 2348 kmem_free(info, sizeof (pm_info_t)); 2349 } 2350 2351 int 2352 pm_get_norm_pwrs(dev_info_t *dip, int **valuep, size_t *length) 2353 { 2354 int components = PM_NUMCMPTS(dip); 2355 int *bufp; 2356 size_t size; 2357 int i; 2358 2359 if (components <= 0) { 2360 cmn_err(CE_NOTE, "!pm: %s@%s(%s#%d) has no components, " 2361 "can't get normal power values\n", PM_DEVICE(dip)); 2362 return (DDI_FAILURE); 2363 } else { 2364 size = components * sizeof (int); 2365 bufp = kmem_alloc(size, KM_SLEEP); 2366 for (i = 0; i < components; i++) { 2367 bufp[i] = pm_get_normal_power(dip, i); 2368 } 2369 } 2370 *length = size; 2371 *valuep = bufp; 2372 return (DDI_SUCCESS); 2373 } 2374 2375 static int 2376 pm_reset_timestamps(dev_info_t *dip, void *arg) 2377 { 2378 _NOTE(ARGUNUSED(arg)) 2379 2380 int components; 2381 int i; 2382 2383 if (!PM_GET_PM_INFO(dip)) 2384 return (DDI_WALK_CONTINUE); 2385 components = PM_NUMCMPTS(dip); 2386 ASSERT(components > 0); 2387 PM_LOCK_BUSY(dip); 2388 for (i = 0; i < components; i++) { 2389 struct pm_component *cp; 2390 /* 2391 * If the component was not marked as busy, 2392 * reset its timestamp to now. 2393 */ 2394 cp = PM_CP(dip, i); 2395 if (cp->pmc_timestamp) 2396 cp->pmc_timestamp = gethrestime_sec(); 2397 } 2398 PM_UNLOCK_BUSY(dip); 2399 return (DDI_WALK_CONTINUE); 2400 } 2401 2402 /* 2403 * Convert a power level to an index into the levels array (or 2404 * just PM_LEVEL_UNKNOWN in that special case). 2405 */ 2406 static int 2407 pm_level_to_index(dev_info_t *dip, pm_component_t *cp, int level) 2408 { 2409 PMD_FUNC(pmf, "level_to_index") 2410 int i; 2411 int limit = cp->pmc_comp.pmc_numlevels; 2412 int *ip = cp->pmc_comp.pmc_lvals; 2413 2414 if (level == PM_LEVEL_UNKNOWN) 2415 return (level); 2416 2417 for (i = 0; i < limit; i++) { 2418 if (level == *ip++) { 2419 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d)[%d] to %x\n", 2420 pmf, PM_DEVICE(dip), 2421 (int)(cp - DEVI(dip)->devi_pm_components), level)) 2422 return (i); 2423 } 2424 } 2425 panic("pm_level_to_index: level %d not found for device " 2426 "%s@%s(%s#%d)", level, PM_DEVICE(dip)); 2427 /*NOTREACHED*/ 2428 } 2429 2430 /* 2431 * Internal function to set current power level 2432 */ 2433 static void 2434 e_pm_set_cur_pwr(dev_info_t *dip, pm_component_t *cp, int level) 2435 { 2436 PMD_FUNC(pmf, "set_cur_pwr") 2437 int curpwr = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 2438 cp->pmc_phc_pwr : cp->pmc_cur_pwr); 2439 2440 /* 2441 * Nothing to adjust if current & new levels are the same. 2442 */ 2443 if (curpwr != PM_LEVEL_UNKNOWN && 2444 level == cp->pmc_comp.pmc_lvals[curpwr]) 2445 return; 2446 2447 /* 2448 * Keep the count for comps doing transition to/from lowest 2449 * level. 2450 */ 2451 if (curpwr == 0) { 2452 PM_INCR_NOTLOWEST(dip); 2453 } else if (level == cp->pmc_comp.pmc_lvals[0]) { 2454 PM_DECR_NOTLOWEST(dip); 2455 } 2456 cp->pmc_phc_pwr = PM_LEVEL_UNKNOWN; 2457 cp->pmc_cur_pwr = pm_level_to_index(dip, cp, level); 2458 } 2459 2460 static int pm_phc_impl(dev_info_t *, int, int, int); 2461 2462 /* 2463 * This is the default method of setting the power of a device if no ppm 2464 * driver has claimed it. 2465 */ 2466 int 2467 pm_power(dev_info_t *dip, int comp, int level) 2468 { 2469 PMD_FUNC(pmf, "power") 2470 struct dev_ops *ops; 2471 int (*fn)(dev_info_t *, int, int); 2472 struct pm_component *cp = PM_CP(dip, comp); 2473 int retval; 2474 pm_info_t *info = PM_GET_PM_INFO(dip); 2475 2476 PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf, 2477 PM_DEVICE(dip), comp, level)) 2478 if (!(ops = ddi_get_driver(dip))) { 2479 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) has no ops\n", pmf, 2480 PM_DEVICE(dip))) 2481 return (DDI_FAILURE); 2482 } 2483 if ((ops->devo_rev < 2) || !(fn = ops->devo_power)) { 2484 PMD(PMD_FAIL, ("%s: %s%s\n", pmf, 2485 (ops->devo_rev < 2 ? " wrong devo_rev" : ""), 2486 (!fn ? " devo_power NULL" : ""))) 2487 return (DDI_FAILURE); 2488 } 2489 cp->pmc_flags |= PM_POWER_OP; 2490 retval = (*fn)(dip, comp, level); 2491 cp->pmc_flags &= ~PM_POWER_OP; 2492 if (retval == DDI_SUCCESS) { 2493 e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level); 2494 return (DDI_SUCCESS); 2495 } 2496 2497 /* 2498 * If pm_power_has_changed() detected a deadlock with pm_power() it 2499 * updated only the power level of the component. If our attempt to 2500 * set the device new to a power level above has failed we sync the 2501 * total power state via phc code now. 2502 */ 2503 if (cp->pmc_flags & PM_PHC_WHILE_SET_POWER) { 2504 int phc_lvl = 2505 cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]; 2506 2507 ASSERT(info); 2508 (void) pm_phc_impl(dip, comp, phc_lvl, 0); 2509 PMD(PMD_PHC, ("%s: phc %s@%s(%s#%d) comp=%d level=%d\n", 2510 pmf, PM_DEVICE(dip), comp, phc_lvl)) 2511 } 2512 2513 PMD(PMD_FAIL, ("%s: can't set comp=%d (%s) of %s@%s(%s#%d) to " 2514 "level=%d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name, PM_DEVICE(dip), 2515 level, power_val_to_string(cp, level))); 2516 return (DDI_FAILURE); 2517 } 2518 2519 int 2520 pm_unmanage(dev_info_t *dip) 2521 { 2522 PMD_FUNC(pmf, "unmanage") 2523 power_req_t power_req; 2524 int result, retval = 0; 2525 2526 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 2527 PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, 2528 PM_DEVICE(dip))) 2529 power_req.request_type = PMR_PPM_UNMANAGE; 2530 power_req.req.ppm_config_req.who = dip; 2531 if (pm_ppm_claimed(dip)) 2532 retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 2533 &power_req, &result); 2534 #ifdef DEBUG 2535 else 2536 retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 2537 &power_req, &result); 2538 #endif 2539 ASSERT(retval == DDI_SUCCESS); 2540 pm_rem_info(dip); 2541 return (retval); 2542 } 2543 2544 int 2545 pm_raise_power(dev_info_t *dip, int comp, int level) 2546 { 2547 if (level < 0) 2548 return (DDI_FAILURE); 2549 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 2550 !e_pm_valid_power(dip, comp, level)) 2551 return (DDI_FAILURE); 2552 2553 return (dev_is_needed(dip, comp, level, PM_LEVEL_UPONLY)); 2554 } 2555 2556 int 2557 pm_lower_power(dev_info_t *dip, int comp, int level) 2558 { 2559 PMD_FUNC(pmf, "pm_lower_power") 2560 2561 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 2562 !e_pm_valid_power(dip, comp, level)) { 2563 PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) " 2564 "comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 2565 return (DDI_FAILURE); 2566 } 2567 2568 if (!DEVI_IS_DETACHING(dip)) { 2569 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) not detaching\n", 2570 pmf, PM_DEVICE(dip))) 2571 return (DDI_FAILURE); 2572 } 2573 2574 /* 2575 * If we don't care about saving power, or we're treating this node 2576 * specially, then this is a no-op 2577 */ 2578 if (!PM_SCANABLE(dip) || pm_noinvol(dip)) { 2579 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) %s%s%s%s\n", 2580 pmf, PM_DEVICE(dip), 2581 !autopm_enabled ? "!autopm_enabled " : "", 2582 !PM_POLLING_CPUPM ? "!cpupm_polling " : "", 2583 PM_CPUPM_DISABLED ? "cpupm_disabled " : "", 2584 pm_noinvol(dip) ? "pm_noinvol()" : "")) 2585 return (DDI_SUCCESS); 2586 } 2587 2588 if (dev_is_needed(dip, comp, level, PM_LEVEL_DOWNONLY) != DDI_SUCCESS) { 2589 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) dev_is_needed failed\n", pmf, 2590 PM_DEVICE(dip))) 2591 return (DDI_FAILURE); 2592 } 2593 return (DDI_SUCCESS); 2594 } 2595 2596 /* 2597 * Find the entries struct for a given dip in the blocked list, return it locked 2598 */ 2599 static psce_t * 2600 pm_psc_dip_to_direct(dev_info_t *dip, pscc_t **psccp) 2601 { 2602 pscc_t *p; 2603 psce_t *psce; 2604 2605 rw_enter(&pm_pscc_direct_rwlock, RW_READER); 2606 for (p = pm_pscc_direct; p; p = p->pscc_next) { 2607 if (p->pscc_dip == dip) { 2608 *psccp = p; 2609 psce = p->pscc_entries; 2610 mutex_enter(&psce->psce_lock); 2611 ASSERT(psce); 2612 rw_exit(&pm_pscc_direct_rwlock); 2613 return (psce); 2614 } 2615 } 2616 rw_exit(&pm_pscc_direct_rwlock); 2617 panic("sunpm: no entry for dip %p in direct list", (void *)dip); 2618 /*NOTREACHED*/ 2619 } 2620 2621 /* 2622 * Write an entry indicating a power level change (to be passed to a process 2623 * later) in the given psce. 2624 * If we were called in the path that brings up the console fb in the 2625 * case of entering the prom, we don't want to sleep. If the alloc fails, then 2626 * we create a record that has a size of -1, a physaddr of NULL, and that 2627 * has the overflow flag set. 2628 */ 2629 static int 2630 psc_entry(ushort_t event, psce_t *psce, dev_info_t *dip, int comp, int new, 2631 int old, int which, pm_canblock_t canblock) 2632 { 2633 char buf[MAXNAMELEN]; 2634 pm_state_change_t *p; 2635 size_t size; 2636 caddr_t physpath = NULL; 2637 int overrun = 0; 2638 2639 ASSERT(MUTEX_HELD(&psce->psce_lock)); 2640 (void) ddi_pathname(dip, buf); 2641 size = strlen(buf) + 1; 2642 p = psce->psce_in; 2643 if (canblock == PM_CANBLOCK_BYPASS) { 2644 physpath = kmem_alloc(size, KM_NOSLEEP); 2645 if (physpath == NULL) { 2646 /* 2647 * mark current entry as overrun 2648 */ 2649 p->flags |= PSC_EVENT_LOST; 2650 size = (size_t)-1; 2651 } 2652 } else 2653 physpath = kmem_alloc(size, KM_SLEEP); 2654 if (p->size) { /* overflow; mark the next entry */ 2655 if (p->size != (size_t)-1) 2656 kmem_free(p->physpath, p->size); 2657 ASSERT(psce->psce_out == p); 2658 if (p == psce->psce_last) { 2659 psce->psce_first->flags |= PSC_EVENT_LOST; 2660 psce->psce_out = psce->psce_first; 2661 } else { 2662 (p + 1)->flags |= PSC_EVENT_LOST; 2663 psce->psce_out = (p + 1); 2664 } 2665 overrun++; 2666 } else if (physpath == NULL) { /* alloc failed, mark this entry */ 2667 p->flags |= PSC_EVENT_LOST; 2668 p->size = 0; 2669 p->physpath = NULL; 2670 } 2671 if (which == PSC_INTEREST) { 2672 mutex_enter(&pm_compcnt_lock); 2673 if (pm_comps_notlowest == 0) 2674 p->flags |= PSC_ALL_LOWEST; 2675 else 2676 p->flags &= ~PSC_ALL_LOWEST; 2677 mutex_exit(&pm_compcnt_lock); 2678 } 2679 p->event = event; 2680 p->timestamp = gethrestime_sec(); 2681 p->component = comp; 2682 p->old_level = old; 2683 p->new_level = new; 2684 p->physpath = physpath; 2685 p->size = size; 2686 if (physpath != NULL) 2687 (void) strcpy(p->physpath, buf); 2688 if (p == psce->psce_last) 2689 psce->psce_in = psce->psce_first; 2690 else 2691 psce->psce_in = ++p; 2692 mutex_exit(&psce->psce_lock); 2693 return (overrun); 2694 } 2695 2696 /* 2697 * Find the next entry on the interest list. We keep a pointer to the item we 2698 * last returned in the user's cooke. Returns a locked entries struct. 2699 */ 2700 static psce_t * 2701 psc_interest(void **cookie, pscc_t **psccp) 2702 { 2703 pscc_t *pscc; 2704 pscc_t **cookiep = (pscc_t **)cookie; 2705 2706 if (*cookiep == NULL) 2707 pscc = pm_pscc_interest; 2708 else 2709 pscc = (*cookiep)->pscc_next; 2710 if (pscc) { 2711 *cookiep = pscc; 2712 *psccp = pscc; 2713 mutex_enter(&pscc->pscc_entries->psce_lock); 2714 return (pscc->pscc_entries); 2715 } else { 2716 return (NULL); 2717 } 2718 } 2719 2720 /* 2721 * Create an entry for a process to pick up indicating a power level change. 2722 */ 2723 static void 2724 pm_enqueue_notify(ushort_t cmd, dev_info_t *dip, int comp, 2725 int newlevel, int oldlevel, pm_canblock_t canblock) 2726 { 2727 PMD_FUNC(pmf, "enqueue_notify") 2728 pscc_t *pscc; 2729 psce_t *psce; 2730 void *cookie = NULL; 2731 int overrun; 2732 2733 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 2734 switch (cmd) { 2735 case PSC_PENDING_CHANGE: /* only for controlling process */ 2736 PMD(PMD_DPM, ("%s: PENDING %s@%s(%s#%d), comp %d, %d -> %d\n", 2737 pmf, PM_DEVICE(dip), comp, oldlevel, newlevel)) 2738 psce = pm_psc_dip_to_direct(dip, &pscc); 2739 ASSERT(psce); 2740 PMD(PMD_IOCTL, ("%s: PENDING: %s@%s(%s#%d) pm_poll_cnt[%d] " 2741 "%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone, 2742 pm_poll_cnt[pscc->pscc_clone])) 2743 overrun = psc_entry(cmd, psce, dip, comp, newlevel, oldlevel, 2744 PSC_DIRECT, canblock); 2745 PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone)) 2746 mutex_enter(&pm_clone_lock); 2747 if (!overrun) 2748 pm_poll_cnt[pscc->pscc_clone]++; 2749 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2750 pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN)); 2751 mutex_exit(&pm_clone_lock); 2752 break; 2753 case PSC_HAS_CHANGED: 2754 PMD(PMD_DPM, ("%s: HAS %s@%s(%s#%d), comp %d, %d -> %d\n", 2755 pmf, PM_DEVICE(dip), comp, oldlevel, newlevel)) 2756 if (PM_ISDIRECT(dip) && canblock != PM_CANBLOCK_BYPASS) { 2757 psce = pm_psc_dip_to_direct(dip, &pscc); 2758 PMD(PMD_IOCTL, ("%s: HAS: %s@%s(%s#%d) pm_poll_cnt[%d] " 2759 "%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone, 2760 pm_poll_cnt[pscc->pscc_clone])) 2761 overrun = psc_entry(cmd, psce, dip, comp, newlevel, 2762 oldlevel, PSC_DIRECT, canblock); 2763 PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone)) 2764 mutex_enter(&pm_clone_lock); 2765 if (!overrun) 2766 pm_poll_cnt[pscc->pscc_clone]++; 2767 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2768 pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN)); 2769 mutex_exit(&pm_clone_lock); 2770 } 2771 mutex_enter(&pm_clone_lock); 2772 rw_enter(&pm_pscc_interest_rwlock, RW_READER); 2773 while ((psce = psc_interest(&cookie, &pscc)) != NULL) { 2774 (void) psc_entry(cmd, psce, dip, comp, newlevel, 2775 oldlevel, PSC_INTEREST, canblock); 2776 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2777 } 2778 rw_exit(&pm_pscc_interest_rwlock); 2779 mutex_exit(&pm_clone_lock); 2780 break; 2781 #ifdef DEBUG 2782 default: 2783 ASSERT(0); 2784 #endif 2785 } 2786 } 2787 2788 static void 2789 pm_enqueue_notify_others(pm_ppm_devlist_t **listp, pm_canblock_t canblock) 2790 { 2791 if (listp) { 2792 pm_ppm_devlist_t *p, *next = NULL; 2793 2794 for (p = *listp; p; p = next) { 2795 next = p->ppd_next; 2796 pm_enqueue_notify(PSC_HAS_CHANGED, p->ppd_who, 2797 p->ppd_cmpt, p->ppd_new_level, p->ppd_old_level, 2798 canblock); 2799 kmem_free(p, sizeof (pm_ppm_devlist_t)); 2800 } 2801 *listp = NULL; 2802 } 2803 } 2804 2805 /* 2806 * Try to get the power locks of the parent node and target (child) 2807 * node. Return true if successful (with both locks held) or false 2808 * (with no locks held). 2809 */ 2810 static int 2811 pm_try_parent_child_locks(dev_info_t *pdip, 2812 dev_info_t *dip, int *pcircp, int *circp) 2813 { 2814 if (ndi_devi_tryenter(pdip, pcircp)) 2815 if (PM_TRY_LOCK_POWER(dip, circp)) { 2816 return (1); 2817 } else { 2818 ndi_devi_exit(pdip, *pcircp); 2819 } 2820 return (0); 2821 } 2822 2823 /* 2824 * Determine if the power lock owner is blocked by current thread. 2825 * returns : 2826 * 1 - If the thread owning the effective power lock (the first lock on 2827 * which a thread blocks when it does PM_LOCK_POWER) is blocked by 2828 * a mutex held by the current thread. 2829 * 2830 * 0 - otherwise 2831 * 2832 * Note : This function is called by pm_power_has_changed to determine whether 2833 * it is executing in parallel with pm_set_power. 2834 */ 2835 static int 2836 pm_blocked_by_us(dev_info_t *dip) 2837 { 2838 power_req_t power_req; 2839 kthread_t *owner; 2840 int result; 2841 kmutex_t *mp; 2842 dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm; 2843 2844 power_req.request_type = PMR_PPM_POWER_LOCK_OWNER; 2845 power_req.req.ppm_power_lock_owner_req.who = dip; 2846 if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req, &result) != 2847 DDI_SUCCESS) { 2848 /* 2849 * It is assumed that if the device is claimed by ppm, ppm 2850 * will always implement this request type and it'll always 2851 * return success. We panic here, if it fails. 2852 */ 2853 panic("pm: Can't determine power lock owner of %s@%s(%s#%d)\n", 2854 PM_DEVICE(dip)); 2855 /*NOTREACHED*/ 2856 } 2857 2858 if ((owner = power_req.req.ppm_power_lock_owner_req.owner) != NULL && 2859 owner->t_state == TS_SLEEP && 2860 owner->t_sobj_ops && 2861 SOBJ_TYPE(owner->t_sobj_ops) == SOBJ_MUTEX && 2862 (mp = (kmutex_t *)owner->t_wchan) && 2863 mutex_owner(mp) == curthread) 2864 return (1); 2865 2866 return (0); 2867 } 2868 2869 /* 2870 * Notify parent which wants to hear about a child's power changes. 2871 */ 2872 static void 2873 pm_notify_parent(dev_info_t *dip, 2874 dev_info_t *pdip, int comp, int old_level, int level) 2875 { 2876 pm_bp_has_changed_t bphc; 2877 pm_sp_misc_t pspm; 2878 char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2879 int result = DDI_SUCCESS; 2880 2881 bphc.bphc_dip = dip; 2882 bphc.bphc_path = ddi_pathname(dip, pathbuf); 2883 bphc.bphc_comp = comp; 2884 bphc.bphc_olevel = old_level; 2885 bphc.bphc_nlevel = level; 2886 pspm.pspm_canblock = PM_CANBLOCK_BLOCK; 2887 pspm.pspm_scan = 0; 2888 bphc.bphc_private = &pspm; 2889 (void) (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 2890 BUS_POWER_HAS_CHANGED, (void *)&bphc, (void *)&result); 2891 kmem_free(pathbuf, MAXPATHLEN); 2892 } 2893 2894 /* 2895 * Check if we need to resume a BC device, and make the attach call as required. 2896 */ 2897 static int 2898 pm_check_and_resume(dev_info_t *dip, int comp, int old_level, int level) 2899 { 2900 int ret = DDI_SUCCESS; 2901 2902 if (PM_ISBC(dip) && comp == 0 && old_level == 0 && level != 0) { 2903 ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED); 2904 /* ppm is not interested in DDI_PM_RESUME */ 2905 if ((ret = devi_attach(dip, DDI_PM_RESUME)) != DDI_SUCCESS) 2906 /* XXX Should we mark it resumed, */ 2907 /* even though it failed? */ 2908 cmn_err(CE_WARN, "!pm: Can't resume %s@%s", 2909 PM_NAME(dip), PM_ADDR(dip)); 2910 DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED; 2911 } 2912 2913 return (ret); 2914 } 2915 2916 /* 2917 * Tests outside the lock to see if we should bother to enqueue an entry 2918 * for any watching process. If yes, then caller will take the lock and 2919 * do the full protocol 2920 */ 2921 static int 2922 pm_watchers() 2923 { 2924 if (pm_processes_stopped) 2925 return (0); 2926 return (pm_pscc_direct || pm_pscc_interest); 2927 } 2928 2929 static int pm_phc_impl(dev_info_t *, int, int, int); 2930 2931 /* 2932 * A driver is reporting that the power of one of its device's components 2933 * has changed. Update the power state accordingly. 2934 */ 2935 int 2936 pm_power_has_changed(dev_info_t *dip, int comp, int level) 2937 { 2938 PMD_FUNC(pmf, "pm_power_has_changed") 2939 int ret; 2940 dev_info_t *pdip = ddi_get_parent(dip); 2941 struct pm_component *cp; 2942 int blocked, circ, pcirc, old_level; 2943 2944 if (level < 0) { 2945 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d): bad level=%d\n", pmf, 2946 PM_DEVICE(dip), level)) 2947 return (DDI_FAILURE); 2948 } 2949 2950 PMD(PMD_KIDSUP | PMD_DEP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf, 2951 PM_DEVICE(dip), comp, level)) 2952 2953 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, &cp) || 2954 !e_pm_valid_power(dip, comp, level)) 2955 return (DDI_FAILURE); 2956 2957 /* 2958 * A driver thread calling pm_power_has_changed and another thread 2959 * calling pm_set_power can deadlock. The problem is not resolvable 2960 * by changing lock order, so we use pm_blocked_by_us() to detect 2961 * this specific deadlock. If we can't get the lock immediately 2962 * and we are deadlocked, just update the component's level, do 2963 * notifications, and return. We intend to update the total power 2964 * state later (if the other thread fails to set power to the 2965 * desired level). If we were called because of a power change on a 2966 * component that isn't involved in a set_power op, update all state 2967 * immediately. 2968 */ 2969 cp = PM_CP(dip, comp); 2970 while (!pm_try_parent_child_locks(pdip, dip, &pcirc, &circ)) { 2971 if (((blocked = pm_blocked_by_us(dip)) != 0) && 2972 (cp->pmc_flags & PM_POWER_OP)) { 2973 if (pm_watchers()) { 2974 mutex_enter(&pm_rsvp_lock); 2975 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, 2976 level, cur_power(cp), PM_CANBLOCK_BLOCK); 2977 mutex_exit(&pm_rsvp_lock); 2978 } 2979 if (pdip && PM_WANTS_NOTIFICATION(pdip)) 2980 pm_notify_parent(dip, 2981 pdip, comp, cur_power(cp), level); 2982 (void) pm_check_and_resume(dip, 2983 comp, cur_power(cp), level); 2984 2985 /* 2986 * Stash the old power index, update curpwr, and flag 2987 * that the total power state needs to be synched. 2988 */ 2989 cp->pmc_flags |= PM_PHC_WHILE_SET_POWER; 2990 /* 2991 * Several pm_power_has_changed calls could arrive 2992 * while the set power path remains blocked. Keep the 2993 * oldest old power and the newest new power of any 2994 * sequence of phc calls which arrive during deadlock. 2995 */ 2996 if (cp->pmc_phc_pwr == PM_LEVEL_UNKNOWN) 2997 cp->pmc_phc_pwr = cp->pmc_cur_pwr; 2998 cp->pmc_cur_pwr = 2999 pm_level_to_index(dip, cp, level); 3000 PMD(PMD_PHC, ("%s: deadlock for %s@%s(%s#%d), comp=%d, " 3001 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3002 return (DDI_SUCCESS); 3003 } else 3004 if (blocked) { /* blocked, but different cmpt? */ 3005 if (!ndi_devi_tryenter(pdip, &pcirc)) { 3006 cmn_err(CE_NOTE, 3007 "!pm: parent kuc not updated due " 3008 "to possible deadlock.\n"); 3009 return (pm_phc_impl(dip, 3010 comp, level, 1)); 3011 } 3012 old_level = cur_power(cp); 3013 if (pdip && !PM_WANTS_NOTIFICATION(pdip) && 3014 (!PM_ISBC(dip) || comp == 0) && 3015 POWERING_ON(old_level, level)) 3016 pm_hold_power(pdip); 3017 ret = pm_phc_impl(dip, comp, level, 1); 3018 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 3019 if ((!PM_ISBC(dip) || 3020 comp == 0) && level == 0 && 3021 old_level != PM_LEVEL_UNKNOWN) 3022 pm_rele_power(pdip); 3023 } 3024 ndi_devi_exit(pdip, pcirc); 3025 /* child lock not held: deadlock */ 3026 return (ret); 3027 } 3028 delay(1); 3029 PMD(PMD_PHC, ("%s: try lock again\n", pmf)) 3030 } 3031 3032 /* non-deadlock case */ 3033 old_level = cur_power(cp); 3034 if (pdip && !PM_WANTS_NOTIFICATION(pdip) && 3035 (!PM_ISBC(dip) || comp == 0) && POWERING_ON(old_level, level)) 3036 pm_hold_power(pdip); 3037 ret = pm_phc_impl(dip, comp, level, 1); 3038 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 3039 if ((!PM_ISBC(dip) || comp == 0) && level == 0 && 3040 old_level != PM_LEVEL_UNKNOWN) 3041 pm_rele_power(pdip); 3042 } 3043 PM_UNLOCK_POWER(dip, circ); 3044 ndi_devi_exit(pdip, pcirc); 3045 return (ret); 3046 } 3047 3048 /* 3049 * Account for power changes to a component of the the console frame buffer. 3050 * If lowering power from full (or "unkown", which is treatd as full) 3051 * we will increment the "components off" count of the fb device. 3052 * Subsequent lowering of the same component doesn't affect the count. If 3053 * raising a component back to full power, we will decrement the count. 3054 * 3055 * Return: the increment value for pm_cfb_comps_off (-1, 0, or 1) 3056 */ 3057 static int 3058 calc_cfb_comps_incr(dev_info_t *dip, int cmpt, int old, int new) 3059 { 3060 struct pm_component *cp = PM_CP(dip, cmpt); 3061 int on = (old == PM_LEVEL_UNKNOWN || old == cp->pmc_norm_pwr); 3062 int want_normal = (new == cp->pmc_norm_pwr); 3063 int incr = 0; 3064 3065 if (on && !want_normal) 3066 incr = 1; 3067 else if (!on && want_normal) 3068 incr = -1; 3069 return (incr); 3070 } 3071 3072 /* 3073 * Adjust the count of console frame buffer components < full power. 3074 */ 3075 static void 3076 update_comps_off(int incr, dev_info_t *dip) 3077 { 3078 mutex_enter(&pm_cfb_lock); 3079 pm_cfb_comps_off += incr; 3080 ASSERT(pm_cfb_comps_off <= PM_NUMCMPTS(dip)); 3081 mutex_exit(&pm_cfb_lock); 3082 } 3083 3084 /* 3085 * Update the power state in the framework (via the ppm). The 'notify' 3086 * argument tells whether to notify watchers. Power lock is already held. 3087 */ 3088 static int 3089 pm_phc_impl(dev_info_t *dip, int comp, int level, int notify) 3090 { 3091 PMD_FUNC(pmf, "phc_impl") 3092 power_req_t power_req; 3093 int i, dodeps = 0; 3094 dev_info_t *pdip = ddi_get_parent(dip); 3095 int result; 3096 int old_level; 3097 struct pm_component *cp; 3098 int incr = 0; 3099 dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm; 3100 int work_type = 0; 3101 char *pathbuf; 3102 3103 /* Must use "official" power level for this test. */ 3104 cp = PM_CP(dip, comp); 3105 old_level = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 3106 cp->pmc_phc_pwr : cp->pmc_cur_pwr); 3107 if (old_level != PM_LEVEL_UNKNOWN) 3108 old_level = cp->pmc_comp.pmc_lvals[old_level]; 3109 3110 if (level == old_level) { 3111 PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d is already at " 3112 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3113 return (DDI_SUCCESS); 3114 } 3115 3116 /* 3117 * Tell ppm about this. 3118 */ 3119 power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY; 3120 power_req.req.ppm_notify_level_req.who = dip; 3121 power_req.req.ppm_notify_level_req.cmpt = comp; 3122 power_req.req.ppm_notify_level_req.new_level = level; 3123 power_req.req.ppm_notify_level_req.old_level = old_level; 3124 if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req, 3125 &result) == DDI_FAILURE) { 3126 PMD(PMD_FAIL, ("%s: pm_ctlops %s@%s(%s#%d) to %d failed\n", 3127 pmf, PM_DEVICE(dip), level)) 3128 return (DDI_FAILURE); 3129 } 3130 3131 if (PM_IS_CFB(dip)) { 3132 incr = calc_cfb_comps_incr(dip, comp, old_level, level); 3133 3134 if (incr) { 3135 update_comps_off(incr, dip); 3136 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) comp=%d %d->%d " 3137 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 3138 comp, old_level, level, pm_cfb_comps_off)) 3139 } 3140 } 3141 e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level); 3142 result = DDI_SUCCESS; 3143 3144 if (notify) { 3145 if (pdip && PM_WANTS_NOTIFICATION(pdip)) 3146 pm_notify_parent(dip, pdip, comp, old_level, level); 3147 (void) pm_check_and_resume(dip, comp, old_level, level); 3148 } 3149 3150 /* 3151 * Decrement the dependency kidsup count if we turn a device 3152 * off. 3153 */ 3154 if (POWERING_OFF(old_level, level)) { 3155 dodeps = 1; 3156 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3157 cp = PM_CP(dip, i); 3158 if (cur_power(cp)) { 3159 dodeps = 0; 3160 break; 3161 } 3162 } 3163 if (dodeps) 3164 work_type = PM_DEP_WK_POWER_OFF; 3165 } 3166 3167 /* 3168 * Increment if we turn it on. Check to see 3169 * if other comps are already on, if so, 3170 * dont increment. 