xref: /titanic_51/usr/src/uts/common/os/strsubr.c (revision 84e1ed4249618c81c3c770730fe3e5ba51a9a246)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/proc.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/session.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/stropts.h>
45 #include <sys/poll.h>
46 #include <sys/systm.h>
47 #include <sys/cpuvar.h>
48 #include <sys/uio.h>
49 #include <sys/cmn_err.h>
50 #include <sys/priocntl.h>
51 #include <sys/procset.h>
52 #include <sys/vmem.h>
53 #include <sys/bitmap.h>
54 #include <sys/kmem.h>
55 #include <sys/siginfo.h>
56 #include <sys/vtrace.h>
57 #include <sys/callb.h>
58 #include <sys/debug.h>
59 #include <sys/modctl.h>
60 #include <sys/vmsystm.h>
61 #include <vm/page.h>
62 #include <sys/atomic.h>
63 #include <sys/suntpi.h>
64 #include <sys/strlog.h>
65 #include <sys/promif.h>
66 #include <sys/project.h>
67 #include <sys/vm.h>
68 #include <sys/taskq.h>
69 #include <sys/sunddi.h>
70 #include <sys/sunldi_impl.h>
71 #include <sys/strsun.h>
72 #include <sys/isa_defs.h>
73 #include <sys/multidata.h>
74 #include <sys/pattr.h>
75 #include <sys/strft.h>
76 #include <sys/fs/snode.h>
77 #include <sys/zone.h>
78 #include <sys/open.h>
79 #include <sys/sunldi.h>
80 #include <sys/sad.h>
81 #include <sys/netstack.h>
82 
83 #define	O_SAMESTR(q)	(((q)->q_next) && \
84 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
85 
86 /*
87  * WARNING:
88  * The variables and routines in this file are private, belonging
89  * to the STREAMS subsystem. These should not be used by modules
90  * or drivers. Compatibility will not be guaranteed.
91  */
92 
93 /*
94  * Id value used to distinguish between different multiplexor links.
95  */
96 static int32_t lnk_id = 0;
97 
98 #define	STREAMS_LOPRI MINCLSYSPRI
99 static pri_t streams_lopri = STREAMS_LOPRI;
100 
101 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
102 typedef struct str_stat {
103 	kstat_named_t	sqenables;
104 	kstat_named_t	stenables;
105 	kstat_named_t	syncqservice;
106 	kstat_named_t	freebs;
107 	kstat_named_t	qwr_outer;
108 	kstat_named_t	rservice;
109 	kstat_named_t	strwaits;
110 	kstat_named_t	taskqfails;
111 	kstat_named_t	bufcalls;
112 	kstat_named_t	qhelps;
113 	kstat_named_t	qremoved;
114 	kstat_named_t	sqremoved;
115 	kstat_named_t	bcwaits;
116 	kstat_named_t	sqtoomany;
117 } str_stat_t;
118 
119 static str_stat_t str_statistics = {
120 	{ "sqenables",		KSTAT_DATA_UINT64 },
121 	{ "stenables",		KSTAT_DATA_UINT64 },
122 	{ "syncqservice",	KSTAT_DATA_UINT64 },
123 	{ "freebs",		KSTAT_DATA_UINT64 },
124 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
125 	{ "rservice",		KSTAT_DATA_UINT64 },
126 	{ "strwaits",		KSTAT_DATA_UINT64 },
127 	{ "taskqfails",		KSTAT_DATA_UINT64 },
128 	{ "bufcalls",		KSTAT_DATA_UINT64 },
129 	{ "qhelps",		KSTAT_DATA_UINT64 },
130 	{ "qremoved",		KSTAT_DATA_UINT64 },
131 	{ "sqremoved",		KSTAT_DATA_UINT64 },
132 	{ "bcwaits",		KSTAT_DATA_UINT64 },
133 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
134 };
135 
136 static kstat_t *str_kstat;
137 
138 /*
139  * qrunflag was used previously to control background scheduling of queues. It
140  * is not used anymore, but kept here in case some module still wants to access
141  * it via qready() and setqsched macros.
142  */
143 char qrunflag;			/*  Unused */
144 
145 /*
146  * Most of the streams scheduling is done via task queues. Task queues may fail
147  * for non-sleep dispatches, so there are two backup threads servicing failed
148  * requests for queues and syncqs. Both of these threads also service failed
149  * dispatches freebs requests. Queues are put in the list specified by `qhead'
150  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
151  * requests are put into `freebs_list' which has no tail pointer. All three
152  * lists are protected by a single `service_queue' lock and use
153  * `services_to_run' condition variable for signaling background threads. Use of
154  * a single lock should not be a problem because it is only used under heavy
155  * loads when task queues start to fail and at that time it may be a good idea
156  * to throttle scheduling requests.
157  *
158  * NOTE: queues and syncqs should be scheduled by two separate threads because
159  * queue servicing may be blocked waiting for a syncq which may be also
160  * scheduled for background execution. This may create a deadlock when only one
161  * thread is used for both.
162  */
163 
164 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
165 
166 static kmutex_t service_queue;		/* protects all of servicing vars */
167 static kcondvar_t services_to_run;	/* wake up background service thread */
168 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
169 
170 /*
171  * List of queues scheduled for background processing dueue to lack of resources
172  * in the task queues. Protected by service_queue lock;
173  */
174 static struct queue *qhead;
175 static struct queue *qtail;
176 
177 /*
178  * Same list for syncqs
179  */
180 static syncq_t *sqhead;
181 static syncq_t *sqtail;
182 
183 static mblk_t *freebs_list;	/* list of buffers to free */
184 
185 /*
186  * Backup threads for servicing queues and syncqs
187  */
188 kthread_t *streams_qbkgrnd_thread;
189 kthread_t *streams_sqbkgrnd_thread;
190 
191 /*
192  * Bufcalls related variables.
193  */
194 struct bclist	strbcalls;	/* list of waiting bufcalls */
195 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
196 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
197 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
198 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
199 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
200 
201 kmutex_t	strresources;	/* protects global resources */
202 kmutex_t	muxifier;	/* single-threads multiplexor creation */
203 
204 static void	*str_stack_init(netstackid_t stackid, netstack_t *ns);
205 static void	str_stack_shutdown(netstackid_t stackid, void *arg);
206 static void	str_stack_fini(netstackid_t stackid, void *arg);
207 
208 extern void	time_to_wait(clock_t *, clock_t);
209 
210 /*
211  * run_queues is no longer used, but is kept in case some 3-d party
212  * module/driver decides to use it.
213  */
214 int run_queues = 0;
215 
216 /*
217  * sq_max_size is the depth of the syncq (in number of messages) before
218  * qfill_syncq() starts QFULL'ing destination queues. As its primary
219  * consumer - IP is no longer D_MTPERMOD, but there may be other
220  * modules/drivers depend on this syncq flow control, we prefer to
221  * choose a large number as the default value. For potential
222  * performance gain, this value is tunable in /etc/system.
223  */
224 int sq_max_size = 10000;
225 
226 /*
227  * the number of ciputctrl structures per syncq and stream we create when
228  * needed.
229  */
230 int n_ciputctrl;
231 int max_n_ciputctrl = 16;
232 /*
233  * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
234  */
235 int min_n_ciputctrl = 2;
236 
237 /*
238  * Per-driver/module syncqs
239  * ========================
240  *
241  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
242  * perdm structures, new entries being added (and new syncqs allocated) when
243  * setq() encounters a module/driver with a streamtab that it hasn't seen
244  * before.
245  * The reason for this mechanism is that some modules and drivers share a
246  * common streamtab and it is necessary for those modules and drivers to also
247  * share a common PERMOD syncq.
248  *
249  * perdm_list --> dm_str == streamtab_1
250  *                dm_sq == syncq_1
251  *                dm_ref
252  *                dm_next --> dm_str == streamtab_2
253  *                            dm_sq == syncq_2
254  *                            dm_ref
255  *                            dm_next --> ... NULL
256  *
257  * The dm_ref field is incremented for each new driver/module that takes
258  * a reference to the perdm structure and hence shares the syncq.
259  * References are held in the fmodsw_impl_t structure for each STREAMS module
260  * or the dev_impl array (indexed by device major number) for each driver.
261  *
262  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
263  *		     ^                 ^ ^               ^
264  *                   |  ______________/  |               |
265  *                   | /                 |               |
266  * dev_impl:     ...|x|y|...          module A	      module B
267  *
268  * When a module/driver is unloaded the reference count is decremented and,
269  * when it falls to zero, the perdm structure is removed from the list and
270  * the syncq is freed (see rele_dm()).
271  */
272 perdm_t *perdm_list = NULL;
273 static krwlock_t perdm_rwlock;
274 cdevsw_impl_t *devimpl;
275 
276 extern struct qinit strdata;
277 extern struct qinit stwdata;
278 
279 static void runservice(queue_t *);
280 static void streams_bufcall_service(void);
281 static void streams_qbkgrnd_service(void);
282 static void streams_sqbkgrnd_service(void);
283 static syncq_t *new_syncq(void);
284 static void free_syncq(syncq_t *);
285 static void outer_insert(syncq_t *, syncq_t *);
286 static void outer_remove(syncq_t *, syncq_t *);
287 static void write_now(syncq_t *);
288 static void clr_qfull(queue_t *);
289 static void runbufcalls(void);
290 static void sqenable(syncq_t *);
291 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
292 static void wait_q_syncq(queue_t *);
293 static void backenable_insertedq(queue_t *);
294 
295 static void queue_service(queue_t *);
296 static void stream_service(stdata_t *);
297 static void syncq_service(syncq_t *);
298 static void qwriter_outer_service(syncq_t *);
299 static void mblk_free(mblk_t *);
300 #ifdef DEBUG
301 static int qprocsareon(queue_t *);
302 #endif
303 
304 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
305 static void reset_nfsrv_ptr(queue_t *, queue_t *);
306 void set_qfull(queue_t *);
307 
308 static void sq_run_events(syncq_t *);
309 static int propagate_syncq(queue_t *);
310 
311 static void	blocksq(syncq_t *, ushort_t, int);
312 static void	unblocksq(syncq_t *, ushort_t, int);
313 static int	dropsq(syncq_t *, uint16_t);
314 static void	emptysq(syncq_t *);
315 static sqlist_t *sqlist_alloc(struct stdata *, int);
316 static void	sqlist_free(sqlist_t *);
317 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
318 static void	sqlist_insert(sqlist_t *, syncq_t *);
319 static void	sqlist_insertall(sqlist_t *, queue_t *);
320 
321 static void	strsetuio(stdata_t *);
322 
323 struct kmem_cache *stream_head_cache;
324 struct kmem_cache *queue_cache;
325 struct kmem_cache *syncq_cache;
326 struct kmem_cache *qband_cache;
327 struct kmem_cache *linkinfo_cache;
328 struct kmem_cache *ciputctrl_cache = NULL;
329 
330 static linkinfo_t *linkinfo_list;
331 
332 /* global esballoc throttling queue */
333 static esb_queue_t	system_esbq;
334 
335 /*
336  * esballoc tunable parameters.
337  */
338 int		esbq_max_qlen = 0x16;	/* throttled queue length */
339 clock_t		esbq_timeout = 0x8;	/* timeout to process esb queue */
340 
341 /*
342  * routines to handle esballoc queuing.
343  */
344 static void esballoc_process_queue(esb_queue_t *);
345 static void esballoc_enqueue_mblk(mblk_t *);
346 static void esballoc_timer(void *);
347 static void esballoc_set_timer(esb_queue_t *, clock_t);
348 static void esballoc_mblk_free(mblk_t *);
349 
350 /*
351  *  Qinit structure and Module_info structures
352  *	for passthru read and write queues
353  */
354 
355 static void pass_wput(queue_t *, mblk_t *);
356 static queue_t *link_addpassthru(stdata_t *);
357 static void link_rempassthru(queue_t *);
358 
359 struct  module_info passthru_info = {
360 	0,
361 	"passthru",
362 	0,
363 	INFPSZ,
364 	STRHIGH,
365 	STRLOW
366 };
367 
368 struct  qinit passthru_rinit = {
369 	(int (*)())putnext,
370 	NULL,
371 	NULL,
372 	NULL,
373 	NULL,
374 	&passthru_info,
375 	NULL
376 };
377 
378 struct  qinit passthru_winit = {
379 	(int (*)()) pass_wput,
380 	NULL,
381 	NULL,
382 	NULL,
383 	NULL,
384 	&passthru_info,
385 	NULL
386 };
387 
388 /*
389  * Special form of assertion: verify that X implies Y i.e. when X is true Y
390  * should also be true.
391  */
392 #define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
393 
394 /*
395  * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
396  */
397 #define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
398 
399 /*
400  * Verify correctness of list head/tail pointers.
401  */
402 #define	LISTCHECK(head, tail, link) {				\
403 	EQUIV(head, tail);					\
404 	IMPLY(tail != NULL, tail->link == NULL);		\
405 }
406 
407 /*
408  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
409  * using a `link' field.
410  */
411 #define	ENQUEUE(el, head, tail, link) {				\
412 	ASSERT(el->link == NULL);				\
413 	LISTCHECK(head, tail, link);				\
414 	if (head == NULL)					\
415 		head = el;					\
416 	else							\
417 		tail->link = el;				\
418 	tail = el;						\
419 }
420 
421 /*
422  * Dequeue the first element of the list denoted by `head' and `tail' pointers
423  * using a `link' field and put result into `el'.
424  */
425 #define	DQ(el, head, tail, link) {				\
426 	LISTCHECK(head, tail, link);				\
427 	el = head;						\
428 	if (head != NULL) {					\
429 		head = head->link;				\
430 		if (head == NULL)				\
431 			tail = NULL;				\
432 		el->link = NULL;				\
433 	}							\
434 }
435 
436 /*
437  * Remove `el' from the list using `chase' and `curr' pointers and return result
438  * in `succeed'.
439  */
440 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
441 	LISTCHECK(head, tail, link);				\
442 	chase = NULL;						\
443 	succeed = 0;						\
444 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
445 		chase = curr;					\
446 	if (curr != NULL) {					\
447 		succeed = 1;					\
448 		ASSERT(curr == el);				\
449 		if (chase != NULL)				\
450 			chase->link = curr->link;		\
451 		else						\
452 			head = curr->link;			\
453 		curr->link = NULL;				\
454 		if (curr == tail)				\
455 			tail = chase;				\
456 	}							\
457 	LISTCHECK(head, tail, link);				\
458 }
459 
460 /* Handling of delayed messages on the inner syncq. */
461 
462 /*
463  * DEBUG versions should use function versions (to simplify tracing) and
464  * non-DEBUG kernels should use macro versions.
465  */
466 
467 /*
468  * Put a queue on the syncq list of queues.
469  * Assumes SQLOCK held.
470  */
471 #define	SQPUT_Q(sq, qp)							\
472 {									\
473 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
474 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
475 		/* The queue should not be linked anywhere */		\
476 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
477 		/* Head and tail may only be NULL simultaneously */	\
478 		EQUIV(sq->sq_head, sq->sq_tail);			\
479 		/* Queue may be only enqueyed on its syncq */		\
480 		ASSERT(sq == qp->q_syncq);				\
481 		/* Check the correctness of SQ_MESSAGES flag */		\
482 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
483 		/* Sanity check first/last elements of the list */	\
484 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
485 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
486 		/*							\
487 		 * Sanity check of priority field: empty queue should	\
488 		 * have zero priority					\
489 		 * and nqueues equal to zero.				\
490 		 */							\
491 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
492 		/* Sanity check of sq_nqueues field */			\
493 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
494 		if (sq->sq_head == NULL) {				\
495 			sq->sq_head = sq->sq_tail = qp;			\
496 			sq->sq_flags |= SQ_MESSAGES;			\
497 		} else if (qp->q_spri == 0) {				\
498 			qp->q_sqprev = sq->sq_tail;			\
499 			sq->sq_tail->q_sqnext = qp;			\
500 			sq->sq_tail = qp;				\
501 		} else {						\
502 			/*						\
503 			 * Put this queue in priority order: higher	\
504 			 * priority gets closer to the head.		\
505 			 */						\
506 			queue_t **qpp = &sq->sq_tail;			\
507 			queue_t *qnext = NULL;				\
508 									\
509 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
510 				qnext = *qpp;				\
511 				qpp = &(*qpp)->q_sqprev;		\
512 			}						\
513 			qp->q_sqnext = qnext;				\
514 			qp->q_sqprev = *qpp;				\
515 			if (*qpp != NULL) {				\
516 				(*qpp)->q_sqnext = qp;			\
517 			} else {					\
518 				sq->sq_head = qp;			\
519 				sq->sq_pri = sq->sq_head->q_spri;	\
520 			}						\
521 			*qpp = qp;					\
522 		}							\
523 		qp->q_sqflags |= Q_SQQUEUED;				\
524 		qp->q_sqtstamp = lbolt;					\
525 		sq->sq_nqueues++;					\
526 	}								\
527 }
528 
529 /*
530  * Remove a queue from the syncq list
531  * Assumes SQLOCK held.
532  */
533 #define	SQRM_Q(sq, qp)							\
534 	{								\
535 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
536 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
537 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
538 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
539 		/* Check that the queue is actually in the list */	\
540 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
541 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
542 		ASSERT(sq->sq_nqueues != 0);				\
543 		if (qp->q_sqprev == NULL) {				\
544 			/* First queue on list, make head q_sqnext */	\
545 			sq->sq_head = qp->q_sqnext;			\
546 		} else {						\
547 			/* Make prev->next == next */			\
548 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
549 		}							\
550 		if (qp->q_sqnext == NULL) {				\
551 			/* Last queue on list, make tail sqprev */	\
552 			sq->sq_tail = qp->q_sqprev;			\
553 		} else {						\
554 			/* Make next->prev == prev */			\
555 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
556 		}							\
557 		/* clear out references on this queue */		\
558 		qp->q_sqprev = qp->q_sqnext = NULL;			\
559 		qp->q_sqflags &= ~Q_SQQUEUED;				\
560 		/* If there is nothing queued, clear SQ_MESSAGES */	\
561 		if (sq->sq_head != NULL) {				\
562 			sq->sq_pri = sq->sq_head->q_spri;		\
563 		} else	{						\
564 			sq->sq_flags &= ~SQ_MESSAGES;			\
565 			sq->sq_pri = 0;					\
566 		}							\
567 		sq->sq_nqueues--;					\
568 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
569 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
570 	}
571 
572 /* Hide the definition from the header file. */
573 #ifdef SQPUT_MP
574 #undef SQPUT_MP
575 #endif
576 
577 /*
578  * Put a message on the queue syncq.
579  * Assumes QLOCK held.
580  */
581 #define	SQPUT_MP(qp, mp)						\
582 	{								\
583 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
584 		ASSERT(qp->q_sqhead == NULL ||				\
585 		    (qp->q_sqtail != NULL &&				\
586 		    qp->q_sqtail->b_next == NULL));			\
587 		qp->q_syncqmsgs++;					\
588 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
589 		if (qp->q_sqhead == NULL) {				\
590 			qp->q_sqhead = qp->q_sqtail = mp;		\
591 		} else {						\
592 			qp->q_sqtail->b_next = mp;			\
593 			qp->q_sqtail = mp;				\
594 		}							\
595 		ASSERT(qp->q_syncqmsgs > 0);				\
596 		set_qfull(qp);						\
597 	}
598 
599 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
600 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
601 		if ((sq)->sq_ciputctrl != NULL) {			\
602 			int i;						\
603 			int nlocks = (sq)->sq_nciputctrl;		\
604 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
605 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
606 			for (i = 0; i <= nlocks; i++) {			\
607 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
608 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
609 			}						\
610 		}							\
611 	}
612 
613 
614 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
615 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
616 		if ((sq)->sq_ciputctrl != NULL) {			\
617 			int i;						\
618 			int nlocks = (sq)->sq_nciputctrl;		\
619 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
620 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
621 			for (i = 0; i <= nlocks; i++) {			\
622 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
623 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
624 			}						\
625 		}							\
626 	}
627 
628 /*
629  * Run service procedures for all queues in the stream head.
