xref: /titanic_51/usr/src/uts/common/os/sunddi.c (revision 2722387f30847b828b57ba9ca59d2b47ee9244ec)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/note.h>
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/uio.h>
35 #include <sys/cred.h>
36 #include <sys/poll.h>
37 #include <sys/mman.h>
38 #include <sys/kmem.h>
39 #include <sys/model.h>
40 #include <sys/file.h>
41 #include <sys/proc.h>
42 #include <sys/open.h>
43 #include <sys/user.h>
44 #include <sys/t_lock.h>
45 #include <sys/vm.h>
46 #include <sys/stat.h>
47 #include <vm/hat.h>
48 #include <vm/seg.h>
49 #include <vm/seg_vn.h>
50 #include <vm/seg_dev.h>
51 #include <vm/as.h>
52 #include <sys/cmn_err.h>
53 #include <sys/cpuvar.h>
54 #include <sys/debug.h>
55 #include <sys/autoconf.h>
56 #include <sys/sunddi.h>
57 #include <sys/esunddi.h>
58 #include <sys/sunndi.h>
59 #include <sys/kstat.h>
60 #include <sys/conf.h>
61 #include <sys/ddi_impldefs.h>	/* include implementation structure defs */
62 #include <sys/ndi_impldefs.h>	/* include prototypes */
63 #include <sys/ddi_timer.h>
64 #include <sys/hwconf.h>
65 #include <sys/pathname.h>
66 #include <sys/modctl.h>
67 #include <sys/epm.h>
68 #include <sys/devctl.h>
69 #include <sys/callb.h>
70 #include <sys/cladm.h>
71 #include <sys/sysevent.h>
72 #include <sys/dacf_impl.h>
73 #include <sys/ddidevmap.h>
74 #include <sys/bootconf.h>
75 #include <sys/disp.h>
76 #include <sys/atomic.h>
77 #include <sys/promif.h>
78 #include <sys/instance.h>
79 #include <sys/sysevent/eventdefs.h>
80 #include <sys/task.h>
81 #include <sys/project.h>
82 #include <sys/taskq.h>
83 #include <sys/devpolicy.h>
84 #include <sys/ctype.h>
85 #include <net/if.h>
86 #include <sys/rctl.h>
87 
88 extern	pri_t	minclsyspri;
89 
90 extern	rctl_hndl_t rc_project_locked_mem;
91 extern	rctl_hndl_t rc_zone_locked_mem;
92 
93 #ifdef DEBUG
94 static int sunddi_debug = 0;
95 #endif /* DEBUG */
96 
97 /* ddi_umem_unlock miscellaneous */
98 
99 static	void	i_ddi_umem_unlock_thread_start(void);
100 
101 static	kmutex_t	ddi_umem_unlock_mutex; /* unlock list mutex */
102 static	kcondvar_t	ddi_umem_unlock_cv; /* unlock list block/unblock */
103 static	kthread_t	*ddi_umem_unlock_thread;
104 /*
105  * The ddi_umem_unlock FIFO list.  NULL head pointer indicates empty list.
106  */
107 static	struct	ddi_umem_cookie *ddi_umem_unlock_head = NULL;
108 static	struct	ddi_umem_cookie *ddi_umem_unlock_tail = NULL;
109 
110 
111 /*
112  * DDI(Sun) Function and flag definitions:
113  */
114 
115 #if defined(__x86)
116 /*
117  * Used to indicate which entries were chosen from a range.
118  */
119 char	*chosen_reg = "chosen-reg";
120 #endif
121 
122 /*
123  * Function used to ring system console bell
124  */
125 void (*ddi_console_bell_func)(clock_t duration);
126 
127 /*
128  * Creating register mappings and handling interrupts:
129  */
130 
131 /*
132  * Generic ddi_map: Call parent to fulfill request...
133  */
134 
135 int
136 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset,
137     off_t len, caddr_t *addrp)
138 {
139 	dev_info_t *pdip;
140 
141 	ASSERT(dp);
142 	pdip = (dev_info_t *)DEVI(dp)->devi_parent;
143 	return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)(pdip,
144 	    dp, mp, offset, len, addrp));
145 }
146 
147 /*
148  * ddi_apply_range: (Called by nexi only.)
149  * Apply ranges in parent node dp, to child regspec rp...
150  */
151 
152 int
153 ddi_apply_range(dev_info_t *dp, dev_info_t *rdip, struct regspec *rp)
154 {
155 	return (i_ddi_apply_range(dp, rdip, rp));
156 }
157 
158 int
159 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
160     off_t len)
161 {
162 	ddi_map_req_t mr;
163 #if defined(__x86)
164 	struct {
165 		int	bus;
166 		int	addr;
167 		int	size;
168 	} reg, *reglist;
169 	uint_t	length;
170 	int	rc;
171 
172 	/*
173 	 * get the 'registers' or the 'reg' property.
174 	 * We look up the reg property as an array of
175 	 * int's.
176 	 */
177 	rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
178 	    DDI_PROP_DONTPASS, "registers", (int **)&reglist, &length);
179 	if (rc != DDI_PROP_SUCCESS)
180 		rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
181 		    DDI_PROP_DONTPASS, "reg", (int **)&reglist, &length);
182 	if (rc == DDI_PROP_SUCCESS) {
183 		/*
184 		 * point to the required entry.
185 		 */
186 		reg = reglist[rnumber];
187 		reg.addr += offset;
188 		if (len != 0)
189 			reg.size = len;
190 		/*
191 		 * make a new property containing ONLY the required tuple.
192 		 */
193 		if (ddi_prop_update_int_array(DDI_DEV_T_NONE, dip,
194 		    chosen_reg, (int *)&reg, (sizeof (reg)/sizeof (int)))
195 		    != DDI_PROP_SUCCESS) {
196 			cmn_err(CE_WARN, "%s%d: cannot create '%s' "
197 			    "property", DEVI(dip)->devi_name,
198 			    DEVI(dip)->devi_instance, chosen_reg);
199 		}
200 		/*
201 		 * free the memory allocated by
202 		 * ddi_prop_lookup_int_array ().
203 		 */
204 		ddi_prop_free((void *)reglist);
205 	}
206 #endif
207 	mr.map_op = DDI_MO_MAP_LOCKED;
208 	mr.map_type = DDI_MT_RNUMBER;
209 	mr.map_obj.rnumber = rnumber;
210 	mr.map_prot = PROT_READ | PROT_WRITE;
211 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
212 	mr.map_handlep = NULL;
213 	mr.map_vers = DDI_MAP_VERSION;
214 
215 	/*
216 	 * Call my parent to map in my regs.
217 	 */
218 
219 	return (ddi_map(dip, &mr, offset, len, kaddrp));
220 }
221 
222 void
223 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
224     off_t len)
225 {
226 	ddi_map_req_t mr;
227 
228 	mr.map_op = DDI_MO_UNMAP;
229 	mr.map_type = DDI_MT_RNUMBER;
230 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
231 	mr.map_prot = PROT_READ | PROT_WRITE;	/* who cares? */
232 	mr.map_obj.rnumber = rnumber;
233 	mr.map_handlep = NULL;
234 	mr.map_vers = DDI_MAP_VERSION;
235 
236 	/*
237 	 * Call my parent to unmap my regs.
238 	 */
239 
240 	(void) ddi_map(dip, &mr, offset, len, kaddrp);
241 	*kaddrp = (caddr_t)0;
242 #if defined(__x86)
243 	(void) ddi_prop_remove(DDI_DEV_T_NONE, dip, chosen_reg);
244 #endif
245 }
246 
247 int
248 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
249 	off_t offset, off_t len, caddr_t *vaddrp)
250 {
251 	return (i_ddi_bus_map(dip, rdip, mp, offset, len, vaddrp));
252 }
253 
254 /*
255  * nullbusmap:	The/DDI default bus_map entry point for nexi
256  *		not conforming to the reg/range paradigm (i.e. scsi, etc.)
257  *		with no HAT/MMU layer to be programmed at this level.
258  *
259  *		If the call is to map by rnumber, return an error,
260  *		otherwise pass anything else up the tree to my parent.
261  */
262 int
263 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
264 	off_t offset, off_t len, caddr_t *vaddrp)
265 {
266 	_NOTE(ARGUNUSED(rdip))
267 	if (mp->map_type == DDI_MT_RNUMBER)
268 		return (DDI_ME_UNSUPPORTED);
269 
270 	return (ddi_map(dip, mp, offset, len, vaddrp));
271 }
272 
273 /*
274  * ddi_rnumber_to_regspec: Not for use by leaf drivers.
275  *			   Only for use by nexi using the reg/range paradigm.
276  */
277 struct regspec *
278 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber)
279 {
280 	return (i_ddi_rnumber_to_regspec(dip, rnumber));
281 }
282 
283 
284 /*
285  * Note that we allow the dip to be nil because we may be called
286  * prior even to the instantiation of the devinfo tree itself - all
287  * regular leaf and nexus drivers should always use a non-nil dip!
288  *
289  * We treat peek in a somewhat cavalier fashion .. assuming that we'll
290  * simply get a synchronous fault as soon as we touch a missing address.
291  *
292  * Poke is rather more carefully handled because we might poke to a write
293  * buffer, "succeed", then only find some time later that we got an
294  * asynchronous fault that indicated that the address we were writing to
295  * was not really backed by hardware.
296  */
297 
298 static int
299 i_ddi_peekpoke(dev_info_t *devi, ddi_ctl_enum_t cmd, size_t size,
300     void *addr, void *value_p)
301 {
302 	union {
303 		uint64_t	u64;
304 		uint32_t	u32;
305 		uint16_t	u16;
306 		uint8_t		u8;
307 	} peekpoke_value;
308 
309 	peekpoke_ctlops_t peekpoke_args;
310 	uint64_t dummy_result;
311 	int rval;
312 
313 	/* Note: size is assumed to be correct;  it is not checked. */
314 	peekpoke_args.size = size;
315 	peekpoke_args.dev_addr = (uintptr_t)addr;
316 	peekpoke_args.handle = NULL;
317 	peekpoke_args.repcount = 1;
318 	peekpoke_args.flags = 0;
319 
320 	if (cmd == DDI_CTLOPS_POKE) {
321 		switch (size) {
322 		case sizeof (uint8_t):
323 			peekpoke_value.u8 = *(uint8_t *)value_p;
324 			break;
325 		case sizeof (uint16_t):
326 			peekpoke_value.u16 = *(uint16_t *)value_p;
327 			break;
328 		case sizeof (uint32_t):
329 			peekpoke_value.u32 = *(uint32_t *)value_p;
330 			break;
331 		case sizeof (uint64_t):
332 			peekpoke_value.u64 = *(uint64_t *)value_p;
333 			break;
334 		}
335 	}
336 
337 	peekpoke_args.host_addr = (uintptr_t)&peekpoke_value.u64;
338 
339 	if (devi != NULL)
340 		rval = ddi_ctlops(devi, devi, cmd, &peekpoke_args,
341 		    &dummy_result);
342 	else
343 		rval = peekpoke_mem(cmd, &peekpoke_args);
344 
345 	/*
346 	 * A NULL value_p is permitted by ddi_peek(9F); discard the result.
347 	 */
348 	if ((cmd == DDI_CTLOPS_PEEK) & (value_p != NULL)) {
349 		switch (size) {
350 		case sizeof (uint8_t):
351 			*(uint8_t *)value_p = peekpoke_value.u8;
352 			break;
353 		case sizeof (uint16_t):
354 			*(uint16_t *)value_p = peekpoke_value.u16;
355 			break;
356 		case sizeof (uint32_t):
357 			*(uint32_t *)value_p = peekpoke_value.u32;
358 			break;
359 		case sizeof (uint64_t):
360 			*(uint64_t *)value_p = peekpoke_value.u64;
361 			break;
362 		}
363 	}
364 
365 	return (rval);
366 }
367 
368 /*
369  * Keep ddi_peek() and ddi_poke() in case 3rd parties are calling this.
370  * they shouldn't be, but the 9f manpage kind of pseudo exposes it.
371  */
372 int
373 ddi_peek(dev_info_t *devi, size_t size, void *addr, void *value_p)
374 {
375 	switch (size) {
376 	case sizeof (uint8_t):
377 	case sizeof (uint16_t):
378 	case sizeof (uint32_t):
379 	case sizeof (uint64_t):
380 		break;
381 	default:
382 		return (DDI_FAILURE);
383 	}
384 
385 	return (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, size, addr, value_p));
386 }
387 
388 int
389 ddi_poke(dev_info_t *devi, size_t size, void *addr, void *value_p)
390 {
391 	switch (size) {
392 	case sizeof (uint8_t):
393 	case sizeof (uint16_t):
394 	case sizeof (uint32_t):
395 	case sizeof (uint64_t):
396 		break;
397 	default:
398 		return (DDI_FAILURE);
399 	}
400 
401 	return (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, size, addr, value_p));
402 }
403 
404 int
405 ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p)
406 {
407 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
408 	    val_p));
409 }
410 
411 int
412 ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p)
413 {
414 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
415 	    val_p));
416 }
417 
418 int
419 ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p)
420 {
421 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
422 	    val_p));
423 }
424 
425 int
426 ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p)
427 {
428 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
429 	    val_p));
430 }
431 
432 
433 /*
434  * We need to separate the old interfaces from the new ones and leave them
435  * in here for a while. Previous versions of the OS defined the new interfaces
436  * to the old interfaces. This way we can fix things up so that we can
437  * eventually remove these interfaces.
438  * e.g. A 3rd party module/driver using ddi_peek8 and built against S10
439  * or earlier will actually have a reference to ddi_peekc in the binary.
440  */
441 #ifdef _ILP32
442 int
443 ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p)
444 {
445 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
446 	    val_p));
447 }
448 
449 int
450 ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p)
451 {
452 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
453 	    val_p));
454 }
455 
456 int
457 ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p)
458 {
459 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
460 	    val_p));
461 }
462 
463 int
464 ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p)
465 {
466 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
467 	    val_p));
468 }
469 #endif /* _ILP32 */
470 
471 int
472 ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val)
473 {
474 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
475 }
476 
477 int
478 ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val)
479 {
480 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
481 }
482 
483 int
484 ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val)
485 {
486 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
487 }
488 
489 int
490 ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val)
491 {
492 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
493 }
494 
495 /*
496  * We need to separate the old interfaces from the new ones and leave them
497  * in here for a while. Previous versions of the OS defined the new interfaces
498  * to the old interfaces. This way we can fix things up so that we can
499  * eventually remove these interfaces.
500  * e.g. A 3rd party module/driver using ddi_poke8 and built against S10
501  * or earlier will actually have a reference to ddi_pokec in the binary.
502  */
503 #ifdef _ILP32
504 int
505 ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val)
506 {
507 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
508 }
509 
510 int
511 ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val)
512 {
513 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
514 }
515 
516 int
517 ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val)
518 {
519 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
520 }
521 
522 int
523 ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val)
524 {
525 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
526 }
527 #endif /* _ILP32 */
528 
529 /*
530  * ddi_peekpokeio() is used primarily by the mem drivers for moving
531  * data to and from uio structures via peek and poke.  Note that we
532  * use "internal" routines ddi_peek and ddi_poke to make this go
533  * slightly faster, avoiding the call overhead ..
534  */
535 int
536 ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw,
537     caddr_t addr, size_t len, uint_t xfersize)
538 {
539 	int64_t	ibuffer;
540 	int8_t w8;
541 	size_t sz;
542 	int o;
543 
544 	if (xfersize > sizeof (long))
545 		xfersize = sizeof (long);
546 
547 	while (len != 0) {
548 		if ((len | (uintptr_t)addr) & 1) {
549 			sz = sizeof (int8_t);
550 			if (rw == UIO_WRITE) {
551 				if ((o = uwritec(uio)) == -1)
552 					return (DDI_FAILURE);
553 				if (ddi_poke8(devi, (int8_t *)addr,
554 				    (int8_t)o) != DDI_SUCCESS)
555 					return (DDI_FAILURE);
556 			} else {
557 				if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
558 				    (int8_t *)addr, &w8) != DDI_SUCCESS)
559 					return (DDI_FAILURE);
560 				if (ureadc(w8, uio))
561 					return (DDI_FAILURE);
562 			}
563 		} else {
564 			switch (xfersize) {
565 			case sizeof (int64_t):
566 				if (((len | (uintptr_t)addr) &
567 				    (sizeof (int64_t) - 1)) == 0) {
568 					sz = xfersize;
569 					break;
570 				}
571 				/*FALLTHROUGH*/
572 			case sizeof (int32_t):
573 				if (((len | (uintptr_t)addr) &
574 				    (sizeof (int32_t) - 1)) == 0) {
575 					sz = xfersize;
576 					break;
577 				}
578 				/*FALLTHROUGH*/
579 			default:
580 				/*
581 				 * This still assumes that we might have an
582 				 * I/O bus out there that permits 16-bit
583 				 * transfers (and that it would be upset by
584 				 * 32-bit transfers from such locations).
585 				 */
586 				sz = sizeof (int16_t);
587 				break;
588 			}
589 
590 			if (rw == UIO_READ) {
591 				if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
592 				    addr, &ibuffer) != DDI_SUCCESS)
593 					return (DDI_FAILURE);
594 			}
595 
596 			if (uiomove(&ibuffer, sz, rw, uio))
597 				return (DDI_FAILURE);
598 
599 			if (rw == UIO_WRITE) {
600 				if (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, sz,
601 				    addr, &ibuffer) != DDI_SUCCESS)
602 					return (DDI_FAILURE);
603 			}
604 		}
605 		addr += sz;
606 		len -= sz;
607 	}
608 	return (DDI_SUCCESS);
609 }
610 
611 /*
612  * These routines are used by drivers that do layered ioctls
613  * On sparc, they're implemented in assembler to avoid spilling
614  * register windows in the common (copyin) case ..
615  */
616 #if !defined(__sparc)
617 int
618 ddi_copyin(const void *buf, void *kernbuf, size_t size, int flags)
619 {
620 	if (flags & FKIOCTL)
621 		return (kcopy(buf, kernbuf, size) ? -1 : 0);
622 	return (copyin(buf, kernbuf, size));
623 }
624 
625 int
626 ddi_copyout(const void *buf, void *kernbuf, size_t size, int flags)
627 {
628 	if (flags & FKIOCTL)
629 		return (kcopy(buf, kernbuf, size) ? -1 : 0);
630 	return (copyout(buf, kernbuf, size));
631 }
632 #endif	/* !__sparc */
633 
634 /*
635  * Conversions in nexus pagesize units.  We don't duplicate the
636  * 'nil dip' semantics of peek/poke because btopr/btop/ptob are DDI/DKI
637  * routines anyway.
638  */
639 unsigned long
640 ddi_btop(dev_info_t *dip, unsigned long bytes)
641 {
642 	unsigned long pages;
643 
644 	(void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOP, &bytes, &pages);
645 	return (pages);
646 }
647 
648 unsigned long
649 ddi_btopr(dev_info_t *dip, unsigned long bytes)
650 {
651 	unsigned long pages;
652 
653 	(void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOPR, &bytes, &pages);
654 	return (pages);
655 }
656 
657 unsigned long
658 ddi_ptob(dev_info_t *dip, unsigned long pages)
659 {
660 	unsigned long bytes;
661 
662 	(void) ddi_ctlops(dip, dip, DDI_CTLOPS_PTOB, &pages, &bytes);
663 	return (bytes);
664 }
665 
666 unsigned int
667 ddi_enter_critical(void)
668 {
669 	return ((uint_t)spl7());
670 }
671 
672 void
673 ddi_exit_critical(unsigned int spl)
674 {
675 	splx((int)spl);
676 }
677 
678 /*
679  * Nexus ctlops punter
680  */
681 
682 #if !defined(__sparc)
683 /*
684  * Request bus_ctl parent to handle a bus_ctl request
685  *
686  * (The sparc version is in sparc_ddi.s)
687  */
688 int
689 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v)
690 {
691 	int (*fp)();
692 
693 	if (!d || !r)
694 		return (DDI_FAILURE);
695 
696 	if ((d = (dev_info_t *)DEVI(d)->devi_bus_ctl) == NULL)
697 		return (DDI_FAILURE);
698 
699 	fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl;
700 	return ((*fp)(d, r, op, a, v));
701 }
702 
703 #endif
704 
705 /*
706  * DMA/DVMA setup
707  */
708 
709 #if defined(__sparc)
710 static ddi_dma_lim_t standard_limits = {
711 	(uint_t)0,	/* addr_t dlim_addr_lo */
712 	(uint_t)-1,	/* addr_t dlim_addr_hi */
713 	(uint_t)-1,	/* uint_t dlim_cntr_max */
714 	(uint_t)1,	/* uint_t dlim_burstsizes */
715 	(uint_t)1,	/* uint_t dlim_minxfer */
716 	0		/* uint_t dlim_dmaspeed */
717 };
718 #elif defined(__x86)
719 static ddi_dma_lim_t standard_limits = {
720 	(uint_t)0,		/* addr_t dlim_addr_lo */
721 	(uint_t)0xffffff,	/* addr_t dlim_addr_hi */
722 	(uint_t)0,		/* uint_t dlim_cntr_max */
723 	(uint_t)0x00000001,	/* uint_t dlim_burstsizes */
724 	(uint_t)DMA_UNIT_8,	/* uint_t dlim_minxfer */
725 	(uint_t)0,		/* uint_t dlim_dmaspeed */
726 	(uint_t)0x86<<24+0,	/* uint_t dlim_version */
727 	(uint_t)0xffff,		/* uint_t dlim_adreg_max */
728 	(uint_t)0xffff,		/* uint_t dlim_ctreg_max */
729 	(uint_t)512,		/* uint_t dlim_granular */
730 	(int)1,			/* int dlim_sgllen */
731 	(uint_t)0xffffffff	/* uint_t dlim_reqsizes */
732 };
733 
734 #endif
735 
736 int
737 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp,
738     ddi_dma_handle_t *handlep)
739 {
740 	int (*funcp)() = ddi_dma_map;
741 	struct bus_ops *bop;
742 #if defined(__sparc)
743 	auto ddi_dma_lim_t dma_lim;
744 
745 	if (dmareqp->dmar_limits == (ddi_dma_lim_t *)0) {
746 		dma_lim = standard_limits;
747 	} else {
748 		dma_lim = *dmareqp->dmar_limits;
749 	}
750 	dmareqp->dmar_limits = &dma_lim;
751 #endif
752 #if defined(__x86)
753 	if (dmareqp->dmar_limits == (ddi_dma_lim_t *)0)
754 		return (DDI_FAILURE);
755 #endif
756 
757 	/*
758 	 * Handle the case that the requester is both a leaf
759 	 * and a nexus driver simultaneously by calling the
760 	 * requester's bus_dma_map function directly instead
761 	 * of ddi_dma_map.
762 	 */
763 	bop = DEVI(dip)->devi_ops->devo_bus_ops;
764 	if (bop && bop->bus_dma_map)
765 		funcp = bop->bus_dma_map;
766 	return ((*funcp)(dip, dip, dmareqp, handlep));
767 }
768 
769 int
770 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len,
771     uint_t flags, int (*waitfp)(), caddr_t arg,
772     ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep)
773 {
774 	int (*funcp)() = ddi_dma_map;
775 	ddi_dma_lim_t dma_lim;
776 	struct ddi_dma_req dmareq;
777 	struct bus_ops *bop;
778 
779 	if (len == 0) {
780 		return (DDI_DMA_NOMAPPING);
781 	}
782 	if (limits == (ddi_dma_lim_t *)0) {
783 		dma_lim = standard_limits;
784 	} else {
785 		dma_lim = *limits;
786 	}
787 	dmareq.dmar_limits = &dma_lim;
788 	dmareq.dmar_flags = flags;
789 	dmareq.dmar_fp = waitfp;
790 	dmareq.dmar_arg = arg;
791 	dmareq.dmar_object.dmao_size = len;
792 	dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR;
793 	dmareq.dmar_object.dmao_obj.virt_obj.v_as = as;
794 	dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr;
795 	dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
796 
797 	/*
798 	 * Handle the case that the requester is both a leaf
799 	 * and a nexus driver simultaneously by calling the
800 	 * requester's bus_dma_map function directly instead
801 	 * of ddi_dma_map.
802 	 */
803 	bop = DEVI(dip)->devi_ops->devo_bus_ops;
804 	if (bop && bop->bus_dma_map)
805 		funcp = bop->bus_dma_map;
806 
807 	return ((*funcp)(dip, dip, &dmareq, handlep));
808 }
809 
810 int
811 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags,
812     int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits,
813     ddi_dma_handle_t *handlep)
814 {
815 	int (*funcp)() = ddi_dma_map;
816 	ddi_dma_lim_t dma_lim;
817 	struct ddi_dma_req dmareq;
818 	struct bus_ops *bop;
819 
820 	if (limits == (ddi_dma_lim_t *)0) {
821 		dma_lim = standard_limits;
822 	} else {
823 		dma_lim = *limits;
824 	}
825 	dmareq.dmar_limits = &dma_lim;
826 	dmareq.dmar_flags = flags;
827 	dmareq.dmar_fp = waitfp;
828 	dmareq.dmar_arg = arg;
829 	dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount;
830 
831 	if (bp->b_flags & B_PAGEIO) {
832 		dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES;
833 		dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages;
834 		dmareq.dmar_object.dmao_obj.pp_obj.pp_offset =
835 		    (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET);
836 	} else {
837 		dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR;
838 		dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr;
839 		if (bp->b_flags & B_SHADOW) {
840 			dmareq.dmar_object.dmao_obj.virt_obj.v_priv =
841 			    bp->b_shadow;
842 		} else {
843 			dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
844 		}
845 
846 		/*
847 		 * If the buffer has no proc pointer, or the proc
848 		 * struct has the kernel address space, or the buffer has
849 		 * been marked B_REMAPPED (meaning that it is now
850 		 * mapped into the kernel's address space), then
851 		 * the address space is kas (kernel address space).
852 		 */
853 		if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) ||
854 		    (bp->b_flags & B_REMAPPED)) {
855 			dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0;
856 		} else {
857 			dmareq.dmar_object.dmao_obj.virt_obj.v_as =
858 			    bp->b_proc->p_as;
859 		}
860 	}
861 
862 	/*
863 	 * Handle the case that the requester is both a leaf
864 	 * and a nexus driver simultaneously by calling the
865 	 * requester's bus_dma_map function directly instead
866 	 * of ddi_dma_map.
867 	 */
868 	bop = DEVI(dip)->devi_ops->devo_bus_ops;
869 	if (bop && bop->bus_dma_map)
870 		funcp = bop->bus_dma_map;
871 
872 	return ((*funcp)(dip, dip, &dmareq, handlep));
873 }
874 
875 #if !defined(__sparc)
876 /*
877  * Request bus_dma_ctl parent to fiddle with a dma request.
878  *
879  * (The sparc version is in sparc_subr.s)
880  */
881 int
882 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
883     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
884     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
885 {
886 	int (*fp)();
887 
888 	dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_ctl;
889 	fp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_ctl;
890 	return ((*fp) (dip, rdip, handle, request, offp, lenp, objp, flags));
891 }
892 #endif
893 
894 /*
895  * For all DMA control functions, call the DMA control
896  * routine and return status.
897  *
898  * Just plain assume that the parent is to be called.
899  * If a nexus driver or a thread outside the framework
900  * of a nexus driver or a leaf driver calls these functions,
901  * it is up to them to deal with the fact that the parent's
902  * bus_dma_ctl function will be the first one called.
903  */
904 
905 #define	HD	((ddi_dma_impl_t *)h)->dmai_rdip
906 
907 int
908 ddi_dma_kvaddrp(ddi_dma_handle_t h, off_t off, size_t len, caddr_t *kp)
909 {
910 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_KVADDR, &off, &len, kp, 0));
911 }
912 
913 int
914 ddi_dma_htoc(ddi_dma_handle_t h, off_t o, ddi_dma_cookie_t *c)
915 {
916 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_HTOC, &o, 0, (caddr_t *)c, 0));
917 }
918 
919 int
920 ddi_dma_coff(ddi_dma_handle_t h, ddi_dma_cookie_t *c, off_t *o)
921 {
922 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_COFF,
923 	    (off_t *)c, 0, (caddr_t *)o, 0));
924 }
925 
926 int
927 ddi_dma_movwin(ddi_dma_handle_t h, off_t *o, size_t *l, ddi_dma_cookie_t *c)
928 {
929 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_MOVWIN, o,
930 	    l, (caddr_t *)c, 0));
931 }
932 
933 int
934 ddi_dma_curwin(ddi_dma_handle_t h, off_t *o, size_t *l)
935 {
936 	if ((((ddi_dma_impl_t *)h)->dmai_rflags & DDI_DMA_PARTIAL) == 0)
937 		return (DDI_FAILURE);
938 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_REPWIN, o, l, 0, 0));
939 }
940 
941 int
942 ddi_dma_nextwin(ddi_dma_handle_t h, ddi_dma_win_t win,
943     ddi_dma_win_t *nwin)
944 {
945 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTWIN, (off_t *)&win, 0,
946 	    (caddr_t *)nwin, 0));
947 }
948 
949 int
950 ddi_dma_nextseg(ddi_dma_win_t win, ddi_dma_seg_t seg, ddi_dma_seg_t *nseg)
951 {
952 	ddi_dma_handle_t h = (ddi_dma_handle_t)win;
953 
954 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTSEG, (off_t *)&win,
955 	    (size_t *)&seg, (caddr_t *)nseg, 0));
956 }
957 
958 #if (defined(__i386) && !defined(__amd64)) || defined(__sparc)
959 /*
960  * This routine is Obsolete and should be removed from ALL architectures
961  * in a future release of Solaris.
962  *
963  * It is deliberately NOT ported to amd64; please fix the code that
964  * depends on this routine to use ddi_dma_nextcookie(9F).
965  *
966  * NOTE: even though we fixed the pointer through a 32-bit param issue (the fix
967  * is a side effect to some other cleanup), we're still not going to support
968  * this interface on x64.
969  */
970 int
971 ddi_dma_segtocookie(ddi_dma_seg_t seg, off_t *o, off_t *l,
972     ddi_dma_cookie_t *cookiep)
973 {
974 	ddi_dma_handle_t h = (ddi_dma_handle_t)seg;
975 
976 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SEGTOC, o, (size_t *)l,
977 	    (caddr_t *)cookiep, 0));
978 }
979 #endif	/* (__i386 && !__amd64) || __sparc */
980 
981 #if !defined(__sparc)
982 
983 /*
984  * The SPARC versions of these routines are done in assembler to
985  * save register windows, so they're in sparc_subr.s.
986  */
987 
988 int
989 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip,
990 	struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
991 {
992 	dev_info_t	*hdip;
993 	int (*funcp)(dev_info_t *, dev_info_t *, struct ddi_dma_req *,
994 	    ddi_dma_handle_t *);
995 
996 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_map;
997 
998 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_map;
999 	return ((*funcp)(hdip, rdip, dmareqp, handlep));
1000 }
1001 
1002 int
1003 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1004     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1005 {
1006 	dev_info_t	*hdip;
1007 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_attr_t *,
1008 	    int (*)(caddr_t), caddr_t, ddi_dma_handle_t *);
1009 
1010 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
1011 
1012 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_allochdl;
1013 	return ((*funcp)(hdip, rdip, attr, waitfp, arg, handlep));
1014 }
1015 
1016 int
1017 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handlep)
1018 {
1019 	dev_info_t	*hdip;
1020 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
1021 
1022 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
1023 
1024 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_freehdl;
1025 	return ((*funcp)(hdip, rdip, handlep));
1026 }
1027 
1028 int
1029 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1030     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1031     ddi_dma_cookie_t *cp, uint_t *ccountp)
1032 {
1033 	dev_info_t	*hdip;
1034 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
1035 	    struct ddi_dma_req *, ddi_dma_cookie_t *, uint_t *);
1036 
1037 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
1038 
1039 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_bindhdl;
1040 	return ((*funcp)(hdip, rdip, handle, dmareq, cp, ccountp));
1041 }
1042 
1043 int
1044 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
1045     ddi_dma_handle_t handle)
1046 {
1047 	dev_info_t	*hdip;
1048 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
1049 
1050 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
1051 
1052 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_unbindhdl;
1053 	return ((*funcp)(hdip, rdip, handle));
1054 }
1055 
1056 
1057 int
1058 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip,
1059     ddi_dma_handle_t handle, off_t off, size_t len,
1060     uint_t cache_flags)
1061 {
1062 	dev_info_t	*hdip;
1063 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
1064 	    off_t, size_t, uint_t);
1065 
1066 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
1067 
1068 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_flush;
1069 	return ((*funcp)(hdip, rdip, handle, off, len, cache_flags));
1070 }
1071 
1072 int
1073 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip,
1074     ddi_dma_handle_t handle, uint_t win, off_t *offp,
1075     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1076 {
1077 	dev_info_t	*hdip;
1078 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
1079 	    uint_t, off_t *, size_t *, ddi_dma_cookie_t *, uint_t *);
1080 
1081 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_win;
1082 
1083 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_win;
1084 	return ((*funcp)(hdip, rdip, handle, win, offp, lenp,
1085 	    cookiep, ccountp));
1086 }
1087 
1088 int
1089 ddi_dma_sync(ddi_dma_handle_t h, off_t o, size_t l, uint_t whom)
1090 {
1091 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
1092 	dev_info_t *hdip, *dip;
1093 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, off_t,
1094 	    size_t, uint_t);
1095 
1096 	/*
1097 	 * the DMA nexus driver will set DMP_NOSYNC if the
1098 	 * platform does not require any sync operation. For
1099 	 * example if the memory is uncached or consistent
1100 	 * and without any I/O write buffers involved.
1101 	 */
1102 	if ((hp->dmai_rflags & DMP_NOSYNC) == DMP_NOSYNC)
1103 		return (DDI_SUCCESS);
1104 
1105 	dip = hp->dmai_rdip;
1106 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
1107 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_flush;
1108 	return ((*funcp)(hdip, dip, h, o, l, whom));
1109 }
1110 
1111 int
1112 ddi_dma_unbind_handle(ddi_dma_handle_t h)
1113 {
1114 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
1115 	dev_info_t *hdip, *dip;
1116 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
1117 
1118 	dip = hp->dmai_rdip;
1119 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
1120 	funcp = DEVI(dip)->devi_bus_dma_unbindfunc;
1121 	return ((*funcp)(hdip, dip, h));
1122 }
1123 
1124 #endif	/* !__sparc */
1125 
1126 int
1127 ddi_dma_free(ddi_dma_handle_t h)
1128 {
1129 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_FREE, 0, 0, 0, 0));
1130 }
1131 
1132 int
1133 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t len, caddr_t *iopbp)
1134 {
1135 	ddi_dma_lim_t defalt;
1136 	size_t size = len;
1137 
1138 	if (!limp) {
1139 		defalt = standard_limits;
1140 		limp = &defalt;
1141 	}
1142 	return (i_ddi_mem_alloc_lim(dip, limp, size, 0, 0, 0,
1143 	    iopbp, NULL, NULL));
1144 }
1145 
1146 void
1147 ddi_iopb_free(caddr_t iopb)
1148 {
1149 	i_ddi_mem_free(iopb, NULL);
1150 }
1151 
1152 int
1153 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length,
1154 	uint_t flags, caddr_t *kaddrp, uint_t *real_length)
1155 {
1156 	ddi_dma_lim_t defalt;
1157 	size_t size = length;
1158 
1159 	if (!limits) {
1160 		defalt = standard_limits;
1161 		limits = &defalt;
1162 	}
1163 	return (i_ddi_mem_alloc_lim(dip, limits, size, flags & 0x1,
1164 	    1, 0, kaddrp, real_length, NULL));
1165 }
1166 
1167 void
1168 ddi_mem_free(caddr_t kaddr)
1169 {
1170 	i_ddi_mem_free(kaddr, NULL);
1171 }
1172 
1173 /*
1174  * DMA attributes, alignment, burst sizes, and transfer minimums
1175  */
1176 int
1177 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp)
1178 {
1179 	ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
1180 
1181 	if (attrp == NULL)
1182 		return (DDI_FAILURE);
1183 	*attrp = dimp->dmai_attr;
1184 	return (DDI_SUCCESS);
1185 }
1186 
1187 int
1188 ddi_dma_burstsizes(ddi_dma_handle_t handle)
1189 {
1190 	ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
1191 
1192 	if (!dimp)
1193 		return (0);
1194 	else
1195 		return (dimp->dmai_burstsizes);
1196 }
1197 
1198 int
1199 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect)
1200 {
1201 	ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
1202 
1203 	if (!dimp || !alignment || !mineffect)
1204 		return (DDI_FAILURE);
1205 	if (!(dimp->dmai_rflags & DDI_DMA_SBUS_64BIT)) {
1206 		*alignment = 1 << ddi_ffs(dimp->dmai_burstsizes);
1207 	} else {
1208 		if (dimp->dmai_burstsizes & 0xff0000) {
1209 			*alignment = 1 << ddi_ffs(dimp->dmai_burstsizes >> 16);
1210 		} else {
1211 			*alignment = 1 << ddi_ffs(dimp->dmai_burstsizes);
1212 		}
1213 	}
1214 	*mineffect = dimp->dmai_minxfer;
1215 	return (DDI_SUCCESS);
1216 }
1217 
1218 int
1219 ddi_iomin(dev_info_t *a, int i, int stream)
1220 {
1221 	int r;
1222 
1223 	/*
1224 	 * Make sure that the initial value is sane
1225 	 */
1226 	if (i & (i - 1))
1227 		return (0);
1228 	if (i == 0)
1229 		i = (stream) ? 4 : 1;
1230 
1231 	r = ddi_ctlops(a, a,
1232 	    DDI_CTLOPS_IOMIN, (void *)(uintptr_t)stream, (void *)&i);
1233 	if (r != DDI_SUCCESS || (i & (i - 1)))
1234 		return (0);
1235 	return (i);
1236 }
1237 
1238 /*
1239  * Given two DMA attribute structures, apply the attributes
1240  * of one to the other, following the rules of attributes
1241  * and the wishes of the caller.
1242  *
1243  * The rules of DMA attribute structures are that you cannot
1244  * make things *less* restrictive as you apply one set
1245  * of attributes to another.
1246  *
1247  */
1248 void
1249 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod)
1250 {
1251 	attr->dma_attr_addr_lo =
1252 	    MAX(attr->dma_attr_addr_lo, mod->dma_attr_addr_lo);
1253 	attr->dma_attr_addr_hi =
1254 	    MIN(attr->dma_attr_addr_hi, mod->dma_attr_addr_hi);
1255 	attr->dma_attr_count_max =
1256 	    MIN(attr->dma_attr_count_max, mod->dma_attr_count_max);
1257 	attr->dma_attr_align =
1258 	    MAX(attr->dma_attr_align,  mod->dma_attr_align);
1259 	attr->dma_attr_burstsizes =
1260 	    (uint_t)(attr->dma_attr_burstsizes & mod->dma_attr_burstsizes);
1261 	attr->dma_attr_minxfer =
1262 	    maxbit(attr->dma_attr_minxfer, mod->dma_attr_minxfer);
1263 	attr->dma_attr_maxxfer =
1264 	    MIN(attr->dma_attr_maxxfer, mod->dma_attr_maxxfer);
1265 	attr->dma_attr_seg = MIN(attr->dma_attr_seg, mod->dma_attr_seg);
1266 	attr->dma_attr_sgllen = MIN((uint_t)attr->dma_attr_sgllen,
1267 	    (uint_t)mod->dma_attr_sgllen);
1268 	attr->dma_attr_granular =
1269 	    MAX(attr->dma_attr_granular, mod->dma_attr_granular);
1270 }
1271 
1272 /*
1273  * mmap/segmap interface:
1274  */
1275 
1276 /*
1277  * ddi_segmap:		setup the default segment driver. Calls the drivers
1278  *			XXmmap routine to validate the range to be mapped.