3171 */ 3172 if (POWERING_ON(old_level, level)) { 3173 dodeps = 1; 3174 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3175 cp = PM_CP(dip, i); 3176 if (comp == i) 3177 continue; 3178 /* -1 also treated as 0 in this case */ 3179 if (cur_power(cp) > 0) { 3180 dodeps = 0; 3181 break; 3182 } 3183 } 3184 if (dodeps) 3185 work_type = PM_DEP_WK_POWER_ON; 3186 } 3187 3188 if (dodeps) { 3189 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3190 (void) ddi_pathname(dip, pathbuf); 3191 pm_dispatch_to_dep_thread(work_type, pathbuf, NULL, 3192 PM_DEP_NOWAIT, NULL, 0); 3193 kmem_free(pathbuf, MAXPATHLEN); 3194 } 3195 3196 if (notify && (level != old_level) && pm_watchers()) { 3197 mutex_enter(&pm_rsvp_lock); 3198 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, level, old_level, 3199 PM_CANBLOCK_BLOCK); 3200 mutex_exit(&pm_rsvp_lock); 3201 } 3202 3203 PMD(PMD_RESCAN, ("%s: %s@%s(%s#%d): pm_rescan\n", pmf, PM_DEVICE(dip))) 3204 pm_rescan(dip); 3205 return (DDI_SUCCESS); 3206 } 3207 3208 /* 3209 * This function is called at startup time to notify pm of the existence 3210 * of any platform power managers for this platform. As a result of 3211 * this registration, each function provided will be called each time 3212 * a device node is attached, until one returns true, and it must claim the 3213 * device node (by returning non-zero) if it wants to be involved in the 3214 * node's power management. If it does claim the node, then it will 3215 * subsequently be notified of attach and detach events. 3216 * 3217 */ 3218 3219 int 3220 pm_register_ppm(int (*func)(dev_info_t *), dev_info_t *dip) 3221 { 3222 PMD_FUNC(pmf, "register_ppm") 3223 struct ppm_callbacks *ppmcp; 3224 pm_component_t *cp; 3225 int i, pwr, result, circ; 3226 power_req_t power_req; 3227 struct ppm_notify_level_req *p = &power_req.req.ppm_notify_level_req; 3228 void pm_ppm_claim(dev_info_t *); 3229 3230 mutex_enter(&ppm_lock); 3231 ppmcp = ppm_callbacks; 3232 for (i = 0; i < MAX_PPM_HANDLERS; i++, ppmcp++) { 3233 if (ppmcp->ppmc_func == NULL) { 3234 ppmcp->ppmc_func = func; 3235 ppmcp->ppmc_dip = dip; 3236 break; 3237 } 3238 } 3239 mutex_exit(&ppm_lock); 3240 3241 if (i >= MAX_PPM_HANDLERS) 3242 return (DDI_FAILURE); 3243 while ((dip = ddi_get_parent(dip)) != NULL) { 3244 if (dip != ddi_root_node() && PM_GET_PM_INFO(dip) == NULL) 3245 continue; 3246 pm_ppm_claim(dip); 3247 /* don't bother with the not power-manageable nodes */ 3248 if (pm_ppm_claimed(dip) && PM_GET_PM_INFO(dip)) { 3249 /* 3250 * Tell ppm about this. 3251 */ 3252 power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY; 3253 p->old_level = PM_LEVEL_UNKNOWN; 3254 p->who = dip; 3255 PM_LOCK_POWER(dip, &circ); 3256 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3257 cp = PM_CP(dip, i); 3258 pwr = cp->pmc_cur_pwr; 3259 if (pwr != PM_LEVEL_UNKNOWN) { 3260 p->cmpt = i; 3261 p->new_level = cur_power(cp); 3262 p->old_level = PM_LEVEL_UNKNOWN; 3263 if (pm_ctlops(PPM(dip), dip, 3264 DDI_CTLOPS_POWER, &power_req, 3265 &result) == DDI_FAILURE) { 3266 PMD(PMD_FAIL, ("%s: pc " 3267 "%s@%s(%s#%d) to %d " 3268 "fails\n", pmf, 3269 PM_DEVICE(dip), pwr)) 3270 } 3271 } 3272 } 3273 PM_UNLOCK_POWER(dip, circ); 3274 } 3275 } 3276 return (DDI_SUCCESS); 3277 } 3278 3279 /* 3280 * Call the ppm's that have registered and adjust the devinfo struct as 3281 * appropriate. First one to claim it gets it. The sets of devices claimed 3282 * by each ppm are assumed to be disjoint. 3283 */ 3284 void 3285 pm_ppm_claim(dev_info_t *dip) 3286 { 3287 struct ppm_callbacks *ppmcp; 3288 3289 if (PPM(dip)) { 3290 return; 3291 } 3292 mutex_enter(&ppm_lock); 3293 for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++) { 3294 if ((*ppmcp->ppmc_func)(dip)) { 3295 DEVI(dip)->devi_pm_ppm = 3296 (struct dev_info *)ppmcp->ppmc_dip; 3297 mutex_exit(&ppm_lock); 3298 return; 3299 } 3300 } 3301 mutex_exit(&ppm_lock); 3302 } 3303 3304 /* 3305 * Node is being detached so stop autopm until we see if it succeeds, in which 3306 * case pm_stop will be called. For backwards compatible devices we bring the 3307 * device up to full power on the assumption the detach will succeed. 3308 */ 3309 void 3310 pm_detaching(dev_info_t *dip) 3311 { 3312 PMD_FUNC(pmf, "detaching") 3313 pm_info_t *info = PM_GET_PM_INFO(dip); 3314 int iscons; 3315 3316 PMD(PMD_REMDEV, ("%s: %s@%s(%s#%d), %d comps\n", pmf, PM_DEVICE(dip), 3317 PM_NUMCMPTS(dip))) 3318 if (info == NULL) 3319 return; 3320 ASSERT(DEVI_IS_DETACHING(dip)); 3321 PM_LOCK_DIP(dip); 3322 info->pmi_dev_pm_state |= PM_DETACHING; 3323 PM_UNLOCK_DIP(dip); 3324 if (!PM_ISBC(dip)) 3325 pm_scan_stop(dip); 3326 3327 /* 3328 * console and old-style devices get brought up when detaching. 3329 */ 3330 iscons = PM_IS_CFB(dip); 3331 if (iscons || PM_ISBC(dip)) { 3332 (void) pm_all_to_normal(dip, PM_CANBLOCK_BYPASS); 3333 if (iscons) { 3334 mutex_enter(&pm_cfb_lock); 3335 while (cfb_inuse) { 3336 mutex_exit(&pm_cfb_lock); 3337 PMD(PMD_CFB, ("%s: delay; cfb_inuse\n", pmf)) 3338 delay(1); 3339 mutex_enter(&pm_cfb_lock); 3340 } 3341 ASSERT(cfb_dip_detaching == NULL); 3342 ASSERT(cfb_dip); 3343 cfb_dip_detaching = cfb_dip; /* case detach fails */ 3344 cfb_dip = NULL; 3345 mutex_exit(&pm_cfb_lock); 3346 } 3347 } 3348 } 3349 3350 /* 3351 * Node failed to detach. If it used to be autopm'd, make it so again. 3352 */ 3353 void 3354 pm_detach_failed(dev_info_t *dip) 3355 { 3356 PMD_FUNC(pmf, "detach_failed") 3357 pm_info_t *info = PM_GET_PM_INFO(dip); 3358 int pm_all_at_normal(dev_info_t *); 3359 3360 if (info == NULL) 3361 return; 3362 ASSERT(DEVI_IS_DETACHING(dip)); 3363 if (info->pmi_dev_pm_state & PM_DETACHING) { 3364 info->pmi_dev_pm_state &= ~PM_DETACHING; 3365 if (info->pmi_dev_pm_state & PM_ALLNORM_DEFERRED) { 3366 /* Make sure the operation is still needed */ 3367 if (!pm_all_at_normal(dip)) { 3368 if (pm_all_to_normal(dip, 3369 PM_CANBLOCK_FAIL) != DDI_SUCCESS) { 3370 PMD(PMD_ERROR, ("%s: could not bring " 3371 "%s@%s(%s#%d) to normal\n", pmf, 3372 PM_DEVICE(dip))) 3373 } 3374 } 3375 info->pmi_dev_pm_state &= ~PM_ALLNORM_DEFERRED; 3376 } 3377 } 3378 if (!PM_ISBC(dip)) { 3379 mutex_enter(&pm_scan_lock); 3380 if (PM_SCANABLE(dip)) 3381 pm_scan_init(dip); 3382 mutex_exit(&pm_scan_lock); 3383 pm_rescan(dip); 3384 } 3385 } 3386 3387 /* generic Backwards Compatible component */ 3388 static char *bc_names[] = {"off", "on"}; 3389 3390 static pm_comp_t bc_comp = {"unknown", 2, NULL, NULL, &bc_names[0]}; 3391 3392 static void 3393 e_pm_default_levels(dev_info_t *dip, pm_component_t *cp, int norm) 3394 { 3395 pm_comp_t *pmc; 3396 pmc = &cp->pmc_comp; 3397 pmc->pmc_numlevels = 2; 3398 pmc->pmc_lvals[0] = 0; 3399 pmc->pmc_lvals[1] = norm; 3400 e_pm_set_cur_pwr(dip, cp, norm); 3401 } 3402 3403 static void 3404 e_pm_default_components(dev_info_t *dip, int cmpts) 3405 { 3406 int i; 3407 pm_component_t *p = DEVI(dip)->devi_pm_components; 3408 3409 p = DEVI(dip)->devi_pm_components; 3410 for (i = 0; i < cmpts; i++, p++) { 3411 p->pmc_comp = bc_comp; /* struct assignment */ 3412 p->pmc_comp.pmc_lvals = kmem_zalloc(2 * sizeof (int), 3413 KM_SLEEP); 3414 p->pmc_comp.pmc_thresh = kmem_alloc(2 * sizeof (int), 3415 KM_SLEEP); 3416 p->pmc_comp.pmc_numlevels = 2; 3417 p->pmc_comp.pmc_thresh[0] = INT_MAX; 3418 p->pmc_comp.pmc_thresh[1] = INT_MAX; 3419 } 3420 } 3421 3422 /* 3423 * Called from functions that require components to exist already to allow 3424 * for their creation by parsing the pm-components property. 3425 * Device will not be power managed as a result of this call 3426 * No locking needed because we're single threaded by the ndi_devi_enter 3427 * done while attaching, and the device isn't visible until after it has 3428 * attached 3429 */ 3430 int 3431 pm_premanage(dev_info_t *dip, int style) 3432 { 3433 PMD_FUNC(pmf, "premanage") 3434 pm_comp_t *pcp, *compp; 3435 int cmpts, i, norm, error; 3436 pm_component_t *p = DEVI(dip)->devi_pm_components; 3437 pm_comp_t *pm_autoconfig(dev_info_t *, int *); 3438 3439 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 3440 /* 3441 * If this dip has already been processed, don't mess with it 3442 */ 3443 if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE) 3444 return (DDI_SUCCESS); 3445 if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_FAILED) { 3446 return (DDI_FAILURE); 3447 } 3448 /* 3449 * Look up pm-components property and create components accordingly 3450 * If that fails, fall back to backwards compatibility 3451 */ 3452 if ((compp = pm_autoconfig(dip, &error)) == NULL) { 3453 /* 3454 * If error is set, the property existed but was not well formed 3455 */ 3456 if (error || (style == PM_STYLE_NEW)) { 3457 DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_FAILED; 3458 return (DDI_FAILURE); 3459 } 3460 /* 3461 * If they don't have the pm-components property, then we 3462 * want the old "no pm until PM_SET_DEVICE_THRESHOLDS ioctl" 3463 * behavior driver must have called pm_create_components, and 3464 * we need to flesh out dummy components 3465 */ 3466 if ((cmpts = PM_NUMCMPTS(dip)) == 0) { 3467 /* 3468 * Not really failure, but we don't want the 3469 * caller to treat it as success 3470 */ 3471 return (DDI_FAILURE); 3472 } 3473 DEVI(dip)->devi_pm_flags |= PMC_BC; 3474 e_pm_default_components(dip, cmpts); 3475 for (i = 0; i < cmpts; i++) { 3476 /* 3477 * if normal power not set yet, we don't really know 3478 * what *ANY* of the power values are. If normal 3479 * power is set, then we assume for this backwards 3480 * compatible case that the values are 0, normal power. 3481 */ 3482 norm = pm_get_normal_power(dip, i); 3483 if (norm == (uint_t)-1) { 3484 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d)[%d]\n", pmf, 3485 PM_DEVICE(dip), i)) 3486 return (DDI_FAILURE); 3487 } 3488 /* 3489 * Components of BC devices start at their normal power, 3490 * so count them to be not at their lowest power. 3491 */ 3492 PM_INCR_NOTLOWEST(dip); 3493 e_pm_default_levels(dip, PM_CP(dip, i), norm); 3494 } 3495 } else { 3496 /* 3497 * e_pm_create_components was called from pm_autoconfig(), it 3498 * creates components with no descriptions (or known levels) 3499 */ 3500 cmpts = PM_NUMCMPTS(dip); 3501 ASSERT(cmpts != 0); 3502 pcp = compp; 3503 p = DEVI(dip)->devi_pm_components; 3504 for (i = 0; i < cmpts; i++, p++) { 3505 p->pmc_comp = *pcp++; /* struct assignment */ 3506 ASSERT(PM_CP(dip, i)->pmc_cur_pwr == 0); 3507 e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN); 3508 } 3509 if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH) 3510 pm_set_device_threshold(dip, pm_cpu_idle_threshold, 3511 PMC_CPU_THRESH); 3512 else 3513 pm_set_device_threshold(dip, pm_system_idle_threshold, 3514 PMC_DEF_THRESH); 3515 kmem_free(compp, cmpts * sizeof (pm_comp_t)); 3516 } 3517 return (DDI_SUCCESS); 3518 } 3519 3520 /* 3521 * Called from during or after the device's attach to let us know it is ready 3522 * to play autopm. Look up the pm model and manage the device accordingly. 3523 * Returns system call errno value. 3524 * If DDI_ATTACH and DDI_DETACH were in same namespace, this would be 3525 * a little cleaner 3526 * 3527 * Called with dip lock held, return with dip lock unheld. 3528 */ 3529 3530 int 3531 e_pm_manage(dev_info_t *dip, int style) 3532 { 3533 PMD_FUNC(pmf, "e_manage") 3534 pm_info_t *info; 3535 dev_info_t *pdip = ddi_get_parent(dip); 3536 int pm_thresh_specd(dev_info_t *); 3537 int count; 3538 char *pathbuf; 3539 3540 if (pm_premanage(dip, style) != DDI_SUCCESS) { 3541 return (DDI_FAILURE); 3542 } 3543 PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3544 ASSERT(PM_GET_PM_INFO(dip) == NULL); 3545 info = kmem_zalloc(sizeof (pm_info_t), KM_SLEEP); 3546 3547 /* 3548 * Now set up parent's kidsupcnt. BC nodes are assumed to start 3549 * out at their normal power, so they are "up", others start out 3550 * unknown, which is effectively "up". Parent which want notification 3551 * get kidsupcnt of 0 always. 3552 */ 3553 count = (PM_ISBC(dip)) ? 1 : PM_NUMCMPTS(dip); 3554 if (count && pdip && !PM_WANTS_NOTIFICATION(pdip)) 3555 e_pm_hold_rele_power(pdip, count); 3556 3557 pm_set_pm_info(dip, info); 3558 /* 3559 * Apply any recorded thresholds 3560 */ 3561 (void) pm_thresh_specd(dip); 3562 3563 /* 3564 * Do dependency processing. 3565 */ 3566 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3567 (void) ddi_pathname(dip, pathbuf); 3568 pm_dispatch_to_dep_thread(PM_DEP_WK_ATTACH, pathbuf, pathbuf, 3569 PM_DEP_NOWAIT, NULL, 0); 3570 kmem_free(pathbuf, MAXPATHLEN); 3571 3572 if (!PM_ISBC(dip)) { 3573 mutex_enter(&pm_scan_lock); 3574 if (PM_SCANABLE(dip)) { 3575 pm_scan_init(dip); 3576 mutex_exit(&pm_scan_lock); 3577 pm_rescan(dip); 3578 } else { 3579 mutex_exit(&pm_scan_lock); 3580 } 3581 } 3582 return (0); 3583 } 3584 3585 /* 3586 * This is the obsolete exported interface for a driver to find out its 3587 * "normal" (max) power. 3588 * We only get components destroyed while no power management is 3589 * going on (and the device is detached), so we don't need a mutex here 3590 */ 3591 int 3592 pm_get_normal_power(dev_info_t *dip, int comp) 3593 { 3594 3595 if (comp >= 0 && comp < PM_NUMCMPTS(dip)) { 3596 return (PM_CP(dip, comp)->pmc_norm_pwr); 3597 } 3598 return (DDI_FAILURE); 3599 } 3600 3601 /* 3602 * Fetches the current power level. Return DDI_SUCCESS or DDI_FAILURE. 3603 */ 3604 int 3605 pm_get_current_power(dev_info_t *dip, int comp, int *levelp) 3606 { 3607 if (comp >= 0 && comp < PM_NUMCMPTS(dip)) { 3608 *levelp = PM_CURPOWER(dip, comp); 3609 return (DDI_SUCCESS); 3610 } 3611 return (DDI_FAILURE); 3612 } 3613 3614 /* 3615 * Returns current threshold of indicated component 3616 */ 3617 static int 3618 cur_threshold(dev_info_t *dip, int comp) 3619 { 3620 pm_component_t *cp = PM_CP(dip, comp); 3621 int pwr; 3622 3623 if (PM_ISBC(dip)) { 3624 /* 3625 * backwards compatible nodes only have one threshold 3626 */ 3627 return (cp->pmc_comp.pmc_thresh[1]); 3628 } 3629 pwr = cp->pmc_cur_pwr; 3630 if (pwr == PM_LEVEL_UNKNOWN) { 3631 int thresh; 3632 if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH) 3633 thresh = pm_default_nexus_threshold; 3634 else if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH) 3635 thresh = pm_cpu_idle_threshold; 3636 else 3637 thresh = pm_system_idle_threshold; 3638 return (thresh); 3639 } 3640 ASSERT(cp->pmc_comp.pmc_thresh); 3641 return (cp->pmc_comp.pmc_thresh[pwr]); 3642 } 3643 3644 /* 3645 * Compute next lower component power level given power index. 3646 */ 3647 static int 3648 pm_next_lower_power(pm_component_t *cp, int pwrndx) 3649 { 3650 int nxt_pwr; 3651 3652 if (pwrndx == PM_LEVEL_UNKNOWN) { 3653 nxt_pwr = cp->pmc_comp.pmc_lvals[0]; 3654 } else { 3655 pwrndx--; 3656 ASSERT(pwrndx >= 0); 3657 nxt_pwr = cp->pmc_comp.pmc_lvals[pwrndx]; 3658 } 3659 return (nxt_pwr); 3660 } 3661 3662 /* 3663 * Update the maxpower (normal) power of a component. Note that the 3664 * component's power level is only changed if it's current power level 3665 * is higher than the new max power. 3666 */ 3667 int 3668 pm_update_maxpower(dev_info_t *dip, int comp, int level) 3669 { 3670 PMD_FUNC(pmf, "update_maxpower") 3671 int old; 3672 int result; 3673 3674 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 3675 !e_pm_valid_power(dip, comp, level)) { 3676 PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) " 3677 "comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3678 return (DDI_FAILURE); 3679 } 3680 old = e_pm_get_max_power(dip, comp); 3681 e_pm_set_max_power(dip, comp, level); 3682 3683 if (pm_set_power(dip, comp, level, PM_LEVEL_DOWNONLY, 3684 PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) { 3685 e_pm_set_max_power(dip, comp, old); 3686 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) pm_set_power failed\n", pmf, 3687 PM_DEVICE(dip))) 3688 return (DDI_FAILURE); 3689 } 3690 return (DDI_SUCCESS); 3691 } 3692 3693 /* 3694 * Bring all components of device to normal power 3695 */ 3696 int 3697 pm_all_to_normal(dev_info_t *dip, pm_canblock_t canblock) 3698 { 3699 PMD_FUNC(pmf, "all_to_normal") 3700 int *normal; 3701 int i, ncomps, result; 3702 size_t size; 3703 int changefailed = 0; 3704 3705 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3706 ASSERT(PM_GET_PM_INFO(dip)); 3707 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 3708 PMD(PMD_ALLNORM, ("%s: can't get norm pwrs for " 3709 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3710 return (DDI_FAILURE); 3711 } 3712 ncomps = PM_NUMCMPTS(dip); 3713 for (i = 0; i < ncomps; i++) { 3714 if (pm_set_power(dip, i, normal[i], 3715 PM_LEVEL_UPONLY, canblock, 0, &result) != DDI_SUCCESS) { 3716 changefailed++; 3717 PMD(PMD_ALLNORM | PMD_FAIL, ("%s: failed to set " 3718 "%s@%s(%s#%d)[%d] to %d, errno %d\n", pmf, 3719 PM_DEVICE(dip), i, normal[i], result)) 3720 } 3721 } 3722 kmem_free(normal, size); 3723 if (changefailed) { 3724 PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) " 3725 "to full power\n", pmf, changefailed, PM_DEVICE(dip))) 3726 return (DDI_FAILURE); 3727 } 3728 return (DDI_SUCCESS); 3729 } 3730 3731 /* 3732 * Returns true if all components of device are at normal power 3733 */ 3734 int 3735 pm_all_at_normal(dev_info_t *dip) 3736 { 3737 PMD_FUNC(pmf, "all_at_normal") 3738 int *normal; 3739 int i; 3740 size_t size; 3741 3742 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3743 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 3744 PMD(PMD_ALLNORM, ("%s: can't get normal power\n", pmf)) 3745 return (DDI_FAILURE); 3746 } 3747 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3748 int current = PM_CURPOWER(dip, i); 3749 if (normal[i] > current) { 3750 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d) comp=%d, " 3751 "norm=%d, cur=%d\n", pmf, PM_DEVICE(dip), i, 3752 normal[i], current)) 3753 break; 3754 } 3755 } 3756 kmem_free(normal, size); 3757 if (i != PM_NUMCMPTS(dip)) { 3758 return (0); 3759 } 3760 return (1); 3761 } 3762 3763 static void bring_pmdep_up(dev_info_t *, int); 3764 3765 static void 3766 bring_wekeeps_up(char *keeper) 3767 { 3768 PMD_FUNC(pmf, "bring_wekeeps_up") 3769 int i; 3770 pm_pdr_t *dp; 3771 pm_info_t *wku_info; 3772 char *kept_path; 3773 dev_info_t *kept; 3774 3775 if (panicstr) { 3776 return; 3777 } 3778 /* 3779 * We process the request even if the keeper detaches because 3780 * detach processing expects this to increment kidsupcnt of kept. 3781 */ 3782 PMD(PMD_BRING, ("%s: keeper= %s\n", pmf, keeper)) 3783 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 3784 if (strcmp(dp->pdr_keeper, keeper) != 0) 3785 continue; 3786 for (i = 0; i < dp->pdr_kept_count; i++) { 3787 kept_path = dp->pdr_kept_paths[i]; 3788 if (kept_path == NULL) 3789 continue; 3790 ASSERT(kept_path[0] != '\0'); 3791 if ((kept = pm_name_to_dip(kept_path, 1)) == NULL) 3792 continue; 3793 wku_info = PM_GET_PM_INFO(kept); 3794 if (wku_info == NULL) { 3795 if (kept) 3796 ddi_release_devi(kept); 3797 continue; 3798 } 3799 /* 3800 * Don't mess with it if it is being detached, it isn't 3801 * safe to call its power entry point 3802 */ 3803 if (wku_info->pmi_dev_pm_state & PM_DETACHING) { 3804 if (kept) 3805 ddi_release_devi(kept); 3806 continue; 3807 } 3808 bring_pmdep_up(kept, 1); 3809 ddi_release_devi(kept); 3810 } 3811 } 3812 } 3813 3814 /* 3815 * Bring up the 'kept' device passed as argument 3816 */ 3817 static void 3818 bring_pmdep_up(dev_info_t *kept_dip, int hold) 3819 { 3820 PMD_FUNC(pmf, "bring_pmdep_up") 3821 int is_all_at_normal = 0; 3822 3823 /* 3824 * If the kept device has been unmanaged, do nothing. 3825 */ 3826 if (!PM_GET_PM_INFO(kept_dip)) 3827 return; 3828 3829 /* Just ignore DIRECT PM device till they are released. */ 3830 if (!pm_processes_stopped && PM_ISDIRECT(kept_dip) && 3831 !(is_all_at_normal = pm_all_at_normal(kept_dip))) { 3832 PMD(PMD_BRING, ("%s: can't bring up PM_DIRECT %s@%s(%s#%d) " 3833 "controlling process did something else\n", pmf, 3834 PM_DEVICE(kept_dip))) 3835 DEVI(kept_dip)->devi_pm_flags |= PMC_SKIP_BRINGUP; 3836 return; 3837 } 3838 /* if we got here the keeper had a transition from OFF->ON */ 3839 if (hold) 3840 pm_hold_power(kept_dip); 3841 3842 if (!is_all_at_normal) 3843 (void) pm_all_to_normal(kept_dip, PM_CANBLOCK_FAIL); 3844 } 3845 3846 /* 3847 * A bunch of stuff that belongs only to the next routine (or two) 3848 */ 3849 3850 static const char namestr[] = "NAME="; 3851 static const int nameln = sizeof (namestr) - 1; 3852 static const char pmcompstr[] = "pm-components"; 3853 3854 struct pm_comp_pkg { 3855 pm_comp_t *comp; 3856 struct pm_comp_pkg *next; 3857 }; 3858 3859 #define isdigit(ch) ((ch) >= '0' && (ch) <= '9') 3860 3861 #define isxdigit(ch) (isdigit(ch) || ((ch) >= 'a' && (ch) <= 'f') || \ 3862 ((ch) >= 'A' && (ch) <= 'F')) 3863 3864 /* 3865 * Rather than duplicate this code ... 3866 * (this code excerpted from the function that follows it) 3867 */ 3868 #define FINISH_COMP { \ 3869 ASSERT(compp); \ 3870 compp->pmc_lnames_sz = size; \ 3871 tp = compp->pmc_lname_buf = kmem_alloc(size, KM_SLEEP); \ 3872 compp->pmc_numlevels = level; \ 3873 compp->pmc_lnames = kmem_alloc(level * sizeof (char *), KM_SLEEP); \ 3874 compp->pmc_lvals = kmem_alloc(level * sizeof (int), KM_SLEEP); \ 3875 compp->pmc_thresh = kmem_alloc(level * sizeof (int), KM_SLEEP); \ 3876 /* copy string out of prop array into buffer */ \ 3877 for (j = 0; j < level; j++) { \ 3878 compp->pmc_thresh[j] = INT_MAX; /* only [0] sticks */ \ 3879 compp->pmc_lvals[j] = lvals[j]; \ 3880 (void) strcpy(tp, lnames[j]); \ 3881 compp->pmc_lnames[j] = tp; \ 3882 tp += lszs[j]; \ 3883 } \ 3884 ASSERT(tp > compp->pmc_lname_buf && tp <= \ 3885 compp->pmc_lname_buf + compp->pmc_lnames_sz); \ 3886 } 3887 3888 /* 3889 * Create (empty) component data structures. 3890 */ 3891 static void 3892 e_pm_create_components(dev_info_t *dip, int num_components) 3893 { 3894 struct pm_component *compp, *ocompp; 3895 int i, size = 0; 3896 3897 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 3898 ASSERT(!DEVI(dip)->devi_pm_components); 3899 ASSERT(!(DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE)); 3900 size = sizeof (struct pm_component) * num_components; 3901 3902 compp = kmem_zalloc(size, KM_SLEEP); 3903 ocompp = compp; 3904 DEVI(dip)->devi_pm_comp_size = size; 3905 DEVI(dip)->devi_pm_num_components = num_components; 3906 PM_LOCK_BUSY(dip); 3907 for (i = 0; i < num_components; i++) { 3908 compp->pmc_timestamp = gethrestime_sec(); 3909 compp->pmc_norm_pwr = (uint_t)-1; 3910 compp++; 3911 } 3912 PM_UNLOCK_BUSY(dip); 3913 DEVI(dip)->devi_pm_components = ocompp; 3914 DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_DONE; 3915 } 3916 3917 /* 3918 * Parse hex or decimal value from char string 3919 */ 3920 static char * 3921 pm_parsenum(char *cp, int *valp) 3922 { 3923 int ch, offset; 3924 char numbuf[256]; 3925 char *np = numbuf; 3926 int value = 0; 3927 3928 ch = *cp++; 3929 if (isdigit(ch)) { 3930 if (ch == '0') { 3931 if ((ch = *cp++) == 'x' || ch == 'X') { 3932 ch = *cp++; 3933 while (isxdigit(ch)) { 3934 *np++ = (char)ch; 3935 ch = *cp++; 3936 } 3937 *np = 0; 3938 cp--; 3939 goto hexval; 3940 } else { 3941 goto digit; 3942 } 3943 } else { 3944 digit: 3945 while (isdigit(ch)) { 3946 *np++ = (char)ch; 3947 ch = *cp++; 3948 } 3949 *np = 0; 3950 cp--; 3951 goto decval; 3952 } 3953 } else 3954 return (NULL); 3955 3956 hexval: 3957 for (np = numbuf; *np; np++) { 3958 if (*np >= 'a' && *np <= 'f') 3959 offset = 'a' - 10; 3960 else if (*np >= 'A' && *np <= 'F') 3961 offset = 'A' - 10; 3962 else if (*np >= '0' && *np <= '9') 3963 offset = '0'; 3964 value *= 16; 3965 value += *np - offset; 3966 } 3967 *valp = value; 3968 return (cp); 3969 3970 decval: 3971 offset = '0'; 3972 for (np = numbuf; *np; np++) { 3973 value *= 10; 3974 value += *np - offset; 3975 } 3976 *valp = value; 3977 return (cp); 3978 } 3979 3980 /* 3981 * Set max (previously documented as "normal") power. 3982 */ 3983 static void 3984 e_pm_set_max_power(dev_info_t *dip, int component_number, int level) 3985 { 3986 PM_CP(dip, component_number)->pmc_norm_pwr = level; 3987 } 3988 3989 /* 3990 * Get max (previously documented as "normal") power. 3991 */ 3992 static int 3993 e_pm_get_max_power(dev_info_t *dip, int component_number) 3994 { 3995 return (PM_CP(dip, component_number)->pmc_norm_pwr); 3996 } 3997 3998 /* 3999 * Internal routine for destroying components 4000 * It is called even when there might not be any, so it must be forgiving. 4001 */ 4002 static void 4003 e_pm_destroy_components(dev_info_t *dip) 4004 { 4005 int i; 4006 struct pm_component *cp; 4007 4008 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4009 if (PM_NUMCMPTS(dip) == 0) 4010 return; 4011 cp = DEVI(dip)->devi_pm_components; 4012 ASSERT(cp); 4013 for (i = 0; i < PM_NUMCMPTS(dip); i++, cp++) { 4014 int nlevels = cp->pmc_comp.pmc_numlevels; 4015 kmem_free(cp->pmc_comp.pmc_lvals, nlevels * sizeof (int)); 4016 kmem_free(cp->pmc_comp.pmc_thresh, nlevels * sizeof (int)); 4017 /* 4018 * For BC nodes, the rest is static in bc_comp, so skip it 4019 */ 4020 if (PM_ISBC(dip)) 4021 continue; 4022 kmem_free(cp->pmc_comp.pmc_name, cp->pmc_comp.pmc_name_sz); 4023 kmem_free(cp->pmc_comp.pmc_lnames, nlevels * sizeof (char *)); 4024 kmem_free(cp->pmc_comp.pmc_lname_buf, 4025 cp->pmc_comp.pmc_lnames_sz); 4026 } 4027 kmem_free(DEVI(dip)->devi_pm_components, DEVI(dip)->devi_pm_comp_size); 4028 DEVI(dip)->devi_pm_components = NULL; 4029 DEVI(dip)->devi_pm_num_components = 0; 4030 DEVI(dip)->devi_pm_flags &= 4031 ~(PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED); 4032 } 4033 4034 /* 4035 * Read the pm-components property (if there is one) and use it to set up 4036 * components. Returns a pointer to an array of component structures if 4037 * pm-components found and successfully parsed, else returns NULL. 4038 * Sets error return *errp to true to indicate a failure (as opposed to no 4039 * property being present). 