630  */
631 #define	STR_SERVICE(stp, q) {						\
632 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
633 	while (stp->sd_qhead != NULL) {					\
634 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
635 		ASSERT(stp->sd_nqueues > 0);				\
636 		stp->sd_nqueues--;					\
637 		ASSERT(!(q->q_flag & QINSERVICE));			\
638 		mutex_exit(&stp->sd_qlock);				\
639 		queue_service(q);					\
640 		mutex_enter(&stp->sd_qlock);				\
641 	}								\
642 	ASSERT(stp->sd_nqueues == 0);					\
643 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
644 }
645 
646 /*
647  * constructor/destructor routines for the stream head cache
648  */
649 /* ARGSUSED */
650 static int
651 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
652 {
653 	stdata_t *stp = buf;
654 
655 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
656 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
657 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
658 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
659 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
660 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
661 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
662 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
663 	stp->sd_wrq = NULL;
664 
665 	return (0);
666 }
667 
668 /* ARGSUSED */
669 static void
670 stream_head_destructor(void *buf, void *cdrarg)
671 {
672 	stdata_t *stp = buf;
673 
674 	mutex_destroy(&stp->sd_lock);
675 	mutex_destroy(&stp->sd_reflock);
676 	mutex_destroy(&stp->sd_qlock);
677 	cv_destroy(&stp->sd_monitor);
678 	cv_destroy(&stp->sd_iocmonitor);
679 	cv_destroy(&stp->sd_refmonitor);
680 	cv_destroy(&stp->sd_qcv);
681 	cv_destroy(&stp->sd_zcopy_wait);
682 }
683 
684 /*
685  * constructor/destructor routines for the queue cache
686  */
687 /* ARGSUSED */
688 static int
689 queue_constructor(void *buf, void *cdrarg, int kmflags)
690 {
691 	queinfo_t *qip = buf;
692 	queue_t *qp = &qip->qu_rqueue;
693 	queue_t *wqp = &qip->qu_wqueue;
694 	syncq_t	*sq = &qip->qu_syncq;
695 
696 	qp->q_first = NULL;
697 	qp->q_link = NULL;
698 	qp->q_count = 0;
699 	qp->q_mblkcnt = 0;
700 	qp->q_sqhead = NULL;
701 	qp->q_sqtail = NULL;
702 	qp->q_sqnext = NULL;
703 	qp->q_sqprev = NULL;
704 	qp->q_sqflags = 0;
705 	qp->q_rwcnt = 0;
706 	qp->q_spri = 0;
707 
708 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
709 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
710 
711 	wqp->q_first = NULL;
712 	wqp->q_link = NULL;
713 	wqp->q_count = 0;
714 	wqp->q_mblkcnt = 0;
715 	wqp->q_sqhead = NULL;
716 	wqp->q_sqtail = NULL;
717 	wqp->q_sqnext = NULL;
718 	wqp->q_sqprev = NULL;
719 	wqp->q_sqflags = 0;
720 	wqp->q_rwcnt = 0;
721 	wqp->q_spri = 0;
722 
723 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
724 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
725 
726 	sq->sq_head = NULL;
727 	sq->sq_tail = NULL;
728 	sq->sq_evhead = NULL;
729 	sq->sq_evtail = NULL;
730 	sq->sq_callbpend = NULL;
731 	sq->sq_outer = NULL;
732 	sq->sq_onext = NULL;
733 	sq->sq_oprev = NULL;
734 	sq->sq_next = NULL;
735 	sq->sq_svcflags = 0;
736 	sq->sq_servcount = 0;
737 	sq->sq_needexcl = 0;
738 	sq->sq_nqueues = 0;
739 	sq->sq_pri = 0;
740 
741 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
742 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
743 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
744 
745 	return (0);
746 }
747 
748 /* ARGSUSED */
749 static void
750 queue_destructor(void *buf, void *cdrarg)
751 {
752 	queinfo_t *qip = buf;
753 	queue_t *qp = &qip->qu_rqueue;
754 	queue_t *wqp = &qip->qu_wqueue;
755 	syncq_t	*sq = &qip->qu_syncq;
756 
757 	ASSERT(qp->q_sqhead == NULL);
758 	ASSERT(wqp->q_sqhead == NULL);
759 	ASSERT(qp->q_sqnext == NULL);
760 	ASSERT(wqp->q_sqnext == NULL);
761 	ASSERT(qp->q_rwcnt == 0);
762 	ASSERT(wqp->q_rwcnt == 0);
763 
764 	mutex_destroy(&qp->q_lock);
765 	cv_destroy(&qp->q_wait);
766 
767 	mutex_destroy(&wqp->q_lock);
768 	cv_destroy(&wqp->q_wait);
769 
770 	mutex_destroy(&sq->sq_lock);
771 	cv_destroy(&sq->sq_wait);
772 	cv_destroy(&sq->sq_exitwait);
773 }
774 
775 /*
776  * constructor/destructor routines for the syncq cache
777  */
778 /* ARGSUSED */
779 static int
780 syncq_constructor(void *buf, void *cdrarg, int kmflags)
781 {
782 	syncq_t	*sq = buf;
783 
784 	bzero(buf, sizeof (syncq_t));
785 
786 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
787 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
788 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
789 
790 	return (0);
791 }
792 
793 /* ARGSUSED */
794 static void
795 syncq_destructor(void *buf, void *cdrarg)
796 {
797 	syncq_t	*sq = buf;
798 
799 	ASSERT(sq->sq_head == NULL);
800 	ASSERT(sq->sq_tail == NULL);
801 	ASSERT(sq->sq_evhead == NULL);
802 	ASSERT(sq->sq_evtail == NULL);
803 	ASSERT(sq->sq_callbpend == NULL);
804 	ASSERT(sq->sq_callbflags == 0);
805 	ASSERT(sq->sq_outer == NULL);
806 	ASSERT(sq->sq_onext == NULL);
807 	ASSERT(sq->sq_oprev == NULL);
808 	ASSERT(sq->sq_next == NULL);
809 	ASSERT(sq->sq_needexcl == 0);
810 	ASSERT(sq->sq_svcflags == 0);
811 	ASSERT(sq->sq_servcount == 0);
812 	ASSERT(sq->sq_nqueues == 0);
813 	ASSERT(sq->sq_pri == 0);
814 	ASSERT(sq->sq_count == 0);
815 	ASSERT(sq->sq_rmqcount == 0);
816 	ASSERT(sq->sq_cancelid == 0);
817 	ASSERT(sq->sq_ciputctrl == NULL);
818 	ASSERT(sq->sq_nciputctrl == 0);
819 	ASSERT(sq->sq_type == 0);
820 	ASSERT(sq->sq_flags == 0);
821 
822 	mutex_destroy(&sq->sq_lock);
823 	cv_destroy(&sq->sq_wait);
824 	cv_destroy(&sq->sq_exitwait);
825 }
826 
827 /* ARGSUSED */
828 static int
829 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
830 {
831 	ciputctrl_t *cip = buf;
832 	int i;
833 
834 	for (i = 0; i < n_ciputctrl; i++) {
835 		cip[i].ciputctrl_count = SQ_FASTPUT;
836 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
837 	}
838 
839 	return (0);
840 }
841 
842 /* ARGSUSED */
843 static void
844 ciputctrl_destructor(void *buf, void *cdrarg)
845 {
846 	ciputctrl_t *cip = buf;
847 	int i;
848 
849 	for (i = 0; i < n_ciputctrl; i++) {
850 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
851 		mutex_destroy(&cip[i].ciputctrl_lock);
852 	}
853 }
854 
855 /*
856  * Init routine run from main at boot time.
857  */
858 void
859 strinit(void)
860 {
861 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
862 
863 	stream_head_cache = kmem_cache_create("stream_head_cache",
864 	    sizeof (stdata_t), 0,
865 	    stream_head_constructor, stream_head_destructor, NULL,
866 	    NULL, NULL, 0);
867 
868 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
869 	    queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
870 
871 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
872 	    syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
873 
874 	qband_cache = kmem_cache_create("qband_cache",
875 	    sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
876 
877 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
878 	    sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
879 
880 	n_ciputctrl = ncpus;
881 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
882 	ASSERT(n_ciputctrl >= 1);
883 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
884 	if (n_ciputctrl >= min_n_ciputctrl) {
885 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
886 		    sizeof (ciputctrl_t) * n_ciputctrl,
887 		    sizeof (ciputctrl_t), ciputctrl_constructor,
888 		    ciputctrl_destructor, NULL, NULL, NULL, 0);
889 	}
890 
891 	streams_taskq = system_taskq;
892 
893 	if (streams_taskq == NULL)
894 		panic("strinit: no memory for streams taskq!");
895 
896 	bc_bkgrnd_thread = thread_create(NULL, 0,
897 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
898 
899 	streams_qbkgrnd_thread = thread_create(NULL, 0,
900 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
901 
902 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
903 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
904 
905 	/*
906 	 * Create STREAMS kstats.
907 	 */
908 	str_kstat = kstat_create("streams", 0, "strstat",
909 	    "net", KSTAT_TYPE_NAMED,
910 	    sizeof (str_statistics) / sizeof (kstat_named_t),
911 	    KSTAT_FLAG_VIRTUAL);
912 
913 	if (str_kstat != NULL) {
914 		str_kstat->ks_data = &str_statistics;
915 		kstat_install(str_kstat);
916 	}
917 
918 	/*
919 	 * TPI support routine initialisation.
920 	 */
921 	tpi_init();
922 
923 	/*
924 	 * Handle to have autopush and persistent link information per
925 	 * zone.
926 	 * Note: uses shutdown hook instead of destroy hook so that the
927 	 * persistent links can be torn down before the destroy hooks
928 	 * in the TCP/IP stack are called.
929 	 */
930 	netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
931 	    str_stack_fini);
932 }
933 
934 void
935 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
936 {
937 	struct stdata *stp;
938 
939 	ASSERT(vp->v_stream);
940 	stp = vp->v_stream;
941 	/* Have to hold sd_lock to prevent siglist from changing */
942 	mutex_enter(&stp->sd_lock);
943 	if (stp->sd_sigflags & event)
944 		strsendsig(stp->sd_siglist, event, band, error);
945 	mutex_exit(&stp->sd_lock);
946 }
947 
948 /*
949  * Send the "sevent" set of signals to a process.
950  * This might send more than one signal if the process is registered
951  * for multiple events. The caller should pass in an sevent that only
952  * includes the events for which the process has registered.
953  */
954 static void
955 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
956 	uchar_t band, int error)
957 {
958 	ASSERT(MUTEX_HELD(&proc->p_lock));
959 
960 	info->si_band = 0;
961 	info->si_errno = 0;
962 
963 	if (sevent & S_ERROR) {
964 		sevent &= ~S_ERROR;
965 		info->si_code = POLL_ERR;
966 		info->si_errno = error;
967 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
968 		    "strsendsig:proc %p info %p", proc, info);
969 		sigaddq(proc, NULL, info, KM_NOSLEEP);
970 		info->si_errno = 0;
971 	}
972 	if (sevent & S_HANGUP) {
973 		sevent &= ~S_HANGUP;
974 		info->si_code = POLL_HUP;
975 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
976 		    "strsendsig:proc %p info %p", proc, info);
977 		sigaddq(proc, NULL, info, KM_NOSLEEP);
978 	}
979 	if (sevent & S_HIPRI) {
980 		sevent &= ~S_HIPRI;
981 		info->si_code = POLL_PRI;
982 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
983 		    "strsendsig:proc %p info %p", proc, info);
984 		sigaddq(proc, NULL, info, KM_NOSLEEP);
985 	}
986 	if (sevent & S_RDBAND) {
987 		sevent &= ~S_RDBAND;
988 		if (events & S_BANDURG)
989 			sigtoproc(proc, NULL, SIGURG);
990 		else
991 			sigtoproc(proc, NULL, SIGPOLL);
992 	}
993 	if (sevent & S_WRBAND) {
994 		sevent &= ~S_WRBAND;
995 		sigtoproc(proc, NULL, SIGPOLL);
996 	}
997 	if (sevent & S_INPUT) {
998 		sevent &= ~S_INPUT;
999 		info->si_code = POLL_IN;
1000 		info->si_band = band;
1001 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1002 		    "strsendsig:proc %p info %p", proc, info);
1003 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1004 		info->si_band = 0;
1005 	}
1006 	if (sevent & S_OUTPUT) {
1007 		sevent &= ~S_OUTPUT;
1008 		info->si_code = POLL_OUT;
1009 		info->si_band = band;
1010 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1011 		    "strsendsig:proc %p info %p", proc, info);
1012 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1013 		info->si_band = 0;
1014 	}
1015 	if (sevent & S_MSG) {
1016 		sevent &= ~S_MSG;
1017 		info->si_code = POLL_MSG;
1018 		info->si_band = band;
1019 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1020 		    "strsendsig:proc %p info %p", proc, info);
1021 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1022 		info->si_band = 0;
1023 	}
1024 	if (sevent & S_RDNORM) {
1025 		sevent &= ~S_RDNORM;
1026 		sigtoproc(proc, NULL, SIGPOLL);
1027 	}
1028 	if (sevent != 0) {
1029 		panic("strsendsig: unknown event(s) %x", sevent);
1030 	}
1031 }
1032 
1033 /*
1034  * Send SIGPOLL/SIGURG signal to all processes and process groups
1035  * registered on the given signal list that want a signal for at
1036  * least one of the specified events.
1037  *
1038  * Must be called with exclusive access to siglist (caller holding sd_lock).
1039  *
1040  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1041  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1042  * while it is in the siglist.
1043  *
1044  * For performance reasons (MP scalability) the code drops pidlock
1045  * when sending signals to a single process.
1046  * When sending to a process group the code holds
1047  * pidlock to prevent the membership in the process group from changing
1048  * while walking the p_pglink list.
1049  */
1050 void
1051 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1052 {
1053 	strsig_t *ssp;
1054 	k_siginfo_t info;
1055 	struct pid *pidp;
1056 	proc_t  *proc;
1057 
1058 	info.si_signo = SIGPOLL;
1059 	info.si_errno = 0;
1060 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1061 		int sevent;
1062 
1063 		sevent = ssp->ss_events & event;
1064 		if (sevent == 0)
1065 			continue;
1066 
1067 		if ((pidp = ssp->ss_pidp) == NULL) {
1068 			/* pid was released but still on event list */
1069 			continue;
1070 		}
1071 
1072 
1073 		if (ssp->ss_pid > 0) {
1074 			/*
1075 			 * XXX This unfortunately still generates
1076 			 * a signal when a fd is closed but
1077 			 * the proc is active.
1078 			 */
1079 			ASSERT(ssp->ss_pid == pidp->pid_id);
1080 
1081 			mutex_enter(&pidlock);
1082 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1083 			if (proc == NULL) {
1084 				mutex_exit(&pidlock);
1085 				continue;
1086 			}
1087 			mutex_enter(&proc->p_lock);
1088 			mutex_exit(&pidlock);
1089 			dosendsig(proc, ssp->ss_events, sevent, &info,
1090 			    band, error);
1091 			mutex_exit(&proc->p_lock);
1092 		} else {
1093 			/*
1094 			 * Send to process group. Hold pidlock across
1095 			 * calls to dosendsig().
1096 			 */
1097 			pid_t pgrp = -ssp->ss_pid;
1098 
1099 			mutex_enter(&pidlock);
1100 			proc = pgfind_zone(pgrp, ALL_ZONES);
1101 			while (proc != NULL) {
1102 				mutex_enter(&proc->p_lock);
1103 				dosendsig(proc, ssp->ss_events, sevent,
1104 				    &info, band, error);
1105 				mutex_exit(&proc->p_lock);
1106 				proc = proc->p_pglink;
1107 			}
1108 			mutex_exit(&pidlock);
1109 		}
1110 	}
1111 }
1112 
1113 /*
1114  * Attach a stream device or module.
1115  * qp is a read queue; the new queue goes in so its next
1116  * read ptr is the argument, and the write queue corresponding
1117  * to the argument points to this queue. Return 0 on success,
1118  * or a non-zero errno on failure.
1119  */
1120 int
1121 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1122     boolean_t is_insert)
1123 {
1124 	major_t			major;
1125 	cdevsw_impl_t		*dp;
1126 	struct streamtab	*str;
1127 	queue_t			*rq;
1128 	queue_t			*wrq;
1129 	uint32_t		qflag;
1130 	uint32_t		sqtype;
1131 	perdm_t			*dmp;
1132 	int			error;
1133 	int			sflag;
1134 
1135 	rq = allocq();
1136 	wrq = _WR(rq);
1137 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1138 
1139 	if (fp != NULL) {
1140 		str = fp->f_str;
1141 		qflag = fp->f_qflag;
1142 		sqtype = fp->f_sqtype;
1143 		dmp = fp->f_dmp;
1144 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1145 		sflag = MODOPEN;
1146 
1147 		/*
1148 		 * stash away a pointer to the module structure so we can
1149 		 * unref it in qdetach.
1150 		 */
1151 		rq->q_fp = fp;
1152 	} else {
1153 		ASSERT(!is_insert);
1154 
1155 		major = getmajor(*devp);
1156 		dp = &devimpl[major];
1157 
1158 		str = dp->d_str;
1159 		ASSERT(str == STREAMSTAB(major));
1160 
1161 		qflag = dp->d_qflag;
1162 		ASSERT(qflag & QISDRV);
1163 		sqtype = dp->d_sqtype;
1164 
1165 		/* create perdm_t if needed */
1166 		if (NEED_DM(dp->d_dmp, qflag))
1167 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1168 
1169 		dmp = dp->d_dmp;
1170 		sflag = 0;
1171 	}
1172 
1173 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1174 	    "qattach:qflag == %X(%X)", qflag, *devp);
1175 
1176 	/* setq might sleep in allocator - avoid holding locks. */
1177 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1178 
1179 	/*
1180 	 * Before calling the module's open routine, set up the q_next
1181 	 * pointer for inserting a module in the middle of a stream.
1182 	 *
1183 	 * Note that we can always set _QINSERTING and set up q_next
1184 	 * pointer for both inserting and pushing a module.  Then there
1185 	 * is no need for the is_insert parameter.  In insertq(), called
1186 	 * by qprocson(), assume that q_next of the new module always points
1187 	 * to the correct queue and use it for insertion.  Everything should
1188 	 * work out fine.  But in the first release of _I_INSERT, we
1189 	 * distinguish between inserting and pushing to make sure that
1190 	 * pushing a module follows the same code path as before.
1191 	 */
1192 	if (is_insert) {
1193 		rq->q_flag |= _QINSERTING;
1194 		rq->q_next = qp;
1195 	}
1196 
1197 	/*
1198 	 * If there is an outer perimeter get exclusive access during
1199 	 * the open procedure.  Bump up the reference count on the queue.
1200 	 */
1201 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1202 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1203 	if (error != 0)
1204 		goto failed;
1205 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1206 	ASSERT(qprocsareon(rq));
1207 	return (0);
1208 
1209 failed:
1210 	rq->q_flag &= ~_QINSERTING;
1211 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1212 		qprocsoff(rq);
1213 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1214 	rq->q_next = wrq->q_next = NULL;
1215 	qdetach(rq, 0, 0, crp, B_FALSE);
1216 	return (error);
1217 }
1218 
1219 /*
1220  * Handle second open of stream. For modules, set the
1221  * last argument to MODOPEN and do not pass any open flags.
1222  * Ignore dummydev since this is not the first open.
1223  */
1224 int
1225 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1226 {
1227 	int	error;
1228 	dev_t dummydev;
1229 	queue_t *wqp = _WR(qp);
1230 
1231 	ASSERT(qp->q_flag & QREADR);
1232 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1233 
1234 	dummydev = *devp;
1235 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1236 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1237 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1238 		mutex_enter(&STREAM(qp)->sd_lock);
1239 		qp->q_stream->sd_flag |= STREOPENFAIL;
1240 		mutex_exit(&STREAM(qp)->sd_lock);
1241 		return (error);
1242 	}
1243 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1244 
1245 	/*
1246 	 * successful open should have done qprocson()
1247 	 */
1248 	ASSERT(qprocsareon(_RD(qp)));
1249 	return (0);
1250 }
1251 
1252 /*
1253  * Detach a stream module or device.
1254  * If clmode == 1 then the module or driver was opened and its
1255  * close routine must be called. If clmode == 0, the module
1256  * or driver was never opened or the open failed, and so its close
1257  * should not be called.
1258  */
1259 void
1260 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1261 {
1262 	queue_t *wqp = _WR(qp);
1263 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1264 
1265 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1266 		stream_runservice(STREAM(qp));
1267 
1268 	if (clmode) {
1269 		/*
1270 		 * Make sure that all the messages on the write side syncq are
1271 		 * processed and nothing is left. Since we are closing, no new
1272 		 * messages may appear there.
1273 		 */
1274 		wait_q_syncq(wqp);
1275 
1276 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1277 		if (is_remove) {
1278 			mutex_enter(QLOCK(qp));
1279 			qp->q_flag |= _QREMOVING;
1280 			mutex_exit(QLOCK(qp));
1281 		}
1282 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1283 		/*
1284 		 * Check that qprocsoff() was actually called.
1285 		 */
1286 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1287 
1288 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1289 	} else {
1290 		disable_svc(qp);
1291 	}
1292 
1293 	/*
1294 	 * Allow any threads blocked in entersq to proceed and discover
1295 	 * the QWCLOSE is set.
1296 	 * Note: This assumes that all users of entersq check QWCLOSE.
1297 	 * Currently runservice is the only entersq that can happen
1298 	 * after removeq has finished.
1299 	 * Removeq will have discarded all messages destined to the closing
1300 	 * pair of queues from the syncq.
1301 	 * NOTE: Calling a function inside an assert is unconventional.
1302 	 * However, it does not cause any problem since flush_syncq() does
1303 	 * not change any state except when it returns non-zero i.e.
1304 	 * when the assert will trigger.
1305 	 */
1306 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1307 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1308 	ASSERT((qp->q_flag & QPERMOD) ||
1309 	    ((qp->q_syncq->sq_head == NULL) &&
1310 	    (wqp->q_syncq->sq_head == NULL)));
1311 
1312 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1313 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1314 	if (qp->q_fp != NULL)
1315 		fmodsw_rele(qp->q_fp);
1316 
1317 	/* freeq removes us from the outer perimeter if any */
1318 	freeq(qp);
1319 }
1320 
1321 /* Prevent service procedures from being called */
1322 void
1323 disable_svc(queue_t *qp)
1324 {
1325 	queue_t *wqp = _WR(qp);
1326 
1327 	ASSERT(qp->q_flag & QREADR);
1328 	mutex_enter(QLOCK(qp));
1329 	qp->q_flag |= QWCLOSE;
1330 	mutex_exit(QLOCK(qp));
1331 	mutex_enter(QLOCK(wqp));
1332 	wqp->q_flag |= QWCLOSE;
1333 	mutex_exit(QLOCK(wqp));
1334 }
1335 
1336 /* allow service procedures to be called again */
1337 void
1338 enable_svc(queue_t *qp)
1339 {
1340 	queue_t *wqp = _WR(qp);
1341 
1342 	ASSERT(qp->q_flag & QREADR);
1343 	mutex_enter(QLOCK(qp));
1344 	qp->q_flag &= ~QWCLOSE;
1345 	mutex_exit(QLOCK(qp));
1346 	mutex_enter(QLOCK(wqp));
1347 	wqp->q_flag &= ~QWCLOSE;
1348 	mutex_exit(QLOCK(wqp));
1349 }
1350 
1351 /*
1352  * Remove queue from qhead/qtail if it is enabled.
1353  * Only reset QENAB if the queue was removed from the runlist.
1354  * A queue goes through 3 stages:
1355  *	It is on the service list and QENAB is set.
1356  *	It is removed from the service list but QENAB is still set.
1357  *	QENAB gets changed to QINSERVICE.
1358  *	QINSERVICE is reset (when the service procedure is done)
1359  * Thus we can not reset QENAB unless we actually removed it from the service
1360  * queue.
1361  */
1362 void
1363 remove_runlist(queue_t *qp)
1364 {
1365 	if (qp->q_flag & QENAB && qhead != NULL) {
1366 		queue_t *q_chase;
1367 		queue_t *q_curr;
1368 		int removed;
1369 
1370 		mutex_enter(&service_queue);
1371 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1372 		mutex_exit(&service_queue);
1373 		if (removed) {
1374 			STRSTAT(qremoved);
1375 			qp->q_flag &= ~QENAB;
1376 		}
1377 	}
1378 }
1379 
1380 
1381 /*
1382  * wait for any pending service processing to complete.
1383  * The removal of queues from the runlist is not atomic with the
1384  * clearing of the QENABLED flag and setting the INSERVICE flag.
1385  * consequently it is possible for remove_runlist in strclose
1386  * to not find the queue on the runlist but for it to be QENABLED
1387  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1388  * as well as INSERVICE.
1389  */
1390 void
1391 wait_svc(queue_t *qp)
1392 {
1393 	queue_t *wqp = _WR(qp);
1394 
1395 	ASSERT(qp->q_flag & QREADR);
1396 
1397 	/*
1398 	 * Try to remove queues from qhead/qtail list.
1399 	 */
1400 	if (qhead != NULL) {
1401 		remove_runlist(qp);
1402 		remove_runlist(wqp);
1403 	}
1404 	/*
1405 	 * Wait till the syncqs associated with the queue
1406 	 * will dissapear from background processing list.
1407 	 * This only needs to be done for non-PERMOD perimeters since
1408 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1409 	 * when the last module/driver is unloaded.
1410 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1411 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1412 	 * function remove the queue from its syncq list, so sqthread will not
1413 	 * try to access the queue.
1414 	 */
1415 	if (!(qp->q_flag & QPERMOD)) {
1416 		syncq_t *rsq = qp->q_syncq;
1417 		syncq_t *wsq = wqp->q_syncq;
1418 
1419 		/*
1420 		 * Disable rsq and wsq and wait for any background processing of
1421 		 * syncq to complete.
1422 		 */
1423 		wait_sq_svc(rsq);
1424 		if (wsq != rsq)
1425 			wait_sq_svc(wsq);
1426 	}
1427 
1428 	mutex_enter(QLOCK(qp));
1429 	while (qp->q_flag & (QINSERVICE|QENAB))
1430 		cv_wait(&qp->q_wait, QLOCK(qp));
1431 	mutex_exit(QLOCK(qp));
1432 	mutex_enter(QLOCK(wqp));
1433 	while (wqp->q_flag & (QINSERVICE|QENAB))
1434 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1435 	mutex_exit(QLOCK(wqp));
1436 }
1437 
1438 /*
1439  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1440  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1441  * also be set, and is passed through to allocb_cred_wait().
