1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/note.h> 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/buf.h> 32 #include <sys/uio.h> 33 #include <sys/cred.h> 34 #include <sys/poll.h> 35 #include <sys/mman.h> 36 #include <sys/kmem.h> 37 #include <sys/model.h> 38 #include <sys/file.h> 39 #include <sys/proc.h> 40 #include <sys/open.h> 41 #include <sys/user.h> 42 #include <sys/t_lock.h> 43 #include <sys/vm.h> 44 #include <sys/stat.h> 45 #include <vm/hat.h> 46 #include <vm/seg.h> 47 #include <vm/seg_vn.h> 48 #include <vm/seg_dev.h> 49 #include <vm/as.h> 50 #include <sys/cmn_err.h> 51 #include <sys/cpuvar.h> 52 #include <sys/debug.h> 53 #include <sys/autoconf.h> 54 #include <sys/sunddi.h> 55 #include <sys/esunddi.h> 56 #include <sys/sunndi.h> 57 #include <sys/kstat.h> 58 #include <sys/conf.h> 59 #include <sys/ddi_impldefs.h> /* include implementation structure defs */ 60 #include <sys/ndi_impldefs.h> /* include prototypes */ 61 #include <sys/ddi_timer.h> 62 #include <sys/hwconf.h> 63 #include <sys/pathname.h> 64 #include <sys/modctl.h> 65 #include <sys/epm.h> 66 #include <sys/devctl.h> 67 #include <sys/callb.h> 68 #include <sys/cladm.h> 69 #include <sys/sysevent.h> 70 #include <sys/dacf_impl.h> 71 #include <sys/ddidevmap.h> 72 #include <sys/bootconf.h> 73 #include <sys/disp.h> 74 #include <sys/atomic.h> 75 #include <sys/promif.h> 76 #include <sys/instance.h> 77 #include <sys/sysevent/eventdefs.h> 78 #include <sys/task.h> 79 #include <sys/project.h> 80 #include <sys/taskq.h> 81 #include <sys/devpolicy.h> 82 #include <sys/ctype.h> 83 #include <net/if.h> 84 #include <sys/rctl.h> 85 86 extern pri_t minclsyspri; 87 88 extern rctl_hndl_t rc_project_locked_mem; 89 extern rctl_hndl_t rc_zone_locked_mem; 90 91 #ifdef DEBUG 92 static int sunddi_debug = 0; 93 #endif /* DEBUG */ 94 95 /* ddi_umem_unlock miscellaneous */ 96 97 static void i_ddi_umem_unlock_thread_start(void); 98 99 static kmutex_t ddi_umem_unlock_mutex; /* unlock list mutex */ 100 static kcondvar_t ddi_umem_unlock_cv; /* unlock list block/unblock */ 101 static kthread_t *ddi_umem_unlock_thread; 102 /* 103 * The ddi_umem_unlock FIFO list. NULL head pointer indicates empty list. 104 */ 105 static struct ddi_umem_cookie *ddi_umem_unlock_head = NULL; 106 static struct ddi_umem_cookie *ddi_umem_unlock_tail = NULL; 107 108 109 /* 110 * DDI(Sun) Function and flag definitions: 111 */ 112 113 #if defined(__x86) 114 /* 115 * Used to indicate which entries were chosen from a range. 116 */ 117 char *chosen_reg = "chosen-reg"; 118 #endif 119 120 /* 121 * Function used to ring system console bell 122 */ 123 void (*ddi_console_bell_func)(clock_t duration); 124 125 /* 126 * Creating register mappings and handling interrupts: 127 */ 128 129 /* 130 * Generic ddi_map: Call parent to fulfill request... 131 */ 132 133 int 134 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset, 135 off_t len, caddr_t *addrp) 136 { 137 dev_info_t *pdip; 138 139 ASSERT(dp); 140 pdip = (dev_info_t *)DEVI(dp)->devi_parent; 141 return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)(pdip, 142 dp, mp, offset, len, addrp)); 143 } 144 145 /* 146 * ddi_apply_range: (Called by nexi only.) 147 * Apply ranges in parent node dp, to child regspec rp... 148 */ 149 150 int 151 ddi_apply_range(dev_info_t *dp, dev_info_t *rdip, struct regspec *rp) 152 { 153 return (i_ddi_apply_range(dp, rdip, rp)); 154 } 155 156 int 157 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset, 158 off_t len) 159 { 160 ddi_map_req_t mr; 161 #if defined(__x86) 162 struct { 163 int bus; 164 int addr; 165 int size; 166 } reg, *reglist; 167 uint_t length; 168 int rc; 169 170 /* 171 * get the 'registers' or the 'reg' property. 172 * We look up the reg property as an array of 173 * int's. 174 */ 175 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 176 DDI_PROP_DONTPASS, "registers", (int **)®list, &length); 177 if (rc != DDI_PROP_SUCCESS) 178 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 179 DDI_PROP_DONTPASS, "reg", (int **)®list, &length); 180 if (rc == DDI_PROP_SUCCESS) { 181 /* 182 * point to the required entry. 183 */ 184 reg = reglist[rnumber]; 185 reg.addr += offset; 186 if (len != 0) 187 reg.size = len; 188 /* 189 * make a new property containing ONLY the required tuple. 190 */ 191 if (ddi_prop_update_int_array(DDI_DEV_T_NONE, dip, 192 chosen_reg, (int *)®, (sizeof (reg)/sizeof (int))) 193 != DDI_PROP_SUCCESS) { 194 cmn_err(CE_WARN, "%s%d: cannot create '%s' " 195 "property", DEVI(dip)->devi_name, 196 DEVI(dip)->devi_instance, chosen_reg); 197 } 198 /* 199 * free the memory allocated by 200 * ddi_prop_lookup_int_array (). 201 */ 202 ddi_prop_free((void *)reglist); 203 } 204 #endif 205 mr.map_op = DDI_MO_MAP_LOCKED; 206 mr.map_type = DDI_MT_RNUMBER; 207 mr.map_obj.rnumber = rnumber; 208 mr.map_prot = PROT_READ | PROT_WRITE; 209 mr.map_flags = DDI_MF_KERNEL_MAPPING; 210 mr.map_handlep = NULL; 211 mr.map_vers = DDI_MAP_VERSION; 212 213 /* 214 * Call my parent to map in my regs. 215 */ 216 217 return (ddi_map(dip, &mr, offset, len, kaddrp)); 218 } 219 220 void 221 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset, 222 off_t len) 223 { 224 ddi_map_req_t mr; 225 226 mr.map_op = DDI_MO_UNMAP; 227 mr.map_type = DDI_MT_RNUMBER; 228 mr.map_flags = DDI_MF_KERNEL_MAPPING; 229 mr.map_prot = PROT_READ | PROT_WRITE; /* who cares? */ 230 mr.map_obj.rnumber = rnumber; 231 mr.map_handlep = NULL; 232 mr.map_vers = DDI_MAP_VERSION; 233 234 /* 235 * Call my parent to unmap my regs. 236 */ 237 238 (void) ddi_map(dip, &mr, offset, len, kaddrp); 239 *kaddrp = (caddr_t)0; 240 #if defined(__x86) 241 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, chosen_reg); 242 #endif 243 } 244 245 int 246 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 247 off_t offset, off_t len, caddr_t *vaddrp) 248 { 249 return (i_ddi_bus_map(dip, rdip, mp, offset, len, vaddrp)); 250 } 251 252 /* 253 * nullbusmap: The/DDI default bus_map entry point for nexi 254 * not conforming to the reg/range paradigm (i.e. scsi, etc.) 255 * with no HAT/MMU layer to be programmed at this level. 256 * 257 * If the call is to map by rnumber, return an error, 258 * otherwise pass anything else up the tree to my parent. 259 */ 260 int 261 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 262 off_t offset, off_t len, caddr_t *vaddrp) 263 { 264 _NOTE(ARGUNUSED(rdip)) 265 if (mp->map_type == DDI_MT_RNUMBER) 266 return (DDI_ME_UNSUPPORTED); 267 268 return (ddi_map(dip, mp, offset, len, vaddrp)); 269 } 270 271 /* 272 * ddi_rnumber_to_regspec: Not for use by leaf drivers. 273 * Only for use by nexi using the reg/range paradigm. 274 */ 275 struct regspec * 276 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber) 277 { 278 return (i_ddi_rnumber_to_regspec(dip, rnumber)); 279 } 280 281 282 /* 283 * Note that we allow the dip to be nil because we may be called 284 * prior even to the instantiation of the devinfo tree itself - all 285 * regular leaf and nexus drivers should always use a non-nil dip! 286 * 287 * We treat peek in a somewhat cavalier fashion .. assuming that we'll 288 * simply get a synchronous fault as soon as we touch a missing address. 289 * 290 * Poke is rather more carefully handled because we might poke to a write 291 * buffer, "succeed", then only find some time later that we got an 292 * asynchronous fault that indicated that the address we were writing to 293 * was not really backed by hardware. 294 */ 295 296 static int 297 i_ddi_peekpoke(dev_info_t *devi, ddi_ctl_enum_t cmd, size_t size, 298 void *addr, void *value_p) 299 { 300 union { 301 uint64_t u64; 302 uint32_t u32; 303 uint16_t u16; 304 uint8_t u8; 305 } peekpoke_value; 306 307 peekpoke_ctlops_t peekpoke_args; 308 uint64_t dummy_result; 309 int rval; 310 311 /* Note: size is assumed to be correct; it is not checked. */ 312 peekpoke_args.size = size; 313 peekpoke_args.dev_addr = (uintptr_t)addr; 314 peekpoke_args.handle = NULL; 315 peekpoke_args.repcount = 1; 316 peekpoke_args.flags = 0; 317 318 if (cmd == DDI_CTLOPS_POKE) { 319 switch (size) { 320 case sizeof (uint8_t): 321 peekpoke_value.u8 = *(uint8_t *)value_p; 322 break; 323 case sizeof (uint16_t): 324 peekpoke_value.u16 = *(uint16_t *)value_p; 325 break; 326 case sizeof (uint32_t): 327 peekpoke_value.u32 = *(uint32_t *)value_p; 328 break; 329 case sizeof (uint64_t): 330 peekpoke_value.u64 = *(uint64_t *)value_p; 331 break; 332 } 333 } 334 335 peekpoke_args.host_addr = (uintptr_t)&peekpoke_value.u64; 336 337 if (devi != NULL) 338 rval = ddi_ctlops(devi, devi, cmd, &peekpoke_args, 339 &dummy_result); 340 else 341 rval = peekpoke_mem(cmd, &peekpoke_args); 342 343 /* 344 * A NULL value_p is permitted by ddi_peek(9F); discard the result. 345 */ 346 if ((cmd == DDI_CTLOPS_PEEK) & (value_p != NULL)) { 347 switch (size) { 348 case sizeof (uint8_t): 349 *(uint8_t *)value_p = peekpoke_value.u8; 350 break; 351 case sizeof (uint16_t): 352 *(uint16_t *)value_p = peekpoke_value.u16; 353 break; 354 case sizeof (uint32_t): 355 *(uint32_t *)value_p = peekpoke_value.u32; 356 break; 357 case sizeof (uint64_t): 358 *(uint64_t *)value_p = peekpoke_value.u64; 359 break; 360 } 361 } 362 363 return (rval); 364 } 365 366 /* 367 * Keep ddi_peek() and ddi_poke() in case 3rd parties are calling this. 368 * they shouldn't be, but the 9f manpage kind of pseudo exposes it. 369 */ 370 int 371 ddi_peek(dev_info_t *devi, size_t size, void *addr, void *value_p) 372 { 373 switch (size) { 374 case sizeof (uint8_t): 375 case sizeof (uint16_t): 376 case sizeof (uint32_t): 377 case sizeof (uint64_t): 378 break; 379 default: 380 return (DDI_FAILURE); 381 } 382 383 return (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, size, addr, value_p)); 384 } 385 386 int 387 ddi_poke(dev_info_t *devi, size_t size, void *addr, void *value_p) 388 { 389 switch (size) { 390 case sizeof (uint8_t): 391 case sizeof (uint16_t): 392 case sizeof (uint32_t): 393 case sizeof (uint64_t): 394 break; 395 default: 396 return (DDI_FAILURE); 397 } 398 399 return (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, size, addr, value_p)); 400 } 401 402 int 403 ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p) 404 { 405 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 406 val_p)); 407 } 408 409 int 410 ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p) 411 { 412 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 413 val_p)); 414 } 415 416 int 417 ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p) 418 { 419 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 420 val_p)); 421 } 422 423 int 424 ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p) 425 { 426 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 427 val_p)); 428 } 429 430 431 /* 432 * We need to separate the old interfaces from the new ones and leave them 433 * in here for a while. Previous versions of the OS defined the new interfaces 434 * to the old interfaces. This way we can fix things up so that we can 435 * eventually remove these interfaces. 436 * e.g. A 3rd party module/driver using ddi_peek8 and built against S10 437 * or earlier will actually have a reference to ddi_peekc in the binary. 438 */ 439 #ifdef _ILP32 440 int 441 ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p) 442 { 443 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 444 val_p)); 445 } 446 447 int 448 ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p) 449 { 450 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 451 val_p)); 452 } 453 454 int 455 ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p) 456 { 457 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 458 val_p)); 459 } 460 461 int 462 ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p) 463 { 464 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 465 val_p)); 466 } 467 #endif /* _ILP32 */ 468 469 int 470 ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val) 471 { 472 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 473 } 474 475 int 476 ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val) 477 { 478 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 479 } 480 481 int 482 ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val) 483 { 484 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 485 } 486 487 int 488 ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val) 489 { 490 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 491 } 492 493 /* 494 * We need to separate the old interfaces from the new ones and leave them 495 * in here for a while. Previous versions of the OS defined the new interfaces 496 * to the old interfaces. This way we can fix things up so that we can 497 * eventually remove these interfaces. 498 * e.g. A 3rd party module/driver using ddi_poke8 and built against S10 499 * or earlier will actually have a reference to ddi_pokec in the binary. 500 */ 501 #ifdef _ILP32 502 int 503 ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val) 504 { 505 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 506 } 507 508 int 509 ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val) 510 { 511 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 512 } 513 514 int 515 ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val) 516 { 517 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 518 } 519 520 int 521 ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val) 522 { 523 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 524 } 525 #endif /* _ILP32 */ 526 527 /* 528 * ddi_peekpokeio() is used primarily by the mem drivers for moving 529 * data to and from uio structures via peek and poke. Note that we 530 * use "internal" routines ddi_peek and ddi_poke to make this go 531 * slightly faster, avoiding the call overhead .. 532 */ 533 int 534 ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw, 535 caddr_t addr, size_t len, uint_t xfersize) 536 { 537 int64_t ibuffer; 538 int8_t w8; 539 size_t sz; 540 int o; 541 542 if (xfersize > sizeof (long)) 543 xfersize = sizeof (long); 544 545 while (len != 0) { 546 if ((len | (uintptr_t)addr) & 1) { 547 sz = sizeof (int8_t); 548 if (rw == UIO_WRITE) { 549 if ((o = uwritec(uio)) == -1) 550 return (DDI_FAILURE); 551 if (ddi_poke8(devi, (int8_t *)addr, 552 (int8_t)o) != DDI_SUCCESS) 553 return (DDI_FAILURE); 554 } else { 555 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz, 556 (int8_t *)addr, &w8) != DDI_SUCCESS) 557 return (DDI_FAILURE); 558 if (ureadc(w8, uio)) 559 return (DDI_FAILURE); 560 } 561 } else { 562 switch (xfersize) { 563 case sizeof (int64_t): 564 if (((len | (uintptr_t)addr) & 565 (sizeof (int64_t) - 1)) == 0) { 566 sz = xfersize; 567 break; 568 } 569 /*FALLTHROUGH*/ 570 case sizeof (int32_t): 571 if (((len | (uintptr_t)addr) & 572 (sizeof (int32_t) - 1)) == 0) { 573 sz = xfersize; 574 break; 575 } 576 /*FALLTHROUGH*/ 577 default: 578 /* 579 * This still assumes that we might have an 580 * I/O bus out there that permits 16-bit 581 * transfers (and that it would be upset by 582 * 32-bit transfers from such locations). 583 */ 584 sz = sizeof (int16_t); 585 break; 586 } 587 588 if (rw == UIO_READ) { 589 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz, 590 addr, &ibuffer) != DDI_SUCCESS) 591 return (DDI_FAILURE); 592 } 593 594 if (uiomove(&ibuffer, sz, rw, uio)) 595 return (DDI_FAILURE); 596 597 if (rw == UIO_WRITE) { 598 if (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, sz, 599 addr, &ibuffer) != DDI_SUCCESS) 600 return (DDI_FAILURE); 601 } 602 } 603 addr += sz; 604 len -= sz; 605 } 606 return (DDI_SUCCESS); 607 } 608 609 /* 610 * These routines are used by drivers that do layered ioctls 611 * On sparc, they're implemented in assembler to avoid spilling 612 * register windows in the common (copyin) case .. 613 */ 614 #if !defined(__sparc) 615 int 616 ddi_copyin(const void *buf, void *kernbuf, size_t size, int flags) 617 { 618 if (flags & FKIOCTL) 619 return (kcopy(buf, kernbuf, size) ? -1 : 0); 620 return (copyin(buf, kernbuf, size)); 621 } 622 623 int 624 ddi_copyout(const void *buf, void *kernbuf, size_t size, int flags) 625 { 626 if (flags & FKIOCTL) 627 return (kcopy(buf, kernbuf, size) ? -1 : 0); 628 return (copyout(buf, kernbuf, size)); 629 } 630 #endif /* !__sparc */ 631 632 /* 633 * Conversions in nexus pagesize units. We don't duplicate the 634 * 'nil dip' semantics of peek/poke because btopr/btop/ptob are DDI/DKI 635 * routines anyway. 636 */ 637 unsigned long 638 ddi_btop(dev_info_t *dip, unsigned long bytes) 639 { 640 unsigned long pages; 641 642 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOP, &bytes, &pages); 643 return (pages); 644 } 645 646 unsigned long 647 ddi_btopr(dev_info_t *dip, unsigned long bytes) 648 { 649 unsigned long pages; 650 651 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOPR, &bytes, &pages); 652 return (pages); 653 } 654 655 unsigned long 656 ddi_ptob(dev_info_t *dip, unsigned long pages) 657 { 658 unsigned long bytes; 659 660 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_PTOB, &pages, &bytes); 661 return (bytes); 662 } 663 664 unsigned int 665 ddi_enter_critical(void) 666 { 667 return ((uint_t)spl7()); 668 } 669 670 void 671 ddi_exit_critical(unsigned int spl) 672 { 673 splx((int)spl); 674 } 675 676 /* 677 * Nexus ctlops punter 678 */ 679 680 #if !defined(__sparc) 681 /* 682 * Request bus_ctl parent to handle a bus_ctl request 683 * 684 * (The sparc version is in sparc_ddi.s) 685 */ 686 int 687 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v) 688 { 689 int (*fp)(); 690 691 if (!d || !r) 692 return (DDI_FAILURE); 693 694 if ((d = (dev_info_t *)DEVI(d)->devi_bus_ctl) == NULL) 695 return (DDI_FAILURE); 696 697 fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl; 698 return ((*fp)(d, r, op, a, v)); 699 } 700 701 #endif 702 703 /* 704 * DMA/DVMA setup 705 */ 706 707 #if defined(__sparc) 708 static ddi_dma_lim_t standard_limits = { 709 (uint_t)0, /* addr_t dlim_addr_lo */ 710 (uint_t)-1, /* addr_t dlim_addr_hi */ 711 (uint_t)-1, /* uint_t dlim_cntr_max */ 712 (uint_t)1, /* uint_t dlim_burstsizes */ 713 (uint_t)1, /* uint_t dlim_minxfer */ 714 0 /* uint_t dlim_dmaspeed */ 715 }; 716 #elif defined(__x86) 717 static ddi_dma_lim_t standard_limits = { 718 (uint_t)0, /* addr_t dlim_addr_lo */ 719 (uint_t)0xffffff, /* addr_t dlim_addr_hi */ 720 (uint_t)0, /* uint_t dlim_cntr_max */ 721 (uint_t)0x00000001, /* uint_t dlim_burstsizes */ 722 (uint_t)DMA_UNIT_8, /* uint_t dlim_minxfer */ 723 (uint_t)0, /* uint_t dlim_dmaspeed */ 724 (uint_t)0x86<<24+0, /* uint_t dlim_version */ 725 (uint_t)0xffff, /* uint_t dlim_adreg_max */ 726 (uint_t)0xffff, /* uint_t dlim_ctreg_max */ 727 (uint_t)512, /* uint_t dlim_granular */ 728 (int)1, /* int dlim_sgllen */ 729 (uint_t)0xffffffff /* uint_t dlim_reqsizes */ 730 }; 731 732 #endif 733 734 int 735 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp, 736 ddi_dma_handle_t *handlep) 737 { 738 int (*funcp)() = ddi_dma_map; 739 struct bus_ops *bop; 740 #if defined(__sparc) 741 auto ddi_dma_lim_t dma_lim; 742 743 if (dmareqp->dmar_limits == (ddi_dma_lim_t *)0) { 744 dma_lim = standard_limits; 745 } else { 746 dma_lim = *dmareqp->dmar_limits; 747 } 748 dmareqp->dmar_limits = &dma_lim; 749 #endif 750 #if defined(__x86) 751 if (dmareqp->dmar_limits == (ddi_dma_lim_t *)0) 752 return (DDI_FAILURE); 753 #endif 754 755 /* 756 * Handle the case that the requester is both a leaf 757 * and a nexus driver simultaneously by calling the 758 * requester's bus_dma_map function directly instead 759 * of ddi_dma_map. 760 */ 761 bop = DEVI(dip)->devi_ops->devo_bus_ops; 762 if (bop && bop->bus_dma_map) 763 funcp = bop->bus_dma_map; 764 return ((*funcp)(dip, dip, dmareqp, handlep)); 765 } 766 767 int 768 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len, 769 uint_t flags, int (*waitfp)(), caddr_t arg, 770 ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep) 771 { 772 int (*funcp)() = ddi_dma_map; 773 ddi_dma_lim_t dma_lim; 774 struct ddi_dma_req dmareq; 775 struct bus_ops *bop; 776 777 if (len == 0) { 778 return (DDI_DMA_NOMAPPING); 779 } 780 if (limits == (ddi_dma_lim_t *)0) { 781 dma_lim = standard_limits; 782 } else { 783 dma_lim = *limits; 784 } 785 dmareq.dmar_limits = &dma_lim; 786 dmareq.dmar_flags = flags; 787 dmareq.dmar_fp = waitfp; 788 dmareq.dmar_arg = arg; 789 dmareq.dmar_object.dmao_size = len; 790 dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR; 791 dmareq.dmar_object.dmao_obj.virt_obj.v_as = as; 792 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr; 793 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL; 794 795 /* 796 * Handle the case that the requester is both a leaf 797 * and a nexus driver simultaneously by calling the 798 * requester's bus_dma_map function directly instead 799 * of ddi_dma_map. 800 */ 801 bop = DEVI(dip)->devi_ops->devo_bus_ops; 802 if (bop && bop->bus_dma_map) 803 funcp = bop->bus_dma_map; 804 805 return ((*funcp)(dip, dip, &dmareq, handlep)); 806 } 807 808 int 809 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags, 810 int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits, 811 ddi_dma_handle_t *handlep) 812 { 813 int (*funcp)() = ddi_dma_map; 814 ddi_dma_lim_t dma_lim; 815 struct ddi_dma_req dmareq; 816 struct bus_ops *bop; 817 818 if (limits == (ddi_dma_lim_t *)0) { 819 dma_lim = standard_limits; 820 } else { 821 dma_lim = *limits; 822 } 823 dmareq.dmar_limits = &dma_lim; 824 dmareq.dmar_flags = flags; 825 dmareq.dmar_fp = waitfp; 826 dmareq.dmar_arg = arg; 827 dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount; 828 829 if (bp->b_flags & B_PAGEIO) { 830 dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES; 831 dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages; 832 dmareq.dmar_object.dmao_obj.pp_obj.pp_offset = 833 (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET); 834 } else { 835 dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR; 836 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr; 837 if (bp->b_flags & B_SHADOW) { 838 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = 839 bp->b_shadow; 840 } else { 841 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL; 842 } 843 844 /* 845 * If the buffer has no proc pointer, or the proc 846 * struct has the kernel address space, or the buffer has 847 * been marked B_REMAPPED (meaning that it is now 848 * mapped into the kernel's address space), then 849 * the address space is kas (kernel address space). 850 */ 851 if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) || 852 (bp->b_flags & B_REMAPPED)) { 853 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0; 854 } else { 855 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 856 bp->b_proc->p_as; 857 } 858 } 859 860 /* 861 * Handle the case that the requester is both a leaf 862 * and a nexus driver simultaneously by calling the 863 * requester's bus_dma_map function directly instead 864 * of ddi_dma_map. 865 */ 866 bop = DEVI(dip)->devi_ops->devo_bus_ops; 867 if (bop && bop->bus_dma_map) 868 funcp = bop->bus_dma_map; 869 870 return ((*funcp)(dip, dip, &dmareq, handlep)); 871 } 872 873 #if !defined(__sparc) 874 /* 875 * Request bus_dma_ctl parent to fiddle with a dma request. 876 * 877 * (The sparc version is in sparc_subr.s) 878 */ 879 int 880 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip, 881 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 882 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags) 883 { 884 int (*fp)(); 885 886 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_ctl; 887 fp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_ctl; 888 return ((*fp) (dip, rdip, handle, request, offp, lenp, objp, flags)); 889 } 890 #endif 891 892 /* 893 * For all DMA control functions, call the DMA control 894 * routine and return status. 895 * 896 * Just plain assume that the parent is to be called. 897 * If a nexus driver or a thread outside the framework 898 * of a nexus driver or a leaf driver calls these functions, 899 * it is up to them to deal with the fact that the parent's 900 * bus_dma_ctl function will be the first one called. 901 */ 902 903 #define HD ((ddi_dma_impl_t *)h)->dmai_rdip 904 905 int 906 ddi_dma_kvaddrp(ddi_dma_handle_t h, off_t off, size_t len, caddr_t *kp) 907 { 908 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_KVADDR, &off, &len, kp, 0)); 909 } 910 911 int 912 ddi_dma_htoc(ddi_dma_handle_t h, off_t o, ddi_dma_cookie_t *c) 913 { 914 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_HTOC, &o, 0, (caddr_t *)c, 0)); 915 } 916 917 int 918 ddi_dma_coff(ddi_dma_handle_t h, ddi_dma_cookie_t *c, off_t *o) 919 { 920 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_COFF, 921 (off_t *)c, 0, (caddr_t *)o, 0)); 922 } 923 924 int 925 ddi_dma_movwin(ddi_dma_handle_t h, off_t *o, size_t *l, ddi_dma_cookie_t *c) 926 { 927 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_MOVWIN, o, 928 l, (caddr_t *)c, 0)); 929 } 930 931 int 932 ddi_dma_curwin(ddi_dma_handle_t h, off_t *o, size_t *l) 933 { 934 if ((((ddi_dma_impl_t *)h)->dmai_rflags & DDI_DMA_PARTIAL) == 0) 935 return (DDI_FAILURE); 936 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_REPWIN, o, l, 0, 0)); 937 } 938 939 int 940 ddi_dma_nextwin(ddi_dma_handle_t h, ddi_dma_win_t win, 941 ddi_dma_win_t *nwin) 942 { 943 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTWIN, (off_t *)&win, 0, 944 (caddr_t *)nwin, 0)); 945 } 946 947 int 948 ddi_dma_nextseg(ddi_dma_win_t win, ddi_dma_seg_t seg, ddi_dma_seg_t *nseg) 949 { 950 ddi_dma_handle_t h = (ddi_dma_handle_t)win; 951 952 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTSEG, (off_t *)&win, 953 (size_t *)&seg, (caddr_t *)nseg, 0)); 954 } 955 956 #if (defined(__i386) && !defined(__amd64)) || defined(__sparc) 957 /* 958 * This routine is Obsolete and should be removed from ALL architectures 959 * in a future release of Solaris. 960 * 961 * It is deliberately NOT ported to amd64; please fix the code that 962 * depends on this routine to use ddi_dma_nextcookie(9F). 963 * 964 * NOTE: even though we fixed the pointer through a 32-bit param issue (the fix 965 * is a side effect to some other cleanup), we're still not going to support 966 * this interface on x64. 967 */ 968 int 969 ddi_dma_segtocookie(ddi_dma_seg_t seg, off_t *o, off_t *l, 970 ddi_dma_cookie_t *cookiep) 971 { 972 ddi_dma_handle_t h = (ddi_dma_handle_t)seg; 973 974 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SEGTOC, o, (size_t *)l, 975 (caddr_t *)cookiep, 0)); 976 } 977 #endif /* (__i386 && !__amd64) || __sparc */ 978 979 #if !defined(__sparc) 980 981 /* 982 * The SPARC versions of these routines are done in assembler to 983 * save register windows, so they're in sparc_subr.s. 984 */ 985 986 int 987 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip, 988 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep) 989 { 990 dev_info_t *hdip; 991 int (*funcp)(dev_info_t *, dev_info_t *, struct ddi_dma_req *, 992 ddi_dma_handle_t *); 993 994 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_map; 995 996 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_map; 997 return ((*funcp)(hdip, rdip, dmareqp, handlep)); 998 } 999 1000 int 1001 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1002 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 1003 { 1004 dev_info_t *hdip; 1005 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_attr_t *, 1006 int (*)(caddr_t), caddr_t, ddi_dma_handle_t *); 1007 1008 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl; 1009 1010 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_allochdl; 1011 return ((*funcp)(hdip, rdip, attr, waitfp, arg, handlep)); 1012 } 1013 1014 int 1015 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handlep) 1016 { 1017 dev_info_t *hdip; 1018 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t); 1019 1020 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl; 1021 1022 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_freehdl; 1023 return ((*funcp)(hdip, rdip, handlep)); 1024 } 1025 1026 int 1027 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 1028 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 1029 ddi_dma_cookie_t *cp, uint_t *ccountp) 1030 { 1031 dev_info_t *hdip; 1032 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, 1033 struct ddi_dma_req *, ddi_dma_cookie_t *, uint_t *); 1034 1035 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl; 1036 1037 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_bindhdl; 1038 return ((*funcp)(hdip, rdip, handle, dmareq, cp, ccountp)); 1039 } 1040 1041 int 1042 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 1043 ddi_dma_handle_t handle) 1044 { 1045 dev_info_t *hdip; 1046 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t); 1047 1048 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl; 1049 1050 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_unbindhdl; 1051 return ((*funcp)(hdip, rdip, handle)); 1052 } 1053 1054 1055 int 1056 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip, 1057 ddi_dma_handle_t handle, off_t off, size_t len, 1058 uint_t cache_flags) 1059 { 1060 dev_info_t *hdip; 1061 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, 1062 off_t, size_t, uint_t); 1063 1064 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush; 1065 1066 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_flush; 1067 return ((*funcp)(hdip, rdip, handle, off, len, cache_flags)); 1068 } 1069 1070 int 1071 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip, 1072 ddi_dma_handle_t handle, uint_t win, off_t *offp, 1073 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 1074 { 1075 dev_info_t *hdip; 1076 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, 1077 uint_t, off_t *, size_t *, ddi_dma_cookie_t *, uint_t *); 1078 1079 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_win; 1080 1081 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_win; 1082 return ((*funcp)(hdip, rdip, handle, win, offp, lenp, 1083 cookiep, ccountp)); 1084 } 1085 1086 int 1087 ddi_dma_sync(ddi_dma_handle_t h, off_t o, size_t l, uint_t whom) 1088 { 1089 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h; 1090 dev_info_t *hdip, *dip; 1091 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, off_t, 1092 size_t, uint_t); 1093 1094 /* 1095 * the DMA nexus driver will set DMP_NOSYNC if the 1096 * platform does not require any sync operation. For 1097 * example if the memory is uncached or consistent 1098 * and without any I/O write buffers involved. 1099 */ 1100 if ((hp->dmai_rflags & DMP_NOSYNC) == DMP_NOSYNC) 1101 return (DDI_SUCCESS); 1102 1103 dip = hp->dmai_rdip; 1104 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush; 1105 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_flush; 1106 return ((*funcp)(hdip, dip, h, o, l, whom)); 1107 } 1108 1109 int 1110 ddi_dma_unbind_handle(ddi_dma_handle_t h) 1111 { 1112 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h; 1113 dev_info_t *hdip, *dip; 1114 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t); 1115 1116 dip = hp->dmai_rdip; 1117 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl; 1118 funcp = DEVI(dip)->devi_bus_dma_unbindfunc; 1119 return ((*funcp)(hdip, dip, h)); 1120 } 1121 1122 #endif /* !