1279  *			Return ENXIO of the range is not valid.  Create
1280  *			a seg_dev segment that contains all of the
1281  *			necessary information and will reference the
1282  *			default segment driver routines. It returns zero
1283  *			on success or non-zero on failure.
1284  */
1285 int
1286 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len,
1287     uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp)
1288 {
1289 	extern int spec_segmap(dev_t, off_t, struct as *, caddr_t *,
1290 	    off_t, uint_t, uint_t, uint_t, struct cred *);
1291 
1292 	return (spec_segmap(dev, offset, asp, addrp, len,
1293 	    prot, maxprot, flags, credp));
1294 }
1295 
1296 /*
1297  * ddi_map_fault:	Resolve mappings at fault time.  Used by segment
1298  *			drivers. Allows each successive parent to resolve
1299  *			address translations and add its mappings to the
1300  *			mapping list supplied in the page structure. It
1301  *			returns zero on success	or non-zero on failure.
1302  */
1303 
1304 int
1305 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg,
1306     caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock)
1307 {
1308 	return (i_ddi_map_fault(dip, dip, hat, seg, addr, dp, pfn, prot, lock));
1309 }
1310 
1311 /*
1312  * ddi_device_mapping_check:	Called from ddi_segmap_setup.
1313  *	Invokes platform specific DDI to determine whether attributes specified
1314  *	in attr(9s) are	valid for the region of memory that will be made
1315  *	available for direct access to user process via the mmap(2) system call.
1316  */
1317 int
1318 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp,
1319     uint_t rnumber, uint_t *hat_flags)
1320 {
1321 	ddi_acc_handle_t handle;
1322 	ddi_map_req_t mr;
1323 	ddi_acc_hdl_t *hp;
1324 	int result;
1325 	dev_info_t *dip;
1326 
1327 	/*
1328 	 * we use e_ddi_hold_devi_by_dev to search for the devi.  We
1329 	 * release it immediately since it should already be held by
1330 	 * a devfs vnode.
1331 	 */
1332 	if ((dip =
1333 	    e_ddi_hold_devi_by_dev(dev, E_DDI_HOLD_DEVI_NOATTACH)) == NULL)
1334 		return (-1);
1335 	ddi_release_devi(dip);		/* for e_ddi_hold_devi_by_dev() */
1336 
1337 	/*
1338 	 * Allocate and initialize the common elements of data
1339 	 * access handle.
1340 	 */
1341 	handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
1342 	if (handle == NULL)
1343 		return (-1);
1344 
1345 	hp = impl_acc_hdl_get(handle);
1346 	hp->ah_vers = VERS_ACCHDL;
1347 	hp->ah_dip = dip;
1348 	hp->ah_rnumber = rnumber;
1349 	hp->ah_offset = 0;
1350 	hp->ah_len = 0;
1351 	hp->ah_acc = *accattrp;
1352 
1353 	/*
1354 	 * Set up the mapping request and call to parent.
1355 	 */
1356 	mr.map_op = DDI_MO_MAP_HANDLE;
1357 	mr.map_type = DDI_MT_RNUMBER;
1358 	mr.map_obj.rnumber = rnumber;
1359 	mr.map_prot = PROT_READ | PROT_WRITE;
1360 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
1361 	mr.map_handlep = hp;
1362 	mr.map_vers = DDI_MAP_VERSION;
1363 	result = ddi_map(dip, &mr, 0, 0, NULL);
1364 
1365 	/*
1366 	 * Region must be mappable, pick up flags from the framework.
1367 	 */
1368 	*hat_flags = hp->ah_hat_flags;
1369 
1370 	impl_acc_hdl_free(handle);
1371 
1372 	/*
1373 	 * check for end result.
1374 	 */
1375 	if (result != DDI_SUCCESS)
1376 		return (-1);
1377 	return (0);
1378 }
1379 
1380 
1381 /*
1382  * Property functions:	 See also, ddipropdefs.h.
1383  *
1384  * These functions are the framework for the property functions,
1385  * i.e. they support software defined properties.  All implementation
1386  * specific property handling (i.e.: self-identifying devices and
1387  * PROM defined properties are handled in the implementation specific
1388  * functions (defined in ddi_implfuncs.h).
1389  */
1390 
1391 /*
1392  * nopropop:	Shouldn't be called, right?
1393  */
1394 int
1395 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1396     char *name, caddr_t valuep, int *lengthp)
1397 {
1398 	_NOTE(ARGUNUSED(dev, dip, prop_op, mod_flags, name, valuep, lengthp))
1399 	return (DDI_PROP_NOT_FOUND);
1400 }
1401 
1402 #ifdef	DDI_PROP_DEBUG
1403 int ddi_prop_debug_flag = 0;
1404 
1405 int
1406 ddi_prop_debug(int enable)
1407 {
1408 	int prev = ddi_prop_debug_flag;
1409 
1410 	if ((enable != 0) || (prev != 0))
1411 		printf("ddi_prop_debug: debugging %s\n",
1412 		    enable ? "enabled" : "disabled");
1413 	ddi_prop_debug_flag = enable;
1414 	return (prev);
1415 }
1416 
1417 #endif	/* DDI_PROP_DEBUG */
1418 
1419 /*
1420  * Search a property list for a match, if found return pointer
1421  * to matching prop struct, else return NULL.
1422  */
1423 
1424 ddi_prop_t *
1425 i_ddi_prop_search(dev_t dev, char *name, uint_t flags, ddi_prop_t **list_head)
1426 {
1427 	ddi_prop_t	*propp;
1428 
1429 	/*
1430 	 * find the property in child's devinfo:
1431 	 * Search order defined by this search function is first matching
1432 	 * property with input dev == DDI_DEV_T_ANY matching any dev or
1433 	 * dev == propp->prop_dev, name == propp->name, and the correct
1434 	 * data type as specified in the flags.  If a DDI_DEV_T_NONE dev
1435 	 * value made it this far then it implies a DDI_DEV_T_ANY search.
1436 	 */
1437 	if (dev == DDI_DEV_T_NONE)
1438 		dev = DDI_DEV_T_ANY;
1439 
1440 	for (propp = *list_head; propp != NULL; propp = propp->prop_next)  {
1441 
1442 		if (!DDI_STRSAME(propp->prop_name, name))
1443 			continue;
1444 
1445 		if ((dev != DDI_DEV_T_ANY) && (propp->prop_dev != dev))
1446 			continue;
1447 
1448 		if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1449 			continue;
1450 
1451 		return (propp);
1452 	}
1453 
1454 	return ((ddi_prop_t *)0);
1455 }
1456 
1457 /*
1458  * Search for property within devnames structures
1459  */
1460 ddi_prop_t *
1461 i_ddi_search_global_prop(dev_t dev, char *name, uint_t flags)
1462 {
1463 	major_t		major;
1464 	struct devnames	*dnp;
1465 	ddi_prop_t	*propp;
1466 
1467 	/*
1468 	 * Valid dev_t value is needed to index into the
1469 	 * correct devnames entry, therefore a dev_t
1470 	 * value of DDI_DEV_T_ANY is not appropriate.
1471 	 */
1472 	ASSERT(dev != DDI_DEV_T_ANY);
1473 	if (dev == DDI_DEV_T_ANY) {
1474 		return ((ddi_prop_t *)0);
1475 	}
1476 
1477 	major = getmajor(dev);
1478 	dnp = &(devnamesp[major]);
1479 
1480 	if (dnp->dn_global_prop_ptr == NULL)
1481 		return ((ddi_prop_t *)0);
1482 
1483 	LOCK_DEV_OPS(&dnp->dn_lock);
1484 
1485 	for (propp = dnp->dn_global_prop_ptr->prop_list;
1486 	    propp != NULL;
1487 	    propp = (ddi_prop_t *)propp->prop_next) {
1488 
1489 		if (!DDI_STRSAME(propp->prop_name, name))
1490 			continue;
1491 
1492 		if ((!(flags & LDI_DEV_T_ANY)) && (propp->prop_dev != dev))
1493 			continue;
1494 
1495 		if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1496 			continue;
1497 
1498 		/* Property found, return it */
1499 		UNLOCK_DEV_OPS(&dnp->dn_lock);
1500 		return (propp);
1501 	}
1502 
1503 	UNLOCK_DEV_OPS(&dnp->dn_lock);
1504 	return ((ddi_prop_t *)0);
1505 }
1506 
1507 static char prop_no_mem_msg[] = "can't allocate memory for ddi property <%s>";
1508 
1509 /*
1510  * ddi_prop_search_global:
1511  *	Search the global property list within devnames
1512  *	for the named property.  Return the encoded value.
1513  */
1514 static int
1515 i_ddi_prop_search_global(dev_t dev, uint_t flags, char *name,
1516     void *valuep, uint_t *lengthp)
1517 {
1518 	ddi_prop_t	*propp;
1519 	caddr_t		buffer;
1520 
1521 	propp =  i_ddi_search_global_prop(dev, name, flags);
1522 
1523 	/* Property NOT found, bail */
1524 	if (propp == (ddi_prop_t *)0)
1525 		return (DDI_PROP_NOT_FOUND);
1526 
1527 	if (propp->prop_flags & DDI_PROP_UNDEF_IT)
1528 		return (DDI_PROP_UNDEFINED);
1529 
1530 	if ((buffer = kmem_alloc(propp->prop_len,
1531 	    (flags & DDI_PROP_CANSLEEP) ? KM_SLEEP : KM_NOSLEEP)) == NULL) {
1532 		cmn_err(CE_CONT, prop_no_mem_msg, name);
1533 		return (DDI_PROP_NO_MEMORY);
1534 	}
1535 
1536 	/*
1537 	 * Return the encoded data
1538 	 */
1539 	*(caddr_t *)valuep = buffer;
1540 	*lengthp = propp->prop_len;
1541 	bcopy(propp->prop_val, buffer, propp->prop_len);
1542 
1543 	return (DDI_PROP_SUCCESS);
1544 }
1545 
1546 /*
1547  * ddi_prop_search_common:	Lookup and return the encoded value
1548  */
1549 int
1550 ddi_prop_search_common(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1551     uint_t flags, char *name, void *valuep, uint_t *lengthp)
1552 {
1553 	ddi_prop_t	*propp;
1554 	int		i;
1555 	caddr_t		buffer;
1556 	caddr_t		prealloc = NULL;
1557 	int		plength = 0;
1558 	dev_info_t	*pdip;
1559 	int		(*bop)();
1560 
1561 	/*CONSTANTCONDITION*/
1562 	while (1)  {
1563 
1564 		mutex_enter(&(DEVI(dip)->devi_lock));
1565 
1566 
1567 		/*
1568 		 * find the property in child's devinfo:
1569 		 * Search order is:
1570 		 *	1. driver defined properties
1571 		 *	2. system defined properties
1572 		 *	3. driver global properties
1573 		 *	4. boot defined properties
1574 		 */
1575 
1576 		propp = i_ddi_prop_search(dev, name, flags,
1577 		    &(DEVI(dip)->devi_drv_prop_ptr));
1578 		if (propp == NULL)  {
1579 			propp = i_ddi_prop_search(dev, name, flags,
1580 			    &(DEVI(dip)->devi_sys_prop_ptr));
1581 		}
1582 		if ((propp == NULL) && DEVI(dip)->devi_global_prop_list) {
1583 			propp = i_ddi_prop_search(dev, name, flags,
1584 			    &DEVI(dip)->devi_global_prop_list->prop_list);
1585 		}
1586 
1587 		if (propp == NULL)  {
1588 			propp = i_ddi_prop_search(dev, name, flags,
1589 			    &(DEVI(dip)->devi_hw_prop_ptr));
1590 		}
1591 
1592 		/*
1593 		 * Software property found?
1594 		 */
1595 		if (propp != (ddi_prop_t *)0)	{
1596 
1597 			/*
1598 			 * If explicit undefine, return now.
1599 			 */
1600 			if (propp->prop_flags & DDI_PROP_UNDEF_IT) {
1601 				mutex_exit(&(DEVI(dip)->devi_lock));
1602 				if (prealloc)
1603 					kmem_free(prealloc, plength);
1604 				return (DDI_PROP_UNDEFINED);
1605 			}
1606 
1607 			/*
1608 			 * If we only want to know if it exists, return now
1609 			 */
1610 			if (prop_op == PROP_EXISTS) {
1611 				mutex_exit(&(DEVI(dip)->devi_lock));
1612 				ASSERT(prealloc == NULL);
1613 				return (DDI_PROP_SUCCESS);
1614 			}
1615 
1616 			/*
1617 			 * If length only request or prop length == 0,
1618 			 * service request and return now.
1619 			 */
1620 			if ((prop_op == PROP_LEN) ||(propp->prop_len == 0)) {
1621 				*lengthp = propp->prop_len;
1622 
1623 				/*
1624 				 * if prop_op is PROP_LEN_AND_VAL_ALLOC
1625 				 * that means prop_len is 0, so set valuep
1626 				 * also to NULL
1627 				 */
1628 				if (prop_op == PROP_LEN_AND_VAL_ALLOC)
1629 					*(caddr_t *)valuep = NULL;
1630 
1631 				mutex_exit(&(DEVI(dip)->devi_lock));
1632 				if (prealloc)
1633 					kmem_free(prealloc, plength);
1634 				return (DDI_PROP_SUCCESS);
1635 			}
1636 
1637 			/*
1638 			 * If LEN_AND_VAL_ALLOC and the request can sleep,
1639 			 * drop the mutex, allocate the buffer, and go
1640 			 * through the loop again.  If we already allocated
1641 			 * the buffer, and the size of the property changed,
1642 			 * keep trying...
1643 			 */
1644 			if ((prop_op == PROP_LEN_AND_VAL_ALLOC) &&
1645 			    (flags & DDI_PROP_CANSLEEP))  {
1646 				if (prealloc && (propp->prop_len != plength)) {
1647 					kmem_free(prealloc, plength);
1648 					prealloc = NULL;
1649 				}
1650 				if (prealloc == NULL)  {
1651 					plength = propp->prop_len;
1652 					mutex_exit(&(DEVI(dip)->devi_lock));
1653 					prealloc = kmem_alloc(plength,
1654 					    KM_SLEEP);
1655 					continue;
1656 				}
1657 			}
1658 
1659 			/*
1660 			 * Allocate buffer, if required.  Either way,
1661 			 * set `buffer' variable.
1662 			 */
1663 			i = *lengthp;			/* Get callers length */
1664 			*lengthp = propp->prop_len;	/* Set callers length */
1665 
1666 			switch (prop_op) {
1667 
1668 			case PROP_LEN_AND_VAL_ALLOC:
1669 
1670 				if (prealloc == NULL) {
1671 					buffer = kmem_alloc(propp->prop_len,
1672 					    KM_NOSLEEP);
1673 				} else {
1674 					buffer = prealloc;
1675 				}
1676 
1677 				if (buffer == NULL)  {
1678 					mutex_exit(&(DEVI(dip)->devi_lock));
1679 					cmn_err(CE_CONT, prop_no_mem_msg, name);
1680 					return (DDI_PROP_NO_MEMORY);
1681 				}
1682 				/* Set callers buf ptr */
1683 				*(caddr_t *)valuep = buffer;
1684 				break;
1685 
1686 			case PROP_LEN_AND_VAL_BUF:
1687 
1688 				if (propp->prop_len > (i)) {
1689 					mutex_exit(&(DEVI(dip)->devi_lock));
1690 					return (DDI_PROP_BUF_TOO_SMALL);
1691 				}
1692 
1693 				buffer = valuep;  /* Get callers buf ptr */
1694 				break;
1695 
1696 			default:
1697 				break;
1698 			}
1699 
1700 			/*
1701 			 * Do the copy.
1702 			 */
1703 			bcopy(propp->prop_val, buffer, propp->prop_len);
1704 			mutex_exit(&(DEVI(dip)->devi_lock));
1705 			return (DDI_PROP_SUCCESS);
1706 		}
1707 
1708 		mutex_exit(&(DEVI(dip)->devi_lock));
1709 		if (prealloc)
1710 			kmem_free(prealloc, plength);
1711 		prealloc = NULL;
1712 
1713 		/*
1714 		 * Prop not found, call parent bus_ops to deal with possible
1715 		 * h/w layer (possible PROM defined props, etc.) and to
1716 		 * possibly ascend the hierarchy, if allowed by flags.
1717 		 */
1718 		pdip = (dev_info_t *)DEVI(dip)->devi_parent;
1719 
1720 		/*
1721 		 * One last call for the root driver PROM props?
1722 		 */
1723 		if (dip == ddi_root_node())  {
1724 			return (ddi_bus_prop_op(dev, dip, dip, prop_op,
1725 			    flags, name, valuep, (int *)lengthp));
1726 		}
1727 
1728 		/*
1729 		 * We may have been called to check for properties
1730 		 * within a single devinfo node that has no parent -
1731 		 * see make_prop()
1732 		 */
1733 		if (pdip == NULL) {
1734 			ASSERT((flags &
1735 			    (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)) ==
1736 			    (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM));
1737 			return (DDI_PROP_NOT_FOUND);
1738 		}
1739 
1740 		/*
1741 		 * Instead of recursing, we do iterative calls up the tree.
1742 		 * As a bit of optimization, skip the bus_op level if the
1743 		 * node is a s/w node and if the parent's bus_prop_op function
1744 		 * is `ddi_bus_prop_op', because we know that in this case,
1745 		 * this function does nothing.
1746 		 *
1747 		 * 4225415: If the parent isn't attached, or the child
1748 		 * hasn't been named by the parent yet, use the default
1749 		 * ddi_bus_prop_op as a proxy for the parent.  This
1750 		 * allows property lookups in any child/parent state to
1751 		 * include 'prom' and inherited properties, even when
1752 		 * there are no drivers attached to the child or parent.
1753 		 */
1754 
1755 		bop = ddi_bus_prop_op;
1756 		if (i_ddi_devi_attached(pdip) &&
1757 		    (i_ddi_node_state(dip) >= DS_INITIALIZED))
1758 			bop = DEVI(pdip)->devi_ops->devo_bus_ops->bus_prop_op;
1759 
1760 		i = DDI_PROP_NOT_FOUND;
1761 
1762 		if ((bop != ddi_bus_prop_op) || ndi_dev_is_prom_node(dip)) {
1763 			i = (*bop)(dev, pdip, dip, prop_op,
1764 			    flags | DDI_PROP_DONTPASS,
1765 			    name, valuep, lengthp);
1766 		}
1767 
1768 		if ((flags & DDI_PROP_DONTPASS) ||
1769 		    (i != DDI_PROP_NOT_FOUND))
1770 			return (i);
1771 
1772 		dip = pdip;
1773 	}
1774 	/*NOTREACHED*/
1775 }
1776 
1777 
1778 /*
1779  * ddi_prop_op: The basic property operator for drivers.
1780  *
1781  * In ddi_prop_op, the type of valuep is interpreted based on prop_op:
1782  *
1783  *	prop_op			valuep
1784  *	------			------
1785  *
1786  *	PROP_LEN		<unused>
1787  *
1788  *	PROP_LEN_AND_VAL_BUF	Pointer to callers buffer
1789  *
1790  *	PROP_LEN_AND_VAL_ALLOC	Address of callers pointer (will be set to
1791  *				address of allocated buffer, if successful)
1792  */
1793 int
1794 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1795     char *name, caddr_t valuep, int *lengthp)
1796 {
1797 	int	i;
1798 
1799 	ASSERT((mod_flags & DDI_PROP_TYPE_MASK) == 0);
1800 
1801 	/*
1802 	 * If this was originally an LDI prop lookup then we bail here.
1803 	 * The reason is that the LDI property lookup interfaces first call
1804 	 * a drivers prop_op() entry point to allow it to override
1805 	 * properties.  But if we've made it here, then the driver hasn't
1806 	 * overriden any properties.  We don't want to continue with the
1807 	 * property search here because we don't have any type inforamtion.
1808 	 * When we return failure, the LDI interfaces will then proceed to
1809 	 * call the typed property interfaces to look up the property.
1810 	 */
1811 	if (mod_flags & DDI_PROP_DYNAMIC)
1812 		return (DDI_PROP_NOT_FOUND);
1813 
1814 	/*
1815 	 * check for pre-typed property consumer asking for typed property:
1816 	 * see e_ddi_getprop_int64.
1817 	 */
1818 	if (mod_flags & DDI_PROP_CONSUMER_TYPED)
1819 		mod_flags |= DDI_PROP_TYPE_INT64;
1820 	mod_flags |= DDI_PROP_TYPE_ANY;
1821 
1822 	i = ddi_prop_search_common(dev, dip, prop_op,
1823 	    mod_flags, name, valuep, (uint_t *)lengthp);
1824 	if (i == DDI_PROP_FOUND_1275)
1825 		return (DDI_PROP_SUCCESS);
1826 	return (i);
1827 }
1828 
1829 /*
1830  * ddi_prop_op_nblocks_blksize: The basic property operator for drivers that
1831  * maintain size in number of blksize blocks.  Provides a dynamic property
1832  * implementation for size oriented properties based on nblocks64 and blksize
1833  * values passed in by the driver.  Fallback to ddi_prop_op if the nblocks64
1834  * is too large.  This interface should not be used with a nblocks64 that
1835  * represents the driver's idea of how to represent unknown, if nblocks is
1836  * unknown use ddi_prop_op.
1837  */
1838 int
1839 ddi_prop_op_nblocks_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1840     int mod_flags, char *name, caddr_t valuep, int *lengthp,
1841     uint64_t nblocks64, uint_t blksize)
1842 {
1843 	uint64_t size64;
1844 	int	blkshift;
1845 
1846 	/* convert block size to shift value */
1847 	ASSERT(BIT_ONLYONESET(blksize));
1848 	blkshift = highbit(blksize) - 1;
1849 
1850 	/*
1851 	 * There is no point in supporting nblocks64 values that don't have
1852 	 * an accurate uint64_t byte count representation.
1853 	 */
1854 	if (nblocks64 >= (UINT64_MAX >> blkshift))
1855 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1856 		    name, valuep, lengthp));
1857 
1858 	size64 = nblocks64 << blkshift;
1859 	return (ddi_prop_op_size_blksize(dev, dip, prop_op, mod_flags,
1860 	    name, valuep, lengthp, size64, blksize));
1861 }
1862 
1863 /*
1864  * ddi_prop_op_nblocks: ddi_prop_op_nblocks_blksize with DEV_BSIZE blksize.
1865  */
1866 int
1867 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1868     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t nblocks64)
1869 {
1870 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op,
1871 	    mod_flags, name, valuep, lengthp, nblocks64, DEV_BSIZE));
1872 }
1873 
1874 /*
1875  * ddi_prop_op_size_blksize: The basic property operator for block drivers that
1876  * maintain size in bytes. Provides a of dynamic property implementation for
1877  * size oriented properties based on size64 value and blksize passed in by the
1878  * driver.  Fallback to ddi_prop_op if the size64 is too large. This interface
1879  * should not be used with a size64 that represents the driver's idea of how
1880  * to represent unknown, if size is unknown use ddi_prop_op.
1881  *
1882  * NOTE: the legacy "nblocks"/"size" properties are treated as 32-bit unsigned
1883  * integers. While the most likely interface to request them ([bc]devi_size)
1884  * is declared int (signed) there is no enforcement of this, which means we
1885  * can't enforce limitations here without risking regression.
1886  */
1887 int
1888 ddi_prop_op_size_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1889     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64,
1890     uint_t blksize)
1891 {
1892 	uint64_t nblocks64;
1893 	int	callers_length;
1894 	caddr_t	buffer;
1895 	int	blkshift;
1896 
1897 	/* convert block size to shift value */
1898 	ASSERT(BIT_ONLYONESET(blksize));
1899 	blkshift = highbit(blksize) - 1;
1900 
1901 	/* compute DEV_BSIZE nblocks value */
1902 	nblocks64 = size64 >> blkshift;
1903 
1904 	/* get callers length, establish length of our dynamic properties */
1905 	callers_length = *lengthp;
1906 
1907 	if (strcmp(name, "Nblocks") == 0)
1908 		*lengthp = sizeof (uint64_t);
1909 	else if (strcmp(name, "Size") == 0)
1910 		*lengthp = sizeof (uint64_t);
1911 	else if ((strcmp(name, "nblocks") == 0) && (nblocks64 < UINT_MAX))
1912 		*lengthp = sizeof (uint32_t);
1913 	else if ((strcmp(name, "size") == 0) && (size64 < UINT_MAX))
1914 		*lengthp = sizeof (uint32_t);
1915 	else if ((strcmp(name, "blksize") == 0) && (blksize < UINT_MAX))
1916 		*lengthp = sizeof (uint32_t);
1917 	else {
1918 		/* fallback to ddi_prop_op */
1919 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1920 		    name, valuep, lengthp));
1921 	}
1922 
1923 	/* service request for the length of the property */
1924 	if (prop_op == PROP_LEN)
1925 		return (DDI_PROP_SUCCESS);
1926 
1927 	/* the length of the property and the request must match */
1928 	if (callers_length != *lengthp)
1929 		return (DDI_PROP_INVAL_ARG);
1930 
1931 	switch (prop_op) {
1932 	case PROP_LEN_AND_VAL_ALLOC:
1933 		if ((buffer = kmem_alloc(*lengthp,
1934 		    (mod_flags & DDI_PROP_CANSLEEP) ?
1935 		    KM_SLEEP : KM_NOSLEEP)) == NULL)
1936 			return (DDI_PROP_NO_MEMORY);
1937 
1938 		*(caddr_t *)valuep = buffer;	/* set callers buf ptr */
1939 		break;
1940 
1941 	case PROP_LEN_AND_VAL_BUF:
1942 		buffer = valuep;		/* get callers buf ptr */
1943 		break;
1944 
1945 	default:
1946 		return (DDI_PROP_INVAL_ARG);
1947 	}
1948 
1949 	/* transfer the value into the buffer */
1950 	if (strcmp(name, "Nblocks") == 0)
1951 		*((uint64_t *)buffer) = nblocks64;
1952 	else if (strcmp(name, "Size") == 0)
1953 		*((uint64_t *)buffer) = size64;
1954 	else if (strcmp(name, "nblocks") == 0)
1955 		*((uint32_t *)buffer) = (uint32_t)nblocks64;
1956 	else if (strcmp(name, "size") == 0)
1957 		*((uint32_t *)buffer) = (uint32_t)size64;
1958 	else if (strcmp(name, "blksize") == 0)
1959 		*((uint32_t *)buffer) = (uint32_t)blksize;
1960 	return (DDI_PROP_SUCCESS);
1961 }
1962 
1963 /*
1964  * ddi_prop_op_size: ddi_prop_op_size_blksize with DEV_BSIZE block size.
1965  */
1966 int
1967 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1968     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64)
1969 {
1970 	return (ddi_prop_op_size_blksize(dev, dip, prop_op,
1971 	    mod_flags, name, valuep, lengthp, size64, DEV_BSIZE));
1972 }
1973 
1974 /*
1975  * Variable length props...
1976  */
1977 
1978 /*
1979  * ddi_getlongprop:	Get variable length property len+val into a buffer
1980  *		allocated by property provider via kmem_alloc. Requester
1981  *		is responsible for freeing returned property via kmem_free.
1982  *
1983  *	Arguments:
1984  *
1985  *	dev_t:	Input:	dev_t of property.
1986  *	dip:	Input:	dev_info_t pointer of child.
1987  *	flags:	Input:	Possible flag modifiers are:
1988  *		DDI_PROP_DONTPASS:	Don't pass to parent if prop not found.
1989  *		DDI_PROP_CANSLEEP:	Memory allocation may sleep.
1990  *	name:	Input:	name of property.
1991  *	valuep:	Output:	Addr of callers buffer pointer.
1992  *	lengthp:Output:	*lengthp will contain prop length on exit.
1993  *
1994  *	Possible Returns:
1995  *
1996  *		DDI_PROP_SUCCESS:	Prop found and returned.
1997  *		DDI_PROP_NOT_FOUND:	Prop not found
1998  *		DDI_PROP_UNDEFINED:	Prop explicitly undefined.
1999  *		DDI_PROP_NO_MEMORY:	Prop found, but unable to alloc mem.
2000  */
2001 
2002 int
2003 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags,
2004     char *name, caddr_t valuep, int *lengthp)
2005 {
2006 	return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_ALLOC,
2007 	    flags, name, valuep, lengthp));
2008 }
2009 
2010 /*
2011  *
2012  * ddi_getlongprop_buf:		Get long prop into pre-allocated callers
2013  *				buffer. (no memory allocation by provider).
2014  *
2015  *	dev_t:	Input:	dev_t of property.
2016  *	dip:	Input:	dev_info_t pointer of child.
2017  *	flags:	Input:	DDI_PROP_DONTPASS or NULL
2018  *	name:	Input:	name of property
2019  *	valuep:	Input:	ptr to callers buffer.
2020  *	lengthp:I/O:	ptr to length of callers buffer on entry,
2021  *			actual length of property on exit.
2022  *
2023  *	Possible returns:
2024  *
2025  *		DDI_PROP_SUCCESS	Prop found and returned
2026  *		DDI_PROP_NOT_FOUND	Prop not found
2027  *		DDI_PROP_UNDEFINED	Prop explicitly undefined.
2028  *		DDI_PROP_BUF_TOO_SMALL	Prop found, callers buf too small,
2029  *					no value returned, but actual prop
2030  *					length returned in *lengthp
2031  *
2032  */
2033 
2034 int
2035 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags,
2036     char *name, caddr_t valuep, int *lengthp)
2037 {
2038 	return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
2039 	    flags, name, valuep, lengthp));
2040 }
2041 
2042 /*
2043  * Integer/boolean sized props.
2044  *
2045  * Call is value only... returns found boolean or int sized prop value or
2046  * defvalue if prop not found or is wrong length or is explicitly undefined.
2047  * Only flag is DDI_PROP_DONTPASS...
2048  *
2049  * By convention, this interface returns boolean (0) sized properties
2050  * as value (int)1.
2051  *
2052  * This never returns an error, if property not found or specifically
2053  * undefined, the input `defvalue' is returned.
2054  */
2055 
2056 int
2057 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue)
2058 {
2059 	int	propvalue = defvalue;
2060 	int	proplength = sizeof (int);
2061 	int	error;
2062 
2063 	error = ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
2064 	    flags, name, (caddr_t)&propvalue, &proplength);
2065 
2066 	if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
2067 		propvalue = 1;
2068 
2069 	return (propvalue);
2070 }
2071 
2072 /*
2073  * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS
2074  * if returns DDI_PROP_SUCCESS, length returned in *lengthp.
2075  */
2076 
2077 int
2078 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp)
2079 {
2080 	return (ddi_prop_op(dev, dip, PROP_LEN, flags, name, NULL, lengthp));
2081 }
2082 
2083 /*
2084  * Allocate a struct prop_driver_data, along with 'size' bytes
2085  * for decoded property data.  This structure is freed by
2086  * calling ddi_prop_free(9F).
2087  */
2088 static void *
2089 ddi_prop_decode_alloc(size_t size, void (*prop_free)(struct prop_driver_data *))
2090 {
2091 	struct prop_driver_data *pdd;
2092 
2093 	/*
2094 	 * Allocate a structure with enough memory to store the decoded data.
2095 	 */
2096 	pdd = kmem_zalloc(sizeof (struct prop_driver_data) + size, KM_SLEEP);
2097 	pdd->pdd_size = (sizeof (struct prop_driver_data) + size);
2098 	pdd->pdd_prop_free = prop_free;
2099 
2100 	/*
2101 	 * Return a pointer to the location to put the decoded data.
2102 	 */
2103 	return ((void *)((caddr_t)pdd + sizeof (struct prop_driver_data)));
2104 }
2105 
2106 /*
2107  * Allocated the memory needed to store the encoded data in the property
2108  * handle.
2109  */
2110 static int
2111 ddi_prop_encode_alloc(prop_handle_t *ph, size_t size)
2112 {
2113 	/*
2114 	 * If size is zero, then set data to NULL and size to 0.  This
2115 	 * is a boolean property.
2116 	 */
2117 	if (size == 0) {
2118 		ph->ph_size = 0;
2119 		ph->ph_data = NULL;
2120 		ph->ph_cur_pos = NULL;
2121 		ph->ph_save_pos = NULL;
2122 	} else {
2123 		if (ph->ph_flags == DDI_PROP_DONTSLEEP) {
2124 			ph->ph_data = kmem_zalloc(size, KM_NOSLEEP);
2125 			if (ph->ph_data == NULL)
2126 				return (DDI_PROP_NO_MEMORY);
2127 		} else
2128 			ph->ph_data = kmem_zalloc(size, KM_SLEEP);
2129 		ph->ph_size = size;
2130 		ph->ph_cur_pos = ph->ph_data;
2131 		ph->ph_save_pos = ph->ph_data;
2132 	}
2133 	return (DDI_PROP_SUCCESS);
2134 }
2135 
2136 /*
2137  * Free the space allocated by the lookup routines.  Each lookup routine
2138  * returns a pointer to the decoded data to the driver.  The driver then
2139  * passes this pointer back to us.  This data actually lives in a struct
2140  * prop_driver_data.  We use negative indexing to find the beginning of
2141  * the structure and then free the entire structure using the size and
2142  * the free routine stored in the structure.
2143  */
2144 void
2145 ddi_prop_free(void *datap)
2146 {
2147 	struct prop_driver_data *pdd;
2148 
2149 	/*
2150 	 * Get the structure
2151 	 */
2152 	pdd = (struct prop_driver_data *)
2153 	    ((caddr_t)datap - sizeof (struct prop_driver_data));
2154 	/*
2155 	 * Call the free routine to free it
2156 	 */
2157 	(*pdd->pdd_prop_free)(pdd);
2158 }
2159 
2160 /*
2161  * Free the data associated with an array of ints,
2162  * allocated with ddi_prop_decode_alloc().
2163  */
2164 static void
2165 ddi_prop_free_ints(struct prop_driver_data *pdd)
2166 {
2167 	kmem_free(pdd, pdd->pdd_size);
2168 }
2169 
2170 /*
2171  * Free a single string property or a single string contained within
2172  * the argv style return value of an array of strings.
2173  */
2174 static void
2175 ddi_prop_free_string(struct prop_driver_data *pdd)
2176 {
2177 	kmem_free(pdd, pdd->pdd_size);
2178 
2179 }
2180 
2181 /*
2182  * Free an array of strings.
2183  */
2184 static void
2185 ddi_prop_free_strings(struct prop_driver_data *pdd)
2186 {
2187 	kmem_free(pdd, pdd->pdd_size);
2188 }
2189 
2190 /*
2191  * Free the data associated with an array of bytes.
2192  */
2193 static void
2194 ddi_prop_free_bytes(struct prop_driver_data *pdd)
2195 {
2196 	kmem_free(pdd, pdd->pdd_size);
2197 }
2198 
2199 /*
2200  * Reset the current location pointer in the property handle to the
2201  * beginning of the data.
2202  */
2203 void
2204 ddi_prop_reset_pos(prop_handle_t *ph)
2205 {
2206 	ph->ph_cur_pos = ph->ph_data;
2207 	ph->ph_save_pos = ph->ph_data;
2208 }
2209 
2210 /*
2211  * Restore the current location pointer in the property handle to the
2212  * saved position.
2213  */
2214 void
2215 ddi_prop_save_pos(prop_handle_t *ph)
2216 {
2217 	ph->ph_save_pos = ph->ph_cur_pos;
2218 }
2219 
2220 /*
2221  * Save the location that the current location pointer is pointing to..
2222  */
2223 void
2224 ddi_prop_restore_pos(prop_handle_t *ph)
2225 {
2226 	ph->ph_cur_pos = ph->ph_save_pos;
2227 }
2228 
2229 /*
2230  * Property encode/decode functions
2231  */
2232 
2233 /*
2234  * Decode a single integer property
2235  */
2236 static int
2237 ddi_prop_fm_decode_int(prop_handle_t *ph, void *data, uint_t *nelements)
2238 {
2239 	int	i;
2240 	int	tmp;
2241 
2242 	/*
2243 	 * If there is nothing to decode return an error
2244 	 */
2245 	if (ph->ph_size == 0)
2246 		return (DDI_PROP_END_OF_DATA);
2247 
2248 	/*
2249 	 * Decode the property as a single integer and return it
2250 	 * in data if we were able to decode it.
2251 	 */
2252 	i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, &tmp);
2253 	if (i < DDI_PROP_RESULT_OK) {
2254 		switch (i) {
2255 		case DDI_PROP_RESULT_EOF:
2256 			return (DDI_PROP_END_OF_DATA);
2257 
2258 		case DDI_PROP_RESULT_ERROR:
2259 			return (DDI_PROP_CANNOT_DECODE);
2260 		}
2261 	}
2262 
2263 	*(int *)data = tmp;
2264 	*nelements = 1;
2265 	return (DDI_PROP_SUCCESS);
2266 }
2267 
2268 /*
2269  * Decode a single 64 bit integer property
2270  */
2271 static int
2272 ddi_prop_fm_decode_int64(prop_handle_t *ph, void *data, uint_t *nelements)
2273 {
2274 	int	i;
2275 	int64_t	tmp;
2276 
2277 	/*
2278 	 * If there is nothing to decode return an error
2279 	 */
2280 	if (ph->ph_size == 0)
2281 		return (DDI_PROP_END_OF_DATA);
2282 
2283 	/*
2284 	 * Decode the property as a single integer and return it
2285 	 * in data if we were able to decode it.
2286 	 */
2287 	i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, &tmp);
2288 	if (i < DDI_PROP_RESULT_OK) {
2289 		switch (i) {
2290 		case DDI_PROP_RESULT_EOF:
2291 			return (DDI_PROP_END_OF_DATA);
2292 
2293 		case DDI_PROP_RESULT_ERROR:
2294 			return (DDI_PROP_CANNOT_DECODE);
2295 		}
2296 	}
2297 
2298 	*(int64_t *)data = tmp;
2299 	*nelements = 1;
2300 	return (DDI_PROP_SUCCESS);
2301 }
2302 
2303 /*
2304  * Decode an array of integers property
2305  */
2306 static int
2307 ddi_prop_fm_decode_ints(prop_handle_t *ph, void *data, uint_t *nelements)
2308 {
2309 	int	i;
2310 	int	cnt = 0;
2311 	int	*tmp;
2312 	int	*intp;
2313 	int	n;
2314 
2315 	/*
2316 	 * Figure out how many array elements there are by going through the
2317 	 * data without decoding it first and counting.
2318 	 */
2319 	for (;;) {
2320 		i = DDI_PROP_INT(ph, DDI_PROP_CMD_SKIP, NULL);
2321 		if (i < 0)
2322 			break;
2323 		cnt++;
2324 	}
2325 
2326 	/*
2327 	 * If there are no elements return an error
2328 	 */
2329 	if (cnt == 0)
2330 		return (DDI_PROP_END_OF_DATA);
2331 
2332 	/*
2333 	 * If we cannot skip through the data, we cannot decode it
2334 	 */
2335 	if (i == DDI_PROP_RESULT_ERROR)
2336 		return (DDI_PROP_CANNOT_DECODE);
2337 
2338 	/*
2339 	 * Reset the data pointer to the beginning of the encoded data
2340 	 */
2341 	ddi_prop_reset_pos(ph);
2342 
2343 	/*
2344 	 * Allocated memory to store the decoded value in.