1442  *
1443  * Returns errno on failure, zero on success.
1444  */
1445 int
1446 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1447 {
1448 	mblk_t *tmp;
1449 	ssize_t  count;
1450 	int error = 0;
1451 
1452 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1453 	    (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1454 
1455 	if (bp->b_datap->db_type == M_IOCTL) {
1456 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1457 	} else {
1458 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1459 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1460 	}
1461 	/*
1462 	 * strdoioctl validates ioc_count, so if this assert fails it
1463 	 * cannot be due to user error.
1464 	 */
1465 	ASSERT(count >= 0);
1466 
1467 	if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr)) ==
1468 	    NULL) {
1469 		return (error);
1470 	}
1471 	error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1472 	if (error != 0) {
1473 		freeb(tmp);
1474 		return (error);
1475 	}
1476 	DB_CPID(tmp) = curproc->p_pid;
1477 	tmp->b_wptr += count;
1478 	bp->b_cont = tmp;
1479 
1480 	return (0);
1481 }
1482 
1483 /*
1484  * Copy ioctl data to user-land. Return non-zero errno on failure,
1485  * 0 for success.
1486  */
1487 int
1488 getiocd(mblk_t *bp, char *arg, int copymode)
1489 {
1490 	ssize_t count;
1491 	size_t  n;
1492 	int	error;
1493 
1494 	if (bp->b_datap->db_type == M_IOCACK)
1495 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1496 	else {
1497 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1498 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1499 	}
1500 	ASSERT(count >= 0);
1501 
1502 	for (bp = bp->b_cont; bp && count;
1503 	    count -= n, bp = bp->b_cont, arg += n) {
1504 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1505 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1506 		if (error)
1507 			return (error);
1508 	}
1509 	ASSERT(count == 0);
1510 	return (0);
1511 }
1512 
1513 /*
1514  * Allocate a linkinfo entry given the write queue of the
1515  * bottom module of the top stream and the write queue of the
1516  * stream head of the bottom stream.
1517  */
1518 linkinfo_t *
1519 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1520 {
1521 	linkinfo_t *linkp;
1522 
1523 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1524 
1525 	linkp->li_lblk.l_qtop = qup;
1526 	linkp->li_lblk.l_qbot = qdown;
1527 	linkp->li_fpdown = fpdown;
1528 
1529 	mutex_enter(&strresources);
1530 	linkp->li_next = linkinfo_list;
1531 	linkp->li_prev = NULL;
1532 	if (linkp->li_next)
1533 		linkp->li_next->li_prev = linkp;
1534 	linkinfo_list = linkp;
1535 	linkp->li_lblk.l_index = ++lnk_id;
1536 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1537 	mutex_exit(&strresources);
1538 
1539 	return (linkp);
1540 }
1541 
1542 /*
1543  * Free a linkinfo entry.
1544  */
1545 void
1546 lbfree(linkinfo_t *linkp)
1547 {
1548 	mutex_enter(&strresources);
1549 	if (linkp->li_next)
1550 		linkp->li_next->li_prev = linkp->li_prev;
1551 	if (linkp->li_prev)
1552 		linkp->li_prev->li_next = linkp->li_next;
1553 	else
1554 		linkinfo_list = linkp->li_next;
1555 	mutex_exit(&strresources);
1556 
1557 	kmem_cache_free(linkinfo_cache, linkp);
1558 }
1559 
1560 /*
1561  * Check for a potential linking cycle.
1562  * Return 1 if a link will result in a cycle,
1563  * and 0 otherwise.
1564  */
1565 int
1566 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1567 {
1568 	struct mux_node *np;
1569 	struct mux_edge *ep;
1570 	int i;
1571 	major_t lomaj;
1572 	major_t upmaj;
1573 	/*
1574 	 * if the lower stream is a pipe/FIFO, return, since link
1575 	 * cycles can not happen on pipes/FIFOs
1576 	 */
1577 	if (lostp->sd_vnode->v_type == VFIFO)
1578 		return (0);
1579 
1580 	for (i = 0; i < ss->ss_devcnt; i++) {
1581 		np = &ss->ss_mux_nodes[i];
1582 		MUX_CLEAR(np);
1583 	}
1584 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1585 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1586 	np = &ss->ss_mux_nodes[lomaj];
1587 	for (;;) {
1588 		if (!MUX_DIDVISIT(np)) {
1589 			if (np->mn_imaj == upmaj)
1590 				return (1);
1591 			if (np->mn_outp == NULL) {
1592 				MUX_VISIT(np);
1593 				if (np->mn_originp == NULL)
1594 					return (0);
1595 				np = np->mn_originp;
1596 				continue;
1597 			}
1598 			MUX_VISIT(np);
1599 			np->mn_startp = np->mn_outp;
1600 		} else {
1601 			if (np->mn_startp == NULL) {
1602 				if (np->mn_originp == NULL)
1603 					return (0);
1604 				else {
1605 					np = np->mn_originp;
1606 					continue;
1607 				}
1608 			}
1609 			/*
1610 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1611 			 * ignore the edge and move on. ep->me_nodep gets
1612 			 * set to NULL in mux_addedge() if it is a FIFO.
1613 			 *
1614 			 */
1615 			ep = np->mn_startp;
1616 			np->mn_startp = ep->me_nextp;
1617 			if (ep->me_nodep == NULL)
1618 				continue;
1619 			ep->me_nodep->mn_originp = np;
1620 			np = ep->me_nodep;
1621 		}
1622 	}
1623 }
1624 
1625 /*
1626  * Find linkinfo entry corresponding to the parameters.
1627  */
1628 linkinfo_t *
1629 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1630 {
1631 	linkinfo_t *linkp;
1632 	struct mux_edge *mep;
1633 	struct mux_node *mnp;
1634 	queue_t *qup;
1635 
1636 	mutex_enter(&strresources);
1637 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1638 		qup = getendq(stp->sd_wrq);
1639 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1640 			if ((qup == linkp->li_lblk.l_qtop) &&
1641 			    (!index || (index == linkp->li_lblk.l_index))) {
1642 				mutex_exit(&strresources);
1643 				return (linkp);
1644 			}
1645 		}
1646 	} else {
1647 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1648 		mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1649 		mep = mnp->mn_outp;
1650 		while (mep) {
1651 			if ((index == 0) || (index == mep->me_muxid))
1652 				break;
1653 			mep = mep->me_nextp;
1654 		}
1655 		if (!mep) {
1656 			mutex_exit(&strresources);
1657 			return (NULL);
1658 		}
1659 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1660 			if ((!linkp->li_lblk.l_qtop) &&
1661 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1662 				mutex_exit(&strresources);
1663 				return (linkp);
1664 			}
1665 		}
1666 	}
1667 	mutex_exit(&strresources);
1668 	return (NULL);
1669 }
1670 
1671 /*
1672  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1673  * last queue on the chain and return it.
1674  */
1675 queue_t *
1676 getendq(queue_t *q)
1677 {
1678 	ASSERT(q != NULL);
1679 	while (_SAMESTR(q))
1680 		q = q->q_next;
1681 	return (q);
1682 }
1683 
1684 /*
1685  * wait for the syncq count to drop to zero.
1686  * sq could be either outer or inner.
1687  */
1688 
1689 static void
1690 wait_syncq(syncq_t *sq)
1691 {
1692 	uint16_t count;
1693 
1694 	mutex_enter(SQLOCK(sq));
1695 	count = sq->sq_count;
1696 	SQ_PUTLOCKS_ENTER(sq);
1697 	SUM_SQ_PUTCOUNTS(sq, count);
1698 	while (count != 0) {
1699 		sq->sq_flags |= SQ_WANTWAKEUP;
1700 		SQ_PUTLOCKS_EXIT(sq);
1701 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1702 		count = sq->sq_count;
1703 		SQ_PUTLOCKS_ENTER(sq);
1704 		SUM_SQ_PUTCOUNTS(sq, count);
1705 	}
1706 	SQ_PUTLOCKS_EXIT(sq);
1707 	mutex_exit(SQLOCK(sq));
1708 }
1709 
1710 /*
1711  * Wait while there are any messages for the queue in its syncq.
1712  */
1713 static void
1714 wait_q_syncq(queue_t *q)
1715 {
1716 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1717 		syncq_t *sq = q->q_syncq;
1718 
1719 		mutex_enter(SQLOCK(sq));
1720 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1721 			sq->sq_flags |= SQ_WANTWAKEUP;
1722 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1723 		}
1724 		mutex_exit(SQLOCK(sq));
1725 	}
1726 }
1727 
1728 
1729 int
1730 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1731     int lhlink)
1732 {
1733 	struct stdata *stp;
1734 	struct strioctl strioc;
1735 	struct linkinfo *linkp;
1736 	struct stdata *stpdown;
1737 	struct streamtab *str;
1738 	queue_t *passq;
1739 	syncq_t *passyncq;
1740 	queue_t *rq;
1741 	cdevsw_impl_t *dp;
1742 	uint32_t qflag;
1743 	uint32_t sqtype;
1744 	perdm_t *dmp;
1745 	int error = 0;
1746 	netstack_t *ns;
1747 	str_stack_t *ss;
1748 
1749 	stp = vp->v_stream;
1750 	TRACE_1(TR_FAC_STREAMS_FR,
1751 	    TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1752 	/*
1753 	 * Test for invalid upper stream
1754 	 */
1755 	if (stp->sd_flag & STRHUP) {
1756 		return (ENXIO);
1757 	}
1758 	if (vp->v_type == VFIFO) {
1759 		return (EINVAL);
1760 	}
1761 	if (stp->sd_strtab == NULL) {
1762 		return (EINVAL);
1763 	}
1764 	if (!stp->sd_strtab->st_muxwinit) {
1765 		return (EINVAL);
1766 	}
1767 	if (fpdown == NULL) {
1768 		return (EBADF);
1769 	}
1770 	ns = netstack_find_by_cred(crp);
1771 	ASSERT(ns != NULL);
1772 	ss = ns->netstack_str;
1773 	ASSERT(ss != NULL);
1774 
1775 	if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1776 		netstack_rele(ss->ss_netstack);
1777 		return (EINVAL);
1778 	}
1779 	mutex_enter(&muxifier);
1780 	if (stp->sd_flag & STPLEX) {
1781 		mutex_exit(&muxifier);
1782 		netstack_rele(ss->ss_netstack);
1783 		return (ENXIO);
1784 	}
1785 
1786 	/*
1787 	 * Test for invalid lower stream.
1788 	 * The check for the v_type != VFIFO and having a major
1789 	 * number not >= devcnt is done to avoid problems with
1790 	 * adding mux_node entry past the end of mux_nodes[].
1791 	 * For FIFO's we don't add an entry so this isn't a
1792 	 * problem.
1793 	 */
1794 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1795 	    (stpdown == stp) || (stpdown->sd_flag &
1796 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1797 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1798 	    (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1799 	    linkcycle(stp, stpdown, ss)) {
1800 		mutex_exit(&muxifier);
1801 		netstack_rele(ss->ss_netstack);
1802 		return (EINVAL);
1803 	}
1804 	TRACE_1(TR_FAC_STREAMS_FR,
1805 	    TR_STPDOWN, "stpdown:%p", stpdown);
1806 	rq = getendq(stp->sd_wrq);
1807 	if (cmd == I_PLINK)
1808 		rq = NULL;
1809 
1810 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1811 
1812 	strioc.ic_cmd = cmd;
1813 	strioc.ic_timout = INFTIM;
1814 	strioc.ic_len = sizeof (struct linkblk);
1815 	strioc.ic_dp = (char *)&linkp->li_lblk;
1816 
1817 	/*
1818 	 * STRPLUMB protects plumbing changes and should be set before
1819 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1820 	 * and cleared in the end of mlink when passthru queue is removed.
1821 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1822 	 * queue is in-place (it is not a proper module and doesn't have open
1823 	 * entry point).
1824 	 *
1825 	 * STPLEX prevents any threads from entering the stream from above. It
1826 	 * can't be set before the call to link_addpassthru() because putnext
1827 	 * from below may cause stream head I/O routines to be called and these
1828 	 * routines assert that STPLEX is not set. After link_addpassthru()
1829 	 * nothing may come from below since the pass queue syncq is blocked.
1830 	 * Note also that STPLEX should be cleared before the call to
1831 	 * link_remmpassthru() since when messages start flowing to the stream
1832 	 * head (e.g. because of message propagation from the pass queue) stream
1833 	 * head I/O routines may be called with STPLEX flag set.
1834 	 *
1835 	 * When STPLEX is set, nothing may come into the stream from above and
1836 	 * it is safe to do a setq which will change stream head. So, the
1837 	 * correct sequence of actions is:
1838 	 *
1839 	 * 1) Set STRPLUMB
1840 	 * 2) Call link_addpassthru()
1841 	 * 3) Set STPLEX
1842 	 * 4) Call setq and update the stream state
1843 	 * 5) Clear STPLEX
1844 	 * 6) Call link_rempassthru()
1845 	 * 7) Clear STRPLUMB
1846 	 *
1847 	 * The same sequence applies to munlink() code.
1848 	 */
1849 	mutex_enter(&stpdown->sd_lock);
1850 	stpdown->sd_flag |= STRPLUMB;
1851 	mutex_exit(&stpdown->sd_lock);
1852 	/*
1853 	 * Add passthru queue below lower mux. This will block
1854 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1855 	 */
1856 	passq = link_addpassthru(stpdown);
1857 
1858 	mutex_enter(&stpdown->sd_lock);
1859 	stpdown->sd_flag |= STPLEX;
1860 	mutex_exit(&stpdown->sd_lock);
1861 
1862 	rq = _RD(stpdown->sd_wrq);
1863 	/*
1864 	 * There may be messages in the streamhead's syncq due to messages
1865 	 * that arrived before link_addpassthru() was done. To avoid
1866 	 * background processing of the syncq happening simultaneous with
1867 	 * setq processing, we disable the streamhead syncq and wait until
1868 	 * existing background thread finishes working on it.
1869 	 */
1870 	wait_sq_svc(rq->q_syncq);
1871 	passyncq = passq->q_syncq;
1872 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1873 		blocksq(passyncq, SQ_BLOCKED, 0);
1874 
1875 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1876 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1877 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1878 
1879 	/* setq might sleep in allocator - avoid holding locks. */
1880 	/* Note: we are holding muxifier here. */
1881 
1882 	str = stp->sd_strtab;
1883 	dp = &devimpl[getmajor(vp->v_rdev)];
1884 	ASSERT(dp->d_str == str);
1885 
1886 	qflag = dp->d_qflag;
1887 	sqtype = dp->d_sqtype;
1888 
1889 	/* create perdm_t if needed */
1890 	if (NEED_DM(dp->d_dmp, qflag))
1891 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1892 
1893 	dmp = dp->d_dmp;
1894 
1895 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1896 	    B_TRUE);
1897 
1898 	/*
1899 	 * XXX Remove any "odd" messages from the queue.
1900 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1901 	 */
1902 	error = strdoioctl(stp, &strioc, FNATIVE,
1903 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1904 	if (error != 0) {
1905 		lbfree(linkp);
1906 
1907 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1908 			blocksq(passyncq, SQ_BLOCKED, 0);
1909 		/*
1910 		 * Restore the stream head queue and then remove
1911 		 * the passq. Turn off STPLEX before we turn on
1912 		 * the stream by removing the passq.
1913 		 */
1914 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1915 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1916 		    B_TRUE);
1917 
1918 		mutex_enter(&stpdown->sd_lock);
1919 		stpdown->sd_flag &= ~STPLEX;
1920 		mutex_exit(&stpdown->sd_lock);
1921 
1922 		link_rempassthru(passq);
1923 
1924 		mutex_enter(&stpdown->sd_lock);
1925 		stpdown->sd_flag &= ~STRPLUMB;
1926 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1927 		cv_broadcast(&stpdown->sd_monitor);
1928 		mutex_exit(&stpdown->sd_lock);
1929 
1930 		mutex_exit(&muxifier);
1931 		netstack_rele(ss->ss_netstack);
1932 		return (error);
1933 	}
1934 	mutex_enter(&fpdown->f_tlock);
1935 	fpdown->f_count++;
1936 	mutex_exit(&fpdown->f_tlock);
1937 
1938 	/*
1939 	 * if we've made it here the linkage is all set up so we should also
1940 	 * set up the layered driver linkages
1941 	 */
1942 
1943 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1944 	if (cmd == I_LINK) {
1945 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1946 	} else {
1947 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1948 	}
1949 
1950 	link_rempassthru(passq);
1951 
1952 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1953 
1954 	/*
1955 	 * Mark the upper stream as having dependent links
1956 	 * so that strclose can clean it up.
1957 	 */
1958 	if (cmd == I_LINK) {
1959 		mutex_enter(&stp->sd_lock);
1960 		stp->sd_flag |= STRHASLINKS;
1961 		mutex_exit(&stp->sd_lock);
1962 	}
1963 	/*
1964 	 * Wake up any other processes that may have been
1965 	 * waiting on the lower stream. These will all
1966 	 * error out.
1967 	 */
1968 	mutex_enter(&stpdown->sd_lock);
1969 	/* The passthru module is removed so we may release STRPLUMB */
1970 	stpdown->sd_flag &= ~STRPLUMB;
1971 	cv_broadcast(&rq->q_wait);
1972 	cv_broadcast(&_WR(rq)->q_wait);
1973 	cv_broadcast(&stpdown->sd_monitor);
1974 	mutex_exit(&stpdown->sd_lock);
1975 	mutex_exit(&muxifier);
1976 	*rvalp = linkp->li_lblk.l_index;
1977 	netstack_rele(ss->ss_netstack);
1978 	return (0);
1979 }
1980 
1981 int
1982 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1983 {
1984 	int		ret;
1985 	struct file	*fpdown;
1986 
1987 	fpdown = getf(arg);
1988 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1989 	if (fpdown != NULL)
1990 		releasef(arg);
1991 	return (ret);
1992 }
1993 
1994 /*
1995  * Unlink a multiplexor link. Stp is the controlling stream for the
1996  * link, and linkp points to the link's entry in the linkinfo list.
1997  * The muxifier lock must be held on entry and is dropped on exit.
1998  *
1999  * NOTE : Currently it is assumed that mux would process all the messages
2000  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
2001  * of the mux to handle all the messages that arrive before UNLINK.
2002  * If the mux has to send down messages on its lower stream before
2003  * ACKing I_UNLINK, then it *should* know to handle messages even
2004  * after the UNLINK is acked (actually it should be able to handle till we
2005  * re-block the read side of the pass queue here). If the mux does not
2006  * open up the lower stream, any messages that arrive during UNLINK
2007  * will be put in the stream head. In the case of lower stream opening
2008  * up, some messages might land in the stream head depending on when
2009  * the message arrived and when the read side of the pass queue was
2010  * re-blocked.
2011  */
2012 int
2013 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2014     str_stack_t *ss)
2015 {
2016 	struct strioctl strioc;
2017 	struct stdata *stpdown;
2018 	queue_t *rq, *wrq;
2019 	queue_t	*passq;
2020 	syncq_t *passyncq;
2021 	int error = 0;
2022 	file_t *fpdown;
2023 
2024 	ASSERT(MUTEX_HELD(&muxifier));
2025 
2026 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2027 
2028 	/*
2029 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2030 	 */
2031 	mutex_enter(&stpdown->sd_lock);
2032 	stpdown->sd_flag |= STRPLUMB;
2033 	mutex_exit(&stpdown->sd_lock);
2034 
2035 	/*
2036 	 * Add passthru queue below lower mux. This will block
2037 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2038 	 */
2039 	passq = link_addpassthru(stpdown);
2040 
2041 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2042 		strioc.ic_cmd = I_UNLINK;
2043 	else
2044 		strioc.ic_cmd = I_PUNLINK;
2045 	strioc.ic_timout = INFTIM;
2046 	strioc.ic_len = sizeof (struct linkblk);
2047 	strioc.ic_dp = (char *)&linkp->li_lblk;
2048 
2049 	error = strdoioctl(stp, &strioc, FNATIVE,
2050 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2051 
2052 	/*
2053 	 * If there was an error and this is not called via strclose,
2054 	 * return to the user. Otherwise, pretend there was no error
2055 	 * and close the link.
2056 	 */
2057 	if (error) {
2058 		if (flag & LINKCLOSE) {
2059 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2060 			    "unlink ioctl, closing anyway (%d)\n", error);
2061 		} else {
2062 			link_rempassthru(passq);
2063 			mutex_enter(&stpdown->sd_lock);
2064 			stpdown->sd_flag &= ~STRPLUMB;
2065 			cv_broadcast(&stpdown->sd_monitor);
2066 			mutex_exit(&stpdown->sd_lock);
2067 			mutex_exit(&muxifier);
2068 			return (error);
2069 		}
2070 	}
2071 
2072 	mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2073 	fpdown = linkp->li_fpdown;
2074 	lbfree(linkp);
2075 
2076 	/*
2077 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2078 	 * can slow others down. It's okay to since attempts to mlink() this
2079 	 * stream will be stopped because STPLEX is still set in the stdata
2080 	 * structure, and munlink() is stopped because mux_rmvedge() and
2081 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2082 	 * respectively.  Note that we defer the closef() of fpdown until
2083 	 * after we drop muxifier since strclose() can call munlinkall().
2084 	 */
2085 	mutex_exit(&muxifier);
2086 
2087 	wrq = stpdown->sd_wrq;
2088 	rq = _RD(wrq);
2089 
2090 	/*
2091 	 * Get rid of outstanding service procedure runs, before we make
2092 	 * it a stream head, since a stream head doesn't have any service
2093 	 * procedure.
2094 	 */
2095 	disable_svc(rq);
2096 	wait_svc(rq);
2097 
2098 	/*
2099 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2100 	 * is queued up to be finished. mux should take care that nothing is
2101 	 * send down to this queue. We should do it now as we're going to block
2102 	 * passyncq if it was unblocked.
2103 	 */
2104 	if (wrq->q_flag & QPERMOD) {
2105 		syncq_t	*sq = wrq->q_syncq;
2106 
2107 		mutex_enter(SQLOCK(sq));
2108 		while (wrq->q_sqflags & Q_SQQUEUED) {
2109 			sq->sq_flags |= SQ_WANTWAKEUP;
2110 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2111 		}
2112 		mutex_exit(SQLOCK(sq));
2113 	}
2114 	passyncq = passq->q_syncq;
2115 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2116 
2117 		syncq_t *sq, *outer;
2118 
2119 		/*
2120 		 * Messages could be flowing from underneath. We will
2121 		 * block the read side of the passq. This would be
2122 		 * sufficient for QPAIR and QPERQ muxes to ensure
2123 		 * that no data is flowing up into this queue
2124 		 * and hence no thread active in this instance of
2125 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2126 		 * could be messages on the inner and outer/inner
2127 		 * syncqs respectively. We will wait for them to drain.
2128 		 * Because passq is blocked messages end up in the syncq
2129 		 * And qfill_syncq could possibly end up setting QFULL
2130 		 * which will access the rq->q_flag. Hence, we have to
2131 		 * acquire the QLOCK in setq.