4040 */ 4041 pm_comp_t * 4042 pm_autoconfig(dev_info_t *dip, int *errp) 4043 { 4044 PMD_FUNC(pmf, "autoconfig") 4045 uint_t nelems; 4046 char **pp; 4047 pm_comp_t *compp = NULL; 4048 int i, j, level, components = 0; 4049 size_t size = 0; 4050 struct pm_comp_pkg *p, *ptail; 4051 struct pm_comp_pkg *phead = NULL; 4052 int *lvals = NULL; 4053 int *lszs = NULL; 4054 int *np = NULL; 4055 int npi = 0; 4056 char **lnames = NULL; 4057 char *cp, *tp; 4058 pm_comp_t *ret = NULL; 4059 4060 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4061 *errp = 0; /* assume success */ 4062 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 4063 (char *)pmcompstr, &pp, &nelems) != DDI_PROP_SUCCESS) { 4064 return (NULL); 4065 } 4066 4067 if (nelems < 3) { /* need at least one name and two levels */ 4068 goto errout; 4069 } 4070 4071 /* 4072 * pm_create_components is no longer allowed 4073 */ 4074 if (PM_NUMCMPTS(dip) != 0) { 4075 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) has %d comps\n", 4076 pmf, PM_DEVICE(dip), PM_NUMCMPTS(dip))) 4077 goto errout; 4078 } 4079 4080 lvals = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4081 lszs = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4082 lnames = kmem_alloc(nelems * sizeof (char *), KM_SLEEP); 4083 np = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4084 4085 level = 0; 4086 phead = NULL; 4087 for (i = 0; i < nelems; i++) { 4088 cp = pp[i]; 4089 if (!isdigit(*cp)) { /* must be name */ 4090 if (strncmp(cp, namestr, nameln) != 0) { 4091 goto errout; 4092 } 4093 if (i != 0) { 4094 if (level == 0) { /* no level spec'd */ 4095 PMD(PMD_ERROR, ("%s: no level spec'd\n", 4096 pmf)) 4097 goto errout; 4098 } 4099 np[npi++] = lvals[level - 1]; 4100 /* finish up previous component levels */ 4101 FINISH_COMP; 4102 } 4103 cp += nameln; 4104 if (!*cp) { 4105 PMD(PMD_ERROR, ("%s: nsa\n", pmf)) 4106 goto errout; 4107 } 4108 p = kmem_zalloc(sizeof (*phead), KM_SLEEP); 4109 if (phead == NULL) { 4110 phead = ptail = p; 4111 } else { 4112 ptail->next = p; 4113 ptail = p; 4114 } 4115 compp = p->comp = kmem_zalloc(sizeof (pm_comp_t), 4116 KM_SLEEP); 4117 compp->pmc_name_sz = strlen(cp) + 1; 4118 compp->pmc_name = kmem_zalloc(compp->pmc_name_sz, 4119 KM_SLEEP); 4120 (void) strncpy(compp->pmc_name, cp, compp->pmc_name_sz); 4121 components++; 4122 level = 0; 4123 } else { /* better be power level <num>=<name> */ 4124 #ifdef DEBUG 4125 tp = cp; 4126 #endif 4127 if (i == 0 || 4128 (cp = pm_parsenum(cp, &lvals[level])) == NULL) { 4129 PMD(PMD_ERROR, ("%s: parsenum(%s)\n", pmf, tp)) 4130 goto errout; 4131 } 4132 #ifdef DEBUG 4133 tp = cp; 4134 #endif 4135 if (*cp++ != '=' || !*cp) { 4136 PMD(PMD_ERROR, ("%s: ex =, got %s\n", pmf, tp)) 4137 goto errout; 4138 } 4139 4140 lszs[level] = strlen(cp) + 1; 4141 size += lszs[level]; 4142 lnames[level] = cp; /* points into prop string */ 4143 level++; 4144 } 4145 } 4146 np[npi++] = lvals[level - 1]; 4147 if (level == 0) { /* ended with a name */ 4148 PMD(PMD_ERROR, ("%s: ewn\n", pmf)) 4149 goto errout; 4150 } 4151 FINISH_COMP; 4152 4153 4154 /* 4155 * Now we have a list of components--we have to return instead an 4156 * array of them, but we can just copy the top level and leave 4157 * the rest as is 4158 */ 4159 (void) e_pm_create_components(dip, components); 4160 for (i = 0; i < components; i++) 4161 e_pm_set_max_power(dip, i, np[i]); 4162 4163 ret = kmem_zalloc(components * sizeof (pm_comp_t), KM_SLEEP); 4164 for (i = 0, p = phead; i < components; i++) { 4165 ASSERT(p); 4166 /* 4167 * Now sanity-check values: levels must be monotonically 4168 * increasing 4169 */ 4170 if (p->comp->pmc_numlevels < 2) { 4171 PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) only %d " 4172 "levels\n", pmf, 4173 p->comp->pmc_name, PM_DEVICE(dip), 4174 p->comp->pmc_numlevels)) 4175 goto errout; 4176 } 4177 for (j = 0; j < p->comp->pmc_numlevels; j++) { 4178 if ((p->comp->pmc_lvals[j] < 0) || ((j > 0) && 4179 (p->comp->pmc_lvals[j] <= 4180 p->comp->pmc_lvals[j - 1]))) { 4181 PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) " 4182 "not mono. incr, %d follows %d\n", pmf, 4183 p->comp->pmc_name, PM_DEVICE(dip), 4184 p->comp->pmc_lvals[j], 4185 p->comp->pmc_lvals[j - 1])) 4186 goto errout; 4187 } 4188 } 4189 ret[i] = *p->comp; /* struct assignment */ 4190 for (j = 0; j < i; j++) { 4191 /* 4192 * Test for unique component names 4193 */ 4194 if (strcmp(ret[j].pmc_name, ret[i].pmc_name) == 0) { 4195 PMD(PMD_ERROR, ("%s: %s of %s@%s(%s#%d) not " 4196 "unique\n", pmf, ret[j].pmc_name, 4197 PM_DEVICE(dip))) 4198 goto errout; 4199 } 4200 } 4201 ptail = p; 4202 p = p->next; 4203 phead = p; /* errout depends on phead making sense */ 4204 kmem_free(ptail->comp, sizeof (*ptail->comp)); 4205 kmem_free(ptail, sizeof (*ptail)); 4206 } 4207 out: 4208 ddi_prop_free(pp); 4209 if (lvals) 4210 kmem_free(lvals, nelems * sizeof (int)); 4211 if (lszs) 4212 kmem_free(lszs, nelems * sizeof (int)); 4213 if (lnames) 4214 kmem_free(lnames, nelems * sizeof (char *)); 4215 if (np) 4216 kmem_free(np, nelems * sizeof (int)); 4217 return (ret); 4218 4219 errout: 4220 e_pm_destroy_components(dip); 4221 *errp = 1; /* signal failure */ 4222 cmn_err(CE_CONT, "!pm: %s property ", pmcompstr); 4223 for (i = 0; i < nelems - 1; i++) 4224 cmn_err(CE_CONT, "!'%s', ", pp[i]); 4225 if (nelems != 0) 4226 cmn_err(CE_CONT, "!'%s'", pp[nelems - 1]); 4227 cmn_err(CE_CONT, "! for %s@%s(%s#%d) is ill-formed.\n", PM_DEVICE(dip)); 4228 for (p = phead; p; ) { 4229 pm_comp_t *pp; 4230 int n; 4231 4232 ptail = p; 4233 /* 4234 * Free component data structures 4235 */ 4236 pp = p->comp; 4237 n = pp->pmc_numlevels; 4238 if (pp->pmc_name_sz) { 4239 kmem_free(pp->pmc_name, pp->pmc_name_sz); 4240 } 4241 if (pp->pmc_lnames_sz) { 4242 kmem_free(pp->pmc_lname_buf, pp->pmc_lnames_sz); 4243 } 4244 if (pp->pmc_lnames) { 4245 kmem_free(pp->pmc_lnames, n * (sizeof (char *))); 4246 } 4247 if (pp->pmc_thresh) { 4248 kmem_free(pp->pmc_thresh, n * (sizeof (int))); 4249 } 4250 if (pp->pmc_lvals) { 4251 kmem_free(pp->pmc_lvals, n * (sizeof (int))); 4252 } 4253 p = ptail->next; 4254 kmem_free(ptail, sizeof (*ptail)); 4255 } 4256 if (ret != NULL) 4257 kmem_free(ret, components * sizeof (pm_comp_t)); 4258 ret = NULL; 4259 goto out; 4260 } 4261 4262 /* 4263 * Set threshold values for a devices components by dividing the target 4264 * threshold (base) by the number of transitions and assign each transition 4265 * that threshold. This will get the entire device down in the target time if 4266 * all components are idle and even if there are dependencies among components. 4267 * 4268 * Devices may well get powered all the way down before the target time, but 4269 * at least the EPA will be happy. 4270 */ 4271 void 4272 pm_set_device_threshold(dev_info_t *dip, int base, int flag) 4273 { 4274 PMD_FUNC(pmf, "set_device_threshold") 4275 int target_threshold = (base * 95) / 100; 4276 int level, comp; /* loop counters */ 4277 int transitions = 0; 4278 int ncomp = PM_NUMCMPTS(dip); 4279 int thresh; 4280 int remainder; 4281 pm_comp_t *pmc; 4282 int i, circ; 4283 4284 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4285 PM_LOCK_DIP(dip); 4286 /* 4287 * First we handle the easy one. If we're setting the default 4288 * threshold for a node with children, then we set it to the 4289 * default nexus threshold (currently 0) and mark it as default 4290 * nexus threshold instead 4291 */ 4292 if (PM_IS_NEXUS(dip)) { 4293 if (flag == PMC_DEF_THRESH) { 4294 PMD(PMD_THRESH, ("%s: [%s@%s(%s#%d) NEXDEF]\n", pmf, 4295 PM_DEVICE(dip))) 4296 thresh = pm_default_nexus_threshold; 4297 for (comp = 0; comp < ncomp; comp++) { 4298 pmc = &PM_CP(dip, comp)->pmc_comp; 4299 for (level = 1; level < pmc->pmc_numlevels; 4300 level++) { 4301 pmc->pmc_thresh[level] = thresh; 4302 } 4303 } 4304 DEVI(dip)->devi_pm_dev_thresh = 4305 pm_default_nexus_threshold; 4306 /* 4307 * If the nexus node is being reconfigured back to 4308 * the default threshold, adjust the notlowest count. 4309 */ 4310 if (DEVI(dip)->devi_pm_flags & 4311 (PMC_DEV_THRESH|PMC_COMP_THRESH)) { 4312 PM_LOCK_POWER(dip, &circ); 4313 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 4314 if (PM_CURPOWER(dip, i) == 0) 4315 continue; 4316 mutex_enter(&pm_compcnt_lock); 4317 ASSERT(pm_comps_notlowest); 4318 pm_comps_notlowest--; 4319 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr " 4320 "notlowest to %d\n", pmf, 4321 PM_DEVICE(dip), pm_comps_notlowest)) 4322 if (pm_comps_notlowest == 0) 4323 pm_ppm_notify_all_lowest(dip, 4324 PM_ALL_LOWEST); 4325 mutex_exit(&pm_compcnt_lock); 4326 } 4327 PM_UNLOCK_POWER(dip, circ); 4328 } 4329 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 4330 DEVI(dip)->devi_pm_flags |= PMC_NEXDEF_THRESH; 4331 PM_UNLOCK_DIP(dip); 4332 return; 4333 } else if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH) { 4334 /* 4335 * If the nexus node is being configured for a 4336 * non-default threshold, include that node in 4337 * the notlowest accounting. 4338 */ 4339 PM_LOCK_POWER(dip, &circ); 4340 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 4341 if (PM_CURPOWER(dip, i) == 0) 4342 continue; 4343 mutex_enter(&pm_compcnt_lock); 4344 if (pm_comps_notlowest == 0) 4345 pm_ppm_notify_all_lowest(dip, 4346 PM_NOT_ALL_LOWEST); 4347 pm_comps_notlowest++; 4348 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr " 4349 "notlowest to %d\n", pmf, 4350 PM_DEVICE(dip), pm_comps_notlowest)) 4351 mutex_exit(&pm_compcnt_lock); 4352 } 4353 PM_UNLOCK_POWER(dip, circ); 4354 } 4355 } 4356 /* 4357 * Compute the total number of transitions for all components 4358 * of the device. Distribute the threshold evenly over them 4359 */ 4360 for (comp = 0; comp < ncomp; comp++) { 4361 pmc = &PM_CP(dip, comp)->pmc_comp; 4362 ASSERT(pmc->pmc_numlevels > 1); 4363 transitions += pmc->pmc_numlevels - 1; 4364 } 4365 ASSERT(transitions); 4366 thresh = target_threshold / transitions; 4367 4368 for (comp = 0; comp < ncomp; comp++) { 4369 pmc = &PM_CP(dip, comp)->pmc_comp; 4370 for (level = 1; level < pmc->pmc_numlevels; level++) { 4371 pmc->pmc_thresh[level] = thresh; 4372 } 4373 } 4374 4375 #ifdef DEBUG 4376 for (comp = 0; comp < ncomp; comp++) { 4377 pmc = &PM_CP(dip, comp)->pmc_comp; 4378 for (level = 1; level < pmc->pmc_numlevels; level++) { 4379 PMD(PMD_THRESH, ("%s: thresh before %s@%s(%s#%d) " 4380 "comp=%d, level=%d, %d\n", pmf, PM_DEVICE(dip), 4381 comp, level, pmc->pmc_thresh[level])) 4382 } 4383 } 4384 #endif 4385 /* 4386 * Distribute any remainder till they are all gone 4387 */ 4388 remainder = target_threshold - thresh * transitions; 4389 level = 1; 4390 #ifdef DEBUG 4391 PMD(PMD_THRESH, ("%s: remainder=%d target_threshold=%d thresh=%d " 4392 "trans=%d\n", pmf, remainder, target_threshold, thresh, 4393 transitions)) 4394 #endif 4395 while (remainder > 0) { 4396 comp = 0; 4397 while (remainder && (comp < ncomp)) { 4398 pmc = &PM_CP(dip, comp)->pmc_comp; 4399 if (level < pmc->pmc_numlevels) { 4400 pmc->pmc_thresh[level] += 1; 4401 remainder--; 4402 } 4403 comp++; 4404 } 4405 level++; 4406 } 4407 #ifdef DEBUG 4408 for (comp = 0; comp < ncomp; comp++) { 4409 pmc = &PM_CP(dip, comp)->pmc_comp; 4410 for (level = 1; level < pmc->pmc_numlevels; level++) { 4411 PMD(PMD_THRESH, ("%s: thresh after %s@%s(%s#%d) " 4412 "comp=%d level=%d, %d\n", pmf, PM_DEVICE(dip), 4413 comp, level, pmc->pmc_thresh[level])) 4414 } 4415 } 4416 #endif 4417 ASSERT(PM_IAM_LOCKING_DIP(dip)); 4418 DEVI(dip)->devi_pm_dev_thresh = base; 4419 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 4420 DEVI(dip)->devi_pm_flags |= flag; 4421 PM_UNLOCK_DIP(dip); 4422 } 4423 4424 /* 4425 * Called when there is no old-style platform power management driver 4426 */ 4427 static int 4428 ddi_no_platform_power(power_req_t *req) 4429 { 4430 _NOTE(ARGUNUSED(req)) 4431 return (DDI_FAILURE); 4432 } 4433 4434 /* 4435 * This function calls the entry point supplied by the platform-specific 4436 * pm driver to bring the device component 'pm_cmpt' to power level 'pm_level'. 4437 * The use of global for getting the function name from platform-specific 4438 * pm driver is not ideal, but it is simple and efficient. 4439 * The previous property lookup was being done in the idle loop on swift 4440 * systems without pmc chips and hurt deskbench performance as well as 4441 * violating scheduler locking rules 4442 */ 4443 int (*pm_platform_power)(power_req_t *) = ddi_no_platform_power; 4444 4445 /* 4446 * Old obsolete interface for a device to request a power change (but only 4447 * an increase in power) 4448 */ 4449 int 4450 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level) 4451 { 4452 return (pm_raise_power(dip, cmpt, level)); 4453 } 4454 4455 /* 4456 * The old obsolete interface to platform power management. Only used by 4457 * Gypsy platform and APM on X86. 4458 */ 4459 int 4460 ddi_power(dev_info_t *dip, int pm_cmpt, int pm_level) 4461 { 4462 power_req_t request; 4463 4464 request.request_type = PMR_SET_POWER; 4465 request.req.set_power_req.who = dip; 4466 request.req.set_power_req.cmpt = pm_cmpt; 4467 request.req.set_power_req.level = pm_level; 4468 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4469 } 4470 4471 /* 4472 * A driver can invoke this from its detach routine when DDI_SUSPEND is 4473 * passed. Returns true if subsequent processing could result in power being 4474 * removed from the device. The arg is not currently used because it is 4475 * implicit in the operation of cpr/DR. 4476 */ 4477 int 4478 ddi_removing_power(dev_info_t *dip) 4479 { 4480 _NOTE(ARGUNUSED(dip)) 4481 return (pm_powering_down); 4482 } 4483 4484 /* 4485 * Returns true if a device indicates that its parent handles suspend/resume 4486 * processing for it. 4487 */ 4488 int 4489 e_ddi_parental_suspend_resume(dev_info_t *dip) 4490 { 4491 return (DEVI(dip)->devi_pm_flags & PMC_PARENTAL_SR); 4492 } 4493 4494 /* 4495 * Called for devices which indicate that their parent does suspend/resume 4496 * handling for them 4497 */ 4498 int 4499 e_ddi_suspend(dev_info_t *dip, ddi_detach_cmd_t cmd) 4500 { 4501 power_req_t request; 4502 request.request_type = PMR_SUSPEND; 4503 request.req.suspend_req.who = dip; 4504 request.req.suspend_req.cmd = cmd; 4505 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4506 } 4507 4508 /* 4509 * Called for devices which indicate that their parent does suspend/resume 4510 * handling for them 4511 */ 4512 int 4513 e_ddi_resume(dev_info_t *dip, ddi_attach_cmd_t cmd) 4514 { 4515 power_req_t request; 4516 request.request_type = PMR_RESUME; 4517 request.req.resume_req.who = dip; 4518 request.req.resume_req.cmd = cmd; 4519 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4520 } 4521 4522 /* 4523 * Old obsolete exported interface for drivers to create components. 4524 * This is now handled by exporting the pm-components property. 4525 */ 4526 int 4527 pm_create_components(dev_info_t *dip, int num_components) 4528 { 4529 PMD_FUNC(pmf, "pm_create_components") 4530 4531 if (num_components < 1) 4532 return (DDI_FAILURE); 4533 4534 if (!DEVI_IS_ATTACHING(dip)) { 4535 return (DDI_FAILURE); 4536 } 4537 4538 /* don't need to lock dip because attach is single threaded */ 4539 if (DEVI(dip)->devi_pm_components) { 4540 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) already has %d\n", pmf, 4541 PM_DEVICE(dip), PM_NUMCMPTS(dip))) 4542 return (DDI_FAILURE); 4543 } 4544 e_pm_create_components(dip, num_components); 4545 DEVI(dip)->devi_pm_flags |= PMC_BC; 4546 e_pm_default_components(dip, num_components); 4547 return (DDI_SUCCESS); 4548 } 4549 4550 /* 4551 * Obsolete interface previously called by drivers to destroy their components 4552 * at detach time. This is now done automatically. However, we need to keep 4553 * this for the old drivers. 4554 */ 4555 void 4556 pm_destroy_components(dev_info_t *dip) 4557 { 4558 PMD_FUNC(pmf, "pm_destroy_components") 4559 dev_info_t *pdip = ddi_get_parent(dip); 4560 4561 PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, 4562 PM_DEVICE(dip))) 4563 ASSERT(DEVI_IS_DETACHING(dip)); 4564 #ifdef DEBUG 4565 if (!PM_ISBC(dip)) 4566 cmn_err(CE_WARN, "!driver exporting pm-components property " 4567 "(%s@%s) calls pm_destroy_components", PM_NAME(dip), 4568 PM_ADDR(dip)); 4569 #endif 4570 /* 4571 * We ignore this unless this is an old-style driver, except for 4572 * printing the message above 4573 */ 4574 if (PM_NUMCMPTS(dip) == 0 || !PM_ISBC(dip)) { 4575 PMD(PMD_REMDEV, ("%s: ignore %s@%s(%s#%d)\n", pmf, 4576 PM_DEVICE(dip))) 4577 return; 4578 } 4579 ASSERT(PM_GET_PM_INFO(dip)); 4580 4581 /* 4582 * pm_unmanage will clear info pointer later, after dealing with 4583 * dependencies 4584 */ 4585 ASSERT(!PM_GET_PM_SCAN(dip)); /* better be gone already */ 4586 /* 4587 * Now adjust parent's kidsupcnt. We check only comp 0. 4588 * Parents that get notification are not adjusted because their 4589 * kidsupcnt is always 0 (or 1 during probe and attach). 4590 */ 4591 if ((PM_CURPOWER(dip, 0) != 0) && pdip && !PM_WANTS_NOTIFICATION(pdip)) 4592 pm_rele_power(pdip); 4593 #ifdef DEBUG 4594 else { 4595 PMD(PMD_KIDSUP, ("%s: kuc stays %s@%s(%s#%d) comps gone\n", 4596 pmf, PM_DEVICE(dip))) 4597 } 4598 #endif 4599 e_pm_destroy_components(dip); 4600 /* 4601 * Forget we ever knew anything about the components of this device 4602 */ 4603 DEVI(dip)->devi_pm_flags &= 4604 ~(PMC_BC | PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED); 4605 } 4606 4607 /* 4608 * Exported interface for a driver to set a component busy. 4609 */ 4610 int 4611 pm_busy_component(dev_info_t *dip, int cmpt) 4612 { 4613 struct pm_component *cp; 4614 4615 ASSERT(dip != NULL); 4616 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp)) 4617 return (DDI_FAILURE); 4618 PM_LOCK_BUSY(dip); 4619 cp->pmc_busycount++; 4620 cp->pmc_timestamp = 0; 4621 PM_UNLOCK_BUSY(dip); 4622 return (DDI_SUCCESS); 4623 } 4624 4625 /* 4626 * Exported interface for a driver to set a component idle. 4627 */ 4628 int 4629 pm_idle_component(dev_info_t *dip, int cmpt) 4630 { 4631 PMD_FUNC(pmf, "pm_idle_component") 4632 struct pm_component *cp; 4633 pm_scan_t *scanp = PM_GET_PM_SCAN(dip); 4634 4635 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp)) 4636 return (DDI_FAILURE); 4637 4638 PM_LOCK_BUSY(dip); 4639 if (cp->pmc_busycount) { 4640 if (--(cp->pmc_busycount) == 0) 4641 cp->pmc_timestamp = gethrestime_sec(); 4642 } else { 4643 cp->pmc_timestamp = gethrestime_sec(); 4644 } 4645 4646 PM_UNLOCK_BUSY(dip); 4647 4648 /* 4649 * if device becomes idle during idle down period, try scan it down 4650 */ 4651 if (scanp && PM_IS_PID(dip)) { 4652 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d) idle.\n", pmf, 4653 PM_DEVICE(dip))) 4654 pm_rescan(dip); 4655 return (DDI_SUCCESS); 4656 } 4657 4658 /* 4659 * handle scan not running with nexus threshold == 0 4660 */ 4661 4662 if (PM_IS_NEXUS(dip) && (cp->pmc_busycount == 0)) { 4663 pm_rescan(dip); 4664 } 4665 4666 return (DDI_SUCCESS); 4667 } 4668 4669 /* 4670 * This is the old obsolete interface called by drivers to set their normal 4671 * power. Thus we can't fix its behavior or return a value. 4672 * This functionality is replaced by the pm-component property. 4673 * We'll only get components destroyed while no power management is 4674 * going on (and the device is detached), so we don't need a mutex here 4675 */ 4676 void 4677 pm_set_normal_power(dev_info_t *dip, int comp, int level) 4678 { 4679 PMD_FUNC(pmf, "set_normal_power") 4680 #ifdef DEBUG 4681 if (!PM_ISBC(dip)) 4682 cmn_err(CE_WARN, "!call to pm_set_normal_power() by %s@%s " 4683 "(driver exporting pm-components property) ignored", 4684 PM_NAME(dip), PM_ADDR(dip)); 4685 #endif 4686 if (PM_ISBC(dip)) { 4687 PMD(PMD_NORM, ("%s: %s@%s(%s#%d) set normal power comp=%d, " 4688 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 4689 e_pm_set_max_power(dip, comp, level); 4690 e_pm_default_levels(dip, PM_CP(dip, comp), level); 4691 } 4692 } 4693 4694 /* 4695 * Called on a successfully detached driver to free pm resources 4696 */ 4697 static void 4698 pm_stop(dev_info_t *dip) 4699 { 4700 PMD_FUNC(pmf, "stop") 4701 dev_info_t *pdip = ddi_get_parent(dip); 4702 4703 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4704 /* stopping scan, destroy scan data structure */ 4705 if (!PM_ISBC(dip)) { 4706 pm_scan_stop(dip); 4707 pm_scan_fini(dip); 4708 } 4709 4710 if (PM_GET_PM_INFO(dip) != NULL) { 4711 if (pm_unmanage(dip) == DDI_SUCCESS) { 4712 /* 4713 * Old style driver may have called 4714 * pm_destroy_components already, but just in case ... 4715 */ 4716 e_pm_destroy_components(dip); 4717 } else { 4718 PMD(PMD_FAIL, ("%s: can't pm_unmanage %s@%s(%s#%d)\n", 4719 pmf, PM_DEVICE(dip))) 4720 } 4721 } else { 4722 if (PM_NUMCMPTS(dip)) 4723 e_pm_destroy_components(dip); 4724 else { 4725 if (DEVI(dip)->devi_pm_flags & PMC_NOPMKID) { 4726 DEVI(dip)->devi_pm_flags &= ~PMC_NOPMKID; 4727 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 4728 pm_rele_power(pdip); 4729 } else if (pdip && 4730 MDI_VHCI(pdip) && MDI_CLIENT(dip)) { 4731 (void) mdi_power(pdip, 4732 MDI_PM_RELE_POWER, 4733 (void *)dip, NULL, 0); 4734 } 4735 } 4736 } 4737 } 4738 } 4739 4740 /* 4741 * The node is the subject of a reparse pm props ioctl. Throw away the old 4742 * info and start over. 4743 */ 4744 int 4745 e_new_pm_props(dev_info_t *dip) 4746 { 4747 if (PM_GET_PM_INFO(dip) != NULL) { 4748 pm_stop(dip); 4749 4750 if (e_pm_manage(dip, PM_STYLE_NEW) != DDI_SUCCESS) { 4751 return (DDI_FAILURE); 4752 } 4753 } 4754 e_pm_props(dip); 4755 return (DDI_SUCCESS); 4756 } 4757 4758 /* 4759 * Device has been attached, so process its pm properties 4760 */ 4761 void 4762 e_pm_props(dev_info_t *dip) 4763 { 4764 char *pp; 4765 int len; 4766 int flags = 0; 4767 int propflag = DDI_PROP_DONTPASS|DDI_PROP_CANSLEEP; 4768 4769 /* 4770 * It doesn't matter if we do this more than once, we should always 4771 * get the same answers, and if not, then the last one in is the 4772 * best one. 4773 */ 4774 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-hardware-state", 4775 (caddr_t)&pp, &len) == DDI_PROP_SUCCESS) { 4776 if (strcmp(pp, "needs-suspend-resume") == 0) { 4777 flags = PMC_NEEDS_SR; 4778 } else if (strcmp(pp, "no-suspend-resume") == 0) { 4779 flags = PMC_NO_SR; 4780 } else if (strcmp(pp, "parental-suspend-resume") == 0) { 4781 flags = PMC_PARENTAL_SR; 4782 } else { 4783 cmn_err(CE_NOTE, "!device %s@%s has unrecognized " 4784 "%s property value '%s'", PM_NAME(dip), 4785 PM_ADDR(dip), "pm-hardware-state", pp); 4786 } 4787 kmem_free(pp, len); 4788 } 4789 /* 4790 * This next segment (PMC_WANTS_NOTIFY) is in 4791 * support of nexus drivers which will want to be involved in 4792 * (or at least notified of) their child node's power level transitions. 4793 * "pm-want-child-notification?" is defined by the parent. 4794 */ 4795 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag, 4796 "pm-want-child-notification?") && PM_HAS_BUS_POWER(dip)) 4797 flags |= PMC_WANTS_NOTIFY; 4798 ASSERT(PM_HAS_BUS_POWER(dip) || !ddi_prop_exists(DDI_DEV_T_ANY, 4799 dip, propflag, "pm-want-child-notification?")); 4800 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag, 4801 "no-involuntary-power-cycles")) 4802 flags |= PMC_NO_INVOL; 4803 /* 4804 * Is the device a CPU device? 4805 */ 4806 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-class", 4807 (caddr_t)&pp, &len) == DDI_PROP_SUCCESS) { 4808 if (strcmp(pp, "CPU") == 0) { 4809 flags |= PMC_CPU_DEVICE; 4810 } else { 4811 cmn_err(CE_NOTE, "!device %s@%s has unrecognized " 4812 "%s property value '%s'", PM_NAME(dip), 4813 PM_ADDR(dip), "pm-class", pp); 4814 } 4815 kmem_free(pp, len); 4816 } 4817 /* devfs single threads us */ 4818 DEVI(dip)->devi_pm_flags |= flags; 4819 } 4820 4821 /* 4822 * This is the DDI_CTLOPS_POWER handler that is used when there is no ppm 4823 * driver which has claimed a node. 4824 * Sets old_power in arg struct. 4825 */ 4826 static int 4827 pm_default_ctlops(dev_info_t *dip, dev_info_t *rdip, 4828 ddi_ctl_enum_t ctlop, void *arg, void *result) 4829 { 4830 _NOTE(ARGUNUSED(dip)) 4831 PMD_FUNC(pmf, "ctlops") 4832 power_req_t *reqp = (power_req_t *)arg; 4833 int retval; 4834 dev_info_t *target_dip; 4835 int new_level, old_level, cmpt; 4836 #ifdef PMDDEBUG 4837 char *format; 4838 #endif 4839 4840 /* 4841 * The interface for doing the actual power level changes is now 4842 * through the DDI_CTLOPS_POWER bus_ctl, so that we can plug in 4843 * different platform-specific power control drivers. 4844 * 4845 * This driver implements the "default" version of this interface. 4846 * If no ppm driver has been installed then this interface is called 4847 * instead. 4848 */ 4849 ASSERT(dip == NULL); 4850 switch (ctlop) { 4851 case DDI_CTLOPS_POWER: 4852 switch (reqp->request_type) { 4853 case PMR_PPM_SET_POWER: 4854 { 4855 target_dip = reqp->req.ppm_set_power_req.who; 4856 ASSERT(target_dip == rdip); 4857 new_level = reqp->req.ppm_set_power_req.new_level; 4858 cmpt = reqp->req.ppm_set_power_req.cmpt; 4859 /* pass back old power for the PM_LEVEL_UNKNOWN case */ 4860 old_level = PM_CURPOWER(target_dip, cmpt); 4861 reqp->req.ppm_set_power_req.old_level = old_level; 4862 retval = pm_power(target_dip, cmpt, new_level); 4863 PMD(PMD_PPM, ("%s: PPM_SET_POWER %s@%s(%s#%d)[%d] %d->" 4864 "%d %s\n", pmf, PM_DEVICE(target_dip), cmpt, 4865 old_level, new_level, (retval == DDI_SUCCESS ? 4866 "chd" : "no chg"))) 4867 return (retval); 4868 } 4869 4870 case PMR_PPM_PRE_DETACH: 4871 case PMR_PPM_POST_DETACH: 4872 case PMR_PPM_PRE_ATTACH: 4873 case PMR_PPM_POST_ATTACH: 4874 case PMR_PPM_PRE_PROBE: 4875 case PMR_PPM_POST_PROBE: 4876 case PMR_PPM_PRE_RESUME: 4877 case PMR_PPM_INIT_CHILD: 4878 case PMR_PPM_UNINIT_CHILD: 4879 #ifdef PMDDEBUG 4880 switch (reqp->request_type) { 4881 case PMR_PPM_PRE_DETACH: 4882 format = "%s: PMR_PPM_PRE_DETACH " 4883 "%s@%s(%s#%d)\n"; 4884 break; 4885 case PMR_PPM_POST_DETACH: 4886 format = "%s: PMR_PPM_POST_DETACH " 4887 "%s@%s(%s#%d) rets %d\n"; 4888 break; 4889 case PMR_PPM_PRE_ATTACH: 4890 format = "%s: PMR_PPM_PRE_ATTACH " 4891 "%s@%s(%s#%d)\n"; 4892 break; 4893 case PMR_PPM_POST_ATTACH: 4894 format = "%s: PMR_PPM_POST_ATTACH " 4895 "%s@%s(%s#%d) rets %d\n"; 4896 break; 4897 case PMR_PPM_PRE_PROBE: 4898 format = "%s: PMR_PPM_PRE_PROBE " 4899 "%s@%s(%s#%d)\n"; 4900 break; 4901 case PMR_PPM_POST_PROBE: 4902 format = "%s: PMR_PPM_POST_PROBE " 4903 "%s@%s(%s#%d) rets %d\n"; 4904 break; 4905 case PMR_PPM_PRE_RESUME: 4906 format = "%s: PMR_PPM_PRE_RESUME " 4907 "%s@%s(%s#%d) rets %d\n"; 4908 break; 4909 case PMR_PPM_INIT_CHILD: 4910 format = "%s: PMR_PPM_INIT_CHILD " 4911 "%s@%s(%s#%d)\n"; 4912 break; 4913 case PMR_PPM_UNINIT_CHILD: 4914 format = "%s: PMR_PPM_UNINIT_CHILD " 4915 "%s@%s(%s#%d)\n"; 4916 break; 4917 default: 4918 break; 4919 } 4920 PMD(PMD_PPM, (format, pmf, PM_DEVICE(rdip), 4921 reqp->req.ppm_config_req.result)) 4922 #endif 4923 return (DDI_SUCCESS); 4924 4925 case PMR_PPM_POWER_CHANGE_NOTIFY: 4926 /* 4927 * Nothing for us to do 4928 */ 4929 ASSERT(reqp->req.ppm_notify_level_req.who == rdip); 4930 PMD(PMD_PPM, ("%s: PMR_PPM_POWER_CHANGE_NOTIFY " 4931 "%s@%s(%s#%d)[%d] %d->%d\n", pmf, 4932 PM_DEVICE(reqp->req.ppm_notify_level_req.who), 4933 reqp->req.ppm_notify_level_req.cmpt, 4934 PM_CURPOWER(reqp->req.ppm_notify_level_req.who, 4935 reqp->req.ppm_notify_level_req.cmpt), 4936 reqp->req.ppm_notify_level_req.new_level)) 4937 return (DDI_SUCCESS); 4938 4939 case PMR_PPM_UNMANAGE: 4940 PMD(PMD_PPM, ("%s: PMR_PPM_UNMANAGE %s@%s(%s#%d)\n", 4941 pmf, PM_DEVICE(rdip))) 4942 return (DDI_SUCCESS); 4943 4944 case PMR_PPM_LOCK_POWER: 4945 pm_lock_power_single(reqp->req.ppm_lock_power_req.who, 4946 reqp->req.ppm_lock_power_req.circp); 4947 return (DDI_SUCCESS); 4948 4949 case PMR_PPM_UNLOCK_POWER: 4950 pm_unlock_power_single( 4951 reqp->req.ppm_unlock_power_req.who, 4952 reqp->req.ppm_unlock_power_req.circ); 4953 return (DDI_SUCCESS); 4954 4955 case PMR_PPM_TRY_LOCK_POWER: 4956 *(int *)result = pm_try_locking_power_single( 4957 reqp->req.ppm_lock_power_req.who, 4958 reqp->req.ppm_lock_power_req.circp); 4959 return (DDI_SUCCESS); 4960 4961 case PMR_PPM_POWER_LOCK_OWNER: 4962 target_dip = reqp->req.ppm_power_lock_owner_req.who; 4963 ASSERT(target_dip == rdip); 4964 reqp->req.ppm_power_lock_owner_req.owner = 4965 DEVI(rdip)->devi_busy_thread; 4966 return (DDI_SUCCESS); 4967 default: 4968 PMD(PMD_ERROR, ("%s: default!