2345 	 */
2346 	intp = ddi_prop_decode_alloc((cnt * sizeof (int)),
2347 	    ddi_prop_free_ints);
2348 
2349 	/*
2350 	 * Decode each element and place it in the space we just allocated
2351 	 */
2352 	tmp = intp;
2353 	for (n = 0; n < cnt; n++, tmp++) {
2354 		i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, tmp);
2355 		if (i < DDI_PROP_RESULT_OK) {
2356 			/*
2357 			 * Free the space we just allocated
2358 			 * and return an error.
2359 			 */
2360 			ddi_prop_free(intp);
2361 			switch (i) {
2362 			case DDI_PROP_RESULT_EOF:
2363 				return (DDI_PROP_END_OF_DATA);
2364 
2365 			case DDI_PROP_RESULT_ERROR:
2366 				return (DDI_PROP_CANNOT_DECODE);
2367 			}
2368 		}
2369 	}
2370 
2371 	*nelements = cnt;
2372 	*(int **)data = intp;
2373 
2374 	return (DDI_PROP_SUCCESS);
2375 }
2376 
2377 /*
2378  * Decode a 64 bit integer array property
2379  */
2380 static int
2381 ddi_prop_fm_decode_int64_array(prop_handle_t *ph, void *data, uint_t *nelements)
2382 {
2383 	int	i;
2384 	int	n;
2385 	int	cnt = 0;
2386 	int64_t	*tmp;
2387 	int64_t	*intp;
2388 
2389 	/*
2390 	 * Count the number of array elements by going
2391 	 * through the data without decoding it.
2392 	 */
2393 	for (;;) {
2394 		i = DDI_PROP_INT64(ph, DDI_PROP_CMD_SKIP, NULL);
2395 		if (i < 0)
2396 			break;
2397 		cnt++;
2398 	}
2399 
2400 	/*
2401 	 * If there are no elements return an error
2402 	 */
2403 	if (cnt == 0)
2404 		return (DDI_PROP_END_OF_DATA);
2405 
2406 	/*
2407 	 * If we cannot skip through the data, we cannot decode it
2408 	 */
2409 	if (i == DDI_PROP_RESULT_ERROR)
2410 		return (DDI_PROP_CANNOT_DECODE);
2411 
2412 	/*
2413 	 * Reset the data pointer to the beginning of the encoded data
2414 	 */
2415 	ddi_prop_reset_pos(ph);
2416 
2417 	/*
2418 	 * Allocate memory to store the decoded value.
2419 	 */
2420 	intp = ddi_prop_decode_alloc((cnt * sizeof (int64_t)),
2421 	    ddi_prop_free_ints);
2422 
2423 	/*
2424 	 * Decode each element and place it in the space allocated
2425 	 */
2426 	tmp = intp;
2427 	for (n = 0; n < cnt; n++, tmp++) {
2428 		i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, tmp);
2429 		if (i < DDI_PROP_RESULT_OK) {
2430 			/*
2431 			 * Free the space we just allocated
2432 			 * and return an error.
2433 			 */
2434 			ddi_prop_free(intp);
2435 			switch (i) {
2436 			case DDI_PROP_RESULT_EOF:
2437 				return (DDI_PROP_END_OF_DATA);
2438 
2439 			case DDI_PROP_RESULT_ERROR:
2440 				return (DDI_PROP_CANNOT_DECODE);
2441 			}
2442 		}
2443 	}
2444 
2445 	*nelements = cnt;
2446 	*(int64_t **)data = intp;
2447 
2448 	return (DDI_PROP_SUCCESS);
2449 }
2450 
2451 /*
2452  * Encode an array of integers property (Can be one element)
2453  */
2454 int
2455 ddi_prop_fm_encode_ints(prop_handle_t *ph, void *data, uint_t nelements)
2456 {
2457 	int	i;
2458 	int	*tmp;
2459 	int	cnt;
2460 	int	size;
2461 
2462 	/*
2463 	 * If there is no data, we cannot do anything
2464 	 */
2465 	if (nelements == 0)
2466 		return (DDI_PROP_CANNOT_ENCODE);
2467 
2468 	/*
2469 	 * Get the size of an encoded int.
2470 	 */
2471 	size = DDI_PROP_INT(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2472 
2473 	if (size < DDI_PROP_RESULT_OK) {
2474 		switch (size) {
2475 		case DDI_PROP_RESULT_EOF:
2476 			return (DDI_PROP_END_OF_DATA);
2477 
2478 		case DDI_PROP_RESULT_ERROR:
2479 			return (DDI_PROP_CANNOT_ENCODE);
2480 		}
2481 	}
2482 
2483 	/*
2484 	 * Allocate space in the handle to store the encoded int.
2485 	 */
2486 	if (ddi_prop_encode_alloc(ph, size * nelements) !=
2487 	    DDI_PROP_SUCCESS)
2488 		return (DDI_PROP_NO_MEMORY);
2489 
2490 	/*
2491 	 * Encode the array of ints.
2492 	 */
2493 	tmp = (int *)data;
2494 	for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2495 		i = DDI_PROP_INT(ph, DDI_PROP_CMD_ENCODE, tmp);
2496 		if (i < DDI_PROP_RESULT_OK) {
2497 			switch (i) {
2498 			case DDI_PROP_RESULT_EOF:
2499 				return (DDI_PROP_END_OF_DATA);
2500 
2501 			case DDI_PROP_RESULT_ERROR:
2502 				return (DDI_PROP_CANNOT_ENCODE);
2503 			}
2504 		}
2505 	}
2506 
2507 	return (DDI_PROP_SUCCESS);
2508 }
2509 
2510 
2511 /*
2512  * Encode a 64 bit integer array property
2513  */
2514 int
2515 ddi_prop_fm_encode_int64(prop_handle_t *ph, void *data, uint_t nelements)
2516 {
2517 	int i;
2518 	int cnt;
2519 	int size;
2520 	int64_t *tmp;
2521 
2522 	/*
2523 	 * If there is no data, we cannot do anything
2524 	 */
2525 	if (nelements == 0)
2526 		return (DDI_PROP_CANNOT_ENCODE);
2527 
2528 	/*
2529 	 * Get the size of an encoded 64 bit int.
2530 	 */
2531 	size = DDI_PROP_INT64(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2532 
2533 	if (size < DDI_PROP_RESULT_OK) {
2534 		switch (size) {
2535 		case DDI_PROP_RESULT_EOF:
2536 			return (DDI_PROP_END_OF_DATA);
2537 
2538 		case DDI_PROP_RESULT_ERROR:
2539 			return (DDI_PROP_CANNOT_ENCODE);
2540 		}
2541 	}
2542 
2543 	/*
2544 	 * Allocate space in the handle to store the encoded int.
2545 	 */
2546 	if (ddi_prop_encode_alloc(ph, size * nelements) !=
2547 	    DDI_PROP_SUCCESS)
2548 		return (DDI_PROP_NO_MEMORY);
2549 
2550 	/*
2551 	 * Encode the array of ints.
2552 	 */
2553 	tmp = (int64_t *)data;
2554 	for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2555 		i = DDI_PROP_INT64(ph, DDI_PROP_CMD_ENCODE, tmp);
2556 		if (i < DDI_PROP_RESULT_OK) {
2557 			switch (i) {
2558 			case DDI_PROP_RESULT_EOF:
2559 				return (DDI_PROP_END_OF_DATA);
2560 
2561 			case DDI_PROP_RESULT_ERROR:
2562 				return (DDI_PROP_CANNOT_ENCODE);
2563 			}
2564 		}
2565 	}
2566 
2567 	return (DDI_PROP_SUCCESS);
2568 }
2569 
2570 /*
2571  * Decode a single string property
2572  */
2573 static int
2574 ddi_prop_fm_decode_string(prop_handle_t *ph, void *data, uint_t *nelements)
2575 {
2576 	char		*tmp;
2577 	char		*str;
2578 	int		i;
2579 	int		size;
2580 
2581 	/*
2582 	 * If there is nothing to decode return an error
2583 	 */
2584 	if (ph->ph_size == 0)
2585 		return (DDI_PROP_END_OF_DATA);
2586 
2587 	/*
2588 	 * Get the decoded size of the encoded string.
2589 	 */
2590 	size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2591 	if (size < DDI_PROP_RESULT_OK) {
2592 		switch (size) {
2593 		case DDI_PROP_RESULT_EOF:
2594 			return (DDI_PROP_END_OF_DATA);
2595 
2596 		case DDI_PROP_RESULT_ERROR:
2597 			return (DDI_PROP_CANNOT_DECODE);
2598 		}
2599 	}
2600 
2601 	/*
2602 	 * Allocated memory to store the decoded value in.
2603 	 */
2604 	str = ddi_prop_decode_alloc((size_t)size, ddi_prop_free_string);
2605 
2606 	ddi_prop_reset_pos(ph);
2607 
2608 	/*
2609 	 * Decode the str and place it in the space we just allocated
2610 	 */
2611 	tmp = str;
2612 	i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, tmp);
2613 	if (i < DDI_PROP_RESULT_OK) {
2614 		/*
2615 		 * Free the space we just allocated
2616 		 * and return an error.
2617 		 */
2618 		ddi_prop_free(str);
2619 		switch (i) {
2620 		case DDI_PROP_RESULT_EOF:
2621 			return (DDI_PROP_END_OF_DATA);
2622 
2623 		case DDI_PROP_RESULT_ERROR:
2624 			return (DDI_PROP_CANNOT_DECODE);
2625 		}
2626 	}
2627 
2628 	*(char **)data = str;
2629 	*nelements = 1;
2630 
2631 	return (DDI_PROP_SUCCESS);
2632 }
2633 
2634 /*
2635  * Decode an array of strings.
2636  */
2637 int
2638 ddi_prop_fm_decode_strings(prop_handle_t *ph, void *data, uint_t *nelements)
2639 {
2640 	int		cnt = 0;
2641 	char		**strs;
2642 	char		**tmp;
2643 	char		*ptr;
2644 	int		i;
2645 	int		n;
2646 	int		size;
2647 	size_t		nbytes;
2648 
2649 	/*
2650 	 * Figure out how many array elements there are by going through the
2651 	 * data without decoding it first and counting.
2652 	 */
2653 	for (;;) {
2654 		i = DDI_PROP_STR(ph, DDI_PROP_CMD_SKIP, NULL);
2655 		if (i < 0)
2656 			break;
2657 		cnt++;
2658 	}
2659 
2660 	/*
2661 	 * If there are no elements return an error
2662 	 */
2663 	if (cnt == 0)
2664 		return (DDI_PROP_END_OF_DATA);
2665 
2666 	/*
2667 	 * If we cannot skip through the data, we cannot decode it
2668 	 */
2669 	if (i == DDI_PROP_RESULT_ERROR)
2670 		return (DDI_PROP_CANNOT_DECODE);
2671 
2672 	/*
2673 	 * Reset the data pointer to the beginning of the encoded data
2674 	 */
2675 	ddi_prop_reset_pos(ph);
2676 
2677 	/*
2678 	 * Figure out how much memory we need for the sum total
2679 	 */
2680 	nbytes = (cnt + 1) * sizeof (char *);
2681 
2682 	for (n = 0; n < cnt; n++) {
2683 		/*
2684 		 * Get the decoded size of the current encoded string.
2685 		 */
2686 		size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2687 		if (size < DDI_PROP_RESULT_OK) {
2688 			switch (size) {
2689 			case DDI_PROP_RESULT_EOF:
2690 				return (DDI_PROP_END_OF_DATA);
2691 
2692 			case DDI_PROP_RESULT_ERROR:
2693 				return (DDI_PROP_CANNOT_DECODE);
2694 			}
2695 		}
2696 
2697 		nbytes += size;
2698 	}
2699 
2700 	/*
2701 	 * Allocate memory in which to store the decoded strings.
2702 	 */
2703 	strs = ddi_prop_decode_alloc(nbytes, ddi_prop_free_strings);
2704 
2705 	/*
2706 	 * Set up pointers for each string by figuring out yet
2707 	 * again how long each string is.
2708 	 */
2709 	ddi_prop_reset_pos(ph);
2710 	ptr = (caddr_t)strs + ((cnt + 1) * sizeof (char *));
2711 	for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2712 		/*
2713 		 * Get the decoded size of the current encoded string.
2714 		 */
2715 		size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2716 		if (size < DDI_PROP_RESULT_OK) {
2717 			ddi_prop_free(strs);
2718 			switch (size) {
2719 			case DDI_PROP_RESULT_EOF:
2720 				return (DDI_PROP_END_OF_DATA);
2721 
2722 			case DDI_PROP_RESULT_ERROR:
2723 				return (DDI_PROP_CANNOT_DECODE);
2724 			}
2725 		}
2726 
2727 		*tmp = ptr;
2728 		ptr += size;
2729 	}
2730 
2731 	/*
2732 	 * String array is terminated by a NULL
2733 	 */
2734 	*tmp = NULL;
2735 
2736 	/*
2737 	 * Finally, we can decode each string
2738 	 */
2739 	ddi_prop_reset_pos(ph);
2740 	for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2741 		i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, *tmp);
2742 		if (i < DDI_PROP_RESULT_OK) {
2743 			/*
2744 			 * Free the space we just allocated
2745 			 * and return an error
2746 			 */
2747 			ddi_prop_free(strs);
2748 			switch (i) {
2749 			case DDI_PROP_RESULT_EOF:
2750 				return (DDI_PROP_END_OF_DATA);
2751 
2752 			case DDI_PROP_RESULT_ERROR:
2753 				return (DDI_PROP_CANNOT_DECODE);
2754 			}
2755 		}
2756 	}
2757 
2758 	*(char ***)data = strs;
2759 	*nelements = cnt;
2760 
2761 	return (DDI_PROP_SUCCESS);
2762 }
2763 
2764 /*
2765  * Encode a string.
2766  */
2767 int
2768 ddi_prop_fm_encode_string(prop_handle_t *ph, void *data, uint_t nelements)
2769 {
2770 	char		**tmp;
2771 	int		size;
2772 	int		i;
2773 
2774 	/*
2775 	 * If there is no data, we cannot do anything
2776 	 */
2777 	if (nelements == 0)
2778 		return (DDI_PROP_CANNOT_ENCODE);
2779 
2780 	/*
2781 	 * Get the size of the encoded string.
2782 	 */
2783 	tmp = (char **)data;
2784 	size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2785 	if (size < DDI_PROP_RESULT_OK) {
2786 		switch (size) {
2787 		case DDI_PROP_RESULT_EOF:
2788 			return (DDI_PROP_END_OF_DATA);
2789 
2790 		case DDI_PROP_RESULT_ERROR:
2791 			return (DDI_PROP_CANNOT_ENCODE);
2792 		}
2793 	}
2794 
2795 	/*
2796 	 * Allocate space in the handle to store the encoded string.
2797 	 */
2798 	if (ddi_prop_encode_alloc(ph, size) != DDI_PROP_SUCCESS)
2799 		return (DDI_PROP_NO_MEMORY);
2800 
2801 	ddi_prop_reset_pos(ph);
2802 
2803 	/*
2804 	 * Encode the string.
2805 	 */
2806 	tmp = (char **)data;
2807 	i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2808 	if (i < DDI_PROP_RESULT_OK) {
2809 		switch (i) {
2810 		case DDI_PROP_RESULT_EOF:
2811 			return (DDI_PROP_END_OF_DATA);
2812 
2813 		case DDI_PROP_RESULT_ERROR:
2814 			return (DDI_PROP_CANNOT_ENCODE);
2815 		}
2816 	}
2817 
2818 	return (DDI_PROP_SUCCESS);
2819 }
2820 
2821 
2822 /*
2823  * Encode an array of strings.
2824  */
2825 int
2826 ddi_prop_fm_encode_strings(prop_handle_t *ph, void *data, uint_t nelements)
2827 {
2828 	int		cnt = 0;
2829 	char		**tmp;
2830 	int		size;
2831 	uint_t		total_size;
2832 	int		i;
2833 
2834 	/*
2835 	 * If there is no data, we cannot do anything
2836 	 */
2837 	if (nelements == 0)
2838 		return (DDI_PROP_CANNOT_ENCODE);
2839 
2840 	/*
2841 	 * Get the total size required to encode all the strings.
2842 	 */
2843 	total_size = 0;
2844 	tmp = (char **)data;
2845 	for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2846 		size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2847 		if (size < DDI_PROP_RESULT_OK) {
2848 			switch (size) {
2849 			case DDI_PROP_RESULT_EOF:
2850 				return (DDI_PROP_END_OF_DATA);
2851 
2852 			case DDI_PROP_RESULT_ERROR:
2853 				return (DDI_PROP_CANNOT_ENCODE);
2854 			}
2855 		}
2856 		total_size += (uint_t)size;
2857 	}
2858 
2859 	/*
2860 	 * Allocate space in the handle to store the encoded strings.
2861 	 */
2862 	if (ddi_prop_encode_alloc(ph, total_size) != DDI_PROP_SUCCESS)
2863 		return (DDI_PROP_NO_MEMORY);
2864 
2865 	ddi_prop_reset_pos(ph);
2866 
2867 	/*
2868 	 * Encode the array of strings.
2869 	 */
2870 	tmp = (char **)data;
2871 	for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2872 		i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2873 		if (i < DDI_PROP_RESULT_OK) {
2874 			switch (i) {
2875 			case DDI_PROP_RESULT_EOF:
2876 				return (DDI_PROP_END_OF_DATA);
2877 
2878 			case DDI_PROP_RESULT_ERROR:
2879 				return (DDI_PROP_CANNOT_ENCODE);
2880 			}
2881 		}
2882 	}
2883 
2884 	return (DDI_PROP_SUCCESS);
2885 }
2886 
2887 
2888 /*
2889  * Decode an array of bytes.
2890  */
2891 static int
2892 ddi_prop_fm_decode_bytes(prop_handle_t *ph, void *data, uint_t *nelements)
2893 {
2894 	uchar_t		*tmp;
2895 	int		nbytes;
2896 	int		i;
2897 
2898 	/*
2899 	 * If there are no elements return an error
2900 	 */
2901 	if (ph->ph_size == 0)
2902 		return (DDI_PROP_END_OF_DATA);
2903 
2904 	/*
2905 	 * Get the size of the encoded array of bytes.
2906 	 */
2907 	nbytes = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_DSIZE,
2908 	    data, ph->ph_size);
2909 	if (nbytes < DDI_PROP_RESULT_OK) {
2910 		switch (nbytes) {
2911 		case DDI_PROP_RESULT_EOF:
2912 			return (DDI_PROP_END_OF_DATA);
2913 
2914 		case DDI_PROP_RESULT_ERROR:
2915 			return (DDI_PROP_CANNOT_DECODE);
2916 		}
2917 	}
2918 
2919 	/*
2920 	 * Allocated memory to store the decoded value in.
2921 	 */
2922 	tmp = ddi_prop_decode_alloc(nbytes, ddi_prop_free_bytes);
2923 
2924 	/*
2925 	 * Decode each element and place it in the space we just allocated
2926 	 */
2927 	i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_DECODE, tmp, nbytes);
2928 	if (i < DDI_PROP_RESULT_OK) {
2929 		/*
2930 		 * Free the space we just allocated
2931 		 * and return an error
2932 		 */
2933 		ddi_prop_free(tmp);
2934 		switch (i) {
2935 		case DDI_PROP_RESULT_EOF:
2936 			return (DDI_PROP_END_OF_DATA);
2937 
2938 		case DDI_PROP_RESULT_ERROR:
2939 			return (DDI_PROP_CANNOT_DECODE);
2940 		}
2941 	}
2942 
2943 	*(uchar_t **)data = tmp;
2944 	*nelements = nbytes;
2945 
2946 	return (DDI_PROP_SUCCESS);
2947 }
2948 
2949 /*
2950  * Encode an array of bytes.
2951  */
2952 int
2953 ddi_prop_fm_encode_bytes(prop_handle_t *ph, void *data, uint_t nelements)
2954 {
2955 	int		size;
2956 	int		i;
2957 
2958 	/*
2959 	 * If there are no elements, then this is a boolean property,
2960 	 * so just create a property handle with no data and return.
2961 	 */
2962 	if (nelements == 0) {
2963 		(void) ddi_prop_encode_alloc(ph, 0);
2964 		return (DDI_PROP_SUCCESS);
2965 	}
2966 
2967 	/*
2968 	 * Get the size of the encoded array of bytes.
2969 	 */
2970 	size = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_ESIZE, (uchar_t *)data,
2971 	    nelements);
2972 	if (size < DDI_PROP_RESULT_OK) {
2973 		switch (size) {
2974 		case DDI_PROP_RESULT_EOF:
2975 			return (DDI_PROP_END_OF_DATA);
2976 
2977 		case DDI_PROP_RESULT_ERROR:
2978 			return (DDI_PROP_CANNOT_DECODE);
2979 		}
2980 	}
2981 
2982 	/*
2983 	 * Allocate space in the handle to store the encoded bytes.
2984 	 */
2985 	if (ddi_prop_encode_alloc(ph, (uint_t)size) != DDI_PROP_SUCCESS)
2986 		return (DDI_PROP_NO_MEMORY);
2987 
2988 	/*
2989 	 * Encode the array of bytes.
2990 	 */
2991 	i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_ENCODE, (uchar_t *)data,
2992 	    nelements);
2993 	if (i < DDI_PROP_RESULT_OK) {
2994 		switch (i) {
2995 		case DDI_PROP_RESULT_EOF:
2996 			return (DDI_PROP_END_OF_DATA);
2997 
2998 		case DDI_PROP_RESULT_ERROR:
2999 			return (DDI_PROP_CANNOT_ENCODE);
3000 		}
3001 	}
3002 
3003 	return (DDI_PROP_SUCCESS);
3004 }
3005 
3006 /*
3007  * OBP 1275 integer, string and byte operators.
3008  *
3009  * DDI_PROP_CMD_DECODE:
3010  *
3011  *	DDI_PROP_RESULT_ERROR:		cannot decode the data
3012  *	DDI_PROP_RESULT_EOF:		end of data
3013  *	DDI_PROP_OK:			data was decoded
3014  *
3015  * DDI_PROP_CMD_ENCODE:
3016  *
3017  *	DDI_PROP_RESULT_ERROR:		cannot encode the data
3018  *	DDI_PROP_RESULT_EOF:		end of data
3019  *	DDI_PROP_OK:			data was encoded
3020  *
3021  * DDI_PROP_CMD_SKIP:
3022  *
3023  *	DDI_PROP_RESULT_ERROR:		cannot skip the data
3024  *	DDI_PROP_RESULT_EOF:		end of data
3025  *	DDI_PROP_OK:			data was skipped
3026  *
3027  * DDI_PROP_CMD_GET_ESIZE:
3028  *
3029  *	DDI_PROP_RESULT_ERROR:		cannot get encoded size
3030  *	DDI_PROP_RESULT_EOF:		end of data
3031  *	> 0:				the encoded size
3032  *
3033  * DDI_PROP_CMD_GET_DSIZE:
3034  *
3035  *	DDI_PROP_RESULT_ERROR:		cannot get decoded size
3036  *	DDI_PROP_RESULT_EOF:		end of data
3037  *	> 0:				the decoded size
3038  */
3039 
3040 /*
3041  * OBP 1275 integer operator
3042  *
3043  * OBP properties are a byte stream of data, so integers may not be
3044  * properly aligned.  Therefore we need to copy them one byte at a time.
3045  */
3046 int
3047 ddi_prop_1275_int(prop_handle_t *ph, uint_t cmd, int *data)
3048 {
3049 	int	i;
3050 
3051 	switch (cmd) {
3052 	case DDI_PROP_CMD_DECODE:
3053 		/*
3054 		 * Check that there is encoded data
3055 		 */
3056 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
3057 			return (DDI_PROP_RESULT_ERROR);
3058 		if (ph->ph_flags & PH_FROM_PROM) {
3059 			i = MIN(ph->ph_size, PROP_1275_INT_SIZE);
3060 			if ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
3061 			    ph->ph_size - i))
3062 				return (DDI_PROP_RESULT_ERROR);
3063 		} else {
3064 			if (ph->ph_size < sizeof (int) ||
3065 			    ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
3066 			    ph->ph_size - sizeof (int))))
3067 				return (DDI_PROP_RESULT_ERROR);
3068 		}
3069 
3070 		/*
3071 		 * Copy the integer, using the implementation-specific
3072 		 * copy function if the property is coming from the PROM.
3073 		 */
3074 		if (ph->ph_flags & PH_FROM_PROM) {
3075 			*data = impl_ddi_prop_int_from_prom(
3076 			    (uchar_t *)ph->ph_cur_pos,
3077 			    (ph->ph_size < PROP_1275_INT_SIZE) ?
3078 			    ph->ph_size : PROP_1275_INT_SIZE);
3079 		} else {
3080 			bcopy(ph->ph_cur_pos, data, sizeof (int));
3081 		}
3082 
3083 		/*
3084 		 * Move the current location to the start of the next
3085 		 * bit of undecoded data.
3086 		 */
3087 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
3088 		    PROP_1275_INT_SIZE;
3089 		return (DDI_PROP_RESULT_OK);
3090 
3091 	case DDI_PROP_CMD_ENCODE:
3092 		/*
3093 		 * Check that there is room to encoded the data
3094 		 */
3095 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3096 		    ph->ph_size < PROP_1275_INT_SIZE ||
3097 		    ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
3098 		    ph->ph_size - sizeof (int))))
3099 			return (DDI_PROP_RESULT_ERROR);
3100 
3101 		/*
3102 		 * Encode the integer into the byte stream one byte at a
3103 		 * time.
3104 		 */
3105 		bcopy(data, ph->ph_cur_pos, sizeof (int));
3106 
3107 		/*
3108 		 * Move the current location to the start of the next bit of
3109 		 * space where we can store encoded data.
3110 		 */
3111 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
3112 		return (DDI_PROP_RESULT_OK);
3113 
3114 	case DDI_PROP_CMD_SKIP:
3115 		/*
3116 		 * Check that there is encoded data
3117 		 */
3118 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3119 		    ph->ph_size < PROP_1275_INT_SIZE)
3120 			return (DDI_PROP_RESULT_ERROR);
3121 
3122 
3123 		if ((caddr_t)ph->ph_cur_pos ==
3124 		    (caddr_t)ph->ph_data + ph->ph_size) {
3125 			return (DDI_PROP_RESULT_EOF);
3126 		} else if ((caddr_t)ph->ph_cur_pos >
3127 		    (caddr_t)ph->ph_data + ph->ph_size) {
3128 			return (DDI_PROP_RESULT_EOF);
3129 		}
3130 
3131 		/*
3132 		 * Move the current location to the start of the next bit of
3133 		 * undecoded data.
3134 		 */
3135 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
3136 		return (DDI_PROP_RESULT_OK);
3137 
3138 	case DDI_PROP_CMD_GET_ESIZE:
3139 		/*
3140 		 * Return the size of an encoded integer on OBP
3141 		 */
3142 		return (PROP_1275_INT_SIZE);
3143 
3144 	case DDI_PROP_CMD_GET_DSIZE:
3145 		/*
3146 		 * Return the size of a decoded integer on the system.
3147 		 */
3148 		return (sizeof (int));
3149 
3150 	default:
3151 #ifdef DEBUG
3152 		panic("ddi_prop_1275_int: %x impossible", cmd);
3153 		/*NOTREACHED*/
3154 #else
3155 		return (DDI_PROP_RESULT_ERROR);
3156 #endif	/* DEBUG */
3157 	}
3158 }
3159 
3160 /*
3161  * 64 bit integer operator.
3162  *
3163  * This is an extension, defined by Sun, to the 1275 integer
3164  * operator.  This routine handles the encoding/decoding of
3165  * 64 bit integer properties.
3166  */
3167 int
3168 ddi_prop_int64_op(prop_handle_t *ph, uint_t cmd, int64_t *data)
3169 {
3170 
3171 	switch (cmd) {
3172 	case DDI_PROP_CMD_DECODE:
3173 		/*
3174 		 * Check that there is encoded data
3175 		 */
3176 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
3177 			return (DDI_PROP_RESULT_ERROR);
3178 		if (ph->ph_flags & PH_FROM_PROM) {
3179 			return (DDI_PROP_RESULT_ERROR);
3180 		} else {
3181 			if (ph->ph_size < sizeof (int64_t) ||
3182 			    ((int64_t *)ph->ph_cur_pos >
3183 			    ((int64_t *)ph->ph_data +
3184 			    ph->ph_size - sizeof (int64_t))))
3185 				return (DDI_PROP_RESULT_ERROR);
3186 		}
3187 		/*
3188 		 * Copy the integer, using the implementation-specific
3189 		 * copy function if the property is coming from the PROM.
3190 		 */
3191 		if (ph->ph_flags & PH_FROM_PROM) {
3192 			return (DDI_PROP_RESULT_ERROR);
3193 		} else {
3194 			bcopy(ph->ph_cur_pos, data, sizeof (int64_t));
3195 		}
3196 
3197 		/*
3198 		 * Move the current location to the start of the next
3199 		 * bit of undecoded data.
3200 		 */
3201 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
3202 		    sizeof (int64_t);
3203 			return (DDI_PROP_RESULT_OK);
3204 
3205 	case DDI_PROP_CMD_ENCODE:
3206 		/*
3207 		 * Check that there is room to encoded the data
3208 		 */
3209 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3210 		    ph->ph_size < sizeof (int64_t) ||
3211 		    ((int64_t *)ph->ph_cur_pos > ((int64_t *)ph->ph_data +
3212 		    ph->ph_size - sizeof (int64_t))))
3213 			return (DDI_PROP_RESULT_ERROR);
3214 
3215 		/*
3216 		 * Encode the integer into the byte stream one byte at a
3217 		 * time.
3218 		 */
3219 		bcopy(data, ph->ph_cur_pos, sizeof (int64_t));
3220 
3221 		/*
3222 		 * Move the current location to the start of the next bit of
3223 		 * space where we can store encoded data.
3224 		 */
3225 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
3226 		    sizeof (int64_t);
3227 		return (DDI_PROP_RESULT_OK);
3228 
3229 	case DDI_PROP_CMD_SKIP:
3230 		/*
3231 		 * Check that there is encoded data
3232 		 */
3233 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3234 		    ph->ph_size < sizeof (int64_t))
3235 			return (DDI_PROP_RESULT_ERROR);
3236 
3237 		if ((caddr_t)ph->ph_cur_pos ==
3238 		    (caddr_t)ph->ph_data + ph->ph_size) {
3239 			return (DDI_PROP_RESULT_EOF);
3240 		} else if ((caddr_t)ph->ph_cur_pos >
3241 		    (caddr_t)ph->ph_data + ph->ph_size) {
3242 			return (DDI_PROP_RESULT_EOF);
3243 		}
3244 
3245 		/*
3246 		 * Move the current location to the start of
3247 		 * the next bit of undecoded data.
3248 		 */
3249 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
3250 		    sizeof (int64_t);
3251 			return (DDI_PROP_RESULT_OK);
3252 
3253 	case DDI_PROP_CMD_GET_ESIZE:
3254 		/*
3255 		 * Return the size of an encoded integer on OBP
3256 		 */
3257 		return (sizeof (int64_t));
3258 
3259 	case DDI_PROP_CMD_GET_DSIZE:
3260 		/*
3261 		 * Return the size of a decoded integer on the system.
3262 		 */
3263 		return (sizeof (int64_t));
3264 
3265 	default:
3266 #ifdef DEBUG
3267 		panic("ddi_prop_int64_op: %x impossible", cmd);
3268 		/*NOTREACHED*/
3269 #else
3270 		return (DDI_PROP_RESULT_ERROR);
3271 #endif  /* DEBUG */
3272 	}
3273 }
3274 
3275 /*
3276  * OBP 1275 string operator.
3277  *
3278  * OBP strings are NULL terminated.
3279  */
3280 int
3281 ddi_prop_1275_string(prop_handle_t *ph, uint_t cmd, char *data)
3282 {
3283 	int	n;
3284 	char	*p;
3285 	char	*end;
3286 
3287 	switch (cmd) {
3288 	case DDI_PROP_CMD_DECODE:
3289 		/*
3290 		 * Check that there is encoded data
3291 		 */
3292 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3293 			return (DDI_PROP_RESULT_ERROR);
3294 		}
3295 
3296 		/*
3297 		 * Match DDI_PROP_CMD_GET_DSIZE logic for when to stop and
3298 		 * how to NULL terminate result.
3299 		 */
3300 		p = (char *)ph->ph_cur_pos;
3301 		end = (char *)ph->ph_data + ph->ph_size;
3302 		if (p >= end)
3303 			return (DDI_PROP_RESULT_EOF);
3304 
3305 		while (p < end) {
3306 			*data++ = *p;
3307 			if (*p++ == 0) {	/* NULL from OBP */
3308 				ph->ph_cur_pos = p;
3309 				return (DDI_PROP_RESULT_OK);
3310 			}
3311 		}
3312 
3313 		/*
3314 		 * If OBP did not NULL terminate string, which happens
3315 		 * (at least) for 'true'/'false' boolean values, account for
3316 		 * the space and store null termination on decode.
3317 		 */
3318 		ph->ph_cur_pos = p;
3319 		*data = 0;
3320 		return (DDI_PROP_RESULT_OK);
3321 
3322 	case DDI_PROP_CMD_ENCODE:
3323 		/*
3324 		 * Check that there is room to encoded the data
3325 		 */
3326 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3327 			return (DDI_PROP_RESULT_ERROR);
3328 		}
3329 
3330 		n = strlen(data) + 1;
3331 		if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3332 		    ph->ph_size - n)) {
3333 			return (DDI_PROP_RESULT_ERROR);
3334 		}
3335 
3336 		/*
3337 		 * Copy the NULL terminated string
3338 		 */
3339 		bcopy(data, ph->ph_cur_pos, n);
3340 
3341 		/*
3342 		 * Move the current location to the start of the next bit of
3343 		 * space where we can store encoded data.
3344 		 */
3345 		ph->ph_cur_pos = (char *)ph->ph_cur_pos + n;
3346 		return (DDI_PROP_RESULT_OK);
3347 
3348 	case DDI_PROP_CMD_SKIP:
3349 		/*
3350 		 * Check that there is encoded data
3351 		 */
3352 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3353 			return (DDI_PROP_RESULT_ERROR);
3354 		}
3355 
3356 		/*
3357 		 * Return the string length plus one for the NULL
3358 		 * We know the size of the property, we need to
3359 		 * ensure that the string is properly formatted,
3360 		 * since we may be looking up random OBP data.
3361 		 */
3362 		p = (char *)ph->ph_cur_pos;
3363 		end = (char *)ph->ph_data + ph->ph_size;
3364 		if (p >= end)
3365 			return (DDI_PROP_RESULT_EOF);
3366 
3367 		while (p < end) {
3368 			if (*p++ == 0) {	/* NULL from OBP */
3369 				ph->ph_cur_pos = p;
3370 				return (DDI_PROP_RESULT_OK);
3371 			}
3372 		}
3373 
3374 		/*
3375 		 * Accommodate the fact that OBP does not always NULL
3376 		 * terminate strings.
3377 		 */
3378 		ph->ph_cur_pos = p;
3379 		return (DDI_PROP_RESULT_OK);
3380 
3381 	case DDI_PROP_CMD_GET_ESIZE:
3382 		/*
3383 		 * Return the size of the encoded string on OBP.
3384 		 */
3385 		return (strlen(data) + 1);
3386 
3387 	case DDI_PROP_CMD_GET_DSIZE:
3388 		/*
3389 		 * Return the string length plus one for the NULL.
3390 		 * We know the size of the property, we need to
3391 		 * ensure that the string is properly formatted,
3392 		 * since we may be looking up random OBP data.
3393 		 */
3394 		p = (char *)ph->ph_cur_pos;
3395 		end = (char *)ph->ph_data + ph->ph_size;
3396 		if (p >= end)
3397 			return (DDI_PROP_RESULT_EOF);
3398 
3399 		for (n = 0; p < end; n++) {
3400 			if (*p++ == 0) {	/* NULL from OBP */
3401 				ph->ph_cur_pos = p;
3402 				return (n + 1);
3403 			}
3404 		}
3405 
3406 		/*
3407 		 * If OBP did not NULL terminate string, which happens for
3408 		 * 'true'/'false' boolean values, account for the space
3409 		 * to store null termination here.
3410 		 */
3411 		ph->ph_cur_pos = p;
3412 		return (n + 1);
3413 
3414 	default:
3415 #ifdef DEBUG
3416 		panic("ddi_prop_1275_string: %x impossible", cmd);
3417 		/*NOTREACHED*/
3418 #else
3419 		return (DDI_PROP_RESULT_ERROR);
3420 #endif	/* DEBUG */
3421 	}
3422 }
3423 
3424 /*
3425  * OBP 1275 byte operator
3426  *
3427  * Caller must specify the number of bytes to get.  OBP encodes bytes
3428  * as a byte so there is a 1-to-1 translation.
3429  */
3430 int
3431 ddi_prop_1275_bytes(prop_handle_t *ph, uint_t cmd, uchar_t *data,
3432 	uint_t nelements)
3433 {
3434 	switch (cmd) {
3435 	case DDI_PROP_CMD_DECODE:
3436 		/*
3437 		 * Check that there is encoded data
3438 		 */
3439 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3440 		    ph->ph_size < nelements ||
3441 		    ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3442 		    ph->ph_size - nelements)))
3443 			return (DDI_PROP_RESULT_ERROR);
3444 
3445 		/*
3446 		 * Copy out the bytes
3447 		 */
3448 		bcopy(ph->ph_cur_pos, data, nelements);
3449 
3450 		/*
3451 		 * Move the current location
3452 		 */
3453 		ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3454 		return (DDI_PROP_RESULT_OK);
3455 
3456 	case DDI_PROP_CMD_ENCODE:
3457 		/*
3458 		 * Check that there is room to encode the data
3459 		 */
3460 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3461 		    ph->ph_size < nelements ||
3462 		    ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3463 		    ph->ph_size - nelements)))
3464 			return (DDI_PROP_RESULT_ERROR);
3465 
3466 		/*
3467 		 * Copy in the bytes
3468 		 */
3469 		bcopy(data, ph->ph_cur_pos, nelements);
3470 
3471 		/*
3472 		 * Move the current location to the start of the next bit of
3473 		 * space where we can store encoded data.
3474 		 */
3475 		ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3476 		return (DDI_PROP_RESULT_OK);
3477 
3478 	case DDI_PROP_CMD_SKIP:
3479 		/*
3480 		 * Check that there is encoded data
3481 		 */
3482 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3483 		    ph->ph_size < nelements)
3484 			return (DDI_PROP_RESULT_ERROR);
3485 
3486 		if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3487 		    ph->ph_size - nelements))
3488 			return (DDI_PROP_RESULT_EOF);
3489 
3490 		/*
3491 		 * Move the current location
3492 		 */
3493 		ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3494 		return (DDI_PROP_RESULT_OK);
3495 
3496 	case DDI_PROP_CMD_GET_ESIZE:
3497 		/*
3498 		 * The size in bytes of the encoded size is the
3499 		 * same as the decoded size provided by the caller.