2132 		 *
2133 		 * XXX Messages can also flow from top into this
2134 		 * queue though the unlink is over (Ex. some instance
2135 		 * in putnext() called from top that has still not
2136 		 * accessed this queue. And also putq(lowerq) ?).
2137 		 * Solution : How about blocking the l_qtop queue ?
2138 		 * Do we really care about such pure D_MP muxes ?
2139 		 */
2140 
2141 		blocksq(passyncq, SQ_BLOCKED, 0);
2142 
2143 		sq = rq->q_syncq;
2144 		if ((outer = sq->sq_outer) != NULL) {
2145 
2146 			/*
2147 			 * We have to just wait for the outer sq_count
2148 			 * drop to zero. As this does not prevent new
2149 			 * messages to enter the outer perimeter, this
2150 			 * is subject to starvation.
2151 			 *
2152 			 * NOTE :Because of blocksq above, messages could
2153 			 * be in the inner syncq only because of some
2154 			 * thread holding the outer perimeter exclusively.
2155 			 * Hence it would be sufficient to wait for the
2156 			 * exclusive holder of the outer perimeter to drain
2157 			 * the inner and outer syncqs. But we will not depend
2158 			 * on this feature and hence check the inner syncqs
2159 			 * separately.
2160 			 */
2161 			wait_syncq(outer);
2162 		}
2163 
2164 
2165 		/*
2166 		 * There could be messages destined for
2167 		 * this queue. Let the exclusive holder
2168 		 * drain it.
2169 		 */
2170 
2171 		wait_syncq(sq);
2172 		ASSERT((rq->q_flag & QPERMOD) ||
2173 		    ((rq->q_syncq->sq_head == NULL) &&
2174 		    (_WR(rq)->q_syncq->sq_head == NULL)));
2175 	}
2176 
2177 	/*
2178 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2179 	 * case as we don't disable its syncq or remove it off the syncq
2180 	 * service list.
2181 	 */
2182 	if (rq->q_flag & QPERMOD) {
2183 		syncq_t	*sq = rq->q_syncq;
2184 
2185 		mutex_enter(SQLOCK(sq));
2186 		while (rq->q_sqflags & Q_SQQUEUED) {
2187 			sq->sq_flags |= SQ_WANTWAKEUP;
2188 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2189 		}
2190 		mutex_exit(SQLOCK(sq));
2191 	}
2192 
2193 	/*
2194 	 * flush_syncq changes states only when there is some messages to
2195 	 * free. ie when it returns non-zero value to return.
2196 	 */
2197 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2198 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2199 
2200 	/*
2201 	 * No body else should know about this queue now.
2202 	 * If the mux did not process the messages before
2203 	 * acking the I_UNLINK, free them now.
2204 	 */
2205 
2206 	flushq(rq, FLUSHALL);
2207 	flushq(_WR(rq), FLUSHALL);
2208 
2209 	/*
2210 	 * Convert the mux lower queue into a stream head queue.
2211 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2212 	 */
2213 	rq->q_ptr = wrq->q_ptr = stpdown;
2214 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2215 
2216 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2217 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2218 
2219 	enable_svc(rq);
2220 
2221 	/*
2222 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2223 	 * needs to be set to prevent reopen() of the stream - such reopen may
2224 	 * try to call non-existent pass queue open routine and panic.
2225 	 */
2226 	mutex_enter(&stpdown->sd_lock);
2227 	stpdown->sd_flag &= ~STPLEX;
2228 	mutex_exit(&stpdown->sd_lock);
2229 
2230 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2231 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2232 
2233 	/* clean up the layered driver linkages */
2234 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2235 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2236 	} else {
2237 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2238 	}
2239 
2240 	link_rempassthru(passq);
2241 
2242 	/*
2243 	 * Now all plumbing changes are finished and STRPLUMB is no
2244 	 * longer needed.
2245 	 */
2246 	mutex_enter(&stpdown->sd_lock);
2247 	stpdown->sd_flag &= ~STRPLUMB;
2248 	cv_broadcast(&stpdown->sd_monitor);
2249 	mutex_exit(&stpdown->sd_lock);
2250 
2251 	(void) closef(fpdown);
2252 	return (0);
2253 }
2254 
2255 /*
2256  * Unlink all multiplexor links for which stp is the controlling stream.
2257  * Return 0, or a non-zero errno on failure.
2258  */
2259 int
2260 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2261 {
2262 	linkinfo_t *linkp;
2263 	int error = 0;
2264 
2265 	mutex_enter(&muxifier);
2266 	while (linkp = findlinks(stp, 0, flag, ss)) {
2267 		/*
2268 		 * munlink() releases the muxifier lock.
2269 		 */
2270 		if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2271 			return (error);
2272 		mutex_enter(&muxifier);
2273 	}
2274 	mutex_exit(&muxifier);
2275 	return (0);
2276 }
2277 
2278 /*
2279  * A multiplexor link has been made. Add an
2280  * edge to the directed graph.
2281  */
2282 void
2283 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2284 {
2285 	struct mux_node *np;
2286 	struct mux_edge *ep;
2287 	major_t upmaj;
2288 	major_t lomaj;
2289 
2290 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2291 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2292 	np = &ss->ss_mux_nodes[upmaj];
2293 	if (np->mn_outp) {
2294 		ep = np->mn_outp;
2295 		while (ep->me_nextp)
2296 			ep = ep->me_nextp;
2297 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2298 		ep = ep->me_nextp;
2299 	} else {
2300 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2301 		ep = np->mn_outp;
2302 	}
2303 	ep->me_nextp = NULL;
2304 	ep->me_muxid = muxid;
2305 	/*
2306 	 * Save the dev_t for the purposes of str_stack_shutdown.
2307 	 * str_stack_shutdown assumes that the device allows reopen, since
2308 	 * this dev_t is the one after any cloning by xx_open().
2309 	 * Would prefer finding the dev_t from before any cloning,
2310 	 * but specfs doesn't retain that.
2311 	 */
2312 	ep->me_dev = upstp->sd_vnode->v_rdev;
2313 	if (lostp->sd_vnode->v_type == VFIFO)
2314 		ep->me_nodep = NULL;
2315 	else
2316 		ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2317 }
2318 
2319 /*
2320  * A multiplexor link has been removed. Remove the
2321  * edge in the directed graph.
2322  */
2323 void
2324 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2325 {
2326 	struct mux_node *np;
2327 	struct mux_edge *ep;
2328 	struct mux_edge *pep = NULL;
2329 	major_t upmaj;
2330 
2331 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2332 	np = &ss->ss_mux_nodes[upmaj];
2333 	ASSERT(np->mn_outp != NULL);
2334 	ep = np->mn_outp;
2335 	while (ep) {
2336 		if (ep->me_muxid == muxid) {
2337 			if (pep)
2338 				pep->me_nextp = ep->me_nextp;
2339 			else
2340 				np->mn_outp = ep->me_nextp;
2341 			kmem_free(ep, sizeof (struct mux_edge));
2342 			return;
2343 		}
2344 		pep = ep;
2345 		ep = ep->me_nextp;
2346 	}
2347 	ASSERT(0);	/* should not reach here */
2348 }
2349 
2350 /*
2351  * Translate the device flags (from conf.h) to the corresponding
2352  * qflag and sq_flag (type) values.
2353  */
2354 int
2355 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2356 	uint32_t *sqtypep)
2357 {
2358 	uint32_t qflag = 0;
2359 	uint32_t sqtype = 0;
2360 
2361 	if (devflag & _D_OLD)
2362 		goto bad;
2363 
2364 	/* Inner perimeter presence and scope */
2365 	switch (devflag & D_MTINNER_MASK) {
2366 	case D_MP:
2367 		qflag |= QMTSAFE;
2368 		sqtype |= SQ_CI;
2369 		break;
2370 	case D_MTPERQ|D_MP:
2371 		qflag |= QPERQ;
2372 		break;
2373 	case D_MTQPAIR|D_MP:
2374 		qflag |= QPAIR;
2375 		break;
2376 	case D_MTPERMOD|D_MP:
2377 		qflag |= QPERMOD;
2378 		break;
2379 	default:
2380 		goto bad;
2381 	}
2382 
2383 	/* Outer perimeter */
2384 	if (devflag & D_MTOUTPERIM) {
2385 		switch (devflag & D_MTINNER_MASK) {
2386 		case D_MP:
2387 		case D_MTPERQ|D_MP:
2388 		case D_MTQPAIR|D_MP:
2389 			break;
2390 		default:
2391 			goto bad;
2392 		}
2393 		qflag |= QMTOUTPERIM;
2394 	}
2395 
2396 	/* Inner perimeter modifiers */
2397 	if (devflag & D_MTINNER_MOD) {
2398 		switch (devflag & D_MTINNER_MASK) {
2399 		case D_MP:
2400 			goto bad;
2401 		default:
2402 			break;
2403 		}
2404 		if (devflag & D_MTPUTSHARED)
2405 			sqtype |= SQ_CIPUT;
2406 		if (devflag & _D_MTOCSHARED) {
2407 			/*
2408 			 * The code in putnext assumes that it has the
2409 			 * highest concurrency by not checking sq_count.
2410 			 * Thus _D_MTOCSHARED can only be supported when
2411 			 * D_MTPUTSHARED is set.
2412 			 */
2413 			if (!(devflag & D_MTPUTSHARED))
2414 				goto bad;
2415 			sqtype |= SQ_CIOC;
2416 		}
2417 		if (devflag & _D_MTCBSHARED) {
2418 			/*
2419 			 * The code in putnext assumes that it has the
2420 			 * highest concurrency by not checking sq_count.
2421 			 * Thus _D_MTCBSHARED can only be supported when
2422 			 * D_MTPUTSHARED is set.
2423 			 */
2424 			if (!(devflag & D_MTPUTSHARED))
2425 				goto bad;
2426 			sqtype |= SQ_CICB;
2427 		}
2428 		if (devflag & _D_MTSVCSHARED) {
2429 			/*
2430 			 * The code in putnext assumes that it has the
2431 			 * highest concurrency by not checking sq_count.
2432 			 * Thus _D_MTSVCSHARED can only be supported when
2433 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2434 			 * supported only for QPERMOD.
2435 			 */
2436 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2437 				goto bad;
2438 			sqtype |= SQ_CISVC;
2439 		}
2440 	}
2441 
2442 	/* Default outer perimeter concurrency */
2443 	sqtype |= SQ_CO;
2444 
2445 	/* Outer perimeter modifiers */
2446 	if (devflag & D_MTOCEXCL) {
2447 		if (!(devflag & D_MTOUTPERIM)) {
2448 			/* No outer perimeter */
2449 			goto bad;
2450 		}
2451 		sqtype &= ~SQ_COOC;
2452 	}
2453 
2454 	/* Synchronous Streams extended qinit structure */
2455 	if (devflag & D_SYNCSTR)
2456 		qflag |= QSYNCSTR;
2457 
2458 	/*
2459 	 * Private flag used by a transport module to indicate
2460 	 * to sockfs that it supports direct-access mode without
2461 	 * having to go through STREAMS or the transport can use
2462 	 * sodirect_t sharing to bypass STREAMS for receive-side
2463 	 * M_DATA processing.
2464 	 */
2465 	if (devflag & (_D_DIRECT|_D_SODIRECT)) {
2466 		/* Reject unless the module is fully-MT (no perimeter) */
2467 		if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2468 			goto bad;
2469 		if (devflag & _D_DIRECT)
2470 			qflag |= _QDIRECT;
2471 		if (devflag & _D_SODIRECT)
2472 			qflag |= _QSODIRECT;
2473 	}
2474 
2475 	*qflagp = qflag;
2476 	*sqtypep = sqtype;
2477 	return (0);
2478 
2479 bad:
2480 	cmn_err(CE_WARN,
2481 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2482 	    (int)(qflag & D_MTSAFETY_MASK),
2483 	    stp->st_rdinit->qi_minfo->mi_idname);
2484 
2485 	return (EINVAL);
2486 }
2487 
2488 /*
2489  * Set the interface values for a pair of queues (qinit structure,
2490  * packet sizes, water marks).
2491  * setq assumes that the caller does not have a claim (entersq or claimq)
2492  * on the queue.
2493  */
2494 void
2495 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2496     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2497 {
2498 	queue_t *wq;
2499 	syncq_t	*sq, *outer;
2500 
2501 	ASSERT(rq->q_flag & QREADR);
2502 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2503 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2504 
2505 	wq = _WR(rq);
2506 	rq->q_qinfo = rinit;
2507 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2508 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2509 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2510 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2511 	wq->q_qinfo = winit;
2512 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2513 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2514 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2515 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2516 
2517 	/* Remove old syncqs */
2518 	sq = rq->q_syncq;
2519 	outer = sq->sq_outer;
2520 	if (outer != NULL) {
2521 		ASSERT(wq->q_syncq->sq_outer == outer);
2522 		outer_remove(outer, rq->q_syncq);
2523 		if (wq->q_syncq != rq->q_syncq)
2524 			outer_remove(outer, wq->q_syncq);
2525 	}
2526 	ASSERT(sq->sq_outer == NULL);
2527 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2528 
2529 	if (sq != SQ(rq)) {
2530 		if (!(rq->q_flag & QPERMOD))
2531 			free_syncq(sq);
2532 		if (wq->q_syncq == rq->q_syncq)
2533 			wq->q_syncq = NULL;
2534 		rq->q_syncq = NULL;
2535 	}
2536 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2537 	    wq->q_syncq != SQ(rq)) {
2538 		free_syncq(wq->q_syncq);
2539 		wq->q_syncq = NULL;
2540 	}
2541 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2542 	    rq->q_syncq->sq_tail == NULL));
2543 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2544 	    wq->q_syncq->sq_tail == NULL));
2545 
2546 	if (!(rq->q_flag & QPERMOD) &&
2547 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2548 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2549 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2550 		    rq->q_syncq->sq_nciputctrl, 0);
2551 		ASSERT(ciputctrl_cache != NULL);
2552 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2553 		rq->q_syncq->sq_ciputctrl = NULL;
2554 		rq->q_syncq->sq_nciputctrl = 0;
2555 	}
2556 
2557 	if (!(wq->q_flag & QPERMOD) &&
2558 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2559 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2560 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2561 		    wq->q_syncq->sq_nciputctrl, 0);
2562 		ASSERT(ciputctrl_cache != NULL);
2563 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2564 		wq->q_syncq->sq_ciputctrl = NULL;
2565 		wq->q_syncq->sq_nciputctrl = 0;
2566 	}
2567 
2568 	sq = SQ(rq);
2569 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2570 	ASSERT(sq->sq_outer == NULL);
2571 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2572 
2573 	/*
2574 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2575 	 * bits in sq_flag based on the sqtype.
2576 	 */
2577 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2578 
2579 	rq->q_syncq = wq->q_syncq = sq;
2580 	sq->sq_type = sqtype;
2581 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2582 
2583 	/*
2584 	 *  We are making sq_svcflags zero,
2585 	 *  resetting SQ_DISABLED in case it was set by
2586 	 *  wait_svc() in the munlink path.
2587 	 *
2588 	 */
2589 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2590 	sq->sq_svcflags = 0;
2591 
2592 	/*
2593 	 * We need to acquire the lock here for the mlink and munlink case,
2594 	 * where canputnext, backenable, etc can access the q_flag.
2595 	 */
2596 	if (lock_needed) {
2597 		mutex_enter(QLOCK(rq));
2598 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2599 		mutex_exit(QLOCK(rq));
2600 		mutex_enter(QLOCK(wq));
2601 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2602 		mutex_exit(QLOCK(wq));
2603 	} else {
2604 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2605 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2606 	}
2607 
2608 	if (qflag & QPERQ) {
2609 		/* Allocate a separate syncq for the write side */
2610 		sq = new_syncq();
2611 		sq->sq_type = rq->q_syncq->sq_type;
2612 		sq->sq_flags = rq->q_syncq->sq_flags;
2613 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2614 		    sq->sq_oprev == NULL);
2615 		wq->q_syncq = sq;
2616 	}
2617 	if (qflag & QPERMOD) {
2618 		sq = dmp->dm_sq;
2619 
2620 		/*
2621 		 * Assert that we do have an inner perimeter syncq and that it
2622 		 * does not have an outer perimeter associated with it.
2623 		 */
2624 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2625 		    sq->sq_oprev == NULL);
2626 		rq->q_syncq = wq->q_syncq = sq;
2627 	}
2628 	if (qflag & QMTOUTPERIM) {
2629 		outer = dmp->dm_sq;
2630 
2631 		ASSERT(outer->sq_outer == NULL);
2632 		outer_insert(outer, rq->q_syncq);
2633 		if (wq->q_syncq != rq->q_syncq)
2634 			outer_insert(outer, wq->q_syncq);
2635 	}
2636 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2637 	    (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2638 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2639 	    (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2640 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2641 
2642 	/*
2643 	 * Initialize struio() types.
2644 	 */
2645 	rq->q_struiot =
2646 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2647 	wq->q_struiot =
2648 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2649 }
2650 
2651 perdm_t *
2652 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2653 {
2654 	syncq_t	*sq;
2655 	perdm_t	**pp;
2656 	perdm_t	*p;
2657 	perdm_t	*dmp;
2658 
2659 	ASSERT(str != NULL);
2660 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2661 
2662 	rw_enter(&perdm_rwlock, RW_READER);
2663 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2664 		if (p->dm_str == str) {	/* found one */
2665 			atomic_add_32(&(p->dm_ref), 1);
2666 			rw_exit(&perdm_rwlock);
2667 			return (p);
2668 		}
2669 	}
2670 	rw_exit(&perdm_rwlock);
2671 
2672 	sq = new_syncq();
2673 	if (qflag & QPERMOD) {
2674 		sq->sq_type = sqtype | SQ_PERMOD;
2675 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2676 	} else {
2677 		ASSERT(qflag & QMTOUTPERIM);
2678 		sq->sq_onext = sq->sq_oprev = sq;
2679 	}
2680 
2681 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2682 	dmp->dm_sq = sq;
2683 	dmp->dm_str = str;
2684 	dmp->dm_ref = 1;
2685 	dmp->dm_next = NULL;
2686 
2687 	rw_enter(&perdm_rwlock, RW_WRITER);
2688 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2689 		if (p->dm_str == str) {	/* already present */
2690 			p->dm_ref++;
2691 			rw_exit(&perdm_rwlock);
2692 			free_syncq(sq);
2693 			kmem_free(dmp, sizeof (perdm_t));
2694 			return (p);
2695 		}
2696 	}
2697 
2698 	*pp = dmp;
2699 	rw_exit(&perdm_rwlock);
2700 	return (dmp);
2701 }
2702 
2703 void
2704 rele_dm(perdm_t *dmp)
2705 {
2706 	perdm_t **pp;
2707 	perdm_t *p;
2708 
2709 	rw_enter(&perdm_rwlock, RW_WRITER);
2710 	ASSERT(dmp->dm_ref > 0);
2711 
2712 	if (--dmp->dm_ref > 0) {
2713 		rw_exit(&perdm_rwlock);
2714 		return;
2715 	}
2716 
2717 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2718 		if (p == dmp)
2719 			break;
2720 	ASSERT(p == dmp);
2721 	*pp = p->dm_next;
2722 	rw_exit(&perdm_rwlock);
2723 
2724 	/*
2725 	 * Wait for any background processing that relies on the
2726 	 * syncq to complete before it is freed.
2727 	 */
2728 	wait_sq_svc(p->dm_sq);
2729 	free_syncq(p->dm_sq);
2730 	kmem_free(p, sizeof (perdm_t));
2731 }
2732 
2733 /*
2734  * Make a protocol message given control and data buffers.
2735  * n.b., this can block; be careful of what locks you hold when calling it.
2736  *
2737  * If sd_maxblk is less than *iosize this routine can fail part way through
2738  * (due to an allocation failure). In this case on return *iosize will contain
2739  * the amount that was consumed. Otherwise *iosize will not be modified
2740  * i.e. it will contain the amount that was consumed.
2741  */
2742 int
2743 strmakemsg(
2744 	struct strbuf *mctl,
2745 	ssize_t *iosize,
2746 	struct uio *uiop,
2747 	stdata_t *stp,
2748 	int32_t flag,
2749 	mblk_t **mpp)
2750 {
2751 	mblk_t *mpctl = NULL;
2752 	mblk_t *mpdata = NULL;
2753 	int error;
2754 
2755 	ASSERT(uiop != NULL);
2756 
2757 	*mpp = NULL;
2758 	/* Create control part, if any */
2759 	if ((mctl != NULL) && (mctl->len >= 0)) {
2760 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2761 		if (error)
2762 			return (error);
2763 	}
2764 	/* Create data part, if any */
2765 	if (*iosize >= 0) {
2766 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2767 		if (error) {
2768 			freemsg(mpctl);
2769 			return (error);
2770 		}
2771 	}
2772 	if (mpctl != NULL) {
2773 		if (mpdata != NULL)
2774 			linkb(mpctl, mpdata);
2775 		*mpp = mpctl;
2776 	} else {
2777 		*mpp = mpdata;
2778 	}
2779 	return (0);
2780 }
2781 
2782 /*
2783  * Make the control part of a protocol message given a control buffer.
2784  * n.b., this can block; be careful of what locks you hold when calling it.
2785  */
2786 int
2787 strmakectl(
2788 	struct strbuf *mctl,
2789 	int32_t flag,
2790 	int32_t fflag,
2791 	mblk_t **mpp)
2792 {
2793 	mblk_t *bp = NULL;
2794 	unsigned char msgtype;
2795 	int error = 0;
2796 
2797 	*mpp = NULL;
2798 	/*
2799 	 * Create control part of message, if any.
2800 	 */
2801 	if ((mctl != NULL) && (mctl->len >= 0)) {
2802 		caddr_t base;
2803 		int ctlcount;
2804 		int allocsz;
2805 
2806 		if (flag & RS_HIPRI)
2807 			msgtype = M_PCPROTO;
2808 		else
2809 			msgtype = M_PROTO;
2810 
2811 		ctlcount = mctl->len;
2812 		base = mctl->buf;
2813 
2814 		/*
2815 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2816 		 * blocks by increasing the size to something more usable.
2817 		 */
2818 		allocsz = MAX(ctlcount, 64);
2819 
2820 		/*
2821 		 * Range checking has already been done; simply try
2822 		 * to allocate a message block for the ctl part.
2823 		 */
2824 		while (!(bp = allocb(allocsz, BPRI_MED))) {
2825 			if (fflag & (FNDELAY|FNONBLOCK))
2826 				return (EAGAIN);
2827 			if (error = strwaitbuf(allocsz, BPRI_MED))
2828 				return (error);
2829 		}
2830 
2831 		bp->b_datap->db_type = msgtype;
2832 		if (copyin(base, bp->b_wptr, ctlcount)) {
2833 			freeb(bp);
2834 			return (EFAULT);
2835 		}
2836 		bp->b_wptr += ctlcount;
2837 	}
2838 	*mpp = bp;
2839 	return (0);
2840 }
2841 
2842 /*
2843  * Make a protocol message given data buffers.
2844  * n.b., this can block; be careful of what locks you hold when calling it.
2845  *
2846  * If sd_maxblk is less than *iosize this routine can fail part way through
2847  * (due to an allocation failure). In this case on return *iosize will contain
2848  * the amount that was consumed. Otherwise *iosize will not be modified
2849  * i.e. it will contain the amount that was consumed.