\n", pmf)) 4969 return (DDI_FAILURE); 4970 } 4971 4972 default: 4973 PMD(PMD_ERROR, ("%s: unknown\n", pmf)) 4974 return (DDI_FAILURE); 4975 } 4976 } 4977 4978 /* 4979 * We overload the bus_ctl ops here--perhaps we ought to have a distinct 4980 * power_ops struct for this functionality instead? 4981 * However, we only ever do this on a ppm driver. 4982 */ 4983 int 4984 pm_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v) 4985 { 4986 int (*fp)(); 4987 4988 /* if no ppm handler, call the default routine */ 4989 if (d == NULL) { 4990 return (pm_default_ctlops(d, r, op, a, v)); 4991 } 4992 if (!d || !r) 4993 return (DDI_FAILURE); 4994 ASSERT(DEVI(d)->devi_ops && DEVI(d)->devi_ops->devo_bus_ops && 4995 DEVI(d)->devi_ops->devo_bus_ops->bus_ctl); 4996 4997 fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl; 4998 return ((*fp)(d, r, op, a, v)); 4999 } 5000 5001 /* 5002 * Called on a node when attach completes or the driver makes its first pm 5003 * call (whichever comes first). 5004 * In the attach case, device may not be power manageable at all. 5005 * Don't need to lock the dip because we're single threaded by the devfs code 5006 */ 5007 static int 5008 pm_start(dev_info_t *dip) 5009 { 5010 PMD_FUNC(pmf, "start") 5011 int ret; 5012 dev_info_t *pdip = ddi_get_parent(dip); 5013 int e_pm_manage(dev_info_t *, int); 5014 void pm_noinvol_specd(dev_info_t *dip); 5015 5016 e_pm_props(dip); 5017 pm_noinvol_specd(dip); 5018 /* 5019 * If this dip has already been processed, don't mess with it 5020 * (but decrement the speculative count we did above, as whatever 5021 * code put it under pm already will have dealt with it) 5022 */ 5023 if (PM_GET_PM_INFO(dip)) { 5024 PMD(PMD_KIDSUP, ("%s: pm already done for %s@%s(%s#%d)\n", 5025 pmf, PM_DEVICE(dip))) 5026 return (0); 5027 } 5028 ret = e_pm_manage(dip, PM_STYLE_UNKNOWN); 5029 5030 if (PM_GET_PM_INFO(dip) == NULL) { 5031 /* 5032 * keep the kidsupcount increment as is 5033 */ 5034 DEVI(dip)->devi_pm_flags |= PMC_NOPMKID; 5035 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 5036 pm_hold_power(pdip); 5037 } else if (pdip && MDI_VHCI(pdip) && MDI_CLIENT(dip)) { 5038 (void) mdi_power(pdip, MDI_PM_HOLD_POWER, 5039 (void *)dip, NULL, 0); 5040 } 5041 5042 PMD(PMD_KIDSUP, ("%s: pm of %s@%s(%s#%d) failed, parent " 5043 "left up\n", pmf, PM_DEVICE(dip))) 5044 } 5045 5046 return (ret); 5047 } 5048 5049 /* 5050 * Keep a list of recorded thresholds. For now we just keep a list and 5051 * search it linearly. We don't expect too many entries. Can always hash it 5052 * later if we need to. 5053 */ 5054 void 5055 pm_record_thresh(pm_thresh_rec_t *rp) 5056 { 5057 pm_thresh_rec_t *pptr, *ptr; 5058 5059 ASSERT(*rp->ptr_physpath); 5060 rw_enter(&pm_thresh_rwlock, RW_WRITER); 5061 for (pptr = NULL, ptr = pm_thresh_head; 5062 ptr; pptr = ptr, ptr = ptr->ptr_next) { 5063 if (strcmp(rp->ptr_physpath, ptr->ptr_physpath) == 0) { 5064 /* replace this one */ 5065 rp->ptr_next = ptr->ptr_next; 5066 if (pptr) { 5067 pptr->ptr_next = rp; 5068 } else { 5069 pm_thresh_head = rp; 5070 } 5071 rw_exit(&pm_thresh_rwlock); 5072 kmem_free(ptr, ptr->ptr_size); 5073 return; 5074 } 5075 continue; 5076 } 5077 /* 5078 * There was not a match in the list, insert this one in front 5079 */ 5080 if (pm_thresh_head) { 5081 rp->ptr_next = pm_thresh_head; 5082 pm_thresh_head = rp; 5083 } else { 5084 rp->ptr_next = NULL; 5085 pm_thresh_head = rp; 5086 } 5087 rw_exit(&pm_thresh_rwlock); 5088 } 5089 5090 /* 5091 * Create a new dependency record and hang a new dependency entry off of it 5092 */ 5093 pm_pdr_t * 5094 newpdr(char *kept, char *keeps, int isprop) 5095 { 5096 size_t size = strlen(kept) + strlen(keeps) + 2 + sizeof (pm_pdr_t); 5097 pm_pdr_t *p = kmem_zalloc(size, KM_SLEEP); 5098 p->pdr_size = size; 5099 p->pdr_isprop = isprop; 5100 p->pdr_kept_paths = NULL; 5101 p->pdr_kept_count = 0; 5102 p->pdr_kept = (char *)((intptr_t)p + sizeof (pm_pdr_t)); 5103 (void) strcpy(p->pdr_kept, kept); 5104 p->pdr_keeper = (char *)((intptr_t)p->pdr_kept + strlen(kept) + 1); 5105 (void) strcpy(p->pdr_keeper, keeps); 5106 ASSERT((intptr_t)p->pdr_keeper + strlen(p->pdr_keeper) + 1 <= 5107 (intptr_t)p + size); 5108 ASSERT((intptr_t)p->pdr_kept + strlen(p->pdr_kept) + 1 <= 5109 (intptr_t)p + size); 5110 return (p); 5111 } 5112 5113 /* 5114 * Keep a list of recorded dependencies. We only keep the 5115 * keeper -> kept list for simplification. At this point We do not 5116 * care about whether the devices are attached or not yet, 5117 * this would be done in pm_keeper() and pm_kept(). 5118 * If a PM_RESET_PM happens, then we tear down and forget the dependencies, 5119 * and it is up to the user to issue the ioctl again if they want it 5120 * (e.g. pmconfig) 5121 * Returns true if dependency already exists in the list. 5122 */ 5123 int 5124 pm_record_keeper(char *kept, char *keeper, int isprop) 5125 { 5126 PMD_FUNC(pmf, "record_keeper") 5127 pm_pdr_t *npdr, *ppdr, *pdr; 5128 5129 PMD(PMD_KEEPS, ("%s: %s, %s\n", pmf, kept, keeper)) 5130 ASSERT(kept && keeper); 5131 #ifdef DEBUG 5132 if (pm_debug & PMD_KEEPS) 5133 prdeps("pm_record_keeper entry"); 5134 #endif 5135 for (ppdr = NULL, pdr = pm_dep_head; pdr; 5136 ppdr = pdr, pdr = pdr->pdr_next) { 5137 PMD(PMD_KEEPS, ("%s: check %s, %s\n", pmf, pdr->pdr_kept, 5138 pdr->pdr_keeper)) 5139 if (strcmp(kept, pdr->pdr_kept) == 0 && 5140 strcmp(keeper, pdr->pdr_keeper) == 0) { 5141 PMD(PMD_KEEPS, ("%s: match\n", pmf)) 5142 return (1); 5143 } 5144 } 5145 /* 5146 * We did not find any match, so we have to make an entry 5147 */ 5148 npdr = newpdr(kept, keeper, isprop); 5149 if (ppdr) { 5150 ASSERT(ppdr->pdr_next == NULL); 5151 ppdr->pdr_next = npdr; 5152 } else { 5153 ASSERT(pm_dep_head == NULL); 5154 pm_dep_head = npdr; 5155 } 5156 #ifdef DEBUG 5157 if (pm_debug & PMD_KEEPS) 5158 prdeps("pm_record_keeper after new record"); 5159 #endif 5160 if (!isprop) 5161 pm_unresolved_deps++; 5162 else 5163 pm_prop_deps++; 5164 return (0); 5165 } 5166 5167 /* 5168 * Look up this device in the set of devices we've seen ioctls for 5169 * to see if we are holding a threshold spec for it. If so, make it so. 5170 * At ioctl time, we were given the physical path of the device. 5171 */ 5172 int 5173 pm_thresh_specd(dev_info_t *dip) 5174 { 5175 void pm_apply_recorded_thresh(dev_info_t *, pm_thresh_rec_t *); 5176 char *path = 0; 5177 char pathbuf[MAXNAMELEN]; 5178 pm_thresh_rec_t *rp; 5179 5180 path = ddi_pathname(dip, pathbuf); 5181 5182 rw_enter(&pm_thresh_rwlock, RW_READER); 5183 for (rp = pm_thresh_head; rp; rp = rp->ptr_next) { 5184 if (strcmp(rp->ptr_physpath, path) != 0) 5185 continue; 5186 pm_apply_recorded_thresh(dip, rp); 5187 rw_exit(&pm_thresh_rwlock); 5188 return (1); 5189 } 5190 rw_exit(&pm_thresh_rwlock); 5191 return (0); 5192 } 5193 5194 static int 5195 pm_set_keeping(dev_info_t *keeper, dev_info_t *kept) 5196 { 5197 PMD_FUNC(pmf, "set_keeping") 5198 pm_info_t *kept_info; 5199 int j, up = 0, circ; 5200 void prdeps(char *); 5201 5202 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), kept=%s@%s(%s#%d)\n", pmf, 5203 PM_DEVICE(keeper), PM_DEVICE(kept))) 5204 #ifdef DEBUG 5205 if (pm_debug & PMD_KEEPS) 5206 prdeps("Before PAD\n"); 5207 #endif 5208 ASSERT(keeper != kept); 5209 if (PM_GET_PM_INFO(keeper) == NULL) { 5210 cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device " 5211 "%s@%s(%s#%d), but the former is not power managed", 5212 PM_DEVICE(keeper), PM_DEVICE(kept)); 5213 PMD((PMD_FAIL | PMD_KEEPS), ("%s: keeper %s@%s(%s#%d) is not" 5214 "power managed\n", pmf, PM_DEVICE(keeper))) 5215 return (0); 5216 } 5217 kept_info = PM_GET_PM_INFO(kept); 5218 ASSERT(kept_info); 5219 PM_LOCK_POWER(keeper, &circ); 5220 for (j = 0; j < PM_NUMCMPTS(keeper); j++) { 5221 if (PM_CURPOWER(keeper, j)) { 5222 up++; 5223 break; 5224 } 5225 } 5226 if (up) { 5227 /* Bringup and maintain a hold on the kept */ 5228 PMD(PMD_KEEPS, ("%s: place a hold on kept %s@%s(%s#%d)\n", pmf, 5229 PM_DEVICE(kept))) 5230 bring_pmdep_up(kept, 1); 5231 } 5232 PM_UNLOCK_POWER(keeper, circ); 5233 #ifdef DEBUG 5234 if (pm_debug & PMD_KEEPS) 5235 prdeps("After PAD\n"); 5236 #endif 5237 return (1); 5238 } 5239 5240 /* 5241 * Should this device keep up another device? 5242 * Look up this device in the set of devices we've seen ioctls for 5243 * to see if we are holding a dependency spec for it. If so, make it so. 5244 * Because we require the kept device to be attached already in order to 5245 * make the list entry (and hold it), we only need to look for keepers. 5246 * At ioctl time, we were given the physical path of the device. 5247 */ 5248 int 5249 pm_keeper(char *keeper) 5250 { 5251 PMD_FUNC(pmf, "keeper") 5252 int pm_apply_recorded_dep(dev_info_t *, pm_pdr_t *); 5253 dev_info_t *dip; 5254 pm_pdr_t *dp; 5255 dev_info_t *kept = NULL; 5256 int ret = 0; 5257 int i; 5258 5259 if (!pm_unresolved_deps && !pm_prop_deps) 5260 return (0); 5261 ASSERT(keeper != NULL); 5262 dip = pm_name_to_dip(keeper, 1); 5263 if (dip == NULL) 5264 return (0); 5265 PMD(PMD_KEEPS, ("%s: keeper=%s\n", pmf, keeper)) 5266 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 5267 if (!dp->pdr_isprop) { 5268 if (!pm_unresolved_deps) 5269 continue; 5270 PMD(PMD_KEEPS, ("%s: keeper %s\n", pmf, dp->pdr_keeper)) 5271 if (dp->pdr_satisfied) { 5272 PMD(PMD_KEEPS, ("%s: satisfied\n", pmf)) 5273 continue; 5274 } 5275 if (strcmp(dp->pdr_keeper, keeper) == 0) { 5276 ret += pm_apply_recorded_dep(dip, dp); 5277 } 5278 } else { 5279 if (strcmp(dp->pdr_keeper, keeper) != 0) 5280 continue; 5281 for (i = 0; i < dp->pdr_kept_count; i++) { 5282 if (dp->pdr_kept_paths[i] == NULL) 5283 continue; 5284 kept = pm_name_to_dip(dp->pdr_kept_paths[i], 1); 5285 if (kept == NULL) 5286 continue; 5287 ASSERT(ddi_prop_exists(DDI_DEV_T_ANY, kept, 5288 DDI_PROP_DONTPASS, dp->pdr_kept)); 5289 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), " 5290 "kept=%s@%s(%s#%d) keptcnt=%d\n", 5291 pmf, PM_DEVICE(dip), PM_DEVICE(kept), 5292 dp->pdr_kept_count)) 5293 if (kept != dip) { 5294 ret += pm_set_keeping(dip, kept); 5295 } 5296 ddi_release_devi(kept); 5297 } 5298 5299 } 5300 } 5301 ddi_release_devi(dip); 5302 return (ret); 5303 } 5304 5305 /* 5306 * Should this device be kept up by another device? 5307 * Look up all dependency recorded from PM_ADD_DEPENDENT and 5308 * PM_ADD_DEPENDENT_PROPERTY ioctls. Record down on the keeper's 5309 * kept device lists. 5310 */ 5311 static int 5312 pm_kept(char *keptp) 5313 { 5314 PMD_FUNC(pmf, "kept") 5315 pm_pdr_t *dp; 5316 int found = 0; 5317 int ret = 0; 5318 dev_info_t *keeper; 5319 dev_info_t *kept; 5320 size_t length; 5321 int i; 5322 char **paths; 5323 char *path; 5324 5325 ASSERT(keptp != NULL); 5326 kept = pm_name_to_dip(keptp, 1); 5327 if (kept == NULL) 5328 return (0); 5329 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(kept))) 5330 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 5331 if (dp->pdr_isprop) { 5332 PMD(PMD_KEEPS, ("%s: property %s\n", pmf, dp->pdr_kept)) 5333 if (ddi_prop_exists(DDI_DEV_T_ANY, kept, 5334 DDI_PROP_DONTPASS, dp->pdr_kept)) { 5335 /* 5336 * Dont allow self dependency. 5337 */ 5338 if (strcmp(dp->pdr_keeper, keptp) == 0) 5339 continue; 5340 keeper = pm_name_to_dip(dp->pdr_keeper, 1); 5341 if (keeper == NULL) 5342 continue; 5343 PMD(PMD_KEEPS, ("%s: adding to kepts path list " 5344 "%p\n", pmf, (void *)kept)) 5345 #ifdef DEBUG 5346 if (pm_debug & PMD_DEP) 5347 prdeps("Before Adding from pm_kept\n"); 5348 #endif 5349 /* 5350 * Add ourselves to the dip list. 5351 */ 5352 if (dp->pdr_kept_count == 0) { 5353 length = strlen(keptp) + 1; 5354 path = 5355 kmem_alloc(length, KM_SLEEP); 5356 paths = kmem_alloc(sizeof (char **), 5357 KM_SLEEP); 5358 (void) strcpy(path, keptp); 5359 paths[0] = path; 5360 dp->pdr_kept_paths = paths; 5361 dp->pdr_kept_count++; 5362 } else { 5363 /* Check to see if already on list */ 5364 for (i = 0; i < dp->pdr_kept_count; 5365 i++) { 5366 if (strcmp(keptp, 5367 dp->pdr_kept_paths[i]) 5368 == 0) { 5369 found++; 5370 break; 5371 } 5372 } 5373 if (found) { 5374 ddi_release_devi(keeper); 5375 continue; 5376 } 5377 length = dp->pdr_kept_count * 5378 sizeof (char **); 5379 paths = kmem_alloc( 5380 length + sizeof (char **), 5381 KM_SLEEP); 5382 if (dp->pdr_kept_count) { 5383 bcopy(dp->pdr_kept_paths, 5384 paths, length); 5385 kmem_free(dp->pdr_kept_paths, 5386 length); 5387 } 5388 dp->pdr_kept_paths = paths; 5389 length = strlen(keptp) + 1; 5390 path = 5391 kmem_alloc(length, KM_SLEEP); 5392 (void) strcpy(path, keptp); 5393 dp->pdr_kept_paths[i] = path; 5394 dp->pdr_kept_count++; 5395 } 5396 #ifdef DEBUG 5397 if (pm_debug & PMD_DEP) 5398 prdeps("After from pm_kept\n"); 5399 #endif 5400 if (keeper) { 5401 ret += pm_set_keeping(keeper, kept); 5402 ddi_release_devi(keeper); 5403 } 5404 } 5405 } else { 5406 /* 5407 * pm_keeper would be called later to do 5408 * the actual pm_set_keeping. 5409 */ 5410 PMD(PMD_KEEPS, ("%s: adding to kepts path list %p\n", 5411 pmf, (void *)kept)) 5412 #ifdef DEBUG 5413 if (pm_debug & PMD_DEP) 5414 prdeps("Before Adding from pm_kept\n"); 5415 #endif 5416 if (strcmp(keptp, dp->pdr_kept) == 0) { 5417 if (dp->pdr_kept_paths == NULL) { 5418 length = strlen(keptp) + 1; 5419 path = 5420 kmem_alloc(length, KM_SLEEP); 5421 paths = kmem_alloc(sizeof (char **), 5422 KM_SLEEP); 5423 (void) strcpy(path, keptp); 5424 paths[0] = path; 5425 dp->pdr_kept_paths = paths; 5426 dp->pdr_kept_count++; 5427 } 5428 } 5429 #ifdef DEBUG 5430 if (pm_debug & PMD_DEP) 5431 prdeps("After from pm_kept\n"); 5432 #endif 5433 } 5434 } 5435 ddi_release_devi(kept); 5436 return (ret); 5437 } 5438 5439 /* 5440 * Apply a recorded dependency. dp specifies the dependency, and 5441 * keeper is already known to be the device that keeps up the other (kept) one. 5442 * We have to the whole tree for the "kept" device, then apply 5443 * the dependency (which may already be applied). 5444 */ 5445 int 5446 pm_apply_recorded_dep(dev_info_t *keeper, pm_pdr_t *dp) 5447 { 5448 PMD_FUNC(pmf, "apply_recorded_dep") 5449 dev_info_t *kept = NULL; 5450 int ret = 0; 5451 char *keptp = NULL; 5452 5453 /* 5454 * Device to Device dependency can only be 1 to 1. 5455 */ 5456 if (dp->pdr_kept_paths == NULL) 5457 return (0); 5458 keptp = dp->pdr_kept_paths[0]; 5459 if (keptp == NULL) 5460 return (0); 5461 ASSERT(*keptp != '\0'); 5462 kept = pm_name_to_dip(keptp, 1); 5463 if (kept == NULL) 5464 return (0); 5465 if (kept) { 5466 PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf, 5467 dp->pdr_keeper, keptp)) 5468 if (pm_set_keeping(keeper, kept)) { 5469 ASSERT(dp->pdr_satisfied == 0); 5470 dp->pdr_satisfied = 1; 5471 ASSERT(pm_unresolved_deps); 5472 pm_unresolved_deps--; 5473 ret++; 5474 } 5475 } 5476 ddi_release_devi(kept); 5477 5478 return (ret); 5479 } 5480 5481 /* 5482 * Called from common/io/pm.c 5483 */ 5484 int 5485 pm_cur_power(pm_component_t *cp) 5486 { 5487 return (cur_power(cp)); 5488 } 5489 5490 /* 5491 * External interface to sanity-check a power level. 5492 */ 5493 int 5494 pm_valid_power(dev_info_t *dip, int comp, int level) 5495 { 5496 PMD_FUNC(pmf, "valid_power") 5497 5498 if (comp >= 0 && comp < PM_NUMCMPTS(dip) && level >= 0) 5499 return (e_pm_valid_power(dip, comp, level)); 5500 else { 5501 PMD(PMD_FAIL, ("%s: comp=%d, ncomp=%d, level=%d\n", 5502 pmf, comp, PM_NUMCMPTS(dip), level)) 5503 return (0); 5504 } 5505 } 5506 5507 /* 5508 * Called when a device that is direct power managed needs to change state. 5509 * This routine arranges to block the request until the process managing 5510 * the device makes the change (or some other incompatible change) or 5511 * the process closes /dev/pm. 5512 */ 5513 static int 5514 pm_block(dev_info_t *dip, int comp, int newpower, int oldpower) 5515 { 5516 pm_rsvp_t *new = kmem_zalloc(sizeof (*new), KM_SLEEP); 5517 int ret = 0; 5518 void pm_dequeue_blocked(pm_rsvp_t *); 5519 void pm_enqueue_blocked(pm_rsvp_t *); 5520 5521 ASSERT(!pm_processes_stopped); 5522 ASSERT(PM_IAM_LOCKING_DIP(dip)); 5523 new->pr_dip = dip; 5524 new->pr_comp = comp; 5525 new->pr_newlevel = newpower; 5526 new->pr_oldlevel = oldpower; 5527 cv_init(&new->pr_cv, NULL, CV_DEFAULT, NULL); 5528 mutex_enter(&pm_rsvp_lock); 5529 pm_enqueue_blocked(new); 5530 pm_enqueue_notify(PSC_PENDING_CHANGE, dip, comp, newpower, oldpower, 5531 PM_CANBLOCK_BLOCK); 5532 PM_UNLOCK_DIP(dip); 5533 /* 5534 * truss may make the cv_wait_sig return prematurely 5535 */ 5536 while (ret == 0) { 5537 /* 5538 * Normally there will be no user context involved, but if 5539 * there is (e.g. we are here via an ioctl call to a driver) 5540 * then we should allow the process to abort the request, 5541 * or we get an unkillable process if the same thread does 5542 * PM_DIRECT_PM and pm_raise_power 5543 */ 5544 if (cv_wait_sig(&new->pr_cv, &pm_rsvp_lock) == 0) { 5545 ret = PMP_FAIL; 5546 } else { 5547 ret = new->pr_retval; 5548 } 5549 } 5550 pm_dequeue_blocked(new); 5551 mutex_exit(&pm_rsvp_lock); 5552 cv_destroy(&new->pr_cv); 5553 kmem_free(new, sizeof (*new)); 5554 return (ret); 5555 } 5556 5557 /* 5558 * Returns true if the process is interested in power level changes (has issued 5559 * PM_GET_STATE_CHANGE ioctl). 5560 */ 5561 int 5562 pm_interest_registered(int clone) 5563 { 5564 ASSERT(clone >= 0 && clone < PM_MAX_CLONE - 1); 5565 return (pm_interest[clone]); 5566 } 5567 5568 static void pm_enqueue_pscc(pscc_t *, pscc_t **); 5569 5570 /* 5571 * Process with clone has just done PM_DIRECT_PM on dip, or has asked to 5572 * watch all state transitions (dip == NULL). Set up data 5573 * structs to communicate with process about state changes. 5574 */ 5575 void 5576 pm_register_watcher(int clone, dev_info_t *dip) 5577 { 5578 pscc_t *p; 5579 psce_t *psce; 5580 5581 /* 5582 * We definitely need a control struct, then we have to search to see 5583 * there is already an entries struct (in the dip != NULL case). 5584 */ 5585 pscc_t *pscc = kmem_zalloc(sizeof (*pscc), KM_SLEEP); 5586 pscc->pscc_clone = clone; 5587 pscc->pscc_dip = dip; 5588 5589 if (dip) { 5590 int found = 0; 5591 rw_enter(&pm_pscc_direct_rwlock, RW_WRITER); 5592 for (p = pm_pscc_direct; p; p = p->pscc_next) { 5593 /* 5594 * Already an entry for this clone, so just use it 5595 * for the new one (for the case where a single 5596 * process is watching multiple devices) 5597 */ 5598 if (p->pscc_clone == clone) { 5599 pscc->pscc_entries = p->pscc_entries; 5600 pscc->pscc_entries->psce_references++; 5601 found++; 5602 break; 5603 } 5604 } 5605 if (!found) { /* create a new one */ 5606 psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP); 5607 mutex_init(&psce->psce_lock, NULL, MUTEX_DEFAULT, NULL); 5608 psce->psce_first = 5609 kmem_zalloc(sizeof (pm_state_change_t) * PSCCOUNT, 5610 KM_SLEEP); 5611 psce->psce_in = psce->psce_out = psce->psce_first; 5612 psce->psce_last = &psce->psce_first[PSCCOUNT - 1]; 5613 psce->psce_references = 1; 5614 pscc->pscc_entries = psce; 5615 } 5616 pm_enqueue_pscc(pscc, &pm_pscc_direct); 5617 rw_exit(&pm_pscc_direct_rwlock); 5618 } else { 5619 ASSERT(!pm_interest_registered(clone)); 5620 rw_enter(&pm_pscc_interest_rwlock, RW_WRITER); 5621 #ifdef DEBUG 5622 for (p = pm_pscc_interest; p; p = p->pscc_next) { 5623 /* 5624 * Should not be an entry for this clone! 5625 */ 5626 ASSERT(p->pscc_clone != clone); 5627 } 5628 #endif 5629 psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP); 5630 psce->psce_first = kmem_zalloc(sizeof (pm_state_change_t) * 5631 PSCCOUNT, KM_SLEEP); 5632 psce->psce_in = psce->psce_out = psce->psce_first; 5633 psce->psce_last = &psce->psce_first[PSCCOUNT - 1]; 5634 psce->psce_references = 1; 5635 pscc->pscc_entries = psce; 5636 pm_enqueue_pscc(pscc, &pm_pscc_interest); 5637 pm_interest[clone] = 1; 5638 rw_exit(&pm_pscc_interest_rwlock); 5639 } 5640 } 5641 5642 /* 5643 * Remove the given entry from the blocked list 5644 */ 5645 void 5646 pm_dequeue_blocked(pm_rsvp_t *p) 5647 { 5648 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 5649 if (pm_blocked_list == p) { 5650 ASSERT(p->pr_prev == NULL); 5651 if (p->pr_next != NULL) 5652 p->pr_next->pr_prev = NULL; 5653 pm_blocked_list = p->pr_next; 5654 } else { 5655 ASSERT(p->pr_prev != NULL); 5656 p->pr_prev->pr_next = p->pr_next; 5657 if (p->pr_next != NULL) 5658 p->pr_next->pr_prev = p->pr_prev; 5659 } 5660 } 5661 5662 /* 5663 * Remove the given control struct from the given list 5664 */ 5665 static void 5666 pm_dequeue_pscc(pscc_t *p, pscc_t **list) 5667 { 5668 if (*list == p) { 5669 ASSERT(p->pscc_prev == NULL); 5670 if (p->pscc_next != NULL) 5671 p->pscc_next->pscc_prev = NULL; 5672 *list = p->pscc_next; 5673 } else { 5674 ASSERT(p->pscc_prev != NULL); 5675 p->pscc_prev->pscc_next = p->pscc_next; 5676 if (p->pscc_next != NULL) 5677 p->pscc_next->pscc_prev = p->pscc_prev; 5678 } 5679 } 5680 5681 /* 5682 * Stick the control struct specified on the front of the list 5683 */ 5684 static void 5685 pm_enqueue_pscc(pscc_t *p, pscc_t **list) 5686 { 5687 pscc_t *h; /* entry at head of list */ 5688 if ((h = *list) == NULL) { 5689 *list = p; 5690 ASSERT(p->pscc_next == NULL); 5691 ASSERT(p->pscc_prev == NULL); 5692 } else { 5693 p->pscc_next = h; 5694 ASSERT(h->pscc_prev == NULL); 5695 h->pscc_prev = p; 5696 ASSERT(p->pscc_prev == NULL); 5697 *list = p; 5698 } 5699 } 5700 5701 /* 5702 * If dip is NULL, process is closing "clone" clean up all its registrations. 5703 * Otherwise only clean up those for dip because process is just giving up 5704 * control of a direct device. 5705 */ 5706 void 5707 pm_deregister_watcher(int clone, dev_info_t *dip) 5708 { 5709 pscc_t *p, *pn; 5710 psce_t *psce; 5711 int found = 0; 5712 5713 if (dip == NULL) { 5714 rw_enter(&pm_pscc_interest_rwlock, RW_WRITER); 5715 for (p = pm_pscc_interest; p; p = pn) { 5716 pn = p->pscc_next; 5717 if (p->pscc_clone == clone) { 5718 pm_dequeue_pscc(p, &pm_pscc_interest); 5719 psce = p->pscc_entries; 5720 ASSERT(psce->psce_references == 1); 5721 mutex_destroy(&psce->psce_lock); 5722 kmem_free(psce->psce_first, 5723 sizeof (pm_state_change_t) * PSCCOUNT); 5724 kmem_free(psce, sizeof (*psce)); 5725 kmem_free(p, sizeof (*p)); 5726 } 5727 } 5728 pm_interest[clone] = 0; 5729 rw_exit(&pm_pscc_interest_rwlock); 5730 } 5731 found = 0; 5732 rw_enter(&pm_pscc_direct_rwlock, RW_WRITER); 5733 for (p = pm_pscc_direct; p; p = pn) { 5734 pn = p->pscc_next; 5735 if ((dip && p->pscc_dip == dip) || 5736 (dip == NULL && clone == p->pscc_clone)) { 5737 ASSERT(clone == p->pscc_clone); 5738 found++; 5739 /* 5740 * Remove from control list 5741 */ 5742 pm_dequeue_pscc(p, &pm_pscc_direct); 5743 /* 5744 * If we're the last reference, free the 5745 * entries struct. 5746 */ 5747 psce = p->pscc_entries; 5748 ASSERT(psce); 5749 if (psce->psce_references == 1) { 5750 kmem_free(psce->psce_first, 5751 PSCCOUNT * sizeof (pm_state_change_t)); 5752 kmem_free(psce, sizeof (*psce)); 5753 } else { 5754 psce->psce_references--; 5755 } 5756 kmem_free(p, sizeof (*p)); 5757 } 5758 } 5759 ASSERT(dip == NULL || found); 5760 rw_exit(&pm_pscc_direct_rwlock); 5761 } 5762 5763 /* 5764 * Search the indicated list for an entry that matches clone, and return a 5765 * pointer to it. To be interesting, the entry must have something ready to 5766 * be passed up to the controlling process. 5767 * The returned entry will be locked upon return from this call. 5768 */ 5769 static psce_t * 5770 pm_psc_find_clone(int clone, pscc_t **list, krwlock_t *lock) 5771 { 5772 pscc_t *p; 5773 psce_t *psce; 5774 rw_enter(lock, RW_READER); 5775 for (p = *list; p; p = p->pscc_next) { 5776 if (clone == p->pscc_clone) { 5777 psce = p->pscc_entries; 5778 mutex_enter(&psce->psce_lock); 5779 if (psce->psce_out->size) { 5780 rw_exit(lock); 5781 return (psce); 5782 } else { 5783 mutex_exit(&psce->psce_lock); 5784 } 5785 } 5786 } 5787 rw_exit(lock); 5788 return (NULL); 5789 } 5790 5791 static psce_t *pm_psc_find_clone(int, pscc_t **, krwlock_t *); 5792 /* 5793 * Find an entry for a particular clone in the direct list. 5794 */ 5795 psce_t * 5796 pm_psc_clone_to_direct(int clone) 5797 { 5798 return (pm_psc_find_clone(clone, &pm_pscc_direct, 5799 &pm_pscc_direct_rwlock)); 5800 } 5801 5802 /* 5803 * Find an entry for a particular clone in the interest list. 5804 */ 5805 psce_t * 5806 pm_psc_clone_to_interest(int clone) 5807 { 5808 return (pm_psc_find_clone(clone, &pm_pscc_interest, 5809 &pm_pscc_interest_rwlock)); 5810 } 5811 5812 /* 5813 * Put the given entry at the head of the blocked list 5814 */ 5815 void 5816 pm_enqueue_blocked(pm_rsvp_t *p) 5817 { 5818 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 5819 ASSERT(p->pr_next == NULL); 5820 ASSERT(p->pr_prev == NULL); 5821 if (pm_blocked_list != NULL) { 5822 p->pr_next = pm_blocked_list; 5823 ASSERT(pm_blocked_list->pr_prev == NULL); 5824 pm_blocked_list->pr_prev = p; 5825 pm_blocked_list = p; 5826 } else { 5827 pm_blocked_list = p; 5828 } 5829 } 5830 5831 /* 5832 * Sets every power managed device back to its default threshold 5833 */ 5834 void 5835 pm_all_to_default_thresholds(void) 5836 { 5837 ddi_walk_devs(ddi_root_node(), pm_set_dev_thr_walk, 5838 (void *) &pm_system_idle_threshold); 5839 } 5840 5841 static int 5842 pm_set_dev_thr_walk(dev_info_t *dip, void *arg) 5843 { 5844 int thr = (int)(*(int *)arg); 5845 5846 if (!PM_GET_PM_INFO(dip)) 5847 return (DDI_WALK_CONTINUE); 5848 pm_set_device_threshold(dip, thr, PMC_DEF_THRESH); 5849 return (DDI_WALK_CONTINUE); 5850 } 5851 5852 /* 5853 * Returns the current threshold value (in seconds) for the indicated component 5854 */ 5855 int 5856 pm_current_threshold(dev_info_t *dip, int comp, int *threshp) 5857 { 5858 if (comp < 0 || comp >= PM_NUMCMPTS(dip)) { 5859 return (DDI_FAILURE); 5860 } else { 5861 *threshp = cur_threshold(dip, comp); 5862 return (DDI_SUCCESS); 5863 } 5864 } 5865 5866 /* 5867 * To be called when changing the power level of a component of a device. 