__sparc */ 1123 1124 int 1125 ddi_dma_free(ddi_dma_handle_t h) 1126 { 1127 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_FREE, 0, 0, 0, 0)); 1128 } 1129 1130 int 1131 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t len, caddr_t *iopbp) 1132 { 1133 ddi_dma_lim_t defalt; 1134 size_t size = len; 1135 1136 if (!limp) { 1137 defalt = standard_limits; 1138 limp = &defalt; 1139 } 1140 return (i_ddi_mem_alloc_lim(dip, limp, size, 0, 0, 0, 1141 iopbp, NULL, NULL)); 1142 } 1143 1144 void 1145 ddi_iopb_free(caddr_t iopb) 1146 { 1147 i_ddi_mem_free(iopb, NULL); 1148 } 1149 1150 int 1151 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1152 uint_t flags, caddr_t *kaddrp, uint_t *real_length) 1153 { 1154 ddi_dma_lim_t defalt; 1155 size_t size = length; 1156 1157 if (!limits) { 1158 defalt = standard_limits; 1159 limits = &defalt; 1160 } 1161 return (i_ddi_mem_alloc_lim(dip, limits, size, flags & 0x1, 1162 1, 0, kaddrp, real_length, NULL)); 1163 } 1164 1165 void 1166 ddi_mem_free(caddr_t kaddr) 1167 { 1168 i_ddi_mem_free(kaddr, NULL); 1169 } 1170 1171 /* 1172 * DMA attributes, alignment, burst sizes, and transfer minimums 1173 */ 1174 int 1175 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp) 1176 { 1177 ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle; 1178 1179 if (attrp == NULL) 1180 return (DDI_FAILURE); 1181 *attrp = dimp->dmai_attr; 1182 return (DDI_SUCCESS); 1183 } 1184 1185 int 1186 ddi_dma_burstsizes(ddi_dma_handle_t handle) 1187 { 1188 ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle; 1189 1190 if (!dimp) 1191 return (0); 1192 else 1193 return (dimp->dmai_burstsizes); 1194 } 1195 1196 int 1197 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect) 1198 { 1199 ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle; 1200 1201 if (!dimp || !alignment || !mineffect) 1202 return (DDI_FAILURE); 1203 if (!(dimp->dmai_rflags & DDI_DMA_SBUS_64BIT)) { 1204 *alignment = 1 << ddi_ffs(dimp->dmai_burstsizes); 1205 } else { 1206 if (dimp->dmai_burstsizes & 0xff0000) { 1207 *alignment = 1 << ddi_ffs(dimp->dmai_burstsizes >> 16); 1208 } else { 1209 *alignment = 1 << ddi_ffs(dimp->dmai_burstsizes); 1210 } 1211 } 1212 *mineffect = dimp->dmai_minxfer; 1213 return (DDI_SUCCESS); 1214 } 1215 1216 int 1217 ddi_iomin(dev_info_t *a, int i, int stream) 1218 { 1219 int r; 1220 1221 /* 1222 * Make sure that the initial value is sane 1223 */ 1224 if (i & (i - 1)) 1225 return (0); 1226 if (i == 0) 1227 i = (stream) ? 4 : 1; 1228 1229 r = ddi_ctlops(a, a, 1230 DDI_CTLOPS_IOMIN, (void *)(uintptr_t)stream, (void *)&i); 1231 if (r != DDI_SUCCESS || (i & (i - 1))) 1232 return (0); 1233 return (i); 1234 } 1235 1236 /* 1237 * Given two DMA attribute structures, apply the attributes 1238 * of one to the other, following the rules of attributes 1239 * and the wishes of the caller. 1240 * 1241 * The rules of DMA attribute structures are that you cannot 1242 * make things *less* restrictive as you apply one set 1243 * of attributes to another. 1244 * 1245 */ 1246 void 1247 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod) 1248 { 1249 attr->dma_attr_addr_lo = 1250 MAX(attr->dma_attr_addr_lo, mod->dma_attr_addr_lo); 1251 attr->dma_attr_addr_hi = 1252 MIN(attr->dma_attr_addr_hi, mod->dma_attr_addr_hi); 1253 attr->dma_attr_count_max = 1254 MIN(attr->dma_attr_count_max, mod->dma_attr_count_max); 1255 attr->dma_attr_align = 1256 MAX(attr->dma_attr_align, mod->dma_attr_align); 1257 attr->dma_attr_burstsizes = 1258 (uint_t)(attr->dma_attr_burstsizes & mod->dma_attr_burstsizes); 1259 attr->dma_attr_minxfer = 1260 maxbit(attr->dma_attr_minxfer, mod->dma_attr_minxfer); 1261 attr->dma_attr_maxxfer = 1262 MIN(attr->dma_attr_maxxfer, mod->dma_attr_maxxfer); 1263 attr->dma_attr_seg = MIN(attr->dma_attr_seg, mod->dma_attr_seg); 1264 attr->dma_attr_sgllen = MIN((uint_t)attr->dma_attr_sgllen, 1265 (uint_t)mod->dma_attr_sgllen); 1266 attr->dma_attr_granular = 1267 MAX(attr->dma_attr_granular, mod->dma_attr_granular); 1268 } 1269 1270 /* 1271 * mmap/segmap interface: 1272 */ 1273 1274 /* 1275 * ddi_segmap: setup the default segment driver. Calls the drivers 1276 * XXmmap routine to validate the range to be mapped. 1277 * Return ENXIO of the range is not valid. Create 1278 * a seg_dev segment that contains all of the 1279 * necessary information and will reference the 1280 * default segment driver routines. It returns zero 1281 * on success or non-zero on failure. 1282 */ 1283 int 1284 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, 1285 uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp) 1286 { 1287 extern int spec_segmap(dev_t, off_t, struct as *, caddr_t *, 1288 off_t, uint_t, uint_t, uint_t, struct cred *); 1289 1290 return (spec_segmap(dev, offset, asp, addrp, len, 1291 prot, maxprot, flags, credp)); 1292 } 1293 1294 /* 1295 * ddi_map_fault: Resolve mappings at fault time. Used by segment 1296 * drivers. Allows each successive parent to resolve 1297 * address translations and add its mappings to the 1298 * mapping list supplied in the page structure. It 1299 * returns zero on success or non-zero on failure. 1300 */ 1301 1302 int 1303 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg, 1304 caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock) 1305 { 1306 return (i_ddi_map_fault(dip, dip, hat, seg, addr, dp, pfn, prot, lock)); 1307 } 1308 1309 /* 1310 * ddi_device_mapping_check: Called from ddi_segmap_setup. 1311 * Invokes platform specific DDI to determine whether attributes specified 1312 * in attr(9s) are valid for the region of memory that will be made 1313 * available for direct access to user process via the mmap(2) system call. 1314 */ 1315 int 1316 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp, 1317 uint_t rnumber, uint_t *hat_flags) 1318 { 1319 ddi_acc_handle_t handle; 1320 ddi_map_req_t mr; 1321 ddi_acc_hdl_t *hp; 1322 int result; 1323 dev_info_t *dip; 1324 1325 /* 1326 * we use e_ddi_hold_devi_by_dev to search for the devi. We 1327 * release it immediately since it should already be held by 1328 * a devfs vnode. 1329 */ 1330 if ((dip = 1331 e_ddi_hold_devi_by_dev(dev, E_DDI_HOLD_DEVI_NOATTACH)) == NULL) 1332 return (-1); 1333 ddi_release_devi(dip); /* for e_ddi_hold_devi_by_dev() */ 1334 1335 /* 1336 * Allocate and initialize the common elements of data 1337 * access handle. 1338 */ 1339 handle = impl_acc_hdl_alloc(KM_SLEEP, NULL); 1340 if (handle == NULL) 1341 return (-1); 1342 1343 hp = impl_acc_hdl_get(handle); 1344 hp->ah_vers = VERS_ACCHDL; 1345 hp->ah_dip = dip; 1346 hp->ah_rnumber = rnumber; 1347 hp->ah_offset = 0; 1348 hp->ah_len = 0; 1349 hp->ah_acc = *accattrp; 1350 1351 /* 1352 * Set up the mapping request and call to parent. 1353 */ 1354 mr.map_op = DDI_MO_MAP_HANDLE; 1355 mr.map_type = DDI_MT_RNUMBER; 1356 mr.map_obj.rnumber = rnumber; 1357 mr.map_prot = PROT_READ | PROT_WRITE; 1358 mr.map_flags = DDI_MF_KERNEL_MAPPING; 1359 mr.map_handlep = hp; 1360 mr.map_vers = DDI_MAP_VERSION; 1361 result = ddi_map(dip, &mr, 0, 0, NULL); 1362 1363 /* 1364 * Region must be mappable, pick up flags from the framework. 1365 */ 1366 *hat_flags = hp->ah_hat_flags; 1367 1368 impl_acc_hdl_free(handle); 1369 1370 /* 1371 * check for end result. 1372 */ 1373 if (result != DDI_SUCCESS) 1374 return (-1); 1375 return (0); 1376 } 1377 1378 1379 /* 1380 * Property functions: See also, ddipropdefs.h. 1381 * 1382 * These functions are the framework for the property functions, 1383 * i.e. they support software defined properties. All implementation 1384 * specific property handling (i.e.: self-identifying devices and 1385 * PROM defined properties are handled in the implementation specific 1386 * functions (defined in ddi_implfuncs.h). 1387 */ 1388 1389 /* 1390 * nopropop: Shouldn't be called, right? 1391 */ 1392 int 1393 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 1394 char *name, caddr_t valuep, int *lengthp) 1395 { 1396 _NOTE(ARGUNUSED(dev, dip, prop_op, mod_flags, name, valuep, lengthp)) 1397 return (DDI_PROP_NOT_FOUND); 1398 } 1399 1400 #ifdef DDI_PROP_DEBUG 1401 int ddi_prop_debug_flag = 0; 1402 1403 int 1404 ddi_prop_debug(int enable) 1405 { 1406 int prev = ddi_prop_debug_flag; 1407 1408 if ((enable != 0) || (prev != 0)) 1409 printf("ddi_prop_debug: debugging %s\n", 1410 enable ? "enabled" : "disabled"); 1411 ddi_prop_debug_flag = enable; 1412 return (prev); 1413 } 1414 1415 #endif /* DDI_PROP_DEBUG */ 1416 1417 /* 1418 * Search a property list for a match, if found return pointer 1419 * to matching prop struct, else return NULL. 1420 */ 1421 1422 ddi_prop_t * 1423 i_ddi_prop_search(dev_t dev, char *name, uint_t flags, ddi_prop_t **list_head) 1424 { 1425 ddi_prop_t *propp; 1426 1427 /* 1428 * find the property in child's devinfo: 1429 * Search order defined by this search function is first matching 1430 * property with input dev == DDI_DEV_T_ANY matching any dev or 1431 * dev == propp->prop_dev, name == propp->name, and the correct 1432 * data type as specified in the flags. If a DDI_DEV_T_NONE dev 1433 * value made it this far then it implies a DDI_DEV_T_ANY search. 1434 */ 1435 if (dev == DDI_DEV_T_NONE) 1436 dev = DDI_DEV_T_ANY; 1437 1438 for (propp = *list_head; propp != NULL; propp = propp->prop_next) { 1439 1440 if (!DDI_STRSAME(propp->prop_name, name)) 1441 continue; 1442 1443 if ((dev != DDI_DEV_T_ANY) && (propp->prop_dev != dev)) 1444 continue; 1445 1446 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0) 1447 continue; 1448 1449 return (propp); 1450 } 1451 1452 return ((ddi_prop_t *)0); 1453 } 1454 1455 /* 1456 * Search for property within devnames structures 1457 */ 1458 ddi_prop_t * 1459 i_ddi_search_global_prop(dev_t dev, char *name, uint_t flags) 1460 { 1461 major_t major; 1462 struct devnames *dnp; 1463 ddi_prop_t *propp; 1464 1465 /* 1466 * Valid dev_t value is needed to index into the 1467 * correct devnames entry, therefore a dev_t 1468 * value of DDI_DEV_T_ANY is not appropriate. 1469 */ 1470 ASSERT(dev != DDI_DEV_T_ANY); 1471 if (dev == DDI_DEV_T_ANY) { 1472 return ((ddi_prop_t *)0); 1473 } 1474 1475 major = getmajor(dev); 1476 dnp = &(devnamesp[major]); 1477 1478 if (dnp->dn_global_prop_ptr == NULL) 1479 return ((ddi_prop_t *)0); 1480 1481 LOCK_DEV_OPS(&dnp->dn_lock); 1482 1483 for (propp = dnp->dn_global_prop_ptr->prop_list; 1484 propp != NULL; 1485 propp = (ddi_prop_t *)propp->prop_next) { 1486 1487 if (!DDI_STRSAME(propp->prop_name, name)) 1488 continue; 1489 1490 if ((!(flags & DDI_PROP_ROOTNEX_GLOBAL)) && 1491 (!(flags & LDI_DEV_T_ANY)) && (propp->prop_dev != dev)) 1492 continue; 1493 1494 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0) 1495 continue; 1496 1497 /* Property found, return it */ 1498 UNLOCK_DEV_OPS(&dnp->dn_lock); 1499 return (propp); 1500 } 1501 1502 UNLOCK_DEV_OPS(&dnp->dn_lock); 1503 return ((ddi_prop_t *)0); 1504 } 1505 1506 static char prop_no_mem_msg[] = "can't allocate memory for ddi property <%s>"; 1507 1508 /* 1509 * ddi_prop_search_global: 1510 * Search the global property list within devnames 1511 * for the named property. Return the encoded value. 1512 */ 1513 static int 1514 i_ddi_prop_search_global(dev_t dev, uint_t flags, char *name, 1515 void *valuep, uint_t *lengthp) 1516 { 1517 ddi_prop_t *propp; 1518 caddr_t buffer; 1519 1520 propp = i_ddi_search_global_prop(dev, name, flags); 1521 1522 /* Property NOT found, bail */ 1523 if (propp == (ddi_prop_t *)0) 1524 return (DDI_PROP_NOT_FOUND); 1525 1526 if (propp->prop_flags & DDI_PROP_UNDEF_IT) 1527 return (DDI_PROP_UNDEFINED); 1528 1529 if ((buffer = kmem_alloc(propp->prop_len, 1530 (flags & DDI_PROP_CANSLEEP) ? KM_SLEEP : KM_NOSLEEP)) == NULL) { 1531 cmn_err(CE_CONT, prop_no_mem_msg, name); 1532 return (DDI_PROP_NO_MEMORY); 1533 } 1534 1535 /* 1536 * Return the encoded data 1537 */ 1538 *(caddr_t *)valuep = buffer; 1539 *lengthp = propp->prop_len; 1540 bcopy(propp->prop_val, buffer, propp->prop_len); 1541 1542 return (DDI_PROP_SUCCESS); 1543 } 1544 1545 /* 1546 * ddi_prop_search_common: Lookup and return the encoded value 1547 */ 1548 int 1549 ddi_prop_search_common(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1550 uint_t flags, char *name, void *valuep, uint_t *lengthp) 1551 { 1552 ddi_prop_t *propp; 1553 int i; 1554 caddr_t buffer; 1555 caddr_t prealloc = NULL; 1556 int plength = 0; 1557 dev_info_t *pdip; 1558 int (*bop)(); 1559 1560 /*CONSTANTCONDITION*/ 1561 while (1) { 1562 1563 mutex_enter(&(DEVI(dip)->devi_lock)); 1564 1565 1566 /* 1567 * find the property in child's devinfo: 1568 * Search order is: 1569 * 1. driver defined properties 1570 * 2. system defined properties 1571 * 3. driver global properties 1572 * 4. boot defined properties 1573 */ 1574 1575 propp = i_ddi_prop_search(dev, name, flags, 1576 &(DEVI(dip)->devi_drv_prop_ptr)); 1577 if (propp == NULL) { 1578 propp = i_ddi_prop_search(dev, name, flags, 1579 &(DEVI(dip)->devi_sys_prop_ptr)); 1580 } 1581 if ((propp == NULL) && DEVI(dip)->devi_global_prop_list) { 1582 propp = i_ddi_prop_search(dev, name, flags, 1583 &DEVI(dip)->devi_global_prop_list->prop_list); 1584 } 1585 1586 if (propp == NULL) { 1587 propp = i_ddi_prop_search(dev, name, flags, 1588 &(DEVI(dip)->devi_hw_prop_ptr)); 1589 } 1590 1591 /* 1592 * Software property found? 1593 */ 1594 if (propp != (ddi_prop_t *)0) { 1595 1596 /* 1597 * If explicit undefine, return now. 1598 */ 1599 if (propp->prop_flags & DDI_PROP_UNDEF_IT) { 1600 mutex_exit(&(DEVI(dip)->devi_lock)); 1601 if (prealloc) 1602 kmem_free(prealloc, plength); 1603 return (DDI_PROP_UNDEFINED); 1604 } 1605 1606 /* 1607 * If we only want to know if it exists, return now 1608 */ 1609 if (prop_op == PROP_EXISTS) { 1610 mutex_exit(&(DEVI(dip)->devi_lock)); 1611 ASSERT(prealloc == NULL); 1612 return (DDI_PROP_SUCCESS); 1613 } 1614 1615 /* 1616 * If length only request or prop length == 0, 1617 * service request and return now. 1618 */ 1619 if ((prop_op == PROP_LEN) ||(propp->prop_len == 0)) { 1620 *lengthp = propp->prop_len; 1621 1622 /* 1623 * if prop_op is PROP_LEN_AND_VAL_ALLOC 1624 * that means prop_len is 0, so set valuep 1625 * also to NULL 1626 */ 1627 if (prop_op == PROP_LEN_AND_VAL_ALLOC) 1628 *(caddr_t *)valuep = NULL; 1629 1630 mutex_exit(&(DEVI(dip)->devi_lock)); 1631 if (prealloc) 1632 kmem_free(prealloc, plength); 1633 return (DDI_PROP_SUCCESS); 1634 } 1635 1636 /* 1637 * If LEN_AND_VAL_ALLOC and the request can sleep, 1638 * drop the mutex, allocate the buffer, and go 1639 * through the loop again. If we already allocated 1640 * the buffer, and the size of the property changed, 1641 * keep trying... 1642 */ 1643 if ((prop_op == PROP_LEN_AND_VAL_ALLOC) && 1644 (flags & DDI_PROP_CANSLEEP)) { 1645 if (prealloc && (propp->prop_len != plength)) { 1646 kmem_free(prealloc, plength); 1647 prealloc = NULL; 1648 } 1649 if (prealloc == NULL) { 1650 plength = propp->prop_len; 1651 mutex_exit(&(DEVI(dip)->devi_lock)); 1652 prealloc = kmem_alloc(plength, 1653 KM_SLEEP); 1654 continue; 1655 } 1656 } 1657 1658 /* 1659 * Allocate buffer, if required. Either way, 1660 * set `buffer' variable. 1661 */ 1662 i = *lengthp; /* Get callers length */ 1663 *lengthp = propp->prop_len; /* Set callers length */ 1664 1665 switch (prop_op) { 1666 1667 case PROP_LEN_AND_VAL_ALLOC: 1668 1669 if (prealloc == NULL) { 1670 buffer = kmem_alloc(propp->prop_len, 1671 KM_NOSLEEP); 1672 } else { 1673 buffer = prealloc; 1674 } 1675 1676 if (buffer == NULL) { 1677 mutex_exit(&(DEVI(dip)->devi_lock)); 1678 cmn_err(CE_CONT, prop_no_mem_msg, name); 1679 return (DDI_PROP_NO_MEMORY); 1680 } 1681 /* Set callers buf ptr */ 1682 *(caddr_t *)valuep = buffer; 1683 break; 1684 1685 case PROP_LEN_AND_VAL_BUF: 1686 1687 if (propp->prop_len > (i)) { 1688 mutex_exit(&(DEVI(dip)->devi_lock)); 1689 return (DDI_PROP_BUF_TOO_SMALL); 1690 } 1691 1692 buffer = valuep; /* Get callers buf ptr */ 1693 break; 1694 1695 default: 1696 break; 1697 } 1698 1699 /* 1700 * Do the copy. 1701 */ 1702 bcopy(propp->prop_val, buffer, propp->prop_len); 1703 mutex_exit(&(DEVI(dip)->devi_lock)); 1704 return (DDI_PROP_SUCCESS); 1705 } 1706 1707 mutex_exit(&(DEVI(dip)->devi_lock)); 1708 if (prealloc) 1709 kmem_free(prealloc, plength); 1710 prealloc = NULL; 1711 1712 /* 1713 * Prop not found, call parent bus_ops to deal with possible 1714 * h/w layer (possible PROM defined props, etc.) and to 1715 * possibly ascend the hierarchy, if allowed by flags. 1716 */ 1717 pdip = (dev_info_t *)DEVI(dip)->devi_parent; 1718 1719 /* 1720 * One last call for the root driver PROM props? 1721 */ 1722 if (dip == ddi_root_node()) { 1723 return (ddi_bus_prop_op(dev, dip, dip, prop_op, 1724 flags, name, valuep, (int *)lengthp)); 1725 } 1726 1727 /* 1728 * We may have been called to check for properties 1729 * within a single devinfo node that has no parent - 1730 * see make_prop() 1731 */ 1732 if (pdip == NULL) { 1733 ASSERT((flags & 1734 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)) == 1735 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)); 1736 return (DDI_PROP_NOT_FOUND); 1737 } 1738 1739 /* 1740 * Instead of recursing, we do iterative calls up the tree. 1741 * As a bit of optimization, skip the bus_op level if the 1742 * node is a s/w node and if the parent's bus_prop_op function 1743 * is `ddi_bus_prop_op', because we know that in this case, 1744 * this function does nothing. 1745 * 1746 * 4225415: If the parent isn't attached, or the child 1747 * hasn't been named by the parent yet, use the default 1748 * ddi_bus_prop_op as a proxy for the parent. This 1749 * allows property lookups in any child/parent state to 1750 * include 'prom' and inherited properties, even when 1751 * there are no drivers attached to the child or parent. 1752 */ 1753 1754 bop = ddi_bus_prop_op; 1755 if (i_ddi_devi_attached(pdip) && 1756 (i_ddi_node_state(dip) >= DS_INITIALIZED)) 1757 bop = DEVI(pdip)->devi_ops->devo_bus_ops->bus_prop_op; 1758 1759 i = DDI_PROP_NOT_FOUND; 1760 1761 if ((bop != ddi_bus_prop_op) || ndi_dev_is_prom_node(dip)) { 1762 i = (*bop)(dev, pdip, dip, prop_op, 1763 flags | DDI_PROP_DONTPASS, 1764 name, valuep, lengthp); 1765 } 1766 1767 if ((flags & DDI_PROP_DONTPASS) || 1768 (i != DDI_PROP_NOT_FOUND)) 1769 return (i); 1770 1771 dip = pdip; 1772 } 1773 /*NOTREACHED*/ 1774 } 1775 1776 1777 /* 1778 * ddi_prop_op: The basic property operator for drivers. 1779 * 1780 * In ddi_prop_op, the type of valuep is interpreted based on prop_op: 1781 * 1782 * prop_op valuep 1783 * ------ ------ 1784 * 1785 * PROP_LEN <unused> 1786 * 1787 * PROP_LEN_AND_VAL_BUF Pointer to callers buffer 1788 * 1789 * PROP_LEN_AND_VAL_ALLOC Address of callers pointer (will be set to 1790 * address of allocated buffer, if successful) 1791 */ 1792 int 1793 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 1794 char *name, caddr_t valuep, int *lengthp) 1795 { 1796 int i; 1797 1798 ASSERT((mod_flags & DDI_PROP_TYPE_MASK) == 0); 1799 1800 /* 1801 * If this was originally an LDI prop lookup then we bail here. 1802 * The reason is that the LDI property lookup interfaces first call 1803 * a drivers prop_op() entry point to allow it to override 1804 * properties. But if we've made it here, then the driver hasn't 1805 * overriden any properties. We don't want to continue with the 1806 * property search here because we don't have any type inforamtion. 1807 * When we return failure, the LDI interfaces will then proceed to 1808 * call the typed property interfaces to look up the property. 1809 */ 1810 if (mod_flags & DDI_PROP_DYNAMIC) 1811 return (DDI_PROP_NOT_FOUND); 1812 1813 /* 1814 * check for pre-typed property consumer asking for typed property: 1815 * see e_ddi_getprop_int64. 1816 */ 1817 if (mod_flags & DDI_PROP_CONSUMER_TYPED) 1818 mod_flags |= DDI_PROP_TYPE_INT64; 1819 mod_flags |= DDI_PROP_TYPE_ANY; 1820 1821 i = ddi_prop_search_common(dev, dip, prop_op, 1822 mod_flags, name, valuep, (uint_t *)lengthp); 1823 if (i == DDI_PROP_FOUND_1275) 1824 return (DDI_PROP_SUCCESS); 1825 return (i); 1826 } 1827 1828 /* 1829 * ddi_prop_op_nblocks_blksize: The basic property operator for drivers that 1830 * maintain size in number of blksize blocks. Provides a dynamic property 1831 * implementation for size oriented properties based on nblocks64 and blksize 1832 * values passed in by the driver. Fallback to ddi_prop_op if the nblocks64 1833 * is too large. This interface should not be used with a nblocks64 that 1834 * represents the driver's idea of how to represent unknown, if nblocks is 1835 * unknown use ddi_prop_op. 1836 */ 1837 int 1838 ddi_prop_op_nblocks_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1839 int mod_flags, char *name, caddr_t valuep, int *lengthp, 1840 uint64_t nblocks64, uint_t blksize) 1841 { 1842 uint64_t size64; 1843 int blkshift; 1844 1845 /* convert block size to shift value */ 1846 ASSERT(BIT_ONLYONESET(blksize)); 1847 blkshift = highbit(blksize) - 1; 1848 1849 /* 1850 * There is no point in supporting nblocks64 values that don't have 1851 * an accurate uint64_t byte count representation. 1852 */ 1853 if (nblocks64 >= (UINT64_MAX >> blkshift)) 1854 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 1855 name, valuep, lengthp)); 1856 1857 size64 = nblocks64 << blkshift; 1858 return (ddi_prop_op_size_blksize(dev, dip, prop_op, mod_flags, 1859 name, valuep, lengthp, size64, blksize)); 1860 } 1861 1862 /* 1863 * ddi_prop_op_nblocks: ddi_prop_op_nblocks_blksize with DEV_BSIZE blksize. 1864 */ 1865 int 1866 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1867 int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t nblocks64) 1868 { 1869 return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, 1870 mod_flags, name, valuep, lengthp, nblocks64, DEV_BSIZE)); 1871 } 1872 1873 /* 1874 * ddi_prop_op_size_blksize: The basic property operator for block drivers that 1875 * maintain size in bytes. Provides a of dynamic property implementation for 1876 * size oriented properties based on size64 value and blksize passed in by the 1877 * driver. Fallback to ddi_prop_op if the size64 is too large. This interface 1878 * should not be used with a size64 that represents the driver's idea of how 1879 * to represent unknown, if size is unknown use ddi_prop_op. 1880 * 1881 * NOTE: the legacy "nblocks"/"size" properties are treated as 32-bit unsigned 1882 * integers. While the most likely interface to request them ([bc]devi_size) 1883 * is declared int (signed) there is no enforcement of this, which means we 1884 * can't enforce limitations here without risking regression. 1885 */ 1886 int 1887 ddi_prop_op_size_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1888 int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64, 1889 uint_t blksize) 1890 { 1891 uint64_t nblocks64; 1892 int callers_length; 1893 caddr_t buffer; 1894 int blkshift; 1895 1896 /* 1897 * This is a kludge to support capture of size(9P) pure dynamic 1898 * properties in snapshots for non-cmlb code (without exposing 1899 * i_ddi_prop_dyn changes). When everyone uses cmlb, this code 1900 * should be removed. 1901 */ 1902 if (i_ddi_prop_dyn_driver_get(dip) == NULL) { 1903 static i_ddi_prop_dyn_t prop_dyn_size[] = { 1904 {"Size", DDI_PROP_TYPE_INT64, S_IFCHR}, 1905 {"Nblocks", DDI_PROP_TYPE_INT64, S_IFBLK}, 1906 {NULL} 1907 }; 1908 i_ddi_prop_dyn_driver_set(dip, prop_dyn_size); 1909 } 1910 1911 /* convert block size to shift value */ 1912 ASSERT(BIT_ONLYONESET(blksize)); 1913 blkshift = highbit(blksize) - 1; 1914 1915 /* compute DEV_BSIZE nblocks value */ 1916 nblocks64 = size64 >> blkshift; 1917 1918 /* get callers length, establish length of our dynamic properties */ 1919 callers_length = *lengthp; 1920 1921 if (strcmp(name, "Nblocks") == 0) 1922 *lengthp = sizeof (uint64_t); 1923 else if (strcmp(name, "Size") == 0) 1924 *lengthp = sizeof (uint64_t); 1925 else if ((strcmp(name, "nblocks") == 0) && (nblocks64 < UINT_MAX)) 1926 *lengthp = sizeof (uint32_t); 1927 else if ((strcmp(name, "size") == 0) && (size64 < UINT_MAX)) 1928 *lengthp = sizeof (uint32_t); 1929 else if ((strcmp(name, "blksize") == 0) && (blksize < UINT_MAX)) 1930 *lengthp = sizeof (uint32_t); 1931 else { 1932 /* fallback to ddi_prop_op */ 1933 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 1934 name, valuep, lengthp)); 1935 } 1936 1937 /* service request for the length of the property */ 1938 if (prop_op == PROP_LEN) 1939 return (DDI_PROP_SUCCESS); 1940 1941 switch (prop_op) { 1942 case PROP_LEN_AND_VAL_ALLOC: 1943 if ((buffer = kmem_alloc(*lengthp, 1944 (mod_flags & DDI_PROP_CANSLEEP) ? 1945 KM_SLEEP : KM_NOSLEEP)) == NULL) 1946 return (DDI_PROP_NO_MEMORY); 1947 1948 *(caddr_t *)valuep = buffer; /* set callers buf ptr */ 1949 break; 1950 1951 case PROP_LEN_AND_VAL_BUF: 1952 /* the length of the property and the request must match */ 1953 if (callers_length != *lengthp) 1954 return (DDI_PROP_INVAL_ARG); 1955 1956 buffer = valuep; /* get callers buf ptr */ 1957 break; 1958 1959 default: 1960 return (DDI_PROP_INVAL_ARG); 1961 } 1962 1963 /* transfer the value into the buffer */ 1964 if (strcmp(name, "Nblocks") == 0) 1965 *((uint64_t *)buffer) = nblocks64; 1966 else if (strcmp(name, "Size") == 0) 1967 *((uint64_t *)buffer) = size64; 1968 else if (strcmp(name, "nblocks") == 0) 1969 *((uint32_t *)buffer) = (uint32_t)nblocks64; 1970 else if (strcmp(name, "size") == 0) 1971 *((uint32_t *)buffer) = (uint32_t)size64; 1972 else if (strcmp(name, "blksize") == 0) 1973 *((uint32_t *)buffer) = (uint32_t)blksize; 1974 return (DDI_PROP_SUCCESS); 1975 } 1976 1977 /* 1978 * ddi_prop_op_size: ddi_prop_op_size_blksize with DEV_BSIZE block size. 1979 */ 1980 int 1981 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1982 int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64) 1983 { 1984 return (ddi_prop_op_size_blksize(dev, dip, prop_op, 1985 mod_flags, name, valuep, lengthp, size64, DEV_BSIZE)); 1986 } 1987 1988 /* 1989 * Variable length props... 1990 */ 1991 1992 /* 1993 * ddi_getlongprop: Get variable length property len+val into a buffer 1994 * allocated by property provider via kmem_alloc. Requester 1995 * is responsible for freeing returned property via kmem_free. 1996 * 1997 * Arguments: 1998 * 1999 * dev_t: Input: dev_t of property. 2000 * dip: Input: dev_info_t pointer of child. 2001 * flags: Input: Possible flag modifiers are: 2002 * DDI_PROP_DONTPASS: Don't pass to parent if prop not found. 2003 * DDI_PROP_CANSLEEP: Memory allocation may sleep. 2004 * name: Input: name of property. 2005 * valuep: Output: Addr of callers buffer pointer. 2006 * lengthp:Output: *lengthp will contain prop length on exit. 2007 * 2008 * Possible Returns: 2009 * 2010 * DDI_PROP_SUCCESS: Prop found and returned. 2011 * DDI_PROP_NOT_FOUND: Prop not found 2012 * DDI_PROP_UNDEFINED: Prop explicitly undefined. 2013 * DDI_PROP_NO_MEMORY: Prop found, but unable to alloc mem. 2014 */ 2015 2016 int 2017 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags, 2018 char *name, caddr_t valuep, int *lengthp) 2019 { 2020 return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_ALLOC, 2021 flags, name, valuep, lengthp)); 2022 } 2023 2024 /* 2025 * 2026 * ddi_getlongprop_buf: Get long prop into pre-allocated callers 2027 * buffer. (no memory allocation by provider). 2028 * 2029 * dev_t: Input: dev_t of property. 2030 * dip: Input: dev_info_t pointer of child. 2031 * flags: Input: DDI_PROP_DONTPASS or NULL 2032 * name: Input: name of property 2033 * valuep: Input: ptr to callers buffer. 2034 * lengthp:I/O: ptr to length of callers buffer on entry, 2035 * actual length of property on exit. 2036 * 2037 * Possible returns: 2038 * 2039 * DDI_PROP_SUCCESS Prop found and returned 2040 * DDI_PROP_NOT_FOUND Prop not found 2041 * DDI_PROP_UNDEFINED Prop explicitly undefined. 2042 * DDI_PROP_BUF_TOO_SMALL Prop found, callers buf too small, 2043 * no value returned, but actual prop 2044 * length returned in *lengthp 2045 * 2046 */ 2047 2048 int 2049 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags, 2050 char *name, caddr_t valuep, int *lengthp) 2051 { 2052 return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF, 2053 flags, name, valuep, lengthp)); 2054 } 2055 2056 /* 2057 * Integer/boolean sized props. 2058 * 2059 * Call is value only... returns found boolean or int sized prop value or 2060 * defvalue if prop not found or is wrong length or is explicitly undefined. 2061 * Only flag is DDI_PROP_DONTPASS... 2062 * 2063 * By convention, this interface returns boolean (0) sized properties 2064 * as value (int)1. 2065 * 2066 * This never returns an error, if property not found or specifically 2067 * undefined, the input `defvalue' is returned. 2068 */ 2069 2070 int 2071 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue) 2072 { 2073 int propvalue = defvalue; 2074 int proplength = sizeof (int); 2075 int error; 2076 2077 error = ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF, 2078 flags, name, (caddr_t)&propvalue, &proplength); 2079 2080 if ((error == DDI_PROP_SUCCESS) && (proplength == 0)) 2081 propvalue = 1; 2082 2083 return (propvalue); 2084 } 2085 2086 /* 2087 * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS 2088 * if returns DDI_PROP_SUCCESS, length returned in *lengthp. 2089 */ 2090 2091 int 2092 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp) 2093 { 2094 return (ddi_prop_op(dev, dip, PROP_LEN, flags, name, NULL, lengthp)); 2095 } 2096 2097 /* 2098 * Allocate a struct prop_driver_data, along with 'size' bytes 2099 * for decoded property data. This structure is freed by 2100 * calling ddi_prop_free(9F). 2101 */ 2102 static void * 2103 ddi_prop_decode_alloc(size_t size, void (*prop_free)(struct prop_driver_data *)) 2104 { 2105 struct prop_driver_data *pdd; 2106 2107 /* 2108 * Allocate a structure with enough memory to store the decoded data. 2109 */ 2110 pdd = kmem_zalloc(sizeof (struct prop_driver_data) + size, KM_SLEEP); 2111 pdd->pdd_size = (sizeof (struct prop_driver_data) + size); 2112 pdd->pdd_prop_free = prop_free; 2113 2114 /* 2115 * Return a pointer to the location to put the decoded data. 2116 */ 2117 return ((void *)((caddr_t)pdd + sizeof (struct prop_driver_data))); 2118 } 2119 2120 /* 2121 * Allocated the memory needed to store the encoded data in the property 2122 * handle. 2123 */ 2124 static int 2125 ddi_prop_encode_alloc(prop_handle_t *ph, size_t size) 2126 { 2127 /* 2128 * If size is zero, then set data to NULL and size to 0. This 2129 * is a boolean property. 2130 */ 2131 if (size == 0) { 2132 ph->ph_size = 0; 2133 ph->ph_data = NULL; 2134 ph->ph_cur_pos = NULL; 2135 ph->ph_save_pos = NULL; 2136 } else { 2137 if (ph->ph_flags == DDI_PROP_DONTSLEEP) { 2138 ph->ph_data = kmem_zalloc(size, KM_NOSLEEP); 2139 if (ph->ph_data == NULL) 2140 return (DDI_PROP_NO_MEMORY); 2141 } else 2142 ph->ph_data = kmem_zalloc(size, KM_SLEEP); 2143 ph->ph_size = size; 2144 ph->ph_cur_pos = ph->ph_data; 2145 ph->ph_save_pos = ph->ph_data; 2146 } 2147 return (DDI_PROP_SUCCESS); 2148 } 2149 2150 /* 2151 * Free the space allocated by the lookup routines. Each lookup routine 2152 * returns a pointer to the decoded data to the driver. The driver then 2153 * passes this pointer back to us. This data actually lives in a struct 2154 * prop_driver_data. We use negative indexing to find the beginning of 2155 * the structure and then free the entire structure using the size and 2156 * the free routine stored in the structure. 2157 */ 2158 void 2159 ddi_prop_free(void *datap) 2160 { 2161 struct prop_driver_data *pdd; 2162 2163 /* 2164 * Get the structure 2165 */ 2166 pdd = (struct prop_driver_data *) 2167 ((caddr_t)datap - sizeof (struct prop_driver_data)); 2168 /* 2169 * Call the free routine to free it 2170 */ 2171 (*pdd->pdd_prop_free)(pdd); 2172 } 2173 2174 /* 2175 * Free the data associated with an array of ints, 2176 * allocated with ddi_prop_decode_alloc(). 2177 */ 2178 static void 2179 ddi_prop_free_ints(struct prop_driver_data *pdd) 2180 { 2181 kmem_free(pdd, pdd->pdd_size); 2182 } 2183 2184 /* 2185 * Free a single string property or a single string contained within 2186 * the argv style return value of an array of strings. 2187 */ 2188 static void 2189 ddi_prop_free_string(struct prop_driver_data *pdd) 2190 { 2191 kmem_free(pdd, pdd->pdd_size); 2192 2193 } 2194 2195 /* 2196 * Free an array of strings. 2197 */ 2198 static void 2199 ddi_prop_free_strings(struct prop_driver_data *pdd) 2200 { 2201 kmem_free(pdd, pdd->pdd_size); 2202 } 2203 2204 /* 2205 * Free the data associated with an array of bytes. 