3500 		 */
3501 		return (nelements);
3502 
3503 	case DDI_PROP_CMD_GET_DSIZE:
3504 		/*
3505 		 * Just return the number of bytes specified by the caller.
3506 		 */
3507 		return (nelements);
3508 
3509 	default:
3510 #ifdef DEBUG
3511 		panic("ddi_prop_1275_bytes: %x impossible", cmd);
3512 		/*NOTREACHED*/
3513 #else
3514 		return (DDI_PROP_RESULT_ERROR);
3515 #endif	/* DEBUG */
3516 	}
3517 }
3518 
3519 /*
3520  * Used for properties that come from the OBP, hardware configuration files,
3521  * or that are created by calls to ddi_prop_update(9F).
3522  */
3523 static struct prop_handle_ops prop_1275_ops = {
3524 	ddi_prop_1275_int,
3525 	ddi_prop_1275_string,
3526 	ddi_prop_1275_bytes,
3527 	ddi_prop_int64_op
3528 };
3529 
3530 
3531 /*
3532  * Interface to create/modify a managed property on child's behalf...
3533  * Flags interpreted are:
3534  *	DDI_PROP_CANSLEEP:	Allow memory allocation to sleep.
3535  *	DDI_PROP_SYSTEM_DEF:	Manipulate system list rather than driver list.
3536  *
3537  * Use same dev_t when modifying or undefining a property.
3538  * Search for properties with DDI_DEV_T_ANY to match first named
3539  * property on the list.
3540  *
3541  * Properties are stored LIFO and subsequently will match the first
3542  * `matching' instance.
3543  */
3544 
3545 /*
3546  * ddi_prop_add:	Add a software defined property
3547  */
3548 
3549 /*
3550  * define to get a new ddi_prop_t.
3551  * km_flags are KM_SLEEP or KM_NOSLEEP.
3552  */
3553 
3554 #define	DDI_NEW_PROP_T(km_flags)	\
3555 	(kmem_zalloc(sizeof (ddi_prop_t), km_flags))
3556 
3557 static int
3558 ddi_prop_add(dev_t dev, dev_info_t *dip, int flags,
3559     char *name, caddr_t value, int length)
3560 {
3561 	ddi_prop_t	*new_propp, *propp;
3562 	ddi_prop_t	**list_head = &(DEVI(dip)->devi_drv_prop_ptr);
3563 	int		km_flags = KM_NOSLEEP;
3564 	int		name_buf_len;
3565 
3566 	/*
3567 	 * If dev_t is DDI_DEV_T_ANY or name's length is zero return error.
3568 	 */
3569 
3570 	if (dev == DDI_DEV_T_ANY || name == (char *)0 || strlen(name) == 0)
3571 		return (DDI_PROP_INVAL_ARG);
3572 
3573 	if (flags & DDI_PROP_CANSLEEP)
3574 		km_flags = KM_SLEEP;
3575 
3576 	if (flags & DDI_PROP_SYSTEM_DEF)
3577 		list_head = &(DEVI(dip)->devi_sys_prop_ptr);
3578 	else if (flags & DDI_PROP_HW_DEF)
3579 		list_head = &(DEVI(dip)->devi_hw_prop_ptr);
3580 
3581 	if ((new_propp = DDI_NEW_PROP_T(km_flags)) == NULL)  {
3582 		cmn_err(CE_CONT, prop_no_mem_msg, name);
3583 		return (DDI_PROP_NO_MEMORY);
3584 	}
3585 
3586 	/*
3587 	 * If dev is major number 0, then we need to do a ddi_name_to_major
3588 	 * to get the real major number for the device.  This needs to be
3589 	 * done because some drivers need to call ddi_prop_create in their
3590 	 * attach routines but they don't have a dev.  By creating the dev
3591 	 * ourself if the major number is 0, drivers will not have to know what
3592 	 * their major number.	They can just create a dev with major number
3593 	 * 0 and pass it in.  For device 0, we will be doing a little extra
3594 	 * work by recreating the same dev that we already have, but its the
3595 	 * price you pay :-).
3596 	 *
3597 	 * This fixes bug #1098060.
3598 	 */
3599 	if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN) {
3600 		new_propp->prop_dev =
3601 		    makedevice(ddi_name_to_major(DEVI(dip)->devi_binding_name),
3602 		    getminor(dev));
3603 	} else
3604 		new_propp->prop_dev = dev;
3605 
3606 	/*
3607 	 * Allocate space for property name and copy it in...
3608 	 */
3609 
3610 	name_buf_len = strlen(name) + 1;
3611 	new_propp->prop_name = kmem_alloc(name_buf_len, km_flags);
3612 	if (new_propp->prop_name == 0)	{
3613 		kmem_free(new_propp, sizeof (ddi_prop_t));
3614 		cmn_err(CE_CONT, prop_no_mem_msg, name);
3615 		return (DDI_PROP_NO_MEMORY);
3616 	}
3617 	bcopy(name, new_propp->prop_name, name_buf_len);
3618 
3619 	/*
3620 	 * Set the property type
3621 	 */
3622 	new_propp->prop_flags = flags & DDI_PROP_TYPE_MASK;
3623 
3624 	/*
3625 	 * Set length and value ONLY if not an explicit property undefine:
3626 	 * NOTE: value and length are zero for explicit undefines.
3627 	 */
3628 
3629 	if (flags & DDI_PROP_UNDEF_IT) {
3630 		new_propp->prop_flags |= DDI_PROP_UNDEF_IT;
3631 	} else {
3632 		if ((new_propp->prop_len = length) != 0) {
3633 			new_propp->prop_val = kmem_alloc(length, km_flags);
3634 			if (new_propp->prop_val == 0)  {
3635 				kmem_free(new_propp->prop_name, name_buf_len);
3636 				kmem_free(new_propp, sizeof (ddi_prop_t));
3637 				cmn_err(CE_CONT, prop_no_mem_msg, name);
3638 				return (DDI_PROP_NO_MEMORY);
3639 			}
3640 			bcopy(value, new_propp->prop_val, length);
3641 		}
3642 	}
3643 
3644 	/*
3645 	 * Link property into beginning of list. (Properties are LIFO order.)
3646 	 */
3647 
3648 	mutex_enter(&(DEVI(dip)->devi_lock));
3649 	propp = *list_head;
3650 	new_propp->prop_next = propp;
3651 	*list_head = new_propp;
3652 	mutex_exit(&(DEVI(dip)->devi_lock));
3653 	return (DDI_PROP_SUCCESS);
3654 }
3655 
3656 
3657 /*
3658  * ddi_prop_change:	Modify a software managed property value
3659  *
3660  *			Set new length and value if found.
3661  *			returns DDI_PROP_INVAL_ARG if dev is DDI_DEV_T_ANY or
3662  *			input name is the NULL string.
3663  *			returns DDI_PROP_NO_MEMORY if unable to allocate memory
3664  *
3665  *			Note: an undef can be modified to be a define,
3666  *			(you can't go the other way.)
3667  */
3668 
3669 static int
3670 ddi_prop_change(dev_t dev, dev_info_t *dip, int flags,
3671     char *name, caddr_t value, int length)
3672 {
3673 	ddi_prop_t	*propp;
3674 	ddi_prop_t	**ppropp;
3675 	caddr_t		p = NULL;
3676 
3677 	if ((dev == DDI_DEV_T_ANY) || (name == NULL) || (strlen(name) == 0))
3678 		return (DDI_PROP_INVAL_ARG);
3679 
3680 	/*
3681 	 * Preallocate buffer, even if we don't need it...
3682 	 */
3683 	if (length != 0)  {
3684 		p = kmem_alloc(length, (flags & DDI_PROP_CANSLEEP) ?
3685 		    KM_SLEEP : KM_NOSLEEP);
3686 		if (p == NULL)	{
3687 			cmn_err(CE_CONT, prop_no_mem_msg, name);
3688 			return (DDI_PROP_NO_MEMORY);
3689 		}
3690 	}
3691 
3692 	/*
3693 	 * If the dev_t value contains DDI_MAJOR_T_UNKNOWN for the major
3694 	 * number, a real dev_t value should be created based upon the dip's
3695 	 * binding driver.  See ddi_prop_add...
3696 	 */
3697 	if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN)
3698 		dev = makedevice(
3699 		    ddi_name_to_major(DEVI(dip)->devi_binding_name),
3700 		    getminor(dev));
3701 
3702 	/*
3703 	 * Check to see if the property exists.  If so we modify it.
3704 	 * Else we create it by calling ddi_prop_add().
3705 	 */
3706 	mutex_enter(&(DEVI(dip)->devi_lock));
3707 	ppropp = &DEVI(dip)->devi_drv_prop_ptr;
3708 	if (flags & DDI_PROP_SYSTEM_DEF)
3709 		ppropp = &DEVI(dip)->devi_sys_prop_ptr;
3710 	else if (flags & DDI_PROP_HW_DEF)
3711 		ppropp = &DEVI(dip)->devi_hw_prop_ptr;
3712 
3713 	if ((propp = i_ddi_prop_search(dev, name, flags, ppropp)) != NULL) {
3714 		/*
3715 		 * Need to reallocate buffer?  If so, do it
3716 		 * carefully (reuse same space if new prop
3717 		 * is same size and non-NULL sized).
3718 		 */
3719 		if (length != 0)
3720 			bcopy(value, p, length);
3721 
3722 		if (propp->prop_len != 0)
3723 			kmem_free(propp->prop_val, propp->prop_len);
3724 
3725 		propp->prop_len = length;
3726 		propp->prop_val = p;
3727 		propp->prop_flags &= ~DDI_PROP_UNDEF_IT;
3728 		mutex_exit(&(DEVI(dip)->devi_lock));
3729 		return (DDI_PROP_SUCCESS);
3730 	}
3731 
3732 	mutex_exit(&(DEVI(dip)->devi_lock));
3733 	if (length != 0)
3734 		kmem_free(p, length);
3735 
3736 	return (ddi_prop_add(dev, dip, flags, name, value, length));
3737 }
3738 
3739 /*
3740  * Common update routine used to update and encode a property.	Creates
3741  * a property handle, calls the property encode routine, figures out if
3742  * the property already exists and updates if it does.	Otherwise it
3743  * creates if it does not exist.
3744  */
3745 int
3746 ddi_prop_update_common(dev_t match_dev, dev_info_t *dip, int flags,
3747     char *name, void *data, uint_t nelements,
3748     int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
3749 {
3750 	prop_handle_t	ph;
3751 	int		rval;
3752 	uint_t		ourflags;
3753 
3754 	/*
3755 	 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3756 	 * return error.
3757 	 */
3758 	if (match_dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3759 		return (DDI_PROP_INVAL_ARG);
3760 
3761 	/*
3762 	 * Create the handle
3763 	 */
3764 	ph.ph_data = NULL;
3765 	ph.ph_cur_pos = NULL;
3766 	ph.ph_save_pos = NULL;
3767 	ph.ph_size = 0;
3768 	ph.ph_ops = &prop_1275_ops;
3769 
3770 	/*
3771 	 * ourflags:
3772 	 * For compatibility with the old interfaces.  The old interfaces
3773 	 * didn't sleep by default and slept when the flag was set.  These
3774 	 * interfaces to the opposite.	So the old interfaces now set the
3775 	 * DDI_PROP_DONTSLEEP flag by default which tells us not to sleep.
3776 	 *
3777 	 * ph.ph_flags:
3778 	 * Blocked data or unblocked data allocation
3779 	 * for ph.ph_data in ddi_prop_encode_alloc()
3780 	 */
3781 	if (flags & DDI_PROP_DONTSLEEP) {
3782 		ourflags = flags;
3783 		ph.ph_flags = DDI_PROP_DONTSLEEP;
3784 	} else {
3785 		ourflags = flags | DDI_PROP_CANSLEEP;
3786 		ph.ph_flags = DDI_PROP_CANSLEEP;
3787 	}
3788 
3789 	/*
3790 	 * Encode the data and store it in the property handle by
3791 	 * calling the prop_encode routine.
3792 	 */
3793 	if ((rval = (*prop_create)(&ph, data, nelements)) !=
3794 	    DDI_PROP_SUCCESS) {
3795 		if (rval == DDI_PROP_NO_MEMORY)
3796 			cmn_err(CE_CONT, prop_no_mem_msg, name);
3797 		if (ph.ph_size != 0)
3798 			kmem_free(ph.ph_data, ph.ph_size);
3799 		return (rval);
3800 	}
3801 
3802 	/*
3803 	 * The old interfaces use a stacking approach to creating
3804 	 * properties.	If we are being called from the old interfaces,
3805 	 * the DDI_PROP_STACK_CREATE flag will be set, so we just do a
3806 	 * create without checking.
3807 	 */
3808 	if (flags & DDI_PROP_STACK_CREATE) {
3809 		rval = ddi_prop_add(match_dev, dip,
3810 		    ourflags, name, ph.ph_data, ph.ph_size);
3811 	} else {
3812 		rval = ddi_prop_change(match_dev, dip,
3813 		    ourflags, name, ph.ph_data, ph.ph_size);
3814 	}
3815 
3816 	/*
3817 	 * Free the encoded data allocated in the prop_encode routine.
3818 	 */
3819 	if (ph.ph_size != 0)
3820 		kmem_free(ph.ph_data, ph.ph_size);
3821 
3822 	return (rval);
3823 }
3824 
3825 
3826 /*
3827  * ddi_prop_create:	Define a managed property:
3828  *			See above for details.
3829  */
3830 
3831 int
3832 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3833     char *name, caddr_t value, int length)
3834 {
3835 	if (!(flag & DDI_PROP_CANSLEEP)) {
3836 		flag |= DDI_PROP_DONTSLEEP;
3837 #ifdef DDI_PROP_DEBUG
3838 		if (length != 0)
3839 			cmn_err(CE_NOTE, "!ddi_prop_create: interface obsolete,"
3840 			    "use ddi_prop_update (prop = %s, node = %s%d)",
3841 			    name, ddi_driver_name(dip), ddi_get_instance(dip));
3842 #endif /* DDI_PROP_DEBUG */
3843 	}
3844 	flag &= ~DDI_PROP_SYSTEM_DEF;
3845 	return (ddi_prop_update_common(dev, dip,
3846 	    (flag | DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY), name,
3847 	    value, length, ddi_prop_fm_encode_bytes));
3848 }
3849 
3850 int
3851 e_ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3852     char *name, caddr_t value, int length)
3853 {
3854 	if (!(flag & DDI_PROP_CANSLEEP))
3855 		flag |= DDI_PROP_DONTSLEEP;
3856 	return (ddi_prop_update_common(dev, dip,
3857 	    (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE |
3858 	    DDI_PROP_TYPE_ANY),
3859 	    name, value, length, ddi_prop_fm_encode_bytes));
3860 }
3861 
3862 int
3863 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3864     char *name, caddr_t value, int length)
3865 {
3866 	ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3867 
3868 	/*
3869 	 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3870 	 * return error.
3871 	 */
3872 	if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3873 		return (DDI_PROP_INVAL_ARG);
3874 
3875 	if (!(flag & DDI_PROP_CANSLEEP))
3876 		flag |= DDI_PROP_DONTSLEEP;
3877 	flag &= ~DDI_PROP_SYSTEM_DEF;
3878 	if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_NOTPROM), name) == 0)
3879 		return (DDI_PROP_NOT_FOUND);
3880 
3881 	return (ddi_prop_update_common(dev, dip,
3882 	    (flag | DDI_PROP_TYPE_BYTE), name,
3883 	    value, length, ddi_prop_fm_encode_bytes));
3884 }
3885 
3886 int
3887 e_ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3888     char *name, caddr_t value, int length)
3889 {
3890 	ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3891 
3892 	/*
3893 	 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3894 	 * return error.
3895 	 */
3896 	if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3897 		return (DDI_PROP_INVAL_ARG);
3898 
3899 	if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_SYSTEM_DEF), name) == 0)
3900 		return (DDI_PROP_NOT_FOUND);
3901 
3902 	if (!(flag & DDI_PROP_CANSLEEP))
3903 		flag |= DDI_PROP_DONTSLEEP;
3904 	return (ddi_prop_update_common(dev, dip,
3905 	    (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE),
3906 	    name, value, length, ddi_prop_fm_encode_bytes));
3907 }
3908 
3909 
3910 /*
3911  * Common lookup routine used to lookup and decode a property.
3912  * Creates a property handle, searches for the raw encoded data,
3913  * fills in the handle, and calls the property decode functions
3914  * passed in.
3915  *
3916  * This routine is not static because ddi_bus_prop_op() which lives in
3917  * ddi_impl.c calls it.  No driver should be calling this routine.
3918  */
3919 int
3920 ddi_prop_lookup_common(dev_t match_dev, dev_info_t *dip,
3921     uint_t flags, char *name, void *data, uint_t *nelements,
3922     int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3923 {
3924 	int		rval;
3925 	uint_t		ourflags;
3926 	prop_handle_t	ph;
3927 
3928 	if ((match_dev == DDI_DEV_T_NONE) ||
3929 	    (name == NULL) || (strlen(name) == 0))
3930 		return (DDI_PROP_INVAL_ARG);
3931 
3932 	ourflags = (flags & DDI_PROP_DONTSLEEP) ? flags :
3933 	    flags | DDI_PROP_CANSLEEP;
3934 
3935 	/*
3936 	 * Get the encoded data
3937 	 */
3938 	bzero(&ph, sizeof (prop_handle_t));
3939 
3940 	if (flags & DDI_UNBND_DLPI2) {
3941 		/*
3942 		 * For unbound dlpi style-2 devices, index into
3943 		 * the devnames' array and search the global
3944 		 * property list.
3945 		 */
3946 		ourflags &= ~DDI_UNBND_DLPI2;
3947 		rval = i_ddi_prop_search_global(match_dev,
3948 		    ourflags, name, &ph.ph_data, &ph.ph_size);
3949 	} else {
3950 		rval = ddi_prop_search_common(match_dev, dip,
3951 		    PROP_LEN_AND_VAL_ALLOC, ourflags, name,
3952 		    &ph.ph_data, &ph.ph_size);
3953 
3954 	}
3955 
3956 	if (rval != DDI_PROP_SUCCESS && rval != DDI_PROP_FOUND_1275) {
3957 		ASSERT(ph.ph_data == NULL);
3958 		ASSERT(ph.ph_size == 0);
3959 		return (rval);
3960 	}
3961 
3962 	/*
3963 	 * If the encoded data came from a OBP or software
3964 	 * use the 1275 OBP decode/encode routines.
3965 	 */
3966 	ph.ph_cur_pos = ph.ph_data;
3967 	ph.ph_save_pos = ph.ph_data;
3968 	ph.ph_ops = &prop_1275_ops;
3969 	ph.ph_flags = (rval == DDI_PROP_FOUND_1275) ? PH_FROM_PROM : 0;
3970 
3971 	rval = (*prop_decoder)(&ph, data, nelements);
3972 
3973 	/*
3974 	 * Free the encoded data
3975 	 */
3976 	if (ph.ph_size != 0)
3977 		kmem_free(ph.ph_data, ph.ph_size);
3978 
3979 	return (rval);
3980 }
3981 
3982 /*
3983  * Lookup and return an array of composite properties.  The driver must
3984  * provide the decode routine.
3985  */
3986 int
3987 ddi_prop_lookup(dev_t match_dev, dev_info_t *dip,
3988     uint_t flags, char *name, void *data, uint_t *nelements,
3989     int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3990 {
3991 	return (ddi_prop_lookup_common(match_dev, dip,
3992 	    (flags | DDI_PROP_TYPE_COMPOSITE), name,
3993 	    data, nelements, prop_decoder));
3994 }
3995 
3996 /*
3997  * Return 1 if a property exists (no type checking done).
3998  * Return 0 if it does not exist.
3999  */
4000 int
4001 ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name)
4002 {
4003 	int	i;
4004 	uint_t	x = 0;
4005 
4006 	i = ddi_prop_search_common(match_dev, dip, PROP_EXISTS,
4007 	    flags | DDI_PROP_TYPE_MASK, name, NULL, &x);
4008 	return (i == DDI_PROP_SUCCESS || i == DDI_PROP_FOUND_1275);
4009 }
4010 
4011 
4012 /*
4013  * Update an array of composite properties.  The driver must
4014  * provide the encode routine.
4015  */
4016 int
4017 ddi_prop_update(dev_t match_dev, dev_info_t *dip,
4018     char *name, void *data, uint_t nelements,
4019     int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
4020 {
4021 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_COMPOSITE,
4022 	    name, data, nelements, prop_create));
4023 }
4024 
4025 /*
4026  * Get a single integer or boolean property and return it.
4027  * If the property does not exists, or cannot be decoded,
4028  * then return the defvalue passed in.
4029  *
4030  * This routine always succeeds.
4031  */
4032 int
4033 ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags,
4034     char *name, int defvalue)
4035 {
4036 	int	data;
4037 	uint_t	nelements;
4038 	int	rval;
4039 
4040 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4041 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4042 #ifdef DEBUG
4043 		if (dip != NULL) {
4044 			cmn_err(CE_WARN, "ddi_prop_get_int: invalid flag"
4045 			    " 0x%x (prop = %s, node = %s%d)", flags,
4046 			    name, ddi_driver_name(dip), ddi_get_instance(dip));
4047 		}
4048 #endif /* DEBUG */
4049 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4050 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4051 	}
4052 
4053 	if ((rval = ddi_prop_lookup_common(match_dev, dip,
4054 	    (flags | DDI_PROP_TYPE_INT), name, &data, &nelements,
4055 	    ddi_prop_fm_decode_int)) != DDI_PROP_SUCCESS) {
4056 		if (rval == DDI_PROP_END_OF_DATA)
4057 			data = 1;
4058 		else
4059 			data = defvalue;
4060 	}
4061 	return (data);
4062 }
4063 
4064 /*
4065  * Get a single 64 bit integer or boolean property and return it.
4066  * If the property does not exists, or cannot be decoded,
4067  * then return the defvalue passed in.
4068  *
4069  * This routine always succeeds.
4070  */
4071 int64_t
4072 ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags,
4073     char *name, int64_t defvalue)
4074 {
4075 	int64_t	data;
4076 	uint_t	nelements;
4077 	int	rval;
4078 
4079 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4080 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4081 #ifdef DEBUG
4082 		if (dip != NULL) {
4083 			cmn_err(CE_WARN, "ddi_prop_get_int64: invalid flag"
4084 			    " 0x%x (prop = %s, node = %s%d)", flags,
4085 			    name, ddi_driver_name(dip), ddi_get_instance(dip));
4086 		}
4087 #endif /* DEBUG */
4088 		return (DDI_PROP_INVAL_ARG);
4089 	}
4090 
4091 	if ((rval = ddi_prop_lookup_common(match_dev, dip,
4092 	    (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
4093 	    name, &data, &nelements, ddi_prop_fm_decode_int64))
4094 	    != DDI_PROP_SUCCESS) {
4095 		if (rval == DDI_PROP_END_OF_DATA)
4096 			data = 1;
4097 		else
4098 			data = defvalue;
4099 	}
4100 	return (data);
4101 }
4102 
4103 /*
4104  * Get an array of integer property
4105  */
4106 int
4107 ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4108     char *name, int **data, uint_t *nelements)
4109 {
4110 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4111 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4112 #ifdef DEBUG
4113 		if (dip != NULL) {
4114 			cmn_err(CE_WARN, "ddi_prop_lookup_int_array: "
4115 			    "invalid flag 0x%x (prop = %s, node = %s%d)",
4116 			    flags, name, ddi_driver_name(dip),
4117 			    ddi_get_instance(dip));
4118 		}
4119 #endif /* DEBUG */
4120 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4121 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4122 	}
4123 
4124 	return (ddi_prop_lookup_common(match_dev, dip,
4125 	    (flags | DDI_PROP_TYPE_INT), name, data,
4126 	    nelements, ddi_prop_fm_decode_ints));
4127 }
4128 
4129 /*
4130  * Get an array of 64 bit integer properties
4131  */
4132 int
4133 ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4134     char *name, int64_t **data, uint_t *nelements)
4135 {
4136 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4137 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4138 #ifdef DEBUG
4139 		if (dip != NULL) {
4140 			cmn_err(CE_WARN, "ddi_prop_lookup_int64_array: "
4141 			    "invalid flag 0x%x (prop = %s, node = %s%d)",
4142 			    flags, name, ddi_driver_name(dip),
4143 			    ddi_get_instance(dip));
4144 		}
4145 #endif /* DEBUG */
4146 		return (DDI_PROP_INVAL_ARG);
4147 	}
4148 
4149 	return (ddi_prop_lookup_common(match_dev, dip,
4150 	    (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
4151 	    name, data, nelements, ddi_prop_fm_decode_int64_array));
4152 }
4153 
4154 /*
4155  * Update a single integer property.  If the property exists on the drivers
4156  * property list it updates, else it creates it.
4157  */
4158 int
4159 ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
4160     char *name, int data)
4161 {
4162 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
4163 	    name, &data, 1, ddi_prop_fm_encode_ints));
4164 }
4165 
4166 /*
4167  * Update a single 64 bit integer property.
4168  * Update the driver property list if it exists, else create it.
4169  */
4170 int
4171 ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
4172     char *name, int64_t data)
4173 {
4174 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
4175 	    name, &data, 1, ddi_prop_fm_encode_int64));
4176 }
4177 
4178 int
4179 e_ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
4180     char *name, int data)
4181 {
4182 	return (ddi_prop_update_common(match_dev, dip,
4183 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
4184 	    name, &data, 1, ddi_prop_fm_encode_ints));
4185 }
4186 
4187 int
4188 e_ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
4189     char *name, int64_t data)
4190 {
4191 	return (ddi_prop_update_common(match_dev, dip,
4192 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
4193 	    name, &data, 1, ddi_prop_fm_encode_int64));
4194 }
4195 
4196 /*
4197  * Update an array of integer property.  If the property exists on the drivers
4198  * property list it updates, else it creates it.
4199  */
4200 int
4201 ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
4202     char *name, int *data, uint_t nelements)
4203 {
4204 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
4205 	    name, data, nelements, ddi_prop_fm_encode_ints));
4206 }
4207 
4208 /*
4209  * Update an array of 64 bit integer properties.
4210  * Update the driver property list if it exists, else create it.
4211  */
4212 int
4213 ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
4214     char *name, int64_t *data, uint_t nelements)
4215 {
4216 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
4217 	    name, data, nelements, ddi_prop_fm_encode_int64));
4218 }
4219 
4220 int
4221 e_ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
4222     char *name, int64_t *data, uint_t nelements)
4223 {
4224 	return (ddi_prop_update_common(match_dev, dip,
4225 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
4226 	    name, data, nelements, ddi_prop_fm_encode_int64));
4227 }
4228 
4229 int
4230 e_ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
4231     char *name, int *data, uint_t nelements)
4232 {
4233 	return (ddi_prop_update_common(match_dev, dip,
4234 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
4235 	    name, data, nelements, ddi_prop_fm_encode_ints));
4236 }
4237 
4238 /*
4239  * Get a single string property.
4240  */
4241 int
4242 ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags,
4243     char *name, char **data)
4244 {
4245 	uint_t x;
4246 
4247 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4248 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4249 #ifdef DEBUG
4250 		if (dip != NULL) {
4251 			cmn_err(CE_WARN, "%s: invalid flag 0x%x "
4252 			    "(prop = %s, node = %s%d); invalid bits ignored",
4253 			    "ddi_prop_lookup_string", flags, name,
4254 			    ddi_driver_name(dip), ddi_get_instance(dip));
4255 		}
4256 #endif /* DEBUG */
4257 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4258 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4259 	}
4260 
4261 	return (ddi_prop_lookup_common(match_dev, dip,
4262 	    (flags | DDI_PROP_TYPE_STRING), name, data,
4263 	    &x, ddi_prop_fm_decode_string));
4264 }
4265 
4266 /*
4267  * Get an array of strings property.
4268  */
4269 int
4270 ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4271     char *name, char ***data, uint_t *nelements)
4272 {
4273 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4274 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4275 #ifdef DEBUG
4276 		if (dip != NULL) {
4277 			cmn_err(CE_WARN, "ddi_prop_lookup_string_array: "
4278 			    "invalid flag 0x%x (prop = %s, node = %s%d)",
4279 			    flags, name, ddi_driver_name(dip),
4280 			    ddi_get_instance(dip));
4281 		}
4282 #endif /* DEBUG */
4283 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4284 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4285 	}
4286 
4287 	return (ddi_prop_lookup_common(match_dev, dip,
4288 	    (flags | DDI_PROP_TYPE_STRING), name, data,
4289 	    nelements, ddi_prop_fm_decode_strings));
4290 }
4291 
4292 /*
4293  * Update a single string property.
4294  */
4295 int
4296 ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
4297     char *name, char *data)
4298 {
4299 	return (ddi_prop_update_common(match_dev, dip,
4300 	    DDI_PROP_TYPE_STRING, name, &data, 1,
4301 	    ddi_prop_fm_encode_string));
4302 }
4303 
4304 int
4305 e_ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
4306     char *name, char *data)
4307 {
4308 	return (ddi_prop_update_common(match_dev, dip,
4309 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
4310 	    name, &data, 1, ddi_prop_fm_encode_string));
4311 }
4312 
4313 
4314 /*
4315  * Update an array of strings property.
4316  */
4317 int
4318 ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4319     char *name, char **data, uint_t nelements)
4320 {
4321 	return (ddi_prop_update_common(match_dev, dip,
4322 	    DDI_PROP_TYPE_STRING, name, data, nelements,
4323 	    ddi_prop_fm_encode_strings));
4324 }
4325 
4326 int
4327 e_ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4328     char *name, char **data, uint_t nelements)
4329 {
4330 	return (ddi_prop_update_common(match_dev, dip,
4331 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
4332 	    name, data, nelements,
4333 	    ddi_prop_fm_encode_strings));
4334 }
4335 
4336 
4337 /*
4338  * Get an array of bytes property.
4339  */
4340 int
4341 ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4342     char *name, uchar_t **data, uint_t *nelements)
4343 {
4344 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4345 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4346 #ifdef DEBUG
4347 		if (dip != NULL) {
4348 			cmn_err(CE_WARN, "ddi_prop_lookup_byte_array: "
4349 			    " invalid flag 0x%x (prop = %s, node = %s%d)",
4350 			    flags, name, ddi_driver_name(dip),
4351 			    ddi_get_instance(dip));
4352 		}
4353 #endif /* DEBUG */
4354 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4355 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4356 	}
4357 
4358 	return (ddi_prop_lookup_common(match_dev, dip,
4359 	    (flags | DDI_PROP_TYPE_BYTE), name, data,
4360 	    nelements, ddi_prop_fm_decode_bytes));
4361 }
4362 
4363 /*
4364  * Update an array of bytes property.
4365  */
4366 int
4367 ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4368     char *name, uchar_t *data, uint_t nelements)
4369 {
4370 	if (nelements == 0)
4371 		return (DDI_PROP_INVAL_ARG);
4372 
4373 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_BYTE,
4374 	    name, data, nelements, ddi_prop_fm_encode_bytes));
4375 }
4376 
4377 
4378 int
4379 e_ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4380     char *name, uchar_t *data, uint_t nelements)
4381 {
4382 	if (nelements == 0)
4383 		return (DDI_PROP_INVAL_ARG);
4384 
4385 	return (ddi_prop_update_common(match_dev, dip,
4386 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE,
4387 	    name, data, nelements, ddi_prop_fm_encode_bytes));
4388 }
4389 
4390 
4391 /*
4392  * ddi_prop_remove_common:	Undefine a managed property:
4393  *			Input dev_t must match dev_t when defined.
4394  *			Returns DDI_PROP_NOT_FOUND, possibly.
4395  *			DDI_PROP_INVAL_ARG is also possible if dev is
4396  *			DDI_DEV_T_ANY or incoming name is the NULL string.
4397  */
4398 int
4399 ddi_prop_remove_common(dev_t dev, dev_info_t *dip, char *name, int flag)
4400 {
4401 	ddi_prop_t	**list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4402 	ddi_prop_t	*propp;
4403 	ddi_prop_t	*lastpropp = NULL;
4404 
4405 	if ((dev == DDI_DEV_T_ANY) || (name == (char *)0) ||
4406 	    (strlen(name) == 0)) {
4407 		return (DDI_PROP_INVAL_ARG);
4408 	}
4409 
4410 	if (flag & DDI_PROP_SYSTEM_DEF)
4411 		list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4412 	else if (flag & DDI_PROP_HW_DEF)
4413 		list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4414 
4415 	mutex_enter(&(DEVI(dip)->devi_lock));
4416 
4417 	for (propp = *list_head; propp != NULL; propp = propp->prop_next)  {
4418 		if (DDI_STRSAME(propp->prop_name, name) &&
4419 		    (dev == propp->prop_dev)) {
4420 			/*
4421 			 * Unlink this propp allowing for it to
4422 			 * be first in the list:
4423 			 */
4424 
4425 			if (lastpropp == NULL)
4426 				*list_head = propp->prop_next;
4427 			else
4428 				lastpropp->prop_next = propp->prop_next;
4429 
4430 			mutex_exit(&(DEVI(dip)->devi_lock));
4431 
4432 			/*
4433 			 * Free memory and return...
4434 			 */
4435 			kmem_free(propp->prop_name,
4436 			    strlen(propp->prop_name) + 1);
4437 			if (propp->prop_len != 0)
4438 				kmem_free(propp->prop_val, propp->prop_len);
4439 			kmem_free(propp, sizeof (ddi_prop_t));
4440 			return (DDI_PROP_SUCCESS);
4441 		}
4442 		lastpropp = propp;
4443 	}
4444 	mutex_exit(&(DEVI(dip)->devi_lock));
4445 	return (DDI_PROP_NOT_FOUND);
4446 }
4447 
4448 int
4449 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4450 {
4451 	return (ddi_prop_remove_common(dev, dip, name, 0));
4452 }
4453 
4454 int
4455 e_ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4456 {
4457 	return (ddi_prop_remove_common(dev, dip, name, DDI_PROP_SYSTEM_DEF));
4458 }
4459 
4460 /*
4461  * e_ddi_prop_list_delete: remove a list of properties
4462  *	Note that the caller needs to provide the required protection
4463  *	(eg. devi_lock if these properties are still attached to a devi)
4464  */
4465 void
4466 e_ddi_prop_list_delete(ddi_prop_t *props)
4467 {
4468 	i_ddi_prop_list_delete(props);
4469 }
4470 
4471 /*
4472  * ddi_prop_remove_all_common:
4473  *	Used before unloading a driver to remove
4474  *	all properties. (undefines all dev_t's props.)
4475  *	Also removes `explicitly undefined' props.
4476  *	No errors possible.
4477  */
4478 void
4479 ddi_prop_remove_all_common(dev_info_t *dip, int flag)
4480 {
4481 	ddi_prop_t	**list_head;
4482 
4483 	mutex_enter(&(DEVI(dip)->devi_lock));
4484 	if (flag & DDI_PROP_SYSTEM_DEF) {
4485 		list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4486 	} else if (flag & DDI_PROP_HW_DEF) {
4487 		list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4488 	} else {
4489 		list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4490 	}
4491 	i_ddi_prop_list_delete(*list_head);
4492 	*list_head = NULL;
4493 	mutex_exit(&(DEVI(dip)->devi_lock));
4494 }
4495 
4496 
4497 /*
4498  * ddi_prop_remove_all:		Remove all driver prop definitions.
4499  */
4500 
4501 void
4502 ddi_prop_remove_all(dev_info_t *dip)
4503 {
4504 	ddi_prop_remove_all_common(dip, 0);
4505 }
4506 
4507 /*
4508  * e_ddi_prop_remove_all:	Remove all system prop definitions.
4509  */
4510 
4511 void
4512 e_ddi_prop_remove_all(dev_info_t *dip)
4513 {
4514 	ddi_prop_remove_all_common(dip, (int)DDI_PROP_SYSTEM_DEF);
4515 }
4516 
4517 
4518 /*
4519  * ddi_prop_undefine:	Explicitly undefine a property.  Property
4520  *			searches which match this property return
4521  *			the error code DDI_PROP_UNDEFINED.
4522  *
4523  *			Use ddi_prop_remove to negate effect of
4524  *			ddi_prop_undefine
4525  *
4526  *			See above for error returns.
4527  */
4528 
4529 int
4530 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4531 {
4532 	if (!(flag & DDI_PROP_CANSLEEP))
4533 		flag |= DDI_PROP_DONTSLEEP;
4534 	return (ddi_prop_update_common(dev, dip,
4535 	    (flag | DDI_PROP_STACK_CREATE | DDI_PROP_UNDEF_IT |
4536 	    DDI_PROP_TYPE_ANY), name, NULL, 0, ddi_prop_fm_encode_bytes));
4537 }
4538 
4539 int
4540 e_ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4541 {
4542 	if (!(flag & DDI_PROP_CANSLEEP))
4543 		flag |= DDI_PROP_DONTSLEEP;
4544 	return (ddi_prop_update_common(dev, dip,
4545 	    (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE |
4546 	    DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY),
4547 	    name, NULL, 0, ddi_prop_fm_encode_bytes));
4548 }
4549 
4550 /*
4551  * Code to search hardware layer (PROM), if it exists, on behalf of child.
4552  *
4553  * if input dip != child_dip, then call is on behalf of child
4554  * to search PROM, do it via ddi_prop_search_common() and ascend only
4555  * if allowed.
4556  *
4557  * if input dip == ch_dip (child_dip), call is on behalf of root driver,
4558  * to search for PROM defined props only.
4559  *
4560  * Note that the PROM search is done only if the requested dev
4561  * is either DDI_DEV_T_ANY or DDI_DEV_T_NONE. PROM properties
4562  * have no associated dev, thus are automatically associated with
4563  * DDI_DEV_T_NONE.
4564  *
4565  * Modifying flag DDI_PROP_NOTPROM inhibits the search in the h/w layer.
4566  *
4567  * Returns DDI_PROP_FOUND_1275 if found to indicate to framework
4568  * that the property resides in the prom.
4569  */
4570 int
4571 impl_ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4572     ddi_prop_op_t prop_op, int mod_flags,
4573     char *name, caddr_t valuep, int *lengthp)
4574 {
4575 	int	len;
4576 	caddr_t buffer;
4577 
4578 	/*
4579 	 * If requested dev is DDI_DEV_T_NONE or DDI_DEV_T_ANY, then
4580 	 * look in caller's PROM if it's a self identifying device...
4581 	 *
4582 	 * Note that this is very similar to ddi_prop_op, but we
4583 	 * search the PROM instead of the s/w defined properties,
4584 	 * and we are called on by the parent driver to do this for
4585 	 * the child.
4586 	 */
4587 
4588 	if (((dev == DDI_DEV_T_NONE) || (dev == DDI_DEV_T_ANY)) &&
4589 	    ndi_dev_is_prom_node(ch_dip) &&
4590 	    ((mod_flags & DDI_PROP_NOTPROM) == 0)) {
4591 		len = prom_getproplen((pnode_t)DEVI(ch_dip)->devi_nodeid, name);
4592 		if (len == -1) {
4593 			return (DDI_PROP_NOT_FOUND);
4594 		}
4595 
4596 		/*
4597 		 * If exists only request, we're done
4598 		 */
4599 		if (prop_op == PROP_EXISTS) {
4600 			return (DDI_PROP_FOUND_1275);
4601 		}
4602 
4603 		/*
4604 		 * If length only request or prop length == 0, get out
4605 		 */
4606 		if ((prop_op == PROP_LEN) || (len == 0)) {
4607 			*lengthp = len;
4608 			return (DDI_PROP_FOUND_1275);
4609 		}
4610 
4611 		/*
4612 		 * Allocate buffer if required... (either way `buffer'
4613 		 * is receiving address).