2850  */
2851 int
2852 strmakedata(
2853 	ssize_t   *iosize,
2854 	struct uio *uiop,
2855 	stdata_t *stp,
2856 	int32_t flag,
2857 	mblk_t **mpp)
2858 {
2859 	mblk_t *mp = NULL;
2860 	mblk_t *bp;
2861 	int wroff = (int)stp->sd_wroff;
2862 	int tail_len = (int)stp->sd_tail;
2863 	int extra = wroff + tail_len;
2864 	int error = 0;
2865 	ssize_t maxblk;
2866 	ssize_t count = *iosize;
2867 	cred_t *cr = CRED();
2868 
2869 	*mpp = NULL;
2870 	if (count < 0)
2871 		return (0);
2872 
2873 	maxblk = stp->sd_maxblk;
2874 	if (maxblk == INFPSZ)
2875 		maxblk = count;
2876 
2877 	/*
2878 	 * Create data part of message, if any.
2879 	 */
2880 	do {
2881 		ssize_t size;
2882 		dblk_t  *dp;
2883 
2884 		ASSERT(uiop);
2885 
2886 		size = MIN(count, maxblk);
2887 
2888 		while ((bp = allocb_cred(size + extra, cr)) == NULL) {
2889 			error = EAGAIN;
2890 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2891 			    (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2892 				if (count == *iosize) {
2893 					freemsg(mp);
2894 					return (error);
2895 				} else {
2896 					*iosize -= count;
2897 					*mpp = mp;
2898 					return (0);
2899 				}
2900 			}
2901 		}
2902 		dp = bp->b_datap;
2903 		dp->db_cpid = curproc->p_pid;
2904 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2905 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2906 
2907 		if (flag & STRUIO_POSTPONE) {
2908 			/*
2909 			 * Setup the stream uio portion of the
2910 			 * dblk for subsequent use by struioget().
2911 			 */
2912 			dp->db_struioflag = STRUIO_SPEC;
2913 			dp->db_cksumstart = 0;
2914 			dp->db_cksumstuff = 0;
2915 			dp->db_cksumend = size;
2916 			*(long long *)dp->db_struioun.data = 0ll;
2917 			bp->b_wptr += size;
2918 		} else {
2919 			if (stp->sd_copyflag & STRCOPYCACHED)
2920 				uiop->uio_extflg |= UIO_COPY_CACHED;
2921 
2922 			if (size != 0) {
2923 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2924 				    uiop);
2925 				if (error != 0) {
2926 					freeb(bp);
2927 					freemsg(mp);
2928 					return (error);
2929 				}
2930 			}
2931 			bp->b_wptr += size;
2932 
2933 			if (stp->sd_wputdatafunc != NULL) {
2934 				mblk_t *newbp;
2935 
2936 				newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2937 				    bp, NULL, NULL, NULL, NULL);
2938 				if (newbp == NULL) {
2939 					freeb(bp);
2940 					freemsg(mp);
2941 					return (ECOMM);
2942 				}
2943 				bp = newbp;
2944 			}
2945 		}
2946 
2947 		count -= size;
2948 
2949 		if (mp == NULL)
2950 			mp = bp;
2951 		else
2952 			linkb(mp, bp);
2953 	} while (count > 0);
2954 
2955 	*mpp = mp;
2956 	return (0);
2957 }
2958 
2959 /*
2960  * Wait for a buffer to become available. Return non-zero errno
2961  * if not able to wait, 0 if buffer is probably there.
2962  */
2963 int
2964 strwaitbuf(size_t size, int pri)
2965 {
2966 	bufcall_id_t id;
2967 
2968 	mutex_enter(&bcall_monitor);
2969 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2970 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2971 		mutex_exit(&bcall_monitor);
2972 		return (ENOSR);
2973 	}
2974 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2975 		unbufcall(id);
2976 		mutex_exit(&bcall_monitor);
2977 		return (EINTR);
2978 	}
2979 	unbufcall(id);
2980 	mutex_exit(&bcall_monitor);
2981 	return (0);
2982 }
2983 
2984 /*
2985  * This function waits for a read or write event to happen on a stream.
2986  * fmode can specify FNDELAY and/or FNONBLOCK.
2987  * The timeout is in ms with -1 meaning infinite.
2988  * The flag values work as follows:
2989  *	READWAIT	Check for read side errors, send M_READ
2990  *	GETWAIT		Check for read side errors, no M_READ
2991  *	WRITEWAIT	Check for write side errors.
2992  *	NOINTR		Do not return error if nonblocking or timeout.
2993  * 	STR_NOERROR	Ignore all errors except STPLEX.
2994  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
2995  *	STR_PEEK	Pass through the strgeterr().
2996  */
2997 int
2998 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
2999     int *done)
3000 {
3001 	int slpflg, errs;
3002 	int error;
3003 	kcondvar_t *sleepon;
3004 	mblk_t *mp;
3005 	ssize_t *rd_count;
3006 	clock_t rval;
3007 
3008 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3009 	if ((flag & READWAIT) || (flag & GETWAIT)) {
3010 		slpflg = RSLEEP;
3011 		sleepon = &_RD(stp->sd_wrq)->q_wait;
3012 		errs = STRDERR|STPLEX;
3013 	} else {
3014 		slpflg = WSLEEP;
3015 		sleepon = &stp->sd_wrq->q_wait;
3016 		errs = STWRERR|STRHUP|STPLEX;
3017 	}
3018 	if (flag & STR_NOERROR)
3019 		errs = STPLEX;
3020 
3021 	if (stp->sd_wakeq & slpflg) {
3022 		/*
3023 		 * A strwakeq() is pending, no need to sleep.
3024 		 */
3025 		stp->sd_wakeq &= ~slpflg;
3026 		*done = 0;
3027 		return (0);
3028 	}
3029 
3030 	if (stp->sd_flag & errs) {
3031 		/*
3032 		 * Check for errors before going to sleep since the
3033 		 * caller might not have checked this while holding
3034 		 * sd_lock.
3035 		 */
3036 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3037 		if (error != 0) {
3038 			*done = 1;
3039 			return (error);
3040 		}
3041 	}
3042 
3043 	/*
3044 	 * If any module downstream has requested read notification
3045 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3046 	 * down stream.
3047 	 */
3048 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3049 		mutex_exit(&stp->sd_lock);
3050 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3051 		    (flag & STR_NOSIG), &error))) {
3052 			mutex_enter(&stp->sd_lock);
3053 			*done = 1;
3054 			return (error);
3055 		}
3056 		mp->b_datap->db_type = M_READ;
3057 		rd_count = (ssize_t *)mp->b_wptr;
3058 		*rd_count = count;
3059 		mp->b_wptr += sizeof (ssize_t);
3060 		/*
3061 		 * Send the number of bytes requested by the
3062 		 * read as the argument to M_READ.
3063 		 */
3064 		stream_willservice(stp);
3065 		putnext(stp->sd_wrq, mp);
3066 		stream_runservice(stp);
3067 		mutex_enter(&stp->sd_lock);
3068 
3069 		/*
3070 		 * If any data arrived due to inline processing
3071 		 * of putnext(), don't sleep.
3072 		 */
3073 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3074 			*done = 0;
3075 			return (0);
3076 		}
3077 	}
3078 
3079 	if (fmode & (FNDELAY|FNONBLOCK)) {
3080 		if (!(flag & NOINTR))
3081 			error = EAGAIN;
3082 		else
3083 			error = 0;
3084 		*done = 1;
3085 		return (error);
3086 	}
3087 
3088 	stp->sd_flag |= slpflg;
3089 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3090 	    "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3091 	    stp, flag, count, fmode, done);
3092 
3093 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3094 	if (rval > 0) {
3095 		/* EMPTY */
3096 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3097 		    "strwaitq awakes(2):%X, %X, %X, %X, %X",
3098 		    stp, flag, count, fmode, done);
3099 	} else if (rval == 0) {
3100 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3101 		    "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3102 		    stp, flag, count, fmode, done);
3103 		stp->sd_flag &= ~slpflg;
3104 		cv_broadcast(sleepon);
3105 		if (!(flag & NOINTR))
3106 			error = EINTR;
3107 		else
3108 			error = 0;
3109 		*done = 1;
3110 		return (error);
3111 	} else {
3112 		/* timeout */
3113 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3114 		    "strwaitq timeout:%p, %X, %lX, %X, %p",
3115 		    stp, flag, count, fmode, done);
3116 		*done = 1;
3117 		if (!(flag & NOINTR))
3118 			return (ETIME);
3119 		else
3120 			return (0);
3121 	}
3122 	/*
3123 	 * If the caller implements delayed errors (i.e. queued after data)
3124 	 * we can not check for errors here since data as well as an
3125 	 * error might have arrived at the stream head. We return to
3126 	 * have the caller check the read queue before checking for errors.
3127 	 */
3128 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3129 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3130 		if (error != 0) {
3131 			*done = 1;
3132 			return (error);
3133 		}
3134 	}
3135 	*done = 0;
3136 	return (0);
3137 }
3138 
3139 /*
3140  * Perform job control discipline access checks.
3141  * Return 0 for success and the errno for failure.
3142  */
3143 
3144 #define	cantsend(p, t, sig) \
3145 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3146 
3147 int
3148 straccess(struct stdata *stp, enum jcaccess mode)
3149 {
3150 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3151 	kthread_t *t = curthread;
3152 	proc_t *p = ttoproc(t);
3153 	sess_t *sp;
3154 
3155 	ASSERT(mutex_owned(&stp->sd_lock));
3156 
3157 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3158 		return (0);
3159 
3160 	mutex_enter(&p->p_lock);		/* protects p_pgidp */
3161 
3162 	for (;;) {
3163 		mutex_enter(&p->p_splock);	/* protects p->p_sessp */
3164 		sp = p->p_sessp;
3165 		mutex_enter(&sp->s_lock);	/* protects sp->* */
3166 
3167 		/*
3168 		 * If this is not the calling process's controlling terminal
3169 		 * or if the calling process is already in the foreground
3170 		 * then allow access.
3171 		 */
3172 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3173 		    p->p_pgidp == stp->sd_pgidp) {
3174 			mutex_exit(&sp->s_lock);
3175 			mutex_exit(&p->p_splock);
3176 			mutex_exit(&p->p_lock);
3177 			return (0);
3178 		}
3179 
3180 		/*
3181 		 * Check to see if controlling terminal has been deallocated.
3182 		 */
3183 		if (sp->s_vp == NULL) {
3184 			if (!cantsend(p, t, SIGHUP))
3185 				sigtoproc(p, t, SIGHUP);
3186 			mutex_exit(&sp->s_lock);
3187 			mutex_exit(&p->p_splock);
3188 			mutex_exit(&p->p_lock);
3189 			return (EIO);
3190 		}
3191 
3192 		mutex_exit(&sp->s_lock);
3193 		mutex_exit(&p->p_splock);
3194 
3195 		if (mode == JCGETP) {
3196 			mutex_exit(&p->p_lock);
3197 			return (0);
3198 		}
3199 
3200 		if (mode == JCREAD) {
3201 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3202 				mutex_exit(&p->p_lock);
3203 				return (EIO);
3204 			}
3205 			mutex_exit(&p->p_lock);
3206 			mutex_exit(&stp->sd_lock);
3207 			pgsignal(p->p_pgidp, SIGTTIN);
3208 			mutex_enter(&stp->sd_lock);
3209 			mutex_enter(&p->p_lock);
3210 		} else {  /* mode == JCWRITE or JCSETP */
3211 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3212 			    cantsend(p, t, SIGTTOU)) {
3213 				mutex_exit(&p->p_lock);
3214 				return (0);
3215 			}
3216 			if (p->p_detached) {
3217 				mutex_exit(&p->p_lock);
3218 				return (EIO);
3219 			}
3220 			mutex_exit(&p->p_lock);
3221 			mutex_exit(&stp->sd_lock);
3222 			pgsignal(p->p_pgidp, SIGTTOU);
3223 			mutex_enter(&stp->sd_lock);
3224 			mutex_enter(&p->p_lock);
3225 		}
3226 
3227 		/*
3228 		 * We call cv_wait_sig_swap() to cause the appropriate
3229 		 * action for the jobcontrol signal to take place.
3230 		 * If the signal is being caught, we will take the
3231 		 * EINTR error return.  Otherwise, the default action
3232 		 * of causing the process to stop will take place.
3233 		 * In this case, we rely on the periodic cv_broadcast() on
3234 		 * &lbolt_cv to wake us up to loop around and test again.
3235 		 * We can't get here if the signal is ignored or
3236 		 * if the current thread is blocking the signal.
3237 		 */
3238 		mutex_exit(&stp->sd_lock);
3239 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3240 			mutex_exit(&p->p_lock);
3241 			mutex_enter(&stp->sd_lock);
3242 			return (EINTR);
3243 		}
3244 		mutex_exit(&p->p_lock);
3245 		mutex_enter(&stp->sd_lock);
3246 		mutex_enter(&p->p_lock);
3247 	}
3248 }
3249 
3250 /*
3251  * Return size of message of block type (bp->b_datap->db_type)
3252  */
3253 size_t
3254 xmsgsize(mblk_t *bp)
3255 {
3256 	unsigned char type;
3257 	size_t count = 0;
3258 
3259 	type = bp->b_datap->db_type;
3260 
3261 	for (; bp; bp = bp->b_cont) {
3262 		if (type != bp->b_datap->db_type)
3263 			break;
3264 		ASSERT(bp->b_wptr >= bp->b_rptr);
3265 		count += bp->b_wptr - bp->b_rptr;
3266 	}
3267 	return (count);
3268 }
3269 
3270 /*
3271  * Allocate a stream head.
3272  */
3273 struct stdata *
3274 shalloc(queue_t *qp)
3275 {
3276 	stdata_t *stp;
3277 
3278 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3279 
3280 	stp->sd_wrq = _WR(qp);
3281 	stp->sd_strtab = NULL;
3282 	stp->sd_iocid = 0;
3283 	stp->sd_mate = NULL;
3284 	stp->sd_freezer = NULL;
3285 	stp->sd_refcnt = 0;
3286 	stp->sd_wakeq = 0;
3287 	stp->sd_anchor = 0;
3288 	stp->sd_struiowrq = NULL;
3289 	stp->sd_struiordq = NULL;
3290 	stp->sd_struiodnak = 0;
3291 	stp->sd_struionak = NULL;
3292 	stp->sd_t_audit_data = NULL;
3293 	stp->sd_rput_opt = 0;
3294 	stp->sd_wput_opt = 0;
3295 	stp->sd_read_opt = 0;
3296 	stp->sd_rprotofunc = strrput_proto;
3297 	stp->sd_rmiscfunc = strrput_misc;
3298 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3299 	stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3300 	stp->sd_ciputctrl = NULL;
3301 	stp->sd_nciputctrl = 0;
3302 	stp->sd_qhead = NULL;
3303 	stp->sd_qtail = NULL;
3304 	stp->sd_servid = NULL;
3305 	stp->sd_nqueues = 0;
3306 	stp->sd_svcflags = 0;
3307 	stp->sd_copyflag = 0;
3308 
3309 	return (stp);
3310 }
3311 
3312 /*
3313  * Free a stream head.
3314  */
3315 void
3316 shfree(stdata_t *stp)
3317 {
3318 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3319 
3320 	stp->sd_wrq = NULL;
3321 
3322 	mutex_enter(&stp->sd_qlock);
3323 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3324 		STRSTAT(strwaits);
3325 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3326 	}
3327 	mutex_exit(&stp->sd_qlock);
3328 
3329 	if (stp->sd_ciputctrl != NULL) {
3330 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3331 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3332 		    stp->sd_nciputctrl, 0);
3333 		ASSERT(ciputctrl_cache != NULL);
3334 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3335 		stp->sd_ciputctrl = NULL;
3336 		stp->sd_nciputctrl = 0;
3337 	}
3338 	ASSERT(stp->sd_qhead == NULL);
3339 	ASSERT(stp->sd_qtail == NULL);
3340 	ASSERT(stp->sd_nqueues == 0);
3341 	kmem_cache_free(stream_head_cache, stp);
3342 }
3343 
3344 /*
3345  * Allocate a pair of queues and a syncq for the pair
3346  */
3347 queue_t *
3348 allocq(void)
3349 {
3350 	queinfo_t *qip;
3351 	queue_t *qp, *wqp;
3352 	syncq_t	*sq;
3353 
3354 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3355 
3356 	qp = &qip->qu_rqueue;
3357 	wqp = &qip->qu_wqueue;
3358 	sq = &qip->qu_syncq;
3359 
3360 	qp->q_last	= NULL;
3361 	qp->q_next	= NULL;
3362 	qp->q_ptr	= NULL;
3363 	qp->q_flag	= QUSE | QREADR;
3364 	qp->q_bandp	= NULL;
3365 	qp->q_stream	= NULL;
3366 	qp->q_syncq	= sq;
3367 	qp->q_nband	= 0;
3368 	qp->q_nfsrv	= NULL;
3369 	qp->q_draining	= 0;
3370 	qp->q_syncqmsgs	= 0;
3371 	qp->q_spri	= 0;
3372 	qp->q_qtstamp	= 0;
3373 	qp->q_sqtstamp	= 0;
3374 	qp->q_fp	= NULL;
3375 
3376 	wqp->q_last	= NULL;
3377 	wqp->q_next	= NULL;
3378 	wqp->q_ptr	= NULL;
3379 	wqp->q_flag	= QUSE;
3380 	wqp->q_bandp	= NULL;
3381 	wqp->q_stream	= NULL;
3382 	wqp->q_syncq	= sq;
3383 	wqp->q_nband	= 0;
3384 	wqp->q_nfsrv	= NULL;
3385 	wqp->q_draining	= 0;
3386 	wqp->q_syncqmsgs = 0;
3387 	wqp->q_qtstamp	= 0;
3388 	wqp->q_sqtstamp	= 0;
3389 	wqp->q_spri	= 0;
3390 
3391 	sq->sq_count	= 0;
3392 	sq->sq_rmqcount	= 0;
3393 	sq->sq_flags	= 0;
3394 	sq->sq_type	= 0;
3395 	sq->sq_callbflags = 0;
3396 	sq->sq_cancelid	= 0;
3397 	sq->sq_ciputctrl = NULL;
3398 	sq->sq_nciputctrl = 0;
3399 	sq->sq_needexcl = 0;
3400 	sq->sq_svcflags = 0;
3401 
3402 	return (qp);
3403 }
3404 
3405 /*
3406  * Free a pair of queues and the "attached" syncq.
3407  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3408  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3409  */
3410 void
3411 freeq(queue_t *qp)
3412 {
3413 	qband_t *qbp, *nqbp;
3414 	syncq_t *sq, *outer;
3415 	queue_t *wqp = _WR(qp);
3416 
3417 	ASSERT(qp->q_flag & QREADR);
3418 
3419 	/*
3420 	 * If a previously dispatched taskq job is scheduled to run
3421 	 * sync_service() or a service routine is scheduled for the
3422 	 * queues about to be freed, wait here until all service is
3423 	 * done on the queue and all associated queues and syncqs.
3424 	 */
3425 	wait_svc(qp);
3426 
3427 	(void) flush_syncq(qp->q_syncq, qp);
3428 	(void) flush_syncq(wqp->q_syncq, wqp);
3429 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3430 
3431 	/*
3432 	 * Flush the queues before q_next is set to NULL This is needed
3433 	 * in order to backenable any downstream queue before we go away.
3434 	 * Note: we are already removed from the stream so that the
3435 	 * backenabling will not cause any messages to be delivered to our
3436 	 * put procedures.
3437 	 */
3438 	flushq(qp, FLUSHALL);
3439 	flushq(wqp, FLUSHALL);
3440 
3441 	/* Tidy up - removeq only does a half-remove from stream */
3442 	qp->q_next = wqp->q_next = NULL;
3443 	ASSERT(!(qp->q_flag & QENAB));
3444 	ASSERT(!(wqp->q_flag & QENAB));
3445 
3446 	outer = qp->q_syncq->sq_outer;
3447 	if (outer != NULL) {
3448 		outer_remove(outer, qp->q_syncq);
3449 		if (wqp->q_syncq != qp->q_syncq)
3450 			outer_remove(outer, wqp->q_syncq);
3451 	}
3452 	/*
3453 	 * Free any syncqs that are outside what allocq returned.
3454 	 */
3455 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3456 		free_syncq(qp->q_syncq);
3457 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3458 		free_syncq(wqp->q_syncq);
3459 
3460 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3461 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3462 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3463 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3464 	sq = SQ(qp);
3465 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3466 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3467 	ASSERT(sq->sq_outer == NULL);
3468 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3469 	ASSERT(sq->sq_callbpend == NULL);
3470 	ASSERT(sq->sq_needexcl == 0);
3471 
3472 	if (sq->sq_ciputctrl != NULL) {
3473 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3474 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3475 		    sq->sq_nciputctrl, 0);
3476 		ASSERT(ciputctrl_cache != NULL);
3477 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3478 		sq->sq_ciputctrl = NULL;
3479 		sq->sq_nciputctrl = 0;
3480 	}
3481 
3482 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3483 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3484 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3485 
3486 	qp->q_flag &= ~QUSE;
3487 	wqp->q_flag &= ~QUSE;
3488 
3489 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3490 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3491 
3492 	qbp = qp->q_bandp;
3493 	while (qbp) {
3494 		nqbp = qbp->qb_next;
3495 		freeband(qbp);
3496 		qbp = nqbp;
3497 	}
3498 	qbp = wqp->q_bandp;
3499 	while (qbp) {
3500 		nqbp = qbp->qb_next;
3501 		freeband(qbp);
3502 		qbp = nqbp;
3503 	}
3504 	kmem_cache_free(queue_cache, qp);
3505 }
3506 
3507 /*
3508  * Allocate a qband structure.
3509  */
3510 qband_t *
3511 allocband(void)
3512 {
3513 	qband_t *qbp;
3514 
3515 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3516 	if (qbp == NULL)
3517 		return (NULL);
3518 
3519 	qbp->qb_next	= NULL;
3520 	qbp->qb_count	= 0;
3521 	qbp->qb_mblkcnt	= 0;
3522 	qbp->qb_first	= NULL;
3523 	qbp->qb_last	= NULL;
3524 	qbp->qb_flag	= 0;
3525 
3526 	return (qbp);
3527 }
3528 
3529 /*
3530  * Free a qband structure.
3531  */
3532 void
3533 freeband(qband_t *qbp)
3534 {
3535 	kmem_cache_free(qband_cache, qbp);
3536 }
3537 
3538 /*
3539  * Just like putnextctl(9F), except that allocb_wait() is used.
3540  *
3541  * Consolidation Private, and of course only callable from the stream head or
3542  * routines that may block.
3543  */
3544 int
3545 putnextctl_wait(queue_t *q, int type)
3546 {
3547 	mblk_t *bp;
3548 	int error;
3549 
3550 	if ((datamsg(type) && (type != M_DELAY)) ||
3551 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3552 		return (0);
3553 
3554 	bp->b_datap->db_type = (unsigned char)type;
3555 	putnext(q, bp);
3556 	return (1);
3557 }
3558 
3559 /*
3560  * run any possible bufcalls.