2206 */ 2207 static void 2208 ddi_prop_free_bytes(struct prop_driver_data *pdd) 2209 { 2210 kmem_free(pdd, pdd->pdd_size); 2211 } 2212 2213 /* 2214 * Reset the current location pointer in the property handle to the 2215 * beginning of the data. 2216 */ 2217 void 2218 ddi_prop_reset_pos(prop_handle_t *ph) 2219 { 2220 ph->ph_cur_pos = ph->ph_data; 2221 ph->ph_save_pos = ph->ph_data; 2222 } 2223 2224 /* 2225 * Restore the current location pointer in the property handle to the 2226 * saved position. 2227 */ 2228 void 2229 ddi_prop_save_pos(prop_handle_t *ph) 2230 { 2231 ph->ph_save_pos = ph->ph_cur_pos; 2232 } 2233 2234 /* 2235 * Save the location that the current location pointer is pointing to.. 2236 */ 2237 void 2238 ddi_prop_restore_pos(prop_handle_t *ph) 2239 { 2240 ph->ph_cur_pos = ph->ph_save_pos; 2241 } 2242 2243 /* 2244 * Property encode/decode functions 2245 */ 2246 2247 /* 2248 * Decode a single integer property 2249 */ 2250 static int 2251 ddi_prop_fm_decode_int(prop_handle_t *ph, void *data, uint_t *nelements) 2252 { 2253 int i; 2254 int tmp; 2255 2256 /* 2257 * If there is nothing to decode return an error 2258 */ 2259 if (ph->ph_size == 0) 2260 return (DDI_PROP_END_OF_DATA); 2261 2262 /* 2263 * Decode the property as a single integer and return it 2264 * in data if we were able to decode it. 2265 */ 2266 i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, &tmp); 2267 if (i < DDI_PROP_RESULT_OK) { 2268 switch (i) { 2269 case DDI_PROP_RESULT_EOF: 2270 return (DDI_PROP_END_OF_DATA); 2271 2272 case DDI_PROP_RESULT_ERROR: 2273 return (DDI_PROP_CANNOT_DECODE); 2274 } 2275 } 2276 2277 *(int *)data = tmp; 2278 *nelements = 1; 2279 return (DDI_PROP_SUCCESS); 2280 } 2281 2282 /* 2283 * Decode a single 64 bit integer property 2284 */ 2285 static int 2286 ddi_prop_fm_decode_int64(prop_handle_t *ph, void *data, uint_t *nelements) 2287 { 2288 int i; 2289 int64_t tmp; 2290 2291 /* 2292 * If there is nothing to decode return an error 2293 */ 2294 if (ph->ph_size == 0) 2295 return (DDI_PROP_END_OF_DATA); 2296 2297 /* 2298 * Decode the property as a single integer and return it 2299 * in data if we were able to decode it. 2300 */ 2301 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, &tmp); 2302 if (i < DDI_PROP_RESULT_OK) { 2303 switch (i) { 2304 case DDI_PROP_RESULT_EOF: 2305 return (DDI_PROP_END_OF_DATA); 2306 2307 case DDI_PROP_RESULT_ERROR: 2308 return (DDI_PROP_CANNOT_DECODE); 2309 } 2310 } 2311 2312 *(int64_t *)data = tmp; 2313 *nelements = 1; 2314 return (DDI_PROP_SUCCESS); 2315 } 2316 2317 /* 2318 * Decode an array of integers property 2319 */ 2320 static int 2321 ddi_prop_fm_decode_ints(prop_handle_t *ph, void *data, uint_t *nelements) 2322 { 2323 int i; 2324 int cnt = 0; 2325 int *tmp; 2326 int *intp; 2327 int n; 2328 2329 /* 2330 * Figure out how many array elements there are by going through the 2331 * data without decoding it first and counting. 2332 */ 2333 for (;;) { 2334 i = DDI_PROP_INT(ph, DDI_PROP_CMD_SKIP, NULL); 2335 if (i < 0) 2336 break; 2337 cnt++; 2338 } 2339 2340 /* 2341 * If there are no elements return an error 2342 */ 2343 if (cnt == 0) 2344 return (DDI_PROP_END_OF_DATA); 2345 2346 /* 2347 * If we cannot skip through the data, we cannot decode it 2348 */ 2349 if (i == DDI_PROP_RESULT_ERROR) 2350 return (DDI_PROP_CANNOT_DECODE); 2351 2352 /* 2353 * Reset the data pointer to the beginning of the encoded data 2354 */ 2355 ddi_prop_reset_pos(ph); 2356 2357 /* 2358 * Allocated memory to store the decoded value in. 2359 */ 2360 intp = ddi_prop_decode_alloc((cnt * sizeof (int)), 2361 ddi_prop_free_ints); 2362 2363 /* 2364 * Decode each element and place it in the space we just allocated 2365 */ 2366 tmp = intp; 2367 for (n = 0; n < cnt; n++, tmp++) { 2368 i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, tmp); 2369 if (i < DDI_PROP_RESULT_OK) { 2370 /* 2371 * Free the space we just allocated 2372 * and return an error. 2373 */ 2374 ddi_prop_free(intp); 2375 switch (i) { 2376 case DDI_PROP_RESULT_EOF: 2377 return (DDI_PROP_END_OF_DATA); 2378 2379 case DDI_PROP_RESULT_ERROR: 2380 return (DDI_PROP_CANNOT_DECODE); 2381 } 2382 } 2383 } 2384 2385 *nelements = cnt; 2386 *(int **)data = intp; 2387 2388 return (DDI_PROP_SUCCESS); 2389 } 2390 2391 /* 2392 * Decode a 64 bit integer array property 2393 */ 2394 static int 2395 ddi_prop_fm_decode_int64_array(prop_handle_t *ph, void *data, uint_t *nelements) 2396 { 2397 int i; 2398 int n; 2399 int cnt = 0; 2400 int64_t *tmp; 2401 int64_t *intp; 2402 2403 /* 2404 * Count the number of array elements by going 2405 * through the data without decoding it. 2406 */ 2407 for (;;) { 2408 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_SKIP, NULL); 2409 if (i < 0) 2410 break; 2411 cnt++; 2412 } 2413 2414 /* 2415 * If there are no elements return an error 2416 */ 2417 if (cnt == 0) 2418 return (DDI_PROP_END_OF_DATA); 2419 2420 /* 2421 * If we cannot skip through the data, we cannot decode it 2422 */ 2423 if (i == DDI_PROP_RESULT_ERROR) 2424 return (DDI_PROP_CANNOT_DECODE); 2425 2426 /* 2427 * Reset the data pointer to the beginning of the encoded data 2428 */ 2429 ddi_prop_reset_pos(ph); 2430 2431 /* 2432 * Allocate memory to store the decoded value. 2433 */ 2434 intp = ddi_prop_decode_alloc((cnt * sizeof (int64_t)), 2435 ddi_prop_free_ints); 2436 2437 /* 2438 * Decode each element and place it in the space allocated 2439 */ 2440 tmp = intp; 2441 for (n = 0; n < cnt; n++, tmp++) { 2442 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, tmp); 2443 if (i < DDI_PROP_RESULT_OK) { 2444 /* 2445 * Free the space we just allocated 2446 * and return an error. 2447 */ 2448 ddi_prop_free(intp); 2449 switch (i) { 2450 case DDI_PROP_RESULT_EOF: 2451 return (DDI_PROP_END_OF_DATA); 2452 2453 case DDI_PROP_RESULT_ERROR: 2454 return (DDI_PROP_CANNOT_DECODE); 2455 } 2456 } 2457 } 2458 2459 *nelements = cnt; 2460 *(int64_t **)data = intp; 2461 2462 return (DDI_PROP_SUCCESS); 2463 } 2464 2465 /* 2466 * Encode an array of integers property (Can be one element) 2467 */ 2468 int 2469 ddi_prop_fm_encode_ints(prop_handle_t *ph, void *data, uint_t nelements) 2470 { 2471 int i; 2472 int *tmp; 2473 int cnt; 2474 int size; 2475 2476 /* 2477 * If there is no data, we cannot do anything 2478 */ 2479 if (nelements == 0) 2480 return (DDI_PROP_CANNOT_ENCODE); 2481 2482 /* 2483 * Get the size of an encoded int. 2484 */ 2485 size = DDI_PROP_INT(ph, DDI_PROP_CMD_GET_ESIZE, NULL); 2486 2487 if (size < DDI_PROP_RESULT_OK) { 2488 switch (size) { 2489 case DDI_PROP_RESULT_EOF: 2490 return (DDI_PROP_END_OF_DATA); 2491 2492 case DDI_PROP_RESULT_ERROR: 2493 return (DDI_PROP_CANNOT_ENCODE); 2494 } 2495 } 2496 2497 /* 2498 * Allocate space in the handle to store the encoded int. 2499 */ 2500 if (ddi_prop_encode_alloc(ph, size * nelements) != 2501 DDI_PROP_SUCCESS) 2502 return (DDI_PROP_NO_MEMORY); 2503 2504 /* 2505 * Encode the array of ints. 2506 */ 2507 tmp = (int *)data; 2508 for (cnt = 0; cnt < nelements; cnt++, tmp++) { 2509 i = DDI_PROP_INT(ph, DDI_PROP_CMD_ENCODE, tmp); 2510 if (i < DDI_PROP_RESULT_OK) { 2511 switch (i) { 2512 case DDI_PROP_RESULT_EOF: 2513 return (DDI_PROP_END_OF_DATA); 2514 2515 case DDI_PROP_RESULT_ERROR: 2516 return (DDI_PROP_CANNOT_ENCODE); 2517 } 2518 } 2519 } 2520 2521 return (DDI_PROP_SUCCESS); 2522 } 2523 2524 2525 /* 2526 * Encode a 64 bit integer array property 2527 */ 2528 int 2529 ddi_prop_fm_encode_int64(prop_handle_t *ph, void *data, uint_t nelements) 2530 { 2531 int i; 2532 int cnt; 2533 int size; 2534 int64_t *tmp; 2535 2536 /* 2537 * If there is no data, we cannot do anything 2538 */ 2539 if (nelements == 0) 2540 return (DDI_PROP_CANNOT_ENCODE); 2541 2542 /* 2543 * Get the size of an encoded 64 bit int. 2544 */ 2545 size = DDI_PROP_INT64(ph, DDI_PROP_CMD_GET_ESIZE, NULL); 2546 2547 if (size < DDI_PROP_RESULT_OK) { 2548 switch (size) { 2549 case DDI_PROP_RESULT_EOF: 2550 return (DDI_PROP_END_OF_DATA); 2551 2552 case DDI_PROP_RESULT_ERROR: 2553 return (DDI_PROP_CANNOT_ENCODE); 2554 } 2555 } 2556 2557 /* 2558 * Allocate space in the handle to store the encoded int. 2559 */ 2560 if (ddi_prop_encode_alloc(ph, size * nelements) != 2561 DDI_PROP_SUCCESS) 2562 return (DDI_PROP_NO_MEMORY); 2563 2564 /* 2565 * Encode the array of ints. 2566 */ 2567 tmp = (int64_t *)data; 2568 for (cnt = 0; cnt < nelements; cnt++, tmp++) { 2569 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_ENCODE, tmp); 2570 if (i < DDI_PROP_RESULT_OK) { 2571 switch (i) { 2572 case DDI_PROP_RESULT_EOF: 2573 return (DDI_PROP_END_OF_DATA); 2574 2575 case DDI_PROP_RESULT_ERROR: 2576 return (DDI_PROP_CANNOT_ENCODE); 2577 } 2578 } 2579 } 2580 2581 return (DDI_PROP_SUCCESS); 2582 } 2583 2584 /* 2585 * Decode a single string property 2586 */ 2587 static int 2588 ddi_prop_fm_decode_string(prop_handle_t *ph, void *data, uint_t *nelements) 2589 { 2590 char *tmp; 2591 char *str; 2592 int i; 2593 int size; 2594 2595 /* 2596 * If there is nothing to decode return an error 2597 */ 2598 if (ph->ph_size == 0) 2599 return (DDI_PROP_END_OF_DATA); 2600 2601 /* 2602 * Get the decoded size of the encoded string. 2603 */ 2604 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL); 2605 if (size < DDI_PROP_RESULT_OK) { 2606 switch (size) { 2607 case DDI_PROP_RESULT_EOF: 2608 return (DDI_PROP_END_OF_DATA); 2609 2610 case DDI_PROP_RESULT_ERROR: 2611 return (DDI_PROP_CANNOT_DECODE); 2612 } 2613 } 2614 2615 /* 2616 * Allocated memory to store the decoded value in. 2617 */ 2618 str = ddi_prop_decode_alloc((size_t)size, ddi_prop_free_string); 2619 2620 ddi_prop_reset_pos(ph); 2621 2622 /* 2623 * Decode the str and place it in the space we just allocated 2624 */ 2625 tmp = str; 2626 i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, tmp); 2627 if (i < DDI_PROP_RESULT_OK) { 2628 /* 2629 * Free the space we just allocated 2630 * and return an error. 2631 */ 2632 ddi_prop_free(str); 2633 switch (i) { 2634 case DDI_PROP_RESULT_EOF: 2635 return (DDI_PROP_END_OF_DATA); 2636 2637 case DDI_PROP_RESULT_ERROR: 2638 return (DDI_PROP_CANNOT_DECODE); 2639 } 2640 } 2641 2642 *(char **)data = str; 2643 *nelements = 1; 2644 2645 return (DDI_PROP_SUCCESS); 2646 } 2647 2648 /* 2649 * Decode an array of strings. 2650 */ 2651 int 2652 ddi_prop_fm_decode_strings(prop_handle_t *ph, void *data, uint_t *nelements) 2653 { 2654 int cnt = 0; 2655 char **strs; 2656 char **tmp; 2657 char *ptr; 2658 int i; 2659 int n; 2660 int size; 2661 size_t nbytes; 2662 2663 /* 2664 * Figure out how many array elements there are by going through the 2665 * data without decoding it first and counting. 2666 */ 2667 for (;;) { 2668 i = DDI_PROP_STR(ph, DDI_PROP_CMD_SKIP, NULL); 2669 if (i < 0) 2670 break; 2671 cnt++; 2672 } 2673 2674 /* 2675 * If there are no elements return an error 2676 */ 2677 if (cnt == 0) 2678 return (DDI_PROP_END_OF_DATA); 2679 2680 /* 2681 * If we cannot skip through the data, we cannot decode it 2682 */ 2683 if (i == DDI_PROP_RESULT_ERROR) 2684 return (DDI_PROP_CANNOT_DECODE); 2685 2686 /* 2687 * Reset the data pointer to the beginning of the encoded data 2688 */ 2689 ddi_prop_reset_pos(ph); 2690 2691 /* 2692 * Figure out how much memory we need for the sum total 2693 */ 2694 nbytes = (cnt + 1) * sizeof (char *); 2695 2696 for (n = 0; n < cnt; n++) { 2697 /* 2698 * Get the decoded size of the current encoded string. 2699 */ 2700 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL); 2701 if (size < DDI_PROP_RESULT_OK) { 2702 switch (size) { 2703 case DDI_PROP_RESULT_EOF: 2704 return (DDI_PROP_END_OF_DATA); 2705 2706 case DDI_PROP_RESULT_ERROR: 2707 return (DDI_PROP_CANNOT_DECODE); 2708 } 2709 } 2710 2711 nbytes += size; 2712 } 2713 2714 /* 2715 * Allocate memory in which to store the decoded strings. 2716 */ 2717 strs = ddi_prop_decode_alloc(nbytes, ddi_prop_free_strings); 2718 2719 /* 2720 * Set up pointers for each string by figuring out yet 2721 * again how long each string is. 2722 */ 2723 ddi_prop_reset_pos(ph); 2724 ptr = (caddr_t)strs + ((cnt + 1) * sizeof (char *)); 2725 for (tmp = strs, n = 0; n < cnt; n++, tmp++) { 2726 /* 2727 * Get the decoded size of the current encoded string. 2728 */ 2729 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL); 2730 if (size < DDI_PROP_RESULT_OK) { 2731 ddi_prop_free(strs); 2732 switch (size) { 2733 case DDI_PROP_RESULT_EOF: 2734 return (DDI_PROP_END_OF_DATA); 2735 2736 case DDI_PROP_RESULT_ERROR: 2737 return (DDI_PROP_CANNOT_DECODE); 2738 } 2739 } 2740 2741 *tmp = ptr; 2742 ptr += size; 2743 } 2744 2745 /* 2746 * String array is terminated by a NULL 2747 */ 2748 *tmp = NULL; 2749 2750 /* 2751 * Finally, we can decode each string 2752 */ 2753 ddi_prop_reset_pos(ph); 2754 for (tmp = strs, n = 0; n < cnt; n++, tmp++) { 2755 i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, *tmp); 2756 if (i < DDI_PROP_RESULT_OK) { 2757 /* 2758 * Free the space we just allocated 2759 * and return an error 2760 */ 2761 ddi_prop_free(strs); 2762 switch (i) { 2763 case DDI_PROP_RESULT_EOF: 2764 return (DDI_PROP_END_OF_DATA); 2765 2766 case DDI_PROP_RESULT_ERROR: 2767 return (DDI_PROP_CANNOT_DECODE); 2768 } 2769 } 2770 } 2771 2772 *(char ***)data = strs; 2773 *nelements = cnt; 2774 2775 return (DDI_PROP_SUCCESS); 2776 } 2777 2778 /* 2779 * Encode a string. 2780 */ 2781 int 2782 ddi_prop_fm_encode_string(prop_handle_t *ph, void *data, uint_t nelements) 2783 { 2784 char **tmp; 2785 int size; 2786 int i; 2787 2788 /* 2789 * If there is no data, we cannot do anything 2790 */ 2791 if (nelements == 0) 2792 return (DDI_PROP_CANNOT_ENCODE); 2793 2794 /* 2795 * Get the size of the encoded string. 2796 */ 2797 tmp = (char **)data; 2798 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp); 2799 if (size < DDI_PROP_RESULT_OK) { 2800 switch (size) { 2801 case DDI_PROP_RESULT_EOF: 2802 return (DDI_PROP_END_OF_DATA); 2803 2804 case DDI_PROP_RESULT_ERROR: 2805 return (DDI_PROP_CANNOT_ENCODE); 2806 } 2807 } 2808 2809 /* 2810 * Allocate space in the handle to store the encoded string. 2811 */ 2812 if (ddi_prop_encode_alloc(ph, size) != DDI_PROP_SUCCESS) 2813 return (DDI_PROP_NO_MEMORY); 2814 2815 ddi_prop_reset_pos(ph); 2816 2817 /* 2818 * Encode the string. 2819 */ 2820 tmp = (char **)data; 2821 i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp); 2822 if (i < DDI_PROP_RESULT_OK) { 2823 switch (i) { 2824 case DDI_PROP_RESULT_EOF: 2825 return (DDI_PROP_END_OF_DATA); 2826 2827 case DDI_PROP_RESULT_ERROR: 2828 return (DDI_PROP_CANNOT_ENCODE); 2829 } 2830 } 2831 2832 return (DDI_PROP_SUCCESS); 2833 } 2834 2835 2836 /* 2837 * Encode an array of strings. 2838 */ 2839 int 2840 ddi_prop_fm_encode_strings(prop_handle_t *ph, void *data, uint_t nelements) 2841 { 2842 int cnt = 0; 2843 char **tmp; 2844 int size; 2845 uint_t total_size; 2846 int i; 2847 2848 /* 2849 * If there is no data, we cannot do anything 2850 */ 2851 if (nelements == 0) 2852 return (DDI_PROP_CANNOT_ENCODE); 2853 2854 /* 2855 * Get the total size required to encode all the strings. 2856 */ 2857 total_size = 0; 2858 tmp = (char **)data; 2859 for (cnt = 0; cnt < nelements; cnt++, tmp++) { 2860 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp); 2861 if (size < DDI_PROP_RESULT_OK) { 2862 switch (size) { 2863 case DDI_PROP_RESULT_EOF: 2864 return (DDI_PROP_END_OF_DATA); 2865 2866 case DDI_PROP_RESULT_ERROR: 2867 return (DDI_PROP_CANNOT_ENCODE); 2868 } 2869 } 2870 total_size += (uint_t)size; 2871 } 2872 2873 /* 2874 * Allocate space in the handle to store the encoded strings. 2875 */ 2876 if (ddi_prop_encode_alloc(ph, total_size) != DDI_PROP_SUCCESS) 2877 return (DDI_PROP_NO_MEMORY); 2878 2879 ddi_prop_reset_pos(ph); 2880 2881 /* 2882 * Encode the array of strings. 2883 */ 2884 tmp = (char **)data; 2885 for (cnt = 0; cnt < nelements; cnt++, tmp++) { 2886 i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp); 2887 if (i < DDI_PROP_RESULT_OK) { 2888 switch (i) { 2889 case DDI_PROP_RESULT_EOF: 2890 return (DDI_PROP_END_OF_DATA); 2891 2892 case DDI_PROP_RESULT_ERROR: 2893 return (DDI_PROP_CANNOT_ENCODE); 2894 } 2895 } 2896 } 2897 2898 return (DDI_PROP_SUCCESS); 2899 } 2900 2901 2902 /* 2903 * Decode an array of bytes. 2904 */ 2905 static int 2906 ddi_prop_fm_decode_bytes(prop_handle_t *ph, void *data, uint_t *nelements) 2907 { 2908 uchar_t *tmp; 2909 int nbytes; 2910 int i; 2911 2912 /* 2913 * If there are no elements return an error 2914 */ 2915 if (ph->ph_size == 0) 2916 return (DDI_PROP_END_OF_DATA); 2917 2918 /* 2919 * Get the size of the encoded array of bytes. 2920 */ 2921 nbytes = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_DSIZE, 2922 data, ph->ph_size); 2923 if (nbytes < DDI_PROP_RESULT_OK) { 2924 switch (nbytes) { 2925 case DDI_PROP_RESULT_EOF: 2926 return (DDI_PROP_END_OF_DATA); 2927 2928 case DDI_PROP_RESULT_ERROR: 2929 return (DDI_PROP_CANNOT_DECODE); 2930 } 2931 } 2932 2933 /* 2934 * Allocated memory to store the decoded value in. 2935 */ 2936 tmp = ddi_prop_decode_alloc(nbytes, ddi_prop_free_bytes); 2937 2938 /* 2939 * Decode each element and place it in the space we just allocated 2940 */ 2941 i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_DECODE, tmp, nbytes); 2942 if (i < DDI_PROP_RESULT_OK) { 2943 /* 2944 * Free the space we just allocated 2945 * and return an error 2946 */ 2947 ddi_prop_free(tmp); 2948 switch (i) { 2949 case DDI_PROP_RESULT_EOF: 2950 return (DDI_PROP_END_OF_DATA); 2951 2952 case DDI_PROP_RESULT_ERROR: 2953 return (DDI_PROP_CANNOT_DECODE); 2954 } 2955 } 2956 2957 *(uchar_t **)data = tmp; 2958 *nelements = nbytes; 2959 2960 return (DDI_PROP_SUCCESS); 2961 } 2962 2963 /* 2964 * Encode an array of bytes. 2965 */ 2966 int 2967 ddi_prop_fm_encode_bytes(prop_handle_t *ph, void *data, uint_t nelements) 2968 { 2969 int size; 2970 int i; 2971 2972 /* 2973 * If there are no elements, then this is a boolean property, 2974 * so just create a property handle with no data and return. 2975 */ 2976 if (nelements == 0) { 2977 (void) ddi_prop_encode_alloc(ph, 0); 2978 return (DDI_PROP_SUCCESS); 2979 } 2980 2981 /* 2982 * Get the size of the encoded array of bytes. 2983 */ 2984 size = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_ESIZE, (uchar_t *)data, 2985 nelements); 2986 if (size < DDI_PROP_RESULT_OK) { 2987 switch (size) { 2988 case DDI_PROP_RESULT_EOF: 2989 return (DDI_PROP_END_OF_DATA); 2990 2991 case DDI_PROP_RESULT_ERROR: 2992 return (DDI_PROP_CANNOT_DECODE); 2993 } 2994 } 2995 2996 /* 2997 * Allocate space in the handle to store the encoded bytes. 2998 */ 2999 if (ddi_prop_encode_alloc(ph, (uint_t)size) != DDI_PROP_SUCCESS) 3000 return (DDI_PROP_NO_MEMORY); 3001 3002 /* 3003 * Encode the array of bytes. 3004 */ 3005 i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_ENCODE, (uchar_t *)data, 3006 nelements); 3007 if (i < DDI_PROP_RESULT_OK) { 3008 switch (i) { 3009 case DDI_PROP_RESULT_EOF: 3010 return (DDI_PROP_END_OF_DATA); 3011 3012 case DDI_PROP_RESULT_ERROR: 3013 return (DDI_PROP_CANNOT_ENCODE); 3014 } 3015 } 3016 3017 return (DDI_PROP_SUCCESS); 3018 } 3019 3020 /* 3021 * OBP 1275 integer, string and byte operators. 3022 * 3023 * DDI_PROP_CMD_DECODE: 3024 * 3025 * DDI_PROP_RESULT_ERROR: cannot decode the data 3026 * DDI_PROP_RESULT_EOF: end of data 3027 * DDI_PROP_OK: data was decoded 3028 * 3029 * DDI_PROP_CMD_ENCODE: 3030 * 3031 * DDI_PROP_RESULT_ERROR: cannot encode the data 3032 * DDI_PROP_RESULT_EOF: end of data 3033 * DDI_PROP_OK: data was encoded 3034 * 3035 * DDI_PROP_CMD_SKIP: 3036 * 3037 * DDI_PROP_RESULT_ERROR: cannot skip the data 3038 * DDI_PROP_RESULT_EOF: end of data 3039 * DDI_PROP_OK: data was skipped 3040 * 3041 * DDI_PROP_CMD_GET_ESIZE: 3042 * 3043 * DDI_PROP_RESULT_ERROR: cannot get encoded size 3044 * DDI_PROP_RESULT_EOF: end of data 3045 * > 0: the encoded size 3046 * 3047 * DDI_PROP_CMD_GET_DSIZE: 3048 * 3049 * DDI_PROP_RESULT_ERROR: cannot get decoded size 3050 * DDI_PROP_RESULT_EOF: end of data 3051 * > 0: the decoded size 3052 */ 3053 3054 /* 3055 * OBP 1275 integer operator 3056 * 3057 * OBP properties are a byte stream of data, so integers may not be 3058 * properly aligned. Therefore we need to copy them one byte at a time. 3059 */ 3060 int 3061 ddi_prop_1275_int(prop_handle_t *ph, uint_t cmd, int *data) 3062 { 3063 int i; 3064 3065 switch (cmd) { 3066 case DDI_PROP_CMD_DECODE: 3067 /* 3068 * Check that there is encoded data 3069 */ 3070 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) 3071 return (DDI_PROP_RESULT_ERROR); 3072 if (ph->ph_flags & PH_FROM_PROM) { 3073 i = MIN(ph->ph_size, PROP_1275_INT_SIZE); 3074 if ((int *)ph->ph_cur_pos > ((int *)ph->ph_data + 3075 ph->ph_size - i)) 3076 return (DDI_PROP_RESULT_ERROR); 3077 } else { 3078 if (ph->ph_size < sizeof (int) || 3079 ((int *)ph->ph_cur_pos > ((int *)ph->ph_data + 3080 ph->ph_size - sizeof (int)))) 3081 return (DDI_PROP_RESULT_ERROR); 3082 } 3083 3084 /* 3085 * Copy the integer, using the implementation-specific 3086 * copy function if the property is coming from the PROM. 3087 */ 3088 if (ph->ph_flags & PH_FROM_PROM) { 3089 *data = impl_ddi_prop_int_from_prom( 3090 (uchar_t *)ph->ph_cur_pos, 3091 (ph->ph_size < PROP_1275_INT_SIZE) ? 3092 ph->ph_size : PROP_1275_INT_SIZE); 3093 } else { 3094 bcopy(ph->ph_cur_pos, data, sizeof (int)); 3095 } 3096 3097 /* 3098 * Move the current location to the start of the next 3099 * bit of undecoded data. 3100 */ 3101 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + 3102 PROP_1275_INT_SIZE; 3103 return (DDI_PROP_RESULT_OK); 3104 3105 case DDI_PROP_CMD_ENCODE: 3106 /* 3107 * Check that there is room to encoded the data 3108 */ 3109 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3110 ph->ph_size < PROP_1275_INT_SIZE || 3111 ((int *)ph->ph_cur_pos > ((int *)ph->ph_data + 3112 ph->ph_size - sizeof (int)))) 3113 return (DDI_PROP_RESULT_ERROR); 3114 3115 /* 3116 * Encode the integer into the byte stream one byte at a 3117 * time. 3118 */ 3119 bcopy(data, ph->ph_cur_pos, sizeof (int)); 3120 3121 /* 3122 * Move the current location to the start of the next bit of 3123 * space where we can store encoded data. 3124 */ 3125 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE; 3126 return (DDI_PROP_RESULT_OK); 3127 3128 case DDI_PROP_CMD_SKIP: 3129 /* 3130 * Check that there is encoded data 3131 */ 3132 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3133 ph->ph_size < PROP_1275_INT_SIZE) 3134 return (DDI_PROP_RESULT_ERROR); 3135 3136 3137 if ((caddr_t)ph->ph_cur_pos == 3138 (caddr_t)ph->ph_data + ph->ph_size) { 3139 return (DDI_PROP_RESULT_EOF); 3140 } else if ((caddr_t)ph->ph_cur_pos > 3141 (caddr_t)ph->ph_data + ph->ph_size) { 3142 return (DDI_PROP_RESULT_EOF); 3143 } 3144 3145 /* 3146 * Move the current location to the start of the next bit of 3147 * undecoded data. 3148 */ 3149 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE; 3150 return (DDI_PROP_RESULT_OK); 3151 3152 case DDI_PROP_CMD_GET_ESIZE: 3153 /* 3154 * Return the size of an encoded integer on OBP 3155 */ 3156 return (PROP_1275_INT_SIZE); 3157 3158 case DDI_PROP_CMD_GET_DSIZE: 3159 /* 3160 * Return the size of a decoded integer on the system. 3161 */ 3162 return (sizeof (int)); 3163 3164 default: 3165 #ifdef DEBUG 3166 panic("ddi_prop_1275_int: %x impossible", cmd); 3167 /*NOTREACHED*/ 3168 #else 3169 return (DDI_PROP_RESULT_ERROR); 3170 #endif /* DEBUG */ 3171 } 3172 } 3173 3174 /* 3175 * 64 bit integer operator. 3176 * 3177 * This is an extension, defined by Sun, to the 1275 integer 3178 * operator. This routine handles the encoding/decoding of 3179 * 64 bit integer properties. 3180 */ 3181 int 3182 ddi_prop_int64_op(prop_handle_t *ph, uint_t cmd, int64_t *data) 3183 { 3184 3185 switch (cmd) { 3186 case DDI_PROP_CMD_DECODE: 3187 /* 3188 * Check that there is encoded data 3189 */ 3190 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) 3191 return (DDI_PROP_RESULT_ERROR); 3192 if (ph->ph_flags & PH_FROM_PROM) { 3193 return (DDI_PROP_RESULT_ERROR); 3194 } else { 3195 if (ph->ph_size < sizeof (int64_t) || 3196 ((int64_t *)ph->ph_cur_pos > 3197 ((int64_t *)ph->ph_data + 3198 ph->ph_size - sizeof (int64_t)))) 3199 return (DDI_PROP_RESULT_ERROR); 3200 } 3201 /* 3202 * Copy the integer, using the implementation-specific 3203 * copy function if the property is coming from the PROM. 3204 */ 3205 if (ph->ph_flags & PH_FROM_PROM) { 3206 return (DDI_PROP_RESULT_ERROR); 3207 } else { 3208 bcopy(ph->ph_cur_pos, data, sizeof (int64_t)); 3209 } 3210 3211 /* 3212 * Move the current location to the start of the next 3213 * bit of undecoded data. 3214 */ 3215 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + 3216 sizeof (int64_t); 3217 return (DDI_PROP_RESULT_OK); 3218 3219 case DDI_PROP_CMD_ENCODE: 3220 /* 3221 * Check that there is room to encoded the data 3222 */ 3223 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3224 ph->ph_size < sizeof (int64_t) || 3225 ((int64_t *)ph->ph_cur_pos > ((int64_t *)ph->ph_data + 3226 ph->ph_size - sizeof (int64_t)))) 3227 return (DDI_PROP_RESULT_ERROR); 3228 3229 /* 3230 * Encode the integer into the byte stream one byte at a 3231 * time. 3232 */ 3233 bcopy(data, ph->ph_cur_pos, sizeof (int64_t)); 3234 3235 /* 3236 * Move the current location to the start of the next bit of 3237 * space where we can store encoded data. 3238 */ 3239 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + 3240 sizeof (int64_t); 3241 return (DDI_PROP_RESULT_OK); 3242 3243 case DDI_PROP_CMD_SKIP: 3244 /* 3245 * Check that there is encoded data 3246 */ 3247 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3248 ph->ph_size < sizeof (int64_t)) 3249 return (DDI_PROP_RESULT_ERROR); 3250 3251 if ((caddr_t)ph->ph_cur_pos == 3252 (caddr_t)ph->ph_data + ph->ph_size) { 3253 return (DDI_PROP_RESULT_EOF); 3254 } else if ((caddr_t)ph->ph_cur_pos > 3255 (caddr_t)ph->ph_data + ph->ph_size) { 3256 return (DDI_PROP_RESULT_EOF); 3257 } 3258 3259 /* 3260 * Move the current location to the start of 3261 * the next bit of undecoded data. 3262 */ 3263 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + 3264 sizeof (int64_t); 3265 return (DDI_PROP_RESULT_OK); 3266 3267 case DDI_PROP_CMD_GET_ESIZE: 3268 /* 3269 * Return the size of an encoded integer on OBP 3270 */ 3271 return (sizeof (int64_t)); 3272 3273 case DDI_PROP_CMD_GET_DSIZE: 3274 /* 3275 * Return the size of a decoded integer on the system. 3276 */ 3277 return (sizeof (int64_t)); 3278 3279 default: 3280 #ifdef DEBUG 3281 panic("ddi_prop_int64_op: %x impossible", cmd); 3282 /*NOTREACHED*/ 3283 #else 3284 return (DDI_PROP_RESULT_ERROR); 3285 #endif /* DEBUG */ 3286 } 3287 } 3288 3289 /* 3290 * OBP 1275 string operator. 3291 * 3292 * OBP strings are NULL terminated. 3293 */ 3294 int 3295 ddi_prop_1275_string(prop_handle_t *ph, uint_t cmd, char *data) 3296 { 3297 int n; 3298 char *p; 3299 char *end; 3300 3301 switch (cmd) { 3302 case DDI_PROP_CMD_DECODE: 3303 /* 3304 * Check that there is encoded data 3305 */ 3306 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) { 3307 return (DDI_PROP_RESULT_ERROR); 3308 } 3309 3310 /* 3311 * Match DDI_PROP_CMD_GET_DSIZE logic for when to stop and 3312 * how to NULL terminate result. 3313 */ 3314 p = (char *)ph->ph_cur_pos; 3315 end = (char *)ph->ph_data + ph->ph_size; 3316 if (p >= end) 3317 return (DDI_PROP_RESULT_EOF); 3318 3319 while (p < end) { 3320 *data++ = *p; 3321 if (*p++ == 0) { /* NULL from OBP */ 3322 ph->ph_cur_pos = p; 3323 return (DDI_PROP_RESULT_OK); 3324 } 3325 } 3326 3327 /* 3328 * If OBP did not NULL terminate string, which happens 3329 * (at least) for 'true'/'false' boolean values, account for 3330 * the space and store null termination on decode. 3331 */ 3332 ph->ph_cur_pos = p; 3333 *data = 0; 3334 return (DDI_PROP_RESULT_OK); 3335 3336 case DDI_PROP_CMD_ENCODE: 3337 /* 3338 * Check that there is room to encoded the data 3339 */ 3340 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) { 3341 return (DDI_PROP_RESULT_ERROR); 3342 } 3343 3344 n = strlen(data) + 1; 3345 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3346 ph->ph_size - n)) { 3347 return (DDI_PROP_RESULT_ERROR); 3348 } 3349 3350 /* 3351 * Copy the NULL terminated string 3352 */ 3353 bcopy(data, ph->ph_cur_pos, n); 3354 3355 /* 3356 * Move the current location to the start of the next bit of 3357 * space where we can store encoded data. 3358 */ 3359 ph->ph_cur_pos = (char *)ph->ph_cur_pos + n; 3360 return (DDI_PROP_RESULT_OK); 3361 3362 case DDI_PROP_CMD_SKIP: 3363 /* 3364 * Check that there is encoded data 3365 */ 3366 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) { 3367 return (DDI_PROP_RESULT_ERROR); 3368 } 3369 3370 /* 3371 * Return the string length plus one for the NULL 3372 * We know the size of the property, we need to 3373 * ensure that the string is properly formatted, 3374 * since we may be looking up random OBP data. 3375 */ 3376 p = (char *)ph->ph_cur_pos; 3377 end = (char *)ph->ph_data + ph->ph_size; 3378 if (p >= end) 3379 return (DDI_PROP_RESULT_EOF); 3380 3381 while (p < end) { 3382 if (*p++ == 0) { /* NULL from OBP */ 3383 ph->ph_cur_pos = p; 3384 return (DDI_PROP_RESULT_OK); 3385 } 3386 } 3387 3388 /* 3389 * Accommodate the fact that OBP does not always NULL 3390 * terminate strings. 3391 */ 3392 ph->ph_cur_pos = p; 3393 return (DDI_PROP_RESULT_OK); 3394 3395 case DDI_PROP_CMD_GET_ESIZE: 3396 /* 3397 * Return the size of the encoded string on OBP. 3398 */ 3399 return (strlen(data) + 1); 3400 3401 case DDI_PROP_CMD_GET_DSIZE: 3402 /* 3403 * Return the string length plus one for the NULL. 3404 * We know the size of the property, we need to 3405 * ensure that the string is properly formatted, 3406 * since we may be looking up random OBP data. 3407 */ 3408 p = (char *)ph->ph_cur_pos; 3409 end = (char *)ph->ph_data + ph->ph_size; 3410 if (p >= end) 3411 return (DDI_PROP_RESULT_EOF); 3412 3413 for (n = 0; p < end; n++) { 3414 if (*p++ == 0) { /* NULL from OBP */ 3415 ph->ph_cur_pos = p; 3416 return (n + 1); 3417 } 3418 } 3419 3420 /* 3421 * If OBP did not NULL terminate string, which happens for 3422 * 'true'/'false' boolean values, account for the space 3423 * to store null termination here. 3424 */ 3425 ph->ph_cur_pos = p; 3426 return (n + 1); 3427 3428 default: 3429 #ifdef DEBUG 3430 panic("ddi_prop_1275_string: %x impossible", cmd); 3431 /*NOTREACHED*/ 3432 #else 3433 return (DDI_PROP_RESULT_ERROR); 3434 #endif /* DEBUG */ 3435 } 3436 } 3437 3438 /* 3439 * OBP 1275 byte operator 3440 * 3441 * Caller must specify the number of bytes to get. OBP encodes bytes 3442 * as a byte so there is a 1-to-1 translation. 3443 */ 3444 int 3445 ddi_prop_1275_bytes(prop_handle_t *ph, uint_t cmd, uchar_t *data, 3446 uint_t nelements) 3447 { 3448 switch (cmd) { 3449 case DDI_PROP_CMD_DECODE: 3450 /* 3451 * Check that there is encoded data 3452 */ 3453 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3454 ph->ph_size < nelements || 3455 ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3456 ph->ph_size - nelements))) 3457 return (DDI_PROP_RESULT_ERROR); 3458 3459 /* 3460 * Copy out the bytes 3461 */ 3462 bcopy(ph->ph_cur_pos, data, nelements); 3463 3464 /* 3465 * Move the current location 3466 */ 3467 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements; 3468 return (DDI_PROP_RESULT_OK); 3469 3470 case DDI_PROP_CMD_ENCODE: 3471 /* 3472 * Check that there is room to encode the data 3473 */ 3474 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3475 ph->ph_size < nelements || 3476 ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3477 ph->ph_size - nelements))) 3478 return (DDI_PROP_RESULT_ERROR); 3479 3480 /* 3481 * Copy in the bytes 3482 */ 3483 bcopy(data, ph->ph_cur_pos, nelements); 3484 3485 /* 3486 * Move the current location to the start of the next bit of 3487 * space where we can store encoded data. 3488 */ 3489 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements; 3490 return (DDI_PROP_RESULT_OK); 3491 3492 case DDI_PROP_CMD_SKIP: 3493 /* 3494 * Check that there is encoded data 3495 */ 3496 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3497 ph->ph_size < nelements) 3498 return (DDI_PROP_RESULT_ERROR); 3499 3500 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3501 ph->ph_size - nelements)) 3502 return (DDI_PROP_RESULT_EOF); 3503 3504 /* 3505 * Move the current location 3506 */ 3507 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements; 3508 return (DDI_PROP_RESULT_OK); 3509 3510 case DDI_PROP_CMD_GET_ESIZE: 3511 /* 3512 * The size in bytes of the encoded size is the 3513 * same as the decoded size provided by the caller. 