5868 * On some platforms, changing power on one device may require that power 5869 * be changed on other, related devices in the same transaction. Thus, we 5870 * always pass this request to the platform power manager so that all the 5871 * affected devices will be locked. 5872 */ 5873 void 5874 pm_lock_power(dev_info_t *dip, int *circp) 5875 { 5876 power_req_t power_req; 5877 int result; 5878 5879 power_req.request_type = PMR_PPM_LOCK_POWER; 5880 power_req.req.ppm_lock_power_req.who = dip; 5881 power_req.req.ppm_lock_power_req.circp = circp; 5882 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5883 } 5884 5885 /* 5886 * Release the lock (or locks) acquired to change the power of a device. 5887 * See comments for pm_lock_power. 5888 */ 5889 void 5890 pm_unlock_power(dev_info_t *dip, int circ) 5891 { 5892 power_req_t power_req; 5893 int result; 5894 5895 power_req.request_type = PMR_PPM_UNLOCK_POWER; 5896 power_req.req.ppm_unlock_power_req.who = dip; 5897 power_req.req.ppm_unlock_power_req.circ = circ; 5898 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5899 } 5900 5901 5902 /* 5903 * Attempt (without blocking) to acquire the lock(s) needed to change the 5904 * power of a component of a device. See comments for pm_lock_power. 5905 * 5906 * Return: 1 if lock(s) acquired, 0 if not. 5907 */ 5908 int 5909 pm_try_locking_power(dev_info_t *dip, int *circp) 5910 { 5911 power_req_t power_req; 5912 int result; 5913 5914 power_req.request_type = PMR_PPM_TRY_LOCK_POWER; 5915 power_req.req.ppm_lock_power_req.who = dip; 5916 power_req.req.ppm_lock_power_req.circp = circp; 5917 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5918 return (result); 5919 } 5920 5921 5922 /* 5923 * Lock power state of a device. 5924 * 5925 * The implementation handles a special case where another thread may have 5926 * acquired the lock and created/launched this thread to do the work. If 5927 * the lock cannot be acquired immediately, we check to see if this thread 5928 * is registered as a borrower of the lock. If so, we may proceed without 5929 * the lock. This assumes that the lending thread blocks on the completion 5930 * of this thread. 5931 * 5932 * Note 1: for use by ppm only. 5933 * 5934 * Note 2: On failing to get the lock immediately, we search lock_loan list 5935 * for curthread (as borrower of the lock). On a hit, we check that the 5936 * lending thread already owns the lock we want. It is safe to compare 5937 * devi_busy_thread and thread id of the lender because in the == case (the 5938 * only one we care about) we know that the owner is blocked. Similarly, 5939 * If we find that curthread isn't registered as a lock borrower, it is safe 5940 * to use the blocking call (ndi_devi_enter) because we know that if we 5941 * weren't already listed as a borrower (upstream on the call stack) we won't 5942 * become one. 5943 */ 5944 void 5945 pm_lock_power_single(dev_info_t *dip, int *circp) 5946 { 5947 lock_loan_t *cur; 5948 5949 /* if the lock is available, we are done. */ 5950 if (ndi_devi_tryenter(dip, circp)) 5951 return; 5952 5953 mutex_enter(&pm_loan_lock); 5954 /* see if our thread is registered as a lock borrower. */ 5955 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 5956 if (cur->pmlk_borrower == curthread) 5957 break; 5958 mutex_exit(&pm_loan_lock); 5959 5960 /* if this thread not already registered, it is safe to block */ 5961 if (cur == NULL) 5962 ndi_devi_enter(dip, circp); 5963 else { 5964 /* registered: does lender own the lock we want? */ 5965 if (cur->pmlk_lender == DEVI(dip)->devi_busy_thread) { 5966 ASSERT(cur->pmlk_dip == NULL || cur->pmlk_dip == dip); 5967 cur->pmlk_dip = dip; 5968 } else /* no: just block for it */ 5969 ndi_devi_enter(dip, circp); 5970 5971 } 5972 } 5973 5974 /* 5975 * Drop the lock on the device's power state. See comment for 5976 * pm_lock_power_single() for special implementation considerations. 5977 * 5978 * Note: for use by ppm only. 5979 */ 5980 void 5981 pm_unlock_power_single(dev_info_t *dip, int circ) 5982 { 5983 lock_loan_t *cur; 5984 5985 /* optimization: mutex not needed to check empty list */ 5986 if (lock_loan_head.pmlk_next == NULL) { 5987 ndi_devi_exit(dip, circ); 5988 return; 5989 } 5990 5991 mutex_enter(&pm_loan_lock); 5992 /* see if our thread is registered as a lock borrower. */ 5993 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 5994 if (cur->pmlk_borrower == curthread) 5995 break; 5996 mutex_exit(&pm_loan_lock); 5997 5998 if (cur == NULL || cur->pmlk_dip != dip) 5999 /* we acquired the lock directly, so return it */ 6000 ndi_devi_exit(dip, circ); 6001 } 6002 6003 /* 6004 * Try to take the lock for changing the power level of a component. 6005 * 6006 * Note: for use by ppm only. 6007 */ 6008 int 6009 pm_try_locking_power_single(dev_info_t *dip, int *circp) 6010 { 6011 return (ndi_devi_tryenter(dip, circp)); 6012 } 6013 6014 #ifdef DEBUG 6015 /* 6016 * The following are used only to print out data structures for debugging 6017 */ 6018 void 6019 prdeps(char *msg) 6020 { 6021 6022 pm_pdr_t *rp; 6023 int i; 6024 6025 pm_log("pm_dep_head %s %p\n", msg, (void *)pm_dep_head); 6026 for (rp = pm_dep_head; rp; rp = rp->pdr_next) { 6027 pm_log("%p: %s keeper %s, kept %s, kept count %d, next %p\n", 6028 (void *)rp, (rp->pdr_isprop ? "property" : "device"), 6029 rp->pdr_keeper, rp->pdr_kept, rp->pdr_kept_count, 6030 (void *)rp->pdr_next); 6031 if (rp->pdr_kept_count != 0) { 6032 pm_log("kept list = "); 6033 i = 0; 6034 while (i < rp->pdr_kept_count) { 6035 pm_log("%s ", rp->pdr_kept_paths[i]); 6036 i++; 6037 } 6038 pm_log("\n"); 6039 } 6040 } 6041 } 6042 6043 void 6044 pr_noinvol(char *hdr) 6045 { 6046 pm_noinvol_t *ip; 6047 6048 pm_log("%s\n", hdr); 6049 rw_enter(&pm_noinvol_rwlock, RW_READER); 6050 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) 6051 pm_log("\tmaj %d, flags %x, noinvolpm %d %s\n", 6052 ip->ni_major, ip->ni_flags, ip->ni_noinvolpm, ip->ni_path); 6053 rw_exit(&pm_noinvol_rwlock); 6054 } 6055 #endif 6056 6057 /* 6058 * Attempt to apply the thresholds indicated by rp to the node specified by 6059 * dip. 6060 */ 6061 void 6062 pm_apply_recorded_thresh(dev_info_t *dip, pm_thresh_rec_t *rp) 6063 { 6064 PMD_FUNC(pmf, "apply_recorded_thresh") 6065 int i, j; 6066 int comps = PM_NUMCMPTS(dip); 6067 struct pm_component *cp; 6068 pm_pte_t *ep; 6069 int pm_valid_thresh(dev_info_t *, pm_thresh_rec_t *); 6070 6071 PMD(PMD_THRESH, ("%s: part: %s@%s(%s#%d), rp %p, %s\n", pmf, 6072 PM_DEVICE(dip), (void *)rp, rp->ptr_physpath)) 6073 PM_LOCK_DIP(dip); 6074 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip) || !pm_valid_thresh(dip, rp)) { 6075 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_GET_PM_INFO %p\n", 6076 pmf, PM_DEVICE(dip), (void*)PM_GET_PM_INFO(dip))) 6077 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_ISBC %d\n", 6078 pmf, PM_DEVICE(dip), PM_ISBC(dip))) 6079 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) pm_valid_thresh %d\n", 6080 pmf, PM_DEVICE(dip), pm_valid_thresh(dip, rp))) 6081 PM_UNLOCK_DIP(dip); 6082 return; 6083 } 6084 6085 ep = rp->ptr_entries; 6086 /* 6087 * Here we do the special case of a device threshold 6088 */ 6089 if (rp->ptr_numcomps == 0) { /* PM_SET_DEVICE_THRESHOLD product */ 6090 ASSERT(ep && ep->pte_numthresh == 1); 6091 PMD(PMD_THRESH, ("%s: set dev thr %s@%s(%s#%d) to 0x%x\n", 6092 pmf, PM_DEVICE(dip), ep->pte_thresh[0])) 6093 PM_UNLOCK_DIP(dip); 6094 pm_set_device_threshold(dip, ep->pte_thresh[0], PMC_DEV_THRESH); 6095 if (PM_SCANABLE(dip)) 6096 pm_rescan(dip); 6097 return; 6098 } 6099 for (i = 0; i < comps; i++) { 6100 cp = PM_CP(dip, i); 6101 for (j = 0; j < ep->pte_numthresh; j++) { 6102 PMD(PMD_THRESH, ("%s: set thr %d for %s@%s(%s#%d)[%d] " 6103 "to %x\n", pmf, j, PM_DEVICE(dip), 6104 i, ep->pte_thresh[j])) 6105 cp->pmc_comp.pmc_thresh[j + 1] = ep->pte_thresh[j]; 6106 } 6107 ep++; 6108 } 6109 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 6110 DEVI(dip)->devi_pm_flags |= PMC_COMP_THRESH; 6111 PM_UNLOCK_DIP(dip); 6112 6113 if (PM_SCANABLE(dip)) 6114 pm_rescan(dip); 6115 } 6116 6117 /* 6118 * Returns true if the threshold specified by rp could be applied to dip 6119 * (that is, the number of components and transitions are the same) 6120 */ 6121 int 6122 pm_valid_thresh(dev_info_t *dip, pm_thresh_rec_t *rp) 6123 { 6124 PMD_FUNC(pmf, "valid_thresh") 6125 int comps, i; 6126 pm_component_t *cp; 6127 pm_pte_t *ep; 6128 6129 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip)) { 6130 PMD(PMD_ERROR, ("%s: %s: no pm_info or BC\n", pmf, 6131 rp->ptr_physpath)) 6132 return (0); 6133 } 6134 /* 6135 * Special case: we represent the PM_SET_DEVICE_THRESHOLD case by 6136 * an entry with numcomps == 0, (since we don't know how many 6137 * components there are in advance). This is always a valid 6138 * spec. 6139 */ 6140 if (rp->ptr_numcomps == 0) { 6141 ASSERT(rp->ptr_entries && rp->ptr_entries->pte_numthresh == 1); 6142 return (1); 6143 } 6144 if (rp->ptr_numcomps != (comps = PM_NUMCMPTS(dip))) { 6145 PMD(PMD_ERROR, ("%s: comp # mm (dip %d cmd %d) for %s\n", 6146 pmf, PM_NUMCMPTS(dip), rp->ptr_numcomps, rp->ptr_physpath)) 6147 return (0); 6148 } 6149 ep = rp->ptr_entries; 6150 for (i = 0; i < comps; i++) { 6151 cp = PM_CP(dip, i); 6152 if ((ep + i)->pte_numthresh != 6153 cp->pmc_comp.pmc_numlevels - 1) { 6154 PMD(PMD_ERROR, ("%s: %s[%d]: thresh=%d, record=%d\n", 6155 pmf, rp->ptr_physpath, i, 6156 cp->pmc_comp.pmc_numlevels - 1, 6157 (ep + i)->pte_numthresh)) 6158 return (0); 6159 } 6160 } 6161 return (1); 6162 } 6163 6164 /* 6165 * Remove any recorded threshold for device physpath 6166 * We know there will be at most one. 6167 */ 6168 void 6169 pm_unrecord_threshold(char *physpath) 6170 { 6171 pm_thresh_rec_t *pptr, *ptr; 6172 6173 rw_enter(&pm_thresh_rwlock, RW_WRITER); 6174 for (pptr = NULL, ptr = pm_thresh_head; ptr; ptr = ptr->ptr_next) { 6175 if (strcmp(physpath, ptr->ptr_physpath) == 0) { 6176 if (pptr) { 6177 pptr->ptr_next = ptr->ptr_next; 6178 } else { 6179 ASSERT(pm_thresh_head == ptr); 6180 pm_thresh_head = ptr->ptr_next; 6181 } 6182 kmem_free(ptr, ptr->ptr_size); 6183 break; 6184 } 6185 pptr = ptr; 6186 } 6187 rw_exit(&pm_thresh_rwlock); 6188 } 6189 6190 /* 6191 * Discard all recorded thresholds. We are returning to the default pm state. 6192 */ 6193 void 6194 pm_discard_thresholds(void) 6195 { 6196 pm_thresh_rec_t *rp; 6197 rw_enter(&pm_thresh_rwlock, RW_WRITER); 6198 while (pm_thresh_head) { 6199 rp = pm_thresh_head; 6200 pm_thresh_head = rp->ptr_next; 6201 kmem_free(rp, rp->ptr_size); 6202 } 6203 rw_exit(&pm_thresh_rwlock); 6204 } 6205 6206 /* 6207 * Discard all recorded dependencies. We are returning to the default pm state. 6208 */ 6209 void 6210 pm_discard_dependencies(void) 6211 { 6212 pm_pdr_t *rp; 6213 int i; 6214 size_t length; 6215 6216 #ifdef DEBUG 6217 if (pm_debug & PMD_DEP) 6218 prdeps("Before discard\n"); 6219 #endif 6220 ddi_walk_devs(ddi_root_node(), pm_discard_dep_walk, NULL); 6221 6222 #ifdef DEBUG 6223 if (pm_debug & PMD_DEP) 6224 prdeps("After discard\n"); 6225 #endif 6226 while (pm_dep_head) { 6227 rp = pm_dep_head; 6228 if (!rp->pdr_isprop) { 6229 ASSERT(rp->pdr_satisfied == 0); 6230 ASSERT(pm_unresolved_deps); 6231 pm_unresolved_deps--; 6232 } else { 6233 ASSERT(pm_prop_deps); 6234 pm_prop_deps--; 6235 } 6236 pm_dep_head = rp->pdr_next; 6237 if (rp->pdr_kept_count) { 6238 for (i = 0; i < rp->pdr_kept_count; i++) { 6239 length = strlen(rp->pdr_kept_paths[i]) + 1; 6240 kmem_free(rp->pdr_kept_paths[i], length); 6241 } 6242 kmem_free(rp->pdr_kept_paths, 6243 rp->pdr_kept_count * sizeof (char **)); 6244 } 6245 kmem_free(rp, rp->pdr_size); 6246 } 6247 } 6248 6249 6250 static int 6251 pm_discard_dep_walk(dev_info_t *dip, void *arg) 6252 { 6253 _NOTE(ARGUNUSED(arg)) 6254 char *pathbuf; 6255 6256 if (PM_GET_PM_INFO(dip) == NULL) 6257 return (DDI_WALK_CONTINUE); 6258 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6259 (void) ddi_pathname(dip, pathbuf); 6260 pm_free_keeper(pathbuf, 0); 6261 kmem_free(pathbuf, MAXPATHLEN); 6262 return (DDI_WALK_CONTINUE); 6263 } 6264 6265 static int 6266 pm_kept_walk(dev_info_t *dip, void *arg) 6267 { 6268 _NOTE(ARGUNUSED(arg)) 6269 char *pathbuf; 6270 6271 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6272 (void) ddi_pathname(dip, pathbuf); 6273 (void) pm_kept(pathbuf); 6274 kmem_free(pathbuf, MAXPATHLEN); 6275 6276 return (DDI_WALK_CONTINUE); 6277 } 6278 6279 static int 6280 pm_keeper_walk(dev_info_t *dip, void *arg) 6281 { 6282 _NOTE(ARGUNUSED(arg)) 6283 char *pathbuf; 6284 6285 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6286 (void) ddi_pathname(dip, pathbuf); 6287 (void) pm_keeper(pathbuf); 6288 kmem_free(pathbuf, MAXPATHLEN); 6289 6290 return (DDI_WALK_CONTINUE); 6291 } 6292 6293 static char * 6294 pdw_type_decode(int type) 6295 { 6296 switch (type) { 6297 case PM_DEP_WK_POWER_ON: 6298 return ("power on"); 6299 case PM_DEP_WK_POWER_OFF: 6300 return ("power off"); 6301 case PM_DEP_WK_DETACH: 6302 return ("detach"); 6303 case PM_DEP_WK_REMOVE_DEP: 6304 return ("remove dep"); 6305 case PM_DEP_WK_BRINGUP_SELF: 6306 return ("bringup self"); 6307 case PM_DEP_WK_RECORD_KEEPER: 6308 return ("add dependent"); 6309 case PM_DEP_WK_RECORD_KEEPER_PROP: 6310 return ("add dependent property"); 6311 case PM_DEP_WK_KEPT: 6312 return ("kept"); 6313 case PM_DEP_WK_KEEPER: 6314 return ("keeper"); 6315 case PM_DEP_WK_ATTACH: 6316 return ("attach"); 6317 case PM_DEP_WK_CHECK_KEPT: 6318 return ("check kept"); 6319 case PM_DEP_WK_CPR_SUSPEND: 6320 return ("suspend"); 6321 case PM_DEP_WK_CPR_RESUME: 6322 return ("resume"); 6323 default: 6324 return ("unknown"); 6325 } 6326 6327 } 6328 6329 static void 6330 pm_rele_dep(char *keeper) 6331 { 6332 PMD_FUNC(pmf, "rele_dep") 6333 pm_pdr_t *dp; 6334 char *kept_path = NULL; 6335 dev_info_t *kept = NULL; 6336 int count = 0; 6337 6338 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 6339 if (strcmp(dp->pdr_keeper, keeper) != 0) 6340 continue; 6341 for (count = 0; count < dp->pdr_kept_count; count++) { 6342 kept_path = dp->pdr_kept_paths[count]; 6343 if (kept_path == NULL) 6344 continue; 6345 kept = pm_name_to_dip(kept_path, 1); 6346 if (kept) { 6347 PMD(PMD_KEEPS, ("%s: release kept=%s@%s(%s#%d) " 6348 "of keeper=%s\n", pmf, PM_DEVICE(kept), 6349 keeper)) 6350 ASSERT(DEVI(kept)->devi_pm_kidsupcnt > 0); 6351 pm_rele_power(kept); 6352 ddi_release_devi(kept); 6353 } 6354 } 6355 } 6356 } 6357 6358 /* 6359 * Called when we are just released from direct PM. Bring ourself up 6360 * if our keeper is up since dependency is not honored while a kept 6361 * device is under direct PM. 6362 */ 6363 static void 6364 pm_bring_self_up(char *keptpath) 6365 { 6366 PMD_FUNC(pmf, "bring_self_up") 6367 dev_info_t *kept; 6368 dev_info_t *keeper; 6369 pm_pdr_t *dp; 6370 int i, j; 6371 int up = 0, circ; 6372 6373 kept = pm_name_to_dip(keptpath, 1); 6374 if (kept == NULL) 6375 return; 6376 PMD(PMD_KEEPS, ("%s: kept=%s@%s(%s#%d)\n", pmf, PM_DEVICE(kept))) 6377 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 6378 if (dp->pdr_kept_count == 0) 6379 continue; 6380 for (i = 0; i < dp->pdr_kept_count; i++) { 6381 if (strcmp(dp->pdr_kept_paths[i], keptpath) != 0) 6382 continue; 6383 keeper = pm_name_to_dip(dp->pdr_keeper, 1); 6384 if (keeper) { 6385 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d)\n", 6386 pmf, PM_DEVICE(keeper))) 6387 PM_LOCK_POWER(keeper, &circ); 6388 for (j = 0; j < PM_NUMCMPTS(keeper); 6389 j++) { 6390 if (PM_CURPOWER(keeper, j)) { 6391 PMD(PMD_KEEPS, ("%s: comp=" 6392 "%d is up\n", pmf, j)) 6393 up++; 6394 } 6395 } 6396 if (up) { 6397 if (PM_SKBU(kept)) 6398 DEVI(kept)->devi_pm_flags &= 6399 ~PMC_SKIP_BRINGUP; 6400 bring_pmdep_up(kept, 1); 6401 } 6402 PM_UNLOCK_POWER(keeper, circ); 6403 ddi_release_devi(keeper); 6404 } 6405 } 6406 } 6407 ddi_release_devi(kept); 6408 } 6409 6410 static void 6411 pm_process_dep_request(pm_dep_wk_t *work) 6412 { 6413 PMD_FUNC(pmf, "dep_req") 6414 int ret; 6415 6416 PMD(PMD_DEP, ("%s: work=%s\n", pmf, 6417 pdw_type_decode(work->pdw_type))) 6418 PMD(PMD_DEP, ("%s: keeper=%s, kept=%s\n", pmf, 6419 (work->pdw_keeper ? work->pdw_keeper : "NULL"), 6420 (work->pdw_kept ? work->pdw_kept : "NULL"))) 6421 6422 switch (work->pdw_type) { 6423 case PM_DEP_WK_POWER_ON: 6424 /* Bring up the kept devices and put a hold on them */ 6425 bring_wekeeps_up(work->pdw_keeper); 6426 break; 6427 case PM_DEP_WK_POWER_OFF: 6428 /* Release the kept devices */ 6429 pm_rele_dep(work->pdw_keeper); 6430 break; 6431 case PM_DEP_WK_DETACH: 6432 pm_free_keeps(work->pdw_keeper, work->pdw_pwr); 6433 break; 6434 case PM_DEP_WK_REMOVE_DEP: 6435 pm_discard_dependencies(); 6436 break; 6437 case PM_DEP_WK_BRINGUP_SELF: 6438 /* 6439 * We deferred satisfying our dependency till now, so satisfy 6440 * it again and bring ourselves up. 6441 */ 6442 pm_bring_self_up(work->pdw_kept); 6443 break; 6444 case PM_DEP_WK_RECORD_KEEPER: 6445 (void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 0); 6446 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6447 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6448 break; 6449 case PM_DEP_WK_RECORD_KEEPER_PROP: 6450 (void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 1); 6451 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6452 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6453 break; 6454 case PM_DEP_WK_KEPT: 6455 ret = pm_kept(work->pdw_kept); 6456 PMD(PMD_DEP, ("%s: PM_DEP_WK_KEPT: pm_kept returns %d\n", pmf, 6457 ret)) 6458 break; 6459 case PM_DEP_WK_KEEPER: 6460 ret = pm_keeper(work->pdw_keeper); 6461 PMD(PMD_DEP, ("%s: PM_DEP_WK_KEEPER: pm_keeper returns %d\n", 6462 pmf, ret)) 6463 break; 6464 case PM_DEP_WK_ATTACH: 6465 ret = pm_keeper(work->pdw_keeper); 6466 PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_keeper returns %d\n", 6467 pmf, ret)) 6468 ret = pm_kept(work->pdw_kept); 6469 PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_kept returns %d\n", 6470 pmf, ret)) 6471 break; 6472 case PM_DEP_WK_CHECK_KEPT: 6473 ret = pm_is_kept(work->pdw_kept); 6474 PMD(PMD_DEP, ("%s: PM_DEP_WK_CHECK_KEPT: kept=%s, ret=%d\n", 6475 pmf, work->pdw_kept, ret)) 6476 break; 6477 case PM_DEP_WK_CPR_SUSPEND: 6478 pm_discard_dependencies(); 6479 break; 6480 case PM_DEP_WK_CPR_RESUME: 6481 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6482 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6483 break; 6484 default: 6485 ASSERT(0); 6486 break; 6487 } 6488 /* 6489 * Free the work structure if the requester is not waiting 6490 * Otherwise it is the requester's responsiblity to free it. 6491 */ 6492 if (!work->pdw_wait) { 6493 if (work->pdw_keeper) 6494 kmem_free(work->pdw_keeper, 6495 strlen(work->pdw_keeper) + 1); 6496 if (work->pdw_kept) 6497 kmem_free(work->pdw_kept, strlen(work->pdw_kept) + 1); 6498 kmem_free(work, sizeof (pm_dep_wk_t)); 6499 } else { 6500 /* 6501 * Notify requester if it is waiting for it. 6502 */ 6503 work->pdw_ret = ret; 6504 work->pdw_done = 1; 6505 cv_signal(&work->pdw_cv); 6506 } 6507 } 6508 6509 /* 6510 * Process PM dependency requests. 6511 */ 6512 static void 6513 pm_dep_thread(void) 6514 { 6515 pm_dep_wk_t *work; 6516 callb_cpr_t cprinfo; 6517 6518 CALLB_CPR_INIT(&cprinfo, &pm_dep_thread_lock, callb_generic_cpr, 6519 "pm_dep_thread"); 6520 for (;;) { 6521 mutex_enter(&pm_dep_thread_lock); 6522 if (pm_dep_thread_workq == NULL) { 6523 CALLB_CPR_SAFE_BEGIN(&cprinfo); 6524 cv_wait(&pm_dep_thread_cv, &pm_dep_thread_lock); 6525 CALLB_CPR_SAFE_END(&cprinfo, &pm_dep_thread_lock); 6526 } 6527 work = pm_dep_thread_workq; 6528 pm_dep_thread_workq = work->pdw_next; 6529 if (pm_dep_thread_tail == work) 6530 pm_dep_thread_tail = work->pdw_next; 6531 mutex_exit(&pm_dep_thread_lock); 6532 pm_process_dep_request(work); 6533 6534 } 6535 /*NOTREACHED*/ 6536 } 6537 6538 /* 6539 * Set the power level of the indicated device to unknown (if it is not a 6540 * backwards compatible device), as it has just been resumed, and it won't 6541 * know if the power was removed or not. Adjust parent's kidsupcnt if necessary. 6542 */ 6543 void 6544 pm_forget_power_level(dev_info_t *dip) 6545 { 6546 dev_info_t *pdip = ddi_get_parent(dip); 6547 int i, count = 0; 6548 6549 if (!PM_ISBC(dip)) { 6550 for (i = 0; i < PM_NUMCMPTS(dip); i++) 6551 count += (PM_CURPOWER(dip, i) == 0); 6552 6553 if (count && pdip && !PM_WANTS_NOTIFICATION(pdip)) 6554 e_pm_hold_rele_power(pdip, count); 6555 6556 /* 6557 * Count this as a power cycle if we care 6558 */ 6559 if (DEVI(dip)->devi_pm_volpmd && 6560 PM_CP(dip, 0)->pmc_cur_pwr == 0) 6561 DEVI(dip)->devi_pm_volpmd = 0; 6562 for (i = 0; i < PM_NUMCMPTS(dip); i++) 6563 e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN); 6564 } 6565 } 6566 6567 /* 6568 * This function advises the caller whether it should make a power-off 6569 * transition at this time or not. If the transition is not advised 6570 * at this time, the time that the next power-off transition can 6571 * be made from now is returned through "intervalp" pointer. 6572 * This function returns: 6573 * 6574 * 1 power-off advised 6575 * 0 power-off not advised, intervalp will point to seconds from 6576 * now that a power-off is advised. If it is passed the number 6577 * of years that policy specifies the device should last, 6578 * a large number is returned as the time interval. 6579 * -1 error 6580 */ 6581 int 6582 pm_trans_check(struct pm_trans_data *datap, time_t *intervalp) 6583 { 6584 PMD_FUNC(pmf, "pm_trans_check") 6585 char dbuf[DC_SCSI_MFR_LEN]; 6586 struct pm_scsi_cycles *scp; 6587 int service_years, service_weeks, full_years; 6588 time_t now, service_seconds, tdiff; 6589 time_t within_year, when_allowed; 6590 char *ptr; 6591 int lower_bound_cycles, upper_bound_cycles, cycles_allowed; 6592 int cycles_diff, cycles_over; 6593 struct pm_smart_count *smart_p; 6594 6595 if (datap == NULL) { 6596 PMD(PMD_TCHECK, ("%s: NULL data pointer!\n", pmf)) 6597 return (-1); 6598 } 6599 6600 if (datap->format == DC_SCSI_FORMAT) { 6601 /* 6602 * Power cycles of the scsi drives are distributed 6603 * over 5 years with the following percentage ratio: 6604 * 6605 * 30%, 25%, 20%, 15%, and 10% 6606 * 6607 * The power cycle quota for each year is distributed 6608 * linearly through out the year. The equation for 6609 * determining the expected cycles is: 6610 * 6611 * e = a * (n / y) 6612 * 6613 * e = expected cycles 6614 * a = allocated cycles for this year 6615 * n = number of seconds since beginning of this year 6616 * y = number of seconds in a year 6617 * 6618 * Note that beginning of the year starts the day that 6619 * the drive has been put on service. 6620 * 6621 * If the drive has passed its expected cycles, we 6622 * can determine when it can start to power cycle 6623 * again to keep it on track to meet the 5-year 6624 * life expectancy. The equation for determining 6625 * when to power cycle is: 6626 * 6627 * w = y * (c / a) 6628 * 6629 * w = when it can power cycle again 6630 * y = number of seconds in a year 6631 * c = current number of cycles 6632 * a = allocated cycles for the year 6633 * 6634 */ 6635 char pcnt[DC_SCSI_NPY] = { 30, 55, 75, 90, 100 }; 6636 6637 scp = &datap->un.scsi_cycles; 6638 PMD(PMD_TCHECK, ("%s: format=%d, lifemax=%d, ncycles=%d, " 6639 "svc_date=%s, svc_flag=%d\n", pmf, datap->format, 6640 scp->lifemax, scp->ncycles, scp->svc_date, scp->flag)) 6641 if (scp->ncycles < 0 || scp->flag != 0) { 6642 PMD(PMD_TCHECK, ("%s: ncycles < 0 || flag != 0\n", pmf)) 6643 return (-1); 6644 } 6645 6646 if (scp->ncycles > scp->lifemax) { 6647 *intervalp = (LONG_MAX / hz); 6648 return (0); 6649 } 6650 6651 /* 6652 * convert service date to time_t 6653 */ 6654 bcopy(scp->svc_date, dbuf, DC_SCSI_YEAR_LEN); 6655 dbuf[DC_SCSI_YEAR_LEN] = '\0'; 6656 ptr = dbuf; 6657 service_years = stoi(&ptr) - EPOCH_YEAR; 6658 bcopy(&scp->svc_date[DC_SCSI_YEAR_LEN], dbuf, 6659 DC_SCSI_WEEK_LEN); 6660 dbuf[DC_SCSI_WEEK_LEN] = '\0'; 6661 6662 /* 6663 * scsi standard does not specify WW data, 6664 * could be (00-51) or (01-52) 6665 */ 6666 ptr = dbuf; 6667 service_weeks = stoi(&ptr); 6668 if (service_years < 0 || 6669 service_weeks < 0 || service_weeks > 52) { 6670 PMD(PMD_TCHECK, ("%s: service year %d and week %d\n", 6671 pmf, service_years, service_weeks)) 6672 return (-1); 6673 } 6674 6675 /* 6676 * calculate service date in seconds-since-epoch, 6677 * adding one day for each leap-year. 6678 * 6679 * (years-since-epoch + 2) fixes integer truncation, 6680 * example: (8) leap-years during [1972, 2000] 6681 * (2000 - 1970) = 30; and (30 + 2) / 4 = 8; 6682 */ 6683 service_seconds = (service_years * DC_SPY) + 6684 (service_weeks * DC_SPW) + 6685 (((service_years + 2) / 4) * DC_SPD); 6686 6687 now = gethrestime_sec(); 6688 /* 6689 * since the granularity of 'svc_date' is day not second, 6690 * 'now' should be rounded up to full day. 6691 */ 6692 now = ((now + DC_SPD -1) / DC_SPD) * DC_SPD; 6693 if (service_seconds > now) { 6694 PMD(PMD_TCHECK, ("%s: service date (%ld) later " 6695 "than now (%ld)!\n", pmf, service_seconds, now)) 6696 return (-1); 6697 } 6698 6699 tdiff = now - service_seconds; 6700 PMD(PMD_TCHECK, ("%s: age is %ld sec\n", pmf, tdiff)) 6701 6702 /* 6703 * NOTE - Leap years are not considered in the calculations 6704 * below. 6705 */ 6706 full_years = (tdiff / DC_SPY); 6707 if ((full_years >= DC_SCSI_NPY) && 6708 (scp->ncycles <= scp->lifemax)) 6709 return (1); 6710 6711 /* 6712 * Determine what is the normal cycle usage for the 6713 * device at the beginning and the end of this year. 6714 */ 6715 lower_bound_cycles = (!full_years) ? 