4614 		 */
4615 
4616 		switch (prop_op) {
4617 
4618 		case PROP_LEN_AND_VAL_ALLOC:
4619 
4620 			buffer = kmem_alloc((size_t)len,
4621 			    mod_flags & DDI_PROP_CANSLEEP ?
4622 			    KM_SLEEP : KM_NOSLEEP);
4623 			if (buffer == NULL) {
4624 				return (DDI_PROP_NO_MEMORY);
4625 			}
4626 			*(caddr_t *)valuep = buffer;
4627 			break;
4628 
4629 		case PROP_LEN_AND_VAL_BUF:
4630 
4631 			if (len > (*lengthp)) {
4632 				*lengthp = len;
4633 				return (DDI_PROP_BUF_TOO_SMALL);
4634 			}
4635 
4636 			buffer = valuep;
4637 			break;
4638 
4639 		default:
4640 			break;
4641 		}
4642 
4643 		/*
4644 		 * Call the PROM function to do the copy.
4645 		 */
4646 		(void) prom_getprop((pnode_t)DEVI(ch_dip)->devi_nodeid,
4647 		    name, buffer);
4648 
4649 		*lengthp = len; /* return the actual length to the caller */
4650 		(void) impl_fix_props(dip, ch_dip, name, len, buffer);
4651 		return (DDI_PROP_FOUND_1275);
4652 	}
4653 
4654 	return (DDI_PROP_NOT_FOUND);
4655 }
4656 
4657 /*
4658  * The ddi_bus_prop_op default bus nexus prop op function.
4659  *
4660  * Code to search hardware layer (PROM), if it exists,
4661  * on behalf of child, then, if appropriate, ascend and check
4662  * my own software defined properties...
4663  */
4664 int
4665 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4666     ddi_prop_op_t prop_op, int mod_flags,
4667     char *name, caddr_t valuep, int *lengthp)
4668 {
4669 	int	error;
4670 
4671 	error = impl_ddi_bus_prop_op(dev, dip, ch_dip, prop_op, mod_flags,
4672 	    name, valuep, lengthp);
4673 
4674 	if (error == DDI_PROP_SUCCESS || error == DDI_PROP_FOUND_1275 ||
4675 	    error == DDI_PROP_BUF_TOO_SMALL)
4676 		return (error);
4677 
4678 	if (error == DDI_PROP_NO_MEMORY) {
4679 		cmn_err(CE_CONT, prop_no_mem_msg, name);
4680 		return (DDI_PROP_NO_MEMORY);
4681 	}
4682 
4683 	/*
4684 	 * Check the 'options' node as a last resort
4685 	 */
4686 	if ((mod_flags & DDI_PROP_DONTPASS) != 0)
4687 		return (DDI_PROP_NOT_FOUND);
4688 
4689 	if (ch_dip == ddi_root_node())	{
4690 		/*
4691 		 * As a last resort, when we've reached
4692 		 * the top and still haven't found the
4693 		 * property, see if the desired property
4694 		 * is attached to the options node.
4695 		 *
4696 		 * The options dip is attached right after boot.
4697 		 */
4698 		ASSERT(options_dip != NULL);
4699 		/*
4700 		 * Force the "don't pass" flag to *just* see
4701 		 * what the options node has to offer.
4702 		 */
4703 		return (ddi_prop_search_common(dev, options_dip, prop_op,
4704 		    mod_flags|DDI_PROP_DONTPASS, name, valuep,
4705 		    (uint_t *)lengthp));
4706 	}
4707 
4708 	/*
4709 	 * Otherwise, continue search with parent's s/w defined properties...
4710 	 * NOTE: Using `dip' in following call increments the level.
4711 	 */
4712 
4713 	return (ddi_prop_search_common(dev, dip, prop_op, mod_flags,
4714 	    name, valuep, (uint_t *)lengthp));
4715 }
4716 
4717 /*
4718  * External property functions used by other parts of the kernel...
4719  */
4720 
4721 /*
4722  * e_ddi_getlongprop: See comments for ddi_get_longprop.
4723  */
4724 
4725 int
4726 e_ddi_getlongprop(dev_t dev, vtype_t type, char *name, int flags,
4727     caddr_t valuep, int *lengthp)
4728 {
4729 	_NOTE(ARGUNUSED(type))
4730 	dev_info_t *devi;
4731 	ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_ALLOC;
4732 	int error;
4733 
4734 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4735 		return (DDI_PROP_NOT_FOUND);
4736 
4737 	error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4738 	ddi_release_devi(devi);
4739 	return (error);
4740 }
4741 
4742 /*
4743  * e_ddi_getlongprop_buf:	See comments for ddi_getlongprop_buf.
4744  */
4745 
4746 int
4747 e_ddi_getlongprop_buf(dev_t dev, vtype_t type, char *name, int flags,
4748     caddr_t valuep, int *lengthp)
4749 {
4750 	_NOTE(ARGUNUSED(type))
4751 	dev_info_t *devi;
4752 	ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4753 	int error;
4754 
4755 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4756 		return (DDI_PROP_NOT_FOUND);
4757 
4758 	error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4759 	ddi_release_devi(devi);
4760 	return (error);
4761 }
4762 
4763 /*
4764  * e_ddi_getprop:	See comments for ddi_getprop.
4765  */
4766 int
4767 e_ddi_getprop(dev_t dev, vtype_t type, char *name, int flags, int defvalue)
4768 {
4769 	_NOTE(ARGUNUSED(type))
4770 	dev_info_t *devi;
4771 	ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4772 	int	propvalue = defvalue;
4773 	int	proplength = sizeof (int);
4774 	int	error;
4775 
4776 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4777 		return (defvalue);
4778 
4779 	error = cdev_prop_op(dev, devi, prop_op,
4780 	    flags, name, (caddr_t)&propvalue, &proplength);
4781 	ddi_release_devi(devi);
4782 
4783 	if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4784 		propvalue = 1;
4785 
4786 	return (propvalue);
4787 }
4788 
4789 /*
4790  * e_ddi_getprop_int64:
4791  *
4792  * This is a typed interfaces, but predates typed properties. With the
4793  * introduction of typed properties the framework tries to ensure
4794  * consistent use of typed interfaces. This is why TYPE_INT64 is not
4795  * part of TYPE_ANY.  E_ddi_getprop_int64 is a special case where a
4796  * typed interface invokes legacy (non-typed) interfaces:
4797  * cdev_prop_op(), prop_op(9E), ddi_prop_op(9F)).  In this case the
4798  * fact that TYPE_INT64 is not part of TYPE_ANY matters.  To support
4799  * this type of lookup as a single operation we invoke the legacy
4800  * non-typed interfaces with the special CONSUMER_TYPED bit set. The
4801  * framework ddi_prop_op(9F) implementation is expected to check for
4802  * CONSUMER_TYPED and, if set, expand type bits beyond TYPE_ANY
4803  * (currently TYPE_INT64).
4804  */
4805 int64_t
4806 e_ddi_getprop_int64(dev_t dev, vtype_t type, char *name,
4807     int flags, int64_t defvalue)
4808 {
4809 	_NOTE(ARGUNUSED(type))
4810 	dev_info_t	*devi;
4811 	ddi_prop_op_t	prop_op = PROP_LEN_AND_VAL_BUF;
4812 	int64_t		propvalue = defvalue;
4813 	int		proplength = sizeof (propvalue);
4814 	int		error;
4815 
4816 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4817 		return (defvalue);
4818 
4819 	error = cdev_prop_op(dev, devi, prop_op, flags |
4820 	    DDI_PROP_CONSUMER_TYPED, name, (caddr_t)&propvalue, &proplength);
4821 	ddi_release_devi(devi);
4822 
4823 	if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4824 		propvalue = 1;
4825 
4826 	return (propvalue);
4827 }
4828 
4829 /*
4830  * e_ddi_getproplen:	See comments for ddi_getproplen.
4831  */
4832 int
4833 e_ddi_getproplen(dev_t dev, vtype_t type, char *name, int flags, int *lengthp)
4834 {
4835 	_NOTE(ARGUNUSED(type))
4836 	dev_info_t *devi;
4837 	ddi_prop_op_t prop_op = PROP_LEN;
4838 	int error;
4839 
4840 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4841 		return (DDI_PROP_NOT_FOUND);
4842 
4843 	error = cdev_prop_op(dev, devi, prop_op, flags, name, NULL, lengthp);
4844 	ddi_release_devi(devi);
4845 	return (error);
4846 }
4847 
4848 /*
4849  * Routines to get at elements of the dev_info structure
4850  */
4851 
4852 /*
4853  * ddi_binding_name: Return the driver binding name of the devinfo node
4854  *		This is the name the OS used to bind the node to a driver.
4855  */
4856 char *
4857 ddi_binding_name(dev_info_t *dip)
4858 {
4859 	return (DEVI(dip)->devi_binding_name);
4860 }
4861 
4862 /*
4863  * ddi_driver_major: Return the major number of the driver that
4864  *		the supplied devinfo is bound to (-1 if none)
4865  */
4866 major_t
4867 ddi_driver_major(dev_info_t *devi)
4868 {
4869 	return (DEVI(devi)->devi_major);
4870 }
4871 
4872 /*
4873  * ddi_driver_name: Return the normalized driver name. this is the
4874  *		actual driver name
4875  */
4876 const char *
4877 ddi_driver_name(dev_info_t *devi)
4878 {
4879 	major_t major;
4880 
4881 	if ((major = ddi_driver_major(devi)) != (major_t)-1)
4882 		return (ddi_major_to_name(major));
4883 
4884 	return (ddi_node_name(devi));
4885 }
4886 
4887 /*
4888  * i_ddi_set_binding_name:	Set binding name.
4889  *
4890  *	Set the binding name to the given name.
4891  *	This routine is for use by the ddi implementation, not by drivers.
4892  */
4893 void
4894 i_ddi_set_binding_name(dev_info_t *dip, char *name)
4895 {
4896 	DEVI(dip)->devi_binding_name = name;
4897 
4898 }
4899 
4900 /*
4901  * ddi_get_name: A synonym of ddi_binding_name() ... returns a name
4902  * the implementation has used to bind the node to a driver.
4903  */
4904 char *
4905 ddi_get_name(dev_info_t *dip)
4906 {
4907 	return (DEVI(dip)->devi_binding_name);
4908 }
4909 
4910 /*
4911  * ddi_node_name: Return the name property of the devinfo node
4912  *		This may differ from ddi_binding_name if the node name
4913  *		does not define a binding to a driver (i.e. generic names).
4914  */
4915 char *
4916 ddi_node_name(dev_info_t *dip)
4917 {
4918 	return (DEVI(dip)->devi_node_name);
4919 }
4920 
4921 
4922 /*
4923  * ddi_get_nodeid:	Get nodeid stored in dev_info structure.
4924  */
4925 int
4926 ddi_get_nodeid(dev_info_t *dip)
4927 {
4928 	return (DEVI(dip)->devi_nodeid);
4929 }
4930 
4931 int
4932 ddi_get_instance(dev_info_t *dip)
4933 {
4934 	return (DEVI(dip)->devi_instance);
4935 }
4936 
4937 struct dev_ops *
4938 ddi_get_driver(dev_info_t *dip)
4939 {
4940 	return (DEVI(dip)->devi_ops);
4941 }
4942 
4943 void
4944 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo)
4945 {
4946 	DEVI(dip)->devi_ops = devo;
4947 }
4948 
4949 /*
4950  * ddi_set_driver_private/ddi_get_driver_private:
4951  * Get/set device driver private data in devinfo.
4952  */
4953 void
4954 ddi_set_driver_private(dev_info_t *dip, void *data)
4955 {
4956 	DEVI(dip)->devi_driver_data = data;
4957 }
4958 
4959 void *
4960 ddi_get_driver_private(dev_info_t *dip)
4961 {
4962 	return (DEVI(dip)->devi_driver_data);
4963 }
4964 
4965 /*
4966  * ddi_get_parent, ddi_get_child, ddi_get_next_sibling
4967  */
4968 
4969 dev_info_t *
4970 ddi_get_parent(dev_info_t *dip)
4971 {
4972 	return ((dev_info_t *)DEVI(dip)->devi_parent);
4973 }
4974 
4975 dev_info_t *
4976 ddi_get_child(dev_info_t *dip)
4977 {
4978 	return ((dev_info_t *)DEVI(dip)->devi_child);
4979 }
4980 
4981 dev_info_t *
4982 ddi_get_next_sibling(dev_info_t *dip)
4983 {
4984 	return ((dev_info_t *)DEVI(dip)->devi_sibling);
4985 }
4986 
4987 dev_info_t *
4988 ddi_get_next(dev_info_t *dip)
4989 {
4990 	return ((dev_info_t *)DEVI(dip)->devi_next);
4991 }
4992 
4993 void
4994 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip)
4995 {
4996 	DEVI(dip)->devi_next = DEVI(nextdip);
4997 }
4998 
4999 /*
5000  * ddi_root_node:		Return root node of devinfo tree
5001  */
5002 
5003 dev_info_t *
5004 ddi_root_node(void)
5005 {
5006 	extern dev_info_t *top_devinfo;
5007 
5008 	return (top_devinfo);
5009 }
5010 
5011 /*
5012  * Miscellaneous functions:
5013  */
5014 
5015 /*
5016  * Implementation specific hooks
5017  */
5018 
5019 void
5020 ddi_report_dev(dev_info_t *d)
5021 {
5022 	char *b;
5023 
5024 	(void) ddi_ctlops(d, d, DDI_CTLOPS_REPORTDEV, (void *)0, (void *)0);
5025 
5026 	/*
5027 	 * If this devinfo node has cb_ops, it's implicitly accessible from
5028 	 * userland, so we print its full name together with the instance
5029 	 * number 'abbreviation' that the driver may use internally.
5030 	 */
5031 	if (DEVI(d)->devi_ops->devo_cb_ops != (struct cb_ops *)0 &&
5032 	    (b = kmem_zalloc(MAXPATHLEN, KM_NOSLEEP))) {
5033 		cmn_err(CE_CONT, "?%s%d is %s\n",
5034 		    ddi_driver_name(d), ddi_get_instance(d),
5035 		    ddi_pathname(d, b));
5036 		kmem_free(b, MAXPATHLEN);
5037 	}
5038 }
5039 
5040 /*
5041  * ddi_ctlops() is described in the assembler not to buy a new register
5042  * window when it's called and can reduce cost in climbing the device tree
5043  * without using the tail call optimization.
5044  */
5045 int
5046 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *result)
5047 {
5048 	int ret;
5049 
5050 	ret = ddi_ctlops(dev, dev, DDI_CTLOPS_REGSIZE,
5051 	    (void *)&rnumber, (void *)result);
5052 
5053 	return (ret == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
5054 }
5055 
5056 int
5057 ddi_dev_nregs(dev_info_t *dev, int *result)
5058 {
5059 	return (ddi_ctlops(dev, dev, DDI_CTLOPS_NREGS, 0, (void *)result));
5060 }
5061 
5062 int
5063 ddi_dev_is_sid(dev_info_t *d)
5064 {
5065 	return (ddi_ctlops(d, d, DDI_CTLOPS_SIDDEV, (void *)0, (void *)0));
5066 }
5067 
5068 int
5069 ddi_slaveonly(dev_info_t *d)
5070 {
5071 	return (ddi_ctlops(d, d, DDI_CTLOPS_SLAVEONLY, (void *)0, (void *)0));
5072 }
5073 
5074 int
5075 ddi_dev_affinity(dev_info_t *a, dev_info_t *b)
5076 {
5077 	return (ddi_ctlops(a, a, DDI_CTLOPS_AFFINITY, (void *)b, (void *)0));
5078 }
5079 
5080 int
5081 ddi_streams_driver(dev_info_t *dip)
5082 {
5083 	if (i_ddi_devi_attached(dip) &&
5084 	    (DEVI(dip)->devi_ops->devo_cb_ops != NULL) &&
5085 	    (DEVI(dip)->devi_ops->devo_cb_ops->cb_str != NULL))
5086 		return (DDI_SUCCESS);
5087 	return (DDI_FAILURE);
5088 }
5089 
5090 /*
5091  * callback free list
5092  */
5093 
5094 static int ncallbacks;
5095 static int nc_low = 170;
5096 static int nc_med = 512;
5097 static int nc_high = 2048;
5098 static struct ddi_callback *callbackq;
5099 static struct ddi_callback *callbackqfree;
5100 
5101 /*
5102  * set/run callback lists
5103  */
5104 struct	cbstats	{
5105 	kstat_named_t	cb_asked;
5106 	kstat_named_t	cb_new;
5107 	kstat_named_t	cb_run;
5108 	kstat_named_t	cb_delete;
5109 	kstat_named_t	cb_maxreq;
5110 	kstat_named_t	cb_maxlist;
5111 	kstat_named_t	cb_alloc;
5112 	kstat_named_t	cb_runouts;
5113 	kstat_named_t	cb_L2;
5114 	kstat_named_t	cb_grow;
5115 } cbstats = {
5116 	{"asked",	KSTAT_DATA_UINT32},
5117 	{"new",		KSTAT_DATA_UINT32},
5118 	{"run",		KSTAT_DATA_UINT32},
5119 	{"delete",	KSTAT_DATA_UINT32},
5120 	{"maxreq",	KSTAT_DATA_UINT32},
5121 	{"maxlist",	KSTAT_DATA_UINT32},
5122 	{"alloc",	KSTAT_DATA_UINT32},
5123 	{"runouts",	KSTAT_DATA_UINT32},
5124 	{"L2",		KSTAT_DATA_UINT32},
5125 	{"grow",	KSTAT_DATA_UINT32},
5126 };
5127 
5128 #define	nc_asked	cb_asked.value.ui32
5129 #define	nc_new		cb_new.value.ui32
5130 #define	nc_run		cb_run.value.ui32
5131 #define	nc_delete	cb_delete.value.ui32
5132 #define	nc_maxreq	cb_maxreq.value.ui32
5133 #define	nc_maxlist	cb_maxlist.value.ui32
5134 #define	nc_alloc	cb_alloc.value.ui32
5135 #define	nc_runouts	cb_runouts.value.ui32
5136 #define	nc_L2		cb_L2.value.ui32
5137 #define	nc_grow		cb_grow.value.ui32
5138 
5139 static kmutex_t ddi_callback_mutex;
5140 
5141 /*
5142  * callbacks are handled using a L1/L2 cache. The L1 cache
5143  * comes out of kmem_cache_alloc and can expand/shrink dynamically. If
5144  * we can't get callbacks from the L1 cache [because pageout is doing
5145  * I/O at the time freemem is 0], we allocate callbacks out of the
5146  * L2 cache. The L2 cache is static and depends on the memory size.
5147  * [We might also count the number of devices at probe time and
5148  * allocate one structure per device and adjust for deferred attach]
5149  */
5150 void
5151 impl_ddi_callback_init(void)
5152 {
5153 	int	i;
5154 	uint_t	physmegs;
5155 	kstat_t	*ksp;
5156 
5157 	physmegs = physmem >> (20 - PAGESHIFT);
5158 	if (physmegs < 48) {
5159 		ncallbacks = nc_low;
5160 	} else if (physmegs < 128) {
5161 		ncallbacks = nc_med;
5162 	} else {
5163 		ncallbacks = nc_high;
5164 	}
5165 
5166 	/*
5167 	 * init free list
5168 	 */
5169 	callbackq = kmem_zalloc(
5170 	    ncallbacks * sizeof (struct ddi_callback), KM_SLEEP);
5171 	for (i = 0; i < ncallbacks-1; i++)
5172 		callbackq[i].c_nfree = &callbackq[i+1];
5173 	callbackqfree = callbackq;
5174 
5175 	/* init kstats */
5176 	if (ksp = kstat_create("unix", 0, "cbstats", "misc", KSTAT_TYPE_NAMED,
5177 	    sizeof (cbstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) {
5178 		ksp->ks_data = (void *) &cbstats;
5179 		kstat_install(ksp);
5180 	}
5181 
5182 }
5183 
5184 static void
5185 callback_insert(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid,
5186 	int count)
5187 {
5188 	struct ddi_callback *list, *marker, *new;
5189 	size_t size = sizeof (struct ddi_callback);
5190 
5191 	list = marker = (struct ddi_callback *)*listid;
5192 	while (list != NULL) {
5193 		if (list->c_call == funcp && list->c_arg == arg) {
5194 			list->c_count += count;
5195 			return;
5196 		}
5197 		marker = list;
5198 		list = list->c_nlist;
5199 	}
5200 	new = kmem_alloc(size, KM_NOSLEEP);
5201 	if (new == NULL) {
5202 		new = callbackqfree;
5203 		if (new == NULL) {
5204 			new = kmem_alloc_tryhard(sizeof (struct ddi_callback),
5205 			    &size, KM_NOSLEEP | KM_PANIC);
5206 			cbstats.nc_grow++;
5207 		} else {
5208 			callbackqfree = new->c_nfree;
5209 			cbstats.nc_L2++;
5210 		}
5211 	}
5212 	if (marker != NULL) {
5213 		marker->c_nlist = new;
5214 	} else {
5215 		*listid = (uintptr_t)new;
5216 	}
5217 	new->c_size = size;
5218 	new->c_nlist = NULL;
5219 	new->c_call = funcp;
5220 	new->c_arg = arg;
5221 	new->c_count = count;
5222 	cbstats.nc_new++;
5223 	cbstats.nc_alloc++;
5224 	if (cbstats.nc_alloc > cbstats.nc_maxlist)
5225 		cbstats.nc_maxlist = cbstats.nc_alloc;
5226 }
5227 
5228 void
5229 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid)
5230 {
5231 	mutex_enter(&ddi_callback_mutex);
5232 	cbstats.nc_asked++;
5233 	if ((cbstats.nc_asked - cbstats.nc_run) > cbstats.nc_maxreq)
5234 		cbstats.nc_maxreq = (cbstats.nc_asked - cbstats.nc_run);
5235 	(void) callback_insert(funcp, arg, listid, 1);
5236 	mutex_exit(&ddi_callback_mutex);
5237 }
5238 
5239 static void
5240 real_callback_run(void *Queue)
5241 {
5242 	int (*funcp)(caddr_t);
5243 	caddr_t arg;
5244 	int count, rval;
5245 	uintptr_t *listid;
5246 	struct ddi_callback *list, *marker;
5247 	int check_pending = 1;
5248 	int pending = 0;
5249 
5250 	do {
5251 		mutex_enter(&ddi_callback_mutex);
5252 		listid = Queue;
5253 		list = (struct ddi_callback *)*listid;
5254 		if (list == NULL) {
5255 			mutex_exit(&ddi_callback_mutex);
5256 			return;
5257 		}
5258 		if (check_pending) {
5259 			marker = list;
5260 			while (marker != NULL) {
5261 				pending += marker->c_count;
5262 				marker = marker->c_nlist;
5263 			}
5264 			check_pending = 0;
5265 		}
5266 		ASSERT(pending > 0);
5267 		ASSERT(list->c_count > 0);
5268 		funcp = list->c_call;
5269 		arg = list->c_arg;
5270 		count = list->c_count;
5271 		*(uintptr_t *)Queue = (uintptr_t)list->c_nlist;
5272 		if (list >= &callbackq[0] &&
5273 		    list <= &callbackq[ncallbacks-1]) {
5274 			list->c_nfree = callbackqfree;
5275 			callbackqfree = list;
5276 		} else
5277 			kmem_free(list, list->c_size);
5278 
5279 		cbstats.nc_delete++;
5280 		cbstats.nc_alloc--;
5281 		mutex_exit(&ddi_callback_mutex);
5282 
5283 		do {
5284 			if ((rval = (*funcp)(arg)) == 0) {
5285 				pending -= count;
5286 				mutex_enter(&ddi_callback_mutex);
5287 				(void) callback_insert(funcp, arg, listid,
5288 				    count);
5289 				cbstats.nc_runouts++;
5290 			} else {
5291 				pending--;
5292 				mutex_enter(&ddi_callback_mutex);
5293 				cbstats.nc_run++;
5294 			}
5295 			mutex_exit(&ddi_callback_mutex);
5296 		} while (rval != 0 && (--count > 0));
5297 	} while (pending > 0);
5298 }
5299 
5300 void
5301 ddi_run_callback(uintptr_t *listid)
5302 {
5303 	softcall(real_callback_run, listid);
5304 }
5305 
5306 /*
5307  * ddi_periodic_t
5308  * ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval,
5309  *     int level)
5310  *
5311  * INTERFACE LEVEL
5312  *      Solaris DDI specific (Solaris DDI)
5313  *
5314  * PARAMETERS
5315  *      func: the callback function
5316  *
5317  *            The callback function will be invoked. The function is invoked
5318  *            in kernel context if the argument level passed is the zero.
5319  *            Otherwise it's invoked in interrupt context at the specified
5320  *            level.
5321  *
5322  *       arg: the argument passed to the callback function
5323  *
5324  *  interval: interval time
5325  *
5326  *    level : callback interrupt level
5327  *
5328  *            If the value is the zero, the callback function is invoked
5329  *            in kernel context. If the value is more than the zero, but
5330  *            less than or equal to ten, the callback function is invoked in
5331  *            interrupt context at the specified interrupt level, which may
5332  *            be used for real time applications.
5333  *
5334  *            This value must be in range of 0-10, which can be a numeric
5335  *            number or a pre-defined macro (DDI_IPL_0, ... , DDI_IPL_10).
5336  *
5337  * DESCRIPTION
5338  *      ddi_periodic_add(9F) schedules the specified function to be
5339  *      periodically invoked in the interval time.
5340  *
5341  *      As well as timeout(9F), the exact time interval over which the function
5342  *      takes effect cannot be guaranteed, but the value given is a close
5343  *      approximation.
5344  *
5345  *      Drivers waiting on behalf of processes with real-time constraints must
5346  *      pass non-zero value with the level argument to ddi_periodic_add(9F).
5347  *
5348  * RETURN VALUES
5349  *      ddi_periodic_add(9F) returns a non-zero opaque value (ddi_periodic_t),
5350  *      which must be used for ddi_periodic_delete(9F) to specify the request.
5351  *
5352  * CONTEXT
5353  *      ddi_periodic_add(9F) can be called in user or kernel context, but
5354  *      it cannot be called in interrupt context, which is different from
5355  *      timeout(9F).
5356  */
5357 ddi_periodic_t
5358 ddi_periodic_add(void (*func)(void *), void *arg, hrtime_t interval, int level)
5359 {
5360 	/*
5361 	 * Sanity check of the argument level.
5362 	 */
5363 	if (level < DDI_IPL_0 || level > DDI_IPL_10)
5364 		cmn_err(CE_PANIC,
5365 		    "ddi_periodic_add: invalid interrupt level (%d).", level);
5366 
5367 	/*
5368 	 * Sanity check of the context. ddi_periodic_add() cannot be
5369 	 * called in either interrupt context or high interrupt context.
5370 	 */
5371 	if (servicing_interrupt())
5372 		cmn_err(CE_PANIC,
5373 		    "ddi_periodic_add: called in (high) interrupt context.");
5374 
5375 	return ((ddi_periodic_t)i_timeout(func, arg, interval, level));
5376 }
5377 
5378 /*
5379  * void
5380  * ddi_periodic_delete(ddi_periodic_t req)
5381  *
5382  * INTERFACE LEVEL
5383  *     Solaris DDI specific (Solaris DDI)
5384  *
5385  * PARAMETERS
5386  *     req: ddi_periodic_t opaque value ddi_periodic_add(9F) returned
5387  *     previously.
5388  *
5389  * DESCRIPTION
5390  *     ddi_periodic_delete(9F) cancels the ddi_periodic_add(9F) request
5391  *     previously requested.
5392  *
5393  *     ddi_periodic_delete(9F) will not return until the pending request
5394  *     is canceled or executed.
5395  *
5396  *     As well as untimeout(9F), calling ddi_periodic_delete(9F) for a
5397  *     timeout which is either running on another CPU, or has already
5398  *     completed causes no problems. However, unlike untimeout(9F), there is
5399  *     no restrictions on the lock which might be held across the call to
5400  *     ddi_periodic_delete(9F).
5401  *
5402  *     Drivers should be structured with the understanding that the arrival of
5403  *     both an interrupt and a timeout for that interrupt can occasionally
5404  *     occur, in either order.
5405  *
5406  * CONTEXT
5407  *     ddi_periodic_delete(9F) can be called in user or kernel context, but
5408  *     it cannot be called in interrupt context, which is different from
5409  *     untimeout(9F).
5410  */
5411 void
5412 ddi_periodic_delete(ddi_periodic_t req)
5413 {
5414 	/*
5415 	 * Sanity check of the context. ddi_periodic_delete() cannot be
5416 	 * called in either interrupt context or high interrupt context.
5417 	 */
5418 	if (servicing_interrupt())
5419 		cmn_err(CE_PANIC,
5420 		    "ddi_periodic_delete: called in (high) interrupt context.");
5421 
5422 	i_untimeout((timeout_t)req);
5423 }
5424 
5425 dev_info_t *
5426 nodevinfo(dev_t dev, int otyp)
5427 {
5428 	_NOTE(ARGUNUSED(dev, otyp))
5429 	return ((dev_info_t *)0);
5430 }
5431 
5432 /*
5433  * A driver should support its own getinfo(9E) entry point. This function
5434  * is provided as a convenience for ON drivers that don't expect their
5435  * getinfo(9E) entry point to be called. A driver that uses this must not
5436  * call ddi_create_minor_node.
5437  */
5438 int
5439 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
5440 {
5441 	_NOTE(ARGUNUSED(dip, infocmd, arg, result))
5442 	return (DDI_FAILURE);
5443 }
5444 
5445 /*
5446  * A driver should support its own getinfo(9E) entry point. This function
5447  * is provided as a convenience for ON drivers that where the minor number
5448  * is the instance. Drivers that do not have 1:1 mapping must implement
5449  * their own getinfo(9E) function.
5450  */
5451 int
5452 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd,
5453     void *arg, void **result)
5454 {
5455 	_NOTE(ARGUNUSED(dip))
5456 	int	instance;
5457 
5458 	if (infocmd != DDI_INFO_DEVT2INSTANCE)
5459 		return (DDI_FAILURE);
5460 
5461 	instance = getminor((dev_t)(uintptr_t)arg);
5462 	*result = (void *)(uintptr_t)instance;
5463 	return (DDI_SUCCESS);
5464 }
5465 
5466 int
5467 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd)
5468 {
5469 	_NOTE(ARGUNUSED(devi, cmd))
5470 	return (DDI_FAILURE);
5471 }
5472 
5473 int
5474 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip,
5475     struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
5476 {
5477 	_NOTE(ARGUNUSED(dip, rdip, dmareqp, handlep))
5478 	return (DDI_DMA_NOMAPPING);
5479 }
5480 
5481 int
5482 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
5483     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
5484 {
5485 	_NOTE(ARGUNUSED(dip, rdip, attr, waitfp, arg, handlep))
5486 	return (DDI_DMA_BADATTR);
5487 }
5488 
5489 int
5490 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
5491     ddi_dma_handle_t handle)
5492 {
5493 	_NOTE(ARGUNUSED(dip, rdip, handle))
5494 	return (DDI_FAILURE);
5495 }
5496 
5497 int
5498 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
5499     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
5500     ddi_dma_cookie_t *cp, uint_t *ccountp)
5501 {
5502 	_NOTE(ARGUNUSED(dip, rdip, handle, dmareq, cp, ccountp))
5503 	return (DDI_DMA_NOMAPPING);
5504 }
5505 
5506 int
5507 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
5508     ddi_dma_handle_t handle)
5509 {
5510 	_NOTE(ARGUNUSED(dip, rdip, handle))
5511 	return (DDI_FAILURE);
5512 }
5513 
5514 int
5515 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip,
5516     ddi_dma_handle_t handle, off_t off, size_t len,
5517     uint_t cache_flags)
5518 {
5519 	_NOTE(ARGUNUSED(dip, rdip, handle, off, len, cache_flags))
5520 	return (DDI_FAILURE);
5521 }
5522 
5523 int
5524 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip,
5525     ddi_dma_handle_t handle, uint_t win, off_t *offp,
5526     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
5527 {
5528 	_NOTE(ARGUNUSED(dip, rdip, handle, win, offp, lenp, cookiep, ccountp))
5529 	return (DDI_FAILURE);
5530 }
5531 
5532 int
5533 ddi_no_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
5534     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
5535     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
5536 {
5537 	_NOTE(ARGUNUSED(dip, rdip, handle, request, offp, lenp, objp, flags))
5538 	return (DDI_FAILURE);
5539 }
5540 
5541 void
5542 ddivoid(void)
5543 {}
5544 
5545 int
5546 nochpoll(dev_t dev, short events, int anyyet, short *reventsp,
5547     struct pollhead **pollhdrp)
5548 {
5549 	_NOTE(ARGUNUSED(dev, events, anyyet, reventsp, pollhdrp))
5550 	return (ENXIO);
5551 }
5552 
5553 cred_t *
5554 ddi_get_cred(void)
5555 {
5556 	return (CRED());
5557 }
5558 
5559 clock_t
5560 ddi_get_lbolt(void)
5561 {
5562 	return (lbolt);
5563 }
5564 
5565 time_t
5566 ddi_get_time(void)
5567 {
5568 	time_t	now;
5569 
5570 	if ((now = gethrestime_sec()) == 0) {
5571 		timestruc_t ts;
5572 		mutex_enter(&tod_lock);
5573 		ts = tod_get();
5574 		mutex_exit(&tod_lock);
5575 		return (ts.tv_sec);
5576 	} else {
5577 		return (now);
5578 	}
5579 }
5580 
5581 pid_t
5582 ddi_get_pid(void)
5583 {
5584 	return (ttoproc(curthread)->p_pid);
5585 }
5586 
5587 kt_did_t
5588 ddi_get_kt_did(void)
5589 {
5590 	return (curthread->t_did);
5591 }
5592 
5593 /*
5594  * This function returns B_TRUE if the caller can reasonably expect that a call
5595  * to cv_wait_sig(9F), cv_timedwait_sig(9F), or qwait_sig(9F) could be awakened
5596  * by user-level signal.  If it returns B_FALSE, then the caller should use
5597  * other means to make certain that the wait will not hang "forever."
5598  *
5599  * It does not check the signal mask, nor for reception of any particular
5600  * signal.
5601  *
5602  * Currently, a thread can receive a signal if it's not a kernel thread and it
5603  * is not in the middle of exit(2) tear-down.  Threads that are in that
5604  * tear-down effectively convert cv_wait_sig to cv_wait, cv_timedwait_sig to
5605  * cv_timedwait, and qwait_sig to qwait.
5606  */
5607 boolean_t
5608 ddi_can_receive_sig(void)
5609 {
5610 	proc_t *pp;
5611 
5612 	if (curthread->t_proc_flag & TP_LWPEXIT)
5613 		return (B_FALSE);
5614 	if ((pp = ttoproc(curthread)) == NULL)
5615 		return (B_FALSE);
5616 	return (pp->p_as != &kas);
5617 }
5618 
5619 /*
5620  * Swap bytes in 16-bit [half-]words
5621  */
5622 void
5623 swab(void *src, void *dst, size_t nbytes)
5624 {
5625 	uchar_t *pf = (uchar_t *)src;
5626 	uchar_t *pt = (uchar_t *)dst;
5627 	uchar_t tmp;
5628 	int nshorts;
5629 
5630 	nshorts = nbytes >> 1;
5631 
5632 	while (--nshorts >= 0) {
5633 		tmp = *pf++;
5634 		*pt++ = *pf++;
5635 		*pt++ = tmp;
5636 	}
5637 }
5638 
5639 static void
5640 ddi_append_minor_node(dev_info_t *ddip, struct ddi_minor_data *dmdp)
5641 {
5642 	struct ddi_minor_data *dp;
5643 
5644 	mutex_enter(&(DEVI(ddip)->devi_lock));
5645 	i_devi_enter(ddip, DEVI_S_MD_UPDATE, DEVI_S_MD_UPDATE, 1);
5646 
5647 	if ((dp = DEVI(ddip)->devi_minor) == (struct ddi_minor_data *)NULL) {
5648 		DEVI(ddip)->devi_minor = dmdp;
5649 	} else {
5650 		while (dp->next != (struct ddi_minor_data *)NULL)
5651 			dp = dp->next;
5652 		dp->next = dmdp;
5653 	}
5654 
5655 	i_devi_exit(ddip, DEVI_S_MD_UPDATE, 1);
5656 	mutex_exit(&(DEVI(ddip)->devi_lock));
5657 }
5658 
5659 /*
5660  * Part of the obsolete SunCluster DDI Hooks.
5661  * Keep for binary compatibility
5662  */
5663 minor_t
5664 ddi_getiminor(dev_t dev)
5665 {
5666 	return (getminor(dev));
5667 }
5668 
5669 static int
5670 i_log_devfs_minor_create(dev_info_t *dip, char *minor_name)
5671 {
5672 	int se_flag;
5673 	int kmem_flag;
5674 	int se_err;
5675 	char *pathname, *class_name;
5676 	sysevent_t *ev = NULL;
5677 	sysevent_id_t eid;
5678 	sysevent_value_t se_val;
5679 	sysevent_attr_list_t *ev_attr_list = NULL;
5680 
5681 	/* determine interrupt context */
5682 	se_flag = (servicing_interrupt()) ? SE_NOSLEEP : SE_SLEEP;
5683 	kmem_flag = (se_flag == SE_SLEEP) ? KM_SLEEP : KM_NOSLEEP;
5684 
5685 	i_ddi_di_cache_invalidate(kmem_flag);
5686 
5687 #ifdef DEBUG
5688 	if ((se_flag == SE_NOSLEEP) && sunddi_debug) {
5689 		cmn_err(CE_CONT, "ddi_create_minor_node: called from "
5690 		    "interrupt level by driver %s",
5691 		    ddi_driver_name(dip));
5692 	}
5693 #endif /* DEBUG */
5694 
5695 	ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_CREATE, EP_DDI, se_flag);
5696 	if (ev == NULL) {
5697 		goto fail;
5698 	}
5699 
5700 	pathname = kmem_alloc(MAXPATHLEN, kmem_flag);
5701 	if (pathname == NULL) {
5702 		sysevent_free(ev);
5703 		goto fail;
5704 	}
5705 
5706 	(void) ddi_pathname(dip, pathname);
5707 	ASSERT(strlen(pathname));
5708 	se_val.value_type = SE_DATA_TYPE_STRING;
5709 	se_val.value.sv_string = pathname;
5710 	if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5711 	    &se_val, se_flag) != 0) {
5712 		kmem_free(pathname, MAXPATHLEN);
5713 		sysevent_free(ev);
5714 		goto fail;
5715 	}
5716 	kmem_free(pathname, MAXPATHLEN);
5717 
5718 	/* add the device class attribute */
5719 	if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5720 		se_val.value_type = SE_DATA_TYPE_STRING;
5721 		se_val.value.sv_string = class_name;
5722 		if (sysevent_add_attr(&ev_attr_list,
5723 		    DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5724 			sysevent_free_attr(ev_attr_list);
5725 			goto fail;
5726 		}
5727 	}
5728 
5729 	/*
5730 	 * allow for NULL minor names
5731 	 */
5732 	if (minor_name != NULL) {
5733 		se_val.value.sv_string = minor_name;
5734 		if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5735 		    &se_val, se_flag) != 0) {
5736 			sysevent_free_attr(ev_attr_list);
5737 			sysevent_free(ev);
5738 			goto fail;
5739 		}
5740 	}
5741 
5742 	if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5743 		sysevent_free_attr(ev_attr_list);
5744 		sysevent_free(ev);
5745 		goto fail;
5746 	}
5747 
5748 	if ((se_err = log_sysevent(ev, se_flag, &eid)) != 0) {
5749 		if (se_err == SE_NO_TRANSPORT) {
5750 			cmn_err(CE_WARN, "/devices or /dev may not be current "
5751 			    "for driver %s (%s). Run devfsadm -i %s",
5752 			    ddi_driver_name(dip), "syseventd not responding",
5753 			    ddi_driver_name(dip));
5754 		} else {
5755 			sysevent_free(ev);
5756 			goto fail;
5757 		}
5758 	}
5759 
5760 	sysevent_free(ev);
5761 	return (DDI_SUCCESS);
5762 fail:
5763 	cmn_err(CE_WARN, "/devices or /dev may not be current "
5764 	    "for driver %s. Run devfsadm -i %s",
5765 	    ddi_driver_name(dip), ddi_driver_name(dip));
5766 	return (DDI_SUCCESS);
5767 }
5768 
5769 /*
5770  * failing to remove a minor node is not of interest
5771  * therefore we do not generate an error message
5772  */
5773 static int
5774 i_log_devfs_minor_remove(dev_info_t *dip, char *minor_name)
5775 {
5776 	char *pathname, *class_name;
5777 	sysevent_t *ev;
5778 	sysevent_id_t eid;
5779 	sysevent_value_t se_val;
5780 	sysevent_attr_list_t *ev_attr_list = NULL;
5781 
5782 	/*
5783 	 * only log ddi_remove_minor_node() calls outside the scope
5784 	 * of attach/detach reconfigurations and when the dip is
5785 	 * still initialized.