3514 */ 3515 return (nelements); 3516 3517 case DDI_PROP_CMD_GET_DSIZE: 3518 /* 3519 * Just return the number of bytes specified by the caller. 3520 */ 3521 return (nelements); 3522 3523 default: 3524 #ifdef DEBUG 3525 panic("ddi_prop_1275_bytes: %x impossible", cmd); 3526 /*NOTREACHED*/ 3527 #else 3528 return (DDI_PROP_RESULT_ERROR); 3529 #endif /* DEBUG */ 3530 } 3531 } 3532 3533 /* 3534 * Used for properties that come from the OBP, hardware configuration files, 3535 * or that are created by calls to ddi_prop_update(9F). 3536 */ 3537 static struct prop_handle_ops prop_1275_ops = { 3538 ddi_prop_1275_int, 3539 ddi_prop_1275_string, 3540 ddi_prop_1275_bytes, 3541 ddi_prop_int64_op 3542 }; 3543 3544 3545 /* 3546 * Interface to create/modify a managed property on child's behalf... 3547 * Flags interpreted are: 3548 * DDI_PROP_CANSLEEP: Allow memory allocation to sleep. 3549 * DDI_PROP_SYSTEM_DEF: Manipulate system list rather than driver list. 3550 * 3551 * Use same dev_t when modifying or undefining a property. 3552 * Search for properties with DDI_DEV_T_ANY to match first named 3553 * property on the list. 3554 * 3555 * Properties are stored LIFO and subsequently will match the first 3556 * `matching' instance. 3557 */ 3558 3559 /* 3560 * ddi_prop_add: Add a software defined property 3561 */ 3562 3563 /* 3564 * define to get a new ddi_prop_t. 3565 * km_flags are KM_SLEEP or KM_NOSLEEP. 3566 */ 3567 3568 #define DDI_NEW_PROP_T(km_flags) \ 3569 (kmem_zalloc(sizeof (ddi_prop_t), km_flags)) 3570 3571 static int 3572 ddi_prop_add(dev_t dev, dev_info_t *dip, int flags, 3573 char *name, caddr_t value, int length) 3574 { 3575 ddi_prop_t *new_propp, *propp; 3576 ddi_prop_t **list_head = &(DEVI(dip)->devi_drv_prop_ptr); 3577 int km_flags = KM_NOSLEEP; 3578 int name_buf_len; 3579 3580 /* 3581 * If dev_t is DDI_DEV_T_ANY or name's length is zero return error. 3582 */ 3583 3584 if (dev == DDI_DEV_T_ANY || name == (char *)0 || strlen(name) == 0) 3585 return (DDI_PROP_INVAL_ARG); 3586 3587 if (flags & DDI_PROP_CANSLEEP) 3588 km_flags = KM_SLEEP; 3589 3590 if (flags & DDI_PROP_SYSTEM_DEF) 3591 list_head = &(DEVI(dip)->devi_sys_prop_ptr); 3592 else if (flags & DDI_PROP_HW_DEF) 3593 list_head = &(DEVI(dip)->devi_hw_prop_ptr); 3594 3595 if ((new_propp = DDI_NEW_PROP_T(km_flags)) == NULL) { 3596 cmn_err(CE_CONT, prop_no_mem_msg, name); 3597 return (DDI_PROP_NO_MEMORY); 3598 } 3599 3600 /* 3601 * If dev is major number 0, then we need to do a ddi_name_to_major 3602 * to get the real major number for the device. This needs to be 3603 * done because some drivers need to call ddi_prop_create in their 3604 * attach routines but they don't have a dev. By creating the dev 3605 * ourself if the major number is 0, drivers will not have to know what 3606 * their major number. They can just create a dev with major number 3607 * 0 and pass it in. For device 0, we will be doing a little extra 3608 * work by recreating the same dev that we already have, but its the 3609 * price you pay :-). 3610 * 3611 * This fixes bug #1098060. 3612 */ 3613 if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN) { 3614 new_propp->prop_dev = 3615 makedevice(ddi_name_to_major(DEVI(dip)->devi_binding_name), 3616 getminor(dev)); 3617 } else 3618 new_propp->prop_dev = dev; 3619 3620 /* 3621 * Allocate space for property name and copy it in... 3622 */ 3623 3624 name_buf_len = strlen(name) + 1; 3625 new_propp->prop_name = kmem_alloc(name_buf_len, km_flags); 3626 if (new_propp->prop_name == 0) { 3627 kmem_free(new_propp, sizeof (ddi_prop_t)); 3628 cmn_err(CE_CONT, prop_no_mem_msg, name); 3629 return (DDI_PROP_NO_MEMORY); 3630 } 3631 bcopy(name, new_propp->prop_name, name_buf_len); 3632 3633 /* 3634 * Set the property type 3635 */ 3636 new_propp->prop_flags = flags & DDI_PROP_TYPE_MASK; 3637 3638 /* 3639 * Set length and value ONLY if not an explicit property undefine: 3640 * NOTE: value and length are zero for explicit undefines. 3641 */ 3642 3643 if (flags & DDI_PROP_UNDEF_IT) { 3644 new_propp->prop_flags |= DDI_PROP_UNDEF_IT; 3645 } else { 3646 if ((new_propp->prop_len = length) != 0) { 3647 new_propp->prop_val = kmem_alloc(length, km_flags); 3648 if (new_propp->prop_val == 0) { 3649 kmem_free(new_propp->prop_name, name_buf_len); 3650 kmem_free(new_propp, sizeof (ddi_prop_t)); 3651 cmn_err(CE_CONT, prop_no_mem_msg, name); 3652 return (DDI_PROP_NO_MEMORY); 3653 } 3654 bcopy(value, new_propp->prop_val, length); 3655 } 3656 } 3657 3658 /* 3659 * Link property into beginning of list. (Properties are LIFO order.) 3660 */ 3661 3662 mutex_enter(&(DEVI(dip)->devi_lock)); 3663 propp = *list_head; 3664 new_propp->prop_next = propp; 3665 *list_head = new_propp; 3666 mutex_exit(&(DEVI(dip)->devi_lock)); 3667 return (DDI_PROP_SUCCESS); 3668 } 3669 3670 3671 /* 3672 * ddi_prop_change: Modify a software managed property value 3673 * 3674 * Set new length and value if found. 3675 * returns DDI_PROP_INVAL_ARG if dev is DDI_DEV_T_ANY or 3676 * input name is the NULL string. 3677 * returns DDI_PROP_NO_MEMORY if unable to allocate memory 3678 * 3679 * Note: an undef can be modified to be a define, 3680 * (you can't go the other way.) 3681 */ 3682 3683 static int 3684 ddi_prop_change(dev_t dev, dev_info_t *dip, int flags, 3685 char *name, caddr_t value, int length) 3686 { 3687 ddi_prop_t *propp; 3688 ddi_prop_t **ppropp; 3689 caddr_t p = NULL; 3690 3691 if ((dev == DDI_DEV_T_ANY) || (name == NULL) || (strlen(name) == 0)) 3692 return (DDI_PROP_INVAL_ARG); 3693 3694 /* 3695 * Preallocate buffer, even if we don't need it... 3696 */ 3697 if (length != 0) { 3698 p = kmem_alloc(length, (flags & DDI_PROP_CANSLEEP) ? 3699 KM_SLEEP : KM_NOSLEEP); 3700 if (p == NULL) { 3701 cmn_err(CE_CONT, prop_no_mem_msg, name); 3702 return (DDI_PROP_NO_MEMORY); 3703 } 3704 } 3705 3706 /* 3707 * If the dev_t value contains DDI_MAJOR_T_UNKNOWN for the major 3708 * number, a real dev_t value should be created based upon the dip's 3709 * binding driver. See ddi_prop_add... 3710 */ 3711 if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN) 3712 dev = makedevice( 3713 ddi_name_to_major(DEVI(dip)->devi_binding_name), 3714 getminor(dev)); 3715 3716 /* 3717 * Check to see if the property exists. If so we modify it. 3718 * Else we create it by calling ddi_prop_add(). 3719 */ 3720 mutex_enter(&(DEVI(dip)->devi_lock)); 3721 ppropp = &DEVI(dip)->devi_drv_prop_ptr; 3722 if (flags & DDI_PROP_SYSTEM_DEF) 3723 ppropp = &DEVI(dip)->devi_sys_prop_ptr; 3724 else if (flags & DDI_PROP_HW_DEF) 3725 ppropp = &DEVI(dip)->devi_hw_prop_ptr; 3726 3727 if ((propp = i_ddi_prop_search(dev, name, flags, ppropp)) != NULL) { 3728 /* 3729 * Need to reallocate buffer? If so, do it 3730 * carefully (reuse same space if new prop 3731 * is same size and non-NULL sized). 3732 */ 3733 if (length != 0) 3734 bcopy(value, p, length); 3735 3736 if (propp->prop_len != 0) 3737 kmem_free(propp->prop_val, propp->prop_len); 3738 3739 propp->prop_len = length; 3740 propp->prop_val = p; 3741 propp->prop_flags &= ~DDI_PROP_UNDEF_IT; 3742 mutex_exit(&(DEVI(dip)->devi_lock)); 3743 return (DDI_PROP_SUCCESS); 3744 } 3745 3746 mutex_exit(&(DEVI(dip)->devi_lock)); 3747 if (length != 0) 3748 kmem_free(p, length); 3749 3750 return (ddi_prop_add(dev, dip, flags, name, value, length)); 3751 } 3752 3753 /* 3754 * Common update routine used to update and encode a property. Creates 3755 * a property handle, calls the property encode routine, figures out if 3756 * the property already exists and updates if it does. Otherwise it 3757 * creates if it does not exist. 3758 */ 3759 int 3760 ddi_prop_update_common(dev_t match_dev, dev_info_t *dip, int flags, 3761 char *name, void *data, uint_t nelements, 3762 int (*prop_create)(prop_handle_t *, void *data, uint_t nelements)) 3763 { 3764 prop_handle_t ph; 3765 int rval; 3766 uint_t ourflags; 3767 3768 /* 3769 * If dev_t is DDI_DEV_T_ANY or name's length is zero, 3770 * return error. 3771 */ 3772 if (match_dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0) 3773 return (DDI_PROP_INVAL_ARG); 3774 3775 /* 3776 * Create the handle 3777 */ 3778 ph.ph_data = NULL; 3779 ph.ph_cur_pos = NULL; 3780 ph.ph_save_pos = NULL; 3781 ph.ph_size = 0; 3782 ph.ph_ops = &prop_1275_ops; 3783 3784 /* 3785 * ourflags: 3786 * For compatibility with the old interfaces. The old interfaces 3787 * didn't sleep by default and slept when the flag was set. These 3788 * interfaces to the opposite. So the old interfaces now set the 3789 * DDI_PROP_DONTSLEEP flag by default which tells us not to sleep. 3790 * 3791 * ph.ph_flags: 3792 * Blocked data or unblocked data allocation 3793 * for ph.ph_data in ddi_prop_encode_alloc() 3794 */ 3795 if (flags & DDI_PROP_DONTSLEEP) { 3796 ourflags = flags; 3797 ph.ph_flags = DDI_PROP_DONTSLEEP; 3798 } else { 3799 ourflags = flags | DDI_PROP_CANSLEEP; 3800 ph.ph_flags = DDI_PROP_CANSLEEP; 3801 } 3802 3803 /* 3804 * Encode the data and store it in the property handle by 3805 * calling the prop_encode routine. 3806 */ 3807 if ((rval = (*prop_create)(&ph, data, nelements)) != 3808 DDI_PROP_SUCCESS) { 3809 if (rval == DDI_PROP_NO_MEMORY) 3810 cmn_err(CE_CONT, prop_no_mem_msg, name); 3811 if (ph.ph_size != 0) 3812 kmem_free(ph.ph_data, ph.ph_size); 3813 return (rval); 3814 } 3815 3816 /* 3817 * The old interfaces use a stacking approach to creating 3818 * properties. If we are being called from the old interfaces, 3819 * the DDI_PROP_STACK_CREATE flag will be set, so we just do a 3820 * create without checking. 3821 */ 3822 if (flags & DDI_PROP_STACK_CREATE) { 3823 rval = ddi_prop_add(match_dev, dip, 3824 ourflags, name, ph.ph_data, ph.ph_size); 3825 } else { 3826 rval = ddi_prop_change(match_dev, dip, 3827 ourflags, name, ph.ph_data, ph.ph_size); 3828 } 3829 3830 /* 3831 * Free the encoded data allocated in the prop_encode routine. 3832 */ 3833 if (ph.ph_size != 0) 3834 kmem_free(ph.ph_data, ph.ph_size); 3835 3836 return (rval); 3837 } 3838 3839 3840 /* 3841 * ddi_prop_create: Define a managed property: 3842 * See above for details. 3843 */ 3844 3845 int 3846 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, 3847 char *name, caddr_t value, int length) 3848 { 3849 if (!(flag & DDI_PROP_CANSLEEP)) { 3850 flag |= DDI_PROP_DONTSLEEP; 3851 #ifdef DDI_PROP_DEBUG 3852 if (length != 0) 3853 cmn_err(CE_NOTE, "!ddi_prop_create: interface obsolete," 3854 "use ddi_prop_update (prop = %s, node = %s%d)", 3855 name, ddi_driver_name(dip), ddi_get_instance(dip)); 3856 #endif /* DDI_PROP_DEBUG */ 3857 } 3858 flag &= ~DDI_PROP_SYSTEM_DEF; 3859 flag |= DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY; 3860 return (ddi_prop_update_common(dev, dip, flag, name, 3861 value, length, ddi_prop_fm_encode_bytes)); 3862 } 3863 3864 int 3865 e_ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, 3866 char *name, caddr_t value, int length) 3867 { 3868 if (!(flag & DDI_PROP_CANSLEEP)) 3869 flag |= DDI_PROP_DONTSLEEP; 3870 flag |= DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY; 3871 return (ddi_prop_update_common(dev, dip, flag, 3872 name, value, length, ddi_prop_fm_encode_bytes)); 3873 } 3874 3875 int 3876 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, 3877 char *name, caddr_t value, int length) 3878 { 3879 ASSERT((flag & DDI_PROP_TYPE_MASK) == 0); 3880 3881 /* 3882 * If dev_t is DDI_DEV_T_ANY or name's length is zero, 3883 * return error. 3884 */ 3885 if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0) 3886 return (DDI_PROP_INVAL_ARG); 3887 3888 if (!(flag & DDI_PROP_CANSLEEP)) 3889 flag |= DDI_PROP_DONTSLEEP; 3890 flag &= ~DDI_PROP_SYSTEM_DEF; 3891 if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_NOTPROM), name) == 0) 3892 return (DDI_PROP_NOT_FOUND); 3893 3894 return (ddi_prop_update_common(dev, dip, 3895 (flag | DDI_PROP_TYPE_BYTE), name, 3896 value, length, ddi_prop_fm_encode_bytes)); 3897 } 3898 3899 int 3900 e_ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, 3901 char *name, caddr_t value, int length) 3902 { 3903 ASSERT((flag & DDI_PROP_TYPE_MASK) == 0); 3904 3905 /* 3906 * If dev_t is DDI_DEV_T_ANY or name's length is zero, 3907 * return error. 3908 */ 3909 if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0) 3910 return (DDI_PROP_INVAL_ARG); 3911 3912 if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_SYSTEM_DEF), name) == 0) 3913 return (DDI_PROP_NOT_FOUND); 3914 3915 if (!(flag & DDI_PROP_CANSLEEP)) 3916 flag |= DDI_PROP_DONTSLEEP; 3917 return (ddi_prop_update_common(dev, dip, 3918 (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE), 3919 name, value, length, ddi_prop_fm_encode_bytes)); 3920 } 3921 3922 3923 /* 3924 * Common lookup routine used to lookup and decode a property. 3925 * Creates a property handle, searches for the raw encoded data, 3926 * fills in the handle, and calls the property decode functions 3927 * passed in. 3928 * 3929 * This routine is not static because ddi_bus_prop_op() which lives in 3930 * ddi_impl.c calls it. No driver should be calling this routine. 3931 */ 3932 int 3933 ddi_prop_lookup_common(dev_t match_dev, dev_info_t *dip, 3934 uint_t flags, char *name, void *data, uint_t *nelements, 3935 int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements)) 3936 { 3937 int rval; 3938 uint_t ourflags; 3939 prop_handle_t ph; 3940 3941 if ((match_dev == DDI_DEV_T_NONE) || 3942 (name == NULL) || (strlen(name) == 0)) 3943 return (DDI_PROP_INVAL_ARG); 3944 3945 ourflags = (flags & DDI_PROP_DONTSLEEP) ? flags : 3946 flags | DDI_PROP_CANSLEEP; 3947 3948 /* 3949 * Get the encoded data 3950 */ 3951 bzero(&ph, sizeof (prop_handle_t)); 3952 3953 if ((flags & DDI_UNBND_DLPI2) || (flags & DDI_PROP_ROOTNEX_GLOBAL)) { 3954 /* 3955 * For rootnex and unbound dlpi style-2 devices, index into 3956 * the devnames' array and search the global 3957 * property list. 3958 */ 3959 ourflags &= ~DDI_UNBND_DLPI2; 3960 rval = i_ddi_prop_search_global(match_dev, 3961 ourflags, name, &ph.ph_data, &ph.ph_size); 3962 } else { 3963 rval = ddi_prop_search_common(match_dev, dip, 3964 PROP_LEN_AND_VAL_ALLOC, ourflags, name, 3965 &ph.ph_data, &ph.ph_size); 3966 3967 } 3968 3969 if (rval != DDI_PROP_SUCCESS && rval != DDI_PROP_FOUND_1275) { 3970 ASSERT(ph.ph_data == NULL); 3971 ASSERT(ph.ph_size == 0); 3972 return (rval); 3973 } 3974 3975 /* 3976 * If the encoded data came from a OBP or software 3977 * use the 1275 OBP decode/encode routines. 3978 */ 3979 ph.ph_cur_pos = ph.ph_data; 3980 ph.ph_save_pos = ph.ph_data; 3981 ph.ph_ops = &prop_1275_ops; 3982 ph.ph_flags = (rval == DDI_PROP_FOUND_1275) ? PH_FROM_PROM : 0; 3983 3984 rval = (*prop_decoder)(&ph, data, nelements); 3985 3986 /* 3987 * Free the encoded data 3988 */ 3989 if (ph.ph_size != 0) 3990 kmem_free(ph.ph_data, ph.ph_size); 3991 3992 return (rval); 3993 } 3994 3995 /* 3996 * Lookup and return an array of composite properties. The driver must 3997 * provide the decode routine. 3998 */ 3999 int 4000 ddi_prop_lookup(dev_t match_dev, dev_info_t *dip, 4001 uint_t flags, char *name, void *data, uint_t *nelements, 4002 int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements)) 4003 { 4004 return (ddi_prop_lookup_common(match_dev, dip, 4005 (flags | DDI_PROP_TYPE_COMPOSITE), name, 4006 data, nelements, prop_decoder)); 4007 } 4008 4009 /* 4010 * Return 1 if a property exists (no type checking done). 4011 * Return 0 if it does not exist. 4012 */ 4013 int 4014 ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name) 4015 { 4016 int i; 4017 uint_t x = 0; 4018 4019 i = ddi_prop_search_common(match_dev, dip, PROP_EXISTS, 4020 flags | DDI_PROP_TYPE_MASK, name, NULL, &x); 4021 return (i == DDI_PROP_SUCCESS || i == DDI_PROP_FOUND_1275); 4022 } 4023 4024 4025 /* 4026 * Update an array of composite properties. The driver must 4027 * provide the encode routine. 4028 */ 4029 int 4030 ddi_prop_update(dev_t match_dev, dev_info_t *dip, 4031 char *name, void *data, uint_t nelements, 4032 int (*prop_create)(prop_handle_t *, void *data, uint_t nelements)) 4033 { 4034 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_COMPOSITE, 4035 name, data, nelements, prop_create)); 4036 } 4037 4038 /* 4039 * Get a single integer or boolean property and return it. 4040 * If the property does not exists, or cannot be decoded, 4041 * then return the defvalue passed in. 4042 * 4043 * This routine always succeeds. 4044 */ 4045 int 4046 ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags, 4047 char *name, int defvalue) 4048 { 4049 int data; 4050 uint_t nelements; 4051 int rval; 4052 4053 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4054 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) { 4055 #ifdef DEBUG 4056 if (dip != NULL) { 4057 cmn_err(CE_WARN, "ddi_prop_get_int: invalid flag" 4058 " 0x%x (prop = %s, node = %s%d)", flags, 4059 name, ddi_driver_name(dip), ddi_get_instance(dip)); 4060 } 4061 #endif /* DEBUG */ 4062 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4063 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4064 } 4065 4066 if ((rval = ddi_prop_lookup_common(match_dev, dip, 4067 (flags | DDI_PROP_TYPE_INT), name, &data, &nelements, 4068 ddi_prop_fm_decode_int)) != DDI_PROP_SUCCESS) { 4069 if (rval == DDI_PROP_END_OF_DATA) 4070 data = 1; 4071 else 4072 data = defvalue; 4073 } 4074 return (data); 4075 } 4076 4077 /* 4078 * Get a single 64 bit integer or boolean property and return it. 4079 * If the property does not exists, or cannot be decoded, 4080 * then return the defvalue passed in. 4081 * 4082 * This routine always succeeds. 4083 */ 4084 int64_t 4085 ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags, 4086 char *name, int64_t defvalue) 4087 { 4088 int64_t data; 4089 uint_t nelements; 4090 int rval; 4091 4092 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4093 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) { 4094 #ifdef DEBUG 4095 if (dip != NULL) { 4096 cmn_err(CE_WARN, "ddi_prop_get_int64: invalid flag" 4097 " 0x%x (prop = %s, node = %s%d)", flags, 4098 name, ddi_driver_name(dip), ddi_get_instance(dip)); 4099 } 4100 #endif /* DEBUG */ 4101 return (DDI_PROP_INVAL_ARG); 4102 } 4103 4104 if ((rval = ddi_prop_lookup_common(match_dev, dip, 4105 (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM), 4106 name, &data, &nelements, ddi_prop_fm_decode_int64)) 4107 != DDI_PROP_SUCCESS) { 4108 if (rval == DDI_PROP_END_OF_DATA) 4109 data = 1; 4110 else 4111 data = defvalue; 4112 } 4113 return (data); 4114 } 4115 4116 /* 4117 * Get an array of integer property 4118 */ 4119 int 4120 ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 4121 char *name, int **data, uint_t *nelements) 4122 { 4123 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4124 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) { 4125 #ifdef DEBUG 4126 if (dip != NULL) { 4127 cmn_err(CE_WARN, "ddi_prop_lookup_int_array: " 4128 "invalid flag 0x%x (prop = %s, node = %s%d)", 4129 flags, name, ddi_driver_name(dip), 4130 ddi_get_instance(dip)); 4131 } 4132 #endif /* DEBUG */ 4133 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4134 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4135 } 4136 4137 return (ddi_prop_lookup_common(match_dev, dip, 4138 (flags | DDI_PROP_TYPE_INT), name, data, 4139 nelements, ddi_prop_fm_decode_ints)); 4140 } 4141 4142 /* 4143 * Get an array of 64 bit integer properties 4144 */ 4145 int 4146 ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 4147 char *name, int64_t **data, uint_t *nelements) 4148 { 4149 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4150 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) { 4151 #ifdef DEBUG 4152 if (dip != NULL) { 4153 cmn_err(CE_WARN, "ddi_prop_lookup_int64_array: " 4154 "invalid flag 0x%x (prop = %s, node = %s%d)", 4155 flags, name, ddi_driver_name(dip), 4156 ddi_get_instance(dip)); 4157 } 4158 #endif /* DEBUG */ 4159 return (DDI_PROP_INVAL_ARG); 4160 } 4161 4162 return (ddi_prop_lookup_common(match_dev, dip, 4163 (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM), 4164 name, data, nelements, ddi_prop_fm_decode_int64_array)); 4165 } 4166 4167 /* 4168 * Update a single integer property. If the property exists on the drivers 4169 * property list it updates, else it creates it. 4170 */ 4171 int 4172 ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, 4173 char *name, int data) 4174 { 4175 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT, 4176 name, &data, 1, ddi_prop_fm_encode_ints)); 4177 } 4178 4179 /* 4180 * Update a single 64 bit integer property. 4181 * Update the driver property list if it exists, else create it. 4182 */ 4183 int 4184 ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, 4185 char *name, int64_t data) 4186 { 4187 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64, 4188 name, &data, 1, ddi_prop_fm_encode_int64)); 4189 } 4190 4191 int 4192 e_ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, 4193 char *name, int data) 4194 { 4195 return (ddi_prop_update_common(match_dev, dip, 4196 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT, 4197 name, &data, 1, ddi_prop_fm_encode_ints)); 4198 } 4199 4200 int 4201 e_ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, 4202 char *name, int64_t data) 4203 { 4204 return (ddi_prop_update_common(match_dev, dip, 4205 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64, 4206 name, &data, 1, ddi_prop_fm_encode_int64)); 4207 } 4208 4209 /* 4210 * Update an array of integer property. If the property exists on the drivers 4211 * property list it updates, else it creates it. 4212 */ 4213 int 4214 ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, 4215 char *name, int *data, uint_t nelements) 4216 { 4217 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT, 4218 name, data, nelements, ddi_prop_fm_encode_ints)); 4219 } 4220 4221 /* 4222 * Update an array of 64 bit integer properties. 4223 * Update the driver property list if it exists, else create it. 4224 */ 4225 int 4226 ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, 4227 char *name, int64_t *data, uint_t nelements) 4228 { 4229 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64, 4230 name, data, nelements, ddi_prop_fm_encode_int64)); 4231 } 4232 4233 int 4234 e_ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, 4235 char *name, int64_t *data, uint_t nelements) 4236 { 4237 return (ddi_prop_update_common(match_dev, dip, 4238 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64, 4239 name, data, nelements, ddi_prop_fm_encode_int64)); 4240 } 4241 4242 int 4243 e_ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, 4244 char *name, int *data, uint_t nelements) 4245 { 4246 return (ddi_prop_update_common(match_dev, dip, 4247 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT, 4248 name, data, nelements, ddi_prop_fm_encode_ints)); 4249 } 4250 4251 /* 4252 * Get a single string property. 4253 */ 4254 int 4255 ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags, 4256 char *name, char **data) 4257 { 4258 uint_t x; 4259 4260 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4261 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) { 4262 #ifdef DEBUG 4263 if (dip != NULL) { 4264 cmn_err(CE_WARN, "%s: invalid flag 0x%x " 4265 "(prop = %s, node = %s%d); invalid bits ignored", 4266 "ddi_prop_lookup_string", flags, name, 4267 ddi_driver_name(dip), ddi_get_instance(dip)); 4268 } 4269 #endif /* DEBUG */ 4270 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4271 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4272 } 4273 4274 return (ddi_prop_lookup_common(match_dev, dip, 4275 (flags | DDI_PROP_TYPE_STRING), name, data, 4276 &x, ddi_prop_fm_decode_string)); 4277 } 4278 4279 /* 4280 * Get an array of strings property. 4281 */ 4282 int 4283 ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 4284 char *name, char ***data, uint_t *nelements) 4285 { 4286 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4287 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) { 4288 #ifdef DEBUG 4289 if (dip != NULL) { 4290 cmn_err(CE_WARN, "ddi_prop_lookup_string_array: " 4291 "invalid flag 0x%x (prop = %s, node = %s%d)", 4292 flags, name, ddi_driver_name(dip), 4293 ddi_get_instance(dip)); 4294 } 4295 #endif /* DEBUG */ 4296 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4297 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4298 } 4299 4300 return (ddi_prop_lookup_common(match_dev, dip, 4301 (flags | DDI_PROP_TYPE_STRING), name, data, 4302 nelements, ddi_prop_fm_decode_strings)); 4303 } 4304 4305 /* 4306 * Update a single string property. 4307 */ 4308 int 4309 ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, 4310 char *name, char *data) 4311 { 4312 return (ddi_prop_update_common(match_dev, dip, 4313 DDI_PROP_TYPE_STRING, name, &data, 1, 4314 ddi_prop_fm_encode_string)); 4315 } 4316 4317 int 4318 e_ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, 4319 char *name, char *data) 4320 { 4321 return (ddi_prop_update_common(match_dev, dip, 4322 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING, 4323 name, &data, 1, ddi_prop_fm_encode_string)); 4324 } 4325 4326 4327 /* 4328 * Update an array of strings property. 4329 */ 4330 int 4331 ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, 4332 char *name, char **data, uint_t nelements) 4333 { 4334 return (ddi_prop_update_common(match_dev, dip, 4335 DDI_PROP_TYPE_STRING, name, data, nelements, 4336 ddi_prop_fm_encode_strings)); 4337 } 4338 4339 int 4340 e_ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, 4341 char *name, char **data, uint_t nelements) 4342 { 4343 return (ddi_prop_update_common(match_dev, dip, 4344 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING, 4345 name, data, nelements, 4346 ddi_prop_fm_encode_strings)); 4347 } 4348 4349 4350 /* 4351 * Get an array of bytes property. 4352 */ 4353 int 4354 ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 4355 char *name, uchar_t **data, uint_t *nelements) 4356 { 4357 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4358 LDI_DEV_T_ANY | DDI_UNBND_DLPI2 | DDI_PROP_ROOTNEX_GLOBAL)) { 4359 #ifdef DEBUG 4360 if (dip != NULL) { 4361 cmn_err(CE_WARN, "ddi_prop_lookup_byte_array: " 4362 " invalid flag 0x%x (prop = %s, node = %s%d)", 4363 flags, name, ddi_driver_name(dip), 4364 ddi_get_instance(dip)); 4365 } 4366 #endif /* DEBUG */ 4367 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4368 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4369 } 4370 4371 return (ddi_prop_lookup_common(match_dev, dip, 4372 (flags | DDI_PROP_TYPE_BYTE), name, data, 4373 nelements, ddi_prop_fm_decode_bytes)); 4374 } 4375 4376 /* 4377 * Update an array of bytes property. 4378 */ 4379 int 4380 ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, 4381 char *name, uchar_t *data, uint_t nelements) 4382 { 4383 if (nelements == 0) 4384 return (DDI_PROP_INVAL_ARG); 4385 4386 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_BYTE, 4387 name, data, nelements, ddi_prop_fm_encode_bytes)); 4388 } 4389 4390 4391 int 4392 e_ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, 4393 char *name, uchar_t *data, uint_t nelements) 4394 { 4395 if (nelements == 0) 4396 return (DDI_PROP_INVAL_ARG); 4397 4398 return (ddi_prop_update_common(match_dev, dip, 4399 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE, 4400 name, data, nelements, ddi_prop_fm_encode_bytes)); 4401 } 4402 4403 4404 /* 4405 * ddi_prop_remove_common: Undefine a managed property: 4406 * Input dev_t must match dev_t when defined. 4407 * Returns DDI_PROP_NOT_FOUND, possibly. 4408 * DDI_PROP_INVAL_ARG is also possible if dev is 4409 * DDI_DEV_T_ANY or incoming name is the NULL string. 4410 */ 4411 int 4412 ddi_prop_remove_common(dev_t dev, dev_info_t *dip, char *name, int flag) 4413 { 4414 ddi_prop_t **list_head = &(DEVI(dip)->devi_drv_prop_ptr); 4415 ddi_prop_t *propp; 4416 ddi_prop_t *lastpropp = NULL; 4417 4418 if ((dev == DDI_DEV_T_ANY) || (name == (char *)0) || 4419 (strlen(name) == 0)) { 4420 return (DDI_PROP_INVAL_ARG); 4421 } 4422 4423 if (flag & DDI_PROP_SYSTEM_DEF) 4424 list_head = &(DEVI(dip)->devi_sys_prop_ptr); 4425 else if (flag & DDI_PROP_HW_DEF) 4426 list_head = &(DEVI(dip)->devi_hw_prop_ptr); 4427 4428 mutex_enter(&(DEVI(dip)->devi_lock)); 4429 4430 for (propp = *list_head; propp != NULL; propp = propp->prop_next) { 4431 if (DDI_STRSAME(propp->prop_name, name) && 4432 (dev == propp->prop_dev)) { 4433 /* 4434 * Unlink this propp allowing for it to 4435 * be first in the list: 4436 */ 4437 4438 if (lastpropp == NULL) 4439 *list_head = propp->prop_next; 4440 else 4441 lastpropp->prop_next = propp->prop_next; 4442 4443 mutex_exit(&(DEVI(dip)->devi_lock)); 4444 4445 /* 4446 * Free memory and return... 4447 */ 4448 kmem_free(propp->prop_name, 4449 strlen(propp->prop_name) + 1); 4450 if (propp->prop_len != 0) 4451 kmem_free(propp->prop_val, propp->prop_len); 4452 kmem_free(propp, sizeof (ddi_prop_t)); 4453 return (DDI_PROP_SUCCESS); 4454 } 4455 lastpropp = propp; 4456 } 4457 mutex_exit(&(DEVI(dip)->devi_lock)); 4458 return (DDI_PROP_NOT_FOUND); 4459 } 4460 4461 int 4462 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name) 4463 { 4464 return (ddi_prop_remove_common(dev, dip, name, 0)); 4465 } 4466 4467 int 4468 e_ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name) 4469 { 4470 return (ddi_prop_remove_common(dev, dip, name, DDI_PROP_SYSTEM_DEF)); 4471 } 4472 4473 /* 4474 * e_ddi_prop_list_delete: remove a list of properties 4475 * Note that the caller needs to provide the required protection 4476 * (eg. devi_lock if these properties are still attached to a devi) 4477 */ 4478 void 4479 e_ddi_prop_list_delete(ddi_prop_t *props) 4480 { 4481 i_ddi_prop_list_delete(props); 4482 } 4483 4484 /* 4485 * ddi_prop_remove_all_common: 4486 * Used before unloading a driver to remove 4487 * all properties. (undefines all dev_t's props.) 4488 * Also removes `explicitly undefined' props. 4489 * No errors possible. 4490 */ 4491 void 4492 ddi_prop_remove_all_common(dev_info_t *dip, int flag) 4493 { 4494 ddi_prop_t **list_head; 4495 4496 mutex_enter(&(DEVI(dip)->devi_lock)); 4497 if (flag & DDI_PROP_SYSTEM_DEF) { 4498 list_head = &(DEVI(dip)->devi_sys_prop_ptr); 4499 } else if (flag & DDI_PROP_HW_DEF) { 4500 list_head = &(DEVI(dip)->devi_hw_prop_ptr); 4501 } else { 4502 list_head = &(DEVI(dip)->devi_drv_prop_ptr); 4503 } 4504 i_ddi_prop_list_delete(*list_head); 4505 *list_head = NULL; 4506 mutex_exit(&(DEVI(dip)->devi_lock)); 4507 } 4508 4509 4510 /* 4511 * ddi_prop_remove_all: Remove all driver prop definitions. 4512 */ 4513 4514 void 4515 ddi_prop_remove_all(dev_info_t *dip) 4516 { 4517 i_ddi_prop_dyn_driver_set(dip, NULL); 4518 ddi_prop_remove_all_common(dip, 0); 4519 } 4520 4521 /* 4522 * e_ddi_prop_remove_all: Remove all system prop definitions. 4523 */ 4524 4525 void 4526 e_ddi_prop_remove_all(dev_info_t *dip) 4527 { 4528 ddi_prop_remove_all_common(dip, (int)DDI_PROP_SYSTEM_DEF); 4529 } 4530 4531 4532 /* 4533 * ddi_prop_undefine: Explicitly undefine a property. Property 4534 * searches which match this property return 4535 * the error code DDI_PROP_UNDEFINED. 4536 * 4537 * Use ddi_prop_remove to negate effect of 4538 * ddi_prop_undefine 4539 * 4540 * See above for error returns. 