0 : 6716 ((scp->lifemax * pcnt[full_years - 1]) / 100); 6717 upper_bound_cycles = (scp->lifemax * pcnt[full_years]) / 100; 6718 6719 if (scp->ncycles <= lower_bound_cycles) 6720 return (1); 6721 6722 /* 6723 * The linear slope that determines how many cycles 6724 * are allowed this year is number of seconds 6725 * passed this year over total number of seconds in a year. 6726 */ 6727 cycles_diff = (upper_bound_cycles - lower_bound_cycles); 6728 within_year = (tdiff % DC_SPY); 6729 cycles_allowed = lower_bound_cycles + 6730 (((uint64_t)cycles_diff * (uint64_t)within_year) / DC_SPY); 6731 PMD(PMD_TCHECK, ("%s: lived %d yrs and %ld secs\n", pmf, 6732 full_years, within_year)) 6733 PMD(PMD_TCHECK, ("%s: # of cycles allowed %d\n", pmf, 6734 cycles_allowed)) 6735 6736 if (scp->ncycles <= cycles_allowed) 6737 return (1); 6738 6739 /* 6740 * The transition is not advised now but we can 6741 * determine when the next transition can be made. 6742 * 6743 * Depending on how many cycles the device has been 6744 * over-used, we may need to skip years with 6745 * different percentage quota in order to determine 6746 * when the next transition can be made. 6747 */ 6748 cycles_over = (scp->ncycles - lower_bound_cycles); 6749 while (cycles_over > cycles_diff) { 6750 full_years++; 6751 if (full_years >= DC_SCSI_NPY) { 6752 *intervalp = (LONG_MAX / hz); 6753 return (0); 6754 } 6755 cycles_over -= cycles_diff; 6756 lower_bound_cycles = upper_bound_cycles; 6757 upper_bound_cycles = 6758 (scp->lifemax * pcnt[full_years]) / 100; 6759 cycles_diff = (upper_bound_cycles - lower_bound_cycles); 6760 } 6761 6762 /* 6763 * The linear slope that determines when the next transition 6764 * can be made is the relative position of used cycles within a 6765 * year over total number of cycles within that year. 6766 */ 6767 when_allowed = service_seconds + (full_years * DC_SPY) + 6768 (((uint64_t)DC_SPY * (uint64_t)cycles_over) / cycles_diff); 6769 *intervalp = (when_allowed - now); 6770 if (*intervalp > (LONG_MAX / hz)) 6771 *intervalp = (LONG_MAX / hz); 6772 PMD(PMD_TCHECK, ("%s: no cycle is allowed in %ld secs\n", pmf, 6773 *intervalp)) 6774 return (0); 6775 } else if (datap->format == DC_SMART_FORMAT) { 6776 /* 6777 * power cycles of SATA disks are reported from SMART 6778 * attributes. 6779 */ 6780 smart_p = &datap->un.smart_count; 6781 if (smart_p->consumed >= smart_p->allowed) { 6782 *intervalp = (LONG_MAX / hz); 6783 PMD(PMD_TCHECK, ("%s: exceeded lifemax cycles.\n", pmf)) 6784 return (0); 6785 } else 6786 return (1); 6787 } 6788 6789 PMD(PMD_TCHECK, ("%s: unknown format!\n", pmf)) 6790 return (-1); 6791 } 6792 6793 /* 6794 * Nexus drivers call into pm framework to indicate which child driver is about 6795 * to be installed. In some platforms, ppm may need to configure the hardware 6796 * for successful installation of a driver. 6797 */ 6798 int 6799 pm_init_child(dev_info_t *dip) 6800 { 6801 power_req_t power_req; 6802 6803 ASSERT(ddi_binding_name(dip)); 6804 ASSERT(ddi_get_name_addr(dip)); 6805 pm_ppm_claim(dip); 6806 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 6807 power_req.request_type = PMR_PPM_INIT_CHILD; 6808 power_req.req.ppm_config_req.who = dip; 6809 ASSERT(PPM(dip) != NULL); 6810 return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, 6811 NULL)); 6812 } else { 6813 #ifdef DEBUG 6814 /* pass it to the default handler so we can debug things */ 6815 power_req.request_type = PMR_PPM_INIT_CHILD; 6816 power_req.req.ppm_config_req.who = dip; 6817 (void) pm_ctlops(NULL, dip, 6818 DDI_CTLOPS_POWER, &power_req, NULL); 6819 #endif 6820 } 6821 return (DDI_SUCCESS); 6822 } 6823 6824 /* 6825 * Bring parent of a node that is about to be probed up to full power, and 6826 * arrange for it to stay up until pm_post_probe() or pm_post_attach() decide 6827 * it is time to let it go down again 6828 */ 6829 void 6830 pm_pre_probe(dev_info_t *dip, pm_ppm_cookie_t *cp) 6831 { 6832 int result; 6833 power_req_t power_req; 6834 6835 bzero(cp, sizeof (*cp)); 6836 cp->ppc_dip = dip; 6837 6838 pm_ppm_claim(dip); 6839 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 6840 power_req.request_type = PMR_PPM_PRE_PROBE; 6841 power_req.req.ppm_config_req.who = dip; 6842 ASSERT(PPM(dip) != NULL); 6843 (void) pm_ctlops(PPM(dip), dip, 6844 DDI_CTLOPS_POWER, &power_req, &result); 6845 cp->ppc_ppm = PPM(dip); 6846 } else { 6847 #ifdef DEBUG 6848 /* pass it to the default handler so we can debug things */ 6849 power_req.request_type = PMR_PPM_PRE_PROBE; 6850 power_req.req.ppm_config_req.who = dip; 6851 (void) pm_ctlops(NULL, dip, 6852 DDI_CTLOPS_POWER, &power_req, &result); 6853 #endif 6854 cp->ppc_ppm = NULL; 6855 } 6856 } 6857 6858 int 6859 pm_pre_config(dev_info_t *dip, char *devnm) 6860 { 6861 PMD_FUNC(pmf, "pre_config") 6862 int ret; 6863 6864 if (MDI_VHCI(dip)) { 6865 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 6866 ret = mdi_power(dip, MDI_PM_PRE_CONFIG, NULL, devnm, 0); 6867 return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 6868 } else if (!PM_GET_PM_INFO(dip)) 6869 return (DDI_SUCCESS); 6870 6871 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 6872 pm_hold_power(dip); 6873 ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK); 6874 if (ret != DDI_SUCCESS) 6875 pm_rele_power(dip); 6876 return (ret); 6877 } 6878 6879 /* 6880 * This routine is called by devfs during its walk to unconfigue a node. 6881 * If the call is due to auto mod_unloads and the dip is not at its 6882 * full power, we return DDI_FAILURE to terminate the walk, otherwise 6883 * return DDI_SUCCESS. 6884 */ 6885 int 6886 pm_pre_unconfig(dev_info_t *dip, int flags, int *held, char *devnm) 6887 { 6888 PMD_FUNC(pmf, "pre_unconfig") 6889 int ret; 6890 6891 if (MDI_VHCI(dip)) { 6892 PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf, 6893 PM_DEVICE(dip), flags)) 6894 ret = mdi_power(dip, MDI_PM_PRE_UNCONFIG, held, devnm, flags); 6895 return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 6896 } else if (!PM_GET_PM_INFO(dip)) 6897 return (DDI_SUCCESS); 6898 6899 PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf, PM_DEVICE(dip), 6900 flags)) 6901 *held = 0; 6902 6903 /* 6904 * If the dip is a leaf node, don't power it up. 6905 */ 6906 if (!ddi_get_child(dip)) 6907 return (DDI_SUCCESS); 6908 6909 /* 6910 * Do not power up the node if it is called due to auto-modunload. 6911 */ 6912 if ((flags & NDI_AUTODETACH) && !pm_all_at_normal(dip)) 6913 return (DDI_FAILURE); 6914 6915 pm_hold_power(dip); 6916 *held = 1; 6917 ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK); 6918 if (ret != DDI_SUCCESS) { 6919 pm_rele_power(dip); 6920 *held = 0; 6921 } 6922 return (ret); 6923 } 6924 6925 /* 6926 * Notify ppm of attach action. Parent is already held at full power by 6927 * probe action. 6928 */ 6929 void 6930 pm_pre_attach(dev_info_t *dip, pm_ppm_cookie_t *cp, ddi_attach_cmd_t cmd) 6931 { 6932 static char *me = "pm_pre_attach"; 6933 power_req_t power_req; 6934 int result; 6935 6936 /* 6937 * Initialize and fill in the PPM cookie 6938 */ 6939 bzero(cp, sizeof (*cp)); 6940 cp->ppc_cmd = (int)cmd; 6941 cp->ppc_ppm = PPM(dip); 6942 cp->ppc_dip = dip; 6943 6944 /* 6945 * DDI_ATTACH and DDI_RESUME cmds need to call platform specific 6946 * Power Management stuff. DDI_RESUME also has to purge it's 6947 * powerlevel information. 6948 */ 6949 switch (cmd) { 6950 case DDI_ATTACH: 6951 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 6952 power_req.request_type = PMR_PPM_PRE_ATTACH; 6953 power_req.req.ppm_config_req.who = dip; 6954 ASSERT(PPM(dip)); 6955 (void) pm_ctlops(cp->ppc_ppm, dip, DDI_CTLOPS_POWER, 6956 &power_req, &result); 6957 } 6958 #ifdef DEBUG 6959 else { 6960 power_req.request_type = PMR_PPM_PRE_ATTACH; 6961 power_req.req.ppm_config_req.who = dip; 6962 (void) pm_ctlops(NULL, dip, 6963 DDI_CTLOPS_POWER, &power_req, &result); 6964 } 6965 #endif 6966 break; 6967 case DDI_RESUME: 6968 pm_forget_power_level(dip); 6969 6970 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 6971 power_req.request_type = PMR_PPM_PRE_RESUME; 6972 power_req.req.resume_req.who = cp->ppc_dip; 6973 power_req.req.resume_req.cmd = 6974 (ddi_attach_cmd_t)cp->ppc_cmd; 6975 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 6976 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 6977 DDI_CTLOPS_POWER, &power_req, &result); 6978 } 6979 #ifdef DEBUG 6980 else { 6981 power_req.request_type = PMR_PPM_PRE_RESUME; 6982 power_req.req.resume_req.who = cp->ppc_dip; 6983 power_req.req.resume_req.cmd = 6984 (ddi_attach_cmd_t)cp->ppc_cmd; 6985 (void) pm_ctlops(NULL, cp->ppc_dip, 6986 DDI_CTLOPS_POWER, &power_req, &result); 6987 } 6988 #endif 6989 break; 6990 6991 case DDI_PM_RESUME: 6992 break; 6993 6994 default: 6995 panic(me); 6996 } 6997 } 6998 6999 /* 7000 * Nexus drivers call into pm framework to indicate which child driver is 7001 * being uninstalled. In some platforms, ppm may need to reconfigure the 7002 * hardware since the device driver is no longer installed. 7003 */ 7004 int 7005 pm_uninit_child(dev_info_t *dip) 7006 { 7007 power_req_t power_req; 7008 7009 ASSERT(ddi_binding_name(dip)); 7010 ASSERT(ddi_get_name_addr(dip)); 7011 pm_ppm_claim(dip); 7012 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 7013 power_req.request_type = PMR_PPM_UNINIT_CHILD; 7014 power_req.req.ppm_config_req.who = dip; 7015 ASSERT(PPM(dip)); 7016 return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, 7017 NULL)); 7018 } else { 7019 #ifdef DEBUG 7020 /* pass it to the default handler so we can debug things */ 7021 power_req.request_type = PMR_PPM_UNINIT_CHILD; 7022 power_req.req.ppm_config_req.who = dip; 7023 (void) pm_ctlops(NULL, dip, DDI_CTLOPS_POWER, &power_req, NULL); 7024 #endif 7025 } 7026 return (DDI_SUCCESS); 7027 } 7028 /* 7029 * Decrement kidsupcnt so scan can turn the parent back off if it is idle 7030 * Also notify ppm of result of probe if there is a ppm that cares 7031 */ 7032 void 7033 pm_post_probe(pm_ppm_cookie_t *cp, int ret, int probe_failed) 7034 { 7035 _NOTE(ARGUNUSED(probe_failed)) 7036 int result; 7037 power_req_t power_req; 7038 7039 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7040 power_req.request_type = PMR_PPM_POST_PROBE; 7041 power_req.req.ppm_config_req.who = cp->ppc_dip; 7042 power_req.req.ppm_config_req.result = ret; 7043 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7044 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, DDI_CTLOPS_POWER, 7045 &power_req, &result); 7046 } 7047 #ifdef DEBUG 7048 else { 7049 power_req.request_type = PMR_PPM_POST_PROBE; 7050 power_req.req.ppm_config_req.who = cp->ppc_dip; 7051 power_req.req.ppm_config_req.result = ret; 7052 (void) pm_ctlops(NULL, cp->ppc_dip, DDI_CTLOPS_POWER, 7053 &power_req, &result); 7054 } 7055 #endif 7056 } 7057 7058 void 7059 pm_post_config(dev_info_t *dip, char *devnm) 7060 { 7061 PMD_FUNC(pmf, "post_config") 7062 7063 if (MDI_VHCI(dip)) { 7064 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 7065 (void) mdi_power(dip, MDI_PM_POST_CONFIG, NULL, devnm, 0); 7066 return; 7067 } else if (!PM_GET_PM_INFO(dip)) 7068 return; 7069 7070 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 7071 pm_rele_power(dip); 7072 } 7073 7074 void 7075 pm_post_unconfig(dev_info_t *dip, int held, char *devnm) 7076 { 7077 PMD_FUNC(pmf, "post_unconfig") 7078 7079 if (MDI_VHCI(dip)) { 7080 PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf, 7081 PM_DEVICE(dip), held)) 7082 (void) mdi_power(dip, MDI_PM_POST_UNCONFIG, &held, devnm, 0); 7083 return; 7084 } else if (!PM_GET_PM_INFO(dip)) 7085 return; 7086 7087 PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf, PM_DEVICE(dip), 7088 held)) 7089 if (!held) 7090 return; 7091 /* 7092 * We have held power in pre_unconfig, release it here. 7093 */ 7094 pm_rele_power(dip); 7095 } 7096 7097 /* 7098 * Notify ppm of result of attach if there is a ppm that cares 7099 */ 7100 void 7101 pm_post_attach(pm_ppm_cookie_t *cp, int ret) 7102 { 7103 int result; 7104 power_req_t power_req; 7105 dev_info_t *dip; 7106 7107 if (cp->ppc_cmd != DDI_ATTACH) 7108 return; 7109 7110 dip = cp->ppc_dip; 7111 7112 if (ret == DDI_SUCCESS) { 7113 /* 7114 * Attach succeeded, so proceed to doing post-attach pm tasks 7115 */ 7116 if (PM_GET_PM_INFO(dip) == NULL) 7117 (void) pm_start(dip); 7118 } else { 7119 /* 7120 * Attach may have got pm started before failing 7121 */ 7122 pm_stop(dip); 7123 } 7124 7125 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7126 power_req.request_type = PMR_PPM_POST_ATTACH; 7127 power_req.req.ppm_config_req.who = cp->ppc_dip; 7128 power_req.req.ppm_config_req.result = ret; 7129 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7130 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 7131 DDI_CTLOPS_POWER, &power_req, &result); 7132 } 7133 #ifdef DEBUG 7134 else { 7135 power_req.request_type = PMR_PPM_POST_ATTACH; 7136 power_req.req.ppm_config_req.who = cp->ppc_dip; 7137 power_req.req.ppm_config_req.result = ret; 7138 (void) pm_ctlops(NULL, cp->ppc_dip, 7139 DDI_CTLOPS_POWER, &power_req, &result); 7140 } 7141 #endif 7142 } 7143 7144 /* 7145 * Notify ppm of attach action. Parent is already held at full power by 7146 * probe action. 7147 */ 7148 void 7149 pm_pre_detach(dev_info_t *dip, ddi_detach_cmd_t cmd, pm_ppm_cookie_t *cp) 7150 { 7151 int result; 7152 power_req_t power_req; 7153 7154 bzero(cp, sizeof (*cp)); 7155 cp->ppc_dip = dip; 7156 cp->ppc_cmd = (int)cmd; 7157 7158 switch (cmd) { 7159 case DDI_DETACH: 7160 pm_detaching(dip); /* suspend pm while detaching */ 7161 if (pm_ppm_claimed(dip)) { /* if ppm driver claims node */ 7162 power_req.request_type = PMR_PPM_PRE_DETACH; 7163 power_req.req.ppm_config_req.who = dip; 7164 ASSERT(PPM(dip)); 7165 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 7166 &power_req, &result); 7167 cp->ppc_ppm = PPM(dip); 7168 } else { 7169 #ifdef DEBUG 7170 /* pass to the default handler so we can debug things */ 7171 power_req.request_type = PMR_PPM_PRE_DETACH; 7172 power_req.req.ppm_config_req.who = dip; 7173 (void) pm_ctlops(NULL, dip, 7174 DDI_CTLOPS_POWER, &power_req, &result); 7175 #endif 7176 cp->ppc_ppm = NULL; 7177 } 7178 break; 7179 7180 default: 7181 break; 7182 } 7183 } 7184 7185 /* 7186 * Dip is either a leaf node that exported "no-involuntary-power-cycles" prop., 7187 * (if devi_pm_noinvol count is 0) or an ancestor of such a node. We need to 7188 * make an entry to record the details, which includes certain flag settings. 7189 */ 7190 static void 7191 pm_record_invol_path(char *path, int flags, int noinvolpm, int volpmd, 7192 int wasvolpmd, major_t major) 7193 { 7194 PMD_FUNC(pmf, "record_invol_path") 7195 major_t pm_path_to_major(char *); 7196 size_t plen; 7197 pm_noinvol_t *ip, *np, *pp; 7198 pp = NULL; 7199 7200 plen = strlen(path) + 1; 7201 np = kmem_zalloc(sizeof (*np), KM_SLEEP); 7202 np->ni_size = plen; 7203 np->ni_path = kmem_alloc(plen, KM_SLEEP); 7204 np->ni_noinvolpm = noinvolpm; 7205 np->ni_volpmd = volpmd; 7206 np->ni_wasvolpmd = wasvolpmd; 7207 np->ni_flags = flags; 7208 (void) strcpy(np->ni_path, path); 7209 /* 7210 * If we haven't actually seen the node attached, it is hard to figure 7211 * out its major. If we could hold the node by path, we would be much 7212 * happier here. 7213 */ 7214 if (major == DDI_MAJOR_T_NONE) { 7215 np->ni_major = pm_path_to_major(path); 7216 } else { 7217 np->ni_major = major; 7218 } 7219 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 7220 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7221 int comp = strcmp(path, ip->ni_path); 7222 if (comp < 0) { 7223 PMD(PMD_NOINVOL, ("%s: %s insert before %s\n", 7224 pmf, path, ip->ni_path)) 7225 /* insert before current entry */ 7226 np->ni_next = ip; 7227 if (pp) { 7228 pp->ni_next = np; 7229 } else { 7230 pm_noinvol_head = np; 7231 } 7232 rw_exit(&pm_noinvol_rwlock); 7233 #ifdef DEBUG 7234 if (pm_debug & PMD_NOINVOL) 7235 pr_noinvol("record_invol_path exit0"); 7236 #endif 7237 return; 7238 } else if (comp == 0) { 7239 panic("%s already in pm_noinvol list", path); 7240 } 7241 } 7242 /* 7243 * If we did not find an entry in the list that this should go before, 7244 * then it must go at the end 7245 */ 7246 if (pp) { 7247 PMD(PMD_NOINVOL, ("%s: %s append after %s\n", pmf, path, 7248 pp->ni_path)) 7249 ASSERT(pp->ni_next == 0); 7250 pp->ni_next = np; 7251 } else { 7252 PMD(PMD_NOINVOL, ("%s: %s added to end-of-list\n", pmf, path)) 7253 ASSERT(!pm_noinvol_head); 7254 pm_noinvol_head = np; 7255 } 7256 rw_exit(&pm_noinvol_rwlock); 7257 #ifdef DEBUG 7258 if (pm_debug & PMD_NOINVOL) 7259 pr_noinvol("record_invol_path exit"); 7260 #endif 7261 } 7262 7263 void 7264 pm_record_invol(dev_info_t *dip) 7265 { 7266 char *pathbuf; 7267 int pm_all_components_off(dev_info_t *); 7268 int volpmd = (PM_NUMCMPTS(dip) > 0) && pm_all_components_off(dip); 7269 7270 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 7271 (void) ddi_pathname(dip, pathbuf); 7272 7273 pm_record_invol_path(pathbuf, (DEVI(dip)->devi_pm_flags & 7274 (PMC_NO_INVOL | PMC_CONSOLE_FB)), DEVI(dip)->devi_pm_noinvolpm, 7275 DEVI(dip)->devi_pm_volpmd, volpmd, PM_MAJOR(dip)); 7276 7277 /* 7278 * If this child's detach will be holding up its ancestors, then we 7279 * allow for an exception to that if all children of this type have 7280 * gone down voluntarily. 7281 * Now walk down the tree incrementing devi_pm_noinvolpm 7282 */ 7283 (void) pm_noinvol_update(PM_BP_NOINVOL_DETACH, 0, volpmd, pathbuf, 7284 dip); 7285 kmem_free(pathbuf, MAXPATHLEN); 7286 } 7287 7288 void 7289 pm_post_detach(pm_ppm_cookie_t *cp, int ret) 7290 { 7291 dev_info_t *dip = cp->ppc_dip; 7292 int result; 7293 power_req_t power_req; 7294 7295 switch (cp->ppc_cmd) { 7296 case DDI_DETACH: 7297 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7298 power_req.request_type = PMR_PPM_POST_DETACH; 7299 power_req.req.ppm_config_req.who = cp->ppc_dip; 7300 power_req.req.ppm_config_req.result = ret; 7301 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7302 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 7303 DDI_CTLOPS_POWER, &power_req, &result); 7304 } 7305 #ifdef DEBUG 7306 else { 7307 power_req.request_type = PMR_PPM_POST_DETACH; 7308 power_req.req.ppm_config_req.who = cp->ppc_dip; 7309 power_req.req.ppm_config_req.result = ret; 7310 (void) pm_ctlops(NULL, cp->ppc_dip, 7311 DDI_CTLOPS_POWER, &power_req, &result); 7312 } 7313 #endif 7314 if (ret == DDI_SUCCESS) { 7315 /* 7316 * For hotplug detach we assume it is *really* gone 7317 */ 7318 if (cp->ppc_cmd == DDI_DETACH && 7319 ((DEVI(dip)->devi_pm_flags & 7320 (PMC_NO_INVOL | PMC_CONSOLE_FB)) || 7321 DEVI(dip)->devi_pm_noinvolpm)) 7322 pm_record_invol(dip); 7323 DEVI(dip)->devi_pm_flags &= 7324 ~(PMC_NO_INVOL | PMC_NOINVOL_DONE); 7325 7326 /* 7327 * If console fb is detaching, then we don't need to 7328 * worry any more about it going off (pm_detaching has 7329 * brought up all components) 7330 */ 7331 if (PM_IS_CFB(dip)) { 7332 mutex_enter(&pm_cfb_lock); 7333 ASSERT(cfb_dip_detaching); 7334 ASSERT(cfb_dip == NULL); 7335 ASSERT(pm_cfb_comps_off == 0); 7336 cfb_dip_detaching = NULL; 7337 mutex_exit(&pm_cfb_lock); 7338 } 7339 pm_stop(dip); /* make it permanent */ 7340 } else { 7341 if (PM_IS_CFB(dip)) { 7342 mutex_enter(&pm_cfb_lock); 7343 ASSERT(cfb_dip_detaching); 7344 ASSERT(cfb_dip == NULL); 7345 ASSERT(pm_cfb_comps_off == 0); 7346 cfb_dip = cfb_dip_detaching; 7347 cfb_dip_detaching = NULL; 7348 mutex_exit(&pm_cfb_lock); 7349 } 7350 pm_detach_failed(dip); /* resume power management */ 7351 } 7352 break; 7353 case DDI_PM_SUSPEND: 7354 break; 7355 case DDI_SUSPEND: 7356 break; /* legal, but nothing to do */ 7357 default: 7358 #ifdef DEBUG 7359 panic("pm_post_detach: unrecognized cmd %d for detach", 7360 cp->ppc_cmd); 7361 /*NOTREACHED*/ 7362 #else 7363 break; 7364 #endif 7365 } 7366 } 7367 7368 /* 7369 * Called after vfs_mountroot has got the clock started to fix up timestamps 7370 * that were set when root bush drivers attached. hresttime was 0 then, so the 7371 * devices look busy but have a 0 busycnt 7372 */ 7373 int 7374 pm_adjust_timestamps(dev_info_t *dip, void *arg) 7375 { 7376 _NOTE(ARGUNUSED(arg)) 7377 7378 pm_info_t *info = PM_GET_PM_INFO(dip); 7379 struct pm_component *cp; 7380 int i; 7381 7382 if (!info) 7383 return (DDI_WALK_CONTINUE); 7384 PM_LOCK_BUSY(dip); 7385 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 7386 cp = PM_CP(dip, i); 7387 if (cp->pmc_timestamp == 0 && cp->pmc_busycount == 0) 7388 cp->pmc_timestamp = gethrestime_sec(); 7389 } 7390 PM_UNLOCK_BUSY(dip); 7391 return (DDI_WALK_CONTINUE); 7392 } 7393 7394 /* 7395 * Called at attach time to see if the device being attached has a record in 7396 * the no involuntary power cycles list. If so, we do some bookkeeping on the 7397 * parents and set a flag in the dip 7398 */ 7399 void 7400 pm_noinvol_specd(dev_info_t *dip) 7401 { 7402 PMD_FUNC(pmf, "noinvol_specd") 7403 char *pathbuf; 7404 pm_noinvol_t *ip, *pp = NULL; 7405 int wasvolpmd; 7406 int found = 0; 7407 7408 if (DEVI(dip)->devi_pm_flags & PMC_NOINVOL_DONE) 7409 return; 7410 DEVI(dip)->devi_pm_flags |= PMC_NOINVOL_DONE; 7411 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 7412 (void) ddi_pathname(dip, pathbuf); 7413 7414 PM_LOCK_DIP(dip); 7415 DEVI(dip)->devi_pm_volpmd = 0; 7416 DEVI(dip)->devi_pm_noinvolpm = 0; 7417 rw_enter(&pm_noinvol_rwlock, RW_READER); 7418 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7419 PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n", 7420 pmf, pathbuf, ip->ni_path)) 7421 if (strcmp(pathbuf, ip->ni_path) == 0) { 7422 found++; 7423 break; 7424 } 7425 } 7426 rw_exit(&pm_noinvol_rwlock); 7427 if (!found) { 7428 PM_UNLOCK_DIP(dip); 7429 kmem_free(pathbuf, MAXPATHLEN); 7430 return; 7431 } 7432 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 7433 pp = NULL; 7434 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7435 PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n", 7436 pmf, pathbuf, ip->ni_path)) 7437 if (strcmp(pathbuf, ip->ni_path) == 0) { 7438 ip->ni_flags &= ~PMC_DRIVER_REMOVED; 7439 DEVI(dip)->devi_pm_flags |= ip->ni_flags; 7440 /* 7441 * Handle special case of console fb 7442 */ 7443 if (PM_IS_CFB(dip)) { 7444 mutex_enter(&pm_cfb_lock); 7445 cfb_dip = dip; 7446 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) setting " 7447 "cfb_dip\n", pmf, PM_DEVICE(dip))) 7448 mutex_exit(&pm_cfb_lock); 7449 } 7450 DEVI(dip)->devi_pm_noinvolpm = ip->ni_noinvolpm; 7451 ASSERT((DEVI(dip)->devi_pm_flags & 7452 (PMC_NO_INVOL | PMC_CONSOLE_FB)) || 7453 DEVI(dip)->devi_pm_noinvolpm); 7454 DEVI(dip)->devi_pm_volpmd = ip->ni_volpmd; 7455 PMD(PMD_NOINVOL, ("%s: noinvol=%d, volpmd=%d, " 7456 "wasvolpmd=%d, flags=%x, path=%s\n", pmf, 7457 ip->ni_noinvolpm, ip->ni_volpmd, 7458 ip->ni_wasvolpmd, ip->ni_flags, ip->ni_path)) 7459 /* 7460 * free the entry in hopes the list will now be empty 7461 * and we won't have to search it any more until the 7462 * device detaches 7463 */ 7464 if (pp) { 7465 PMD(PMD_NOINVOL, ("%s: free %s, prev %s\n", 7466 pmf, ip->ni_path, pp->ni_path)) 7467 pp->ni_next = ip->ni_next; 7468 } else { 7469 PMD(PMD_NOINVOL, ("%s: free %s head\n", 7470 pmf, ip->ni_path)) 7471 ASSERT(pm_noinvol_head == ip); 7472 pm_noinvol_head = ip->ni_next; 7473 } 7474 PM_UNLOCK_DIP(dip); 7475 wasvolpmd = ip->ni_wasvolpmd; 7476 rw_exit(&pm_noinvol_rwlock); 7477 kmem_free(ip->ni_path, ip->ni_size); 7478 kmem_free(ip, sizeof (*ip)); 7479 /* 7480 * Now walk up the tree decrementing devi_pm_noinvolpm 7481 * (and volpmd if appropriate) 7482 */ 7483 (void) pm_noinvol_update(PM_BP_NOINVOL_ATTACH, 0, 7484 wasvolpmd, pathbuf, dip); 7485 #ifdef DEBUG 7486 if (pm_debug & PMD_NOINVOL) 7487 pr_noinvol("noinvol_specd exit"); 7488 #endif 7489 kmem_free(pathbuf, MAXPATHLEN); 7490 return; 7491 } 7492 } 7493 kmem_free(pathbuf, MAXPATHLEN); 7494 rw_exit(&pm_noinvol_rwlock); 7495 PM_UNLOCK_DIP(dip); 7496 } 7497 7498 int 7499 pm_all_components_off(dev_info_t *dip) 7500 { 7501 int i; 7502 pm_component_t *cp; 7503 7504 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 7505 cp = PM_CP(dip, i); 7506 if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN || 7507 cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]) 7508 return (0); 7509 } 7510 return (1); /* all off */ 7511 } 7512 7513 /* 7514 * Make sure that all "no involuntary power cycles" devices are attached. 7515 * Called before doing a cpr suspend to make sure the driver has a say about 7516 * the power cycle 7517 */ 7518 int 7519 pm_reattach_noinvol(void) 7520 { 7521 PMD_FUNC(pmf, "reattach_noinvol") 7522 pm_noinvol_t *ip; 7523 char *path; 7524 dev_info_t *dip; 7525 7526 /* 7527 * Prevent the modunload thread from unloading any modules until we 7528 * have completely stopped all kernel threads. 7529 */ 7530 modunload_disable(); 7531 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 7532 /* 7533 * Forget we'v ever seen any entry 7534 */ 7535 ip->ni_persistent = 0; 7536 } 7537 restart: 7538 rw_enter(&pm_noinvol_rwlock, RW_READER); 7539 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 7540 #ifdef PMDDEBUG 7541 major_t maj; 7542 maj = ip->ni_major; 7543 #endif 7544 path = ip->ni_path; 7545 if (path != NULL && !(ip->ni_flags & PMC_DRIVER_REMOVED)) { 7546 if (ip->ni_persistent) { 7547 /* 7548 * If we weren't able to make this entry 7549 * go away, then we give up, as 7550 * holding/attaching the driver ought to have 7551 * resulted in this entry being deleted 7552 */ 7553 PMD(PMD_NOINVOL, ("%s: can't reattach %s " 7554 "(%s|%d)\n", pmf, ip->ni_path, 7555 ddi_major_to_name(maj), (int)maj)) 7556 cmn_err(CE_WARN, "cpr: unable to reattach %s ", 7557 ip->ni_path); 7558 modunload_enable(); 7559 rw_exit(&pm_noinvol_rwlock); 7560 return (0); 7561 } 7562 ip->ni_persistent++; 7563 rw_exit(&pm_noinvol_rwlock); 7564 PMD(PMD_NOINVOL, ("%s: holding %s\n", pmf, path)) 7565 dip = e_ddi_hold_devi_by_path(path, 0); 7566 if (dip == NULL) { 7567 PMD(PMD_NOINVOL, ("%s: can't hold (%s|%d)\n", 7568 pmf, path, (int)maj)) 7569 cmn_err(CE_WARN, "cpr: unable to hold %s " 7570 "driver", path); 7571 modunload_enable(); 7572 return (0); 7573 } else { 7574 PMD(PMD_DHR, ("%s: release %s\n", pmf, path)) 7575 /* 7576 * Since the modunload thread is stopped, we 7577 * don't have to keep the driver held, which 7578 * saves a ton of bookkeeping 7579 */ 7580 ddi_release_devi(dip); 7581 goto restart; 7582 } 7583 } else { 7584 PMD(PMD_NOINVOL, ("%s: skip %s; unknown major\n", 7585 pmf, ip->ni_path)) 7586 continue; 7587 } 7588 } 7589 rw_exit(&pm_noinvol_rwlock); 7590 return (1); 7591 } 7592 7593 void 7594 pm_reattach_noinvol_fini(void) 7595 { 7596 modunload_enable(); 7597 } 7598 7599 /* 7600 * Display pm support code 7601 */ 7602 7603 7604 /* 7605 * console frame-buffer power-mgmt gets enabled when debugging 7606 * services are not present or console fbpm override is set 7607 */ 7608 void 7609 pm_cfb_setup(const char *stdout_path) 7610 { 7611 PMD_FUNC(pmf, "cfb_setup") 7612 extern int obpdebug; 7613 char *devname; 7614 dev_info_t *dip; 7615 int devname_len; 7616 extern dev_info_t *fbdip; 7617 7618 /* 7619 * By virtue of this function being called (from consconfig), 7620 * we know stdout is a framebuffer. 