5786 	 */
5787 	if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip) ||
5788 	    (i_ddi_node_state(dip) < DS_INITIALIZED)) {
5789 		return (DDI_SUCCESS);
5790 	}
5791 
5792 	i_ddi_di_cache_invalidate(KM_SLEEP);
5793 
5794 	ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_REMOVE, EP_DDI, SE_SLEEP);
5795 	if (ev == NULL) {
5796 		return (DDI_SUCCESS);
5797 	}
5798 
5799 	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5800 	if (pathname == NULL) {
5801 		sysevent_free(ev);
5802 		return (DDI_SUCCESS);
5803 	}
5804 
5805 	(void) ddi_pathname(dip, pathname);
5806 	ASSERT(strlen(pathname));
5807 	se_val.value_type = SE_DATA_TYPE_STRING;
5808 	se_val.value.sv_string = pathname;
5809 	if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5810 	    &se_val, SE_SLEEP) != 0) {
5811 		kmem_free(pathname, MAXPATHLEN);
5812 		sysevent_free(ev);
5813 		return (DDI_SUCCESS);
5814 	}
5815 
5816 	kmem_free(pathname, MAXPATHLEN);
5817 
5818 	/*
5819 	 * allow for NULL minor names
5820 	 */
5821 	if (minor_name != NULL) {
5822 		se_val.value.sv_string = minor_name;
5823 		if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5824 		    &se_val, SE_SLEEP) != 0) {
5825 			sysevent_free_attr(ev_attr_list);
5826 			goto fail;
5827 		}
5828 	}
5829 
5830 	if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5831 		/* add the device class, driver name and instance attributes */
5832 
5833 		se_val.value_type = SE_DATA_TYPE_STRING;
5834 		se_val.value.sv_string = class_name;
5835 		if (sysevent_add_attr(&ev_attr_list,
5836 		    DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5837 			sysevent_free_attr(ev_attr_list);
5838 			goto fail;
5839 		}
5840 
5841 		se_val.value_type = SE_DATA_TYPE_STRING;
5842 		se_val.value.sv_string = (char *)ddi_driver_name(dip);
5843 		if (sysevent_add_attr(&ev_attr_list,
5844 		    DEVFS_DRIVER_NAME, &se_val, SE_SLEEP) != 0) {
5845 			sysevent_free_attr(ev_attr_list);
5846 			goto fail;
5847 		}
5848 
5849 		se_val.value_type = SE_DATA_TYPE_INT32;
5850 		se_val.value.sv_int32 = ddi_get_instance(dip);
5851 		if (sysevent_add_attr(&ev_attr_list,
5852 		    DEVFS_INSTANCE, &se_val, SE_SLEEP) != 0) {
5853 			sysevent_free_attr(ev_attr_list);
5854 			goto fail;
5855 		}
5856 
5857 	}
5858 
5859 	if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5860 		sysevent_free_attr(ev_attr_list);
5861 	} else {
5862 		(void) log_sysevent(ev, SE_SLEEP, &eid);
5863 	}
5864 fail:
5865 	sysevent_free(ev);
5866 	return (DDI_SUCCESS);
5867 }
5868 
5869 /*
5870  * Derive the device class of the node.
5871  * Device class names aren't defined yet. Until this is done we use
5872  * devfs event subclass names as device class names.
5873  */
5874 static int
5875 derive_devi_class(dev_info_t *dip, char *node_type, int flag)
5876 {
5877 	int rv = DDI_SUCCESS;
5878 
5879 	if (i_ddi_devi_class(dip) == NULL) {
5880 		if (strncmp(node_type, DDI_NT_BLOCK,
5881 		    sizeof (DDI_NT_BLOCK) - 1) == 0 &&
5882 		    (node_type[sizeof (DDI_NT_BLOCK) - 1] == '\0' ||
5883 		    node_type[sizeof (DDI_NT_BLOCK) - 1] == ':') &&
5884 		    strcmp(node_type, DDI_NT_FD) != 0) {
5885 
5886 			rv = i_ddi_set_devi_class(dip, ESC_DISK, flag);
5887 
5888 		} else if (strncmp(node_type, DDI_NT_NET,
5889 		    sizeof (DDI_NT_NET) - 1) == 0 &&
5890 		    (node_type[sizeof (DDI_NT_NET) - 1] == '\0' ||
5891 		    node_type[sizeof (DDI_NT_NET) - 1] == ':')) {
5892 
5893 			rv = i_ddi_set_devi_class(dip, ESC_NETWORK, flag);
5894 
5895 		} else if (strncmp(node_type, DDI_NT_PRINTER,
5896 		    sizeof (DDI_NT_PRINTER) - 1) == 0 &&
5897 		    (node_type[sizeof (DDI_NT_PRINTER) - 1] == '\0' ||
5898 		    node_type[sizeof (DDI_NT_PRINTER) - 1] == ':')) {
5899 
5900 			rv = i_ddi_set_devi_class(dip, ESC_PRINTER, flag);
5901 
5902 		} else if (strncmp(node_type, DDI_PSEUDO,
5903 		    sizeof (DDI_PSEUDO) -1) == 0 &&
5904 		    (strncmp(ESC_LOFI, ddi_node_name(dip),
5905 		    sizeof (ESC_LOFI) -1) == 0)) {
5906 			rv = i_ddi_set_devi_class(dip, ESC_LOFI, flag);
5907 		}
5908 	}
5909 
5910 	return (rv);
5911 }
5912 
5913 /*
5914  * Check compliance with PSARC 2003/375:
5915  *
5916  * The name must contain only characters a-z, A-Z, 0-9 or _ and it must not
5917  * exceed IFNAMSIZ (16) characters in length.
5918  */
5919 static boolean_t
5920 verify_name(char *name)
5921 {
5922 	size_t	len = strlen(name);
5923 	char	*cp;
5924 
5925 	if (len == 0 || len > IFNAMSIZ)
5926 		return (B_FALSE);
5927 
5928 	for (cp = name; *cp != '\0'; cp++) {
5929 		if (!isalnum(*cp) && *cp != '_')
5930 			return (B_FALSE);
5931 	}
5932 
5933 	return (B_TRUE);
5934 }
5935 
5936 /*
5937  * ddi_create_minor_common:	Create a  ddi_minor_data structure and
5938  *				attach it to the given devinfo node.
5939  */
5940 
5941 int
5942 ddi_create_minor_common(dev_info_t *dip, char *name, int spec_type,
5943     minor_t minor_num, char *node_type, int flag, ddi_minor_type mtype,
5944     const char *read_priv, const char *write_priv, mode_t priv_mode)
5945 {
5946 	struct ddi_minor_data *dmdp;
5947 	major_t major;
5948 
5949 	if (spec_type != S_IFCHR && spec_type != S_IFBLK)
5950 		return (DDI_FAILURE);
5951 
5952 	if (name == NULL)
5953 		return (DDI_FAILURE);
5954 
5955 	/*
5956 	 * Log a message if the minor number the driver is creating
5957 	 * is not expressible on the on-disk filesystem (currently
5958 	 * this is limited to 18 bits both by UFS). The device can
5959 	 * be opened via devfs, but not by device special files created
5960 	 * via mknod().
5961 	 */
5962 	if (minor_num > L_MAXMIN32) {
5963 		cmn_err(CE_WARN,
5964 		    "%s%d:%s minor 0x%x too big for 32-bit applications",
5965 		    ddi_driver_name(dip), ddi_get_instance(dip),
5966 		    name, minor_num);
5967 		return (DDI_FAILURE);
5968 	}
5969 
5970 	/* dip must be bound and attached */
5971 	major = ddi_driver_major(dip);
5972 	ASSERT(major != (major_t)-1);
5973 
5974 	/*
5975 	 * Default node_type to DDI_PSEUDO and issue notice in debug mode
5976 	 */
5977 	if (node_type == NULL) {
5978 		node_type = DDI_PSEUDO;
5979 		NDI_CONFIG_DEBUG((CE_NOTE, "!illegal node_type NULL for %s%d "
5980 		    " minor node %s; default to DDI_PSEUDO",
5981 		    ddi_driver_name(dip), ddi_get_instance(dip), name));
5982 	}
5983 
5984 	/*
5985 	 * If the driver is a network driver, ensure that the name falls within
5986 	 * the interface naming constraints specified by PSARC/2003/375.
5987 	 */
5988 	if (strcmp(node_type, DDI_NT_NET) == 0) {
5989 		if (!verify_name(name))
5990 			return (DDI_FAILURE);
5991 
5992 		if (mtype == DDM_MINOR) {
5993 			struct devnames *dnp = &devnamesp[major];
5994 
5995 			/* Mark driver as a network driver */
5996 			LOCK_DEV_OPS(&dnp->dn_lock);
5997 			dnp->dn_flags |= DN_NETWORK_DRIVER;
5998 			UNLOCK_DEV_OPS(&dnp->dn_lock);
5999 		}
6000 	}
6001 
6002 	if (mtype == DDM_MINOR) {
6003 		if (derive_devi_class(dip,  node_type, KM_NOSLEEP) !=
6004 		    DDI_SUCCESS)
6005 			return (DDI_FAILURE);
6006 	}
6007 
6008 	/*
6009 	 * Take care of minor number information for the node.
6010 	 */
6011 
6012 	if ((dmdp = kmem_zalloc(sizeof (struct ddi_minor_data),
6013 	    KM_NOSLEEP)) == NULL) {
6014 		return (DDI_FAILURE);
6015 	}
6016 	if ((dmdp->ddm_name = i_ddi_strdup(name, KM_NOSLEEP)) == NULL) {
6017 		kmem_free(dmdp, sizeof (struct ddi_minor_data));
6018 		return (DDI_FAILURE);
6019 	}
6020 	dmdp->dip = dip;
6021 	dmdp->ddm_dev = makedevice(major, minor_num);
6022 	dmdp->ddm_spec_type = spec_type;
6023 	dmdp->ddm_node_type = node_type;
6024 	dmdp->type = mtype;
6025 	if (flag & CLONE_DEV) {
6026 		dmdp->type = DDM_ALIAS;
6027 		dmdp->ddm_dev = makedevice(ddi_driver_major(clone_dip), major);
6028 	}
6029 	if (flag & PRIVONLY_DEV) {
6030 		dmdp->ddm_flags |= DM_NO_FSPERM;
6031 	}
6032 	if (read_priv || write_priv) {
6033 		dmdp->ddm_node_priv =
6034 		    devpolicy_priv_by_name(read_priv, write_priv);
6035 	}
6036 	dmdp->ddm_priv_mode = priv_mode;
6037 
6038 	ddi_append_minor_node(dip, dmdp);
6039 
6040 	/*
6041 	 * only log ddi_create_minor_node() calls which occur
6042 	 * outside the scope of attach(9e)/detach(9e) reconfigurations
6043 	 */
6044 	if (!(DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip)) &&
6045 	    mtype != DDM_INTERNAL_PATH) {
6046 		(void) i_log_devfs_minor_create(dip, name);
6047 	}
6048 
6049 	/*
6050 	 * Check if any dacf rules match the creation of this minor node
6051 	 */
6052 	dacfc_match_create_minor(name, node_type, dip, dmdp, flag);
6053 	return (DDI_SUCCESS);
6054 }
6055 
6056 int
6057 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type,
6058     minor_t minor_num, char *node_type, int flag)
6059 {
6060 	return (ddi_create_minor_common(dip, name, spec_type, minor_num,
6061 	    node_type, flag, DDM_MINOR, NULL, NULL, 0));
6062 }
6063 
6064 int
6065 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type,
6066     minor_t minor_num, char *node_type, int flag,
6067     const char *rdpriv, const char *wrpriv, mode_t priv_mode)
6068 {
6069 	return (ddi_create_minor_common(dip, name, spec_type, minor_num,
6070 	    node_type, flag, DDM_MINOR, rdpriv, wrpriv, priv_mode));
6071 }
6072 
6073 int
6074 ddi_create_default_minor_node(dev_info_t *dip, char *name, int spec_type,
6075     minor_t minor_num, char *node_type, int flag)
6076 {
6077 	return (ddi_create_minor_common(dip, name, spec_type, minor_num,
6078 	    node_type, flag, DDM_DEFAULT, NULL, NULL, 0));
6079 }
6080 
6081 /*
6082  * Internal (non-ddi) routine for drivers to export names known
6083  * to the kernel (especially ddi_pathname_to_dev_t and friends)
6084  * but not exported externally to /dev
6085  */
6086 int
6087 ddi_create_internal_pathname(dev_info_t *dip, char *name, int spec_type,
6088     minor_t minor_num)
6089 {
6090 	return (ddi_create_minor_common(dip, name, spec_type, minor_num,
6091 	    "internal", 0, DDM_INTERNAL_PATH, NULL, NULL, 0));
6092 }
6093 
6094 void
6095 ddi_remove_minor_node(dev_info_t *dip, char *name)
6096 {
6097 	struct ddi_minor_data *dmdp, *dmdp1;
6098 	struct ddi_minor_data **dmdp_prev;
6099 
6100 	mutex_enter(&(DEVI(dip)->devi_lock));
6101 	i_devi_enter(dip, DEVI_S_MD_UPDATE, DEVI_S_MD_UPDATE, 1);
6102 
6103 	dmdp_prev = &DEVI(dip)->devi_minor;
6104 	dmdp = DEVI(dip)->devi_minor;
6105 	while (dmdp != NULL) {
6106 		dmdp1 = dmdp->next;
6107 		if ((name == NULL || (dmdp->ddm_name != NULL &&
6108 		    strcmp(name, dmdp->ddm_name) == 0))) {
6109 			if (dmdp->ddm_name != NULL) {
6110 				if (dmdp->type != DDM_INTERNAL_PATH)
6111 					(void) i_log_devfs_minor_remove(dip,
6112 					    dmdp->ddm_name);
6113 				kmem_free(dmdp->ddm_name,
6114 				    strlen(dmdp->ddm_name) + 1);
6115 			}
6116 			/*
6117 			 * Release device privilege, if any.
6118 			 * Release dacf client data associated with this minor
6119 			 * node by storing NULL.
6120 			 */
6121 			if (dmdp->ddm_node_priv)
6122 				dpfree(dmdp->ddm_node_priv);
6123 			dacf_store_info((dacf_infohdl_t)dmdp, NULL);
6124 			kmem_free(dmdp, sizeof (struct ddi_minor_data));
6125 			*dmdp_prev = dmdp1;
6126 			/*
6127 			 * OK, we found it, so get out now -- if we drive on,
6128 			 * we will strcmp against garbage.  See 1139209.
6129 			 */
6130 			if (name != NULL)
6131 				break;
6132 		} else {
6133 			dmdp_prev = &dmdp->next;
6134 		}
6135 		dmdp = dmdp1;
6136 	}
6137 
6138 	i_devi_exit(dip, DEVI_S_MD_UPDATE, 1);
6139 	mutex_exit(&(DEVI(dip)->devi_lock));
6140 }
6141 
6142 
6143 int
6144 ddi_in_panic()
6145 {
6146 	return (panicstr != NULL);
6147 }
6148 
6149 
6150 /*
6151  * Find first bit set in a mask (returned counting from 1 up)
6152  */
6153 
6154 int
6155 ddi_ffs(long mask)
6156 {
6157 	return (ffs(mask));
6158 }
6159 
6160 /*
6161  * Find last bit set. Take mask and clear
6162  * all but the most significant bit, and
6163  * then let ffs do the rest of the work.
6164  *
6165  * Algorithm courtesy of Steve Chessin.
6166  */
6167 
6168 int
6169 ddi_fls(long mask)
6170 {
6171 	while (mask) {
6172 		long nx;
6173 
6174 		if ((nx = (mask & (mask - 1))) == 0)
6175 			break;
6176 		mask = nx;
6177 	}
6178 	return (ffs(mask));
6179 }
6180 
6181 /*
6182  * The next five routines comprise generic storage management utilities
6183  * for driver soft state structures (in "the old days," this was done
6184  * with a statically sized array - big systems and dynamic loading
6185  * and unloading make heap allocation more attractive)
6186  */
6187 
6188 /*
6189  * Allocate a set of pointers to 'n_items' objects of size 'size'
6190  * bytes.  Each pointer is initialized to nil.
6191  *
6192  * The 'size' and 'n_items' values are stashed in the opaque
6193  * handle returned to the caller.
6194  *
6195  * This implementation interprets 'set of pointers' to mean 'array
6196  * of pointers' but note that nothing in the interface definition
6197  * precludes an implementation that uses, for example, a linked list.
6198  * However there should be a small efficiency gain from using an array
6199  * at lookup time.
6200  *
6201  * NOTE	As an optimization, we make our growable array allocations in
6202  *	powers of two (bytes), since that's how much kmem_alloc (currently)
6203  *	gives us anyway.  It should save us some free/realloc's ..
6204  *
6205  *	As a further optimization, we make the growable array start out
6206  *	with MIN_N_ITEMS in it.
6207  */
6208 
6209 #define	MIN_N_ITEMS	8	/* 8 void *'s == 32 bytes */
6210 
6211 int
6212 ddi_soft_state_init(void **state_p, size_t size, size_t n_items)
6213 {
6214 	struct i_ddi_soft_state *ss;
6215 
6216 	if (state_p == NULL || *state_p != NULL || size == 0)
6217 		return (EINVAL);
6218 
6219 	ss = kmem_zalloc(sizeof (*ss), KM_SLEEP);
6220 	mutex_init(&ss->lock, NULL, MUTEX_DRIVER, NULL);
6221 	ss->size = size;
6222 
6223 	if (n_items < MIN_N_ITEMS)
6224 		ss->n_items = MIN_N_ITEMS;
6225 	else {
6226 		int bitlog;
6227 
6228 		if ((bitlog = ddi_fls(n_items)) == ddi_ffs(n_items))
6229 			bitlog--;
6230 		ss->n_items = 1 << bitlog;
6231 	}
6232 
6233 	ASSERT(ss->n_items >= n_items);
6234 
6235 	ss->array = kmem_zalloc(ss->n_items * sizeof (void *), KM_SLEEP);
6236 
6237 	*state_p = ss;
6238 
6239 	return (0);
6240 }
6241 
6242 
6243 /*
6244  * Allocate a state structure of size 'size' to be associated
6245  * with item 'item'.
6246  *
6247  * In this implementation, the array is extended to
6248  * allow the requested offset, if needed.
6249  */
6250 int
6251 ddi_soft_state_zalloc(void *state, int item)
6252 {
6253 	struct i_ddi_soft_state *ss;
6254 	void **array;
6255 	void *new_element;
6256 
6257 	if ((ss = state) == NULL || item < 0)
6258 		return (DDI_FAILURE);
6259 
6260 	mutex_enter(&ss->lock);
6261 	if (ss->size == 0) {
6262 		mutex_exit(&ss->lock);
6263 		cmn_err(CE_WARN, "ddi_soft_state_zalloc: bad handle: %s",
6264 		    mod_containing_pc(caller()));
6265 		return (DDI_FAILURE);
6266 	}
6267 
6268 	array = ss->array;	/* NULL if ss->n_items == 0 */
6269 	ASSERT(ss->n_items != 0 && array != NULL);
6270 
6271 	/*
6272 	 * refuse to tread on an existing element
6273 	 */
6274 	if (item < ss->n_items && array[item] != NULL) {
6275 		mutex_exit(&ss->lock);
6276 		return (DDI_FAILURE);
6277 	}
6278 
6279 	/*
6280 	 * Allocate a new element to plug in
6281 	 */
6282 	new_element = kmem_zalloc(ss->size, KM_SLEEP);
6283 
6284 	/*
6285 	 * Check if the array is big enough, if not, grow it.
6286 	 */
6287 	if (item >= ss->n_items) {
6288 		void	**new_array;
6289 		size_t	new_n_items;
6290 		struct i_ddi_soft_state *dirty;
6291 
6292 		/*
6293 		 * Allocate a new array of the right length, copy
6294 		 * all the old pointers to the new array, then
6295 		 * if it exists at all, put the old array on the
6296 		 * dirty list.
6297 		 *
6298 		 * Note that we can't kmem_free() the old array.
6299 		 *
6300 		 * Why -- well the 'get' operation is 'mutex-free', so we
6301 		 * can't easily catch a suspended thread that is just about
6302 		 * to dereference the array we just grew out of.  So we
6303 		 * cons up a header and put it on a list of 'dirty'
6304 		 * pointer arrays.  (Dirty in the sense that there may
6305 		 * be suspended threads somewhere that are in the middle
6306 		 * of referencing them).  Fortunately, we -can- garbage
6307 		 * collect it all at ddi_soft_state_fini time.
6308 		 */
6309 		new_n_items = ss->n_items;
6310 		while (new_n_items < (1 + item))
6311 			new_n_items <<= 1;	/* double array size .. */
6312 
6313 		ASSERT(new_n_items >= (1 + item));	/* sanity check! */
6314 
6315 		new_array = kmem_zalloc(new_n_items * sizeof (void *),
6316 		    KM_SLEEP);
6317 		/*
6318 		 * Copy the pointers into the new array
6319 		 */
6320 		bcopy(array, new_array, ss->n_items * sizeof (void *));
6321 
6322 		/*
6323 		 * Save the old array on the dirty list
6324 		 */
6325 		dirty = kmem_zalloc(sizeof (*dirty), KM_SLEEP);
6326 		dirty->array = ss->array;
6327 		dirty->n_items = ss->n_items;
6328 		dirty->next = ss->next;
6329 		ss->next = dirty;
6330 
6331 		ss->array = (array = new_array);
6332 		ss->n_items = new_n_items;
6333 	}
6334 
6335 	ASSERT(array != NULL && item < ss->n_items && array[item] == NULL);
6336 
6337 	array[item] = new_element;
6338 
6339 	mutex_exit(&ss->lock);
6340 	return (DDI_SUCCESS);
6341 }
6342 
6343 
6344 /*
6345  * Fetch a pointer to the allocated soft state structure.
6346  *
6347  * This is designed to be cheap.
6348  *
6349  * There's an argument that there should be more checking for
6350  * nil pointers and out of bounds on the array.. but we do a lot
6351  * of that in the alloc/free routines.
6352  *
6353  * An array has the convenience that we don't need to lock read-access
6354  * to it c.f. a linked list.  However our "expanding array" strategy
6355  * means that we should hold a readers lock on the i_ddi_soft_state
6356  * structure.
6357  *
6358  * However, from a performance viewpoint, we need to do it without
6359  * any locks at all -- this also makes it a leaf routine.  The algorithm
6360  * is 'lock-free' because we only discard the pointer arrays at
6361  * ddi_soft_state_fini() time.
6362  */
6363 void *
6364 ddi_get_soft_state(void *state, int item)
6365 {
6366 	struct i_ddi_soft_state *ss = state;
6367 
6368 	ASSERT(ss != NULL && item >= 0);
6369 
6370 	if (item < ss->n_items && ss->array != NULL)
6371 		return (ss->array[item]);
6372 	return (NULL);
6373 }
6374 
6375 /*
6376  * Free the state structure corresponding to 'item.'   Freeing an
6377  * element that has either gone or was never allocated is not
6378  * considered an error.  Note that we free the state structure, but
6379  * we don't shrink our pointer array, or discard 'dirty' arrays,
6380  * since even a few pointers don't really waste too much memory.
6381  *
6382  * Passing an item number that is out of bounds, or a null pointer will
6383  * provoke an error message.
6384  */
6385 void
6386 ddi_soft_state_free(void *state, int item)
6387 {
6388 	struct i_ddi_soft_state *ss;
6389 	void **array;
6390 	void *element;
6391 	static char msg[] = "ddi_soft_state_free:";
6392 
6393 	if ((ss = state) == NULL) {
6394 		cmn_err(CE_WARN, "%s null handle: %s",
6395 		    msg, mod_containing_pc(caller()));
6396 		return;
6397 	}
6398 
6399 	element = NULL;
6400 
6401 	mutex_enter(&ss->lock);
6402 
6403 	if ((array = ss->array) == NULL || ss->size == 0) {
6404 		cmn_err(CE_WARN, "%s bad handle: %s",
6405 		    msg, mod_containing_pc(caller()));
6406 	} else if (item < 0 || item >= ss->n_items) {
6407 		cmn_err(CE_WARN, "%s item %d not in range [0..%lu]: %s",
6408 		    msg, item, ss->n_items - 1, mod_containing_pc(caller()));
6409 	} else if (array[item] != NULL) {
6410 		element = array[item];
6411 		array[item] = NULL;
6412 	}
6413 
6414 	mutex_exit(&ss->lock);
6415 
6416 	if (element)
6417 		kmem_free(element, ss->size);
6418 }
6419 
6420 
6421 /*
6422  * Free the entire set of pointers, and any
6423  * soft state structures contained therein.
6424  *
6425  * Note that we don't grab the ss->lock mutex, even though
6426  * we're inspecting the various fields of the data structure.
6427  *
6428  * There is an implicit assumption that this routine will
6429  * never run concurrently with any of the above on this
6430  * particular state structure i.e. by the time the driver
6431  * calls this routine, there should be no other threads
6432  * running in the driver.
6433  */
6434 void
6435 ddi_soft_state_fini(void **state_p)
6436 {
6437 	struct i_ddi_soft_state *ss, *dirty;
6438 	int item;
6439 	static char msg[] = "ddi_soft_state_fini:";
6440 
6441 	if (state_p == NULL || (ss = *state_p) == NULL) {
6442 		cmn_err(CE_WARN, "%s null handle: %s",
6443 		    msg, mod_containing_pc(caller()));
6444 		return;
6445 	}
6446 
6447 	if (ss->size == 0) {
6448 		cmn_err(CE_WARN, "%s bad handle: %s",
6449 		    msg, mod_containing_pc(caller()));
6450 		return;
6451 	}
6452 
6453 	if (ss->n_items > 0) {
6454 		for (item = 0; item < ss->n_items; item++)
6455 			ddi_soft_state_free(ss, item);
6456 		kmem_free(ss->array, ss->n_items * sizeof (void *));
6457 	}
6458 
6459 	/*
6460 	 * Now delete any dirty arrays from previous 'grow' operations
6461 	 */
6462 	for (dirty = ss->next; dirty; dirty = ss->next) {
6463 		ss->next = dirty->next;
6464 		kmem_free(dirty->array, dirty->n_items * sizeof (void *));
6465 		kmem_free(dirty, sizeof (*dirty));
6466 	}
6467 
6468 	mutex_destroy(&ss->lock);
6469 	kmem_free(ss, sizeof (*ss));
6470 
6471 	*state_p = NULL;
6472 }
6473 
6474 /*
6475  * This sets the devi_addr entry in the dev_info structure 'dip' to 'name'.
6476  * Storage is double buffered to prevent updates during devi_addr use -
6477  * double buffering is adaquate for reliable ddi_deviname() consumption.
6478  * The double buffer is not freed until dev_info structure destruction
6479  * (by i_ddi_free_node).
6480  */
6481 void
6482 ddi_set_name_addr(dev_info_t *dip, char *name)
6483 {
6484 	char	*buf = DEVI(dip)->devi_addr_buf;
6485 	char	*newaddr;
6486 
6487 	if (buf == NULL) {
6488 		buf = kmem_zalloc(2 * MAXNAMELEN, KM_SLEEP);
6489 		DEVI(dip)->devi_addr_buf = buf;
6490 	}
6491 
6492 	if (name) {
6493 		ASSERT(strlen(name) < MAXNAMELEN);
6494 		newaddr = (DEVI(dip)->devi_addr == buf) ?
6495 		    (buf + MAXNAMELEN) : buf;
6496 		(void) strlcpy(newaddr, name, MAXNAMELEN);
6497 	} else
6498 		newaddr = NULL;
6499 
6500 	DEVI(dip)->devi_addr = newaddr;
6501 }
6502 
6503 char *
6504 ddi_get_name_addr(dev_info_t *dip)
6505 {
6506 	return (DEVI(dip)->devi_addr);
6507 }
6508 
6509 void
6510 ddi_set_parent_data(dev_info_t *dip, void *pd)
6511 {
6512 	DEVI(dip)->devi_parent_data = pd;
6513 }
6514 
6515 void *
6516 ddi_get_parent_data(dev_info_t *dip)
6517 {
6518 	return (DEVI(dip)->devi_parent_data);
6519 }
6520 
6521 /*
6522  * ddi_name_to_major: Returns the major number of a module given its name.
6523  */
6524 major_t
6525 ddi_name_to_major(char *name)
6526 {
6527 	return (mod_name_to_major(name));
6528 }
6529 
6530 /*
6531  * ddi_major_to_name: Returns the module name bound to a major number.
6532  */
6533 char *
6534 ddi_major_to_name(major_t major)
6535 {
6536 	return (mod_major_to_name(major));
6537 }
6538 
6539 /*
6540  * Return the name of the devinfo node pointed at by 'dip' in the buffer
6541  * pointed at by 'name.'  A devinfo node is named as a result of calling
6542  * ddi_initchild().
6543  *
6544  * Note: the driver must be held before calling this function!
6545  */
6546 char *
6547 ddi_deviname(dev_info_t *dip, char *name)
6548 {
6549 	char *addrname;
6550 	char none = '\0';
6551 
6552 	if (dip == ddi_root_node()) {
6553 		*name = '\0';
6554 		return (name);
6555 	}
6556 
6557 	if (i_ddi_node_state(dip) < DS_BOUND) {
6558 		addrname = &none;
6559 	} else {
6560 		/*
6561 		 * Use ddi_get_name_addr() without checking state so we get
6562 		 * a unit-address if we are called after ddi_set_name_addr()
6563 		 * by nexus DDI_CTL_INITCHILD code, but before completing
6564 		 * node promotion to DS_INITIALIZED.  We currently have
6565 		 * two situations where we are called in this state:
6566 		 *   o  For framework processing of a path-oriented alias.
6567 		 *   o  If a SCSA nexus driver calls ddi_devid_register()
6568 		 *	from it's tran_tgt_init(9E) implementation.
6569 		 */
6570 		addrname = ddi_get_name_addr(dip);
6571 		if (addrname == NULL)
6572 			addrname = &none;
6573 	}
6574 
6575 	if (*addrname == '\0') {
6576 		(void) sprintf(name, "/%s", ddi_node_name(dip));
6577 	} else {
6578 		(void) sprintf(name, "/%s@%s", ddi_node_name(dip), addrname);
6579 	}
6580 
6581 	return (name);
6582 }
6583 
6584 /*
6585  * Spits out the name of device node, typically name@addr, for a given node,
6586  * using the driver name, not the nodename.
6587  *
6588  * Used by match_parent. Not to be used elsewhere.
6589  */
6590 char *
6591 i_ddi_parname(dev_info_t *dip, char *name)
6592 {
6593 	char *addrname;
6594 
6595 	if (dip == ddi_root_node()) {
6596 		*name = '\0';
6597 		return (name);
6598 	}
6599 
6600 	ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED);
6601 
6602 	if (*(addrname = ddi_get_name_addr(dip)) == '\0')
6603 		(void) sprintf(name, "%s", ddi_binding_name(dip));
6604 	else
6605 		(void) sprintf(name, "%s@%s", ddi_binding_name(dip), addrname);
6606 	return (name);
6607 }
6608 
6609 static char *
6610 pathname_work(dev_info_t *dip, char *path)
6611 {
6612 	char *bp;
6613 
6614 	if (dip == ddi_root_node()) {
6615 		*path = '\0';
6616 		return (path);
6617 	}
6618 	(void) pathname_work(ddi_get_parent(dip), path);
6619 	bp = path + strlen(path);
6620 	(void) ddi_deviname(dip, bp);
6621 	return (path);
6622 }
6623 
6624 char *
6625 ddi_pathname(dev_info_t *dip, char *path)
6626 {
6627 	return (pathname_work(dip, path));
6628 }
6629 
6630 /*
6631  * Given a dev_t, return the pathname of the corresponding device in the
6632  * buffer pointed at by "path."  The buffer is assumed to be large enough
6633  * to hold the pathname of the device (MAXPATHLEN).
6634  *
6635  * The pathname of a device is the pathname of the devinfo node to which
6636  * the device "belongs," concatenated with the character ':' and the name
6637  * of the minor node corresponding to the dev_t.  If spec_type is 0 then
6638  * just the pathname of the devinfo node is returned without driving attach
6639  * of that node.  For a non-zero spec_type, an attach is performed and a
6640  * search of the minor list occurs.
6641  *
6642  * It is possible that the path associated with the dev_t is not
6643  * currently available in the devinfo tree.  In order to have a
6644  * dev_t, a device must have been discovered before, which means
6645  * that the path is always in the instance tree.  The one exception
6646  * to this is if the dev_t is associated with a pseudo driver, in
6647  * which case the device must exist on the pseudo branch of the
6648  * devinfo tree as a result of parsing .conf files.
6649  */
6650 int
6651 ddi_dev_pathname(dev_t devt, int spec_type, char *path)
6652 {
6653 	major_t		major = getmajor(devt);
6654 	int		instance;
6655 	dev_info_t	*dip;
6656 	char		*minorname;
6657 	char		*drvname;
6658 
6659 	if (major >= devcnt)
6660 		goto fail;
6661 	if (major == clone_major) {
6662 		/* clone has no minor nodes, manufacture the path here */
6663 		if ((drvname = ddi_major_to_name(getminor(devt))) == NULL)
6664 			goto fail;
6665 
6666 		(void) snprintf(path, MAXPATHLEN, "%s:%s", CLONE_PATH, drvname);
6667 		return (DDI_SUCCESS);
6668 	}
6669 
6670 	/* extract instance from devt (getinfo(9E) DDI_INFO_DEVT2INSTANCE). */
6671 	if ((instance = dev_to_instance(devt)) == -1)
6672 		goto fail;
6673 
6674 	/* reconstruct the path given the major/instance */
6675 	if (e_ddi_majorinstance_to_path(major, instance, path) != DDI_SUCCESS)
6676 		goto fail;
6677 
6678 	/* if spec_type given we must drive attach and search minor nodes */
6679 	if ((spec_type == S_IFCHR) || (spec_type == S_IFBLK)) {
6680 		/* attach the path so we can search minors */
6681 		if ((dip = e_ddi_hold_devi_by_path(path, 0)) == NULL)
6682 			goto fail;
6683 
6684 		/* Add minorname to path. */
6685 		mutex_enter(&(DEVI(dip)->devi_lock));
6686 		minorname = i_ddi_devtspectype_to_minorname(dip,
6687 		    devt, spec_type);
6688 		if (minorname) {
6689 			(void) strcat(path, ":");
6690 			(void) strcat(path, minorname);
6691 		}
6692 		mutex_exit(&(DEVI(dip)->devi_lock));
6693 		ddi_release_devi(dip);
6694 		if (minorname == NULL)
6695 			goto fail;
6696 	}
6697 	ASSERT(strlen(path) < MAXPATHLEN);
6698 	return (DDI_SUCCESS);
6699 
6700 fail:	*path = 0;
6701 	return (DDI_FAILURE);
6702 }
6703 
6704 /*
6705  * Given a major number and an instance, return the path.
6706  * This interface does NOT drive attach.
6707  */
6708 int
6709 e_ddi_majorinstance_to_path(major_t major, int instance, char *path)
6710 {
6711 	struct devnames *dnp;
6712 	dev_info_t	*dip;
6713 
6714 	if ((major >= devcnt) || (instance == -1)) {
6715 		*path = 0;
6716 		return (DDI_FAILURE);
6717 	}
6718 
6719 	/* look for the major/instance in the instance tree */
6720 	if (e_ddi_instance_majorinstance_to_path(major, instance,
6721 	    path) == DDI_SUCCESS) {
6722 		ASSERT(strlen(path) < MAXPATHLEN);
6723 		return (DDI_SUCCESS);
6724 	}
6725 
6726 	/*
6727 	 * Not in instance tree, find the instance on the per driver list and
6728 	 * construct path to instance via ddi_pathname(). This is how paths
6729 	 * down the 'pseudo' branch are constructed.
6730 	 */
6731 	dnp = &(devnamesp[major]);
6732 	LOCK_DEV_OPS(&(dnp->dn_lock));
6733 	for (dip = dnp->dn_head; dip;
6734 	    dip = (dev_info_t *)DEVI(dip)->devi_next) {
6735 		/* Skip if instance does not match. */
6736 		if (DEVI(dip)->devi_instance != instance)
6737 			continue;
6738 
6739 		/*
6740 		 * An ndi_hold_devi() does not prevent DS_INITIALIZED->DS_BOUND
6741 		 * node demotion, so it is not an effective way of ensuring
6742 		 * that the ddi_pathname result has a unit-address.  Instead,
6743 		 * we reverify the node state after calling ddi_pathname().
6744 		 */
6745 		if (i_ddi_node_state(dip) >= DS_INITIALIZED) {
6746 			(void) ddi_pathname(dip, path);
6747 			if (i_ddi_node_state(dip) < DS_INITIALIZED)
6748 				continue;
6749 			UNLOCK_DEV_OPS(&(dnp->dn_lock));
6750 			ASSERT(strlen(path) < MAXPATHLEN);
6751 			return (DDI_SUCCESS);
6752 		}
6753 	}
6754 	UNLOCK_DEV_OPS(&(dnp->dn_lock));
6755 
6756 	/* can't reconstruct the path */
6757 	*path = 0;
6758 	return (DDI_FAILURE);
6759 }
6760 
6761 #define	GLD_DRIVER_PPA "SUNW,gld_v0_ppa"
6762 
6763 /*
6764  * Given the dip for a network interface return the ppa for that interface.