4541 */ 4542 4543 int 4544 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name) 4545 { 4546 if (!(flag & DDI_PROP_CANSLEEP)) 4547 flag |= DDI_PROP_DONTSLEEP; 4548 flag |= DDI_PROP_STACK_CREATE | DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY; 4549 return (ddi_prop_update_common(dev, dip, flag, 4550 name, NULL, 0, ddi_prop_fm_encode_bytes)); 4551 } 4552 4553 int 4554 e_ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name) 4555 { 4556 if (!(flag & DDI_PROP_CANSLEEP)) 4557 flag |= DDI_PROP_DONTSLEEP; 4558 flag |= DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE | 4559 DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY; 4560 return (ddi_prop_update_common(dev, dip, flag, 4561 name, NULL, 0, ddi_prop_fm_encode_bytes)); 4562 } 4563 4564 /* 4565 * Support for gathering dynamic properties in devinfo snapshot. 4566 */ 4567 void 4568 i_ddi_prop_dyn_driver_set(dev_info_t *dip, i_ddi_prop_dyn_t *dp) 4569 { 4570 DEVI(dip)->devi_prop_dyn_driver = dp; 4571 } 4572 4573 i_ddi_prop_dyn_t * 4574 i_ddi_prop_dyn_driver_get(dev_info_t *dip) 4575 { 4576 return (DEVI(dip)->devi_prop_dyn_driver); 4577 } 4578 4579 void 4580 i_ddi_prop_dyn_parent_set(dev_info_t *dip, i_ddi_prop_dyn_t *dp) 4581 { 4582 DEVI(dip)->devi_prop_dyn_parent = dp; 4583 } 4584 4585 i_ddi_prop_dyn_t * 4586 i_ddi_prop_dyn_parent_get(dev_info_t *dip) 4587 { 4588 return (DEVI(dip)->devi_prop_dyn_parent); 4589 } 4590 4591 void 4592 i_ddi_prop_dyn_cache_invalidate(dev_info_t *dip, i_ddi_prop_dyn_t *dp) 4593 { 4594 /* for now we invalidate the entire cached snapshot */ 4595 if (dip && dp) 4596 i_ddi_di_cache_invalidate(KM_SLEEP); 4597 } 4598 4599 /* ARGSUSED */ 4600 void 4601 ddi_prop_cache_invalidate(dev_t dev, dev_info_t *dip, char *name, int flags) 4602 { 4603 /* for now we invalidate the entire cached snapshot */ 4604 i_ddi_di_cache_invalidate(KM_SLEEP); 4605 } 4606 4607 4608 /* 4609 * Code to search hardware layer (PROM), if it exists, on behalf of child. 4610 * 4611 * if input dip != child_dip, then call is on behalf of child 4612 * to search PROM, do it via ddi_prop_search_common() and ascend only 4613 * if allowed. 4614 * 4615 * if input dip == ch_dip (child_dip), call is on behalf of root driver, 4616 * to search for PROM defined props only. 4617 * 4618 * Note that the PROM search is done only if the requested dev 4619 * is either DDI_DEV_T_ANY or DDI_DEV_T_NONE. PROM properties 4620 * have no associated dev, thus are automatically associated with 4621 * DDI_DEV_T_NONE. 4622 * 4623 * Modifying flag DDI_PROP_NOTPROM inhibits the search in the h/w layer. 4624 * 4625 * Returns DDI_PROP_FOUND_1275 if found to indicate to framework 4626 * that the property resides in the prom. 4627 */ 4628 int 4629 impl_ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, 4630 ddi_prop_op_t prop_op, int mod_flags, 4631 char *name, caddr_t valuep, int *lengthp) 4632 { 4633 int len; 4634 caddr_t buffer; 4635 4636 /* 4637 * If requested dev is DDI_DEV_T_NONE or DDI_DEV_T_ANY, then 4638 * look in caller's PROM if it's a self identifying device... 4639 * 4640 * Note that this is very similar to ddi_prop_op, but we 4641 * search the PROM instead of the s/w defined properties, 4642 * and we are called on by the parent driver to do this for 4643 * the child. 4644 */ 4645 4646 if (((dev == DDI_DEV_T_NONE) || (dev == DDI_DEV_T_ANY)) && 4647 ndi_dev_is_prom_node(ch_dip) && 4648 ((mod_flags & DDI_PROP_NOTPROM) == 0)) { 4649 len = prom_getproplen((pnode_t)DEVI(ch_dip)->devi_nodeid, name); 4650 if (len == -1) { 4651 return (DDI_PROP_NOT_FOUND); 4652 } 4653 4654 /* 4655 * If exists only request, we're done 4656 */ 4657 if (prop_op == PROP_EXISTS) { 4658 return (DDI_PROP_FOUND_1275); 4659 } 4660 4661 /* 4662 * If length only request or prop length == 0, get out 4663 */ 4664 if ((prop_op == PROP_LEN) || (len == 0)) { 4665 *lengthp = len; 4666 return (DDI_PROP_FOUND_1275); 4667 } 4668 4669 /* 4670 * Allocate buffer if required... (either way `buffer' 4671 * is receiving address). 4672 */ 4673 4674 switch (prop_op) { 4675 4676 case PROP_LEN_AND_VAL_ALLOC: 4677 4678 buffer = kmem_alloc((size_t)len, 4679 mod_flags & DDI_PROP_CANSLEEP ? 4680 KM_SLEEP : KM_NOSLEEP); 4681 if (buffer == NULL) { 4682 return (DDI_PROP_NO_MEMORY); 4683 } 4684 *(caddr_t *)valuep = buffer; 4685 break; 4686 4687 case PROP_LEN_AND_VAL_BUF: 4688 4689 if (len > (*lengthp)) { 4690 *lengthp = len; 4691 return (DDI_PROP_BUF_TOO_SMALL); 4692 } 4693 4694 buffer = valuep; 4695 break; 4696 4697 default: 4698 break; 4699 } 4700 4701 /* 4702 * Call the PROM function to do the copy. 4703 */ 4704 (void) prom_getprop((pnode_t)DEVI(ch_dip)->devi_nodeid, 4705 name, buffer); 4706 4707 *lengthp = len; /* return the actual length to the caller */ 4708 (void) impl_fix_props(dip, ch_dip, name, len, buffer); 4709 return (DDI_PROP_FOUND_1275); 4710 } 4711 4712 return (DDI_PROP_NOT_FOUND); 4713 } 4714 4715 /* 4716 * The ddi_bus_prop_op default bus nexus prop op function. 4717 * 4718 * Code to search hardware layer (PROM), if it exists, 4719 * on behalf of child, then, if appropriate, ascend and check 4720 * my own software defined properties... 4721 */ 4722 int 4723 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, 4724 ddi_prop_op_t prop_op, int mod_flags, 4725 char *name, caddr_t valuep, int *lengthp) 4726 { 4727 int error; 4728 4729 error = impl_ddi_bus_prop_op(dev, dip, ch_dip, prop_op, mod_flags, 4730 name, valuep, lengthp); 4731 4732 if (error == DDI_PROP_SUCCESS || error == DDI_PROP_FOUND_1275 || 4733 error == DDI_PROP_BUF_TOO_SMALL) 4734 return (error); 4735 4736 if (error == DDI_PROP_NO_MEMORY) { 4737 cmn_err(CE_CONT, prop_no_mem_msg, name); 4738 return (DDI_PROP_NO_MEMORY); 4739 } 4740 4741 /* 4742 * Check the 'options' node as a last resort 4743 */ 4744 if ((mod_flags & DDI_PROP_DONTPASS) != 0) 4745 return (DDI_PROP_NOT_FOUND); 4746 4747 if (ch_dip == ddi_root_node()) { 4748 /* 4749 * As a last resort, when we've reached 4750 * the top and still haven't found the 4751 * property, see if the desired property 4752 * is attached to the options node. 4753 * 4754 * The options dip is attached right after boot. 4755 */ 4756 ASSERT(options_dip != NULL); 4757 /* 4758 * Force the "don't pass" flag to *just* see 4759 * what the options node has to offer. 4760 */ 4761 return (ddi_prop_search_common(dev, options_dip, prop_op, 4762 mod_flags|DDI_PROP_DONTPASS, name, valuep, 4763 (uint_t *)lengthp)); 4764 } 4765 4766 /* 4767 * Otherwise, continue search with parent's s/w defined properties... 4768 * NOTE: Using `dip' in following call increments the level. 4769 */ 4770 4771 return (ddi_prop_search_common(dev, dip, prop_op, mod_flags, 4772 name, valuep, (uint_t *)lengthp)); 4773 } 4774 4775 /* 4776 * External property functions used by other parts of the kernel... 4777 */ 4778 4779 /* 4780 * e_ddi_getlongprop: See comments for ddi_get_longprop. 4781 */ 4782 4783 int 4784 e_ddi_getlongprop(dev_t dev, vtype_t type, char *name, int flags, 4785 caddr_t valuep, int *lengthp) 4786 { 4787 _NOTE(ARGUNUSED(type)) 4788 dev_info_t *devi; 4789 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_ALLOC; 4790 int error; 4791 4792 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4793 return (DDI_PROP_NOT_FOUND); 4794 4795 error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp); 4796 ddi_release_devi(devi); 4797 return (error); 4798 } 4799 4800 /* 4801 * e_ddi_getlongprop_buf: See comments for ddi_getlongprop_buf. 4802 */ 4803 4804 int 4805 e_ddi_getlongprop_buf(dev_t dev, vtype_t type, char *name, int flags, 4806 caddr_t valuep, int *lengthp) 4807 { 4808 _NOTE(ARGUNUSED(type)) 4809 dev_info_t *devi; 4810 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF; 4811 int error; 4812 4813 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4814 return (DDI_PROP_NOT_FOUND); 4815 4816 error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp); 4817 ddi_release_devi(devi); 4818 return (error); 4819 } 4820 4821 /* 4822 * e_ddi_getprop: See comments for ddi_getprop. 4823 */ 4824 int 4825 e_ddi_getprop(dev_t dev, vtype_t type, char *name, int flags, int defvalue) 4826 { 4827 _NOTE(ARGUNUSED(type)) 4828 dev_info_t *devi; 4829 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF; 4830 int propvalue = defvalue; 4831 int proplength = sizeof (int); 4832 int error; 4833 4834 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4835 return (defvalue); 4836 4837 error = cdev_prop_op(dev, devi, prop_op, 4838 flags, name, (caddr_t)&propvalue, &proplength); 4839 ddi_release_devi(devi); 4840 4841 if ((error == DDI_PROP_SUCCESS) && (proplength == 0)) 4842 propvalue = 1; 4843 4844 return (propvalue); 4845 } 4846 4847 /* 4848 * e_ddi_getprop_int64: 4849 * 4850 * This is a typed interfaces, but predates typed properties. With the 4851 * introduction of typed properties the framework tries to ensure 4852 * consistent use of typed interfaces. This is why TYPE_INT64 is not 4853 * part of TYPE_ANY. E_ddi_getprop_int64 is a special case where a 4854 * typed interface invokes legacy (non-typed) interfaces: 4855 * cdev_prop_op(), prop_op(9E), ddi_prop_op(9F)). In this case the 4856 * fact that TYPE_INT64 is not part of TYPE_ANY matters. To support 4857 * this type of lookup as a single operation we invoke the legacy 4858 * non-typed interfaces with the special CONSUMER_TYPED bit set. The 4859 * framework ddi_prop_op(9F) implementation is expected to check for 4860 * CONSUMER_TYPED and, if set, expand type bits beyond TYPE_ANY 4861 * (currently TYPE_INT64). 4862 */ 4863 int64_t 4864 e_ddi_getprop_int64(dev_t dev, vtype_t type, char *name, 4865 int flags, int64_t defvalue) 4866 { 4867 _NOTE(ARGUNUSED(type)) 4868 dev_info_t *devi; 4869 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF; 4870 int64_t propvalue = defvalue; 4871 int proplength = sizeof (propvalue); 4872 int error; 4873 4874 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4875 return (defvalue); 4876 4877 error = cdev_prop_op(dev, devi, prop_op, flags | 4878 DDI_PROP_CONSUMER_TYPED, name, (caddr_t)&propvalue, &proplength); 4879 ddi_release_devi(devi); 4880 4881 if ((error == DDI_PROP_SUCCESS) && (proplength == 0)) 4882 propvalue = 1; 4883 4884 return (propvalue); 4885 } 4886 4887 /* 4888 * e_ddi_getproplen: See comments for ddi_getproplen. 4889 */ 4890 int 4891 e_ddi_getproplen(dev_t dev, vtype_t type, char *name, int flags, int *lengthp) 4892 { 4893 _NOTE(ARGUNUSED(type)) 4894 dev_info_t *devi; 4895 ddi_prop_op_t prop_op = PROP_LEN; 4896 int error; 4897 4898 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4899 return (DDI_PROP_NOT_FOUND); 4900 4901 error = cdev_prop_op(dev, devi, prop_op, flags, name, NULL, lengthp); 4902 ddi_release_devi(devi); 4903 return (error); 4904 } 4905 4906 /* 4907 * Routines to get at elements of the dev_info structure 4908 */ 4909 4910 /* 4911 * ddi_binding_name: Return the driver binding name of the devinfo node 4912 * This is the name the OS used to bind the node to a driver. 4913 */ 4914 char * 4915 ddi_binding_name(dev_info_t *dip) 4916 { 4917 return (DEVI(dip)->devi_binding_name); 4918 } 4919 4920 /* 4921 * ddi_driver_major: Return the major number of the driver that 4922 * the supplied devinfo is bound to (-1 if none) 4923 */ 4924 major_t 4925 ddi_driver_major(dev_info_t *devi) 4926 { 4927 return (DEVI(devi)->devi_major); 4928 } 4929 4930 /* 4931 * ddi_driver_name: Return the normalized driver name. this is the 4932 * actual driver name 4933 */ 4934 const char * 4935 ddi_driver_name(dev_info_t *devi) 4936 { 4937 major_t major; 4938 4939 if ((major = ddi_driver_major(devi)) != DDI_MAJOR_T_NONE) 4940 return (ddi_major_to_name(major)); 4941 4942 return (ddi_node_name(devi)); 4943 } 4944 4945 /* 4946 * i_ddi_set_binding_name: Set binding name. 4947 * 4948 * Set the binding name to the given name. 4949 * This routine is for use by the ddi implementation, not by drivers. 4950 */ 4951 void 4952 i_ddi_set_binding_name(dev_info_t *dip, char *name) 4953 { 4954 DEVI(dip)->devi_binding_name = name; 4955 4956 } 4957 4958 /* 4959 * ddi_get_name: A synonym of ddi_binding_name() ... returns a name 4960 * the implementation has used to bind the node to a driver. 4961 */ 4962 char * 4963 ddi_get_name(dev_info_t *dip) 4964 { 4965 return (DEVI(dip)->devi_binding_name); 4966 } 4967 4968 /* 4969 * ddi_node_name: Return the name property of the devinfo node 4970 * This may differ from ddi_binding_name if the node name 4971 * does not define a binding to a driver (i.e. generic names). 4972 */ 4973 char * 4974 ddi_node_name(dev_info_t *dip) 4975 { 4976 return (DEVI(dip)->devi_node_name); 4977 } 4978 4979 4980 /* 4981 * ddi_get_nodeid: Get nodeid stored in dev_info structure. 4982 */ 4983 int 4984 ddi_get_nodeid(dev_info_t *dip) 4985 { 4986 return (DEVI(dip)->devi_nodeid); 4987 } 4988 4989 int 4990 ddi_get_instance(dev_info_t *dip) 4991 { 4992 return (DEVI(dip)->devi_instance); 4993 } 4994 4995 struct dev_ops * 4996 ddi_get_driver(dev_info_t *dip) 4997 { 4998 return (DEVI(dip)->devi_ops); 4999 } 5000 5001 void 5002 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo) 5003 { 5004 DEVI(dip)->devi_ops = devo; 5005 } 5006 5007 /* 5008 * ddi_set_driver_private/ddi_get_driver_private: 5009 * Get/set device driver private data in devinfo. 5010 */ 5011 void 5012 ddi_set_driver_private(dev_info_t *dip, void *data) 5013 { 5014 DEVI(dip)->devi_driver_data = data; 5015 } 5016 5017 void * 5018 ddi_get_driver_private(dev_info_t *dip) 5019 { 5020 return (DEVI(dip)->devi_driver_data); 5021 } 5022 5023 /* 5024 * ddi_get_parent, ddi_get_child, ddi_get_next_sibling 5025 */ 5026 5027 dev_info_t * 5028 ddi_get_parent(dev_info_t *dip) 5029 { 5030 return ((dev_info_t *)DEVI(dip)->devi_parent); 5031 } 5032 5033 dev_info_t * 5034 ddi_get_child(dev_info_t *dip) 5035 { 5036 return ((dev_info_t *)DEVI(dip)->devi_child); 5037 } 5038 5039 dev_info_t * 5040 ddi_get_next_sibling(dev_info_t *dip) 5041 { 5042 return ((dev_info_t *)DEVI(dip)->devi_sibling); 5043 } 5044 5045 dev_info_t * 5046 ddi_get_next(dev_info_t *dip) 5047 { 5048 return ((dev_info_t *)DEVI(dip)->devi_next); 5049 } 5050 5051 void 5052 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip) 5053 { 5054 DEVI(dip)->devi_next = DEVI(nextdip); 5055 } 5056 5057 /* 5058 * ddi_root_node: Return root node of devinfo tree 5059 */ 5060 5061 dev_info_t * 5062 ddi_root_node(void) 5063 { 5064 extern dev_info_t *top_devinfo; 5065 5066 return (top_devinfo); 5067 } 5068 5069 /* 5070 * Miscellaneous functions: 5071 */ 5072 5073 /* 5074 * Implementation specific hooks 5075 */ 5076 5077 void 5078 ddi_report_dev(dev_info_t *d) 5079 { 5080 char *b; 5081 5082 (void) ddi_ctlops(d, d, DDI_CTLOPS_REPORTDEV, (void *)0, (void *)0); 5083 5084 /* 5085 * If this devinfo node has cb_ops, it's implicitly accessible from 5086 * userland, so we print its full name together with the instance 5087 * number 'abbreviation' that the driver may use internally. 5088 */ 5089 if (DEVI(d)->devi_ops->devo_cb_ops != (struct cb_ops *)0 && 5090 (b = kmem_zalloc(MAXPATHLEN, KM_NOSLEEP))) { 5091 cmn_err(CE_CONT, "?%s%d is %s\n", 5092 ddi_driver_name(d), ddi_get_instance(d), 5093 ddi_pathname(d, b)); 5094 kmem_free(b, MAXPATHLEN); 5095 } 5096 } 5097 5098 /* 5099 * ddi_ctlops() is described in the assembler not to buy a new register 5100 * window when it's called and can reduce cost in climbing the device tree 5101 * without using the tail call optimization. 5102 */ 5103 int 5104 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *result) 5105 { 5106 int ret; 5107 5108 ret = ddi_ctlops(dev, dev, DDI_CTLOPS_REGSIZE, 5109 (void *)&rnumber, (void *)result); 5110 5111 return (ret == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 5112 } 5113 5114 int 5115 ddi_dev_nregs(dev_info_t *dev, int *result) 5116 { 5117 return (ddi_ctlops(dev, dev, DDI_CTLOPS_NREGS, 0, (void *)result)); 5118 } 5119 5120 int 5121 ddi_dev_is_sid(dev_info_t *d) 5122 { 5123 return (ddi_ctlops(d, d, DDI_CTLOPS_SIDDEV, (void *)0, (void *)0)); 5124 } 5125 5126 int 5127 ddi_slaveonly(dev_info_t *d) 5128 { 5129 return (ddi_ctlops(d, d, DDI_CTLOPS_SLAVEONLY, (void *)0, (void *)0)); 5130 } 5131 5132 int 5133 ddi_dev_affinity(dev_info_t *a, dev_info_t *b) 5134 { 5135 return (ddi_ctlops(a, a, DDI_CTLOPS_AFFINITY, (void *)b, (void *)0)); 5136 } 5137 5138 int 5139 ddi_streams_driver(dev_info_t *dip) 5140 { 5141 if (i_ddi_devi_attached(dip) && 5142 (DEVI(dip)->devi_ops->devo_cb_ops != NULL) && 5143 (DEVI(dip)->devi_ops->devo_cb_ops->cb_str != NULL)) 5144 return (DDI_SUCCESS); 5145 return (DDI_FAILURE); 5146 } 5147 5148 /* 5149 * callback free list 5150 */ 5151 5152 static int ncallbacks; 5153 static int nc_low = 170; 5154 static int nc_med = 512; 5155 static int nc_high = 2048; 5156 static struct ddi_callback *callbackq; 5157 static struct ddi_callback *callbackqfree; 5158 5159 /* 5160 * set/run callback lists 5161 */ 5162 struct cbstats { 5163 kstat_named_t cb_asked; 5164 kstat_named_t cb_new; 5165 kstat_named_t cb_run; 5166 kstat_named_t cb_delete; 5167 kstat_named_t cb_maxreq; 5168 kstat_named_t cb_maxlist; 5169 kstat_named_t cb_alloc; 5170 kstat_named_t cb_runouts; 5171 kstat_named_t cb_L2; 5172 kstat_named_t cb_grow; 5173 } cbstats = { 5174 {"asked", KSTAT_DATA_UINT32}, 5175 {"new", KSTAT_DATA_UINT32}, 5176 {"run", KSTAT_DATA_UINT32}, 5177 {"delete", KSTAT_DATA_UINT32}, 5178 {"maxreq", KSTAT_DATA_UINT32}, 5179 {"maxlist", KSTAT_DATA_UINT32}, 5180 {"alloc", KSTAT_DATA_UINT32}, 5181 {"runouts", KSTAT_DATA_UINT32}, 5182 {"L2", KSTAT_DATA_UINT32}, 5183 {"grow", KSTAT_DATA_UINT32}, 5184 }; 5185 5186 #define nc_asked cb_asked.value.ui32 5187 #define nc_new cb_new.value.ui32 5188 #define nc_run cb_run.value.ui32 5189 #define nc_delete cb_delete.value.ui32 5190 #define nc_maxreq cb_maxreq.value.ui32 5191 #define nc_maxlist cb_maxlist.value.ui32 5192 #define nc_alloc cb_alloc.value.ui32 5193 #define nc_runouts cb_runouts.value.ui32 5194 #define nc_L2 cb_L2.value.ui32 5195 #define nc_grow cb_grow.value.ui32 5196 5197 static kmutex_t ddi_callback_mutex; 5198 5199 /* 5200 * callbacks are handled using a L1/L2 cache. The L1 cache 5201 * comes out of kmem_cache_alloc and can expand/shrink dynamically. If 5202 * we can't get callbacks from the L1 cache [because pageout is doing 5203 * I/O at the time freemem is 0], we allocate callbacks out of the 5204 * L2 cache. The L2 cache is static and depends on the memory size. 5205 * [We might also count the number of devices at probe time and 5206 * allocate one structure per device and adjust for deferred attach] 5207 */ 5208 void 5209 impl_ddi_callback_init(void) 5210 { 5211 int i; 5212 uint_t physmegs; 5213 kstat_t *ksp; 5214 5215 physmegs = physmem >> (20 - PAGESHIFT); 5216 if (physmegs < 48) { 5217 ncallbacks = nc_low; 5218 } else if (physmegs < 128) { 5219 ncallbacks = nc_med; 5220 } else { 5221 ncallbacks = nc_high; 5222 } 5223 5224 /* 5225 * init free list 5226 */ 5227 callbackq = kmem_zalloc( 5228 ncallbacks * sizeof (struct ddi_callback), KM_SLEEP); 5229 for (i = 0; i < ncallbacks-1; i++) 5230 callbackq[i].c_nfree = &callbackq[i+1]; 5231 callbackqfree = callbackq; 5232 5233 /* init kstats */ 5234 if (ksp = kstat_create("unix", 0, "cbstats", "misc", KSTAT_TYPE_NAMED, 5235 sizeof (cbstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) { 5236 ksp->ks_data = (void *) &cbstats; 5237 kstat_install(ksp); 5238 } 5239 5240 } 5241 5242 static void 5243 callback_insert(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid, 5244 int count) 5245 { 5246 struct ddi_callback *list, *marker, *new; 5247 size_t size = sizeof (struct ddi_callback); 5248 5249 list = marker = (struct ddi_callback *)*listid; 5250 while (list != NULL) { 5251 if (list->c_call == funcp && list->c_arg == arg) { 5252 list->c_count += count; 5253 return; 5254 } 5255 marker = list; 5256 list = list->c_nlist; 5257 } 5258 new = kmem_alloc(size, KM_NOSLEEP); 5259 if (new == NULL) { 5260 new = callbackqfree; 5261 if (new == NULL) { 5262 new = kmem_alloc_tryhard(sizeof (struct ddi_callback), 5263 &size, KM_NOSLEEP | KM_PANIC); 5264 cbstats.nc_grow++; 5265 } else { 5266 callbackqfree = new->c_nfree; 5267 cbstats.nc_L2++; 5268 } 5269 } 5270 if (marker != NULL) { 5271 marker->c_nlist = new; 5272 } else { 5273 *listid = (uintptr_t)new; 5274 } 5275 new->c_size = size; 5276 new->c_nlist = NULL; 5277 new->c_call = funcp; 5278 new->c_arg = arg; 5279 new->c_count = count; 5280 cbstats.nc_new++; 5281 cbstats.nc_alloc++; 5282 if (cbstats.nc_alloc > cbstats.nc_maxlist) 5283 cbstats.nc_maxlist = cbstats.nc_alloc; 5284 } 5285 5286 void 5287 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid) 5288 { 5289 mutex_enter(&ddi_callback_mutex); 5290 cbstats.nc_asked++; 5291 if ((cbstats.nc_asked - cbstats.nc_run) > cbstats.nc_maxreq) 5292 cbstats.nc_maxreq = (cbstats.nc_asked - cbstats.nc_run); 5293 (void) callback_insert(funcp, arg, listid, 1); 5294 mutex_exit(&ddi_callback_mutex); 5295 } 5296 5297 static void 5298 real_callback_run(void *Queue) 5299 { 5300 int (*funcp)(caddr_t); 5301 caddr_t arg; 5302 int count, rval; 5303 uintptr_t *listid; 5304 struct ddi_callback *list, *marker; 5305 int check_pending = 1; 5306 int pending = 0; 5307 5308 do { 5309 mutex_enter(&ddi_callback_mutex); 5310 listid = Queue; 5311 list = (struct ddi_callback *)*listid; 5312 if (list == NULL) { 5313 mutex_exit(&ddi_callback_mutex); 5314 return; 5315 } 5316 if (check_pending) { 5317 marker = list; 5318 while (marker != NULL) { 5319 pending += marker->c_count; 5320 marker = marker->c_nlist; 5321 } 5322 check_pending = 0; 5323 } 5324 ASSERT(pending > 0); 5325 ASSERT(list->c_count > 0); 5326 funcp = list->c_call; 5327 arg = list->c_arg; 5328 count = list->c_count; 5329 *(uintptr_t *)Queue = (uintptr_t)list->c_nlist; 5330 if (list >= &callbackq[0] && 5331 list <= &callbackq[ncallbacks-1]) { 5332 list->c_nfree = callbackqfree; 5333 callbackqfree = list; 5334 } else 5335 kmem_free(list, list->c_size); 5336 5337 cbstats.nc_delete++; 5338 cbstats.nc_alloc--; 5339 mutex_exit(&ddi_callback_mutex); 5340 5341 do { 5342 if ((rval = (*funcp)(arg)) == 0) { 5343 pending -= count; 5344 mutex_enter(&ddi_callback_mutex); 5345 (void) callback_insert(funcp, arg, listid, 5346 count); 5347 cbstats.nc_runouts++; 5348 } else { 5349 pending--; 5350 mutex_enter(&ddi_callback_mutex); 5351 cbstats.nc_run++; 5352 } 5353 mutex_exit(&ddi_callback_mutex); 5354 } while (rval != 0 && (--count > 0)); 5355 } while (pending > 0); 5356 } 5357 5358 void 5359 ddi_run_callback(uintptr_t *listid) 5360 { 5361 softcall(real_callback_run, listid); 5362 } 5363 5364 /* 5365 * ddi_periodic_t 5366 * ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval, 5367 * int level) 5368 * 5369 * INTERFACE LEVEL 5370 * Solaris DDI specific (Solaris DDI) 5371 * 5372 * PARAMETERS 5373 * func: the callback function 5374 * 5375 * The callback function will be invoked. The function is invoked 5376 * in kernel context if the argument level passed is the zero. 5377 * Otherwise it's invoked in interrupt context at the specified 5378 * level. 5379 * 5380 * arg: the argument passed to the callback function 5381 * 5382 * interval: interval time 5383 * 5384 * level : callback interrupt level 5385 * 5386 * If the value is the zero, the callback function is invoked 5387 * in kernel context. If the value is more than the zero, but 5388 * less than or equal to ten, the callback function is invoked in 5389 * interrupt context at the specified interrupt level, which may 5390 * be used for real time applications. 5391 * 5392 * This value must be in range of 0-10, which can be a numeric 5393 * number or a pre-defined macro (DDI_IPL_0, ... , DDI_IPL_10). 5394 * 5395 * DESCRIPTION 5396 * ddi_periodic_add(9F) schedules the specified function to be 5397 * periodically invoked in the interval time. 5398 * 5399 * As well as timeout(9F), the exact time interval over which the function 5400 * takes effect cannot be guaranteed, but the value given is a close 5401 * approximation. 5402 * 5403 * Drivers waiting on behalf of processes with real-time constraints must 5404 * pass non-zero value with the level argument to ddi_periodic_add(9F). 5405 * 5406 * RETURN VALUES 5407 * ddi_periodic_add(9F) returns a non-zero opaque value (ddi_periodic_t), 5408 * which must be used for ddi_periodic_delete(9F) to specify the request. 5409 * 5410 * CONTEXT 5411 * ddi_periodic_add(9F) can be called in user or kernel context, but 5412 * it cannot be called in interrupt context, which is different from 5413 * timeout(9F). 5414 */ 5415 ddi_periodic_t 5416 ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval, int level) 5417 { 5418 /* 5419 * Sanity check of the argument level. 5420 */ 5421 if (level < DDI_IPL_0 || level > DDI_IPL_10) 5422 cmn_err(CE_PANIC, 5423 "ddi_periodic_add: invalid interrupt level (%d).", level); 5424 5425 /* 5426 * Sanity check of the context. ddi_periodic_add() cannot be 5427 * called in either interrupt context or high interrupt context. 5428 */ 5429 if (servicing_interrupt()) 5430 cmn_err(CE_PANIC, 5431 "ddi_periodic_add: called in (high) interrupt context."); 5432 5433 return ((ddi_periodic_t)i_timeout(func, arg, interval, level)); 5434 } 5435 5436 /* 5437 * void 5438 * ddi_periodic_delete(ddi_periodic_t req) 5439 * 5440 * INTERFACE LEVEL 5441 * Solaris DDI specific (Solaris DDI) 5442 * 5443 * PARAMETERS 5444 * req: ddi_periodic_t opaque value ddi_periodic_add(9F) returned 5445 * previously. 5446 * 5447 * DESCRIPTION 5448 * ddi_periodic_delete(9F) cancels the ddi_periodic_add(9F) request 5449 * previously requested. 5450 * 5451 * ddi_periodic_delete(9F) will not return until the pending request 5452 * is canceled or executed. 5453 * 5454 * As well as untimeout(9F), calling ddi_periodic_delete(9F) for a 5455 * timeout which is either running on another CPU, or has already 5456 * completed causes no problems. However, unlike untimeout(9F), there is 5457 * no restrictions on the lock which might be held across the call to 5458 * ddi_periodic_delete(9F). 5459 * 5460 * Drivers should be structured with the understanding that the arrival of 5461 * both an interrupt and a timeout for that interrupt can occasionally 5462 * occur, in either order. 5463 * 5464 * CONTEXT 5465 * ddi_periodic_delete(9F) can be called in user or kernel context, but 5466 * it cannot be called in interrupt context, which is different from 5467 * untimeout(9F). 5468 */ 5469 void 5470 ddi_periodic_delete(ddi_periodic_t req) 5471 { 5472 /* 5473 * Sanity check of the context. ddi_periodic_delete() cannot be 5474 * called in either interrupt context or high interrupt context. 5475 */ 5476 if (servicing_interrupt()) 5477 cmn_err(CE_PANIC, 5478 "ddi_periodic_delete: called in (high) interrupt context."); 5479 5480 i_untimeout((timeout_t)req); 5481 } 5482 5483 dev_info_t * 5484 nodevinfo(dev_t dev, int otyp) 5485 { 5486 _NOTE(ARGUNUSED(dev, otyp)) 5487 return ((dev_info_t *)0); 5488 } 5489 5490 /* 5491 * A driver should support its own getinfo(9E) entry point. This function 5492 * is provided as a convenience for ON drivers that don't expect their 5493 * getinfo(9E) entry point to be called. A driver that uses this must not 5494 * call ddi_create_minor_node. 5495 */ 5496 int 5497 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 5498 { 5499 _NOTE(ARGUNUSED(dip, infocmd, arg, result)) 5500 return (DDI_FAILURE); 5501 } 5502 5503 /* 5504 * A driver should support its own getinfo(9E) entry point. This function 5505 * is provided as a convenience for ON drivers that where the minor number 5506 * is the instance. Drivers that do not have 1:1 mapping must implement 5507 * their own getinfo(9E) function. 5508 */ 5509 int 5510 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd, 5511 void *arg, void **result) 5512 { 5513 _NOTE(ARGUNUSED(dip)) 5514 int instance; 5515 5516 if (infocmd != DDI_INFO_DEVT2INSTANCE) 5517 return (DDI_FAILURE); 5518 5519 instance = getminor((dev_t)(uintptr_t)arg); 5520 *result = (void *)(uintptr_t)instance; 5521 return (DDI_SUCCESS); 5522 } 5523 5524 int 5525 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd) 5526 { 5527 _NOTE(ARGUNUSED(devi, cmd)) 5528 return (DDI_FAILURE); 5529 } 5530 5531 int 5532 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip, 5533 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep) 5534 { 5535 _NOTE(ARGUNUSED(dip, rdip, dmareqp, handlep)) 5536 return (DDI_DMA_NOMAPPING); 5537 } 5538 5539 int 5540 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 5541 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 5542 { 5543 _NOTE(ARGUNUSED(dip, rdip, attr, waitfp, arg, handlep)) 5544 return (DDI_DMA_BADATTR); 5545 } 5546 5547 int 5548 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 5549 ddi_dma_handle_t handle) 5550 { 5551 _NOTE(ARGUNUSED(dip, rdip, handle)) 5552 return (DDI_FAILURE); 5553 } 5554 5555 int 5556 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 5557 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 5558 ddi_dma_cookie_t *cp, uint_t *ccountp) 5559 { 5560 _NOTE(ARGUNUSED(dip, rdip, handle, dmareq, cp, ccountp)) 5561 return (DDI_DMA_NOMAPPING); 5562 } 5563 5564 int 5565 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 5566 ddi_dma_handle_t handle) 5567 { 5568 _NOTE(ARGUNUSED(dip, rdip, handle)) 5569 return (DDI_FAILURE); 5570 } 5571 5572 int 5573 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip, 5574 ddi_dma_handle_t handle, off_t off, size_t len, 5575 uint_t cache_flags) 5576 { 5577 _NOTE(ARGUNUSED(dip, rdip, handle, off, len, cache_flags)) 5578 return (DDI_FAILURE); 5579 } 5580 5581 int 5582 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip, 5583 ddi_dma_handle_t handle, uint_t win, off_t *offp, 5584 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 5585 { 5586 _NOTE(ARGUNUSED(dip, rdip, handle, win, offp, lenp, cookiep, ccountp)) 5587 return (DDI_FAILURE); 5588 } 5589 5590 int 5591 ddi_no_dma_mctl(dev_info_t *dip, dev_info_t *rdip, 5592 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 5593 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags) 5594 { 5595 _NOTE(ARGUNUSED(dip, rdip, handle, request, offp, lenp, objp, flags)) 5596 return (DDI_FAILURE); 5597 } 5598 5599 void 5600 ddivoid(void) 5601 {} 5602 5603 int 5604 nochpoll(dev_t dev, short events, int anyyet, short *reventsp, 5605 struct pollhead **pollhdrp) 5606 { 5607 _NOTE(ARGUNUSED(dev, events, anyyet, reventsp, pollhdrp)) 5608 return (ENXIO); 5609 } 5610 5611 cred_t * 5612 ddi_get_cred(void) 5613 { 5614 return (CRED()); 5615 } 5616 5617 clock_t 5618 ddi_get_lbolt(void) 5619 { 5620 return (lbolt); 5621 } 5622 5623 time_t 5624 ddi_get_time(void) 5625 { 5626 time_t now; 5627 5628 if ((now = gethrestime_sec()) == 0) { 5629 timestruc_t ts; 5630 mutex_enter(&tod_lock); 5631 ts = tod_get(); 5632 mutex_exit(&tod_lock); 5633 return (ts.tv_sec); 5634 } else { 5635 return (now); 5636 } 5637 } 5638 5639 pid_t 5640 ddi_get_pid(void) 5641 { 5642 return (ttoproc(curthread)->p_pid); 5643 } 5644 5645 kt_did_t 5646 ddi_get_kt_did(void) 5647 { 5648 return (curthread->t_did); 5649 } 5650 5651 /* 5652 * This function returns B_TRUE if the caller can reasonably expect that a call 5653 * to cv_wait_sig(9F), cv_timedwait_sig(9F), or qwait_sig(9F) could be awakened 5654 * by user-level signal. If it returns B_FALSE, then the caller should use 5655 * other means to make certain that the wait will not hang "forever." 5656 * 5657 * It does not check the signal mask, nor for reception of any particular 5658 * signal. 5659 * 5660 * Currently, a thread can receive a signal if it's not a kernel thread and it 5661 * is not in the middle of exit(2) tear-down. Threads that are in that 5662 * tear-down effectively convert cv_wait_sig to cv_wait, cv_timedwait_sig to 5663 * cv_timedwait, and qwait_sig to qwait. 