7621 */ 7622 stdout_is_framebuffer = 1; 7623 7624 if (obpdebug || (boothowto & RB_DEBUG)) { 7625 if (pm_cfb_override == 0) { 7626 /* 7627 * Console is frame buffer, but we want to suppress 7628 * pm on it because of debugging setup 7629 */ 7630 pm_cfb_enabled = 0; 7631 cmn_err(CE_NOTE, "Kernel debugger present: disabling " 7632 "console power management."); 7633 /* 7634 * however, we still need to know which is the console 7635 * fb in order to suppress pm on it 7636 */ 7637 } else { 7638 cmn_err(CE_WARN, "Kernel debugger present: see " 7639 "kmdb(1M) for interaction with power management."); 7640 } 7641 } 7642 #ifdef DEBUG 7643 /* 7644 * IF console is fb and is power managed, don't do prom_printfs from 7645 * pm debug macro 7646 */ 7647 if (pm_cfb_enabled && !pm_debug_to_console) { 7648 if (pm_debug) 7649 prom_printf("pm debug output will be to log only\n"); 7650 pm_divertdebug++; 7651 } 7652 #endif 7653 devname = i_ddi_strdup((char *)stdout_path, KM_SLEEP); 7654 devname_len = strlen(devname) + 1; 7655 PMD(PMD_CFB, ("%s: stripped %s\n", pmf, devname)) 7656 /* if the driver is attached */ 7657 if ((dip = fbdip) != NULL) { 7658 PMD(PMD_CFB, ("%s: attached: %s@%s(%s#%d)\n", pmf, 7659 PM_DEVICE(dip))) 7660 /* 7661 * We set up here as if the driver were power manageable in case 7662 * we get a later attach of a pm'able driver (which would result 7663 * in a panic later) 7664 */ 7665 cfb_dip = dip; 7666 DEVI(dip)->devi_pm_flags |= (PMC_CONSOLE_FB | PMC_NO_INVOL); 7667 PMD(PMD_CFB, ("%s: cfb_dip -> %s@%s(%s#%d)\n", pmf, 7668 PM_DEVICE(dip))) 7669 #ifdef DEBUG 7670 if (!(PM_GET_PM_INFO(dip) != NULL && PM_NUMCMPTS(dip))) { 7671 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) not power-managed\n", 7672 pmf, PM_DEVICE(dip))) 7673 } 7674 #endif 7675 } else { 7676 char *ep; 7677 PMD(PMD_CFB, ("%s: pntd %s failed\n", pmf, devname)) 7678 pm_record_invol_path(devname, 7679 (PMC_CONSOLE_FB | PMC_NO_INVOL), 1, 0, 0, 7680 DDI_MAJOR_T_NONE); 7681 for (ep = strrchr(devname, '/'); ep != devname; 7682 ep = strrchr(devname, '/')) { 7683 PMD(PMD_CFB, ("%s: devname %s\n", pmf, devname)) 7684 *ep = '\0'; 7685 dip = pm_name_to_dip(devname, 0); 7686 if (dip != NULL) { 7687 /* 7688 * Walk up the tree incrementing 7689 * devi_pm_noinvolpm 7690 */ 7691 (void) pm_noinvol_update(PM_BP_NOINVOL_CFB, 7692 0, 0, devname, dip); 7693 break; 7694 } else { 7695 pm_record_invol_path(devname, 7696 PMC_NO_INVOL, 1, 0, 0, DDI_MAJOR_T_NONE); 7697 } 7698 } 7699 } 7700 kmem_free(devname, devname_len); 7701 } 7702 7703 void 7704 pm_cfb_rele(void) 7705 { 7706 mutex_enter(&pm_cfb_lock); 7707 /* 7708 * this call isn't using the console any more, it is ok to take it 7709 * down if the count goes to 0 7710 */ 7711 cfb_inuse--; 7712 mutex_exit(&pm_cfb_lock); 7713 } 7714 7715 /* 7716 * software interrupt handler for fbpm; this function exists because we can't 7717 * bring up the frame buffer power from above lock level. So if we need to, 7718 * we instead schedule a softint that runs this routine and takes us into 7719 * debug_enter (a bit delayed from the original request, but avoiding a panic). 7720 */ 7721 static uint_t 7722 pm_cfb_softint(caddr_t int_handler_arg) 7723 { 7724 _NOTE(ARGUNUSED(int_handler_arg)) 7725 int rval = DDI_INTR_UNCLAIMED; 7726 7727 mutex_enter(&pm_cfb_lock); 7728 if (pm_soft_pending) { 7729 mutex_exit(&pm_cfb_lock); 7730 debug_enter((char *)NULL); 7731 /* acquired in debug_enter before calling pm_cfb_trigger */ 7732 pm_cfb_rele(); 7733 mutex_enter(&pm_cfb_lock); 7734 pm_soft_pending = 0; 7735 mutex_exit(&pm_cfb_lock); 7736 rval = DDI_INTR_CLAIMED; 7737 } else 7738 mutex_exit(&pm_cfb_lock); 7739 7740 return (rval); 7741 } 7742 7743 void 7744 pm_cfb_setup_intr(void) 7745 { 7746 PMD_FUNC(pmf, "cfb_setup_intr") 7747 extern void prom_set_outfuncs(void (*)(void), void (*)(void)); 7748 void pm_cfb_check_and_powerup(void); 7749 7750 mutex_init(&pm_cfb_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8)); 7751 #ifdef PMDDEBUG 7752 mutex_init(&pm_debug_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8)); 7753 #endif 7754 7755 if (!stdout_is_framebuffer) { 7756 PMD(PMD_CFB, ("%s: console not fb\n", pmf)) 7757 return; 7758 } 7759 7760 /* 7761 * setup software interrupt handler 7762 */ 7763 if (ddi_add_softintr(ddi_root_node(), DDI_SOFTINT_HIGH, &pm_soft_id, 7764 NULL, NULL, pm_cfb_softint, NULL) != DDI_SUCCESS) 7765 panic("pm: unable to register soft intr."); 7766 7767 prom_set_outfuncs(pm_cfb_check_and_powerup, pm_cfb_rele); 7768 } 7769 7770 /* 7771 * Checks to see if it is safe to write to the console wrt power management 7772 * (i.e. if the console is a framebuffer, then it must be at full power) 7773 * returns 1 when power is off (power-up is needed) 7774 * returns 0 when power is on (power-up not needed) 7775 */ 7776 int 7777 pm_cfb_check_and_hold(void) 7778 { 7779 /* 7780 * cfb_dip is set iff console is a power manageable frame buffer 7781 * device 7782 */ 7783 extern int modrootloaded; 7784 7785 mutex_enter(&pm_cfb_lock); 7786 cfb_inuse++; 7787 ASSERT(cfb_inuse); /* wrap? */ 7788 if (modrootloaded && cfb_dip) { 7789 /* 7790 * don't power down the frame buffer, the prom is using it 7791 */ 7792 if (pm_cfb_comps_off) { 7793 mutex_exit(&pm_cfb_lock); 7794 return (1); 7795 } 7796 } 7797 mutex_exit(&pm_cfb_lock); 7798 return (0); 7799 } 7800 7801 /* 7802 * turn on cfb power (which is known to be off). 7803 * Must be called below lock level! 7804 */ 7805 void 7806 pm_cfb_powerup(void) 7807 { 7808 pm_info_t *info; 7809 int norm; 7810 int ccount, ci; 7811 int unused; 7812 #ifdef DEBUG 7813 /* 7814 * Can't reenter prom_prekern, so suppress pm debug messages 7815 * (still go to circular buffer). 7816 */ 7817 mutex_enter(&pm_debug_lock); 7818 pm_divertdebug++; 7819 mutex_exit(&pm_debug_lock); 7820 #endif 7821 info = PM_GET_PM_INFO(cfb_dip); 7822 ASSERT(info); 7823 7824 ccount = PM_NUMCMPTS(cfb_dip); 7825 for (ci = 0; ci < ccount; ci++) { 7826 norm = pm_get_normal_power(cfb_dip, ci); 7827 (void) pm_set_power(cfb_dip, ci, norm, PM_LEVEL_UPONLY, 7828 PM_CANBLOCK_BYPASS, 0, &unused); 7829 } 7830 #ifdef DEBUG 7831 mutex_enter(&pm_debug_lock); 7832 pm_divertdebug--; 7833 mutex_exit(&pm_debug_lock); 7834 #endif 7835 } 7836 7837 /* 7838 * Check if the console framebuffer is powered up. If not power it up. 7839 * Note: Calling pm_cfb_check_and_hold has put a hold on the power state which 7840 * must be released by calling pm_cfb_rele when the console fb operation 7841 * is completed. 7842 */ 7843 void 7844 pm_cfb_check_and_powerup(void) 7845 { 7846 if (pm_cfb_check_and_hold()) 7847 pm_cfb_powerup(); 7848 } 7849 7850 /* 7851 * Trigger a low level interrupt to power up console frame buffer. 7852 */ 7853 void 7854 pm_cfb_trigger(void) 7855 { 7856 if (cfb_dip == NULL) 7857 return; 7858 7859 mutex_enter(&pm_cfb_lock); 7860 /* 7861 * If machine appears to be hung, pulling the keyboard connector of 7862 * the console will cause a high level interrupt and go to debug_enter. 7863 * But, if the fb is powered down, this routine will be called to bring 7864 * it up (by generating a softint to do the work). If soft interrupts 7865 * are not running, and the keyboard connector is pulled again, the 7866 * following code detects this condition and calls panic which allows 7867 * the fb to be brought up from high level. 7868 * 7869 * If two nearly simultaneous calls to debug_enter occur (both from 7870 * high level) the code described above will cause a panic. 7871 */ 7872 if (lbolt <= pm_soft_pending) { 7873 panicstr = "pm_cfb_trigger: lbolt not advancing"; 7874 panic(panicstr); /* does a power up at any intr level */ 7875 /* NOTREACHED */ 7876 } 7877 pm_soft_pending = lbolt; 7878 mutex_exit(&pm_cfb_lock); 7879 ddi_trigger_softintr(pm_soft_id); 7880 } 7881 7882 static major_t i_path_to_major(char *, char *); 7883 7884 major_t 7885 pm_path_to_major(char *path) 7886 { 7887 PMD_FUNC(pmf, "path_to_major") 7888 char *np, *ap, *bp; 7889 major_t ret; 7890 size_t len; 7891 7892 PMD(PMD_NOINVOL, ("%s: %s\n", pmf, path)) 7893 7894 np = strrchr(path, '/'); 7895 if (np != NULL) 7896 np++; 7897 else 7898 np = path; 7899 len = strlen(np) + 1; 7900 bp = kmem_alloc(len, KM_SLEEP); 7901 (void) strcpy(bp, np); 7902 if ((ap = strchr(bp, '@')) != NULL) { 7903 *ap = '\0'; 7904 } 7905 PMD(PMD_NOINVOL, ("%s: %d\n", pmf, ddi_name_to_major(np))) 7906 ret = i_path_to_major(path, np); 7907 kmem_free(bp, len); 7908 return (ret); 7909 } 7910 7911 #ifdef DEBUG 7912 #ifndef sparc 7913 clock_t pt_sleep = 1; 7914 #endif 7915 7916 char *pm_msgp; 7917 char *pm_bufend; 7918 char *pm_msgbuf = NULL; 7919 int pm_logpages = 0x100; 7920 #include <sys/sunldi.h> 7921 #include <sys/uio.h> 7922 clock_t pm_log_sleep = 1000; 7923 int pm_extra_cr = 1; 7924 volatile int pm_tty = 1; 7925 7926 #define PMLOGPGS pm_logpages 7927 7928 #if defined(__x86) 7929 void pm_printf(char *s); 7930 #endif 7931 7932 /*PRINTFLIKE1*/ 7933 void 7934 pm_log(const char *fmt, ...) 7935 { 7936 va_list adx; 7937 size_t size; 7938 7939 mutex_enter(&pm_debug_lock); 7940 if (pm_msgbuf == NULL) { 7941 pm_msgbuf = kmem_zalloc(mmu_ptob(PMLOGPGS), KM_SLEEP); 7942 pm_bufend = pm_msgbuf + mmu_ptob(PMLOGPGS) - 1; 7943 pm_msgp = pm_msgbuf; 7944 } 7945 va_start(adx, fmt); 7946 size = vsnprintf(NULL, 0, fmt, adx) + 1; 7947 va_end(adx); 7948 va_start(adx, fmt); 7949 if (size > (pm_bufend - pm_msgp)) { /* wraps */ 7950 bzero(pm_msgp, pm_bufend - pm_msgp); 7951 (void) vsnprintf(pm_msgbuf, size, fmt, adx); 7952 if (!pm_divertdebug) 7953 prom_printf("%s", pm_msgp); 7954 #if defined(__x86) 7955 if (pm_tty) { 7956 pm_printf(pm_msgp); 7957 if (pm_extra_cr) 7958 pm_printf("\r"); 7959 } 7960 #endif 7961 pm_msgp = pm_msgbuf + size; 7962 } else { 7963 (void) vsnprintf(pm_msgp, size, fmt, adx); 7964 #if defined(__x86) 7965 if (pm_tty) { 7966 pm_printf(pm_msgp); 7967 if (pm_extra_cr) 7968 pm_printf("\r"); 7969 } 7970 #endif 7971 if (!pm_divertdebug) 7972 prom_printf("%s", pm_msgp); 7973 pm_msgp += size; 7974 } 7975 va_end(adx); 7976 mutex_exit(&pm_debug_lock); 7977 drv_usecwait((clock_t)pm_log_sleep); 7978 } 7979 #endif /* DEBUG */ 7980 7981 /* 7982 * We want to save the state of any directly pm'd devices over the suspend/ 7983 * resume process so that we can put them back the way the controlling 7984 * process left them. 7985 */ 7986 void 7987 pm_save_direct_levels(void) 7988 { 7989 pm_processes_stopped = 1; 7990 ddi_walk_devs(ddi_root_node(), pm_save_direct_lvl_walk, 0); 7991 } 7992 7993 static int 7994 pm_save_direct_lvl_walk(dev_info_t *dip, void *arg) 7995 { 7996 _NOTE(ARGUNUSED(arg)) 7997 int i; 7998 int *ip; 7999 pm_info_t *info = PM_GET_PM_INFO(dip); 8000 8001 if (!info) 8002 return (DDI_WALK_CONTINUE); 8003 8004 if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) { 8005 if (PM_NUMCMPTS(dip) > 2) { 8006 info->pmi_lp = kmem_alloc(PM_NUMCMPTS(dip) * 8007 sizeof (int), KM_SLEEP); 8008 ip = info->pmi_lp; 8009 } else { 8010 ip = info->pmi_levels; 8011 } 8012 /* autopm and processes are stopped, ok not to lock power */ 8013 for (i = 0; i < PM_NUMCMPTS(dip); i++) 8014 *ip++ = PM_CURPOWER(dip, i); 8015 /* 8016 * There is a small window between stopping the 8017 * processes and setting pm_processes_stopped where 8018 * a driver could get hung up in a pm_raise_power() 8019 * call. Free any such driver now. 8020 */ 8021 pm_proceed(dip, PMP_RELEASE, -1, -1); 8022 } 8023 8024 return (DDI_WALK_CONTINUE); 8025 } 8026 8027 void 8028 pm_restore_direct_levels(void) 8029 { 8030 /* 8031 * If cpr didn't call pm_save_direct_levels, (because stopping user 8032 * threads failed) then we don't want to try to restore them 8033 */ 8034 if (!pm_processes_stopped) 8035 return; 8036 8037 ddi_walk_devs(ddi_root_node(), pm_restore_direct_lvl_walk, 0); 8038 pm_processes_stopped = 0; 8039 } 8040 8041 static int 8042 pm_restore_direct_lvl_walk(dev_info_t *dip, void *arg) 8043 { 8044 _NOTE(ARGUNUSED(arg)) 8045 PMD_FUNC(pmf, "restore_direct_lvl_walk") 8046 int i, nc, result; 8047 int *ip; 8048 8049 pm_info_t *info = PM_GET_PM_INFO(dip); 8050 if (!info) 8051 return (DDI_WALK_CONTINUE); 8052 8053 if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) { 8054 if ((nc = PM_NUMCMPTS(dip)) > 2) { 8055 ip = &info->pmi_lp[nc - 1]; 8056 } else { 8057 ip = &info->pmi_levels[nc - 1]; 8058 } 8059 /* 8060 * Because fb drivers fail attempts to turn off the 8061 * fb when the monitor is on, but treat a request to 8062 * turn on the monitor as a request to turn on the 8063 * fb too, we process components in descending order 8064 * Because autopm is disabled and processes aren't 8065 * running, it is ok to examine current power outside 8066 * of the power lock 8067 */ 8068 for (i = nc - 1; i >= 0; i--, ip--) { 8069 if (PM_CURPOWER(dip, i) == *ip) 8070 continue; 8071 if (pm_set_power(dip, i, *ip, PM_LEVEL_EXACT, 8072 PM_CANBLOCK_BYPASS, 0, &result) != DDI_SUCCESS) { 8073 cmn_err(CE_WARN, "cpr: unable " 8074 "to restore power level of " 8075 "component %d of directly " 8076 "power manged device %s@%s" 8077 " to %d", 8078 i, PM_NAME(dip), 8079 PM_ADDR(dip), *ip); 8080 PMD(PMD_FAIL, ("%s: failed to restore " 8081 "%s@%s(%s#%d)[%d] exact(%d)->%d, " 8082 "errno %d\n", pmf, PM_DEVICE(dip), i, 8083 PM_CURPOWER(dip, i), *ip, result)) 8084 } 8085 } 8086 if (nc > 2) { 8087 kmem_free(info->pmi_lp, nc * sizeof (int)); 8088 info->pmi_lp = NULL; 8089 } 8090 } 8091 return (DDI_WALK_CONTINUE); 8092 } 8093 8094 /* 8095 * Stolen from the bootdev module 8096 * attempt to convert a path to a major number 8097 */ 8098 static major_t 8099 i_path_to_major(char *path, char *leaf_name) 8100 { 8101 extern major_t path_to_major(char *pathname); 8102 major_t maj; 8103 8104 if ((maj = path_to_major(path)) == DDI_MAJOR_T_NONE) { 8105 maj = ddi_name_to_major(leaf_name); 8106 } 8107 8108 return (maj); 8109 } 8110 8111 static void i_pm_driver_removed(major_t major); 8112 8113 /* 8114 * When user calls rem_drv, we need to forget no-involuntary-power-cycles state 8115 * An entry in the list means that the device is detached, so we need to 8116 * adjust its ancestors as if they had just seen this attach, and any detached 8117 * ancestors need to have their list entries adjusted. 8118 */ 8119 void 8120 pm_driver_removed(major_t major) 8121 { 8122 8123 /* 8124 * Serialize removal of drivers. This is to keep ancestors of 8125 * a node that is being deleted from getting deleted and added back 8126 * with different counters. 8127 */ 8128 mutex_enter(&pm_remdrv_lock); 8129 i_pm_driver_removed(major); 8130 mutex_exit(&pm_remdrv_lock); 8131 } 8132 8133 static void adjust_ancestors(char *, int); 8134 static int pm_is_noinvol_ancestor(pm_noinvol_t *); 8135 static void pm_noinvol_process_ancestors(char *); 8136 8137 /* 8138 * This routine is called recursively by pm_noinvol_process_ancestors() 8139 */ 8140 static void 8141 i_pm_driver_removed(major_t major) 8142 { 8143 PMD_FUNC(pmf, "driver_removed") 8144 pm_noinvol_t *ip, *pp = NULL; 8145 int wasvolpmd; 8146 ASSERT(major != DDI_MAJOR_T_NONE); 8147 PMD(PMD_NOINVOL, ("%s: %s\n", pmf, ddi_major_to_name(major))) 8148 again: 8149 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 8150 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 8151 if (major != ip->ni_major) 8152 continue; 8153 /* 8154 * If it is an ancestor of no-invol node, which is 8155 * not removed, skip it. This is to cover the case of 8156 * ancestor removed without removing its descendants. 8157 */ 8158 if (pm_is_noinvol_ancestor(ip)) { 8159 ip->ni_flags |= PMC_DRIVER_REMOVED; 8160 continue; 8161 } 8162 wasvolpmd = ip->ni_wasvolpmd; 8163 /* 8164 * remove the entry from the list 8165 */ 8166 if (pp) { 8167 PMD(PMD_NOINVOL, ("%s: freeing %s, prev is %s\n", 8168 pmf, ip->ni_path, pp->ni_path)) 8169 pp->ni_next = ip->ni_next; 8170 } else { 8171 PMD(PMD_NOINVOL, ("%s: free %s head\n", pmf, 8172 ip->ni_path)) 8173 ASSERT(pm_noinvol_head == ip); 8174 pm_noinvol_head = ip->ni_next; 8175 } 8176 rw_exit(&pm_noinvol_rwlock); 8177 adjust_ancestors(ip->ni_path, wasvolpmd); 8178 /* 8179 * Had an ancestor been removed before this node, it would have 8180 * been skipped. Adjust the no-invol counters for such skipped 8181 * ancestors. 8182 */ 8183 pm_noinvol_process_ancestors(ip->ni_path); 8184 kmem_free(ip->ni_path, ip->ni_size); 8185 kmem_free(ip, sizeof (*ip)); 8186 goto again; 8187 } 8188 rw_exit(&pm_noinvol_rwlock); 8189 } 8190 8191 /* 8192 * returns 1, if *aip is a ancestor of a no-invol node 8193 * 0, otherwise 8194 */ 8195 static int 8196 pm_is_noinvol_ancestor(pm_noinvol_t *aip) 8197 { 8198 pm_noinvol_t *ip; 8199 8200 ASSERT(strlen(aip->ni_path) != 0); 8201 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 8202 if (ip == aip) 8203 continue; 8204 /* 8205 * To be an ancestor, the path must be an initial substring of 8206 * the descendent, and end just before a '/' in the 8207 * descendent's path. 8208 */ 8209 if ((strstr(ip->ni_path, aip->ni_path) == ip->ni_path) && 8210 (ip->ni_path[strlen(aip->ni_path)] == '/')) 8211 return (1); 8212 } 8213 return (0); 8214 } 8215 8216 /* 8217 * scan through the pm_noinvolpm list adjusting ancestors of the current 8218 * node; Modifies string *path. 8219 */ 8220 static void 8221 adjust_ancestors(char *path, int wasvolpmd) 8222 { 8223 PMD_FUNC(pmf, "adjust_ancestors") 8224 char *cp; 8225 pm_noinvol_t *lp; 8226 pm_noinvol_t *pp = NULL; 8227 major_t locked = DDI_MAJOR_T_NONE; 8228 dev_info_t *dip; 8229 char *pathbuf; 8230 size_t pathbuflen = strlen(path) + 1; 8231 8232 /* 8233 * First we look up the ancestor's dip. If we find it, then we 8234 * adjust counts up the tree 8235 */ 8236 PMD(PMD_NOINVOL, ("%s: %s wasvolpmd %d\n", pmf, path, wasvolpmd)) 8237 pathbuf = kmem_alloc(pathbuflen, KM_SLEEP); 8238 (void) strcpy(pathbuf, path); 8239 cp = strrchr(pathbuf, '/'); 8240 if (cp == NULL) { 8241 /* if no ancestors, then nothing to do */ 8242 kmem_free(pathbuf, pathbuflen); 8243 return; 8244 } 8245 *cp = '\0'; 8246 dip = pm_name_to_dip(pathbuf, 1); 8247 if (dip != NULL) { 8248 locked = PM_MAJOR(dip); 8249 8250 (void) pm_noinvol_update(PM_BP_NOINVOL_REMDRV, 0, wasvolpmd, 8251 path, dip); 8252 8253 if (locked != DDI_MAJOR_T_NONE) 8254 ddi_release_devi(dip); 8255 } else { 8256 char *apath; 8257 size_t len = strlen(pathbuf) + 1; 8258 int lock_held = 1; 8259 8260 /* 8261 * Now check for ancestors that exist only in the list 8262 */ 8263 apath = kmem_alloc(len, KM_SLEEP); 8264 (void) strcpy(apath, pathbuf); 8265 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 8266 for (lp = pm_noinvol_head; lp; pp = lp, lp = lp->ni_next) { 8267 /* 8268 * This can only happen once. Since we have to drop 8269 * the lock, we need to extract the relevant info. 8270 */ 8271 if (strcmp(pathbuf, lp->ni_path) == 0) { 8272 PMD(PMD_NOINVOL, ("%s: %s no %d -> %d\n", pmf, 8273 lp->ni_path, lp->ni_noinvolpm, 8274 lp->ni_noinvolpm - 1)) 8275 lp->ni_noinvolpm--; 8276 if (wasvolpmd && lp->ni_volpmd) { 8277 PMD(PMD_NOINVOL, ("%s: %s vol %d -> " 8278 "%d\n", pmf, lp->ni_path, 8279 lp->ni_volpmd, lp->ni_volpmd - 1)) 8280 lp->ni_volpmd--; 8281 } 8282 /* 8283 * remove the entry from the list, if there 8284 * are no more no-invol descendants and node 8285 * itself is not a no-invol node. 8286 */ 8287 if (!(lp->ni_noinvolpm || 8288 (lp->ni_flags & PMC_NO_INVOL))) { 8289 ASSERT(lp->ni_volpmd == 0); 8290 if (pp) { 8291 PMD(PMD_NOINVOL, ("%s: freeing " 8292 "%s, prev is %s\n", pmf, 8293 lp->ni_path, pp->ni_path)) 8294 pp->ni_next = lp->ni_next; 8295 } else { 8296 PMD(PMD_NOINVOL, ("%s: free %s " 8297 "head\n", pmf, lp->ni_path)) 8298 ASSERT(pm_noinvol_head == lp); 8299 pm_noinvol_head = lp->ni_next; 8300 } 8301 lock_held = 0; 8302 rw_exit(&pm_noinvol_rwlock); 8303 adjust_ancestors(apath, wasvolpmd); 8304 /* restore apath */ 8305 (void) strcpy(apath, pathbuf); 8306 kmem_free(lp->ni_path, lp->ni_size); 8307 kmem_free(lp, sizeof (*lp)); 8308 } 8309 break; 8310 } 8311 } 8312 if (lock_held) 8313 rw_exit(&pm_noinvol_rwlock); 8314 adjust_ancestors(apath, wasvolpmd); 8315 kmem_free(apath, len); 8316 } 8317 kmem_free(pathbuf, pathbuflen); 8318 } 8319 8320 /* 8321 * Do no-invol processing for any ancestors i.e. adjust counters of ancestors, 8322 * which were skipped even though their drivers were removed. 8323 */ 8324 static void 8325 pm_noinvol_process_ancestors(char *path) 8326 { 8327 pm_noinvol_t *lp; 8328 8329 rw_enter(&pm_noinvol_rwlock, RW_READER); 8330 for (lp = pm_noinvol_head; lp; lp = lp->ni_next) { 8331 if (strstr(path, lp->ni_path) && 8332 (lp->ni_flags & PMC_DRIVER_REMOVED)) { 8333 rw_exit(&pm_noinvol_rwlock); 8334 i_pm_driver_removed(lp->ni_major); 8335 return; 8336 } 8337 } 8338 rw_exit(&pm_noinvol_rwlock); 8339 } 8340 8341 /* 8342 * Returns true if (detached) device needs to be kept up because it exported the 8343 * "no-involuntary-power-cycles" property or we're pretending it did (console 8344 * fb case) or it is an ancestor of such a device and has used up the "one 8345 * free cycle" allowed when all such leaf nodes have voluntarily powered down 8346 * upon detach. In any event, we need an exact hit on the path or we return 8347 * false. 8348 */ 8349 int 8350 pm_noinvol_detached(char *path) 8351 { 8352 PMD_FUNC(pmf, "noinvol_detached") 8353 pm_noinvol_t *ip; 8354 int ret = 0; 8355 8356 rw_enter(&pm_noinvol_rwlock, RW_READER); 8357 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 8358 if (strcmp(path, ip->ni_path) == 0) { 8359 if (ip->ni_flags & PMC_CONSOLE_FB) { 8360 PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB " 8361 "%s\n", pmf, path)) 8362 ret = 1; 8363 break; 8364 } 8365 #ifdef DEBUG 8366 if (ip->ni_noinvolpm != ip->ni_volpmd) 8367 PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s" 8368 "\n", pmf, ip->ni_noinvolpm, ip->ni_volpmd, 8369 path)) 8370 #endif 8371 ret = (ip->ni_noinvolpm != ip->ni_volpmd); 8372 break; 8373 } 8374 } 8375 rw_exit(&pm_noinvol_rwlock); 8376 return (ret); 8377 } 8378 8379 int 8380 pm_is_cfb(dev_info_t *dip) 8381 { 8382 return (dip == cfb_dip); 8383 } 8384 8385 #ifdef DEBUG 8386 /* 8387 * Return true if all components of the console frame buffer are at 8388 * "normal" power, i.e., fully on. For the case where the console is not 8389 * a framebuffer, we also return true 8390 */ 8391 int 8392 pm_cfb_is_up(void) 8393 { 8394 return (pm_cfb_comps_off == 0); 8395 } 8396 #endif 8397 8398 /* 8399 * Preventing scan from powering down the node by incrementing the 8400 * kidsupcnt. 8401 */ 8402 void 8403 pm_hold_power(dev_info_t *dip) 8404 { 8405 e_pm_hold_rele_power(dip, 1); 8406 } 8407 8408 /* 8409 * Releasing the hold by decrementing the kidsupcnt allowing scan 8410 * to power down the node if all conditions are met. 8411 */ 8412 void 8413 pm_rele_power(dev_info_t *dip) 8414 { 8415 e_pm_hold_rele_power(dip, -1); 8416 } 8417 8418 /* 8419 * A wrapper of pm_all_to_normal() to power up a dip 8420 * to its normal level 8421 */ 8422 int 8423 pm_powerup(dev_info_t *dip) 8424 { 8425 PMD_FUNC(pmf, "pm_powerup") 8426 8427 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 8428 ASSERT(!