3561  */
3562 void
3563 runbufcalls(void)
3564 {
3565 	strbufcall_t *bcp;
3566 
3567 	mutex_enter(&bcall_monitor);
3568 	mutex_enter(&strbcall_lock);
3569 
3570 	if (strbcalls.bc_head) {
3571 		size_t count;
3572 		int nevent;
3573 
3574 		/*
3575 		 * count how many events are on the list
3576 		 * now so we can check to avoid looping
3577 		 * in low memory situations
3578 		 */
3579 		nevent = 0;
3580 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3581 			nevent++;
3582 
3583 		/*
3584 		 * get estimate of available memory from kmem_avail().
3585 		 * awake all bufcall functions waiting for
3586 		 * memory whose request could be satisfied
3587 		 * by 'count' memory and let 'em fight for it.
3588 		 */
3589 		count = kmem_avail();
3590 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3591 			STRSTAT(bufcalls);
3592 			--nevent;
3593 			if (bcp->bc_size <= count) {
3594 				bcp->bc_executor = curthread;
3595 				mutex_exit(&strbcall_lock);
3596 				(*bcp->bc_func)(bcp->bc_arg);
3597 				mutex_enter(&strbcall_lock);
3598 				bcp->bc_executor = NULL;
3599 				cv_broadcast(&bcall_cv);
3600 				strbcalls.bc_head = bcp->bc_next;
3601 				kmem_free(bcp, sizeof (strbufcall_t));
3602 			} else {
3603 				/*
3604 				 * too big, try again later - note
3605 				 * that nevent was decremented above
3606 				 * so we won't retry this one on this
3607 				 * iteration of the loop
3608 				 */
3609 				if (bcp->bc_next != NULL) {
3610 					strbcalls.bc_head = bcp->bc_next;
3611 					bcp->bc_next = NULL;
3612 					strbcalls.bc_tail->bc_next = bcp;
3613 					strbcalls.bc_tail = bcp;
3614 				}
3615 			}
3616 		}
3617 		if (strbcalls.bc_head == NULL)
3618 			strbcalls.bc_tail = NULL;
3619 	}
3620 
3621 	mutex_exit(&strbcall_lock);
3622 	mutex_exit(&bcall_monitor);
3623 }
3624 
3625 
3626 /*
3627  * actually run queue's service routine.
3628  */
3629 static void
3630 runservice(queue_t *q)
3631 {
3632 	qband_t *qbp;
3633 
3634 	ASSERT(q->q_qinfo->qi_srvp);
3635 again:
3636 	entersq(q->q_syncq, SQ_SVC);
3637 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3638 	    "runservice starts:%p", q);
3639 
3640 	if (!(q->q_flag & QWCLOSE))
3641 		(*q->q_qinfo->qi_srvp)(q);
3642 
3643 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3644 	    "runservice ends:(%p)", q);
3645 
3646 	leavesq(q->q_syncq, SQ_SVC);
3647 
3648 	mutex_enter(QLOCK(q));
3649 	if (q->q_flag & QENAB) {
3650 		q->q_flag &= ~QENAB;
3651 		mutex_exit(QLOCK(q));
3652 		goto again;
3653 	}
3654 	q->q_flag &= ~QINSERVICE;
3655 	q->q_flag &= ~QBACK;
3656 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3657 		qbp->qb_flag &= ~QB_BACK;
3658 	/*
3659 	 * Wakeup thread waiting for the service procedure
3660 	 * to be run (strclose and qdetach).
3661 	 */
3662 	cv_broadcast(&q->q_wait);
3663 
3664 	mutex_exit(QLOCK(q));
3665 }
3666 
3667 /*
3668  * Background processing of bufcalls.
3669  */
3670 void
3671 streams_bufcall_service(void)
3672 {
3673 	callb_cpr_t	cprinfo;
3674 
3675 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3676 	    "streams_bufcall_service");
3677 
3678 	mutex_enter(&strbcall_lock);
3679 
3680 	for (;;) {
3681 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3682 			mutex_exit(&strbcall_lock);
3683 			runbufcalls();
3684 			mutex_enter(&strbcall_lock);
3685 		}
3686 		if (strbcalls.bc_head != NULL) {
3687 			clock_t wt, tick;
3688 
3689 			STRSTAT(bcwaits);
3690 			/* Wait for memory to become available */
3691 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3692 			tick = SEC_TO_TICK(60);
3693 			time_to_wait(&wt, tick);
3694 			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3695 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3696 		}
3697 
3698 		/* Wait for new work to arrive */
3699 		if (strbcalls.bc_head == NULL) {
3700 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3701 			cv_wait(&strbcall_cv, &strbcall_lock);
3702 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3703 		}
3704 	}
3705 }
3706 
3707 /*
3708  * Background processing of streams background tasks which failed
3709  * taskq_dispatch.
3710  */
3711 static void
3712 streams_qbkgrnd_service(void)
3713 {
3714 	callb_cpr_t cprinfo;
3715 	queue_t *q;
3716 
3717 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3718 	    "streams_bkgrnd_service");
3719 
3720 	mutex_enter(&service_queue);
3721 
3722 	for (;;) {
3723 		/*
3724 		 * Wait for work to arrive.
3725 		 */
3726 		while ((freebs_list == NULL) && (qhead == NULL)) {
3727 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3728 			cv_wait(&services_to_run, &service_queue);
3729 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3730 		}
3731 		/*
3732 		 * Handle all pending freebs requests to free memory.
3733 		 */
3734 		while (freebs_list != NULL) {
3735 			mblk_t *mp = freebs_list;
3736 			freebs_list = mp->b_next;
3737 			mutex_exit(&service_queue);
3738 			mblk_free(mp);
3739 			mutex_enter(&service_queue);
3740 		}
3741 		/*
3742 		 * Run pending queues.
3743 		 */
3744 		while (qhead != NULL) {
3745 			DQ(q, qhead, qtail, q_link);
3746 			ASSERT(q != NULL);
3747 			mutex_exit(&service_queue);
3748 			queue_service(q);
3749 			mutex_enter(&service_queue);
3750 		}
3751 		ASSERT(qhead == NULL && qtail == NULL);
3752 	}
3753 }
3754 
3755 /*
3756  * Background processing of streams background tasks which failed
3757  * taskq_dispatch.
3758  */
3759 static void
3760 streams_sqbkgrnd_service(void)
3761 {
3762 	callb_cpr_t cprinfo;
3763 	syncq_t *sq;
3764 
3765 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3766 	    "streams_sqbkgrnd_service");
3767 
3768 	mutex_enter(&service_queue);
3769 
3770 	for (;;) {
3771 		/*
3772 		 * Wait for work to arrive.
3773 		 */
3774 		while (sqhead == NULL) {
3775 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3776 			cv_wait(&syncqs_to_run, &service_queue);
3777 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3778 		}
3779 
3780 		/*
3781 		 * Run pending syncqs.
3782 		 */
3783 		while (sqhead != NULL) {
3784 			DQ(sq, sqhead, sqtail, sq_next);
3785 			ASSERT(sq != NULL);
3786 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3787 			mutex_exit(&service_queue);
3788 			syncq_service(sq);
3789 			mutex_enter(&service_queue);
3790 		}
3791 	}
3792 }
3793 
3794 /*
3795  * Disable the syncq and wait for background syncq processing to complete.
3796  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3797  * list.
3798  */
3799 void
3800 wait_sq_svc(syncq_t *sq)
3801 {
3802 	mutex_enter(SQLOCK(sq));
3803 	sq->sq_svcflags |= SQ_DISABLED;
3804 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3805 		syncq_t *sq_chase;
3806 		syncq_t *sq_curr;
3807 		int removed;
3808 
3809 		ASSERT(sq->sq_servcount == 1);
3810 		mutex_enter(&service_queue);
3811 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3812 		mutex_exit(&service_queue);
3813 		if (removed) {
3814 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3815 			sq->sq_servcount = 0;
3816 			STRSTAT(sqremoved);
3817 			goto done;
3818 		}
3819 	}
3820 	while (sq->sq_servcount != 0) {
3821 		sq->sq_flags |= SQ_WANTWAKEUP;
3822 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3823 	}
3824 done:
3825 	mutex_exit(SQLOCK(sq));
3826 }
3827 
3828 /*
3829  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3830  * Add the argument to the end of the sqhead list and set the flag
3831  * indicating this syncq has been enabled.  If it has already been
3832  * enabled, don't do anything.
3833  * This routine assumes that SQLOCK is held.
3834  * NOTE that the lock order is to have the SQLOCK first,
3835  * so if the service_syncq lock is held, we need to release it
3836  * before aquiring the SQLOCK (mostly relevant for the background
3837  * thread, and this seems to be common among the STREAMS global locks).
3838  * Note the the sq_svcflags are protected by the SQLOCK.
3839  */
3840 void
3841 sqenable(syncq_t *sq)
3842 {
3843 	/*
3844 	 * This is probably not important except for where I believe it
3845 	 * is being called.  At that point, it should be held (and it
3846 	 * is a pain to release it just for this routine, so don't do
3847 	 * it).
3848 	 */
3849 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3850 
3851 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3852 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3853 
3854 	/*
3855 	 * Do not put on list if background thread is scheduled or
3856 	 * syncq is disabled.
3857 	 */
3858 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3859 		return;
3860 
3861 	/*
3862 	 * Check whether we should enable sq at all.
3863 	 * Non PERMOD syncqs may be drained by at most one thread.
3864 	 * PERMOD syncqs may be drained by several threads but we limit the
3865 	 * total amount to the lesser of
3866 	 *	Number of queues on the squeue and
3867 	 *	Number of CPUs.
3868 	 */
3869 	if (sq->sq_servcount != 0) {
3870 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3871 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3872 			STRSTAT(sqtoomany);
3873 			return;
3874 		}
3875 	}
3876 
3877 	sq->sq_tstamp = lbolt;
3878 	STRSTAT(sqenables);
3879 
3880 	/* Attempt a taskq dispatch */
3881 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3882 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3883 	if (sq->sq_servid != NULL) {
3884 		sq->sq_servcount++;
3885 		return;
3886 	}
3887 
3888 	/*
3889 	 * This taskq dispatch failed, but a previous one may have succeeded.
3890 	 * Don't try to schedule on the background thread whilst there is
3891 	 * outstanding taskq processing.
3892 	 */
3893 	if (sq->sq_servcount != 0)
3894 		return;
3895 
3896 	/*
3897 	 * System is low on resources and can't perform a non-sleeping
3898 	 * dispatch. Schedule the syncq for a background thread and mark the
3899 	 * syncq to avoid any further taskq dispatch attempts.
3900 	 */
3901 	mutex_enter(&service_queue);
3902 	STRSTAT(taskqfails);
3903 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3904 	sq->sq_svcflags |= SQ_BGTHREAD;
3905 	sq->sq_servcount = 1;
3906 	cv_signal(&syncqs_to_run);
3907 	mutex_exit(&service_queue);
3908 }
3909 
3910 /*
3911  * Note: fifo_close() depends on the mblk_t on the queue being freed
3912  * asynchronously. The asynchronous freeing of messages breaks the
3913  * recursive call chain of fifo_close() while there are I_SENDFD type of
3914  * messages refering other file pointers on the queue. Then when
3915  * closing pipes it can avoid stack overflow in case of daisy-chained
3916  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3917  * share the same fifolock_t).
3918  */
3919 
3920 void
3921 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3922 {
3923 	esb_queue_t *eqp = &system_esbq;
3924 
3925 	ASSERT(dbp->db_mblk == mp);
3926 
3927 	/*
3928 	 * Check data sanity. The dblock should have non-empty free function.
3929 	 * It is better to panic here then later when the dblock is freed
3930 	 * asynchronously when the context is lost.
3931 	 */
3932 	if (dbp->db_frtnp->free_func == NULL) {
3933 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3934 		    (void *)dbp);
3935 	}
3936 
3937 	mutex_enter(&eqp->eq_lock);
3938 	/* queue the new mblk on the esballoc queue */
3939 	if (eqp->eq_head == NULL) {
3940 		eqp->eq_head = eqp->eq_tail = mp;
3941 	} else {
3942 		eqp->eq_tail->b_next = mp;
3943 		eqp->eq_tail = mp;
3944 	}
3945 	eqp->eq_len++;
3946 
3947 	/* If we're the first thread to reach the threshold, process */
3948 	if (eqp->eq_len >= esbq_max_qlen &&
3949 	    !(eqp->eq_flags & ESBQ_PROCESSING))
3950 		esballoc_process_queue(eqp);
3951 
3952 	esballoc_set_timer(eqp, esbq_timeout);
3953 	mutex_exit(&eqp->eq_lock);
3954 }
3955 
3956 static void
3957 esballoc_process_queue(esb_queue_t *eqp)
3958 {
3959 	mblk_t	*mp;
3960 
3961 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
3962 
3963 	eqp->eq_flags |= ESBQ_PROCESSING;
3964 
3965 	do {
3966 		/*
3967 		 * Detach the message chain for processing.
3968 		 */
3969 		mp = eqp->eq_head;
3970 		eqp->eq_tail->b_next = NULL;
3971 		eqp->eq_head = eqp->eq_tail = NULL;
3972 		eqp->eq_len = 0;
3973 		mutex_exit(&eqp->eq_lock);
3974 
3975 		/*
3976 		 * Process the message chain.
3977 		 */
3978 		esballoc_enqueue_mblk(mp);
3979 		mutex_enter(&eqp->eq_lock);
3980 	} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
3981 
3982 	eqp->eq_flags &= ~ESBQ_PROCESSING;
3983 }
3984 
3985 /*
3986  * taskq callback routine to free esballoced mblk's
3987  */
3988 static void
3989 esballoc_mblk_free(mblk_t *mp)
3990 {
3991 	mblk_t	*nextmp;
3992 
3993 	for (; mp != NULL; mp = nextmp) {
3994 		nextmp = mp->b_next;
3995 		mp->b_next = NULL;
3996 		mblk_free(mp);
3997 	}
3998 }
3999 
4000 static void
4001 esballoc_enqueue_mblk(mblk_t *mp)
4002 {
4003 
4004 	if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4005 	    TQ_NOSLEEP) == NULL) {
4006 		mblk_t *first_mp = mp;
4007 		/*
4008 		 * System is low on resources and can't perform a non-sleeping
4009 		 * dispatch. Schedule for a background thread.
4010 		 */
4011 		mutex_enter(&service_queue);
4012 		STRSTAT(taskqfails);
4013 
4014 		while (mp->b_next != NULL)
4015 			mp = mp->b_next;
4016 
4017 		mp->b_next = freebs_list;
4018 		freebs_list = first_mp;
4019 		cv_signal(&services_to_run);
4020 		mutex_exit(&service_queue);
4021 	}
4022 }
4023 
4024 static void
4025 esballoc_timer(void *arg)
4026 {
4027 	esb_queue_t *eqp = arg;
4028 
4029 	mutex_enter(&eqp->eq_lock);
4030 	eqp->eq_flags &= ~ESBQ_TIMER;
4031 
4032 	if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4033 	    eqp->eq_len > 0)
4034 		esballoc_process_queue(eqp);
4035 
4036 	esballoc_set_timer(eqp, esbq_timeout);
4037 	mutex_exit(&eqp->eq_lock);
4038 }
4039 
4040 static void
4041 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4042 {
4043 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
4044 
4045 	if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4046 		(void) timeout(esballoc_timer, eqp, eq_timeout);
4047 		eqp->eq_flags |= ESBQ_TIMER;
4048 	}
4049 }
4050 
4051 void
4052 esballoc_queue_init(void)
4053 {
4054 	system_esbq.eq_len = 0;
4055 	system_esbq.eq_head = system_esbq.eq_tail = NULL;
4056 	system_esbq.eq_flags = 0;
4057 }
4058 
4059 /*
4060  * Set the QBACK or QB_BACK flag in the given queue for
4061  * the given priority band.
4062  */
4063 void
4064 setqback(queue_t *q, unsigned char pri)
4065 {
4066 	int i;
4067 	qband_t *qbp;
4068 	qband_t **qbpp;
4069 
4070 	ASSERT(MUTEX_HELD(QLOCK(q)));
4071 	if (pri != 0) {
4072 		if (pri > q->q_nband) {
4073 			qbpp = &q->q_bandp;
4074 			while (*qbpp)
4075 				qbpp = &(*qbpp)->qb_next;
4076 			while (pri > q->q_nband) {
4077 				if ((*qbpp = allocband()) == NULL) {
4078 					cmn_err(CE_WARN,
4079 					    "setqback: can't allocate qband\n");
4080 					return;
4081 				}
4082 				(*qbpp)->qb_hiwat = q->q_hiwat;
4083 				(*qbpp)->qb_lowat = q->q_lowat;
4084 				q->q_nband++;
4085 				qbpp = &(*qbpp)->qb_next;
4086 			}
4087 		}
4088 		qbp = q->q_bandp;
4089 		i = pri;
4090 		while (--i)
4091 			qbp = qbp->qb_next;
4092 		qbp->qb_flag |= QB_BACK;
4093 	} else {
4094 		q->q_flag |= QBACK;
4095 	}
4096 }
4097 
4098 int
4099 strcopyin(void *from, void *to, size_t len, int copyflag)
4100 {
4101 	if (copyflag & U_TO_K) {
4102 		ASSERT((copyflag & K_TO_K) == 0);
4103 		if (copyin(from, to, len))
4104 			return (EFAULT);
4105 	} else {
4106 		ASSERT(copyflag & K_TO_K);
4107 		bcopy(from, to, len);
4108 	}
4109 	return (0);
4110 }
4111 
4112 int
4113 strcopyout(void *from, void *to, size_t len, int copyflag)
4114 {
4115 	if (copyflag & U_TO_K) {
4116 		if (copyout(from, to, len))
4117 			return (EFAULT);
4118 	} else {
4119 		ASSERT(copyflag & K_TO_K);
4120 		bcopy(from, to, len);
4121 	}
4122 	return (0);
4123 }
4124 
4125 /*
4126  * strsignal_nolock() posts a signal to the process(es) at the stream head.
4127  * It assumes that the stream head lock is already held, whereas strsignal()
4128  * acquires the lock first.  This routine was created because a few callers
4129  * release the stream head lock before calling only to re-acquire it after
4130  * it returns.
4131  */
4132 void
4133 strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
4134 {
4135 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4136 	switch (sig) {
4137 	case SIGPOLL:
4138 		if (stp->sd_sigflags & S_MSG)
4139 			strsendsig(stp->sd_siglist, S_MSG, band, 0);
4140 		break;
4141 	default:
4142 		if (stp->sd_pgidp)
4143 			pgsignal(stp->sd_pgidp, sig);
4144 		break;
4145 	}
4146 }
4147 
4148 void
4149 strsignal(stdata_t *stp, int sig, int32_t band)
4150 {
4151 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4152 	    "strsignal:%p, %X, %X", stp, sig, band);
4153 
4154 	mutex_enter(&stp->sd_lock);
4155 	switch (sig) {
4156 	case SIGPOLL:
4157 		if (stp->sd_sigflags & S_MSG)
4158 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4159 		break;
4160 
4161 	default:
4162 		if (stp->sd_pgidp) {
4163 			pgsignal(stp->sd_pgidp, sig);
4164 		}
4165 		break;
4166 	}
4167 	mutex_exit(&stp->sd_lock);
4168 }
4169 
4170 void
4171 strhup(stdata_t *stp)
4172 {
4173 	ASSERT(mutex_owned(&stp->sd_lock));
4174 	pollwakeup(&stp->sd_pollist, POLLHUP);
4175 	if (stp->sd_sigflags & S_HANGUP)
4176 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4177 }
4178 
4179 /*
4180  * Backenable the first queue upstream from `q' with a service procedure.
4181  */
4182 void
4183 backenable(queue_t *q, uchar_t pri)
4184 {
4185 	queue_t	*nq;
4186 
4187 	/*
4188 	 * our presence might not prevent other modules in our own
4189 	 * stream from popping/pushing since the caller of getq might not
4190 	 * have a claim on the queue (some drivers do a getq on somebody
4191 	 * else's queue - they know that the queue itself is not going away
4192 	 * but the framework has to guarantee q_next in that stream.)
4193 	 */
4194 	claimstr(q);
4195 
4196 	/* find nearest back queue with service proc */
4197 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4198 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4199 	}
4200 
4201 	if (nq) {
4202 		kthread_t *freezer;
4203 		/*
4204 		 * backenable can be called either with no locks held
4205 		 * or with the stream frozen (the latter occurs when a module
4206 		 * calls rmvq with the stream frozen.) If the stream is frozen
4207 		 * by the caller the caller will hold all qlocks in the stream.
4208 		 * Note that a frozen stream doesn't freeze a mated stream,
4209 		 * so we explicitly check for that.
4210 		 */
4211 		freezer = STREAM(q)->sd_freezer;
4212 		if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4213 			mutex_enter(QLOCK(nq));
4214 		}
4215 #ifdef DEBUG
4216 		else {
4217 			ASSERT(frozenstr(q));
4218 			ASSERT(MUTEX_HELD(QLOCK(q)));
4219 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4220 		}
4221 #endif
4222 		setqback(nq, pri);
4223 		qenable_locked(nq);
4224 		if (freezer != curthread || STREAM(q) != STREAM(nq))
4225 			mutex_exit(QLOCK(nq));
4226 	}
4227 	releasestr(q);
4228 }
4229 
4230 /*
4231  * Return the appropriate errno when one of flags_to_check is set
4232  * in sd_flags. Uses the exported error routines if they are set.
4233  * Will return 0 if non error is set (or if the exported error routines
4234  * do not return an error).
4235  *
4236  * If there is both a read and write error to check we prefer the read error.
4237  * Also, give preference to recorded errno's over the error functions.
4238  * The flags that are handled are:
4239  *	STPLEX		return EINVAL
4240  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4241  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4242  *	STRHUP		return sd_werror
4243  *
4244  * If the caller indicates that the operation is a peek a nonpersistent error
4245  * is not cleared.