5664 */ 5665 boolean_t 5666 ddi_can_receive_sig(void) 5667 { 5668 proc_t *pp; 5669 5670 if (curthread->t_proc_flag & TP_LWPEXIT) 5671 return (B_FALSE); 5672 if ((pp = ttoproc(curthread)) == NULL) 5673 return (B_FALSE); 5674 return (pp->p_as != &kas); 5675 } 5676 5677 /* 5678 * Swap bytes in 16-bit [half-]words 5679 */ 5680 void 5681 swab(void *src, void *dst, size_t nbytes) 5682 { 5683 uchar_t *pf = (uchar_t *)src; 5684 uchar_t *pt = (uchar_t *)dst; 5685 uchar_t tmp; 5686 int nshorts; 5687 5688 nshorts = nbytes >> 1; 5689 5690 while (--nshorts >= 0) { 5691 tmp = *pf++; 5692 *pt++ = *pf++; 5693 *pt++ = tmp; 5694 } 5695 } 5696 5697 static void 5698 ddi_append_minor_node(dev_info_t *ddip, struct ddi_minor_data *dmdp) 5699 { 5700 int circ; 5701 struct ddi_minor_data *dp; 5702 5703 ndi_devi_enter(ddip, &circ); 5704 if ((dp = DEVI(ddip)->devi_minor) == (struct ddi_minor_data *)NULL) { 5705 DEVI(ddip)->devi_minor = dmdp; 5706 } else { 5707 while (dp->next != (struct ddi_minor_data *)NULL) 5708 dp = dp->next; 5709 dp->next = dmdp; 5710 } 5711 ndi_devi_exit(ddip, circ); 5712 } 5713 5714 /* 5715 * Part of the obsolete SunCluster DDI Hooks. 5716 * Keep for binary compatibility 5717 */ 5718 minor_t 5719 ddi_getiminor(dev_t dev) 5720 { 5721 return (getminor(dev)); 5722 } 5723 5724 static int 5725 i_log_devfs_minor_create(dev_info_t *dip, char *minor_name) 5726 { 5727 int se_flag; 5728 int kmem_flag; 5729 int se_err; 5730 char *pathname, *class_name; 5731 sysevent_t *ev = NULL; 5732 sysevent_id_t eid; 5733 sysevent_value_t se_val; 5734 sysevent_attr_list_t *ev_attr_list = NULL; 5735 5736 /* determine interrupt context */ 5737 se_flag = (servicing_interrupt()) ? SE_NOSLEEP : SE_SLEEP; 5738 kmem_flag = (se_flag == SE_SLEEP) ? KM_SLEEP : KM_NOSLEEP; 5739 5740 i_ddi_di_cache_invalidate(kmem_flag); 5741 5742 #ifdef DEBUG 5743 if ((se_flag == SE_NOSLEEP) && sunddi_debug) { 5744 cmn_err(CE_CONT, "ddi_create_minor_node: called from " 5745 "interrupt level by driver %s", 5746 ddi_driver_name(dip)); 5747 } 5748 #endif /* DEBUG */ 5749 5750 ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_CREATE, EP_DDI, se_flag); 5751 if (ev == NULL) { 5752 goto fail; 5753 } 5754 5755 pathname = kmem_alloc(MAXPATHLEN, kmem_flag); 5756 if (pathname == NULL) { 5757 sysevent_free(ev); 5758 goto fail; 5759 } 5760 5761 (void) ddi_pathname(dip, pathname); 5762 ASSERT(strlen(pathname)); 5763 se_val.value_type = SE_DATA_TYPE_STRING; 5764 se_val.value.sv_string = pathname; 5765 if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME, 5766 &se_val, se_flag) != 0) { 5767 kmem_free(pathname, MAXPATHLEN); 5768 sysevent_free(ev); 5769 goto fail; 5770 } 5771 kmem_free(pathname, MAXPATHLEN); 5772 5773 /* add the device class attribute */ 5774 if ((class_name = i_ddi_devi_class(dip)) != NULL) { 5775 se_val.value_type = SE_DATA_TYPE_STRING; 5776 se_val.value.sv_string = class_name; 5777 if (sysevent_add_attr(&ev_attr_list, 5778 DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) { 5779 sysevent_free_attr(ev_attr_list); 5780 goto fail; 5781 } 5782 } 5783 5784 /* 5785 * allow for NULL minor names 5786 */ 5787 if (minor_name != NULL) { 5788 se_val.value.sv_string = minor_name; 5789 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME, 5790 &se_val, se_flag) != 0) { 5791 sysevent_free_attr(ev_attr_list); 5792 sysevent_free(ev); 5793 goto fail; 5794 } 5795 } 5796 5797 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) { 5798 sysevent_free_attr(ev_attr_list); 5799 sysevent_free(ev); 5800 goto fail; 5801 } 5802 5803 if ((se_err = log_sysevent(ev, se_flag, &eid)) != 0) { 5804 if (se_err == SE_NO_TRANSPORT) { 5805 cmn_err(CE_WARN, "/devices or /dev may not be current " 5806 "for driver %s (%s). Run devfsadm -i %s", 5807 ddi_driver_name(dip), "syseventd not responding", 5808 ddi_driver_name(dip)); 5809 } else { 5810 sysevent_free(ev); 5811 goto fail; 5812 } 5813 } 5814 5815 sysevent_free(ev); 5816 return (DDI_SUCCESS); 5817 fail: 5818 cmn_err(CE_WARN, "/devices or /dev may not be current " 5819 "for driver %s. Run devfsadm -i %s", 5820 ddi_driver_name(dip), ddi_driver_name(dip)); 5821 return (DDI_SUCCESS); 5822 } 5823 5824 /* 5825 * failing to remove a minor node is not of interest 5826 * therefore we do not generate an error message 5827 */ 5828 static int 5829 i_log_devfs_minor_remove(dev_info_t *dip, char *minor_name) 5830 { 5831 char *pathname, *class_name; 5832 sysevent_t *ev; 5833 sysevent_id_t eid; 5834 sysevent_value_t se_val; 5835 sysevent_attr_list_t *ev_attr_list = NULL; 5836 5837 /* 5838 * only log ddi_remove_minor_node() calls outside the scope 5839 * of attach/detach reconfigurations and when the dip is 5840 * still initialized. 5841 */ 5842 if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip) || 5843 (i_ddi_node_state(dip) < DS_INITIALIZED)) { 5844 return (DDI_SUCCESS); 5845 } 5846 5847 i_ddi_di_cache_invalidate(KM_SLEEP); 5848 5849 ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_REMOVE, EP_DDI, SE_SLEEP); 5850 if (ev == NULL) { 5851 return (DDI_SUCCESS); 5852 } 5853 5854 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5855 if (pathname == NULL) { 5856 sysevent_free(ev); 5857 return (DDI_SUCCESS); 5858 } 5859 5860 (void) ddi_pathname(dip, pathname); 5861 ASSERT(strlen(pathname)); 5862 se_val.value_type = SE_DATA_TYPE_STRING; 5863 se_val.value.sv_string = pathname; 5864 if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME, 5865 &se_val, SE_SLEEP) != 0) { 5866 kmem_free(pathname, MAXPATHLEN); 5867 sysevent_free(ev); 5868 return (DDI_SUCCESS); 5869 } 5870 5871 kmem_free(pathname, MAXPATHLEN); 5872 5873 /* 5874 * allow for NULL minor names 5875 */ 5876 if (minor_name != NULL) { 5877 se_val.value.sv_string = minor_name; 5878 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME, 5879 &se_val, SE_SLEEP) != 0) { 5880 sysevent_free_attr(ev_attr_list); 5881 goto fail; 5882 } 5883 } 5884 5885 if ((class_name = i_ddi_devi_class(dip)) != NULL) { 5886 /* add the device class, driver name and instance attributes */ 5887 5888 se_val.value_type = SE_DATA_TYPE_STRING; 5889 se_val.value.sv_string = class_name; 5890 if (sysevent_add_attr(&ev_attr_list, 5891 DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) { 5892 sysevent_free_attr(ev_attr_list); 5893 goto fail; 5894 } 5895 5896 se_val.value_type = SE_DATA_TYPE_STRING; 5897 se_val.value.sv_string = (char *)ddi_driver_name(dip); 5898 if (sysevent_add_attr(&ev_attr_list, 5899 DEVFS_DRIVER_NAME, &se_val, SE_SLEEP) != 0) { 5900 sysevent_free_attr(ev_attr_list); 5901 goto fail; 5902 } 5903 5904 se_val.value_type = SE_DATA_TYPE_INT32; 5905 se_val.value.sv_int32 = ddi_get_instance(dip); 5906 if (sysevent_add_attr(&ev_attr_list, 5907 DEVFS_INSTANCE, &se_val, SE_SLEEP) != 0) { 5908 sysevent_free_attr(ev_attr_list); 5909 goto fail; 5910 } 5911 5912 } 5913 5914 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) { 5915 sysevent_free_attr(ev_attr_list); 5916 } else { 5917 (void) log_sysevent(ev, SE_SLEEP, &eid); 5918 } 5919 fail: 5920 sysevent_free(ev); 5921 return (DDI_SUCCESS); 5922 } 5923 5924 /* 5925 * Derive the device class of the node. 5926 * Device class names aren't defined yet. Until this is done we use 5927 * devfs event subclass names as device class names. 5928 */ 5929 static int 5930 derive_devi_class(dev_info_t *dip, char *node_type, int flag) 5931 { 5932 int rv = DDI_SUCCESS; 5933 5934 if (i_ddi_devi_class(dip) == NULL) { 5935 if (strncmp(node_type, DDI_NT_BLOCK, 5936 sizeof (DDI_NT_BLOCK) - 1) == 0 && 5937 (node_type[sizeof (DDI_NT_BLOCK) - 1] == '\0' || 5938 node_type[sizeof (DDI_NT_BLOCK) - 1] == ':') && 5939 strcmp(node_type, DDI_NT_FD) != 0) { 5940 5941 rv = i_ddi_set_devi_class(dip, ESC_DISK, flag); 5942 5943 } else if (strncmp(node_type, DDI_NT_NET, 5944 sizeof (DDI_NT_NET) - 1) == 0 && 5945 (node_type[sizeof (DDI_NT_NET) - 1] == '\0' || 5946 node_type[sizeof (DDI_NT_NET) - 1] == ':')) { 5947 5948 rv = i_ddi_set_devi_class(dip, ESC_NETWORK, flag); 5949 5950 } else if (strncmp(node_type, DDI_NT_PRINTER, 5951 sizeof (DDI_NT_PRINTER) - 1) == 0 && 5952 (node_type[sizeof (DDI_NT_PRINTER) - 1] == '\0' || 5953 node_type[sizeof (DDI_NT_PRINTER) - 1] == ':')) { 5954 5955 rv = i_ddi_set_devi_class(dip, ESC_PRINTER, flag); 5956 5957 } else if (strncmp(node_type, DDI_PSEUDO, 5958 sizeof (DDI_PSEUDO) -1) == 0 && 5959 (strncmp(ESC_LOFI, ddi_node_name(dip), 5960 sizeof (ESC_LOFI) -1) == 0)) { 5961 rv = i_ddi_set_devi_class(dip, ESC_LOFI, flag); 5962 } 5963 } 5964 5965 return (rv); 5966 } 5967 5968 /* 5969 * Check compliance with PSARC 2003/375: 5970 * 5971 * The name must contain only characters a-z, A-Z, 0-9 or _ and it must not 5972 * exceed IFNAMSIZ (16) characters in length. 5973 */ 5974 static boolean_t 5975 verify_name(char *name) 5976 { 5977 size_t len = strlen(name); 5978 char *cp; 5979 5980 if (len == 0 || len > IFNAMSIZ) 5981 return (B_FALSE); 5982 5983 for (cp = name; *cp != '\0'; cp++) { 5984 if (!isalnum(*cp) && *cp != '_') 5985 return (B_FALSE); 5986 } 5987 5988 return (B_TRUE); 5989 } 5990 5991 /* 5992 * ddi_create_minor_common: Create a ddi_minor_data structure and 5993 * attach it to the given devinfo node. 5994 */ 5995 5996 int 5997 ddi_create_minor_common(dev_info_t *dip, char *name, int spec_type, 5998 minor_t minor_num, char *node_type, int flag, ddi_minor_type mtype, 5999 const char *read_priv, const char *write_priv, mode_t priv_mode) 6000 { 6001 struct ddi_minor_data *dmdp; 6002 major_t major; 6003 6004 if (spec_type != S_IFCHR && spec_type != S_IFBLK) 6005 return (DDI_FAILURE); 6006 6007 if (name == NULL) 6008 return (DDI_FAILURE); 6009 6010 /* 6011 * Log a message if the minor number the driver is creating 6012 * is not expressible on the on-disk filesystem (currently 6013 * this is limited to 18 bits both by UFS). The device can 6014 * be opened via devfs, but not by device special files created 6015 * via mknod(). 6016 */ 6017 if (minor_num > L_MAXMIN32) { 6018 cmn_err(CE_WARN, 6019 "%s%d:%s minor 0x%x too big for 32-bit applications", 6020 ddi_driver_name(dip), ddi_get_instance(dip), 6021 name, minor_num); 6022 return (DDI_FAILURE); 6023 } 6024 6025 /* dip must be bound and attached */ 6026 major = ddi_driver_major(dip); 6027 ASSERT(major != DDI_MAJOR_T_NONE); 6028 6029 /* 6030 * Default node_type to DDI_PSEUDO and issue notice in debug mode 6031 */ 6032 if (node_type == NULL) { 6033 node_type = DDI_PSEUDO; 6034 NDI_CONFIG_DEBUG((CE_NOTE, "!illegal node_type NULL for %s%d " 6035 " minor node %s; default to DDI_PSEUDO", 6036 ddi_driver_name(dip), ddi_get_instance(dip), name)); 6037 } 6038 6039 /* 6040 * If the driver is a network driver, ensure that the name falls within 6041 * the interface naming constraints specified by PSARC/2003/375. 6042 */ 6043 if (strcmp(node_type, DDI_NT_NET) == 0) { 6044 if (!verify_name(name)) 6045 return (DDI_FAILURE); 6046 6047 if (mtype == DDM_MINOR) { 6048 struct devnames *dnp = &devnamesp[major]; 6049 6050 /* Mark driver as a network driver */ 6051 LOCK_DEV_OPS(&dnp->dn_lock); 6052 dnp->dn_flags |= DN_NETWORK_DRIVER; 6053 UNLOCK_DEV_OPS(&dnp->dn_lock); 6054 } 6055 } 6056 6057 if (mtype == DDM_MINOR) { 6058 if (derive_devi_class(dip, node_type, KM_NOSLEEP) != 6059 DDI_SUCCESS) 6060 return (DDI_FAILURE); 6061 } 6062 6063 /* 6064 * Take care of minor number information for the node. 6065 */ 6066 6067 if ((dmdp = kmem_zalloc(sizeof (struct ddi_minor_data), 6068 KM_NOSLEEP)) == NULL) { 6069 return (DDI_FAILURE); 6070 } 6071 if ((dmdp->ddm_name = i_ddi_strdup(name, KM_NOSLEEP)) == NULL) { 6072 kmem_free(dmdp, sizeof (struct ddi_minor_data)); 6073 return (DDI_FAILURE); 6074 } 6075 dmdp->dip = dip; 6076 dmdp->ddm_dev = makedevice(major, minor_num); 6077 dmdp->ddm_spec_type = spec_type; 6078 dmdp->ddm_node_type = node_type; 6079 dmdp->type = mtype; 6080 if (flag & CLONE_DEV) { 6081 dmdp->type = DDM_ALIAS; 6082 dmdp->ddm_dev = makedevice(ddi_driver_major(clone_dip), major); 6083 } 6084 if (flag & PRIVONLY_DEV) { 6085 dmdp->ddm_flags |= DM_NO_FSPERM; 6086 } 6087 if (read_priv || write_priv) { 6088 dmdp->ddm_node_priv = 6089 devpolicy_priv_by_name(read_priv, write_priv); 6090 } 6091 dmdp->ddm_priv_mode = priv_mode; 6092 6093 ddi_append_minor_node(dip, dmdp); 6094 6095 /* 6096 * only log ddi_create_minor_node() calls which occur 6097 * outside the scope of attach(9e)/detach(9e) reconfigurations 6098 */ 6099 if (!(DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip)) && 6100 mtype != DDM_INTERNAL_PATH) { 6101 (void) i_log_devfs_minor_create(dip, name); 6102 } 6103 6104 /* 6105 * Check if any dacf rules match the creation of this minor node 6106 */ 6107 dacfc_match_create_minor(name, node_type, dip, dmdp, flag); 6108 return (DDI_SUCCESS); 6109 } 6110 6111 int 6112 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type, 6113 minor_t minor_num, char *node_type, int flag) 6114 { 6115 return (ddi_create_minor_common(dip, name, spec_type, minor_num, 6116 node_type, flag, DDM_MINOR, NULL, NULL, 0)); 6117 } 6118 6119 int 6120 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type, 6121 minor_t minor_num, char *node_type, int flag, 6122 const char *rdpriv, const char *wrpriv, mode_t priv_mode) 6123 { 6124 return (ddi_create_minor_common(dip, name, spec_type, minor_num, 6125 node_type, flag, DDM_MINOR, rdpriv, wrpriv, priv_mode)); 6126 } 6127 6128 int 6129 ddi_create_default_minor_node(dev_info_t *dip, char *name, int spec_type, 6130 minor_t minor_num, char *node_type, int flag) 6131 { 6132 return (ddi_create_minor_common(dip, name, spec_type, minor_num, 6133 node_type, flag, DDM_DEFAULT, NULL, NULL, 0)); 6134 } 6135 6136 /* 6137 * Internal (non-ddi) routine for drivers to export names known 6138 * to the kernel (especially ddi_pathname_to_dev_t and friends) 6139 * but not exported externally to /dev 6140 */ 6141 int 6142 ddi_create_internal_pathname(dev_info_t *dip, char *name, int spec_type, 6143 minor_t minor_num) 6144 { 6145 return (ddi_create_minor_common(dip, name, spec_type, minor_num, 6146 "internal", 0, DDM_INTERNAL_PATH, NULL, NULL, 0)); 6147 } 6148 6149 void 6150 ddi_remove_minor_node(dev_info_t *dip, char *name) 6151 { 6152 int circ; 6153 struct ddi_minor_data *dmdp, *dmdp1; 6154 struct ddi_minor_data **dmdp_prev; 6155 6156 ndi_devi_enter(dip, &circ); 6157 dmdp_prev = &DEVI(dip)->devi_minor; 6158 dmdp = DEVI(dip)->devi_minor; 6159 while (dmdp != NULL) { 6160 dmdp1 = dmdp->next; 6161 if ((name == NULL || (dmdp->ddm_name != NULL && 6162 strcmp(name, dmdp->ddm_name) == 0))) { 6163 if (dmdp->ddm_name != NULL) { 6164 if (dmdp->type != DDM_INTERNAL_PATH) 6165 (void) i_log_devfs_minor_remove(dip, 6166 dmdp->ddm_name); 6167 kmem_free(dmdp->ddm_name, 6168 strlen(dmdp->ddm_name) + 1); 6169 } 6170 /* 6171 * Release device privilege, if any. 6172 * Release dacf client data associated with this minor 6173 * node by storing NULL. 6174 */ 6175 if (dmdp->ddm_node_priv) 6176 dpfree(dmdp->ddm_node_priv); 6177 dacf_store_info((dacf_infohdl_t)dmdp, NULL); 6178 kmem_free(dmdp, sizeof (struct ddi_minor_data)); 6179 *dmdp_prev = dmdp1; 6180 /* 6181 * OK, we found it, so get out now -- if we drive on, 6182 * we will strcmp against garbage. See 1139209. 6183 */ 6184 if (name != NULL) 6185 break; 6186 } else { 6187 dmdp_prev = &dmdp->next; 6188 } 6189 dmdp = dmdp1; 6190 } 6191 ndi_devi_exit(dip, circ); 6192 } 6193 6194 6195 int 6196 ddi_in_panic() 6197 { 6198 return (panicstr != NULL); 6199 } 6200 6201 6202 /* 6203 * Find first bit set in a mask (returned counting from 1 up) 6204 */ 6205 6206 int 6207 ddi_ffs(long mask) 6208 { 6209 return (ffs(mask)); 6210 } 6211 6212 /* 6213 * Find last bit set. Take mask and clear 6214 * all but the most significant bit, and 6215 * then let ffs do the rest of the work. 6216 * 6217 * Algorithm courtesy of Steve Chessin. 6218 */ 6219 6220 int 6221 ddi_fls(long mask) 6222 { 6223 while (mask) { 6224 long nx; 6225 6226 if ((nx = (mask & (mask - 1))) == 0) 6227 break; 6228 mask = nx; 6229 } 6230 return (ffs(mask)); 6231 } 6232 6233 /* 6234 * The next five routines comprise generic storage management utilities 6235 * for driver soft state structures (in "the old days," this was done 6236 * with a statically sized array - big systems and dynamic loading 6237 * and unloading make heap allocation more attractive) 6238 */ 6239 6240 /* 6241 * Allocate a set of pointers to 'n_items' objects of size 'size' 6242 * bytes. Each pointer is initialized to nil. 6243 * 6244 * The 'size' and 'n_items' values are stashed in the opaque 6245 * handle returned to the caller. 6246 * 6247 * This implementation interprets 'set of pointers' to mean 'array 6248 * of pointers' but note that nothing in the interface definition 6249 * precludes an implementation that uses, for example, a linked list. 6250 * However there should be a small efficiency gain from using an array 6251 * at lookup time. 6252 * 6253 * NOTE As an optimization, we make our growable array allocations in 6254 * powers of two (bytes), since that's how much kmem_alloc (currently) 6255 * gives us anyway. It should save us some free/realloc's .. 6256 * 6257 * As a further optimization, we make the growable array start out 6258 * with MIN_N_ITEMS in it. 6259 */ 6260 6261 #define MIN_N_ITEMS 8 /* 8 void *'s == 32 bytes */ 6262 6263 int 6264 ddi_soft_state_init(void **state_p, size_t size, size_t n_items) 6265 { 6266 struct i_ddi_soft_state *ss; 6267 6268 if (state_p == NULL || *state_p != NULL || size == 0) 6269 return (EINVAL); 6270 6271 ss = kmem_zalloc(sizeof (*ss), KM_SLEEP); 6272 mutex_init(&ss->lock, NULL, MUTEX_DRIVER, NULL); 6273 ss->size = size; 6274 6275 if (n_items < MIN_N_ITEMS) 6276 ss->n_items = MIN_N_ITEMS; 6277 else { 6278 int bitlog; 6279 6280 if ((bitlog = ddi_fls(n_items)) == ddi_ffs(n_items)) 6281 bitlog--; 6282 ss->n_items = 1 << bitlog; 6283 } 6284 6285 ASSERT(ss->n_items >= n_items); 6286 6287 ss->array = kmem_zalloc(ss->n_items * sizeof (void *), KM_SLEEP); 6288 6289 *state_p = ss; 6290 6291 return (0); 6292 } 6293 6294 6295 /* 6296 * Allocate a state structure of size 'size' to be associated 6297 * with item 'item'. 6298 * 6299 * In this implementation, the array is extended to 6300 * allow the requested offset, if needed. 6301 */ 6302 int 6303 ddi_soft_state_zalloc(void *state, int item) 6304 { 6305 struct i_ddi_soft_state *ss; 6306 void **array; 6307 void *new_element; 6308 6309 if ((ss = state) == NULL || item < 0) 6310 return (DDI_FAILURE); 6311 6312 mutex_enter(&ss->lock); 6313 if (ss->size == 0) { 6314 mutex_exit(&ss->lock); 6315 cmn_err(CE_WARN, "ddi_soft_state_zalloc: bad handle: %s", 6316 mod_containing_pc(caller())); 6317 return (DDI_FAILURE); 6318 } 6319 6320 array = ss->array; /* NULL if ss->n_items == 0 */ 6321 ASSERT(ss->n_items != 0 && array != NULL); 6322 6323 /* 6324 * refuse to tread on an existing element 6325 */ 6326 if (item < ss->n_items && array[item] != NULL) { 6327 mutex_exit(&ss->lock); 6328 return (DDI_FAILURE); 6329 } 6330 6331 /* 6332 * Allocate a new element to plug in 6333 */ 6334 new_element = kmem_zalloc(ss->size, KM_SLEEP); 6335 6336 /* 6337 * Check if the array is big enough, if not, grow it. 6338 */ 6339 if (item >= ss->n_items) { 6340 void **new_array; 6341 size_t new_n_items; 6342 struct i_ddi_soft_state *dirty; 6343 6344 /* 6345 * Allocate a new array of the right length, copy 6346 * all the old pointers to the new array, then 6347 * if it exists at all, put the old array on the 6348 * dirty list. 6349 * 6350 * Note that we can't kmem_free() the old array. 6351 * 6352 * Why -- well the 'get' operation is 'mutex-free', so we 6353 * can't easily catch a suspended thread that is just about 6354 * to dereference the array we just grew out of. So we 6355 * cons up a header and put it on a list of 'dirty' 6356 * pointer arrays. (Dirty in the sense that there may 6357 * be suspended threads somewhere that are in the middle 6358 * of referencing them). Fortunately, we -can- garbage 6359 * collect it all at ddi_soft_state_fini time. 6360 */ 6361 new_n_items = ss->n_items; 6362 while (new_n_items < (1 + item)) 6363 new_n_items <<= 1; /* double array size .. */ 6364 6365 ASSERT(new_n_items >= (1 + item)); /* sanity check! */ 6366 6367 new_array = kmem_zalloc(new_n_items * sizeof (void *), 6368 KM_SLEEP); 6369 /* 6370 * Copy the pointers into the new array 6371 */ 6372 bcopy(array, new_array, ss->n_items * sizeof (void *)); 6373 6374 /* 6375 * Save the old array on the dirty list 6376 */ 6377 dirty = kmem_zalloc(sizeof (*dirty), KM_SLEEP); 6378 dirty->array = ss->array; 6379 dirty->n_items = ss->n_items; 6380 dirty->next = ss->next; 6381 ss->next = dirty; 6382 6383 ss->array = (array = new_array); 6384 ss->n_items = new_n_items; 6385 } 6386 6387 ASSERT(array != NULL && item < ss->n_items && array[item] == NULL); 6388 6389 array[item] = new_element; 6390 6391 mutex_exit(&ss->lock); 6392 return (DDI_SUCCESS); 6393 } 6394 6395 6396 /* 6397 * Fetch a pointer to the allocated soft state structure. 6398 * 6399 * This is designed to be cheap. 6400 * 6401 * There's an argument that there should be more checking for 6402 * nil pointers and out of bounds on the array.. but we do a lot 6403 * of that in the alloc/free routines. 6404 * 6405 * An array has the convenience that we don't need to lock read-access 6406 * to it c.f. a linked list. However our "expanding array" strategy 6407 * means that we should hold a readers lock on the i_ddi_soft_state 6408 * structure. 6409 * 6410 * However, from a performance viewpoint, we need to do it without 6411 * any locks at all -- this also makes it a leaf routine. The algorithm 6412 * is 'lock-free' because we only discard the pointer arrays at 6413 * ddi_soft_state_fini() time. 6414 */ 6415 void * 6416 ddi_get_soft_state(void *state, int item) 6417 { 6418 struct i_ddi_soft_state *ss = state; 6419 6420 ASSERT(ss != NULL && item >= 0); 6421 6422 if (item < ss->n_items && ss->array != NULL) 6423 return (ss->array[item]); 6424 return (NULL); 6425 } 6426 6427 /* 6428 * Free the state structure corresponding to 'item.' Freeing an 6429 * element that has either gone or was never allocated is not 6430 * considered an error. Note that we free the state structure, but 6431 * we don't shrink our pointer array, or discard 'dirty' arrays, 6432 * since even a few pointers don't really waste too much memory. 6433 * 6434 * Passing an item number that is out of bounds, or a null pointer will 6435 * provoke an error message. 6436 */ 6437 void 6438 ddi_soft_state_free(void *state, int item) 6439 { 6440 struct i_ddi_soft_state *ss; 6441 void **array; 6442 void *element; 6443 static char msg[] = "ddi_soft_state_free:"; 6444 6445 if ((ss = state) == NULL) { 6446 cmn_err(CE_WARN, "%s null handle: %s", 6447 msg, mod_containing_pc(caller())); 6448 return; 6449 } 6450 6451 element = NULL; 6452 6453 mutex_enter(&ss->lock); 6454 6455 if ((array = ss->array) == NULL || ss->size == 0) { 6456 cmn_err(CE_WARN, "%s bad handle: %s", 6457 msg, mod_containing_pc(caller())); 6458 } else if (item < 0 || item >= ss->n_items) { 6459 cmn_err(CE_WARN, "%s item %d not in range [0..%lu]: %s", 6460 msg, item, ss->n_items - 1, mod_containing_pc(caller())); 6461 } else if (array[item] != NULL) { 6462 element = array[item]; 6463 array[item] = NULL; 6464 } 6465 6466 mutex_exit(&ss->lock); 6467 6468 if (element) 6469 kmem_free(element, ss->size); 6470 } 6471 6472 6473 /* 6474 * Free the entire set of pointers, and any 6475 * soft state structures contained therein. 6476 * 6477 * Note that we don't grab the ss->lock mutex, even though 6478 * we're inspecting the various fields of the data structure. 6479 * 6480 * There is an implicit assumption that this routine will 6481 * never run concurrently with any of the above on this 6482 * particular state structure i.e. by the time the driver 6483 * calls this routine, there should be no other threads 6484 * running in the driver. 6485 */ 6486 void 6487 ddi_soft_state_fini(void **state_p) 6488 { 6489 struct i_ddi_soft_state *ss, *dirty; 6490 int item; 6491 static char msg[] = "ddi_soft_state_fini:"; 6492 6493 if (state_p == NULL || (ss = *state_p) == NULL) { 6494 cmn_err(CE_WARN, "%s null handle: %s", 6495 msg, mod_containing_pc(caller())); 6496 return; 6497 } 6498 6499 if (ss->size == 0) { 6500 cmn_err(CE_WARN, "%s bad handle: %s", 6501 msg, mod_containing_pc(caller())); 6502 return; 6503 } 6504 6505 if (ss->n_items > 0) { 6506 for (item = 0; item < ss->n_items; item++) 6507 ddi_soft_state_free(ss, item); 6508 kmem_free(ss->array, ss->n_items * sizeof (void *)); 6509 } 6510 6511 /* 6512 * Now delete any dirty arrays from previous 'grow' operations 6513 */ 6514 for (dirty = ss->next; dirty; dirty = ss->next) { 6515 ss->next = dirty->next; 6516 kmem_free(dirty->array, dirty->n_items * sizeof (void *)); 6517 kmem_free(dirty, sizeof (*dirty)); 6518 } 6519 6520 mutex_destroy(&ss->lock); 6521 kmem_free(ss, sizeof (*ss)); 6522 6523 *state_p = NULL; 6524 } 6525 6526 /* 6527 * This sets the devi_addr entry in the dev_info structure 'dip' to 'name'. 6528 * Storage is double buffered to prevent updates during devi_addr use - 6529 * double buffering is adaquate for reliable ddi_deviname() consumption. 6530 * The double buffer is not freed until dev_info structure destruction 6531 * (by i_ddi_free_node). 6532 */ 6533 void 6534 ddi_set_name_addr(dev_info_t *dip, char *name) 6535 { 6536 char *buf = DEVI(dip)->devi_addr_buf; 6537 char *newaddr; 6538 6539 if (buf == NULL) { 6540 buf = kmem_zalloc(2 * MAXNAMELEN, KM_SLEEP); 6541 DEVI(dip)->devi_addr_buf = buf; 6542 } 6543 6544 if (name) { 6545 ASSERT(strlen(name) < MAXNAMELEN); 6546 newaddr = (DEVI(dip)->devi_addr == buf) ? 6547 (buf + MAXNAMELEN) : buf; 6548 (void) strlcpy(newaddr, name, MAXNAMELEN); 6549 } else 6550 newaddr = NULL; 6551 6552 DEVI(dip)->devi_addr = newaddr; 6553 } 6554 6555 char * 6556 ddi_get_name_addr(dev_info_t *dip) 6557 { 6558 return (DEVI(dip)->devi_addr); 6559 } 6560 6561 void 6562 ddi_set_parent_data(dev_info_t *dip, void *pd) 6563 { 6564 DEVI(dip)->devi_parent_data = pd; 6565 } 6566 6567 void * 6568 ddi_get_parent_data(dev_info_t *dip) 6569 { 6570 return (DEVI(dip)->devi_parent_data); 6571 } 6572 6573 /* 6574 * ddi_name_to_major: Returns the major number of a module given its name. 6575 */ 6576 major_t 6577 ddi_name_to_major(char *name) 6578 { 6579 return (mod_name_to_major(name)); 6580 } 6581 6582 /* 6583 * ddi_major_to_name: Returns the module name bound to a major number. 6584 */ 6585 char * 6586 ddi_major_to_name(major_t major) 6587 { 6588 return (mod_major_to_name(major)); 6589 } 6590 6591 /* 6592 * Return the name of the devinfo node pointed at by 'dip' in the buffer 6593 * pointed at by 'name.' A devinfo node is named as a result of calling 6594 * ddi_initchild(). 6595 * 6596 * Note: the driver must be held before calling this function! 6597 */ 6598 char * 6599 ddi_deviname(dev_info_t *dip, char *name) 6600 { 6601 char *addrname; 6602 char none = '\0'; 6603 6604 if (dip == ddi_root_node()) { 6605 *name = '\0'; 6606 return (name); 6607 } 6608 6609 if (i_ddi_node_state(dip) < DS_BOUND) { 6610 addrname = &none; 6611 } else { 6612 /* 6613 * Use ddi_get_name_addr() without checking state so we get 6614 * a unit-address if we are called after ddi_set_name_addr() 6615 * by nexus DDI_CTL_INITCHILD code, but before completing 6616 * node promotion to DS_INITIALIZED. We currently have 6617 * two situations where we are called in this state: 6618 * o For framework processing of a path-oriented alias. 6619 * o If a SCSA nexus driver calls ddi_devid_register() 6620 * from it's tran_tgt_init(9E) implementation. 6621 */ 6622 addrname = ddi_get_name_addr(dip); 6623 if (addrname == NULL) 6624 addrname = &none; 6625 } 6626 6627 if (*addrname == '\0') { 6628 (void) sprintf(name, "/%s", ddi_node_name(dip)); 6629 } else { 6630 (void) sprintf(name, "/%s@%s", ddi_node_name(dip), addrname); 6631 } 6632 6633 return (name); 6634 } 6635 6636 /* 6637 * Spits out the name of device node, typically name@addr, for a given node, 6638 * using the driver name, not the nodename. 6639 * 6640 * Used by match_parent. Not to be used elsewhere. 6641 */ 6642 char * 6643 i_ddi_parname(dev_info_t *dip, char *name) 6644 { 6645 char *addrname; 6646 6647 if (dip == ddi_root_node()) { 6648 *name = '\0'; 6649 return (name); 6650 } 6651 6652 ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED); 6653 6654 if (*(addrname = ddi_get_name_addr(dip)) == '\0') 6655 (void) sprintf(name, "%s", ddi_binding_name(dip)); 6656 else 6657 (void) sprintf(name, "%s@%s", ddi_binding_name(dip), addrname); 6658 return (name); 6659 } 6660 6661 static char * 6662 pathname_work(dev_info_t *dip, char *path) 6663 { 6664 char *bp; 6665 6666 if (dip == ddi_root_node()) { 6667 *path = '\0'; 6668 return (path); 6669 } 6670 (void) pathname_work(ddi_get_parent(dip), path); 6671 bp = path + strlen(path); 6672 (void) ddi_deviname(dip, bp); 6673 return (path); 6674 } 6675 6676 char * 6677 ddi_pathname(dev_info_t *dip, char *path) 6678 { 6679 return (pathname_work(dip, path)); 6680 } 6681 6682 char * 6683 ddi_pathname_minor(struct ddi_minor_data *dmdp, char *path) 6684 { 6685 if (dmdp->dip == NULL) 6686 *path = '\0'; 6687 else { 6688 (void) ddi_pathname(dmdp->dip, path); 6689 if (dmdp->ddm_name) { 6690 (void) strcat(path, ":"); 6691 (void) strcat(path, dmdp->ddm_name); 6692 } 6693 } 6694 return (path); 6695 } 6696 6697 static char * 6698 pathname_work_obp(dev_info_t *dip, char *path) 6699 { 6700 char *bp; 6701 char *obp_path; 6702 6703 /* 6704 * look up the "obp-path" property, return the path if it exists 6705 */ 6706 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 6707 "obp-path", &obp_path) == DDI_PROP_SUCCESS) { 6708 (void) strcpy(path, obp_path); 6709 ddi_prop_free(obp_path); 6710 return (path); 6711 } 6712 6713 /* 6714 * stop at root, no obp path 6715 */ 6716 if (dip == ddi_root_node()) { 6717 return (NULL); 6718 } 6719 6720 obp_path = pathname_work_obp(ddi_get_parent(dip), path); 6721 if (obp_path == NULL) 6722 return (NULL); 6723 6724 /* 6725 * append our component to parent's obp path 6726 */ 6727 bp = path + strlen(path); 6728 if (*(bp - 1) != '/') 6729 (void) strcat(bp++, "/"); 6730 (void) ddi_deviname(dip, bp); 6731 return (path); 6732 } 6733 6734 /* 6735 * return the 'obp-path' based path for the given node, or NULL if the node 6736 * does not have a different obp path. NOTE: Unlike ddi_pathname, this 6737 * function can't be called from interrupt context (since we need to 6738 * lookup a string property). 6739 */ 6740 char * 6741 ddi_pathname_obp(dev_info_t *dip, char *path) 6742 { 6743 ASSERT(!servicing_interrupt()); 6744 if (dip == NULL || path == NULL) 6745 return (NULL); 6746 6747 /* split work into a separate function to aid debugging */ 6748 return (pathname_work_obp(dip, path)); 6749 } 6750 6751 int 6752 ddi_pathname_obp_set(dev_info_t *dip, char *component) 6753 { 6754 dev_info_t *pdip; 6755 char *obp_path = NULL; 6756 int rc = DDI_FAILURE; 6757 6758 if (dip == NULL) 6759 return (DDI_FAILURE); 6760 6761 obp_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 6762 6763 pdip = ddi_get_parent(dip); 6764 6765 if (ddi_pathname_obp(pdip, obp_path) == NULL) { 6766 (void) ddi_pathname(pdip, obp_path); 6767 } 6768 6769 if (component) { 6770 (void) strncat(obp_path, "/", MAXPATHLEN); 6771 (void) strncat(obp_path, component, MAXPATHLEN); 6772 } 6773 rc = ndi_prop_update_string(DDI_DEV_T_NONE, dip, "obp-path", 6774 obp_path); 6775 6776 if (obp_path) 6777 kmem_free(obp_path, MAXPATHLEN); 6778 6779 return (rc); 6780 } 6781 6782 /* 6783 * Given a dev_t, return the pathname of the corresponding device in the 6784 * buffer pointed at by "path." The buffer is assumed to be large enough 6785 * to hold the pathname of the device (MAXPATHLEN). 