(servicing_interrupt())); 8429 8430 /* 8431 * in case this node is not already participating pm 8432 */ 8433 if (!PM_GET_PM_INFO(dip)) { 8434 if (!DEVI_IS_ATTACHING(dip)) 8435 return (DDI_SUCCESS); 8436 if (pm_start(dip) != DDI_SUCCESS) 8437 return (DDI_FAILURE); 8438 if (!PM_GET_PM_INFO(dip)) 8439 return (DDI_SUCCESS); 8440 } 8441 8442 return (pm_all_to_normal(dip, PM_CANBLOCK_BLOCK)); 8443 } 8444 8445 int 8446 pm_rescan_walk(dev_info_t *dip, void *arg) 8447 { 8448 _NOTE(ARGUNUSED(arg)) 8449 8450 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip)) 8451 return (DDI_WALK_CONTINUE); 8452 8453 /* 8454 * Currently pm_cpr_callb/resume code is the only caller 8455 * and it needs to make sure that stopped scan get 8456 * reactivated. Otherwise, rescan walk needn't reactive 8457 * stopped scan. 8458 */ 8459 pm_scan_init(dip); 8460 8461 (void) pm_rescan(dip); 8462 return (DDI_WALK_CONTINUE); 8463 } 8464 8465 static dev_info_t * 8466 pm_get_next_descendent(dev_info_t *dip, dev_info_t *tdip) 8467 { 8468 dev_info_t *wdip, *pdip; 8469 8470 for (wdip = tdip; wdip != dip; wdip = pdip) { 8471 pdip = ddi_get_parent(wdip); 8472 if (pdip == dip) 8473 return (wdip); 8474 } 8475 return (NULL); 8476 } 8477 8478 int 8479 pm_busop_bus_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op, 8480 void *arg, void *result) 8481 { 8482 PMD_FUNC(pmf, "bp_bus_power") 8483 dev_info_t *cdip; 8484 pm_info_t *cinfo; 8485 pm_bp_child_pwrchg_t *bpc; 8486 pm_sp_misc_t *pspm; 8487 pm_bp_nexus_pwrup_t *bpn; 8488 pm_bp_child_pwrchg_t new_bpc; 8489 pm_bp_noinvol_t *bpi; 8490 dev_info_t *tdip; 8491 char *pathbuf; 8492 int ret = DDI_SUCCESS; 8493 int errno = 0; 8494 pm_component_t *cp; 8495 8496 PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip), 8497 pm_decode_op(op))) 8498 switch (op) { 8499 case BUS_POWER_CHILD_PWRCHG: 8500 bpc = (pm_bp_child_pwrchg_t *)arg; 8501 pspm = (pm_sp_misc_t *)bpc->bpc_private; 8502 tdip = bpc->bpc_dip; 8503 cdip = pm_get_next_descendent(dip, tdip); 8504 cinfo = PM_GET_PM_INFO(cdip); 8505 if (cdip != tdip) { 8506 /* 8507 * If the node is an involved parent, it needs to 8508 * power up the node as it is needed. There is nothing 8509 * else the framework can do here. 8510 */ 8511 if (PM_WANTS_NOTIFICATION(cdip)) { 8512 PMD(PMD_SET, ("%s: call bus_power for " 8513 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(cdip))) 8514 return ((*PM_BUS_POWER_FUNC(cdip))(cdip, 8515 impl_arg, op, arg, result)); 8516 } 8517 ASSERT(pspm->pspm_direction == PM_LEVEL_UPONLY || 8518 pspm->pspm_direction == PM_LEVEL_DOWNONLY || 8519 pspm->pspm_direction == PM_LEVEL_EXACT); 8520 /* 8521 * we presume that the parent needs to be up in 8522 * order for the child to change state (either 8523 * because it must already be on if the child is on 8524 * (and the pm_all_to_normal_nexus() will be a nop) 8525 * or because it will need to be on for the child 8526 * to come on; so we make the call regardless 8527 */ 8528 pm_hold_power(cdip); 8529 if (cinfo) { 8530 pm_canblock_t canblock = pspm->pspm_canblock; 8531 ret = pm_all_to_normal_nexus(cdip, canblock); 8532 if (ret != DDI_SUCCESS) { 8533 pm_rele_power(cdip); 8534 return (ret); 8535 } 8536 } 8537 PMD(PMD_SET, ("%s: walk down to %s@%s(%s#%d)\n", pmf, 8538 PM_DEVICE(cdip))) 8539 ret = pm_busop_bus_power(cdip, impl_arg, op, arg, 8540 result); 8541 pm_rele_power(cdip); 8542 } else { 8543 ret = pm_busop_set_power(cdip, impl_arg, op, arg, 8544 result); 8545 } 8546 return (ret); 8547 8548 case BUS_POWER_NEXUS_PWRUP: 8549 bpn = (pm_bp_nexus_pwrup_t *)arg; 8550 pspm = (pm_sp_misc_t *)bpn->bpn_private; 8551 8552 if (!e_pm_valid_info(dip, NULL) || 8553 !e_pm_valid_comp(dip, bpn->bpn_comp, &cp) || 8554 !e_pm_valid_power(dip, bpn->bpn_comp, bpn->bpn_level)) { 8555 PMD(PMD_SET, ("%s: %s@%s(%s#%d) has no pm info; EIO\n", 8556 pmf, PM_DEVICE(dip))) 8557 *pspm->pspm_errnop = EIO; 8558 *(int *)result = DDI_FAILURE; 8559 return (DDI_FAILURE); 8560 } 8561 8562 ASSERT(bpn->bpn_dip == dip); 8563 PMD(PMD_SET, ("%s: nexus powerup for %s@%s(%s#%d)\n", pmf, 8564 PM_DEVICE(dip))) 8565 new_bpc.bpc_dip = dip; 8566 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8567 new_bpc.bpc_path = ddi_pathname(dip, pathbuf); 8568 new_bpc.bpc_comp = bpn->bpn_comp; 8569 new_bpc.bpc_olevel = PM_CURPOWER(dip, bpn->bpn_comp); 8570 new_bpc.bpc_nlevel = bpn->bpn_level; 8571 new_bpc.bpc_private = bpn->bpn_private; 8572 ((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_direction = 8573 PM_LEVEL_UPONLY; 8574 ((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_errnop = 8575 &errno; 8576 ret = pm_busop_set_power(dip, impl_arg, BUS_POWER_CHILD_PWRCHG, 8577 (void *)&new_bpc, result); 8578 kmem_free(pathbuf, MAXPATHLEN); 8579 return (ret); 8580 8581 case BUS_POWER_NOINVOL: 8582 bpi = (pm_bp_noinvol_t *)arg; 8583 tdip = bpi->bpni_dip; 8584 cdip = pm_get_next_descendent(dip, tdip); 8585 8586 /* In case of rem_drv, the leaf node has been removed */ 8587 if (cdip == NULL) 8588 return (DDI_SUCCESS); 8589 8590 cinfo = PM_GET_PM_INFO(cdip); 8591 if (cdip != tdip) { 8592 if (PM_WANTS_NOTIFICATION(cdip)) { 8593 PMD(PMD_NOINVOL, 8594 ("%s: call bus_power for %s@%s(%s#%d)\n", 8595 pmf, PM_DEVICE(cdip))) 8596 ret = (*PM_BUS_POWER_FUNC(cdip)) 8597 (cdip, NULL, op, arg, result); 8598 if ((cinfo) && (ret == DDI_SUCCESS)) 8599 (void) pm_noinvol_update_node(cdip, 8600 bpi); 8601 return (ret); 8602 } else { 8603 PMD(PMD_NOINVOL, 8604 ("%s: walk down to %s@%s(%s#%d)\n", pmf, 8605 PM_DEVICE(cdip))) 8606 ret = pm_busop_bus_power(cdip, NULL, op, 8607 arg, result); 8608 /* 8609 * Update the current node. 8610 */ 8611 if ((cinfo) && (ret == DDI_SUCCESS)) 8612 (void) pm_noinvol_update_node(cdip, 8613 bpi); 8614 return (ret); 8615 } 8616 } else { 8617 /* 8618 * For attach, detach, power up: 8619 * Do nothing for leaf node since its 8620 * counts are already updated. 8621 * For CFB and driver removal, since the 8622 * path and the target dip passed in is up to and incl. 8623 * the immediate ancestor, need to do the update. 8624 */ 8625 PMD(PMD_NOINVOL, ("%s: target %s@%s(%s#%d) is " 8626 "reached\n", pmf, PM_DEVICE(cdip))) 8627 if (cinfo && ((bpi->bpni_cmd == PM_BP_NOINVOL_REMDRV) || 8628 (bpi->bpni_cmd == PM_BP_NOINVOL_CFB))) 8629 (void) pm_noinvol_update_node(cdip, bpi); 8630 return (DDI_SUCCESS); 8631 } 8632 8633 default: 8634 PMD(PMD_SET, ("%s: operation %d is not supported!\n", pmf, op)) 8635 return (DDI_FAILURE); 8636 } 8637 } 8638 8639 static int 8640 pm_busop_set_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op, 8641 void *arg, void *resultp) 8642 { 8643 _NOTE(ARGUNUSED(impl_arg)) 8644 PMD_FUNC(pmf, "bp_set_power") 8645 pm_ppm_devlist_t *devl = NULL; 8646 int clevel, circ; 8647 #ifdef DEBUG 8648 int circ_db, ccirc_db; 8649 #endif 8650 int ret = DDI_SUCCESS; 8651 dev_info_t *cdip; 8652 pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg; 8653 pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private; 8654 pm_canblock_t canblock = pspm->pspm_canblock; 8655 int scan = pspm->pspm_scan; 8656 int comp = bpc->bpc_comp; 8657 int olevel = bpc->bpc_olevel; 8658 int nlevel = bpc->bpc_nlevel; 8659 int comps_off_incr = 0; 8660 dev_info_t *pdip = ddi_get_parent(dip); 8661 int dodeps; 8662 int direction = pspm->pspm_direction; 8663 int *errnop = pspm->pspm_errnop; 8664 #ifdef PMDDEBUG 8665 char *dir = pm_decode_direction(direction); 8666 #endif 8667 int *iresp = (int *)resultp; 8668 time_t idletime, thresh; 8669 pm_component_t *cp = PM_CP(dip, comp); 8670 int work_type; 8671 8672 *iresp = DDI_SUCCESS; 8673 *errnop = 0; 8674 ASSERT(op == BUS_POWER_CHILD_PWRCHG); 8675 PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip), 8676 pm_decode_op(op))) 8677 8678 /* 8679 * The following set of conditions indicate we are here to handle a 8680 * driver's pm_[raise|lower]_power request, but the device is being 8681 * power managed (PM_DIRECT_PM) by a user process. For that case 8682 * we want to pm_block and pass a status back to the caller based 8683 * on whether the controlling process's next activity on the device 8684 * matches the current request or not. This distinction tells 8685 * downstream functions to avoid calling into a driver or changing 8686 * the framework's power state. To actually block, we need: 8687 * 8688 * PM_ISDIRECT(dip) 8689 * no reason to block unless a process is directly controlling dev 8690 * direction != PM_LEVEL_EXACT 8691 * EXACT is used by controlling proc's PM_SET_CURRENT_POWER ioctl 8692 * !pm_processes_stopped 8693 * don't block if controlling proc already be stopped for cpr 8694 * canblock != PM_CANBLOCK_BYPASS 8695 * our caller must not have explicitly prevented blocking 8696 */ 8697 if (direction != PM_LEVEL_EXACT && canblock != PM_CANBLOCK_BYPASS) { 8698 PM_LOCK_DIP(dip); 8699 while (PM_ISDIRECT(dip) && !pm_processes_stopped) { 8700 /* releases dip lock */ 8701 ret = pm_busop_match_request(dip, bpc); 8702 if (ret == EAGAIN) { 8703 PM_LOCK_DIP(dip); 8704 continue; 8705 } 8706 return (*iresp = ret); 8707 } 8708 PM_UNLOCK_DIP(dip); 8709 } 8710 /* BC device is never scanned, so power will stick until we are done */ 8711 if (PM_ISBC(dip) && comp != 0 && nlevel != 0 && 8712 direction != PM_LEVEL_DOWNONLY) { 8713 int nrmpwr0 = pm_get_normal_power(dip, 0); 8714 if (pm_set_power(dip, 0, nrmpwr0, direction, 8715 canblock, 0, resultp) != DDI_SUCCESS) { 8716 /* *resultp set by pm_set_power */ 8717 return (DDI_FAILURE); 8718 } 8719 } 8720 if (PM_WANTS_NOTIFICATION(pdip)) { 8721 PMD(PMD_SET, ("%s: pre_notify %s@%s(%s#%d) for child " 8722 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(pdip), PM_DEVICE(dip))) 8723 ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 8724 BUS_POWER_PRE_NOTIFICATION, bpc, resultp); 8725 if (ret != DDI_SUCCESS) { 8726 PMD(PMD_SET, ("%s: failed to pre_notify %s@%s(%s#%d)\n", 8727 pmf, PM_DEVICE(pdip))) 8728 return (DDI_FAILURE); 8729 } 8730 } else { 8731 /* 8732 * Since we don't know what the actual power level is, 8733 * we place a power hold on the parent no matter what 8734 * component and level is changing. 8735 */ 8736 pm_hold_power(pdip); 8737 } 8738 PM_LOCK_POWER(dip, &circ); 8739 clevel = PM_CURPOWER(dip, comp); 8740 /* 8741 * It's possible that a call was made to pm_update_maxpower() 8742 * on another thread before we took the lock above. So, we need to 8743 * make sure that this request isn't processed after the 8744 * change of power executed on behalf of pm_update_maxpower(). 8745 */ 8746 if (nlevel > pm_get_normal_power(dip, comp)) { 8747 PMD(PMD_SET, ("%s: requested level is higher than normal.\n", 8748 pmf)) 8749 ret = DDI_FAILURE; 8750 *iresp = DDI_FAILURE; 8751 goto post_notify; 8752 } 8753 PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, olvl=%d, nlvl=%d, clvl=%d, " 8754 "dir=%s\n", pmf, PM_DEVICE(dip), comp, bpc->bpc_olevel, nlevel, 8755 clevel, dir)) 8756 switch (direction) { 8757 case PM_LEVEL_UPONLY: 8758 /* Powering up */ 8759 if (clevel >= nlevel) { 8760 PMD(PMD_SET, ("%s: current level is already " 8761 "at or above the requested level.\n", pmf)) 8762 *iresp = DDI_SUCCESS; 8763 ret = DDI_SUCCESS; 8764 goto post_notify; 8765 } 8766 break; 8767 case PM_LEVEL_EXACT: 8768 /* specific level request */ 8769 if (clevel == nlevel && !PM_ISBC(dip)) { 8770 PMD(PMD_SET, ("%s: current level is already " 8771 "at the requested level.\n", pmf)) 8772 *iresp = DDI_SUCCESS; 8773 ret = DDI_SUCCESS; 8774 goto post_notify; 8775 } else if (PM_IS_CFB(dip) && (nlevel < clevel)) { 8776 PMD(PMD_CFB, ("%s: powerdown of console\n", pmf)) 8777 if (!pm_cfb_enabled) { 8778 PMD(PMD_ERROR | PMD_CFB, 8779 ("%s: !pm_cfb_enabled, fails\n", pmf)) 8780 *errnop = EINVAL; 8781 *iresp = DDI_FAILURE; 8782 ret = DDI_FAILURE; 8783 goto post_notify; 8784 } 8785 mutex_enter(&pm_cfb_lock); 8786 while (cfb_inuse) { 8787 mutex_exit(&pm_cfb_lock); 8788 if (delay_sig(1) == EINTR) { 8789 ret = DDI_FAILURE; 8790 *iresp = DDI_FAILURE; 8791 *errnop = EINTR; 8792 goto post_notify; 8793 } 8794 mutex_enter(&pm_cfb_lock); 8795 } 8796 mutex_exit(&pm_cfb_lock); 8797 } 8798 break; 8799 case PM_LEVEL_DOWNONLY: 8800 /* Powering down */ 8801 thresh = cur_threshold(dip, comp); 8802 idletime = gethrestime_sec() - cp->pmc_timestamp; 8803 if (scan && ((PM_KUC(dip) != 0) || 8804 (cp->pmc_busycount > 0) || 8805 ((idletime < thresh) && !PM_IS_PID(dip)))) { 8806 #ifdef DEBUG 8807 if (DEVI(dip)->devi_pm_kidsupcnt != 0) 8808 PMD(PMD_SET, ("%s: scan failed: " 8809 "kidsupcnt != 0\n", pmf)) 8810 if (cp->pmc_busycount > 0) 8811 PMD(PMD_SET, ("%s: scan failed: " 8812 "device become busy\n", pmf)) 8813 if (idletime < thresh) 8814 PMD(PMD_SET, ("%s: scan failed: device " 8815 "hasn't been idle long enough\n", pmf)) 8816 #endif 8817 *iresp = DDI_FAILURE; 8818 *errnop = EBUSY; 8819 ret = DDI_FAILURE; 8820 goto post_notify; 8821 } else if (clevel != PM_LEVEL_UNKNOWN && clevel <= nlevel) { 8822 PMD(PMD_SET, ("%s: current level is already at " 8823 "or below the requested level.\n", pmf)) 8824 *iresp = DDI_SUCCESS; 8825 ret = DDI_SUCCESS; 8826 goto post_notify; 8827 } 8828 break; 8829 } 8830 8831 if (PM_IS_CFB(dip) && (comps_off_incr = 8832 calc_cfb_comps_incr(dip, comp, clevel, nlevel)) > 0) { 8833 /* 8834 * Pre-adjust pm_cfb_comps_off if lowering a console fb 8835 * component from full power. Remember that we tried to 8836 * lower power in case it fails and we need to back out 8837 * the adjustment. 8838 */ 8839 update_comps_off(comps_off_incr, dip); 8840 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d cfb_comps_off->%d\n", 8841 pmf, PM_DEVICE(dip), comp, clevel, nlevel, 8842 pm_cfb_comps_off)) 8843 } 8844 8845 if ((*iresp = power_dev(dip, 8846 comp, nlevel, clevel, canblock, &devl)) == DDI_SUCCESS) { 8847 #ifdef DEBUG 8848 /* 8849 * All descendents of this node should already be powered off. 8850 */ 8851 if (PM_CURPOWER(dip, comp) == 0) { 8852 pm_desc_pwrchk_t pdpchk; 8853 pdpchk.pdpc_dip = dip; 8854 pdpchk.pdpc_par_involved = PM_WANTS_NOTIFICATION(dip); 8855 ndi_devi_enter(dip, &circ_db); 8856 for (cdip = ddi_get_child(dip); cdip != NULL; 8857 cdip = ddi_get_next_sibling(cdip)) { 8858 ndi_devi_enter(cdip, &ccirc_db); 8859 ddi_walk_devs(cdip, pm_desc_pwrchk_walk, 8860 (void *)&pdpchk); 8861 ndi_devi_exit(cdip, ccirc_db); 8862 } 8863 ndi_devi_exit(dip, circ_db); 8864 } 8865 #endif 8866 /* 8867 * Post-adjust pm_cfb_comps_off if we brought an fb component 8868 * back up to full power. 8869 */ 8870 if (PM_IS_CFB(dip) && comps_off_incr < 0) { 8871 update_comps_off(comps_off_incr, dip); 8872 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d " 8873 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 8874 comp, clevel, nlevel, pm_cfb_comps_off)) 8875 } 8876 dodeps = 0; 8877 if (POWERING_OFF(clevel, nlevel)) { 8878 if (PM_ISBC(dip)) { 8879 dodeps = (comp == 0); 8880 } else { 8881 int i; 8882 dodeps = 1; 8883 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 8884 /* if some component still on */ 8885 if (PM_CURPOWER(dip, i)) { 8886 dodeps = 0; 8887 break; 8888 } 8889 } 8890 } 8891 if (dodeps) 8892 work_type = PM_DEP_WK_POWER_OFF; 8893 } else if (POWERING_ON(clevel, nlevel)) { 8894 if (PM_ISBC(dip)) { 8895 dodeps = (comp == 0); 8896 } else { 8897 int i; 8898 dodeps = 1; 8899 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 8900 if (i == comp) 8901 continue; 8902 if (PM_CURPOWER(dip, i) > 0) { 8903 dodeps = 0; 8904 break; 8905 } 8906 } 8907 } 8908 if (dodeps) 8909 work_type = PM_DEP_WK_POWER_ON; 8910 } 8911 8912 if (dodeps) { 8913 char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8914 8915 (void) ddi_pathname(dip, pathbuf); 8916 pm_dispatch_to_dep_thread(work_type, pathbuf, NULL, 8917 PM_DEP_NOWAIT, NULL, 0); 8918 kmem_free(pathbuf, MAXPATHLEN); 8919 } 8920 if ((PM_CURPOWER(dip, comp) == nlevel) && pm_watchers()) { 8921 int old; 8922 8923 /* If old power cached during deadlock, use it. */ 8924 old = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 8925 cp->pmc_phc_pwr : olevel); 8926 mutex_enter(&pm_rsvp_lock); 8927 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, nlevel, 8928 old, canblock); 8929 pm_enqueue_notify_others(&devl, canblock); 8930 mutex_exit(&pm_rsvp_lock); 8931 } else { 8932 pm_ppm_devlist_t *p; 8933 pm_ppm_devlist_t *next; 8934 for (p = devl; p != NULL; p = next) { 8935 next = p->ppd_next; 8936 kmem_free(p, sizeof (pm_ppm_devlist_t)); 8937 } 8938 devl = NULL; 8939 } 8940 8941 /* 8942 * If we are coming from a scan, don't do it again, 8943 * else we can have infinite loops. 8944 */ 8945 if (!scan) 8946 pm_rescan(dip); 8947 } else { 8948 /* if we incremented pm_comps_off_count, but failed */ 8949 if (comps_off_incr > 0) { 8950 update_comps_off(-comps_off_incr, dip); 8951 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d " 8952 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 8953 comp, clevel, nlevel, pm_cfb_comps_off)) 8954 } 8955 *errnop = EIO; 8956 } 8957 8958 post_notify: 8959 /* 8960 * This thread may have been in deadlock with pm_power_has_changed. 8961 * Before releasing power lock, clear the flag which marks this 8962 * condition. 8963 */ 8964 cp->pmc_flags &= ~PM_PHC_WHILE_SET_POWER; 8965 8966 /* 8967 * Update the old power level in the bus power structure with the 8968 * actual power level before the transition was made to the new level. 8969 * Some involved parents depend on this information to keep track of 8970 * their children's power transition. 8971 */ 8972 if (*iresp != DDI_FAILURE) 8973 bpc->bpc_olevel = clevel; 8974 8975 if (PM_WANTS_NOTIFICATION(pdip)) { 8976 ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 8977 BUS_POWER_POST_NOTIFICATION, bpc, resultp); 8978 PM_UNLOCK_POWER(dip, circ); 8979 PMD(PMD_SET, ("%s: post_notify %s@%s(%s#%d) for " 8980 "child %s@%s(%s#%d), ret=%d\n", pmf, PM_DEVICE(pdip), 8981 PM_DEVICE(dip), ret)) 8982 } else { 8983 nlevel = cur_power(cp); /* in case phc deadlock updated pwr */ 8984 PM_UNLOCK_POWER(dip, circ); 8985 /* 8986 * Now that we know what power transition has occurred 8987 * (if any), release the power hold. Leave the hold 8988 * in effect in the case of OFF->ON transition. 8989 */ 8990 if (!(clevel == 0 && nlevel > 0 && 8991 (!PM_ISBC(dip) || comp == 0))) 8992 pm_rele_power(pdip); 8993 /* 8994 * If the power transition was an ON->OFF transition, 8995 * remove the power hold from the parent. 8996 */ 8997 if ((clevel > 0 || clevel == PM_LEVEL_UNKNOWN) && 8998 nlevel == 0 && (!PM_ISBC(dip) || comp == 0)) 8999 pm_rele_power(pdip); 9000 } 9001 if (*iresp != DDI_SUCCESS || ret != DDI_SUCCESS) 9002 return (DDI_FAILURE); 9003 else 9004 return (DDI_SUCCESS); 9005 } 9006 9007 /* 9008 * If an app (SunVTS or Xsun) has taken control, then block until it 9009 * gives it up or makes the requested power level change, unless 9010 * we have other instructions about blocking. Returns DDI_SUCCESS, 9011 * DDI_FAILURE or EAGAIN (owner released device from directpm). 9012 */ 9013 static int 9014 pm_busop_match_request(dev_info_t *dip, void *arg) 9015 { 9016 PMD_FUNC(pmf, "bp_match_request") 9017 pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg; 9018 pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private; 9019 int comp = bpc->bpc_comp; 9020 int nlevel = bpc->bpc_nlevel; 9021 pm_canblock_t canblock = pspm->pspm_canblock; 9022 int direction = pspm->pspm_direction; 9023 int clevel, circ; 9024 9025 ASSERT(PM_IAM_LOCKING_DIP(dip)); 9026 PM_LOCK_POWER(dip, &circ); 9027 clevel = PM_CURPOWER(dip, comp); 9028 PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, nlvl=%d, clvl=%d\n", 9029 pmf, PM_DEVICE(dip), comp, nlevel, clevel)) 9030 if (direction == PM_LEVEL_UPONLY) { 9031 if (clevel >= nlevel) { 9032 PM_UNLOCK_POWER(dip, circ); 9033 PM_UNLOCK_DIP(dip); 9034 return (DDI_SUCCESS); 9035 } 9036 } else if (clevel == nlevel) { 9037 PM_UNLOCK_POWER(dip, circ); 9038 PM_UNLOCK_DIP(dip); 9039 return (DDI_SUCCESS); 9040 } 9041 if (canblock == PM_CANBLOCK_FAIL) { 9042 PM_UNLOCK_POWER(dip, circ); 9043 PM_UNLOCK_DIP(dip); 9044 return (DDI_FAILURE); 9045 } 9046 if (canblock == PM_CANBLOCK_BLOCK) { 9047 /* 9048 * To avoid a deadlock, we must not hold the 9049 * power lock when we pm_block. 9050 */ 9051 PM_UNLOCK_POWER(dip, circ); 9052 PMD(PMD_SET, ("%s: blocking\n", pmf)) 9053 /* pm_block releases dip lock */ 9054 switch (pm_block(dip, comp, nlevel, clevel)) { 9055 case PMP_RELEASE: 9056 return (EAGAIN); 9057 case PMP_SUCCEED: 9058 return (DDI_SUCCESS); 9059 case PMP_FAIL: 9060 return (DDI_FAILURE); 9061 } 9062 } else { 9063 ASSERT(0); 9064 } 9065 _NOTE(NOTREACHED); 9066 return (DDI_FAILURE); /* keep gcc happy */ 9067 } 9068 9069 static int 9070 pm_all_to_normal_nexus(dev_info_t *dip, pm_canblock_t canblock) 9071 { 9072 PMD_FUNC(pmf, "all_to_normal_nexus") 9073 int *normal; 9074 int i, ncomps; 9075 size_t size; 9076 int changefailed = 0; 9077 int ret, result = DDI_SUCCESS; 9078 pm_bp_nexus_pwrup_t bpn; 9079 pm_sp_misc_t pspm; 9080 9081 ASSERT(PM_GET_PM_INFO(dip)); 9082 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9083 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 9084 PMD(PMD_ALLNORM, ("%s: can't get norm pwrs\n", pmf)) 9085 return (DDI_FAILURE); 9086 } 9087 ncomps = PM_NUMCMPTS(dip); 9088 for (i = 0; i < ncomps; i++) { 9089 bpn.bpn_dip = dip; 9090 bpn.bpn_comp = i; 9091 bpn.bpn_level = normal[i]; 9092 pspm.pspm_canblock = canblock; 9093 pspm.pspm_scan = 0; 9094 bpn.bpn_private = &pspm; 9095 ret = pm_busop_bus_power(dip, NULL, BUS_POWER_NEXUS_PWRUP, 9096 (void *)&bpn, (void *)&result); 9097 if (ret != DDI_SUCCESS || result != DDI_SUCCESS) { 9098 PMD(PMD_FAIL | PMD_ALLNORM, ("%s: %s@%s(%s#%d)[%d] " 9099 "->%d failure result %d\n", pmf, PM_DEVICE(dip), 9100 i, normal[i], result)) 9101 changefailed++; 9102 } 9103 } 9104 kmem_free(normal, size); 9105 if (changefailed) { 9106 PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) " 9107 "full power\n", pmf, changefailed, PM_DEVICE(dip))) 9108 return (DDI_FAILURE); 9109 } 9110 return (DDI_SUCCESS); 9111 } 9112 9113 int 9114 pm_noinvol_update(int subcmd, int volpmd, int wasvolpmd, char *path, 9115 dev_info_t *tdip) 9116 { 9117 PMD_FUNC(pmf, "noinvol_update") 9118 pm_bp_noinvol_t args; 9119 int ret; 9120 int result = DDI_SUCCESS; 9121 9122 args.bpni_path = path; 9123 args.bpni_dip = tdip; 9124 args.bpni_cmd = subcmd; 9125 args.bpni_wasvolpmd = wasvolpmd; 9126 args.bpni_volpmd = volpmd; 9127 PMD(PMD_NOINVOL, ("%s: update for path %s tdip %p subcmd %d " 9128 "volpmd %d wasvolpmd %d\n", pmf, 9129 path, (void *)tdip, subcmd, wasvolpmd, volpmd)) 9130 ret = pm_busop_bus_power(ddi_root_node(), NULL, BUS_POWER_NOINVOL, 9131 &args, &result); 9132 return (ret); 9133 } 9134 9135 void 9136 pm_noinvol_update_node(dev_info_t *dip, pm_bp_noinvol_t *req) 9137 { 9138 PMD_FUNC(pmf, "noinvol_update_node") 9139 9140 PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9141 switch (req->bpni_cmd) { 9142 case PM_BP_NOINVOL_ATTACH: 9143 PMD(PMD_NOINVOL, ("%s: PM_PB_NOINVOL_ATTACH %s@%s(%s#%d) " 9144 "noinvol %d->%d\n", pmf, PM_DEVICE(dip), 9145 DEVI(dip)->devi_pm_noinvolpm, 9146 DEVI(dip)->devi_pm_noinvolpm - 1)) 9147 ASSERT(DEVI(dip)->devi_pm_noinvolpm); 9148 PM_LOCK_DIP(dip); 9149 DEVI(dip)->devi_pm_noinvolpm--; 9150 if (req->bpni_wasvolpmd) { 9151 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_ATTACH " 9152 "%s@%s(%s#%d) volpmd %d->%d\n", pmf, 9153 PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd, 9154 DEVI(dip)->devi_pm_volpmd - 1)) 9155 if (DEVI(dip)->devi_pm_volpmd) 9156 DEVI(dip)->devi_pm_volpmd--; 9157 } 9158 PM_UNLOCK_DIP(dip); 9159 break; 9160 9161 case PM_BP_NOINVOL_DETACH: 9162 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH %s@%s(%s#%d) " 9163 "noinvolpm %d->%d\n", pmf, PM_DEVICE(dip), 9164 DEVI(dip)->devi_pm_noinvolpm, 9165 DEVI(dip)->devi_pm_noinvolpm + 1)) 9166 PM_LOCK_DIP(dip); 9167 DEVI(dip)->devi_pm_noinvolpm++; 9168 if (req->bpni_wasvolpmd) { 9169 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH " 9170 "%s@%s(%s#%d) volpmd %d->%d\n", pmf, 9171 PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd, 9172 DEVI(dip)->devi_pm_volpmd + 1)) 9173 DEVI(dip)->devi_pm_volpmd++; 9174 } 9175 PM_UNLOCK_DIP(dip); 9176 break; 9177 9178 case PM_BP_NOINVOL_REMDRV: 9179 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) " 9180 "noinvol %d->%d\n", pmf, PM_DEVICE(dip), 9181 DEVI(dip)->devi_pm_noinvolpm, 9182 DEVI(dip)->devi_pm_noinvolpm - 1)) 9183 ASSERT(DEVI(dip)->devi_pm_noinvolpm); 9184 PM_LOCK_DIP(dip); 9185 DEVI(dip)->devi_pm_noinvolpm--; 9186 if (req->bpni_wasvolpmd) { 9187 PMD(PMD_NOINVOL, 9188 ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) " 9189 "volpmd %d->%d\n", pmf, PM_DEVICE(dip), 9190 DEVI(dip)->devi_pm_volpmd, 9191 DEVI(dip)->devi_pm_volpmd - 1)) 9192 /* 9193 * A power up could come in between and 9194 * clear the volpmd, if that's the case, 9195 * volpmd would be clear. 9196 */ 9197 if (DEVI(dip)->devi_pm_volpmd) 9198 DEVI(dip)->devi_pm_volpmd--; 9199 } 9200 PM_UNLOCK_DIP(dip); 9201 break; 9202 9203 case PM_BP_NOINVOL_CFB: 9204 PMD(PMD_NOINVOL, 9205 ("%s: PM_BP_NOIVOL_CFB %s@%s(%s#%d) noinvol %d->%d\n", 9206 pmf, PM_DEVICE(dip), DEVI(dip)->devi_pm_noinvolpm, 9207 DEVI(dip)->devi_pm_noinvolpm + 1)) 9208 PM_LOCK_DIP(dip); 9209 DEVI(dip)->devi_pm_noinvolpm++; 9210 PM_UNLOCK_DIP(dip); 9211 break; 9212 9213 case PM_BP_NOINVOL_POWER: 9214 PMD(PMD_NOINVOL, 9215 ("%s: PM_BP_NOIVOL_PWR %s@%s(%s#%d) volpmd %d->%d\n", 9216 pmf, PM_DEVICE(dip), 9217 DEVI(dip)->devi_pm_volpmd, DEVI(dip)->devi_pm_volpmd - 9218 req->bpni_volpmd)) 9219 PM_LOCK_DIP(dip); 9220 DEVI(dip)->devi_pm_volpmd -= req->bpni_volpmd; 9221 PM_UNLOCK_DIP(dip); 9222 break; 9223 9224 default: 9225 break; 9226 } 9227 9228 } 9229 9230 #ifdef DEBUG 9231 static int 9232 pm_desc_pwrchk_walk(dev_info_t *dip, void *arg) 9233 { 9234 PMD_FUNC(pmf, "desc_pwrchk") 9235 pm_desc_pwrchk_t *pdpchk = (pm_desc_pwrchk_t *)arg; 9236 pm_info_t *info = PM_GET_PM_INFO(dip); 9237 int i; 9238 /* LINTED */ 9239 int curpwr, ce_level; 9240 9241 if (!info) 9242 return (DDI_WALK_CONTINUE); 9243 9244 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9245 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 9246 /* LINTED */ 9247 if ((curpwr = PM_CURPOWER(dip, i)) == 0) 9248 continue; 9249 /* E_FUNC_SET_NOT_USED */ 9250 ce_level = (pdpchk->pdpc_par_involved == 0) ? CE_PANIC : 9251 CE_WARN; 9252 PMD(PMD_SET, ("%s: %s@%s(%s#%d) is powered off while desc " 9253 "%s@%s(%s#%d)[%d] is at %d\n", pmf, 9254 PM_DEVICE(pdpchk->pdpc_dip), PM_DEVICE(dip), i, curpwr)) 9255 cmn_err(ce_level, "!device %s@%s(%s#%d) is powered on, " 9256 "while its ancestor, %s@%s(%s#%d), is powering off!", 9257 PM_DEVICE(dip), PM_DEVICE(pdpchk->pdpc_dip)); 9258 } 9259 return (DDI_WALK_CONTINUE); 9260 } 9261 #endif 9262 9263 /* 9264 * Record the fact that one thread is borrowing the lock on a device node. 9265 * Use is restricted to the case where the lending thread will block until 9266 * the borrowing thread (always curthread) completes. 9267 */ 9268 void 9269 pm_borrow_lock(kthread_t *lender) 9270 { 9271 lock_loan_t *prev = &lock_loan_head; 9272 lock_loan_t *cur = (lock_loan_t *)kmem_zalloc(sizeof (*cur), KM_SLEEP); 9273 9274 cur->pmlk_borrower = curthread; 9275 cur->pmlk_lender = lender; 9276 mutex_enter(&pm_loan_lock); 9277 cur->pmlk_next = prev->pmlk_next; 9278 prev->pmlk_next = cur; 9279 mutex_exit(&pm_loan_lock); 9280 } 9281 9282 /* 9283 * Return the borrowed lock. A thread can borrow only one. 9284 */ 9285 void 9286 pm_return_lock(void) 9287 { 9288 lock_loan_t *cur; 9289 lock_loan_t *prev = &lock_loan_head; 9290 9291 mutex_enter(&pm_loan_lock); 9292 ASSERT(prev->pmlk_next != NULL); 9293 for (cur = prev->pmlk_next; cur; prev = cur, cur = cur->pmlk_next) 9294 if (cur->pmlk_borrower == curthread) 9295 break; 9296 9297 ASSERT(cur != NULL); 9298 prev->pmlk_next = cur->pmlk_next; 9299 mutex_exit(&pm_loan_lock); 9300 kmem_free(cur, sizeof (*cur)); 9301 } 9302 9303 #if defined(__x86) 9304 9305 #define CPR_RXR 0x1 9306 #define CPR_TXR 0x20 9307 #define CPR_DATAREG 0x3f8 9308 #define CPR_LSTAT 0x3fd 9309 #define CPR_INTRCTL 0x3f9 9310 9311 char 9312 pm_getchar(void) 9313 { 9314 while ((inb(CPR_LSTAT) & CPR_RXR) != CPR_RXR) 9315 drv_usecwait(10); 9316 9317 return (inb(CPR_DATAREG)); 9318 9319 } 9320 9321 void 9322 pm_putchar(char c) 9323 { 9324 while ((inb(CPR_LSTAT) & CPR_TXR) == 0) 9325 drv_usecwait(10); 9326 9327 outb(CPR_DATAREG, c); 9328 } 9329 9330 void 9331 pm_printf(char *s) 9332 { 9333 while (*s) { 9334 pm_putchar(*s++); 9335 } 9336 } 9337 9338 #endif 9339 9340 int 9341 pm_ppm_searchlist(pm_searchargs_t *sp) 9342 { 9343 power_req_t power_req; 9344 int result = 0; 9345 /* LINTED */ 9346 int ret; 9347 9348 power_req.request_type = PMR_PPM_SEARCH_LIST; 9349 power_req.req.ppm_search_list_req.searchlist = sp; 9350 ASSERT(DEVI(ddi_root_node())->devi_pm_ppm); 9351 ret = pm_ctlops((dev_info_t *)DEVI(ddi_root_node())->devi_pm_ppm, 9352 ddi_root_node(), DDI_CTLOPS_POWER, &power_req, &result); 9353 PMD(PMD_SX, ("pm_ppm_searchlist returns %d, result %d\n", 9354 ret, result)) 9355 return (result); 9356 } 9357