4246  */
4247 int
4248 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4249 {
4250 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4251 	int error = 0;
4252 
4253 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4254 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4255 	if (sd_flag & STPLEX)
4256 		error = EINVAL;
4257 	else if (sd_flag & STRDERR) {
4258 		error = stp->sd_rerror;
4259 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4260 			/*
4261 			 * Read errors are non-persistent i.e. discarded once
4262 			 * returned to a non-peeking caller,
4263 			 */
4264 			stp->sd_rerror = 0;
4265 			stp->sd_flag &= ~STRDERR;
4266 		}
4267 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4268 			int clearerr = 0;
4269 
4270 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4271 			    &clearerr);
4272 			if (clearerr) {
4273 				stp->sd_flag &= ~STRDERR;
4274 				stp->sd_rderrfunc = NULL;
4275 			}
4276 		}
4277 	} else if (sd_flag & STWRERR) {
4278 		error = stp->sd_werror;
4279 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4280 			/*
4281 			 * Write errors are non-persistent i.e. discarded once
4282 			 * returned to a non-peeking caller,
4283 			 */
4284 			stp->sd_werror = 0;
4285 			stp->sd_flag &= ~STWRERR;
4286 		}
4287 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4288 			int clearerr = 0;
4289 
4290 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4291 			    &clearerr);
4292 			if (clearerr) {
4293 				stp->sd_flag &= ~STWRERR;
4294 				stp->sd_wrerrfunc = NULL;
4295 			}
4296 		}
4297 	} else if (sd_flag & STRHUP) {
4298 		/* sd_werror set when STRHUP */
4299 		error = stp->sd_werror;
4300 	}
4301 	return (error);
4302 }
4303 
4304 
4305 /*
4306  * single-thread open/close/push/pop
4307  * for twisted streams also
4308  */
4309 int
4310 strstartplumb(stdata_t *stp, int flag, int cmd)
4311 {
4312 	int waited = 1;
4313 	int error = 0;
4314 
4315 	if (STRMATED(stp)) {
4316 		struct stdata *stmatep = stp->sd_mate;
4317 
4318 		STRLOCKMATES(stp);
4319 		while (waited) {
4320 			waited = 0;
4321 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4322 				if ((cmd == I_POP) &&
4323 				    (flag & (FNDELAY|FNONBLOCK))) {
4324 					STRUNLOCKMATES(stp);
4325 					return (EAGAIN);
4326 				}
4327 				waited = 1;
4328 				mutex_exit(&stp->sd_lock);
4329 				if (!cv_wait_sig(&stmatep->sd_monitor,
4330 				    &stmatep->sd_lock)) {
4331 					mutex_exit(&stmatep->sd_lock);
4332 					return (EINTR);
4333 				}
4334 				mutex_exit(&stmatep->sd_lock);
4335 				STRLOCKMATES(stp);
4336 			}
4337 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4338 				if ((cmd == I_POP) &&
4339 				    (flag & (FNDELAY|FNONBLOCK))) {
4340 					STRUNLOCKMATES(stp);
4341 					return (EAGAIN);
4342 				}
4343 				waited = 1;
4344 				mutex_exit(&stmatep->sd_lock);
4345 				if (!cv_wait_sig(&stp->sd_monitor,
4346 				    &stp->sd_lock)) {
4347 					mutex_exit(&stp->sd_lock);
4348 					return (EINTR);
4349 				}
4350 				mutex_exit(&stp->sd_lock);
4351 				STRLOCKMATES(stp);
4352 			}
4353 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4354 				error = strgeterr(stp,
4355 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4356 				if (error != 0) {
4357 					STRUNLOCKMATES(stp);
4358 					return (error);
4359 				}
4360 			}
4361 		}
4362 		stp->sd_flag |= STRPLUMB;
4363 		STRUNLOCKMATES(stp);
4364 	} else {
4365 		mutex_enter(&stp->sd_lock);
4366 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4367 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4368 			    (flag & (FNDELAY|FNONBLOCK))) {
4369 				mutex_exit(&stp->sd_lock);
4370 				return (EAGAIN);
4371 			}
4372 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4373 				mutex_exit(&stp->sd_lock);
4374 				return (EINTR);
4375 			}
4376 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4377 				error = strgeterr(stp,
4378 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4379 				if (error != 0) {
4380 					mutex_exit(&stp->sd_lock);
4381 					return (error);
4382 				}
4383 			}
4384 		}
4385 		stp->sd_flag |= STRPLUMB;
4386 		mutex_exit(&stp->sd_lock);
4387 	}
4388 	return (0);
4389 }
4390 
4391 /*
4392  * Complete the plumbing operation associated with stream `stp'.
4393  */
4394 void
4395 strendplumb(stdata_t *stp)
4396 {
4397 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4398 	ASSERT(stp->sd_flag & STRPLUMB);
4399 	stp->sd_flag &= ~STRPLUMB;
4400 	cv_broadcast(&stp->sd_monitor);
4401 }
4402 
4403 /*
4404  * This describes how the STREAMS framework handles synchronization
4405  * during open/push and close/pop.
4406  * The key interfaces for open and close are qprocson and qprocsoff,
4407  * respectively. While the close case in general is harder both open
4408  * have close have significant similarities.
4409  *
4410  * During close the STREAMS framework has to both ensure that there
4411  * are no stale references to the queue pair (and syncq) that
4412  * are being closed and also provide the guarantees that are documented
4413  * in qprocsoff(9F).
4414  * If there are stale references to the queue that is closing it can
4415  * result in kernel memory corruption or kernel panics.
4416  *
4417  * Note that is it up to the module/driver to ensure that it itself
4418  * does not have any stale references to the closing queues once its close
4419  * routine returns. This includes:
4420  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4421  *    associated with the queues. For timeout and bufcall callbacks the
4422  *    module/driver also has to ensure (or wait for) any callbacks that
4423  *    are in progress.
4424  *  - If the module/driver is using esballoc it has to ensure that any
4425  *    esballoc free functions do not refer to a queue that has closed.
4426  *    (Note that in general the close routine can not wait for the esballoc'ed
4427  *    messages to be freed since that can cause a deadlock.)
4428  *  - Cancelling any interrupts that refer to the closing queues and
4429  *    also ensuring that there are no interrupts in progress that will
4430  *    refer to the closing queues once the close routine returns.
4431  *  - For multiplexors removing any driver global state that refers to
4432  *    the closing queue and also ensuring that there are no threads in
4433  *    the multiplexor that has picked up a queue pointer but not yet
4434  *    finished using it.
4435  *
4436  * In addition, a driver/module can only reference the q_next pointer
4437  * in its open, close, put, or service procedures or in a
4438  * qtimeout/qbufcall callback procedure executing "on" the correct
4439  * stream. Thus it can not reference the q_next pointer in an interrupt
4440  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4441  * it can not reference q_next of a different queue e.g. in a mux that
4442  * passes messages from one queues put/service procedure to another queue.
4443  * In all the cases when the driver/module can not access the q_next
4444  * field it must use the *next* versions e.g. canputnext instead of
4445  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4446  *
4447  *
4448  * Assuming that the driver/module conforms to the above constraints
4449  * the STREAMS framework has to avoid stale references to q_next for all
4450  * the framework internal cases which include (but are not limited to):
4451  *  - Threads in canput/canputnext/backenable and elsewhere that are
4452  *    walking q_next.
4453  *  - Messages on a syncq that have a reference to the queue through b_queue.
4454  *  - Messages on an outer perimeter (syncq) that have a reference to the
4455  *    queue through b_queue.
4456  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4457  *    Note that only canput and bcanput use q_nfsrv without any locking.
4458  *
4459  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4460  * after qprocsoff returns, the framework has to ensure that no threads can
4461  * enter the put or service routines for the closing read or write-side queue.
4462  * In addition to preventing "direct" entry into the put procedures
4463  * the framework also has to prevent messages being drained from
4464  * the syncq or the outer perimeter.
4465  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4466  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4467  * qprocsoff has returned.
4468  * Note that if a module/driver uses put(9F) on one of its own queues
4469  * it is up to the module/driver to ensure that the put() doesn't
4470  * get called when the queue is closing.
4471  *
4472  *
4473  * The framework aspects of the above "contract" is implemented by
4474  * qprocsoff, removeq, and strlock:
4475  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4476  *    entering the service procedures.
4477  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4478  *    canputnext, backenable etc from dereferencing the q_next that will
4479  *    soon change.
4480  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4481  *    or other q_next walker that uses claimstr/releasestr to finish.
4482  *  - optionally for every syncq in the stream strlock acquires all the
4483  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4484  *    that no thread executes in the put or service procedures and that no
4485  *    thread is draining into the module/driver. This ensures that no
4486  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4487  *    currently executing hence no such thread can end up with the old stale
4488  *    q_next value and no canput/backenable can have the old stale
4489  *    q_nfsrv/q_next.
4490  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4491  *    have either finished or observed the QWCLOSE flag and gone away.
4492  */
4493 
4494 
4495 /*
4496  * Get all the locks necessary to change q_next.
4497  *
4498  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for  the
4499  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4500  * the only threads inside the sqncq are threads currently calling removeq().
4501  * Since threads calling removeq() are in the process of removing their queues
4502  * from the stream, we do not need to worry about them accessing a stale q_next
4503  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4504  * for them can cause deadlock).
4505  *
4506  * This routine is subject to starvation since it does not set any flag to
4507  * prevent threads from entering a module in the stream(i.e. sq_count can
4508  * increase on some syncq while it is waiting on some other syncq.)
4509  *
4510  * Assumes that only one thread attempts to call strlock for a given
4511  * stream. If this is not the case the two threads would deadlock.
4512  * This assumption is guaranteed since strlock is only called by insertq
4513  * and removeq and streams plumbing changes are single-threaded for
4514  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4515  *
4516  * For pipes, it is not difficult to atomically designate a pair of streams
4517  * to be mated. Once mated atomically by the framework the twisted pair remain
4518  * configured that way until dismantled atomically by the framework.
4519  * When plumbing takes place on a twisted stream it is necessary to ensure that
4520  * this operation is done exclusively on the twisted stream since two such
4521  * operations, each initiated on different ends of the pipe will deadlock
4522  * waiting for each other to complete.
4523  *
4524  * On entry, no locks should be held.
4525  * The locks acquired and held by strlock depends on a few factors.
4526  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4527  *   and held on exit and all sq_count are at an acceptable level.
4528  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4529  *   sd_refcnt being zero.
4530  */
4531 
4532 static void
4533 strlock(struct stdata *stp, sqlist_t *sqlist)
4534 {
4535 	syncql_t *sql, *sql2;
4536 retry:
4537 	/*
4538 	 * Wait for any claimstr to go away.
4539 	 */
4540 	if (STRMATED(stp)) {
4541 		struct stdata *stp1, *stp2;
4542 
4543 		STRLOCKMATES(stp);
4544 		/*
4545 		 * Note that the selection of locking order is not
4546 		 * important, just that they are always aquired in
4547 		 * the same order.  To assure this, we choose this
4548 		 * order based on the value of the pointer, and since
4549 		 * the pointer will not change for the life of this
4550 		 * pair, we will always grab the locks in the same
4551 		 * order (and hence, prevent deadlocks).
4552 		 */
4553 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4554 			stp1 = stp;
4555 			stp2 = stp->sd_mate;
4556 		} else {
4557 			stp2 = stp;
4558 			stp1 = stp->sd_mate;
4559 		}
4560 		mutex_enter(&stp1->sd_reflock);
4561 		if (stp1->sd_refcnt > 0) {
4562 			STRUNLOCKMATES(stp);
4563 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4564 			mutex_exit(&stp1->sd_reflock);
4565 			goto retry;
4566 		}
4567 		mutex_enter(&stp2->sd_reflock);
4568 		if (stp2->sd_refcnt > 0) {
4569 			STRUNLOCKMATES(stp);
4570 			mutex_exit(&stp1->sd_reflock);
4571 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4572 			mutex_exit(&stp2->sd_reflock);
4573 			goto retry;
4574 		}
4575 		STREAM_PUTLOCKS_ENTER(stp1);
4576 		STREAM_PUTLOCKS_ENTER(stp2);
4577 	} else {
4578 		mutex_enter(&stp->sd_lock);
4579 		mutex_enter(&stp->sd_reflock);
4580 		while (stp->sd_refcnt > 0) {
4581 			mutex_exit(&stp->sd_lock);
4582 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4583 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4584 				mutex_exit(&stp->sd_reflock);
4585 				mutex_enter(&stp->sd_lock);
4586 				mutex_enter(&stp->sd_reflock);
4587 			}
4588 		}
4589 		STREAM_PUTLOCKS_ENTER(stp);
4590 	}
4591 
4592 	if (sqlist == NULL)
4593 		return;
4594 
4595 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4596 		syncq_t *sq = sql->sql_sq;
4597 		uint16_t count;
4598 
4599 		mutex_enter(SQLOCK(sq));
4600 		count = sq->sq_count;
4601 		ASSERT(sq->sq_rmqcount <= count);
4602 		SQ_PUTLOCKS_ENTER(sq);
4603 		SUM_SQ_PUTCOUNTS(sq, count);
4604 		if (count == sq->sq_rmqcount)
4605 			continue;
4606 
4607 		/* Failed - drop all locks that we have acquired so far */
4608 		if (STRMATED(stp)) {
4609 			STREAM_PUTLOCKS_EXIT(stp);
4610 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4611 			STRUNLOCKMATES(stp);
4612 			mutex_exit(&stp->sd_reflock);
4613 			mutex_exit(&stp->sd_mate->sd_reflock);
4614 		} else {
4615 			STREAM_PUTLOCKS_EXIT(stp);
4616 			mutex_exit(&stp->sd_lock);
4617 			mutex_exit(&stp->sd_reflock);
4618 		}
4619 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4620 		    sql2 = sql2->sql_next) {
4621 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4622 			mutex_exit(SQLOCK(sql2->sql_sq));
4623 		}
4624 
4625 		/*
4626 		 * The wait loop below may starve when there are many threads
4627 		 * claiming the syncq. This is especially a problem with permod
4628 		 * syncqs (IP). To lessen the impact of the problem we increment
4629 		 * sq_needexcl and clear fastbits so that putnexts will slow
4630 		 * down and call sqenable instead of draining right away.
4631 		 */
4632 		sq->sq_needexcl++;
4633 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4634 		while (count > sq->sq_rmqcount) {
4635 			sq->sq_flags |= SQ_WANTWAKEUP;
4636 			SQ_PUTLOCKS_EXIT(sq);
4637 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4638 			count = sq->sq_count;
4639 			SQ_PUTLOCKS_ENTER(sq);
4640 			SUM_SQ_PUTCOUNTS(sq, count);
4641 		}
4642 		sq->sq_needexcl--;
4643 		if (sq->sq_needexcl == 0)
4644 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4645 		SQ_PUTLOCKS_EXIT(sq);
4646 		ASSERT(count == sq->sq_rmqcount);
4647 		mutex_exit(SQLOCK(sq));
4648 		goto retry;
4649 	}
4650 }
4651 
4652 /*
4653  * Drop all the locks that strlock acquired.
4654  */
4655 static void
4656 strunlock(struct stdata *stp, sqlist_t *sqlist)
4657 {
4658 	syncql_t *sql;
4659 
4660 	if (STRMATED(stp)) {
4661 		STREAM_PUTLOCKS_EXIT(stp);
4662 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4663 		STRUNLOCKMATES(stp);
4664 		mutex_exit(&stp->sd_reflock);
4665 		mutex_exit(&stp->sd_mate->sd_reflock);
4666 	} else {
4667 		STREAM_PUTLOCKS_EXIT(stp);
4668 		mutex_exit(&stp->sd_lock);
4669 		mutex_exit(&stp->sd_reflock);
4670 	}
4671 
4672 	if (sqlist == NULL)
4673 		return;
4674 
4675 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4676 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4677 		mutex_exit(SQLOCK(sql->sql_sq));
4678 	}
4679 }
4680 
4681 /*
4682  * When the module has service procedure, we need check if the next
4683  * module which has service procedure is in flow control to trigger
4684  * the backenable.
4685  */
4686 static void
4687 backenable_insertedq(queue_t *q)
4688 {
4689 	qband_t	*qbp;
4690 
4691 	claimstr(q);
4692 	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4693 		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4694 			backenable(q, 0);
4695 
4696 		qbp = q->q_next->q_nfsrv->q_bandp;
4697 		for (; qbp != NULL; qbp = qbp->qb_next)
4698 			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4699 				backenable(q, qbp->qb_first->b_band);
4700 	}
4701 	releasestr(q);
4702 }
4703 
4704 /*
4705  * Given two read queues, insert a new single one after another.
4706  *
4707  * This routine acquires all the necessary locks in order to change
4708  * q_next and related pointer using strlock().
4709  * It depends on the stream head ensuring that there are no concurrent
4710  * insertq or removeq on the same stream. The stream head ensures this
4711  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4712  *
4713  * Note that no syncq locks are held during the q_next change. This is
4714  * applied to all streams since, unlike removeq, there is no problem of stale
4715  * pointers when adding a module to the stream. Thus drivers/modules that do a
4716  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4717  * applied this optimization to all streams.
4718  */
4719 void
4720 insertq(struct stdata *stp, queue_t *new)
4721 {
4722 	queue_t	*after;
4723 	queue_t *wafter;
4724 	queue_t *wnew = _WR(new);
4725 	boolean_t have_fifo = B_FALSE;
4726 
4727 	if (new->q_flag & _QINSERTING) {
4728 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4729 		after = new->q_next;
4730 		wafter = _WR(new->q_next);
4731 	} else {
4732 		after = _RD(stp->sd_wrq);
4733 		wafter = stp->sd_wrq;
4734 	}
4735 
4736 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4737 	    "insertq:%p, %p", after, new);
4738 	ASSERT(after->q_flag & QREADR);
4739 	ASSERT(new->q_flag & QREADR);
4740 
4741 	strlock(stp, NULL);
4742 
4743 	/* Do we have a FIFO? */
4744 	if (wafter->q_next == after) {
4745 		have_fifo = B_TRUE;
4746 		wnew->q_next = new;
4747 	} else {
4748 		wnew->q_next = wafter->q_next;
4749 	}
4750 	new->q_next = after;
4751 
4752 	set_nfsrv_ptr(new, wnew, after, wafter);
4753 	/*
4754 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4755 	 * so only reset this flag after calling it.
4756 	 */
4757 	new->q_flag &= ~_QINSERTING;
4758 
4759 	if (have_fifo) {
4760 		wafter->q_next = wnew;
4761 	} else {
4762 		if (wafter->q_next)
4763 			_OTHERQ(wafter->q_next)->q_next = new;
4764 		wafter->q_next = wnew;
4765 	}
4766 
4767 	set_qend(new);
4768 	/* The QEND flag might have to be updated for the upstream guy */
4769 	set_qend(after);
4770 
4771 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4772 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4773 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4774 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4775 	strsetuio(stp);
4776 
4777 	/*
4778 	 * If this was a module insertion, bump the push count.
4779 	 */
4780 	if (!(new->q_flag & QISDRV))
4781 		stp->sd_pushcnt++;
4782 
4783 	strunlock(stp, NULL);
4784 
4785 	/* check if the write Q needs backenable */
4786 	backenable_insertedq(wnew);
4787 
4788 	/* check if the read Q needs backenable */
4789 	backenable_insertedq(new);
4790 }
4791 
4792 /*
4793  * Given a read queue, unlink it from any neighbors.
4794  *
4795  * This routine acquires all the necessary locks in order to
4796  * change q_next and related pointers and also guard against
4797  * stale references (e.g. through q_next) to the queue that
4798  * is being removed. It also plays part of the role in ensuring
4799  * that the module's/driver's put procedure doesn't get called
4800  * after qprocsoff returns.
4801  *
4802  * Removeq depends on the stream head ensuring that there are
4803  * no concurrent insertq or removeq on the same stream. The
4804  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4805  * STRPLUMB.
4806  *
4807  * The set of locks needed to remove the queue is different in
4808  * different cases:
4809  *
4810  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4811  * waiting for the syncq reference count to drop to 0 indicating that no
4812  * non-close threads are present anywhere in the stream. This ensures that any
4813  * module/driver can reference q_next in its open, close, put, or service
4814  * procedures.
4815  *
4816  * The sq_rmqcount counter tracks the number of threads inside removeq().
4817  * strlock() ensures that there is either no threads executing inside perimeter
4818  * or there is only a thread calling qprocsoff().
4819  *
4820  * strlock() compares the value of sq_count with the number of threads inside
4821  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4822  * any threads waiting in strlock() when the sq_rmqcount increases.
4823  */
4824 
4825 void
4826 removeq(queue_t *qp)
4827 {
4828 	queue_t *wqp = _WR(qp);
4829 	struct stdata *stp = STREAM(qp);
4830 	sqlist_t *sqlist = NULL;
4831 	boolean_t isdriver;
4832 	int moved;
4833 	syncq_t *sq = qp->q_syncq;
4834 	syncq_t *wsq = wqp->q_syncq;
4835 
4836 	ASSERT(stp);
4837 
4838 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4839 	    "removeq:%p %p", qp, wqp);
4840 	ASSERT(qp->q_flag&QREADR);
4841 
4842 	/*
4843 	 * For queues using Synchronous streams, we must wait for all threads in
4844 	 * rwnext() to drain out before proceeding.
4845 	 */
4846 	if (qp->q_flag & QSYNCSTR) {
4847 		/* First, we need wakeup any threads blocked in rwnext() */
4848 		mutex_enter(SQLOCK(sq));
4849 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4850 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4851 			cv_broadcast(&sq->sq_wait);
4852 		}
4853 		mutex_exit(SQLOCK(sq));
4854 
4855 		if (wsq != sq) {
4856 			mutex_enter(SQLOCK(wsq));
4857 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4858 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4859 				cv_broadcast(&wsq->sq_wait);
4860 			}
4861 			mutex_exit(SQLOCK(wsq));
4862 		}
4863 
4864 		mutex_enter(QLOCK(qp));
4865 		while (qp->q_rwcnt > 0) {
4866 			qp->q_flag |= QWANTRMQSYNC;
4867 			cv_wait(&qp->q_wait, QLOCK(qp));
4868 		}
4869 		mutex_exit(QLOCK(qp));
4870 
4871 		mutex_enter(QLOCK(wqp));
4872 		while (wqp->q_rwcnt > 0) {
4873 			wqp->q_flag |= QWANTRMQSYNC;
4874 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4875 		}
4876 		mutex_exit(QLOCK(wqp));
4877 	}
4878 
4879 	mutex_enter(SQLOCK(sq));
4880 	sq->sq_rmqcount++;
4881 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4882 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4883 		cv_broadcast(&sq->sq_wait);
4884 	}
4885 	mutex_exit(SQLOCK(sq));
4886 
4887 	isdriver = (qp->q_flag & QISDRV);
4888 
4889 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4890 	strlock(stp, sqlist);
4891 
4892 	reset_nfsrv_ptr(qp, wqp);
4893 
4894 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4895 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4896 	/* Do we have a FIFO? */
4897 	if (wqp->q_next == qp) {
4898 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4899 	} else {
4900 		if (wqp->q_next)
4901 			backq(qp)->q_next = qp->q_next;
4902 		if (qp->q_next)
4903 			backq(wqp)->q_next = wqp->q_next;
4904 	}
4905 
4906 	/* The QEND flag might have to be updated for the upstream guy */
4907 	if (qp->q_next)
4908 		set_qend(qp->q_next);
4909 
4910 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4911 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4912 
4913 	/*
4914 	 * Move any messages destined for the put procedures to the next
4915 	 * syncq in line. Otherwise free them.
4916 	 */
4917 	moved = 0;
4918 	/*
4919 	 * Quick check to see whether there are any messages or events.
4920 	 */
4921 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4922 		moved += propagate_syncq(qp);
4923 	if (wqp->q_syncqmsgs != 0 ||
4924 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4925 		moved += propagate_syncq(wqp);
4926 
4927 	strsetuio(stp);
4928 
4929 	/*
4930 	 * If this was a module removal, decrement the push count.
4931 	 */
4932 	if (!isdriver)
4933 		stp->sd_pushcnt--;
4934 
4935 	strunlock(stp, sqlist);
4936 	sqlist_free(sqlist);
4937 
4938 	/*
4939 	 * Make sure any messages that were propagated are drained.
4940 	 * Also clear any QFULL bit caused by messages that were propagated.