6786 * 6787 * The pathname of a device is the pathname of the devinfo node to which 6788 * the device "belongs," concatenated with the character ':' and the name 6789 * of the minor node corresponding to the dev_t. If spec_type is 0 then 6790 * just the pathname of the devinfo node is returned without driving attach 6791 * of that node. For a non-zero spec_type, an attach is performed and a 6792 * search of the minor list occurs. 6793 * 6794 * It is possible that the path associated with the dev_t is not 6795 * currently available in the devinfo tree. In order to have a 6796 * dev_t, a device must have been discovered before, which means 6797 * that the path is always in the instance tree. The one exception 6798 * to this is if the dev_t is associated with a pseudo driver, in 6799 * which case the device must exist on the pseudo branch of the 6800 * devinfo tree as a result of parsing .conf files. 6801 */ 6802 int 6803 ddi_dev_pathname(dev_t devt, int spec_type, char *path) 6804 { 6805 int circ; 6806 major_t major = getmajor(devt); 6807 int instance; 6808 dev_info_t *dip; 6809 char *minorname; 6810 char *drvname; 6811 6812 if (major >= devcnt) 6813 goto fail; 6814 if (major == clone_major) { 6815 /* clone has no minor nodes, manufacture the path here */ 6816 if ((drvname = ddi_major_to_name(getminor(devt))) == NULL) 6817 goto fail; 6818 6819 (void) snprintf(path, MAXPATHLEN, "%s:%s", CLONE_PATH, drvname); 6820 return (DDI_SUCCESS); 6821 } 6822 6823 /* extract instance from devt (getinfo(9E) DDI_INFO_DEVT2INSTANCE). */ 6824 if ((instance = dev_to_instance(devt)) == -1) 6825 goto fail; 6826 6827 /* reconstruct the path given the major/instance */ 6828 if (e_ddi_majorinstance_to_path(major, instance, path) != DDI_SUCCESS) 6829 goto fail; 6830 6831 /* if spec_type given we must drive attach and search minor nodes */ 6832 if ((spec_type == S_IFCHR) || (spec_type == S_IFBLK)) { 6833 /* attach the path so we can search minors */ 6834 if ((dip = e_ddi_hold_devi_by_path(path, 0)) == NULL) 6835 goto fail; 6836 6837 /* Add minorname to path. */ 6838 ndi_devi_enter(dip, &circ); 6839 minorname = i_ddi_devtspectype_to_minorname(dip, 6840 devt, spec_type); 6841 if (minorname) { 6842 (void) strcat(path, ":"); 6843 (void) strcat(path, minorname); 6844 } 6845 ndi_devi_exit(dip, circ); 6846 ddi_release_devi(dip); 6847 if (minorname == NULL) 6848 goto fail; 6849 } 6850 ASSERT(strlen(path) < MAXPATHLEN); 6851 return (DDI_SUCCESS); 6852 6853 fail: *path = 0; 6854 return (DDI_FAILURE); 6855 } 6856 6857 /* 6858 * Given a major number and an instance, return the path. 6859 * This interface does NOT drive attach. 6860 */ 6861 int 6862 e_ddi_majorinstance_to_path(major_t major, int instance, char *path) 6863 { 6864 struct devnames *dnp; 6865 dev_info_t *dip; 6866 6867 if ((major >= devcnt) || (instance == -1)) { 6868 *path = 0; 6869 return (DDI_FAILURE); 6870 } 6871 6872 /* look for the major/instance in the instance tree */ 6873 if (e_ddi_instance_majorinstance_to_path(major, instance, 6874 path) == DDI_SUCCESS) { 6875 ASSERT(strlen(path) < MAXPATHLEN); 6876 return (DDI_SUCCESS); 6877 } 6878 6879 /* 6880 * Not in instance tree, find the instance on the per driver list and 6881 * construct path to instance via ddi_pathname(). This is how paths 6882 * down the 'pseudo' branch are constructed. 6883 */ 6884 dnp = &(devnamesp[major]); 6885 LOCK_DEV_OPS(&(dnp->dn_lock)); 6886 for (dip = dnp->dn_head; dip; 6887 dip = (dev_info_t *)DEVI(dip)->devi_next) { 6888 /* Skip if instance does not match. */ 6889 if (DEVI(dip)->devi_instance != instance) 6890 continue; 6891 6892 /* 6893 * An ndi_hold_devi() does not prevent DS_INITIALIZED->DS_BOUND 6894 * node demotion, so it is not an effective way of ensuring 6895 * that the ddi_pathname result has a unit-address. Instead, 6896 * we reverify the node state after calling ddi_pathname(). 6897 */ 6898 if (i_ddi_node_state(dip) >= DS_INITIALIZED) { 6899 (void) ddi_pathname(dip, path); 6900 if (i_ddi_node_state(dip) < DS_INITIALIZED) 6901 continue; 6902 UNLOCK_DEV_OPS(&(dnp->dn_lock)); 6903 ASSERT(strlen(path) < MAXPATHLEN); 6904 return (DDI_SUCCESS); 6905 } 6906 } 6907 UNLOCK_DEV_OPS(&(dnp->dn_lock)); 6908 6909 /* can't reconstruct the path */ 6910 *path = 0; 6911 return (DDI_FAILURE); 6912 } 6913 6914 #define GLD_DRIVER_PPA "SUNW,gld_v0_ppa" 6915 6916 /* 6917 * Given the dip for a network interface return the ppa for that interface. 6918 * 6919 * In all cases except GLD v0 drivers, the ppa == instance. 6920 * In the case of GLD v0 drivers, the ppa is equal to the attach order. 6921 * So for these drivers when the attach routine calls gld_register(), 6922 * the GLD framework creates an integer property called "gld_driver_ppa" 6923 * that can be queried here. 6924 * 6925 * The only time this function is used is when a system is booting over nfs. 6926 * In this case the system has to resolve the pathname of the boot device 6927 * to it's ppa. 6928 */ 6929 int 6930 i_ddi_devi_get_ppa(dev_info_t *dip) 6931 { 6932 return (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 6933 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, 6934 GLD_DRIVER_PPA, ddi_get_instance(dip))); 6935 } 6936 6937 /* 6938 * i_ddi_devi_set_ppa() should only be called from gld_register() 6939 * and only for GLD v0 drivers 6940 */ 6941 void 6942 i_ddi_devi_set_ppa(dev_info_t *dip, int ppa) 6943 { 6944 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, GLD_DRIVER_PPA, ppa); 6945 } 6946 6947 6948 /* 6949 * Private DDI Console bell functions. 6950 */ 6951 void 6952 ddi_ring_console_bell(clock_t duration) 6953 { 6954 if (ddi_console_bell_func != NULL) 6955 (*ddi_console_bell_func)(duration); 6956 } 6957 6958 void 6959 ddi_set_console_bell(void (*bellfunc)(clock_t duration)) 6960 { 6961 ddi_console_bell_func = bellfunc; 6962 } 6963 6964 int 6965 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr, 6966 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 6967 { 6968 int (*funcp)() = ddi_dma_allochdl; 6969 ddi_dma_attr_t dma_attr; 6970 struct bus_ops *bop; 6971 6972 if (attr == (ddi_dma_attr_t *)0) 6973 return (DDI_DMA_BADATTR); 6974 6975 dma_attr = *attr; 6976 6977 bop = DEVI(dip)->devi_ops->devo_bus_ops; 6978 if (bop && bop->bus_dma_allochdl) 6979 funcp = bop->bus_dma_allochdl; 6980 6981 return ((*funcp)(dip, dip, &dma_attr, waitfp, arg, handlep)); 6982 } 6983 6984 void 6985 ddi_dma_free_handle(ddi_dma_handle_t *handlep) 6986 { 6987 ddi_dma_handle_t h = *handlep; 6988 (void) ddi_dma_freehdl(HD, HD, h); 6989 } 6990 6991 static uintptr_t dma_mem_list_id = 0; 6992 6993 6994 int 6995 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length, 6996 ddi_device_acc_attr_t *accattrp, uint_t flags, 6997 int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp, 6998 size_t *real_length, ddi_acc_handle_t *handlep) 6999 { 7000 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 7001 dev_info_t *dip = hp->dmai_rdip; 7002 ddi_acc_hdl_t *ap; 7003 ddi_dma_attr_t *attrp = &hp->dmai_attr; 7004 uint_t sleepflag, xfermodes; 7005 int (*fp)(caddr_t); 7006 int rval; 7007 7008 if (waitfp == DDI_DMA_SLEEP) 7009 fp = (int (*)())KM_SLEEP; 7010 else if (waitfp == DDI_DMA_DONTWAIT) 7011 fp = (int (*)())KM_NOSLEEP; 7012 else 7013 fp = waitfp; 7014 *handlep = impl_acc_hdl_alloc(fp, arg); 7015 if (*handlep == NULL) 7016 return (DDI_FAILURE); 7017 7018 /* check if the cache attributes are supported */ 7019 if (i_ddi_check_cache_attr(flags) == B_FALSE) 7020 return (DDI_FAILURE); 7021 7022 /* 7023 * Transfer the meaningful bits to xfermodes. 7024 * Double-check if the 3rd party driver correctly sets the bits. 7025 * If not, set DDI_DMA_STREAMING to keep compatibility. 7026 */ 7027 xfermodes = flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING); 7028 if (xfermodes == 0) { 7029 xfermodes = DDI_DMA_STREAMING; 7030 } 7031 7032 /* 7033 * initialize the common elements of data access handle 7034 */ 7035 ap = impl_acc_hdl_get(*handlep); 7036 ap->ah_vers = VERS_ACCHDL; 7037 ap->ah_dip = dip; 7038 ap->ah_offset = 0; 7039 ap->ah_len = 0; 7040 ap->ah_xfermodes = flags; 7041 ap->ah_acc = *accattrp; 7042 7043 sleepflag = ((waitfp == DDI_DMA_SLEEP) ? 1 : 0); 7044 if (xfermodes == DDI_DMA_CONSISTENT) { 7045 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag, 7046 flags, accattrp, kaddrp, NULL, ap); 7047 *real_length = length; 7048 } else { 7049 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag, 7050 flags, accattrp, kaddrp, real_length, ap); 7051 } 7052 if (rval == DDI_SUCCESS) { 7053 ap->ah_len = (off_t)(*real_length); 7054 ap->ah_addr = *kaddrp; 7055 } else { 7056 impl_acc_hdl_free(*handlep); 7057 *handlep = (ddi_acc_handle_t)NULL; 7058 if (waitfp != DDI_DMA_SLEEP && waitfp != DDI_DMA_DONTWAIT) { 7059 ddi_set_callback(waitfp, arg, &dma_mem_list_id); 7060 } 7061 rval = DDI_FAILURE; 7062 } 7063 return (rval); 7064 } 7065 7066 void 7067 ddi_dma_mem_free(ddi_acc_handle_t *handlep) 7068 { 7069 ddi_acc_hdl_t *ap; 7070 7071 ap = impl_acc_hdl_get(*handlep); 7072 ASSERT(ap); 7073 7074 i_ddi_mem_free((caddr_t)ap->ah_addr, ap); 7075 7076 /* 7077 * free the handle 7078 */ 7079 impl_acc_hdl_free(*handlep); 7080 *handlep = (ddi_acc_handle_t)NULL; 7081 7082 if (dma_mem_list_id != 0) { 7083 ddi_run_callback(&dma_mem_list_id); 7084 } 7085 } 7086 7087 int 7088 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp, 7089 uint_t flags, int (*waitfp)(caddr_t), caddr_t arg, 7090 ddi_dma_cookie_t *cookiep, uint_t *ccountp) 7091 { 7092 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 7093 dev_info_t *hdip, *dip; 7094 struct ddi_dma_req dmareq; 7095 int (*funcp)(); 7096 7097 dmareq.dmar_flags = flags; 7098 dmareq.dmar_fp = waitfp; 7099 dmareq.dmar_arg = arg; 7100 dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount; 7101 7102 if (bp->b_flags & B_PAGEIO) { 7103 dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES; 7104 dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages; 7105 dmareq.dmar_object.dmao_obj.pp_obj.pp_offset = 7106 (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET); 7107 } else { 7108 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr; 7109 if (bp->b_flags & B_SHADOW) { 7110 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = 7111 bp->b_shadow; 7112 dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR; 7113 } else { 7114 dmareq.dmar_object.dmao_type = 7115 (bp->b_flags & (B_PHYS | B_REMAPPED)) ? 7116 DMA_OTYP_BUFVADDR : DMA_OTYP_VADDR; 7117 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL; 7118 } 7119 7120 /* 7121 * If the buffer has no proc pointer, or the proc 7122 * struct has the kernel address space, or the buffer has 7123 * been marked B_REMAPPED (meaning that it is now 7124 * mapped into the kernel's address space), then 7125 * the address space is kas (kernel address space). 7126 */ 7127 if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) || 7128 (bp->b_flags & B_REMAPPED)) { 7129 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0; 7130 } else { 7131 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 7132 bp->b_proc->p_as; 7133 } 7134 } 7135 7136 dip = hp->dmai_rdip; 7137 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl; 7138 funcp = DEVI(dip)->devi_bus_dma_bindfunc; 7139 return ((*funcp)(hdip, dip, handle, &dmareq, cookiep, ccountp)); 7140 } 7141 7142 int 7143 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as, 7144 caddr_t addr, size_t len, uint_t flags, int (*waitfp)(caddr_t), 7145 caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 7146 { 7147 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 7148 dev_info_t *hdip, *dip; 7149 struct ddi_dma_req dmareq; 7150 int (*funcp)(); 7151 7152 if (len == (uint_t)0) { 7153 return (DDI_DMA_NOMAPPING); 7154 } 7155 dmareq.dmar_flags = flags; 7156 dmareq.dmar_fp = waitfp; 7157 dmareq.dmar_arg = arg; 7158 dmareq.dmar_object.dmao_size = len; 7159 dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR; 7160 dmareq.dmar_object.dmao_obj.virt_obj.v_as = as; 7161 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr; 7162 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL; 7163 7164 dip = hp->dmai_rdip; 7165 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl; 7166 funcp = DEVI(dip)->devi_bus_dma_bindfunc; 7167 return ((*funcp)(hdip, dip, handle, &dmareq, cookiep, ccountp)); 7168 } 7169 7170 void 7171 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep) 7172 { 7173 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 7174 ddi_dma_cookie_t *cp; 7175 7176 cp = hp->dmai_cookie; 7177 ASSERT(cp); 7178 7179 cookiep->dmac_notused = cp->dmac_notused; 7180 cookiep->dmac_type = cp->dmac_type; 7181 cookiep->dmac_address = cp->dmac_address; 7182 cookiep->dmac_size = cp->dmac_size; 7183 hp->dmai_cookie++; 7184 } 7185 7186 int 7187 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp) 7188 { 7189 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 7190 if ((hp->dmai_rflags & DDI_DMA_PARTIAL) == 0) { 7191 return (DDI_FAILURE); 7192 } else { 7193 *nwinp = hp->dmai_nwin; 7194 return (DDI_SUCCESS); 7195 } 7196 } 7197 7198 int 7199 ddi_dma_getwin(ddi_dma_handle_t h, uint_t win, off_t *offp, 7200 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 7201 { 7202 int (*funcp)() = ddi_dma_win; 7203 struct bus_ops *bop; 7204 7205 bop = DEVI(HD)->devi_ops->devo_bus_ops; 7206 if (bop && bop->bus_dma_win) 7207 funcp = bop->bus_dma_win; 7208 7209 return ((*funcp)(HD, HD, h, win, offp, lenp, cookiep, ccountp)); 7210 } 7211 7212 int 7213 ddi_dma_set_sbus64(ddi_dma_handle_t h, ulong_t burstsizes) 7214 { 7215 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SET_SBUS64, 0, 7216 &burstsizes, 0, 0)); 7217 } 7218 7219 int 7220 i_ddi_dma_fault_check(ddi_dma_impl_t *hp) 7221 { 7222 return (hp->dmai_fault); 7223 } 7224 7225 int 7226 ddi_check_dma_handle(ddi_dma_handle_t handle) 7227 { 7228 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 7229 int (*check)(ddi_dma_impl_t *); 7230 7231 if ((check = hp->dmai_fault_check) == NULL) 7232 check = i_ddi_dma_fault_check; 7233 7234 return (((*check)(hp) == DDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 7235 } 7236 7237 void 7238 i_ddi_dma_set_fault(ddi_dma_handle_t handle) 7239 { 7240 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 7241 void (*notify)(ddi_dma_impl_t *); 7242 7243 if (!hp->dmai_fault) { 7244 hp->dmai_fault = 1; 7245 if ((notify = hp->dmai_fault_notify) != NULL) 7246 (*notify)(hp); 7247 } 7248 } 7249 7250 void 7251 i_ddi_dma_clr_fault(ddi_dma_handle_t handle) 7252 { 7253 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 7254 void (*notify)(ddi_dma_impl_t *); 7255 7256 if (hp->dmai_fault) { 7257 hp->dmai_fault = 0; 7258 if ((notify = hp->dmai_fault_notify) != NULL) 7259 (*notify)(hp); 7260 } 7261 } 7262 7263 /* 7264 * register mapping routines. 7265 */ 7266 int 7267 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp, 7268 offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp, 7269 ddi_acc_handle_t *handle) 7270 { 7271 ddi_map_req_t mr; 7272 ddi_acc_hdl_t *hp; 7273 int result; 7274 7275 /* 7276 * Allocate and initialize the common elements of data access handle. 7277 */ 7278 *handle = impl_acc_hdl_alloc(KM_SLEEP, NULL); 7279 hp = impl_acc_hdl_get(*handle); 7280 hp->ah_vers = VERS_ACCHDL; 7281 hp->ah_dip = dip; 7282 hp->ah_rnumber = rnumber; 7283 hp->ah_offset = offset; 7284 hp->ah_len = len; 7285 hp->ah_acc = *accattrp; 7286 7287 /* 7288 * Set up the mapping request and call to parent. 7289 */ 7290 mr.map_op = DDI_MO_MAP_LOCKED; 7291 mr.map_type = DDI_MT_RNUMBER; 7292 mr.map_obj.rnumber = rnumber; 7293 mr.map_prot = PROT_READ | PROT_WRITE; 7294 mr.map_flags = DDI_MF_KERNEL_MAPPING; 7295 mr.map_handlep = hp; 7296 mr.map_vers = DDI_MAP_VERSION; 7297 result = ddi_map(dip, &mr, offset, len, addrp); 7298 7299 /* 7300 * check for end result 7301 */ 7302 if (result != DDI_SUCCESS) { 7303 impl_acc_hdl_free(*handle); 7304 *handle = (ddi_acc_handle_t)NULL; 7305 } else { 7306 hp->ah_addr = *addrp; 7307 } 7308 7309 return (result); 7310 } 7311 7312 void 7313 ddi_regs_map_free(ddi_acc_handle_t *handlep) 7314 { 7315 ddi_map_req_t mr; 7316 ddi_acc_hdl_t *hp; 7317 7318 hp = impl_acc_hdl_get(*handlep); 7319 ASSERT(hp); 7320 7321 mr.map_op = DDI_MO_UNMAP; 7322 mr.map_type = DDI_MT_RNUMBER; 7323 mr.map_obj.rnumber = hp->ah_rnumber; 7324 mr.map_prot = PROT_READ | PROT_WRITE; 7325 mr.map_flags = DDI_MF_KERNEL_MAPPING; 7326 mr.map_handlep = hp; 7327 mr.map_vers = DDI_MAP_VERSION; 7328 7329 /* 7330 * Call my parent to unmap my regs. 7331 */ 7332 (void) ddi_map(hp->ah_dip, &mr, hp->ah_offset, 7333 hp->ah_len, &hp->ah_addr); 7334 /* 7335 * free the handle 7336 */ 7337 impl_acc_hdl_free(*handlep); 7338 *handlep = (ddi_acc_handle_t)NULL; 7339 } 7340 7341 int 7342 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount, 7343 ssize_t dev_advcnt, uint_t dev_datasz) 7344 { 7345 uint8_t *b; 7346 uint16_t *w; 7347 uint32_t *l; 7348 uint64_t *ll; 7349 7350 /* check for total byte count is multiple of data transfer size */ 7351 if (bytecount != ((bytecount / dev_datasz) * dev_datasz)) 7352 return (DDI_FAILURE); 7353 7354 switch (dev_datasz) { 7355 case DDI_DATA_SZ01_ACC: 7356 for (b = (uint8_t *)dev_addr; 7357 bytecount != 0; bytecount -= 1, b += dev_advcnt) 7358 ddi_put8(handle, b, 0); 7359 break; 7360 case DDI_DATA_SZ02_ACC: 7361 for (w = (uint16_t *)dev_addr; 7362 bytecount != 0; bytecount -= 2, w += dev_advcnt) 7363 ddi_put16(handle, w, 0); 7364 break; 7365 case DDI_DATA_SZ04_ACC: 7366 for (l = (uint32_t *)dev_addr; 7367 bytecount != 0; bytecount -= 4, l += dev_advcnt) 7368 ddi_put32(handle, l, 0); 7369 break; 7370 case DDI_DATA_SZ08_ACC: 7371 for (ll = (uint64_t *)dev_addr; 7372 bytecount != 0; bytecount -= 8, ll += dev_advcnt) 7373 ddi_put64(handle, ll, 0x0ll); 7374 break; 7375 default: 7376 return (DDI_FAILURE); 7377 } 7378 return (DDI_SUCCESS); 7379 } 7380 7381 int 7382 ddi_device_copy( 7383 ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt, 7384 ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt, 7385 size_t bytecount, uint_t dev_datasz) 7386 { 7387 uint8_t *b_src, *b_dst; 7388 uint16_t *w_src, *w_dst; 7389 uint32_t *l_src, *l_dst; 7390 uint64_t *ll_src, *ll_dst; 7391 7392 /* check for total byte count is multiple of data transfer size */ 7393 if (bytecount != ((bytecount / dev_datasz) * dev_datasz)) 7394 return (DDI_FAILURE); 7395 7396 switch (dev_datasz) { 7397 case DDI_DATA_SZ01_ACC: 7398 b_src = (uint8_t *)src_addr; 7399 b_dst = (uint8_t *)dest_addr; 7400 7401 for (; bytecount != 0; bytecount -= 1) { 7402 ddi_put8(dest_handle, b_dst, 7403 ddi_get8(src_handle, b_src)); 7404 b_dst += dest_advcnt; 7405 b_src += src_advcnt; 7406 } 7407 break; 7408 case DDI_DATA_SZ02_ACC: 7409 w_src = (uint16_t *)src_addr; 7410 w_dst = (uint16_t *)dest_addr; 7411 7412 for (; bytecount != 0; bytecount -= 2) { 7413 ddi_put16(dest_handle, w_dst, 7414 ddi_get16(src_handle, w_src)); 7415 w_dst += dest_advcnt; 7416 w_src += src_advcnt; 7417 } 7418 break; 7419 case DDI_DATA_SZ04_ACC: 7420 l_src = (uint32_t *)src_addr; 7421 l_dst = (uint32_t *)dest_addr; 7422 7423 for (; bytecount != 0; bytecount -= 4) { 7424 ddi_put32(dest_handle, l_dst, 7425 ddi_get32(src_handle, l_src)); 7426 l_dst += dest_advcnt; 7427 l_src += src_advcnt; 7428 } 7429 break; 7430 case DDI_DATA_SZ08_ACC: 7431 ll_src = (uint64_t *)src_addr; 7432 ll_dst = (uint64_t *)dest_addr; 7433 7434 for (; bytecount != 0; bytecount -= 8) { 7435 ddi_put64(dest_handle, ll_dst, 7436 ddi_get64(src_handle, ll_src)); 7437 ll_dst += dest_advcnt; 7438 ll_src += src_advcnt; 7439 } 7440 break; 7441 default: 7442 return (DDI_FAILURE); 7443 } 7444 return (DDI_SUCCESS); 7445 } 7446 7447 #define swap16(value) \ 7448 ((((value) & 0xff) << 8) | ((value) >> 8)) 7449 7450 #define swap32(value) \ 7451 (((uint32_t)swap16((uint16_t)((value) & 0xffff)) << 16) | \ 7452 (uint32_t)swap16((uint16_t)((value) >> 16))) 7453 7454 #define swap64(value) \ 7455 (((uint64_t)swap32((uint32_t)((value) & 0xffffffff)) \ 7456 << 32) | \ 7457 (uint64_t)swap32((uint32_t)((value) >> 32))) 7458 7459 uint16_t 7460 ddi_swap16(uint16_t value) 7461 { 7462 return (swap16(value)); 7463 } 7464 7465 uint32_t 7466 ddi_swap32(uint32_t value) 7467 { 7468 return (swap32(value)); 7469 } 7470 7471 uint64_t 7472 ddi_swap64(uint64_t value) 7473 { 7474 return (swap64(value)); 7475 } 7476 7477 /* 7478 * Convert a binding name to a driver name. 7479 * A binding name is the name used to determine the driver for a 7480 * device - it may be either an alias for the driver or the name 7481 * of the driver itself. 7482 */ 7483 char * 7484 i_binding_to_drv_name(char *bname) 7485 { 7486 major_t major_no; 7487 7488 ASSERT(bname != NULL); 7489 7490 if ((major_no = ddi_name_to_major(bname)) == -1) 7491 return (NULL); 7492 return (ddi_major_to_name(major_no)); 7493 } 7494 7495 /* 7496 * Search for minor name that has specified dev_t and spec_type. 7497 * If spec_type is zero then any dev_t match works. Since we 7498 * are returning a pointer to the minor name string, we require the 7499 * caller to do the locking. 7500 */ 7501 char * 7502 i_ddi_devtspectype_to_minorname(dev_info_t *dip, dev_t dev, int spec_type) 7503 { 7504 struct ddi_minor_data *dmdp; 7505 7506 /* 7507 * The did layered driver currently intentionally returns a 7508 * devinfo ptr for an underlying sd instance based on a did 7509 * dev_t. In this case it is not an error. 7510 * 7511 * The did layered driver is associated with Sun Cluster. 7512 */ 7513 ASSERT((ddi_driver_major(dip) == getmajor(dev)) || 7514 (strcmp(ddi_major_to_name(getmajor(dev)), "did") == 0)); 7515 7516 ASSERT(DEVI_BUSY_OWNED(dip)); 7517 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) { 7518 if (((dmdp->type == DDM_MINOR) || 7519 (dmdp->type == DDM_INTERNAL_PATH) || 7520 (dmdp->type == DDM_DEFAULT)) && 7521 (dmdp->ddm_dev == dev) && 7522 ((((spec_type & (S_IFCHR|S_IFBLK))) == 0) || 7523 (dmdp->ddm_spec_type == spec_type))) 7524 return (dmdp->ddm_name); 7525 } 7526 7527 return (NULL); 7528 } 7529 7530 /* 7531 * Find the devt and spectype of the specified minor_name. 7532 * Return DDI_FAILURE if minor_name not found. Since we are 7533 * returning everything via arguments we can do the locking. 7534 */ 7535 int 7536 i_ddi_minorname_to_devtspectype(dev_info_t *dip, char *minor_name, 7537 dev_t *devtp, int *spectypep) 7538 { 7539 int circ; 7540 struct ddi_minor_data *dmdp; 7541 7542 /* deal with clone minor nodes */ 7543 if (dip == clone_dip) { 7544 major_t major; 7545 /* 7546 * Make sure minor_name is a STREAMS driver. 7547 * We load the driver but don't attach to any instances. 7548 */ 7549 7550 major = ddi_name_to_major(minor_name); 7551 if (major == DDI_MAJOR_T_NONE) 7552 return (DDI_FAILURE); 7553 7554 if (ddi_hold_driver(major) == NULL) 7555 return (DDI_FAILURE); 7556 7557 if (STREAMSTAB(major) == NULL) { 7558 ddi_rele_driver(major); 7559 return (DDI_FAILURE); 7560 } 7561 ddi_rele_driver(major); 7562 7563 if (devtp) 7564 *devtp = makedevice(clone_major, (minor_t)major); 7565 7566 if (spectypep) 7567 *spectypep = S_IFCHR; 7568 7569 return (DDI_SUCCESS); 7570 } 7571 7572 ndi_devi_enter(dip, &circ); 7573 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) { 7574 if (((dmdp->type != DDM_MINOR) && 7575 (dmdp->type != DDM_INTERNAL_PATH) && 7576 (dmdp->type != DDM_DEFAULT)) || 7577 strcmp(minor_name, dmdp->ddm_name)) 7578 continue; 7579 7580 if (devtp) 7581 *devtp = dmdp->ddm_dev; 7582 7583 if (spectypep) 7584 *spectypep = dmdp->ddm_spec_type; 7585 7586 ndi_devi_exit(dip, circ); 7587 return (DDI_SUCCESS); 7588 } 7589 ndi_devi_exit(dip, circ); 7590 7591 return (DDI_FAILURE); 7592 } 7593 7594 extern char hw_serial[]; 7595 static kmutex_t devid_gen_mutex; 7596 static short devid_gen_number; 7597 7598 #ifdef DEBUG 7599 7600 static int devid_register_corrupt = 0; 7601 static int devid_register_corrupt_major = 0; 7602 static int devid_register_corrupt_hint = 0; 7603 static int devid_register_corrupt_hint_major = 0; 7604 7605 static int devid_lyr_debug = 0; 7606 7607 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs) \ 7608 if (devid_lyr_debug) \ 7609 ddi_debug_devid_devts(msg, ndevs, devs) 7610 7611 #else 7612 7613 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs) 7614 7615 #endif /* DEBUG */ 7616 7617 7618 #ifdef DEBUG 7619 7620 static void 7621 ddi_debug_devid_devts(char *msg, int ndevs, dev_t *devs) 7622 { 7623 int i; 7624 7625 cmn_err(CE_CONT, "%s:\n", msg); 7626 for (i = 0; i < ndevs; i++) { 7627 cmn_err(CE_CONT, " 0x%lx\n", devs[i]); 7628 } 7629 } 7630 7631 static void 7632 ddi_debug_devid_paths(char *msg, int npaths, char **paths) 7633 { 7634 int i; 7635 7636 cmn_err(CE_CONT, "%s:\n", msg); 7637 for (i = 0; i < npaths; i++) { 7638 cmn_err(CE_CONT, " %s\n", paths[i]); 7639 } 7640 } 7641 7642 static void 7643 ddi_debug_devid_devts_per_path(char *path, int ndevs, dev_t *devs) 7644 { 7645 int i; 7646 7647 cmn_err(CE_CONT, "dev_ts per path %s\n", path); 7648 for (i = 0; i < ndevs; i++) { 7649 cmn_err(CE_CONT, " 0x%lx\n", devs[i]); 7650 } 7651 } 7652 7653 #endif /* DEBUG */ 7654 7655 /* 7656 * Register device id into DDI framework. 7657 * Must be called when device is attached. 7658 */ 7659 static int 7660 i_ddi_devid_register(dev_info_t *dip, ddi_devid_t devid) 7661 { 7662 impl_devid_t *i_devid = (impl_devid_t *)devid; 7663 size_t driver_len; 7664 const char *driver_name; 7665 char *devid_str; 7666 major_t major; 7667 7668 if ((dip == NULL) || 7669 ((major = ddi_driver_major(dip)) == DDI_MAJOR_T_NONE)) 7670 return (DDI_FAILURE); 7671 7672 /* verify that the devid is valid */ 7673 if (ddi_devid_valid(devid) != DDI_SUCCESS) 7674 return (DDI_FAILURE); 7675 7676 /* Updating driver name hint in devid */ 7677 driver_name = ddi_driver_name(dip); 7678 driver_len = strlen(driver_name); 7679 if (driver_len > DEVID_HINT_SIZE) { 7680 /* Pick up last four characters of driver name */ 7681 driver_name += driver_len - DEVID_HINT_SIZE; 7682 driver_len = DEVID_HINT_SIZE; 7683 } 7684 bzero(i_devid->did_driver, DEVID_HINT_SIZE); 7685 bcopy(driver_name, i_devid->did_driver, driver_len); 7686 7687 #ifdef DEBUG 7688 /* Corrupt the devid for testing. */ 7689 if (devid_register_corrupt) 7690 i_devid->did_id[0] += devid_register_corrupt; 7691 if (devid_register_corrupt_major && 7692 (major == devid_register_corrupt_major)) 7693 i_devid->did_id[0] += 1; 7694 if (devid_register_corrupt_hint) 7695 i_devid->did_driver[0] += devid_register_corrupt_hint; 7696 if (devid_register_corrupt_hint_major && 7697 (major == devid_register_corrupt_hint_major)) 7698 i_devid->did_driver[0] += 1; 7699 #endif /* DEBUG */ 7700 7701 /* encode the devid as a string */ 7702 if ((devid_str = ddi_devid_str_encode(devid, NULL)) == NULL) 7703 return (DDI_FAILURE); 7704 7705 /* add string as a string property */ 7706 if (ndi_prop_update_string(DDI_DEV_T_NONE, dip, 7707 DEVID_PROP_NAME, devid_str) != DDI_SUCCESS) { 7708 cmn_err(CE_WARN, "%s%d: devid property update failed", 7709 ddi_driver_name(dip), ddi_get_instance(dip)); 7710 ddi_devid_str_free(devid_str); 7711 return (DDI_FAILURE); 7712 } 7713 7714 /* keep pointer to devid string for interrupt context fma code */ 7715 if (DEVI(dip)->devi_devid_str) 7716 ddi_devid_str_free(DEVI(dip)->devi_devid_str); 7717 DEVI(dip)->devi_devid_str = devid_str; 7718 return (DDI_SUCCESS); 7719 } 7720 7721 int 7722 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid) 7723 { 7724 int rval; 7725 7726 rval = i_ddi_devid_register(dip, devid); 7727 if (rval == DDI_SUCCESS) { 7728 /* 7729 * Register devid in devid-to-path cache 7730 */ 7731 if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) { 7732 mutex_enter(&DEVI(dip)->devi_lock); 7733 DEVI(dip)->devi_flags |= DEVI_REGISTERED_DEVID; 7734 mutex_exit(&DEVI(dip)->devi_lock); 7735 } else { 7736 cmn_err(CE_WARN, "%s%d: failed to cache devid", 7737 ddi_driver_name(dip), ddi_get_instance(dip)); 7738 } 7739 } else { 7740 cmn_err(CE_WARN, "%s%d: failed to register devid", 7741 ddi_driver_name(dip), ddi_get_instance(dip)); 7742 } 7743 return (rval); 7744 } 7745 7746 /* 7747 * Remove (unregister) device id from DDI framework. 7748 * Must be called when device is detached. 7749 */ 7750 static void 7751 i_ddi_devid_unregister(dev_info_t *dip) 7752 { 7753 if (DEVI(dip)->devi_devid_str) { 7754 ddi_devid_str_free(DEVI(dip)->devi_devid_str); 7755 DEVI(dip)->devi_devid_str = NULL; 7756 } 7757 7758 /* remove the devid property */ 7759 (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, DEVID_PROP_NAME); 7760 } 7761 7762 void 7763 ddi_devid_unregister(dev_info_t *dip) 7764 { 7765 mutex_enter(&DEVI(dip)->devi_lock); 7766 DEVI(dip)->devi_flags &= ~DEVI_REGISTERED_DEVID; 7767 mutex_exit(&DEVI(dip)->devi_lock); 7768 e_devid_cache_unregister(dip); 7769 i_ddi_devid_unregister(dip); 7770 } 7771 7772 /* 7773 * Allocate and initialize a device id. 7774 */ 7775 int 7776 ddi_devid_init( 7777 dev_info_t *dip, 7778 ushort_t devid_type, 7779 ushort_t nbytes, 7780 void *id, 7781 ddi_devid_t *ret_devid) 7782 { 7783 impl_devid_t *i_devid; 7784 int sz = sizeof (*i_devid) + nbytes - sizeof (char); 7785 int driver_len; 7786 const char *driver_name; 7787 7788 switch (devid_type) { 7789 case DEVID_SCSI3_WWN: 7790 /*FALLTHRU*/ 7791 case DEVID_SCSI_SERIAL: 7792 /*FALLTHRU*/ 7793 case DEVID_ATA_SERIAL: 7794 /*FALLTHRU*/ 7795 case DEVID_ENCAP: 7796 if (nbytes == 0) 7797 return (DDI_FAILURE); 7798 if (id == NULL) 7799 return (DDI_FAILURE); 7800 break; 7801 case DEVID_FAB: 7802 if (nbytes != 0) 7803 return (DDI_FAILURE); 7804 if (id != NULL) 7805 return (DDI_FAILURE); 7806 nbytes = sizeof (int) + 7807 sizeof (struct timeval32) + sizeof (short); 7808 sz += nbytes; 7809 break; 7810 default: 7811 return (DDI_FAILURE); 7812 } 7813 7814 if ((i_devid = kmem_zalloc(sz, KM_SLEEP)) == NULL) 7815 return (DDI_FAILURE); 7816 7817 i_devid->did_magic_hi = DEVID_MAGIC_MSB; 7818 i_devid->did_magic_lo = DEVID_MAGIC_LSB; 7819 i_devid->did_rev_hi = DEVID_REV_MSB; 7820 i_devid->did_rev_lo = DEVID_REV_LSB; 7821 DEVID_FORMTYPE(i_devid, devid_type); 7822 DEVID_FORMLEN(i_devid, nbytes); 7823 7824 /* Fill in driver name hint */ 7825 driver_name = ddi_driver_name(dip); 7826 driver_len = strlen(driver_name); 7827 if (driver_len > DEVID_HINT_SIZE) { 7828 /* Pick up last four characters of driver name */ 7829 driver_name += driver_len - DEVID_HINT_SIZE; 7830 driver_len = DEVID_HINT_SIZE; 7831 } 7832 7833 bcopy(driver_name, i_devid->did_driver, driver_len); 7834 7835 /* Fill in id field */ 7836 if (devid_type == DEVID_FAB) { 7837 char *cp; 7838 int hostid; 7839 char *hostid_cp = &hw_serial[0]; 7840 struct timeval32 timestamp32; 7841 int i; 7842 int *ip; 7843 short gen; 7844 7845 /* increase the generation number */ 7846 mutex_enter(&devid_gen_mutex); 7847 gen = devid_gen_number++; 7848 mutex_exit(&devid_gen_mutex); 7849 7850 cp = i_devid->did_id; 7851 7852 /* Fill in host id (big-endian byte ordering) */ 7853 hostid = stoi(&hostid_cp); 7854 *cp++ = hibyte(hiword(hostid)); 7855 *cp++ = lobyte(hiword(hostid)); 7856 *cp++ = hibyte(loword(hostid)); 7857 *cp++ = lobyte(loword(hostid)); 7858 7859 /* 7860 * Fill in timestamp (big-endian byte ordering) 7861 * 7862 * (Note that the format may have to be changed 7863 * before 2038 comes around, though it's arguably 7864 * unique enough as it is..) 7865 */ 7866 uniqtime32(×tamp32); 7867 ip = (int *)×tamp32; 7868 for (i = 0; 7869 i < sizeof (timestamp32) / sizeof (int); i++, ip++) { 7870 int val; 7871 val = *ip; 7872 *cp++ = hibyte(hiword(val)); 7873 *cp++ = lobyte(hiword(val)); 7874 *cp++ = hibyte(loword(val)); 7875 *cp++ = lobyte(loword(val)); 7876 } 7877 7878 /* fill in the generation number */ 7879 *cp++ = hibyte(gen); 7880 *cp++ = lobyte(gen); 7881 } else 7882 bcopy(id, i_devid->did_id, nbytes); 7883 7884 /* return device id */ 7885 *ret_devid = (ddi_devid_t)i_devid; 7886 return (DDI_SUCCESS); 7887 } 7888 7889 int 7890 ddi_devid_get(dev_info_t *dip, ddi_devid_t *ret_devid) 7891 { 7892 return (i_ddi_devi_get_devid(DDI_DEV_T_ANY, dip, ret_devid)); 7893 } 7894 7895 int 7896 i_ddi_devi_get_devid(dev_t dev, dev_info_t *dip, ddi_devid_t *ret_devid) 7897 { 7898 char *devidstr; 7899 7900 ASSERT(dev != DDI_DEV_T_NONE); 7901 7902 /* look up the property, devt specific first */ 7903 if (ddi_prop_lookup_string(dev, dip, DDI_PROP_DONTPASS, 7904 DEVID_PROP_NAME, &devidstr) != DDI_PROP_SUCCESS) { 7905 if ((dev == DDI_DEV_T_ANY) || 7906 (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 7907 DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) != 7908 DDI_PROP_SUCCESS)) { 7909 return (DDI_FAILURE); 7910 } 7911 } 7912 7913 /* convert to binary form */ 7914 if (ddi_devid_str_decode(devidstr, ret_devid, NULL) == -1) { 7915 ddi_prop_free(devidstr); 7916 return (DDI_FAILURE); 7917 } 7918 ddi_prop_free(devidstr); 7919 return (DDI_SUCCESS); 7920 } 7921 7922 /* 7923 * Return a copy of the device id for dev_t 7924 */ 7925 int 7926 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid) 7927 { 7928 dev_info_t *dip; 7929 int rval; 7930 7931 /* get the dip */ 7932 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 7933 return (DDI_FAILURE); 7934 7935 rval = i_ddi_devi_get_devid(dev, dip, ret_devid); 7936 7937 ddi_release_devi(dip); /* e_ddi_hold_devi_by_dev() */ 7938 return (rval); 7939 } 7940 7941 /* 7942 * Return a copy of the minor name for dev_t and spec_type 7943 */ 7944 int 7945 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name) 7946 { 7947 char *buf; 7948 int circ; 7949 dev_info_t *dip; 7950 char *nm; 7951 int rval; 7952 7953 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) { 7954 *minor_name = NULL; 7955 return (DDI_FAILURE); 7956 } 7957 7958 /* Find the minor name and copy into max size buf */ 7959 buf = kmem_alloc(MAXNAMELEN, KM_SLEEP); 7960 ndi_devi_enter(dip, &circ); 7961 nm = i_ddi_devtspectype_to_minorname(dip, dev, spec_type); 7962 if (nm) 7963 (void) strcpy(buf, nm); 7964 ndi_devi_exit(dip, circ); 7965 ddi_release_devi(dip); /* e_ddi_hold_devi_by_dev() */ 7966 7967 if (nm) { 7968 /* duplicate into min size buf for return result */ 7969 *minor_name = i_ddi_strdup(buf, KM_SLEEP); 7970 rval = DDI_SUCCESS; 7971 } else { 7972 *minor_name = NULL; 7973 rval = DDI_FAILURE; 7974 } 7975 7976 /* free max size buf and return */ 7977 kmem_free(buf, MAXNAMELEN); 7978 return (rval); 7979 } 7980 7981 int 7982 ddi_lyr_devid_to_devlist( 7983 ddi_devid_t devid, 7984 char *minor_name, 7985 int *retndevs, 7986 dev_t **retdevs) 7987 { 7988 ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS); 7989 7990 if (e_devid_cache_to_devt_list(devid, minor_name, 7991 retndevs, retdevs) == DDI_SUCCESS) { 7992 ASSERT(*retndevs > 0); 7993 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist", 7994 *retndevs, *retdevs); 7995 return (DDI_SUCCESS); 7996 } 7997 7998 if (e_ddi_devid_discovery(devid) == DDI_FAILURE) { 7999 return (DDI_FAILURE); 8000 } 8001 8002 if (e_devid_cache_to_devt_list(devid, minor_name, 8003 retndevs, retdevs) == DDI_SUCCESS) { 8004 ASSERT(*retndevs > 0); 8005 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist", 8006 *retndevs, *retdevs); 8007 return (DDI_SUCCESS); 8008 } 8009 8010 return (DDI_FAILURE); 8011 } 8012 8013 void 8014 ddi_lyr_free_devlist(dev_t *devlist, int ndevs) 8015 { 8016 kmem_free(devlist, sizeof (dev_t) * ndevs); 8017 } 8018 8019 /* 8020 * Note: This will need to be fixed if we ever allow processes to 8021 * have more than one data model per exec. 8022 */ 8023 model_t 8024 ddi_mmap_get_model(void) 8025 { 8026 return (get_udatamodel()); 8027 } 8028 8029 model_t 8030 ddi_model_convert_from(model_t model) 8031 { 8032 return ((model & DDI_MODEL_MASK) & ~DDI_MODEL_NATIVE); 8033 } 8034 8035 /* 8036 * ddi interfaces managing storage and retrieval of eventcookies. 