6765  *
6766  * In all cases except GLD v0 drivers, the ppa == instance.
6767  * In the case of GLD v0 drivers, the ppa is equal to the attach order.
6768  * So for these drivers when the attach routine calls gld_register(),
6769  * the GLD framework creates an integer property called "gld_driver_ppa"
6770  * that can be queried here.
6771  *
6772  * The only time this function is used is when a system is booting over nfs.
6773  * In this case the system has to resolve the pathname of the boot device
6774  * to it's ppa.
6775  */
6776 int
6777 i_ddi_devi_get_ppa(dev_info_t *dip)
6778 {
6779 	return (ddi_prop_get_int(DDI_DEV_T_ANY, dip,
6780 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
6781 	    GLD_DRIVER_PPA, ddi_get_instance(dip)));
6782 }
6783 
6784 /*
6785  * i_ddi_devi_set_ppa() should only be called from gld_register()
6786  * and only for GLD v0 drivers
6787  */
6788 void
6789 i_ddi_devi_set_ppa(dev_info_t *dip, int ppa)
6790 {
6791 	(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, GLD_DRIVER_PPA, ppa);
6792 }
6793 
6794 
6795 /*
6796  * Private DDI Console bell functions.
6797  */
6798 void
6799 ddi_ring_console_bell(clock_t duration)
6800 {
6801 	if (ddi_console_bell_func != NULL)
6802 		(*ddi_console_bell_func)(duration);
6803 }
6804 
6805 void
6806 ddi_set_console_bell(void (*bellfunc)(clock_t duration))
6807 {
6808 	ddi_console_bell_func = bellfunc;
6809 }
6810 
6811 int
6812 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr,
6813 	int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
6814 {
6815 	int (*funcp)() = ddi_dma_allochdl;
6816 	ddi_dma_attr_t dma_attr;
6817 	struct bus_ops *bop;
6818 
6819 	if (attr == (ddi_dma_attr_t *)0)
6820 		return (DDI_DMA_BADATTR);
6821 
6822 	dma_attr = *attr;
6823 
6824 	bop = DEVI(dip)->devi_ops->devo_bus_ops;
6825 	if (bop && bop->bus_dma_allochdl)
6826 		funcp = bop->bus_dma_allochdl;
6827 
6828 	return ((*funcp)(dip, dip, &dma_attr, waitfp, arg, handlep));
6829 }
6830 
6831 void
6832 ddi_dma_free_handle(ddi_dma_handle_t *handlep)
6833 {
6834 	ddi_dma_handle_t h = *handlep;
6835 	(void) ddi_dma_freehdl(HD, HD, h);
6836 }
6837 
6838 static uintptr_t dma_mem_list_id = 0;
6839 
6840 
6841 int
6842 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
6843 	ddi_device_acc_attr_t *accattrp, uint_t flags,
6844 	int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,
6845 	size_t *real_length, ddi_acc_handle_t *handlep)
6846 {
6847 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6848 	dev_info_t *dip = hp->dmai_rdip;
6849 	ddi_acc_hdl_t *ap;
6850 	ddi_dma_attr_t *attrp = &hp->dmai_attr;
6851 	uint_t sleepflag, xfermodes;
6852 	int (*fp)(caddr_t);
6853 	int rval;
6854 
6855 	if (waitfp == DDI_DMA_SLEEP)
6856 		fp = (int (*)())KM_SLEEP;
6857 	else if (waitfp == DDI_DMA_DONTWAIT)
6858 		fp = (int (*)())KM_NOSLEEP;
6859 	else
6860 		fp = waitfp;
6861 	*handlep = impl_acc_hdl_alloc(fp, arg);
6862 	if (*handlep == NULL)
6863 		return (DDI_FAILURE);
6864 
6865 	/* check if the cache attributes are supported */
6866 	if (i_ddi_check_cache_attr(flags) == B_FALSE)
6867 		return (DDI_FAILURE);
6868 
6869 	/*
6870 	 * Transfer the meaningful bits to xfermodes.
6871 	 * Double-check if the 3rd party driver correctly sets the bits.
6872 	 * If not, set DDI_DMA_STREAMING to keep compatibility.
6873 	 */
6874 	xfermodes = flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING);
6875 	if (xfermodes == 0) {
6876 		xfermodes = DDI_DMA_STREAMING;
6877 	}
6878 
6879 	/*
6880 	 * initialize the common elements of data access handle
6881 	 */
6882 	ap = impl_acc_hdl_get(*handlep);
6883 	ap->ah_vers = VERS_ACCHDL;
6884 	ap->ah_dip = dip;
6885 	ap->ah_offset = 0;
6886 	ap->ah_len = 0;
6887 	ap->ah_xfermodes = flags;
6888 	ap->ah_acc = *accattrp;
6889 
6890 	sleepflag = ((waitfp == DDI_DMA_SLEEP) ? 1 : 0);
6891 	if (xfermodes == DDI_DMA_CONSISTENT) {
6892 		rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
6893 		    flags, accattrp, kaddrp, NULL, ap);
6894 		*real_length = length;
6895 	} else {
6896 		rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
6897 		    flags, accattrp, kaddrp, real_length, ap);
6898 	}
6899 	if (rval == DDI_SUCCESS) {
6900 		ap->ah_len = (off_t)(*real_length);
6901 		ap->ah_addr = *kaddrp;
6902 	} else {
6903 		impl_acc_hdl_free(*handlep);
6904 		*handlep = (ddi_acc_handle_t)NULL;
6905 		if (waitfp != DDI_DMA_SLEEP && waitfp != DDI_DMA_DONTWAIT) {
6906 			ddi_set_callback(waitfp, arg, &dma_mem_list_id);
6907 		}
6908 		rval = DDI_FAILURE;
6909 	}
6910 	return (rval);
6911 }
6912 
6913 void
6914 ddi_dma_mem_free(ddi_acc_handle_t *handlep)
6915 {
6916 	ddi_acc_hdl_t *ap;
6917 
6918 	ap = impl_acc_hdl_get(*handlep);
6919 	ASSERT(ap);
6920 
6921 	i_ddi_mem_free((caddr_t)ap->ah_addr, ap);
6922 
6923 	/*
6924 	 * free the handle
6925 	 */
6926 	impl_acc_hdl_free(*handlep);
6927 	*handlep = (ddi_acc_handle_t)NULL;
6928 
6929 	if (dma_mem_list_id != 0) {
6930 		ddi_run_callback(&dma_mem_list_id);
6931 	}
6932 }
6933 
6934 int
6935 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp,
6936 	uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,
6937 	ddi_dma_cookie_t *cookiep, uint_t *ccountp)
6938 {
6939 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6940 	dev_info_t *hdip, *dip;
6941 	struct ddi_dma_req dmareq;
6942 	int (*funcp)();
6943 
6944 	dmareq.dmar_flags = flags;
6945 	dmareq.dmar_fp = waitfp;
6946 	dmareq.dmar_arg = arg;
6947 	dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount;
6948 
6949 	if (bp->b_flags & B_PAGEIO) {
6950 		dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES;
6951 		dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages;
6952 		dmareq.dmar_object.dmao_obj.pp_obj.pp_offset =
6953 		    (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET);
6954 	} else {
6955 		dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr;
6956 		if (bp->b_flags & B_SHADOW) {
6957 			dmareq.dmar_object.dmao_obj.virt_obj.v_priv =
6958 			    bp->b_shadow;
6959 			dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR;
6960 		} else {
6961 			dmareq.dmar_object.dmao_type =
6962 			    (bp->b_flags & (B_PHYS | B_REMAPPED)) ?
6963 			    DMA_OTYP_BUFVADDR : DMA_OTYP_VADDR;
6964 			dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
6965 		}
6966 
6967 		/*
6968 		 * If the buffer has no proc pointer, or the proc
6969 		 * struct has the kernel address space, or the buffer has
6970 		 * been marked B_REMAPPED (meaning that it is now
6971 		 * mapped into the kernel's address space), then
6972 		 * the address space is kas (kernel address space).
6973 		 */
6974 		if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) ||
6975 		    (bp->b_flags & B_REMAPPED)) {
6976 			dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0;
6977 		} else {
6978 			dmareq.dmar_object.dmao_obj.virt_obj.v_as =
6979 			    bp->b_proc->p_as;
6980 		}
6981 	}
6982 
6983 	dip = hp->dmai_rdip;
6984 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
6985 	funcp = DEVI(dip)->devi_bus_dma_bindfunc;
6986 	return ((*funcp)(hdip, dip, handle, &dmareq, cookiep, ccountp));
6987 }
6988 
6989 int
6990 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as,
6991 	caddr_t addr, size_t len, uint_t flags, int (*waitfp)(caddr_t),
6992 	caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
6993 {
6994 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6995 	dev_info_t *hdip, *dip;
6996 	struct ddi_dma_req dmareq;
6997 	int (*funcp)();
6998 
6999 	if (len == (uint_t)0) {
7000 		return (DDI_DMA_NOMAPPING);
7001 	}
7002 	dmareq.dmar_flags = flags;
7003 	dmareq.dmar_fp = waitfp;
7004 	dmareq.dmar_arg = arg;
7005 	dmareq.dmar_object.dmao_size = len;
7006 	dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR;
7007 	dmareq.dmar_object.dmao_obj.virt_obj.v_as = as;
7008 	dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr;
7009 	dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
7010 
7011 	dip = hp->dmai_rdip;
7012 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
7013 	funcp = DEVI(dip)->devi_bus_dma_bindfunc;
7014 	return ((*funcp)(hdip, dip, handle, &dmareq, cookiep, ccountp));
7015 }
7016 
7017 void
7018 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep)
7019 {
7020 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7021 	ddi_dma_cookie_t *cp;
7022 
7023 	cp = hp->dmai_cookie;
7024 	ASSERT(cp);
7025 
7026 	cookiep->dmac_notused = cp->dmac_notused;
7027 	cookiep->dmac_type = cp->dmac_type;
7028 	cookiep->dmac_address = cp->dmac_address;
7029 	cookiep->dmac_size = cp->dmac_size;
7030 	hp->dmai_cookie++;
7031 }
7032 
7033 int
7034 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp)
7035 {
7036 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7037 	if ((hp->dmai_rflags & DDI_DMA_PARTIAL) == 0) {
7038 		return (DDI_FAILURE);
7039 	} else {
7040 		*nwinp = hp->dmai_nwin;
7041 		return (DDI_SUCCESS);
7042 	}
7043 }
7044 
7045 int
7046 ddi_dma_getwin(ddi_dma_handle_t h, uint_t win, off_t *offp,
7047 	size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
7048 {
7049 	int (*funcp)() = ddi_dma_win;
7050 	struct bus_ops *bop;
7051 
7052 	bop = DEVI(HD)->devi_ops->devo_bus_ops;
7053 	if (bop && bop->bus_dma_win)
7054 		funcp = bop->bus_dma_win;
7055 
7056 	return ((*funcp)(HD, HD, h, win, offp, lenp, cookiep, ccountp));
7057 }
7058 
7059 int
7060 ddi_dma_set_sbus64(ddi_dma_handle_t h, ulong_t burstsizes)
7061 {
7062 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SET_SBUS64, 0,
7063 	    &burstsizes, 0, 0));
7064 }
7065 
7066 int
7067 i_ddi_dma_fault_check(ddi_dma_impl_t *hp)
7068 {
7069 	return (hp->dmai_fault);
7070 }
7071 
7072 int
7073 ddi_check_dma_handle(ddi_dma_handle_t handle)
7074 {
7075 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7076 	int (*check)(ddi_dma_impl_t *);
7077 
7078 	if ((check = hp->dmai_fault_check) == NULL)
7079 		check = i_ddi_dma_fault_check;
7080 
7081 	return (((*check)(hp) == DDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
7082 }
7083 
7084 void
7085 i_ddi_dma_set_fault(ddi_dma_handle_t handle)
7086 {
7087 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7088 	void (*notify)(ddi_dma_impl_t *);
7089 
7090 	if (!hp->dmai_fault) {
7091 		hp->dmai_fault = 1;
7092 		if ((notify = hp->dmai_fault_notify) != NULL)
7093 			(*notify)(hp);
7094 	}
7095 }
7096 
7097 void
7098 i_ddi_dma_clr_fault(ddi_dma_handle_t handle)
7099 {
7100 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
7101 	void (*notify)(ddi_dma_impl_t *);
7102 
7103 	if (hp->dmai_fault) {
7104 		hp->dmai_fault = 0;
7105 		if ((notify = hp->dmai_fault_notify) != NULL)
7106 			(*notify)(hp);
7107 	}
7108 }
7109 
7110 /*
7111  * register mapping routines.
7112  */
7113 int
7114 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp,
7115 	offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp,
7116 	ddi_acc_handle_t *handle)
7117 {
7118 	ddi_map_req_t mr;
7119 	ddi_acc_hdl_t *hp;
7120 	int result;
7121 
7122 	/*
7123 	 * Allocate and initialize the common elements of data access handle.
7124 	 */
7125 	*handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
7126 	hp = impl_acc_hdl_get(*handle);
7127 	hp->ah_vers = VERS_ACCHDL;
7128 	hp->ah_dip = dip;
7129 	hp->ah_rnumber = rnumber;
7130 	hp->ah_offset = offset;
7131 	hp->ah_len = len;
7132 	hp->ah_acc = *accattrp;
7133 
7134 	/*
7135 	 * Set up the mapping request and call to parent.
7136 	 */
7137 	mr.map_op = DDI_MO_MAP_LOCKED;
7138 	mr.map_type = DDI_MT_RNUMBER;
7139 	mr.map_obj.rnumber = rnumber;
7140 	mr.map_prot = PROT_READ | PROT_WRITE;
7141 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
7142 	mr.map_handlep = hp;
7143 	mr.map_vers = DDI_MAP_VERSION;
7144 	result = ddi_map(dip, &mr, offset, len, addrp);
7145 
7146 	/*
7147 	 * check for end result
7148 	 */
7149 	if (result != DDI_SUCCESS) {
7150 		impl_acc_hdl_free(*handle);
7151 		*handle = (ddi_acc_handle_t)NULL;
7152 	} else {
7153 		hp->ah_addr = *addrp;
7154 	}
7155 
7156 	return (result);
7157 }
7158 
7159 void
7160 ddi_regs_map_free(ddi_acc_handle_t *handlep)
7161 {
7162 	ddi_map_req_t mr;
7163 	ddi_acc_hdl_t *hp;
7164 
7165 	hp = impl_acc_hdl_get(*handlep);
7166 	ASSERT(hp);
7167 
7168 	mr.map_op = DDI_MO_UNMAP;
7169 	mr.map_type = DDI_MT_RNUMBER;
7170 	mr.map_obj.rnumber = hp->ah_rnumber;
7171 	mr.map_prot = PROT_READ | PROT_WRITE;
7172 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
7173 	mr.map_handlep = hp;
7174 	mr.map_vers = DDI_MAP_VERSION;
7175 
7176 	/*
7177 	 * Call my parent to unmap my regs.
7178 	 */
7179 	(void) ddi_map(hp->ah_dip, &mr, hp->ah_offset,
7180 	    hp->ah_len, &hp->ah_addr);
7181 	/*
7182 	 * free the handle
7183 	 */
7184 	impl_acc_hdl_free(*handlep);
7185 	*handlep = (ddi_acc_handle_t)NULL;
7186 }
7187 
7188 int
7189 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount,
7190 	ssize_t dev_advcnt, uint_t dev_datasz)
7191 {
7192 	uint8_t *b;
7193 	uint16_t *w;
7194 	uint32_t *l;
7195 	uint64_t *ll;
7196 
7197 	/* check for total byte count is multiple of data transfer size */
7198 	if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7199 		return (DDI_FAILURE);
7200 
7201 	switch (dev_datasz) {
7202 	case DDI_DATA_SZ01_ACC:
7203 		for (b = (uint8_t *)dev_addr;
7204 		    bytecount != 0; bytecount -= 1, b += dev_advcnt)
7205 			ddi_put8(handle, b, 0);
7206 		break;
7207 	case DDI_DATA_SZ02_ACC:
7208 		for (w = (uint16_t *)dev_addr;
7209 		    bytecount != 0; bytecount -= 2, w += dev_advcnt)
7210 			ddi_put16(handle, w, 0);
7211 		break;
7212 	case DDI_DATA_SZ04_ACC:
7213 		for (l = (uint32_t *)dev_addr;
7214 		    bytecount != 0; bytecount -= 4, l += dev_advcnt)
7215 			ddi_put32(handle, l, 0);
7216 		break;
7217 	case DDI_DATA_SZ08_ACC:
7218 		for (ll = (uint64_t *)dev_addr;
7219 		    bytecount != 0; bytecount -= 8, ll += dev_advcnt)
7220 			ddi_put64(handle, ll, 0x0ll);
7221 		break;
7222 	default:
7223 		return (DDI_FAILURE);
7224 	}
7225 	return (DDI_SUCCESS);
7226 }
7227 
7228 int
7229 ddi_device_copy(
7230 	ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt,
7231 	ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt,
7232 	size_t bytecount, uint_t dev_datasz)
7233 {
7234 	uint8_t *b_src, *b_dst;
7235 	uint16_t *w_src, *w_dst;
7236 	uint32_t *l_src, *l_dst;
7237 	uint64_t *ll_src, *ll_dst;
7238 
7239 	/* check for total byte count is multiple of data transfer size */
7240 	if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7241 		return (DDI_FAILURE);
7242 
7243 	switch (dev_datasz) {
7244 	case DDI_DATA_SZ01_ACC:
7245 		b_src = (uint8_t *)src_addr;
7246 		b_dst = (uint8_t *)dest_addr;
7247 
7248 		for (; bytecount != 0; bytecount -= 1) {
7249 			ddi_put8(dest_handle, b_dst,
7250 			    ddi_get8(src_handle, b_src));
7251 			b_dst += dest_advcnt;
7252 			b_src += src_advcnt;
7253 		}
7254 		break;
7255 	case DDI_DATA_SZ02_ACC:
7256 		w_src = (uint16_t *)src_addr;
7257 		w_dst = (uint16_t *)dest_addr;
7258 
7259 		for (; bytecount != 0; bytecount -= 2) {
7260 			ddi_put16(dest_handle, w_dst,
7261 			    ddi_get16(src_handle, w_src));
7262 			w_dst += dest_advcnt;
7263 			w_src += src_advcnt;
7264 		}
7265 		break;
7266 	case DDI_DATA_SZ04_ACC:
7267 		l_src = (uint32_t *)src_addr;
7268 		l_dst = (uint32_t *)dest_addr;
7269 
7270 		for (; bytecount != 0; bytecount -= 4) {
7271 			ddi_put32(dest_handle, l_dst,
7272 			    ddi_get32(src_handle, l_src));
7273 			l_dst += dest_advcnt;
7274 			l_src += src_advcnt;
7275 		}
7276 		break;
7277 	case DDI_DATA_SZ08_ACC:
7278 		ll_src = (uint64_t *)src_addr;
7279 		ll_dst = (uint64_t *)dest_addr;
7280 
7281 		for (; bytecount != 0; bytecount -= 8) {
7282 			ddi_put64(dest_handle, ll_dst,
7283 			    ddi_get64(src_handle, ll_src));
7284 			ll_dst += dest_advcnt;
7285 			ll_src += src_advcnt;
7286 		}
7287 		break;
7288 	default:
7289 		return (DDI_FAILURE);
7290 	}
7291 	return (DDI_SUCCESS);
7292 }
7293 
7294 #define	swap16(value)  \
7295 	((((value) & 0xff) << 8) | ((value) >> 8))
7296 
7297 #define	swap32(value)	\
7298 	(((uint32_t)swap16((uint16_t)((value) & 0xffff)) << 16) | \
7299 	(uint32_t)swap16((uint16_t)((value) >> 16)))
7300 
7301 #define	swap64(value)	\
7302 	(((uint64_t)swap32((uint32_t)((value) & 0xffffffff)) \
7303 	    << 32) | \
7304 	(uint64_t)swap32((uint32_t)((value) >> 32)))
7305 
7306 uint16_t
7307 ddi_swap16(uint16_t value)
7308 {
7309 	return (swap16(value));
7310 }
7311 
7312 uint32_t
7313 ddi_swap32(uint32_t value)
7314 {
7315 	return (swap32(value));
7316 }
7317 
7318 uint64_t
7319 ddi_swap64(uint64_t value)
7320 {
7321 	return (swap64(value));
7322 }
7323 
7324 /*
7325  * Convert a binding name to a driver name.
7326  * A binding name is the name used to determine the driver for a
7327  * device - it may be either an alias for the driver or the name
7328  * of the driver itself.
7329  */
7330 char *
7331 i_binding_to_drv_name(char *bname)
7332 {
7333 	major_t major_no;
7334 
7335 	ASSERT(bname != NULL);
7336 
7337 	if ((major_no = ddi_name_to_major(bname)) == -1)
7338 		return (NULL);
7339 	return (ddi_major_to_name(major_no));
7340 }
7341 
7342 /*
7343  * Search for minor name that has specified dev_t and spec_type.
7344  * If spec_type is zero then any dev_t match works.  Since we
7345  * are returning a pointer to the minor name string, we require the
7346  * caller to do the locking.
7347  */
7348 char *
7349 i_ddi_devtspectype_to_minorname(dev_info_t *dip, dev_t dev, int spec_type)
7350 {
7351 	struct ddi_minor_data	*dmdp;
7352 
7353 	/*
7354 	 * The did layered driver currently intentionally returns a
7355 	 * devinfo ptr for an underlying sd instance based on a did
7356 	 * dev_t. In this case it is not an error.
7357 	 *
7358 	 * The did layered driver is associated with Sun Cluster.
7359 	 */
7360 	ASSERT((ddi_driver_major(dip) == getmajor(dev)) ||
7361 	    (strcmp(ddi_major_to_name(getmajor(dev)), "did") == 0));
7362 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_lock)));
7363 
7364 	for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7365 		if (((dmdp->type == DDM_MINOR) ||
7366 		    (dmdp->type == DDM_INTERNAL_PATH) ||
7367 		    (dmdp->type == DDM_DEFAULT)) &&
7368 		    (dmdp->ddm_dev == dev) &&
7369 		    ((((spec_type & (S_IFCHR|S_IFBLK))) == 0) ||
7370 		    (dmdp->ddm_spec_type == spec_type)))
7371 			return (dmdp->ddm_name);
7372 	}
7373 
7374 	return (NULL);
7375 }
7376 
7377 /*
7378  * Find the devt and spectype of the specified minor_name.
7379  * Return DDI_FAILURE if minor_name not found. Since we are
7380  * returning everything via arguments we can do the locking.
7381  */
7382 int
7383 i_ddi_minorname_to_devtspectype(dev_info_t *dip, char *minor_name,
7384 	dev_t *devtp, int *spectypep)
7385 {
7386 	struct ddi_minor_data	*dmdp;
7387 
7388 	/* deal with clone minor nodes */
7389 	if (dip == clone_dip) {
7390 		major_t	major;
7391 		/*
7392 		 * Make sure minor_name is a STREAMS driver.
7393 		 * We load the driver but don't attach to any instances.
7394 		 */
7395 
7396 		major = ddi_name_to_major(minor_name);
7397 		if (major == (major_t)-1)
7398 			return (DDI_FAILURE);
7399 
7400 		if (ddi_hold_driver(major) == NULL)
7401 			return (DDI_FAILURE);
7402 
7403 		if (STREAMSTAB(major) == NULL) {
7404 			ddi_rele_driver(major);
7405 			return (DDI_FAILURE);
7406 		}
7407 		ddi_rele_driver(major);
7408 
7409 		if (devtp)
7410 			*devtp = makedevice(clone_major, (minor_t)major);
7411 
7412 		if (spectypep)
7413 			*spectypep = S_IFCHR;
7414 
7415 		return (DDI_SUCCESS);
7416 	}
7417 
7418 	ASSERT(!MUTEX_HELD(&(DEVI(dip)->devi_lock)));
7419 	mutex_enter(&(DEVI(dip)->devi_lock));
7420 
7421 	for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7422 		if (((dmdp->type != DDM_MINOR) &&
7423 		    (dmdp->type != DDM_INTERNAL_PATH) &&
7424 		    (dmdp->type != DDM_DEFAULT)) ||
7425 		    strcmp(minor_name, dmdp->ddm_name))
7426 			continue;
7427 
7428 		if (devtp)
7429 			*devtp = dmdp->ddm_dev;
7430 
7431 		if (spectypep)
7432 			*spectypep = dmdp->ddm_spec_type;
7433 
7434 		mutex_exit(&(DEVI(dip)->devi_lock));
7435 		return (DDI_SUCCESS);
7436 	}
7437 
7438 	mutex_exit(&(DEVI(dip)->devi_lock));
7439 	return (DDI_FAILURE);
7440 }
7441 
7442 extern char	hw_serial[];
7443 static kmutex_t devid_gen_mutex;
7444 static short	devid_gen_number;
7445 
7446 #ifdef DEBUG
7447 
7448 static int	devid_register_corrupt = 0;
7449 static int	devid_register_corrupt_major = 0;
7450 static int	devid_register_corrupt_hint = 0;
7451 static int	devid_register_corrupt_hint_major = 0;
7452 
7453 static int devid_lyr_debug = 0;
7454 
7455 #define	DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)		\
7456 	if (devid_lyr_debug)					\
7457 		ddi_debug_devid_devts(msg, ndevs, devs)
7458 
7459 #else
7460 
7461 #define	DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)
7462 
7463 #endif /* DEBUG */
7464 
7465 
7466 #ifdef	DEBUG
7467 
7468 static void
7469 ddi_debug_devid_devts(char *msg, int ndevs, dev_t *devs)
7470 {
7471 	int i;
7472 
7473 	cmn_err(CE_CONT, "%s:\n", msg);
7474 	for (i = 0; i < ndevs; i++) {
7475 		cmn_err(CE_CONT, "    0x%lx\n", devs[i]);
7476 	}
7477 }
7478 
7479 static void
7480 ddi_debug_devid_paths(char *msg, int npaths, char **paths)
7481 {
7482 	int i;
7483 
7484 	cmn_err(CE_CONT, "%s:\n", msg);
7485 	for (i = 0; i < npaths; i++) {
7486 		cmn_err(CE_CONT, "    %s\n", paths[i]);
7487 	}
7488 }
7489 
7490 static void
7491 ddi_debug_devid_devts_per_path(char *path, int ndevs, dev_t *devs)
7492 {
7493 	int i;
7494 
7495 	cmn_err(CE_CONT, "dev_ts per path %s\n", path);
7496 	for (i = 0; i < ndevs; i++) {
7497 		cmn_err(CE_CONT, "    0x%lx\n", devs[i]);
7498 	}
7499 }
7500 
7501 #endif	/* DEBUG */
7502 
7503 /*
7504  * Register device id into DDI framework.
7505  * Must be called when device is attached.
7506  */
7507 static int
7508 i_ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7509 {
7510 	impl_devid_t	*i_devid = (impl_devid_t *)devid;
7511 	size_t		driver_len;
7512 	const char	*driver_name;
7513 	char		*devid_str;
7514 	major_t		major;
7515 
7516 	if ((dip == NULL) ||
7517 	    ((major = ddi_driver_major(dip)) == (major_t)-1))
7518 		return (DDI_FAILURE);
7519 
7520 	/* verify that the devid is valid */
7521 	if (ddi_devid_valid(devid) != DDI_SUCCESS)
7522 		return (DDI_FAILURE);
7523 
7524 	/* Updating driver name hint in devid */
7525 	driver_name = ddi_driver_name(dip);
7526 	driver_len = strlen(driver_name);
7527 	if (driver_len > DEVID_HINT_SIZE) {
7528 		/* Pick up last four characters of driver name */
7529 		driver_name += driver_len - DEVID_HINT_SIZE;
7530 		driver_len = DEVID_HINT_SIZE;
7531 	}
7532 	bzero(i_devid->did_driver, DEVID_HINT_SIZE);
7533 	bcopy(driver_name, i_devid->did_driver, driver_len);
7534 
7535 #ifdef DEBUG
7536 	/* Corrupt the devid for testing. */
7537 	if (devid_register_corrupt)
7538 		i_devid->did_id[0] += devid_register_corrupt;
7539 	if (devid_register_corrupt_major &&
7540 	    (major == devid_register_corrupt_major))
7541 		i_devid->did_id[0] += 1;
7542 	if (devid_register_corrupt_hint)
7543 		i_devid->did_driver[0] += devid_register_corrupt_hint;
7544 	if (devid_register_corrupt_hint_major &&
7545 	    (major == devid_register_corrupt_hint_major))
7546 		i_devid->did_driver[0] += 1;
7547 #endif /* DEBUG */
7548 
7549 	/* encode the devid as a string */
7550 	if ((devid_str = ddi_devid_str_encode(devid, NULL)) == NULL)
7551 		return (DDI_FAILURE);
7552 
7553 	/* add string as a string property */
7554 	if (ndi_prop_update_string(DDI_DEV_T_NONE, dip,
7555 	    DEVID_PROP_NAME, devid_str) != DDI_SUCCESS) {
7556 		cmn_err(CE_WARN, "%s%d: devid property update failed",
7557 		    ddi_driver_name(dip), ddi_get_instance(dip));
7558 		ddi_devid_str_free(devid_str);
7559 		return (DDI_FAILURE);
7560 	}
7561 
7562 	ddi_devid_str_free(devid_str);
7563 
7564 #ifdef	DEVID_COMPATIBILITY
7565 	/*
7566 	 * marker for devinfo snapshot compatibility.
7567 	 * This code gets deleted when di_devid is gone from libdevid
7568 	 */
7569 	DEVI(dip)->devi_devid = DEVID_COMPATIBILITY;
7570 #endif	/* DEVID_COMPATIBILITY */
7571 	return (DDI_SUCCESS);
7572 }
7573 
7574 int
7575 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7576 {
7577 	int rval;
7578 
7579 	rval = i_ddi_devid_register(dip, devid);
7580 	if (rval == DDI_SUCCESS) {
7581 		/*
7582 		 * Register devid in devid-to-path cache
7583 		 */
7584 		if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) {
7585 			mutex_enter(&DEVI(dip)->devi_lock);
7586 			DEVI(dip)->devi_flags |= DEVI_REGISTERED_DEVID;
7587 			mutex_exit(&DEVI(dip)->devi_lock);
7588 		} else {
7589 			cmn_err(CE_WARN, "%s%d: failed to cache devid",
7590 			    ddi_driver_name(dip), ddi_get_instance(dip));
7591 		}
7592 	} else {
7593 		cmn_err(CE_WARN, "%s%d: failed to register devid",
7594 		    ddi_driver_name(dip), ddi_get_instance(dip));
7595 	}
7596 	return (rval);
7597 }
7598 
7599 /*
7600  * Remove (unregister) device id from DDI framework.
7601  * Must be called when device is detached.
7602  */
7603 static void
7604 i_ddi_devid_unregister(dev_info_t *dip)
7605 {
7606 #ifdef	DEVID_COMPATIBILITY
7607 	/*
7608 	 * marker for micro release devinfo snapshot compatibility.
7609 	 * This code gets deleted for the minor release.
7610 	 */
7611 	DEVI(dip)->devi_devid = NULL;		/* unset DEVID_PROP */
7612 #endif	/* DEVID_COMPATIBILITY */
7613 
7614 	/* remove the devid property */
7615 	(void) ndi_prop_remove(DDI_DEV_T_NONE, dip, DEVID_PROP_NAME);
7616 }
7617 
7618 void
7619 ddi_devid_unregister(dev_info_t *dip)
7620 {
7621 	mutex_enter(&DEVI(dip)->devi_lock);
7622 	DEVI(dip)->devi_flags &= ~DEVI_REGISTERED_DEVID;
7623 	mutex_exit(&DEVI(dip)->devi_lock);
7624 	e_devid_cache_unregister(dip);
7625 	i_ddi_devid_unregister(dip);
7626 }
7627 
7628 /*
7629  * Allocate and initialize a device id.
7630  */
7631 int
7632 ddi_devid_init(
7633 	dev_info_t	*dip,
7634 	ushort_t	devid_type,
7635 	ushort_t	nbytes,
7636 	void		*id,
7637 	ddi_devid_t	*ret_devid)
7638 {
7639 	impl_devid_t	*i_devid;
7640 	int		sz = sizeof (*i_devid) + nbytes - sizeof (char);
7641 	int		driver_len;
7642 	const char	*driver_name;
7643 
7644 	switch (devid_type) {
7645 	case DEVID_SCSI3_WWN:
7646 		/*FALLTHRU*/
7647 	case DEVID_SCSI_SERIAL:
7648 		/*FALLTHRU*/
7649 	case DEVID_ATA_SERIAL:
7650 		/*FALLTHRU*/
7651 	case DEVID_ENCAP:
7652 		if (nbytes == 0)
7653 			return (DDI_FAILURE);
7654 		if (id == NULL)
7655 			return (DDI_FAILURE);
7656 		break;
7657 	case DEVID_FAB:
7658 		if (nbytes != 0)
7659 			return (DDI_FAILURE);
7660 		if (id != NULL)
7661 			return (DDI_FAILURE);
7662 		nbytes = sizeof (int) +
7663 		    sizeof (struct timeval32) + sizeof (short);
7664 		sz += nbytes;
7665 		break;
7666 	default:
7667 		return (DDI_FAILURE);
7668 	}
7669 
7670 	if ((i_devid = kmem_zalloc(sz, KM_SLEEP)) == NULL)
7671 		return (DDI_FAILURE);
7672 
7673 	i_devid->did_magic_hi = DEVID_MAGIC_MSB;
7674 	i_devid->did_magic_lo = DEVID_MAGIC_LSB;
7675 	i_devid->did_rev_hi = DEVID_REV_MSB;
7676 	i_devid->did_rev_lo = DEVID_REV_LSB;
7677 	DEVID_FORMTYPE(i_devid, devid_type);
7678 	DEVID_FORMLEN(i_devid, nbytes);
7679 
7680 	/* Fill in driver name hint */
7681 	driver_name = ddi_driver_name(dip);
7682 	driver_len = strlen(driver_name);
7683 	if (driver_len > DEVID_HINT_SIZE) {
7684 		/* Pick up last four characters of driver name */
7685 		driver_name += driver_len - DEVID_HINT_SIZE;
7686 		driver_len = DEVID_HINT_SIZE;
7687 	}
7688 
7689 	bcopy(driver_name, i_devid->did_driver, driver_len);
7690 
7691 	/* Fill in id field */
7692 	if (devid_type == DEVID_FAB) {
7693 		char		*cp;
7694 		int		hostid;
7695 		char		*hostid_cp = &hw_serial[0];
7696 		struct timeval32 timestamp32;
7697 		int		i;
7698 		int		*ip;
7699 		short		gen;
7700 
7701 		/* increase the generation number */
7702 		mutex_enter(&devid_gen_mutex);
7703 		gen = devid_gen_number++;
7704 		mutex_exit(&devid_gen_mutex);
7705 
7706 		cp = i_devid->did_id;
7707 
7708 		/* Fill in host id (big-endian byte ordering) */
7709 		hostid = stoi(&hostid_cp);
7710 		*cp++ = hibyte(hiword(hostid));
7711 		*cp++ = lobyte(hiword(hostid));
7712 		*cp++ = hibyte(loword(hostid));
7713 		*cp++ = lobyte(loword(hostid));
7714 
7715 		/*
7716 		 * Fill in timestamp (big-endian byte ordering)
7717 		 *
7718 		 * (Note that the format may have to be changed
7719 		 * before 2038 comes around, though it's arguably
7720 		 * unique enough as it is..)
7721 		 */
7722 		uniqtime32(&timestamp32);
7723 		ip = (int *)&timestamp32;
7724 		for (i = 0;
7725 		    i < sizeof (timestamp32) / sizeof (int); i++, ip++) {
7726 			int	val;
7727 			val = *ip;
7728 			*cp++ = hibyte(hiword(val));
7729 			*cp++ = lobyte(hiword(val));
7730 			*cp++ = hibyte(loword(val));
7731 			*cp++ = lobyte(loword(val));
7732 		}
7733 
7734 		/* fill in the generation number */
7735 		*cp++ = hibyte(gen);
7736 		*cp++ = lobyte(gen);
7737 	} else
7738 		bcopy(id, i_devid->did_id, nbytes);
7739 
7740 	/* return device id */
7741 	*ret_devid = (ddi_devid_t)i_devid;
7742 	return (DDI_SUCCESS);
7743 }
7744 
7745 int
7746 ddi_devid_get(dev_info_t *dip, ddi_devid_t *ret_devid)
7747 {
7748 	return (i_ddi_devi_get_devid(DDI_DEV_T_ANY, dip, ret_devid));
7749 }
7750 
7751 int
7752 i_ddi_devi_get_devid(dev_t dev, dev_info_t *dip, ddi_devid_t *ret_devid)
7753 {
7754 	char		*devidstr;
7755 
7756 	ASSERT(dev != DDI_DEV_T_NONE);
7757 
7758 	/* look up the property, devt specific first */
7759 	if (ddi_prop_lookup_string(dev, dip, DDI_PROP_DONTPASS,
7760 	    DEVID_PROP_NAME, &devidstr) != DDI_PROP_SUCCESS) {
7761 		if ((dev == DDI_DEV_T_ANY) ||
7762 		    (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
7763 		    DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) !=
7764 		    DDI_PROP_SUCCESS)) {
7765 			return (DDI_FAILURE);
7766 		}
7767 	}
7768 
7769 	/* convert to binary form */
7770 	if (ddi_devid_str_decode(devidstr, ret_devid, NULL) == -1) {
7771 		ddi_prop_free(devidstr);
7772 		return (DDI_FAILURE);
7773 	}
7774 	ddi_prop_free(devidstr);
7775 	return (DDI_SUCCESS);
7776 }
7777 
7778 /*
7779  * Return a copy of the device id for dev_t
7780  */
7781 int
7782 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid)
7783 {
7784 	dev_info_t	*dip;
7785 	int		rval;
7786 
7787 	/* get the dip */
7788 	if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
7789 		return (DDI_FAILURE);
7790 
7791 	rval = i_ddi_devi_get_devid(dev, dip, ret_devid);
7792 
7793 	ddi_release_devi(dip);		/* e_ddi_hold_devi_by_dev() */
7794 	return (rval);
7795 }
7796 
7797 /*
7798  * Return a copy of the minor name for dev_t and spec_type
7799  */
7800 int
7801 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name)
7802 {
7803 	dev_info_t	*dip;
7804 	char		*nm;
7805 	size_t		alloc_sz, sz;
7806 
7807 	if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
7808 		return (DDI_FAILURE);
7809 
7810 	mutex_enter(&(DEVI(dip)->devi_lock));
7811 
7812 	if ((nm = i_ddi_devtspectype_to_minorname(dip,
7813 	    dev, spec_type)) == NULL) {
7814 		mutex_exit(&(DEVI(dip)->devi_lock));
7815 		ddi_release_devi(dip);	/* e_ddi_hold_devi_by_dev() */
7816 		return (DDI_FAILURE);
7817 	}
7818 
7819 	/* make a copy */
7820 	alloc_sz = strlen(nm) + 1;
7821 retry:
7822 	/* drop lock to allocate memory */
7823 	mutex_exit(&(DEVI(dip)->devi_lock));
7824 	*minor_name = kmem_alloc(alloc_sz, KM_SLEEP);
7825 	mutex_enter(&(DEVI(dip)->devi_lock));
7826 
7827 	/* re-check things, since we dropped the lock */
7828 	if ((nm = i_ddi_devtspectype_to_minorname(dip,
7829 	    dev, spec_type)) == NULL) {
7830 		mutex_exit(&(DEVI(dip)->devi_lock));
7831 		kmem_free(*minor_name, alloc_sz);
7832 		*minor_name = NULL;
7833 		ddi_release_devi(dip);	/* e_ddi_hold_devi_by_dev() */
7834 		return (DDI_FAILURE);
7835 	}
7836 
7837 	/* verify size is the same */
7838 	sz = strlen(nm) + 1;
7839 	if (alloc_sz != sz) {
7840 		kmem_free(*minor_name, alloc_sz);
7841 		alloc_sz = sz;
7842 		goto retry;
7843 	}
7844 
7845 	/* sz == alloc_sz - make a copy */
7846 	(void) strcpy(*minor_name, nm);
7847 
7848 	mutex_exit(&(DEVI(dip)->devi_lock));
7849 	ddi_release_devi(dip);	/* e_ddi_hold_devi_by_dev() */
7850 	return (DDI_SUCCESS);
7851 }
7852 
7853 int
7854 ddi_lyr_devid_to_devlist(
7855 	ddi_devid_t	devid,
7856 	char		*minor_name,
7857 	int		*retndevs,
7858 	dev_t		**retdevs)
7859 {
7860 	ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS);
7861 
7862 	if (e_devid_cache_to_devt_list(devid, minor_name,
7863 	    retndevs, retdevs) == DDI_SUCCESS) {
7864 		ASSERT(*retndevs > 0);
7865 		DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7866 		    *retndevs, *retdevs);
7867 		return (DDI_SUCCESS);
7868 	}
7869 
7870 	if (e_ddi_devid_discovery(devid) == DDI_FAILURE) {
7871 		return (DDI_FAILURE);
7872 	}
7873 
7874 	if (e_devid_cache_to_devt_list(devid, minor_name,
7875 	    retndevs, retdevs) == DDI_SUCCESS) {
7876 		ASSERT(*retndevs > 0);
7877 		DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7878 		    *retndevs, *retdevs);
7879 		return (DDI_SUCCESS);
7880 	}
7881 
7882 	return (DDI_FAILURE);
7883 }
7884 
7885 void
7886 ddi_lyr_free_devlist(dev_t *devlist, int ndevs)
7887 {
7888 	kmem_free(devlist, sizeof (dev_t) * ndevs);
7889 }
7890 
7891 /*
7892  * Note: This will need to be fixed if we ever allow processes to
7893  * have more than one data model per exec.