8037 */ 8038 8039 /* 8040 * Invoke bus nexus driver's implementation of the 8041 * (*bus_remove_eventcall)() interface to remove a registered 8042 * callback handler for "event". 8043 */ 8044 int 8045 ddi_remove_event_handler(ddi_callback_id_t id) 8046 { 8047 ndi_event_callbacks_t *cb = (ndi_event_callbacks_t *)id; 8048 dev_info_t *ddip; 8049 8050 ASSERT(cb); 8051 if (!cb) { 8052 return (DDI_FAILURE); 8053 } 8054 8055 ddip = NDI_EVENT_DDIP(cb->ndi_evtcb_cookie); 8056 return (ndi_busop_remove_eventcall(ddip, id)); 8057 } 8058 8059 /* 8060 * Invoke bus nexus driver's implementation of the 8061 * (*bus_add_eventcall)() interface to register a callback handler 8062 * for "event". 8063 */ 8064 int 8065 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event, 8066 void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *), 8067 void *arg, ddi_callback_id_t *id) 8068 { 8069 return (ndi_busop_add_eventcall(dip, dip, event, handler, arg, id)); 8070 } 8071 8072 8073 /* 8074 * Return a handle for event "name" by calling up the device tree 8075 * hierarchy via (*bus_get_eventcookie)() interface until claimed 8076 * by a bus nexus or top of dev_info tree is reached. 8077 */ 8078 int 8079 ddi_get_eventcookie(dev_info_t *dip, char *name, 8080 ddi_eventcookie_t *event_cookiep) 8081 { 8082 return (ndi_busop_get_eventcookie(dip, dip, 8083 name, event_cookiep)); 8084 } 8085 8086 /* 8087 * This procedure is provided as the general callback function when 8088 * umem_lockmemory calls as_add_callback for long term memory locking. 8089 * When as_unmap, as_setprot, or as_free encounter segments which have 8090 * locked memory, this callback will be invoked. 8091 */ 8092 void 8093 umem_lock_undo(struct as *as, void *arg, uint_t event) 8094 { 8095 _NOTE(ARGUNUSED(as, event)) 8096 struct ddi_umem_cookie *cp = (struct ddi_umem_cookie *)arg; 8097 8098 /* 8099 * Call the cleanup function. Decrement the cookie reference 8100 * count, if it goes to zero, return the memory for the cookie. 8101 * The i_ddi_umem_unlock for this cookie may or may not have been 8102 * called already. It is the responsibility of the caller of 8103 * umem_lockmemory to handle the case of the cleanup routine 8104 * being called after a ddi_umem_unlock for the cookie 8105 * was called. 8106 */ 8107 8108 (*cp->callbacks.cbo_umem_lock_cleanup)((ddi_umem_cookie_t)cp); 8109 8110 /* remove the cookie if reference goes to zero */ 8111 if (atomic_add_long_nv((ulong_t *)(&(cp->cook_refcnt)), -1) == 0) { 8112 kmem_free(cp, sizeof (struct ddi_umem_cookie)); 8113 } 8114 } 8115 8116 /* 8117 * The following two Consolidation Private routines provide generic 8118 * interfaces to increase/decrease the amount of device-locked memory. 8119 * 8120 * To keep project_rele and project_hold consistent, i_ddi_decr_locked_memory() 8121 * must be called every time i_ddi_incr_locked_memory() is called. 8122 */ 8123 int 8124 /* ARGSUSED */ 8125 i_ddi_incr_locked_memory(proc_t *procp, rctl_qty_t inc) 8126 { 8127 ASSERT(procp != NULL); 8128 mutex_enter(&procp->p_lock); 8129 if (rctl_incr_locked_mem(procp, NULL, inc, 1)) { 8130 mutex_exit(&procp->p_lock); 8131 return (ENOMEM); 8132 } 8133 mutex_exit(&procp->p_lock); 8134 return (0); 8135 } 8136 8137 /* 8138 * To keep project_rele and project_hold consistent, i_ddi_incr_locked_memory() 8139 * must be called every time i_ddi_decr_locked_memory() is called. 8140 */ 8141 /* ARGSUSED */ 8142 void 8143 i_ddi_decr_locked_memory(proc_t *procp, rctl_qty_t dec) 8144 { 8145 ASSERT(procp != NULL); 8146 mutex_enter(&procp->p_lock); 8147 rctl_decr_locked_mem(procp, NULL, dec, 1); 8148 mutex_exit(&procp->p_lock); 8149 } 8150 8151 /* 8152 * This routine checks if the max-locked-memory resource ctl is 8153 * exceeded, if not increments it, grabs a hold on the project. 8154 * Returns 0 if successful otherwise returns error code 8155 */ 8156 static int 8157 umem_incr_devlockmem(struct ddi_umem_cookie *cookie) 8158 { 8159 proc_t *procp; 8160 int ret; 8161 8162 ASSERT(cookie); 8163 procp = cookie->procp; 8164 ASSERT(procp); 8165 8166 if ((ret = i_ddi_incr_locked_memory(procp, 8167 cookie->size)) != 0) { 8168 return (ret); 8169 } 8170 return (0); 8171 } 8172 8173 /* 8174 * Decrements the max-locked-memory resource ctl and releases 8175 * the hold on the project that was acquired during umem_incr_devlockmem 8176 */ 8177 static void 8178 umem_decr_devlockmem(struct ddi_umem_cookie *cookie) 8179 { 8180 proc_t *proc; 8181 8182 proc = (proc_t *)cookie->procp; 8183 if (!proc) 8184 return; 8185 8186 i_ddi_decr_locked_memory(proc, cookie->size); 8187 } 8188 8189 /* 8190 * A consolidation private function which is essentially equivalent to 8191 * ddi_umem_lock but with the addition of arguments ops_vector and procp. 8192 * A call to as_add_callback is done if DDI_UMEMLOCK_LONGTERM is set, and 8193 * the ops_vector is valid. 8194 * 8195 * Lock the virtual address range in the current process and create a 8196 * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to 8197 * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export 8198 * to user space. 8199 * 8200 * Note: The resource control accounting currently uses a full charge model 8201 * in other words attempts to lock the same/overlapping areas of memory 8202 * will deduct the full size of the buffer from the projects running 8203 * counter for the device locked memory. 8204 * 8205 * addr, size should be PAGESIZE aligned 8206 * 8207 * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both 8208 * identifies whether the locked memory will be read or written or both 8209 * DDI_UMEMLOCK_LONGTERM must be set when the locking will 8210 * be maintained for an indefinitely long period (essentially permanent), 8211 * rather than for what would be required for a typical I/O completion. 8212 * When DDI_UMEMLOCK_LONGTERM is set, umem_lockmemory will return EFAULT 8213 * if the memory pertains to a regular file which is mapped MAP_SHARED. 8214 * This is to prevent a deadlock if a file truncation is attempted after 8215 * after the locking is done. 8216 * 8217 * Returns 0 on success 8218 * EINVAL - for invalid parameters 8219 * EPERM, ENOMEM and other error codes returned by as_pagelock 8220 * ENOMEM - is returned if the current request to lock memory exceeds 8221 * *.max-locked-memory resource control value. 8222 * EFAULT - memory pertains to a regular file mapped shared and 8223 * and DDI_UMEMLOCK_LONGTERM flag is set 8224 * EAGAIN - could not start the ddi_umem_unlock list processing thread 8225 */ 8226 int 8227 umem_lockmemory(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie, 8228 struct umem_callback_ops *ops_vector, 8229 proc_t *procp) 8230 { 8231 int error; 8232 struct ddi_umem_cookie *p; 8233 void (*driver_callback)() = NULL; 8234 struct as *as = procp->p_as; 8235 struct seg *seg; 8236 vnode_t *vp; 8237 8238 *cookie = NULL; /* in case of any error return */ 8239 8240 /* These are the only three valid flags */ 8241 if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE | 8242 DDI_UMEMLOCK_LONGTERM)) != 0) 8243 return (EINVAL); 8244 8245 /* At least one (can be both) of the two access flags must be set */ 8246 if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) 8247 return (EINVAL); 8248 8249 /* addr and len must be page-aligned */ 8250 if (((uintptr_t)addr & PAGEOFFSET) != 0) 8251 return (EINVAL); 8252 8253 if ((len & PAGEOFFSET) != 0) 8254 return (EINVAL); 8255 8256 /* 8257 * For longterm locking a driver callback must be specified; if 8258 * not longterm then a callback is optional. 8259 */ 8260 if (ops_vector != NULL) { 8261 if (ops_vector->cbo_umem_callback_version != 8262 UMEM_CALLBACK_VERSION) 8263 return (EINVAL); 8264 else 8265 driver_callback = ops_vector->cbo_umem_lock_cleanup; 8266 } 8267 if ((driver_callback == NULL) && (flags & DDI_UMEMLOCK_LONGTERM)) 8268 return (EINVAL); 8269 8270 /* 8271 * Call i_ddi_umem_unlock_thread_start if necessary. It will 8272 * be called on first ddi_umem_lock or umem_lockmemory call. 8273 */ 8274 if (ddi_umem_unlock_thread == NULL) 8275 i_ddi_umem_unlock_thread_start(); 8276 8277 /* Allocate memory for the cookie */ 8278 p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP); 8279 8280 /* Convert the flags to seg_rw type */ 8281 if (flags & DDI_UMEMLOCK_WRITE) { 8282 p->s_flags = S_WRITE; 8283 } else { 8284 p->s_flags = S_READ; 8285 } 8286 8287 /* Store procp in cookie for later iosetup/unlock */ 8288 p->procp = (void *)procp; 8289 8290 /* 8291 * Store the struct as pointer in cookie for later use by 8292 * ddi_umem_unlock. The proc->p_as will be stale if ddi_umem_unlock 8293 * is called after relvm is called. 8294 */ 8295 p->asp = as; 8296 8297 /* 8298 * The size field is needed for lockmem accounting. 8299 */ 8300 p->size = len; 8301 8302 if (umem_incr_devlockmem(p) != 0) { 8303 /* 8304 * The requested memory cannot be locked 8305 */ 8306 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8307 *cookie = (ddi_umem_cookie_t)NULL; 8308 return (ENOMEM); 8309 } 8310 8311 /* Lock the pages corresponding to addr, len in memory */ 8312 error = as_pagelock(as, &(p->pparray), addr, len, p->s_flags); 8313 if (error != 0) { 8314 umem_decr_devlockmem(p); 8315 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8316 *cookie = (ddi_umem_cookie_t)NULL; 8317 return (error); 8318 } 8319 8320 /* 8321 * For longterm locking the addr must pertain to a seg_vn segment or 8322 * or a seg_spt segment. 8323 * If the segment pertains to a regular file, it cannot be 8324 * mapped MAP_SHARED. 8325 * This is to prevent a deadlock if a file truncation is attempted 8326 * after the locking is done. 8327 * Doing this after as_pagelock guarantees persistence of the as; if 8328 * an unacceptable segment is found, the cleanup includes calling 8329 * as_pageunlock before returning EFAULT. 8330 */ 8331 if (flags & DDI_UMEMLOCK_LONGTERM) { 8332 extern struct seg_ops segspt_shmops; 8333 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 8334 for (seg = as_segat(as, addr); ; seg = AS_SEGNEXT(as, seg)) { 8335 if (seg == NULL || seg->s_base > addr + len) 8336 break; 8337 if (((seg->s_ops != &segvn_ops) && 8338 (seg->s_ops != &segspt_shmops)) || 8339 ((SEGOP_GETVP(seg, addr, &vp) == 0 && 8340 vp != NULL && vp->v_type == VREG) && 8341 (SEGOP_GETTYPE(seg, addr) & MAP_SHARED))) { 8342 as_pageunlock(as, p->pparray, 8343 addr, len, p->s_flags); 8344 AS_LOCK_EXIT(as, &as->a_lock); 8345 umem_decr_devlockmem(p); 8346 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8347 *cookie = (ddi_umem_cookie_t)NULL; 8348 return (EFAULT); 8349 } 8350 } 8351 AS_LOCK_EXIT(as, &as->a_lock); 8352 } 8353 8354 8355 /* Initialize the fields in the ddi_umem_cookie */ 8356 p->cvaddr = addr; 8357 p->type = UMEM_LOCKED; 8358 if (driver_callback != NULL) { 8359 /* i_ddi_umem_unlock and umem_lock_undo may need the cookie */ 8360 p->cook_refcnt = 2; 8361 p->callbacks = *ops_vector; 8362 } else { 8363 /* only i_ddi_umme_unlock needs the cookie */ 8364 p->cook_refcnt = 1; 8365 } 8366 8367 *cookie = (ddi_umem_cookie_t)p; 8368 8369 /* 8370 * If a driver callback was specified, add an entry to the 8371 * as struct callback list. The as_pagelock above guarantees 8372 * the persistence of as. 8373 */ 8374 if (driver_callback) { 8375 error = as_add_callback(as, umem_lock_undo, p, AS_ALL_EVENT, 8376 addr, len, KM_SLEEP); 8377 if (error != 0) { 8378 as_pageunlock(as, p->pparray, 8379 addr, len, p->s_flags); 8380 umem_decr_devlockmem(p); 8381 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8382 *cookie = (ddi_umem_cookie_t)NULL; 8383 } 8384 } 8385 return (error); 8386 } 8387 8388 /* 8389 * Unlock the pages locked by ddi_umem_lock or umem_lockmemory and free 8390 * the cookie. Called from i_ddi_umem_unlock_thread. 8391 */ 8392 8393 static void 8394 i_ddi_umem_unlock(struct ddi_umem_cookie *p) 8395 { 8396 uint_t rc; 8397 8398 /* 8399 * There is no way to determine whether a callback to 8400 * umem_lock_undo was registered via as_add_callback. 8401 * (i.e. umem_lockmemory was called with DDI_MEMLOCK_LONGTERM and 8402 * a valid callback function structure.) as_delete_callback 8403 * is called to delete a possible registered callback. If the 8404 * return from as_delete_callbacks is AS_CALLBACK_DELETED, it 8405 * indicates that there was a callback registered, and that is was 8406 * successfully deleted. Thus, the cookie reference count 8407 * will never be decremented by umem_lock_undo. Just return the 8408 * memory for the cookie, since both users of the cookie are done. 8409 * A return of AS_CALLBACK_NOTFOUND indicates a callback was 8410 * never registered. A return of AS_CALLBACK_DELETE_DEFERRED 8411 * indicates that callback processing is taking place and, and 8412 * umem_lock_undo is, or will be, executing, and thus decrementing 8413 * the cookie reference count when it is complete. 8414 * 8415 * This needs to be done before as_pageunlock so that the 8416 * persistence of as is guaranteed because of the locked pages. 8417 * 8418 */ 8419 rc = as_delete_callback(p->asp, p); 8420 8421 8422 /* 8423 * The proc->p_as will be stale if i_ddi_umem_unlock is called 8424 * after relvm is called so use p->asp. 8425 */ 8426 as_pageunlock(p->asp, p->pparray, p->cvaddr, p->size, p->s_flags); 8427 8428 /* 8429 * Now that we have unlocked the memory decrement the 8430 * *.max-locked-memory rctl 8431 */ 8432 umem_decr_devlockmem(p); 8433 8434 if (rc == AS_CALLBACK_DELETED) { 8435 /* umem_lock_undo will not happen, return the cookie memory */ 8436 ASSERT(p->cook_refcnt == 2); 8437 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8438 } else { 8439 /* 8440 * umem_undo_lock may happen if as_delete_callback returned 8441 * AS_CALLBACK_DELETE_DEFERRED. In that case, decrement the 8442 * reference count, atomically, and return the cookie 8443 * memory if the reference count goes to zero. The only 8444 * other value for rc is AS_CALLBACK_NOTFOUND. In that 8445 * case, just return the cookie memory. 8446 */ 8447 if ((rc != AS_CALLBACK_DELETE_DEFERRED) || 8448 (atomic_add_long_nv((ulong_t *)(&(p->cook_refcnt)), -1) 8449 == 0)) { 8450 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8451 } 8452 } 8453 } 8454 8455 /* 8456 * i_ddi_umem_unlock_thread - deferred ddi_umem_unlock list handler. 8457 * 8458 * Call i_ddi_umem_unlock for entries in the ddi_umem_unlock list 8459 * until it is empty. Then, wait for more to be added. This thread is awoken 8460 * via calls to ddi_umem_unlock. 8461 */ 8462 8463 static void 8464 i_ddi_umem_unlock_thread(void) 8465 { 8466 struct ddi_umem_cookie *ret_cookie; 8467 callb_cpr_t cprinfo; 8468 8469 /* process the ddi_umem_unlock list */ 8470 CALLB_CPR_INIT(&cprinfo, &ddi_umem_unlock_mutex, 8471 callb_generic_cpr, "unlock_thread"); 8472 for (;;) { 8473 mutex_enter(&ddi_umem_unlock_mutex); 8474 if (ddi_umem_unlock_head != NULL) { /* list not empty */ 8475 ret_cookie = ddi_umem_unlock_head; 8476 /* take if off the list */ 8477 if ((ddi_umem_unlock_head = 8478 ddi_umem_unlock_head->unl_forw) == NULL) { 8479 ddi_umem_unlock_tail = NULL; 8480 } 8481 mutex_exit(&ddi_umem_unlock_mutex); 8482 /* unlock the pages in this cookie */ 8483 (void) i_ddi_umem_unlock(ret_cookie); 8484 } else { /* list is empty, wait for next ddi_umem_unlock */ 8485 CALLB_CPR_SAFE_BEGIN(&cprinfo); 8486 cv_wait(&ddi_umem_unlock_cv, &ddi_umem_unlock_mutex); 8487 CALLB_CPR_SAFE_END(&cprinfo, &ddi_umem_unlock_mutex); 8488 mutex_exit(&ddi_umem_unlock_mutex); 8489 } 8490 } 8491 /* ddi_umem_unlock_thread does not exit */ 8492 /* NOTREACHED */ 8493 } 8494 8495 /* 8496 * Start the thread that will process the ddi_umem_unlock list if it is 8497 * not already started (i_ddi_umem_unlock_thread). 8498 */ 8499 static void 8500 i_ddi_umem_unlock_thread_start(void) 8501 { 8502 mutex_enter(&ddi_umem_unlock_mutex); 8503 if (ddi_umem_unlock_thread == NULL) { 8504 ddi_umem_unlock_thread = thread_create(NULL, 0, 8505 i_ddi_umem_unlock_thread, NULL, 0, &p0, 8506 TS_RUN, minclsyspri); 8507 } 8508 mutex_exit(&ddi_umem_unlock_mutex); 8509 } 8510 8511 /* 8512 * Lock the virtual address range in the current process and create a 8513 * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to 8514 * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export 8515 * to user space. 8516 * 8517 * Note: The resource control accounting currently uses a full charge model 8518 * in other words attempts to lock the same/overlapping areas of memory 8519 * will deduct the full size of the buffer from the projects running 8520 * counter for the device locked memory. This applies to umem_lockmemory too. 8521 * 8522 * addr, size should be PAGESIZE aligned 8523 * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both 8524 * identifies whether the locked memory will be read or written or both 8525 * 8526 * Returns 0 on success 8527 * EINVAL - for invalid parameters 8528 * EPERM, ENOMEM and other error codes returned by as_pagelock 8529 * ENOMEM - is returned if the current request to lock memory exceeds 8530 * *.max-locked-memory resource control value. 8531 * EAGAIN - could not start the ddi_umem_unlock list processing thread 8532 */ 8533 int 8534 ddi_umem_lock(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie) 8535 { 8536 int error; 8537 struct ddi_umem_cookie *p; 8538 8539 *cookie = NULL; /* in case of any error return */ 8540 8541 /* These are the only two valid flags */ 8542 if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) != 0) { 8543 return (EINVAL); 8544 } 8545 8546 /* At least one of the two flags (or both) must be set */ 8547 if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) { 8548 return (EINVAL); 8549 } 8550 8551 /* addr and len must be page-aligned */ 8552 if (((uintptr_t)addr & PAGEOFFSET) != 0) { 8553 return (EINVAL); 8554 } 8555 8556 if ((len & PAGEOFFSET) != 0) { 8557 return (EINVAL); 8558 } 8559 8560 /* 8561 * Call i_ddi_umem_unlock_thread_start if necessary. It will 8562 * be called on first ddi_umem_lock or umem_lockmemory call. 8563 */ 8564 if (ddi_umem_unlock_thread == NULL) 8565 i_ddi_umem_unlock_thread_start(); 8566 8567 /* Allocate memory for the cookie */ 8568 p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP); 8569 8570 /* Convert the flags to seg_rw type */ 8571 if (flags & DDI_UMEMLOCK_WRITE) { 8572 p->s_flags = S_WRITE; 8573 } else { 8574 p->s_flags = S_READ; 8575 } 8576 8577 /* Store curproc in cookie for later iosetup/unlock */ 8578 p->procp = (void *)curproc; 8579 8580 /* 8581 * Store the struct as pointer in cookie for later use by 8582 * ddi_umem_unlock. The proc->p_as will be stale if ddi_umem_unlock 8583 * is called after relvm is called. 8584 */ 8585 p->asp = curproc->p_as; 8586 /* 8587 * The size field is needed for lockmem accounting. 8588 */ 8589 p->size = len; 8590 8591 if (umem_incr_devlockmem(p) != 0) { 8592 /* 8593 * The requested memory cannot be locked 8594 */ 8595 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8596 *cookie = (ddi_umem_cookie_t)NULL; 8597 return (ENOMEM); 8598 } 8599 8600 /* Lock the pages corresponding to addr, len in memory */ 8601 error = as_pagelock(((proc_t *)p->procp)->p_as, &(p->pparray), 8602 addr, len, p->s_flags); 8603 if (error != 0) { 8604 umem_decr_devlockmem(p); 8605 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8606 *cookie = (ddi_umem_cookie_t)NULL; 8607 return (error); 8608 } 8609 8610 /* Initialize the fields in the ddi_umem_cookie */ 8611 p->cvaddr = addr; 8612 p->type = UMEM_LOCKED; 8613 p->cook_refcnt = 1; 8614 8615 *cookie = (ddi_umem_cookie_t)p; 8616 return (error); 8617 } 8618 8619 /* 8620 * Add the cookie to the ddi_umem_unlock list. Pages will be 8621 * unlocked by i_ddi_umem_unlock_thread. 8622 */ 8623 8624 void 8625 ddi_umem_unlock(ddi_umem_cookie_t cookie) 8626 { 8627 struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie; 8628 8629 ASSERT(p->type == UMEM_LOCKED); 8630 ASSERT(CPU_ON_INTR(CPU) == 0); /* cannot be high level */ 8631 ASSERT(ddi_umem_unlock_thread != NULL); 8632 8633 p->unl_forw = (struct ddi_umem_cookie *)NULL; /* end of list */ 8634 /* 8635 * Queue the unlock request and notify i_ddi_umem_unlock thread 8636 * if it's called in the interrupt context. Otherwise, unlock pages 8637 * immediately. 8638 */ 8639 if (servicing_interrupt()) { 8640 /* queue the unlock request and notify the thread */ 8641 mutex_enter(&ddi_umem_unlock_mutex); 8642 if (ddi_umem_unlock_head == NULL) { 8643 ddi_umem_unlock_head = ddi_umem_unlock_tail = p; 8644 cv_broadcast(&ddi_umem_unlock_cv); 8645 } else { 8646 ddi_umem_unlock_tail->unl_forw = p; 8647 ddi_umem_unlock_tail = p; 8648 } 8649 mutex_exit(&ddi_umem_unlock_mutex); 8650 } else { 8651 /* unlock the pages right away */ 8652 (void) i_ddi_umem_unlock(p); 8653 } 8654 } 8655 8656 /* 8657 * Create a buf structure from a ddi_umem_cookie 8658 * cookie - is a ddi_umem_cookie for from ddi_umem_lock and ddi_umem_alloc 8659 * (only UMEM_LOCKED & KMEM_NON_PAGEABLE types supported) 8660 * off, len - identifies the portion of the memory represented by the cookie 8661 * that the buf points to. 8662 * NOTE: off, len need to follow the alignment/size restrictions of the 8663 * device (dev) that this buf will be passed to. Some devices 8664 * will accept unrestricted alignment/size, whereas others (such as 8665 * st) require some block-size alignment/size. It is the caller's 8666 * responsibility to ensure that the alignment/size restrictions 8667 * are met (we cannot assert as we do not know the restrictions) 8668 * 8669 * direction - is one of B_READ or B_WRITE and needs to be compatible with 8670 * the flags used in ddi_umem_lock 8671 * 8672 * The following three arguments are used to initialize fields in the 8673 * buf structure and are uninterpreted by this routine. 8674 * 8675 * dev 8676 * blkno 8677 * iodone 8678 * 8679 * sleepflag - is one of DDI_UMEM_SLEEP or DDI_UMEM_NOSLEEP 8680 * 8681 * Returns a buf structure pointer on success (to be freed by freerbuf) 8682 * NULL on any parameter error or memory alloc failure 8683 * 8684 */ 8685 struct buf * 8686 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len, 8687 int direction, dev_t dev, daddr_t blkno, 8688 int (*iodone)(struct buf *), int sleepflag) 8689 { 8690 struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie; 8691 struct buf *bp; 8692 8693 /* 8694 * check for valid cookie offset, len 8695 */ 8696 if ((off + len) > p->size) { 8697 return (NULL); 8698 } 8699 8700 if (len > p->size) { 8701 return (NULL); 8702 } 8703 8704 /* direction has to be one of B_READ or B_WRITE */ 8705 if ((direction != B_READ) && (direction != B_WRITE)) { 8706 return (NULL); 8707 } 8708 8709 /* These are the only two valid sleepflags */ 8710 if ((sleepflag != DDI_UMEM_SLEEP) && (sleepflag != DDI_UMEM_NOSLEEP)) { 8711 return (NULL); 8712 } 8713 8714 /* 8715 * Only cookies of type UMEM_LOCKED and KMEM_NON_PAGEABLE are supported 8716 */ 8717 if ((p->type != UMEM_LOCKED) && (p->type != KMEM_NON_PAGEABLE)) { 8718 return (NULL); 8719 } 8720 8721 /* If type is KMEM_NON_PAGEABLE procp is NULL */ 8722 ASSERT((p->type == KMEM_NON_PAGEABLE) ? 8723 (p->procp == NULL) : (p->procp != NULL)); 8724 8725 bp = kmem_alloc(sizeof (struct buf), sleepflag); 8726 if (bp == NULL) { 8727 return (NULL); 8728 } 8729 bioinit(bp); 8730 8731 bp->b_flags = B_BUSY | B_PHYS | direction; 8732 bp->b_edev = dev; 8733 bp->b_lblkno = blkno; 8734 bp->b_iodone = iodone; 8735 bp->b_bcount = len; 8736 bp->b_proc = (proc_t *)p->procp; 8737 ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0); 8738 bp->b_un.b_addr = (caddr_t)((uintptr_t)(p->cvaddr) + off); 8739 if (p->pparray != NULL) { 8740 bp->b_flags |= B_SHADOW; 8741 ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0); 8742 bp->b_shadow = p->pparray + btop(off); 8743 } 8744 return (bp); 8745 } 8746 8747 /* 8748 * Fault-handling and related routines 8749 */ 8750 8751 ddi_devstate_t 8752 ddi_get_devstate(dev_info_t *dip) 8753 { 8754 if (DEVI_IS_DEVICE_OFFLINE(dip)) 8755 return (DDI_DEVSTATE_OFFLINE); 8756 else if (DEVI_IS_DEVICE_DOWN(dip) || DEVI_IS_BUS_DOWN(dip)) 8757 return (DDI_DEVSTATE_DOWN); 8758 else if (DEVI_IS_BUS_QUIESCED(dip)) 8759 return (DDI_DEVSTATE_QUIESCED); 8760 else if (DEVI_IS_DEVICE_DEGRADED(dip)) 8761 return (DDI_DEVSTATE_DEGRADED); 8762 else 8763 return (DDI_DEVSTATE_UP); 8764 } 8765 8766 void 8767 ddi_dev_report_fault(dev_info_t *dip, ddi_fault_impact_t impact, 8768 ddi_fault_location_t location, const char *message) 8769 { 8770 struct ddi_fault_event_data fd; 8771 ddi_eventcookie_t ec; 8772 8773 /* 8774 * Assemble all the information into a fault-event-data structure 8775 */ 8776 fd.f_dip = dip; 8777 fd.f_impact = impact; 8778 fd.f_location = location; 8779 fd.f_message = message; 8780 fd.f_oldstate = ddi_get_devstate(dip); 8781 8782 /* 8783 * Get eventcookie from defining parent. 8784 */ 8785 if (ddi_get_eventcookie(dip, DDI_DEVI_FAULT_EVENT, &ec) != 8786 DDI_SUCCESS) 8787 return; 8788 8789 (void) ndi_post_event(dip, dip, ec, &fd); 8790 } 8791 8792 char * 8793 i_ddi_devi_class(dev_info_t *dip) 8794 { 8795 return (DEVI(dip)->devi_device_class); 8796 } 8797 8798 int 8799 i_ddi_set_devi_class(dev_info_t *dip, char *devi_class, int flag) 8800 { 8801 struct dev_info *devi = DEVI(dip); 8802 8803 mutex_enter(&devi->devi_lock); 8804 8805 if (devi->devi_device_class) 8806 kmem_free(devi->devi_device_class, 8807 strlen(devi->devi_device_class) + 1); 8808 8809 if ((devi->devi_device_class = i_ddi_strdup(devi_class, flag)) 8810 != NULL) { 8811 mutex_exit(&devi->devi_lock); 8812 return (DDI_SUCCESS); 8813 } 8814 8815 mutex_exit(&devi->devi_lock); 8816 8817 return (DDI_FAILURE); 8818 } 8819 8820 8821 /* 8822 * Task Queues DDI interfaces. 8823 */ 8824 8825 /* ARGSUSED */ 8826 ddi_taskq_t * 8827 ddi_taskq_create(dev_info_t *dip, const char *name, int nthreads, 8828 pri_t pri, uint_t cflags) 8829 { 8830 char full_name[TASKQ_NAMELEN]; 8831 const char *tq_name; 8832 int nodeid = 0; 8833 8834 if (dip == NULL) 8835 tq_name = name; 8836 else { 8837 nodeid = ddi_get_instance(dip); 8838 8839 if (name == NULL) 8840 name = "tq"; 8841 8842 (void) snprintf(full_name, sizeof (full_name), "%s_%s", 8843 ddi_driver_name(dip), name); 8844 8845 tq_name = full_name; 8846 } 8847 8848 return ((ddi_taskq_t *)taskq_create_instance(tq_name, nodeid, nthreads, 8849 pri == TASKQ_DEFAULTPRI ? minclsyspri : pri, 8850 nthreads, INT_MAX, TASKQ_PREPOPULATE)); 8851 } 8852 8853 void 8854 ddi_taskq_destroy(ddi_taskq_t *tq) 8855 { 8856 taskq_destroy((taskq_t *)tq); 8857 } 8858 8859 int 8860 ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *), 8861 void *arg, uint_t dflags) 8862 { 8863 taskqid_t id = taskq_dispatch((taskq_t *)tq, func, arg, 8864 dflags == DDI_SLEEP ? TQ_SLEEP : TQ_NOSLEEP); 8865 8866 return (id != 0 ? DDI_SUCCESS : DDI_FAILURE); 8867 } 8868 8869 void 8870 ddi_taskq_wait(ddi_taskq_t *tq) 8871 { 8872 taskq_wait((taskq_t *)tq); 8873 } 8874 8875 void 8876 ddi_taskq_suspend(ddi_taskq_t *tq) 8877 { 8878 taskq_suspend((taskq_t *)tq); 8879 } 8880 8881 boolean_t 8882 ddi_taskq_suspended(ddi_taskq_t *tq) 8883 { 8884 return (taskq_suspended((taskq_t *)tq)); 8885 } 8886 8887 void 8888 ddi_taskq_resume(ddi_taskq_t *tq) 8889 { 8890 taskq_resume((taskq_t *)tq); 8891 } 8892 8893 int 8894 ddi_parse( 8895 const char *ifname, 8896 char *alnum, 8897 uint_t *nump) 8898 { 8899 const char *p; 8900 int l; 8901 ulong_t num; 8902 boolean_t nonum = B_TRUE; 8903 char c; 8904 8905 l = strlen(ifname); 8906 for (p = ifname + l; p != ifname; l--) { 8907 c = *--p; 8908 if (!isdigit(c)) { 8909 (void) strlcpy(alnum, ifname, l + 1); 8910 if (ddi_strtoul(p + 1, NULL, 10, &num) != 0) 8911 return (DDI_FAILURE); 8912 break; 8913 } 8914 nonum = B_FALSE; 8915 } 8916 if (l == 0 || nonum) 8917 return (DDI_FAILURE); 8918 8919 *nump = num; 8920 return (DDI_SUCCESS); 8921 } 8922 8923 /* 8924 * Default initialization function for drivers that don't need to quiesce. 8925 */ 8926 /* ARGSUSED */ 8927 int 8928 ddi_quiesce_not_needed(dev_info_t *dip) 8929 { 8930 return (DDI_SUCCESS); 8931 } 8932 8933 /* 8934 * Initialization function for drivers that should implement quiesce() 8935 * but haven't yet. 8936 */ 8937 /* ARGSUSED */ 8938 int 8939 ddi_quiesce_not_supported(dev_info_t *dip) 8940 { 8941 return (DDI_FAILURE); 8942 } 8943