7894  */
7895 model_t
7896 ddi_mmap_get_model(void)
7897 {
7898 	return (get_udatamodel());
7899 }
7900 
7901 model_t
7902 ddi_model_convert_from(model_t model)
7903 {
7904 	return ((model & DDI_MODEL_MASK) & ~DDI_MODEL_NATIVE);
7905 }
7906 
7907 /*
7908  * ddi interfaces managing storage and retrieval of eventcookies.
7909  */
7910 
7911 /*
7912  * Invoke bus nexus driver's implementation of the
7913  * (*bus_remove_eventcall)() interface to remove a registered
7914  * callback handler for "event".
7915  */
7916 int
7917 ddi_remove_event_handler(ddi_callback_id_t id)
7918 {
7919 	ndi_event_callbacks_t *cb = (ndi_event_callbacks_t *)id;
7920 	dev_info_t *ddip;
7921 
7922 	ASSERT(cb);
7923 	if (!cb) {
7924 		return (DDI_FAILURE);
7925 	}
7926 
7927 	ddip = NDI_EVENT_DDIP(cb->ndi_evtcb_cookie);
7928 	return (ndi_busop_remove_eventcall(ddip, id));
7929 }
7930 
7931 /*
7932  * Invoke bus nexus driver's implementation of the
7933  * (*bus_add_eventcall)() interface to register a callback handler
7934  * for "event".
7935  */
7936 int
7937 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event,
7938     void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *),
7939     void *arg, ddi_callback_id_t *id)
7940 {
7941 	return (ndi_busop_add_eventcall(dip, dip, event, handler, arg, id));
7942 }
7943 
7944 
7945 /*
7946  * Return a handle for event "name" by calling up the device tree
7947  * hierarchy via  (*bus_get_eventcookie)() interface until claimed
7948  * by a bus nexus or top of dev_info tree is reached.
7949  */
7950 int
7951 ddi_get_eventcookie(dev_info_t *dip, char *name,
7952     ddi_eventcookie_t *event_cookiep)
7953 {
7954 	return (ndi_busop_get_eventcookie(dip, dip,
7955 	    name, event_cookiep));
7956 }
7957 
7958 /*
7959  * single thread access to dev_info node and set state
7960  */
7961 void
7962 i_devi_enter(dev_info_t *dip, uint_t s_mask, uint_t w_mask, int has_lock)
7963 {
7964 	if (!has_lock)
7965 		mutex_enter(&(DEVI(dip)->devi_lock));
7966 
7967 	ASSERT(mutex_owned(&(DEVI(dip)->devi_lock)));
7968 
7969 	/*
7970 	 * wait until state(s) have been changed
7971 	 */
7972 	while ((DEVI(dip)->devi_state & w_mask) != 0) {
7973 		cv_wait(&(DEVI(dip)->devi_cv), &(DEVI(dip)->devi_lock));
7974 	}
7975 	DEVI(dip)->devi_state |= s_mask;
7976 
7977 	if (!has_lock)
7978 		mutex_exit(&(DEVI(dip)->devi_lock));
7979 }
7980 
7981 void
7982 i_devi_exit(dev_info_t *dip, uint_t c_mask, int has_lock)
7983 {
7984 	if (!has_lock)
7985 		mutex_enter(&(DEVI(dip)->devi_lock));
7986 
7987 	ASSERT(mutex_owned(&(DEVI(dip)->devi_lock)));
7988 
7989 	/*
7990 	 * clear the state(s) and wakeup any threads waiting
7991 	 * for state change
7992 	 */
7993 	DEVI(dip)->devi_state &= ~c_mask;
7994 	cv_broadcast(&(DEVI(dip)->devi_cv));
7995 
7996 	if (!has_lock)
7997 		mutex_exit(&(DEVI(dip)->devi_lock));
7998 }
7999 
8000 /*
8001  * This procedure is provided as the general callback function when
8002  * umem_lockmemory calls as_add_callback for long term memory locking.
8003  * When as_unmap, as_setprot, or as_free encounter segments which have
8004  * locked memory, this callback will be invoked.
8005  */
8006 void
8007 umem_lock_undo(struct as *as, void *arg, uint_t event)
8008 {
8009 	_NOTE(ARGUNUSED(as, event))
8010 	struct ddi_umem_cookie *cp = (struct ddi_umem_cookie *)arg;
8011 
8012 	/*
8013 	 * Call the cleanup function.  Decrement the cookie reference
8014 	 * count, if it goes to zero, return the memory for the cookie.
8015 	 * The i_ddi_umem_unlock for this cookie may or may not have been
8016 	 * called already.  It is the responsibility of the caller of
8017 	 * umem_lockmemory to handle the case of the cleanup routine
8018 	 * being called after a ddi_umem_unlock for the cookie
8019 	 * was called.
8020 	 */
8021 
8022 	(*cp->callbacks.cbo_umem_lock_cleanup)((ddi_umem_cookie_t)cp);
8023 
8024 	/* remove the cookie if reference goes to zero */
8025 	if (atomic_add_long_nv((ulong_t *)(&(cp->cook_refcnt)), -1) == 0) {
8026 		kmem_free(cp, sizeof (struct ddi_umem_cookie));
8027 	}
8028 }
8029 
8030 /*
8031  * The following two Consolidation Private routines provide generic
8032  * interfaces to increase/decrease the amount of device-locked memory.
8033  *
8034  * To keep project_rele and project_hold consistent, i_ddi_decr_locked_memory()
8035  * must be called every time i_ddi_incr_locked_memory() is called.
8036  */
8037 int
8038 /* ARGSUSED */
8039 i_ddi_incr_locked_memory(proc_t *procp, rctl_qty_t inc)
8040 {
8041 	ASSERT(procp != NULL);
8042 	mutex_enter(&procp->p_lock);
8043 	if (rctl_incr_locked_mem(procp, NULL, inc, 1)) {
8044 		mutex_exit(&procp->p_lock);
8045 		return (ENOMEM);
8046 	}
8047 	mutex_exit(&procp->p_lock);
8048 	return (0);
8049 }
8050 
8051 /*
8052  * To keep project_rele and project_hold consistent, i_ddi_incr_locked_memory()
8053  * must be called every time i_ddi_decr_locked_memory() is called.
8054  */
8055 /* ARGSUSED */
8056 void
8057 i_ddi_decr_locked_memory(proc_t *procp, rctl_qty_t dec)
8058 {
8059 	ASSERT(procp != NULL);
8060 	mutex_enter(&procp->p_lock);
8061 	rctl_decr_locked_mem(procp, NULL, dec, 1);
8062 	mutex_exit(&procp->p_lock);
8063 }
8064 
8065 /*
8066  * This routine checks if the max-locked-memory resource ctl is
8067  * exceeded, if not increments it, grabs a hold on the project.
8068  * Returns 0 if successful otherwise returns error code
8069  */
8070 static int
8071 umem_incr_devlockmem(struct ddi_umem_cookie *cookie)
8072 {
8073 	proc_t		*procp;
8074 	int		ret;
8075 
8076 	ASSERT(cookie);
8077 	procp = cookie->procp;
8078 	ASSERT(procp);
8079 
8080 	if ((ret = i_ddi_incr_locked_memory(procp,
8081 	    cookie->size)) != 0) {
8082 		return (ret);
8083 	}
8084 	return (0);
8085 }
8086 
8087 /*
8088  * Decrements the max-locked-memory resource ctl and releases
8089  * the hold on the project that was acquired during umem_incr_devlockmem
8090  */
8091 static void
8092 umem_decr_devlockmem(struct ddi_umem_cookie *cookie)
8093 {
8094 	proc_t		*proc;
8095 
8096 	proc = (proc_t *)cookie->procp;
8097 	if (!proc)
8098 		return;
8099 
8100 	i_ddi_decr_locked_memory(proc, cookie->size);
8101 }
8102 
8103 /*
8104  * A consolidation private function which is essentially equivalent to
8105  * ddi_umem_lock but with the addition of arguments ops_vector and procp.
8106  * A call to as_add_callback is done if DDI_UMEMLOCK_LONGTERM is set, and
8107  * the ops_vector is valid.
8108  *
8109  * Lock the virtual address range in the current process and create a
8110  * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8111  * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8112  * to user space.
8113  *
8114  * Note: The resource control accounting currently uses a full charge model
8115  * in other words attempts to lock the same/overlapping areas of memory
8116  * will deduct the full size of the buffer from the projects running
8117  * counter for the device locked memory.
8118  *
8119  * addr, size should be PAGESIZE aligned
8120  *
8121  * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8122  *	identifies whether the locked memory will be read or written or both
8123  *      DDI_UMEMLOCK_LONGTERM  must be set when the locking will
8124  * be maintained for an indefinitely long period (essentially permanent),
8125  * rather than for what would be required for a typical I/O completion.
8126  * When DDI_UMEMLOCK_LONGTERM is set, umem_lockmemory will return EFAULT
8127  * if the memory pertains to a regular file which is mapped MAP_SHARED.
8128  * This is to prevent a deadlock if a file truncation is attempted after
8129  * after the locking is done.
8130  *
8131  * Returns 0 on success
8132  *	EINVAL - for invalid parameters
8133  *	EPERM, ENOMEM and other error codes returned by as_pagelock
8134  *	ENOMEM - is returned if the current request to lock memory exceeds
8135  *		*.max-locked-memory resource control value.
8136  *      EFAULT - memory pertains to a regular file mapped shared and
8137  *		and DDI_UMEMLOCK_LONGTERM flag is set
8138  *	EAGAIN - could not start the ddi_umem_unlock list processing thread
8139  */
8140 int
8141 umem_lockmemory(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie,
8142 		struct umem_callback_ops *ops_vector,
8143 		proc_t *procp)
8144 {
8145 	int	error;
8146 	struct ddi_umem_cookie *p;
8147 	void	(*driver_callback)() = NULL;
8148 	struct as *as = procp->p_as;
8149 	struct seg		*seg;
8150 	vnode_t			*vp;
8151 
8152 	*cookie = NULL;		/* in case of any error return */
8153 
8154 	/* These are the only three valid flags */
8155 	if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE |
8156 	    DDI_UMEMLOCK_LONGTERM)) != 0)
8157 		return (EINVAL);
8158 
8159 	/* At least one (can be both) of the two access flags must be set */
8160 	if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0)
8161 		return (EINVAL);
8162 
8163 	/* addr and len must be page-aligned */
8164 	if (((uintptr_t)addr & PAGEOFFSET) != 0)
8165 		return (EINVAL);
8166 
8167 	if ((len & PAGEOFFSET) != 0)
8168 		return (EINVAL);
8169 
8170 	/*
8171 	 * For longterm locking a driver callback must be specified; if
8172 	 * not longterm then a callback is optional.
8173 	 */
8174 	if (ops_vector != NULL) {
8175 		if (ops_vector->cbo_umem_callback_version !=
8176 		    UMEM_CALLBACK_VERSION)
8177 			return (EINVAL);
8178 		else
8179 			driver_callback = ops_vector->cbo_umem_lock_cleanup;
8180 	}
8181 	if ((driver_callback == NULL) && (flags & DDI_UMEMLOCK_LONGTERM))
8182 		return (EINVAL);
8183 
8184 	/*
8185 	 * Call i_ddi_umem_unlock_thread_start if necessary.  It will
8186 	 * be called on first ddi_umem_lock or umem_lockmemory call.
8187 	 */
8188 	if (ddi_umem_unlock_thread == NULL)
8189 		i_ddi_umem_unlock_thread_start();
8190 
8191 	/* Allocate memory for the cookie */
8192 	p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8193 
8194 	/* Convert the flags to seg_rw type */
8195 	if (flags & DDI_UMEMLOCK_WRITE) {
8196 		p->s_flags = S_WRITE;
8197 	} else {
8198 		p->s_flags = S_READ;
8199 	}
8200 
8201 	/* Store procp in cookie for later iosetup/unlock */
8202 	p->procp = (void *)procp;
8203 
8204 	/*
8205 	 * Store the struct as pointer in cookie for later use by
8206 	 * ddi_umem_unlock.  The proc->p_as will be stale if ddi_umem_unlock
8207 	 * is called after relvm is called.
8208 	 */
8209 	p->asp = as;
8210 
8211 	/*
8212 	 * The size field is needed for lockmem accounting.
8213 	 */
8214 	p->size = len;
8215 
8216 	if (umem_incr_devlockmem(p) != 0) {
8217 		/*
8218 		 * The requested memory cannot be locked
8219 		 */
8220 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8221 		*cookie = (ddi_umem_cookie_t)NULL;
8222 		return (ENOMEM);
8223 	}
8224 
8225 	/* Lock the pages corresponding to addr, len in memory */
8226 	error = as_pagelock(as, &(p->pparray), addr, len, p->s_flags);
8227 	if (error != 0) {
8228 		umem_decr_devlockmem(p);
8229 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8230 		*cookie = (ddi_umem_cookie_t)NULL;
8231 		return (error);
8232 	}
8233 
8234 	/*
8235 	 * For longterm locking the addr must pertain to a seg_vn segment or
8236 	 * or a seg_spt segment.
8237 	 * If the segment pertains to a regular file, it cannot be
8238 	 * mapped MAP_SHARED.
8239 	 * This is to prevent a deadlock if a file truncation is attempted
8240 	 * after the locking is done.
8241 	 * Doing this after as_pagelock guarantees persistence of the as; if
8242 	 * an unacceptable segment is found, the cleanup includes calling
8243 	 * as_pageunlock before returning EFAULT.
8244 	 */
8245 	if (flags & DDI_UMEMLOCK_LONGTERM) {
8246 		extern  struct seg_ops segspt_shmops;
8247 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
8248 		for (seg = as_segat(as, addr); ; seg = AS_SEGNEXT(as, seg)) {
8249 			if (seg == NULL || seg->s_base > addr + len)
8250 				break;
8251 			if (((seg->s_ops != &segvn_ops) &&
8252 			    (seg->s_ops != &segspt_shmops)) ||
8253 			    ((SEGOP_GETVP(seg, addr, &vp) == 0 &&
8254 			    vp != NULL && vp->v_type == VREG) &&
8255 			    (SEGOP_GETTYPE(seg, addr) & MAP_SHARED))) {
8256 				as_pageunlock(as, p->pparray,
8257 				    addr, len, p->s_flags);
8258 				AS_LOCK_EXIT(as, &as->a_lock);
8259 				umem_decr_devlockmem(p);
8260 				kmem_free(p, sizeof (struct ddi_umem_cookie));
8261 				*cookie = (ddi_umem_cookie_t)NULL;
8262 				return (EFAULT);
8263 			}
8264 		}
8265 		AS_LOCK_EXIT(as, &as->a_lock);
8266 	}
8267 
8268 
8269 	/* Initialize the fields in the ddi_umem_cookie */
8270 	p->cvaddr = addr;
8271 	p->type = UMEM_LOCKED;
8272 	if (driver_callback != NULL) {
8273 		/* i_ddi_umem_unlock and umem_lock_undo may need the cookie */
8274 		p->cook_refcnt = 2;
8275 		p->callbacks = *ops_vector;
8276 	} else {
8277 		/* only i_ddi_umme_unlock needs the cookie */
8278 		p->cook_refcnt = 1;
8279 	}
8280 
8281 	*cookie = (ddi_umem_cookie_t)p;
8282 
8283 	/*
8284 	 * If a driver callback was specified, add an entry to the
8285 	 * as struct callback list. The as_pagelock above guarantees
8286 	 * the persistence of as.
8287 	 */
8288 	if (driver_callback) {
8289 		error = as_add_callback(as, umem_lock_undo, p, AS_ALL_EVENT,
8290 		    addr, len, KM_SLEEP);
8291 		if (error != 0) {
8292 			as_pageunlock(as, p->pparray,
8293 			    addr, len, p->s_flags);
8294 			umem_decr_devlockmem(p);
8295 			kmem_free(p, sizeof (struct ddi_umem_cookie));
8296 			*cookie = (ddi_umem_cookie_t)NULL;
8297 		}
8298 	}
8299 	return (error);
8300 }
8301 
8302 /*
8303  * Unlock the pages locked by ddi_umem_lock or umem_lockmemory and free
8304  * the cookie.  Called from i_ddi_umem_unlock_thread.
8305  */
8306 
8307 static void
8308 i_ddi_umem_unlock(struct ddi_umem_cookie *p)
8309 {
8310 	uint_t	rc;
8311 
8312 	/*
8313 	 * There is no way to determine whether a callback to
8314 	 * umem_lock_undo was registered via as_add_callback.
8315 	 * (i.e. umem_lockmemory was called with DDI_MEMLOCK_LONGTERM and
8316 	 * a valid callback function structure.)  as_delete_callback
8317 	 * is called to delete a possible registered callback.  If the
8318 	 * return from as_delete_callbacks is AS_CALLBACK_DELETED, it
8319 	 * indicates that there was a callback registered, and that is was
8320 	 * successfully deleted.  Thus, the cookie reference count
8321 	 * will never be decremented by umem_lock_undo.  Just return the
8322 	 * memory for the cookie, since both users of the cookie are done.
8323 	 * A return of AS_CALLBACK_NOTFOUND indicates a callback was
8324 	 * never registered.  A return of AS_CALLBACK_DELETE_DEFERRED
8325 	 * indicates that callback processing is taking place and, and
8326 	 * umem_lock_undo is, or will be, executing, and thus decrementing
8327 	 * the cookie reference count when it is complete.
8328 	 *
8329 	 * This needs to be done before as_pageunlock so that the
8330 	 * persistence of as is guaranteed because of the locked pages.
8331 	 *
8332 	 */
8333 	rc = as_delete_callback(p->asp, p);
8334 
8335 
8336 	/*
8337 	 * The proc->p_as will be stale if i_ddi_umem_unlock is called
8338 	 * after relvm is called so use p->asp.
8339 	 */
8340 	as_pageunlock(p->asp, p->pparray, p->cvaddr, p->size, p->s_flags);
8341 
8342 	/*
8343 	 * Now that we have unlocked the memory decrement the
8344 	 * *.max-locked-memory rctl
8345 	 */
8346 	umem_decr_devlockmem(p);
8347 
8348 	if (rc == AS_CALLBACK_DELETED) {
8349 		/* umem_lock_undo will not happen, return the cookie memory */
8350 		ASSERT(p->cook_refcnt == 2);
8351 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8352 	} else {
8353 		/*
8354 		 * umem_undo_lock may happen if as_delete_callback returned
8355 		 * AS_CALLBACK_DELETE_DEFERRED.  In that case, decrement the
8356 		 * reference count, atomically, and return the cookie
8357 		 * memory if the reference count goes to zero.  The only
8358 		 * other value for rc is AS_CALLBACK_NOTFOUND.  In that
8359 		 * case, just return the cookie memory.
8360 		 */
8361 		if ((rc != AS_CALLBACK_DELETE_DEFERRED) ||
8362 		    (atomic_add_long_nv((ulong_t *)(&(p->cook_refcnt)), -1)
8363 		    == 0)) {
8364 			kmem_free(p, sizeof (struct ddi_umem_cookie));
8365 		}
8366 	}
8367 }
8368 
8369 /*
8370  * i_ddi_umem_unlock_thread - deferred ddi_umem_unlock list handler.
8371  *
8372  * Call i_ddi_umem_unlock for entries in the ddi_umem_unlock list
8373  * until it is empty.  Then, wait for more to be added.  This thread is awoken
8374  * via calls to ddi_umem_unlock.
8375  */
8376 
8377 static void
8378 i_ddi_umem_unlock_thread(void)
8379 {
8380 	struct ddi_umem_cookie	*ret_cookie;
8381 	callb_cpr_t	cprinfo;
8382 
8383 	/* process the ddi_umem_unlock list */
8384 	CALLB_CPR_INIT(&cprinfo, &ddi_umem_unlock_mutex,
8385 	    callb_generic_cpr, "unlock_thread");
8386 	for (;;) {
8387 		mutex_enter(&ddi_umem_unlock_mutex);
8388 		if (ddi_umem_unlock_head != NULL) {	/* list not empty */
8389 			ret_cookie = ddi_umem_unlock_head;
8390 			/* take if off the list */
8391 			if ((ddi_umem_unlock_head =
8392 			    ddi_umem_unlock_head->unl_forw) == NULL) {
8393 				ddi_umem_unlock_tail = NULL;
8394 			}
8395 			mutex_exit(&ddi_umem_unlock_mutex);
8396 			/* unlock the pages in this cookie */
8397 			(void) i_ddi_umem_unlock(ret_cookie);
8398 		} else {   /* list is empty, wait for next ddi_umem_unlock */
8399 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
8400 			cv_wait(&ddi_umem_unlock_cv, &ddi_umem_unlock_mutex);
8401 			CALLB_CPR_SAFE_END(&cprinfo, &ddi_umem_unlock_mutex);
8402 			mutex_exit(&ddi_umem_unlock_mutex);
8403 		}
8404 	}
8405 	/* ddi_umem_unlock_thread does not exit */
8406 	/* NOTREACHED */
8407 }
8408 
8409 /*
8410  * Start the thread that will process the ddi_umem_unlock list if it is
8411  * not already started (i_ddi_umem_unlock_thread).
8412  */
8413 static void
8414 i_ddi_umem_unlock_thread_start(void)
8415 {
8416 	mutex_enter(&ddi_umem_unlock_mutex);
8417 	if (ddi_umem_unlock_thread == NULL) {
8418 		ddi_umem_unlock_thread = thread_create(NULL, 0,
8419 		    i_ddi_umem_unlock_thread, NULL, 0, &p0,
8420 		    TS_RUN, minclsyspri);
8421 	}
8422 	mutex_exit(&ddi_umem_unlock_mutex);
8423 }
8424 
8425 /*
8426  * Lock the virtual address range in the current process and create a
8427  * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8428  * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8429  * to user space.
8430  *
8431  * Note: The resource control accounting currently uses a full charge model
8432  * in other words attempts to lock the same/overlapping areas of memory
8433  * will deduct the full size of the buffer from the projects running
8434  * counter for the device locked memory. This applies to umem_lockmemory too.
8435  *
8436  * addr, size should be PAGESIZE aligned
8437  * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8438  *	identifies whether the locked memory will be read or written or both
8439  *
8440  * Returns 0 on success
8441  *	EINVAL - for invalid parameters
8442  *	EPERM, ENOMEM and other error codes returned by as_pagelock
8443  *	ENOMEM - is returned if the current request to lock memory exceeds
8444  *		*.max-locked-memory resource control value.
8445  *	EAGAIN - could not start the ddi_umem_unlock list processing thread
8446  */
8447 int
8448 ddi_umem_lock(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie)
8449 {
8450 	int	error;
8451 	struct ddi_umem_cookie *p;
8452 
8453 	*cookie = NULL;		/* in case of any error return */
8454 
8455 	/* These are the only two valid flags */
8456 	if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) != 0) {
8457 		return (EINVAL);
8458 	}
8459 
8460 	/* At least one of the two flags (or both) must be set */
8461 	if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) {
8462 		return (EINVAL);
8463 	}
8464 
8465 	/* addr and len must be page-aligned */
8466 	if (((uintptr_t)addr & PAGEOFFSET) != 0) {
8467 		return (EINVAL);
8468 	}
8469 
8470 	if ((len & PAGEOFFSET) != 0) {
8471 		return (EINVAL);
8472 	}
8473 
8474 	/*
8475 	 * Call i_ddi_umem_unlock_thread_start if necessary.  It will
8476 	 * be called on first ddi_umem_lock or umem_lockmemory call.
8477 	 */
8478 	if (ddi_umem_unlock_thread == NULL)
8479 		i_ddi_umem_unlock_thread_start();
8480 
8481 	/* Allocate memory for the cookie */
8482 	p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8483 
8484 	/* Convert the flags to seg_rw type */
8485 	if (flags & DDI_UMEMLOCK_WRITE) {
8486 		p->s_flags = S_WRITE;
8487 	} else {
8488 		p->s_flags = S_READ;
8489 	}
8490 
8491 	/* Store curproc in cookie for later iosetup/unlock */
8492 	p->procp = (void *)curproc;
8493 
8494 	/*
8495 	 * Store the struct as pointer in cookie for later use by
8496 	 * ddi_umem_unlock.  The proc->p_as will be stale if ddi_umem_unlock
8497 	 * is called after relvm is called.
8498 	 */
8499 	p->asp = curproc->p_as;
8500 	/*
8501 	 * The size field is needed for lockmem accounting.
8502 	 */
8503 	p->size = len;
8504 
8505 	if (umem_incr_devlockmem(p) != 0) {
8506 		/*
8507 		 * The requested memory cannot be locked
8508 		 */
8509 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8510 		*cookie = (ddi_umem_cookie_t)NULL;
8511 		return (ENOMEM);
8512 	}
8513 
8514 	/* Lock the pages corresponding to addr, len in memory */
8515 	error = as_pagelock(((proc_t *)p->procp)->p_as, &(p->pparray),
8516 	    addr, len, p->s_flags);
8517 	if (error != 0) {
8518 		umem_decr_devlockmem(p);
8519 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8520 		*cookie = (ddi_umem_cookie_t)NULL;
8521 		return (error);
8522 	}
8523 
8524 	/* Initialize the fields in the ddi_umem_cookie */
8525 	p->cvaddr = addr;
8526 	p->type = UMEM_LOCKED;
8527 	p->cook_refcnt = 1;
8528 
8529 	*cookie = (ddi_umem_cookie_t)p;
8530 	return (error);
8531 }
8532 
8533 /*
8534  * Add the cookie to the ddi_umem_unlock list.  Pages will be
8535  * unlocked by i_ddi_umem_unlock_thread.
8536  */
8537 
8538 void
8539 ddi_umem_unlock(ddi_umem_cookie_t cookie)
8540 {
8541 	struct ddi_umem_cookie	*p = (struct ddi_umem_cookie *)cookie;
8542 
8543 	ASSERT(p->type == UMEM_LOCKED);
8544 	ASSERT(CPU_ON_INTR(CPU) == 0); /* cannot be high level */
8545 	ASSERT(ddi_umem_unlock_thread != NULL);
8546 
8547 	p->unl_forw = (struct ddi_umem_cookie *)NULL;	/* end of list */
8548 	/*
8549 	 * Queue the unlock request and notify i_ddi_umem_unlock thread
8550 	 * if it's called in the interrupt context. Otherwise, unlock pages
8551 	 * immediately.
8552 	 */
8553 	if (servicing_interrupt()) {
8554 		/* queue the unlock request and notify the thread */
8555 		mutex_enter(&ddi_umem_unlock_mutex);
8556 		if (ddi_umem_unlock_head == NULL) {
8557 			ddi_umem_unlock_head = ddi_umem_unlock_tail = p;
8558 			cv_broadcast(&ddi_umem_unlock_cv);
8559 		} else {
8560 			ddi_umem_unlock_tail->unl_forw = p;
8561 			ddi_umem_unlock_tail = p;
8562 		}
8563 		mutex_exit(&ddi_umem_unlock_mutex);
8564 	} else {
8565 		/* unlock the pages right away */
8566 		(void) i_ddi_umem_unlock(p);
8567 	}
8568 }
8569 
8570 /*
8571  * Create a buf structure from a ddi_umem_cookie
8572  * cookie - is a ddi_umem_cookie for from ddi_umem_lock and ddi_umem_alloc
8573  *		(only UMEM_LOCKED & KMEM_NON_PAGEABLE types supported)
8574  * off, len - identifies the portion of the memory represented by the cookie
8575  *		that the buf points to.
8576  *	NOTE: off, len need to follow the alignment/size restrictions of the
8577  *		device (dev) that this buf will be passed to. Some devices
8578  *		will accept unrestricted alignment/size, whereas others (such as
8579  *		st) require some block-size alignment/size. It is the caller's
8580  *		responsibility to ensure that the alignment/size restrictions
8581  *		are met (we cannot assert as we do not know the restrictions)
8582  *
8583  * direction - is one of B_READ or B_WRITE and needs to be compatible with
8584  *		the flags used in ddi_umem_lock
8585  *
8586  * The following three arguments are used to initialize fields in the
8587  * buf structure and are uninterpreted by this routine.
8588  *
8589  * dev
8590  * blkno
8591  * iodone
8592  *
8593  * sleepflag - is one of DDI_UMEM_SLEEP or DDI_UMEM_NOSLEEP
8594  *
8595  * Returns a buf structure pointer on success (to be freed by freerbuf)
8596  *	NULL on any parameter error or memory alloc failure
8597  *
8598  */
8599 struct buf *
8600 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len,
8601 	int direction, dev_t dev, daddr_t blkno,
8602 	int (*iodone)(struct buf *), int sleepflag)
8603 {
8604 	struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie;
8605 	struct buf *bp;
8606 
8607 	/*
8608 	 * check for valid cookie offset, len
8609 	 */
8610 	if ((off + len) > p->size) {
8611 		return (NULL);
8612 	}
8613 
8614 	if (len > p->size) {
8615 		return (NULL);
8616 	}
8617 
8618 	/* direction has to be one of B_READ or B_WRITE */
8619 	if ((direction != B_READ) && (direction != B_WRITE)) {
8620 		return (NULL);
8621 	}
8622 
8623 	/* These are the only two valid sleepflags */
8624 	if ((sleepflag != DDI_UMEM_SLEEP) && (sleepflag != DDI_UMEM_NOSLEEP)) {
8625 		return (NULL);
8626 	}
8627 
8628 	/*
8629 	 * Only cookies of type UMEM_LOCKED and KMEM_NON_PAGEABLE are supported
8630 	 */
8631 	if ((p->type != UMEM_LOCKED) && (p->type != KMEM_NON_PAGEABLE)) {
8632 		return (NULL);
8633 	}
8634 
8635 	/* If type is KMEM_NON_PAGEABLE procp is NULL */
8636 	ASSERT((p->type == KMEM_NON_PAGEABLE) ?
8637 	    (p->procp == NULL) : (p->procp != NULL));
8638 
8639 	bp = kmem_alloc(sizeof (struct buf), sleepflag);
8640 	if (bp == NULL) {
8641 		return (NULL);
8642 	}
8643 	bioinit(bp);
8644 
8645 	bp->b_flags = B_BUSY | B_PHYS | direction;
8646 	bp->b_edev = dev;
8647 	bp->b_lblkno = blkno;
8648 	bp->b_iodone = iodone;
8649 	bp->b_bcount = len;
8650 	bp->b_proc = (proc_t *)p->procp;
8651 	ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8652 	bp->b_un.b_addr = (caddr_t)((uintptr_t)(p->cvaddr) + off);
8653 	if (p->pparray != NULL) {
8654 		bp->b_flags |= B_SHADOW;
8655 		ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8656 		bp->b_shadow = p->pparray + btop(off);
8657 	}
8658 	return (bp);
8659 }
8660 
8661 /*
8662  * Fault-handling and related routines
8663  */
8664 
8665 ddi_devstate_t
8666 ddi_get_devstate(dev_info_t *dip)
8667 {
8668 	if (DEVI_IS_DEVICE_OFFLINE(dip))
8669 		return (DDI_DEVSTATE_OFFLINE);
8670 	else if (DEVI_IS_DEVICE_DOWN(dip) || DEVI_IS_BUS_DOWN(dip))
8671 		return (DDI_DEVSTATE_DOWN);
8672 	else if (DEVI_IS_BUS_QUIESCED(dip))
8673 		return (DDI_DEVSTATE_QUIESCED);
8674 	else if (DEVI_IS_DEVICE_DEGRADED(dip))
8675 		return (DDI_DEVSTATE_DEGRADED);
8676 	else
8677 		return (DDI_DEVSTATE_UP);
8678 }
8679 
8680 void
8681 ddi_dev_report_fault(dev_info_t *dip, ddi_fault_impact_t impact,
8682 	ddi_fault_location_t location, const char *message)
8683 {
8684 	struct ddi_fault_event_data fd;
8685 	ddi_eventcookie_t ec;
8686 
8687 	/*
8688 	 * Assemble all the information into a fault-event-data structure
8689 	 */
8690 	fd.f_dip = dip;
8691 	fd.f_impact = impact;
8692 	fd.f_location = location;
8693 	fd.f_message = message;
8694 	fd.f_oldstate = ddi_get_devstate(dip);
8695 
8696 	/*
8697 	 * Get eventcookie from defining parent.
8698 	 */
8699 	if (ddi_get_eventcookie(dip, DDI_DEVI_FAULT_EVENT, &ec) !=
8700 	    DDI_SUCCESS)
8701 		return;
8702 
8703 	(void) ndi_post_event(dip, dip, ec, &fd);
8704 }
8705 
8706 char *
8707 i_ddi_devi_class(dev_info_t *dip)
8708 {
8709 	return (DEVI(dip)->devi_device_class);
8710 }
8711 
8712 int
8713 i_ddi_set_devi_class(dev_info_t *dip, char *devi_class, int flag)
8714 {
8715 	struct dev_info *devi = DEVI(dip);
8716 
8717 	mutex_enter(&devi->devi_lock);
8718 
8719 	if (devi->devi_device_class)
8720 		kmem_free(devi->devi_device_class,
8721 		    strlen(devi->devi_device_class) + 1);
8722 
8723 	if ((devi->devi_device_class = i_ddi_strdup(devi_class, flag))
8724 	    != NULL) {
8725 		mutex_exit(&devi->devi_lock);
8726 		return (DDI_SUCCESS);
8727 	}
8728 
8729 	mutex_exit(&devi->devi_lock);
8730 
8731 	return (DDI_FAILURE);
8732 }
8733 
8734 
8735 /*
8736  * Task Queues DDI interfaces.
8737  */
8738 
8739 /* ARGSUSED */
8740 ddi_taskq_t *
8741 ddi_taskq_create(dev_info_t *dip, const char *name, int nthreads,
8742     pri_t pri, uint_t cflags)
8743 {
8744 	char full_name[TASKQ_NAMELEN];
8745 	const char *tq_name;
8746 	int nodeid = 0;
8747 
8748 	if (dip == NULL)
8749 		tq_name = name;
8750 	else {
8751 		nodeid = ddi_get_instance(dip);
8752 
8753 		if (name == NULL)
8754 			name = "tq";
8755 
8756 		(void) snprintf(full_name, sizeof (full_name), "%s_%s",
8757 		    ddi_driver_name(dip), name);
8758 
8759 		tq_name = full_name;
8760 	}
8761 
8762 	return ((ddi_taskq_t *)taskq_create_instance(tq_name, nodeid, nthreads,
8763 	    pri == TASKQ_DEFAULTPRI ? minclsyspri : pri,
8764 	    nthreads, INT_MAX, TASKQ_PREPOPULATE));
8765 }
8766 
8767 void
8768 ddi_taskq_destroy(ddi_taskq_t *tq)
8769 {
8770 	taskq_destroy((taskq_t *)tq);
8771 }
8772 
8773 int
8774 ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *),
8775     void *arg, uint_t dflags)
8776 {
8777 	taskqid_t id = taskq_dispatch((taskq_t *)tq, func, arg,
8778 	    dflags == DDI_SLEEP ? TQ_SLEEP : TQ_NOSLEEP);
8779 
8780 	return (id != 0 ? DDI_SUCCESS : DDI_FAILURE);
8781 }
8782 
8783 void
8784 ddi_taskq_wait(ddi_taskq_t *tq)
8785 {
8786 	taskq_wait((taskq_t *)tq);
8787 }
8788 
8789 void
8790 ddi_taskq_suspend(ddi_taskq_t *tq)
8791 {
8792 	taskq_suspend((taskq_t *)tq);
8793 }
8794 
8795 boolean_t
8796 ddi_taskq_suspended(ddi_taskq_t *tq)
8797 {
8798 	return (taskq_suspended((taskq_t *)tq));
8799 }
8800 
8801 void
8802 ddi_taskq_resume(ddi_taskq_t *tq)
8803 {
8804 	taskq_resume((taskq_t *)tq);
8805 }
8806 
8807 int
8808 ddi_parse(
8809 	const char	*ifname,
8810 	char		*alnum,
8811 	uint_t		*nump)
8812 {
8813 	const char	*p;
8814 	int		l;
8815 	ulong_t		num;
8816 	boolean_t	nonum = B_TRUE;
8817 	char		c;
8818 
8819 	l = strlen(ifname);
8820 	for (p = ifname + l; p != ifname; l--) {
8821 		c = *--p;
8822 		if (!isdigit(c)) {
8823 			(void) strlcpy(alnum, ifname, l + 1);
8824 			if (ddi_strtoul(p + 1, NULL, 10, &num) != 0)
8825 				return (DDI_FAILURE);
8826 			break;
8827 		}
8828 		nonum = B_FALSE;
8829 	}
8830 	if (l == 0 || nonum)
8831 		return (DDI_FAILURE);
8832 
8833 	*nump = num;
8834 	return (DDI_SUCCESS);
8835 }
8836