4941 	 */
4942 
4943 	if (qp->q_next != NULL) {
4944 		clr_qfull(qp);
4945 		/*
4946 		 * For the driver calling qprocsoff, propagate_syncq
4947 		 * frees all the messages instead of putting it in
4948 		 * the stream head
4949 		 */
4950 		if (!isdriver && (moved > 0))
4951 			emptysq(qp->q_next->q_syncq);
4952 	}
4953 	if (wqp->q_next != NULL) {
4954 		clr_qfull(wqp);
4955 		/*
4956 		 * We come here for any pop of a module except for the
4957 		 * case of driver being removed. We don't call emptysq
4958 		 * if we did not move any messages. This will avoid holding
4959 		 * PERMOD syncq locks in emptysq
4960 		 */
4961 		if (moved > 0)
4962 			emptysq(wqp->q_next->q_syncq);
4963 	}
4964 
4965 	mutex_enter(SQLOCK(sq));
4966 	sq->sq_rmqcount--;
4967 	mutex_exit(SQLOCK(sq));
4968 }
4969 
4970 /*
4971  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4972  * SQ_WRITER) on a syncq.
4973  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4974  * sync queue and waits until sq_count reaches maxcnt.
4975  *
4976  * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
4977  * does not care about putnext threads that are in the middle of calling put
4978  * entry points.
4979  *
4980  * This routine is used for both inner and outer syncqs.
4981  */
4982 static void
4983 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4984 {
4985 	uint16_t count = 0;
4986 
4987 	mutex_enter(SQLOCK(sq));
4988 	/*
4989 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4990 	 * SQ_FROZEN will be set if there is a frozen stream that has a
4991 	 * queue which also refers to this "shared" syncq.
4992 	 * SQ_BLOCKED will be set if there is "off" queue which also
4993 	 * refers to this "shared" syncq.
4994 	 */
4995 	if (maxcnt != -1) {
4996 		count = sq->sq_count;
4997 		SQ_PUTLOCKS_ENTER(sq);
4998 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4999 		SUM_SQ_PUTCOUNTS(sq, count);
5000 	}
5001 	sq->sq_needexcl++;
5002 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5003 
5004 	while ((sq->sq_flags & flag) ||
5005 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
5006 		sq->sq_flags |= SQ_WANTWAKEUP;
5007 		if (maxcnt != -1) {
5008 			SQ_PUTLOCKS_EXIT(sq);
5009 		}
5010 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5011 		if (maxcnt != -1) {
5012 			count = sq->sq_count;
5013 			SQ_PUTLOCKS_ENTER(sq);
5014 			SUM_SQ_PUTCOUNTS(sq, count);
5015 		}
5016 	}
5017 	sq->sq_needexcl--;
5018 	sq->sq_flags |= flag;
5019 	ASSERT(maxcnt == -1 || count == maxcnt);
5020 	if (maxcnt != -1) {
5021 		if (sq->sq_needexcl == 0) {
5022 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5023 		}
5024 		SQ_PUTLOCKS_EXIT(sq);
5025 	} else if (sq->sq_needexcl == 0) {
5026 		SQ_PUTCOUNT_SETFAST(sq);
5027 	}
5028 
5029 	mutex_exit(SQLOCK(sq));
5030 }
5031 
5032 /*
5033  * Reset a flag that was set with blocksq.
5034  *
5035  * Can not use this routine to reset SQ_WRITER.
5036  *
5037  * If "isouter" is set then the syncq is assumed to be an outer perimeter
5038  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5039  * to handle the queued qwriter operations.
5040  *
5041  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5042  * sq_putlocks are used.
5043  */
5044 static void
5045 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5046 {
5047 	uint16_t flags;
5048 
5049 	mutex_enter(SQLOCK(sq));
5050 	ASSERT(resetflag != SQ_WRITER);
5051 	ASSERT(sq->sq_flags & resetflag);
5052 	flags = sq->sq_flags & ~resetflag;
5053 	sq->sq_flags = flags;
5054 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5055 		if (flags & SQ_WANTWAKEUP) {
5056 			flags &= ~SQ_WANTWAKEUP;
5057 			cv_broadcast(&sq->sq_wait);
5058 		}
5059 		sq->sq_flags = flags;
5060 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5061 			if (!isouter) {
5062 				/* drain_syncq drops SQLOCK */
5063 				drain_syncq(sq);
5064 				return;
5065 			}
5066 		}
5067 	}
5068 	mutex_exit(SQLOCK(sq));
5069 }
5070 
5071 /*
5072  * Reset a flag that was set with blocksq.
5073  * Does not drain the syncq. Use emptysq() for that.
5074  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5075  *
5076  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5077  * sq_putlocks are used.
5078  */
5079 static int
5080 dropsq(syncq_t *sq, uint16_t resetflag)
5081 {
5082 	uint16_t flags;
5083 
5084 	mutex_enter(SQLOCK(sq));
5085 	ASSERT(sq->sq_flags & resetflag);
5086 	flags = sq->sq_flags & ~resetflag;
5087 	if (flags & SQ_WANTWAKEUP) {
5088 		flags &= ~SQ_WANTWAKEUP;
5089 		cv_broadcast(&sq->sq_wait);
5090 	}
5091 	sq->sq_flags = flags;
5092 	mutex_exit(SQLOCK(sq));
5093 	if (flags & SQ_QUEUED)
5094 		return (1);
5095 	return (0);
5096 }
5097 
5098 /*
5099  * Empty all the messages on a syncq.
5100  *
5101  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5102  * sq_putlocks are used.
5103  */
5104 static void
5105 emptysq(syncq_t *sq)
5106 {
5107 	uint16_t flags;
5108 
5109 	mutex_enter(SQLOCK(sq));
5110 	flags = sq->sq_flags;
5111 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5112 		/*
5113 		 * To prevent potential recursive invocation of drain_syncq we
5114 		 * do not call drain_syncq if count is non-zero.
5115 		 */
5116 		if (sq->sq_count == 0) {
5117 			/* drain_syncq() drops SQLOCK */
5118 			drain_syncq(sq);
5119 			return;
5120 		} else
5121 			sqenable(sq);
5122 	}
5123 	mutex_exit(SQLOCK(sq));
5124 }
5125 
5126 /*
5127  * Ordered insert while removing duplicates.
5128  */
5129 static void
5130 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5131 {
5132 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5133 
5134 	prev_sqlpp = &sqlist->sqlist_head;
5135 	while ((sqlp = *prev_sqlpp) != NULL) {
5136 		if (sqlp->sql_sq >= sqp) {
5137 			if (sqlp->sql_sq == sqp)	/* duplicate */
5138 				return;
5139 			break;
5140 		}
5141 		prev_sqlpp = &sqlp->sql_next;
5142 	}
5143 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5144 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5145 	new_sqlp->sql_next = sqlp;
5146 	new_sqlp->sql_sq = sqp;
5147 	*prev_sqlpp = new_sqlp;
5148 }
5149 
5150 /*
5151  * Walk the write side queues until we hit either the driver
5152  * or a twist in the stream (_SAMESTR will return false in both
5153  * these cases) then turn around and walk the read side queues
5154  * back up to the stream head.
5155  */
5156 static void
5157 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5158 {
5159 	while (q != NULL) {
5160 		sqlist_insert(sqlist, q->q_syncq);
5161 
5162 		if (_SAMESTR(q))
5163 			q = q->q_next;
5164 		else if (!(q->q_flag & QREADR))
5165 			q = _RD(q);
5166 		else
5167 			q = NULL;
5168 	}
5169 }
5170 
5171 /*
5172  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5173  * associated with the "q" parameter. The resulting list is sorted in a
5174  * canonical order and is free of duplicates.
5175  * Assumes the passed queue is a _RD(q).
5176  */
5177 static sqlist_t *
5178 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5179 {
5180 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5181 
5182 	/*
5183 	 * start with the current queue/qpair
5184 	 */
5185 	ASSERT(q->q_flag & QREADR);
5186 
5187 	sqlist_insert(sqlist, q->q_syncq);
5188 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5189 
5190 	sqlist_insertall(sqlist, stp->sd_wrq);
5191 	if (do_twist)
5192 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5193 
5194 	return (sqlist);
5195 }
5196 
5197 static sqlist_t *
5198 sqlist_alloc(struct stdata *stp, int kmflag)
5199 {
5200 	size_t sqlist_size;
5201 	sqlist_t *sqlist;
5202 
5203 	/*
5204 	 * Allocate 2 syncql_t's for each pushed module. Note that
5205 	 * the sqlist_t structure already has 4 syncql_t's built in:
5206 	 * 2 for the stream head, and 2 for the driver/other stream head.
5207 	 */
5208 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5209 	    sizeof (sqlist_t);
5210 	if (STRMATED(stp))
5211 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5212 	sqlist = kmem_alloc(sqlist_size, kmflag);
5213 
5214 	sqlist->sqlist_head = NULL;
5215 	sqlist->sqlist_size = sqlist_size;
5216 	sqlist->sqlist_index = 0;
5217 
5218 	return (sqlist);
5219 }
5220 
5221 /*
5222  * Free the list created by sqlist_alloc()
5223  */
5224 static void
5225 sqlist_free(sqlist_t *sqlist)
5226 {
5227 	kmem_free(sqlist, sqlist->sqlist_size);
5228 }
5229 
5230 /*
5231  * Prevent any new entries into any syncq in this stream.
5232  * Used by freezestr.
5233  */
5234 void
5235 strblock(queue_t *q)
5236 {
5237 	struct stdata	*stp;
5238 	syncql_t	*sql;
5239 	sqlist_t	*sqlist;
5240 
5241 	q = _RD(q);
5242 
5243 	stp = STREAM(q);
5244 	ASSERT(stp != NULL);
5245 
5246 	/*
5247 	 * Get a sorted list with all the duplicates removed containing
5248 	 * all the syncqs referenced by this stream.
5249 	 */
5250 	sqlist = sqlist_build(q, stp, B_FALSE);
5251 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5252 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5253 	sqlist_free(sqlist);
5254 }
5255 
5256 /*
5257  * Release the block on new entries into this stream
5258  */
5259 void
5260 strunblock(queue_t *q)
5261 {
5262 	struct stdata	*stp;
5263 	syncql_t	*sql;
5264 	sqlist_t	*sqlist;
5265 	int		drain_needed;
5266 
5267 	q = _RD(q);
5268 
5269 	/*
5270 	 * Get a sorted list with all the duplicates removed containing
5271 	 * all the syncqs referenced by this stream.
5272 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5273 	 * starting to drain them; otherwise the draining might
5274 	 * cause a freezestr in some module on the stream (which
5275 	 * would deadlock.)
5276 	 */
5277 	stp = STREAM(q);
5278 	ASSERT(stp != NULL);
5279 	sqlist = sqlist_build(q, stp, B_FALSE);
5280 	drain_needed = 0;
5281 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5282 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5283 	if (drain_needed) {
5284 		for (sql = sqlist->sqlist_head; sql != NULL;
5285 		    sql = sql->sql_next)
5286 			emptysq(sql->sql_sq);
5287 	}
5288 	sqlist_free(sqlist);
5289 }
5290 
5291 #ifdef DEBUG
5292 static int
5293 qprocsareon(queue_t *rq)
5294 {
5295 	if (rq->q_next == NULL)
5296 		return (0);
5297 	return (_WR(rq->q_next)->q_next == _WR(rq));
5298 }
5299 
5300 int
5301 qclaimed(queue_t *q)
5302 {
5303 	uint_t count;
5304 
5305 	count = q->q_syncq->sq_count;
5306 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5307 	return (count != 0);
5308 }
5309 
5310 /*
5311  * Check if anyone has frozen this stream with freezestr
5312  */
5313 int
5314 frozenstr(queue_t *q)
5315 {
5316 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5317 }
5318 #endif /* DEBUG */
5319 
5320 /*
5321  * Enter a queue.
5322  * Obsoleted interface. Should not be used.
5323  */
5324 void
5325 enterq(queue_t *q)
5326 {
5327 	entersq(q->q_syncq, SQ_CALLBACK);
5328 }
5329 
5330 void
5331 leaveq(queue_t *q)
5332 {
5333 	leavesq(q->q_syncq, SQ_CALLBACK);
5334 }
5335 
5336 /*
5337  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5338  * to check.
5339  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5340  * calls and the running of open, close and service procedures.
5341  *
5342  * if c_inner bit is set no need to grab sq_putlocks since we don't care
5343  * if other threads have entered or are entering put entry point.
5344  *
5345  * if c_inner bit is set it might have been posible to use
5346  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5347  * open/close path for IP) but since the count may need to be decremented in
5348  * qwait() we wouldn't know which counter to decrement. Currently counter is
5349  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5350  * in the future we might use curthread id bits to select the counter and this
5351  * would stay constant across routine calls.
5352  */
5353 void
5354 entersq(syncq_t *sq, int entrypoint)
5355 {
5356 	uint16_t	count = 0;
5357 	uint16_t	flags;
5358 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5359 	uint16_t	type;
5360 	uint_t		c_inner = entrypoint & SQ_CI;
5361 	uint_t		c_outer = entrypoint & SQ_CO;
5362 
5363 	/*
5364 	 * Increment ref count to keep closes out of this queue.
5365 	 */
5366 	ASSERT(sq);
5367 	ASSERT(c_inner && c_outer);
5368 	mutex_enter(SQLOCK(sq));
5369 	flags = sq->sq_flags;
5370 	type = sq->sq_type;
5371 	if (!(type & c_inner)) {
5372 		/* Make sure all putcounts now use slowlock. */
5373 		count = sq->sq_count;
5374 		SQ_PUTLOCKS_ENTER(sq);
5375 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5376 		SUM_SQ_PUTCOUNTS(sq, count);
5377 		sq->sq_needexcl++;
5378 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5379 		waitflags |= SQ_MESSAGES;
5380 	}
5381 	/*
5382 	 * Wait until we can enter the inner perimeter.
5383 	 * If we want exclusive access we wait until sq_count is 0.
5384 	 * We have to do this before entering the outer perimeter in order
5385 	 * to preserve put/close message ordering.
5386 	 */
5387 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5388 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5389 		if (!(type & c_inner)) {
5390 			SQ_PUTLOCKS_EXIT(sq);
5391 		}
5392 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5393 		if (!(type & c_inner)) {
5394 			count = sq->sq_count;
5395 			SQ_PUTLOCKS_ENTER(sq);
5396 			SUM_SQ_PUTCOUNTS(sq, count);
5397 		}
5398 		flags = sq->sq_flags;
5399 	}
5400 
5401 	if (!(type & c_inner)) {
5402 		ASSERT(sq->sq_needexcl > 0);
5403 		sq->sq_needexcl--;
5404 		if (sq->sq_needexcl == 0) {
5405 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5406 		}
5407 	}
5408 
5409 	/* Check if we need to enter the outer perimeter */
5410 	if (!(type & c_outer)) {
5411 		/*
5412 		 * We have to enter the outer perimeter exclusively before
5413 		 * we can increment sq_count to avoid deadlock. This implies
5414 		 * that we have to re-check sq_flags and sq_count.
5415 		 *
5416 		 * is it possible to have c_inner set when c_outer is not set?
5417 		 */
5418 		if (!(type & c_inner)) {
5419 			SQ_PUTLOCKS_EXIT(sq);
5420 		}
5421 		mutex_exit(SQLOCK(sq));
5422 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5423 		mutex_enter(SQLOCK(sq));
5424 		flags = sq->sq_flags;
5425 		/*
5426 		 * there should be no need to recheck sq_putcounts
5427 		 * because outer_enter() has already waited for them to clear
5428 		 * after setting SQ_WRITER.
5429 		 */
5430 		count = sq->sq_count;
5431 #ifdef DEBUG
5432 		/*
5433 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5434 		 * of doing an ASSERT internally. Others should do
5435 		 * something like
5436 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5437 		 * without the need to #ifdef DEBUG it.
5438 		 */
5439 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5440 #endif
5441 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5442 		    (!(type & c_inner) && count != 0)) {
5443 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5444 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5445 			count = sq->sq_count;
5446 			flags = sq->sq_flags;
5447 		}
5448 	}
5449 
5450 	sq->sq_count++;
5451 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5452 	if (!(type & c_inner)) {
5453 		/* Exclusive entry */
5454 		ASSERT(sq->sq_count == 1);
5455 		sq->sq_flags |= SQ_EXCL;
5456 		if (type & c_outer) {
5457 			SQ_PUTLOCKS_EXIT(sq);
5458 		}
5459 	}
5460 	mutex_exit(SQLOCK(sq));
5461 }
5462 
5463 /*
5464  * leave a syncq. announce to framework that closes may proceed.
5465  * c_inner and c_outer specifies which concurrency bits
5466  * to check.
5467  *
5468  * must never be called from driver or module put entry point.
5469  *
5470  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5471  * sq_putlocks are used.
5472  */
5473 void
5474 leavesq(syncq_t *sq, int entrypoint)
5475 {
5476 	uint16_t	flags;
5477 	uint16_t	type;
5478 	uint_t		c_outer = entrypoint & SQ_CO;
5479 #ifdef DEBUG
5480 	uint_t		c_inner = entrypoint & SQ_CI;
5481 #endif
5482 
5483 	/*
5484 	 * decrement ref count, drain the syncq if possible, and wake up
5485 	 * any waiting close.
5486 	 */
5487 	ASSERT(sq);
5488 	ASSERT(c_inner && c_outer);
5489 	mutex_enter(SQLOCK(sq));
5490 	flags = sq->sq_flags;
5491 	type = sq->sq_type;
5492 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5493 
5494 		if (flags & SQ_WANTWAKEUP) {
5495 			flags &= ~SQ_WANTWAKEUP;
5496 			cv_broadcast(&sq->sq_wait);
5497 		}
5498 		if (flags & SQ_WANTEXWAKEUP) {
5499 			flags &= ~SQ_WANTEXWAKEUP;
5500 			cv_broadcast(&sq->sq_exitwait);
5501 		}
5502 
5503 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5504 			/*
5505 			 * The syncq needs to be drained. "Exit" the syncq
5506 			 * before calling drain_syncq.
5507 			 */
5508 			ASSERT(sq->sq_count != 0);
5509 			sq->sq_count--;
5510 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5511 			sq->sq_flags = flags & ~SQ_EXCL;
5512 			drain_syncq(sq);
5513 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5514 			/* Check if we need to exit the outer perimeter */
5515 			/* XXX will this ever be true? */
5516 			if (!(type & c_outer))
5517 				outer_exit(sq->sq_outer);
5518 			return;
5519 		}
5520 	}
5521 	ASSERT(sq->sq_count != 0);
5522 	sq->sq_count--;
5523 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5524 	sq->sq_flags = flags & ~SQ_EXCL;
5525 	mutex_exit(SQLOCK(sq));
5526 
5527 	/* Check if we need to exit the outer perimeter */
5528 	if (!(sq->sq_type & c_outer))
5529 		outer_exit(sq->sq_outer);
5530 }
5531 
5532 /*
5533  * Prevent q_next from changing in this stream by incrementing sq_count.
5534  *
5535  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5536  * sq_putlocks are used.
5537  */
5538 void
5539 claimq(queue_t *qp)
5540 {
5541 	syncq_t	*sq = qp->q_syncq;
5542 
5543 	mutex_enter(SQLOCK(sq));
5544 	sq->sq_count++;
5545 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5546 	mutex_exit(SQLOCK(sq));
5547 }
5548 
5549 /*
5550  * Undo claimq.
5551  *
5552  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5553  * sq_putlocks are used.
5554  */
5555 void
5556 releaseq(queue_t *qp)
5557 {
5558 	syncq_t	*sq = qp->q_syncq;
5559 	uint16_t flags;
5560 
5561 	mutex_enter(SQLOCK(sq));
5562 	ASSERT(sq->sq_count > 0);
5563 	sq->sq_count--;
5564 
5565 	flags = sq->sq_flags;
5566 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5567 		if (flags & SQ_WANTWAKEUP) {
5568 			flags &= ~SQ_WANTWAKEUP;
5569 			cv_broadcast(&sq->sq_wait);
5570 		}
5571 		sq->sq_flags = flags;
5572 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5573 			/*
5574 			 * To prevent potential recursive invocation of
5575 			 * drain_syncq we do not call drain_syncq if count is
5576 			 * non-zero.
5577 			 */
5578 			if (sq->sq_count == 0) {
5579 				drain_syncq(sq);
5580 				return;
5581 			} else
5582 				sqenable(sq);
5583 		}
5584 	}
5585 	mutex_exit(SQLOCK(sq));
5586 }
5587 
5588 /*
5589  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5590  */
5591 void
5592 claimstr(queue_t *qp)
5593 {
5594 	struct stdata *stp = STREAM(qp);
5595 
5596 	mutex_enter(&stp->sd_reflock);
5597 	stp->sd_refcnt++;
5598 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5599 	mutex_exit(&stp->sd_reflock);
5600 }
5601 
5602 /*
5603  * Undo claimstr.
5604  */
5605 void
5606 releasestr(queue_t *qp)
5607 {
5608 	struct stdata *stp = STREAM(qp);
5609 
5610 	mutex_enter(&stp->sd_reflock);
5611 	ASSERT(stp->sd_refcnt != 0);
5612 	if (--stp->sd_refcnt == 0)
5613 		cv_broadcast(&stp->sd_refmonitor);
5614 	mutex_exit(&stp->sd_reflock);
5615 }
5616 
5617 static syncq_t *
5618 new_syncq(void)
5619 {
5620 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5621 }
5622 
5623 static void
5624 free_syncq(syncq_t *sq)
5625 {
5626 	ASSERT(sq->sq_head == NULL);
5627 	ASSERT(sq->sq_outer == NULL);
5628 	ASSERT(sq->sq_callbpend == NULL);
5629 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5630 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5631 
5632 	if (sq->sq_ciputctrl != NULL) {
5633 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5634 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5635 		    sq->sq_nciputctrl, 0);
5636 		ASSERT(ciputctrl_cache != NULL);
5637 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5638 	}
5639 
5640 	sq->sq_tail = NULL;
5641 	sq->sq_evhead = NULL;
5642 	sq->sq_evtail = NULL;
5643 	sq->sq_ciputctrl = NULL;
5644 	sq->sq_nciputctrl = 0;
5645 	sq->sq_count = 0;
5646 	sq->sq_rmqcount = 0;
5647 	sq->sq_callbflags = 0;
5648 	sq->sq_cancelid = 0;
5649 	sq->sq_next = NULL;
5650 	sq->sq_needexcl = 0;
5651 	sq->sq_svcflags = 0;
5652 	sq->sq_nqueues = 0;
5653 	sq->sq_pri = 0;
5654 	sq->sq_onext = NULL;
5655 	sq->sq_oprev = NULL;
5656 	sq->sq_flags = 0;
5657 	sq->sq_type = 0;
5658 	sq->sq_servcount = 0;
5659 
5660 	kmem_cache_free(syncq_cache, sq);
5661 }
5662 
5663 /* Outer perimeter code */
5664 
5665 /*
5666  * The outer syncq uses the fields and flags in the syncq slightly
5667  * differently from the inner syncqs.
5668  *	sq_count	Incremented when there are pending or running
5669  *			writers at the outer perimeter to prevent the set of
5670  *			inner syncqs that belong to the outer perimeter from
5671  *			changing.
5672  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5673  *
5674  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5675  *			inner syncqs are added to or removed from the
5676  *			outer perimeter.
5677  *	SQ_QUEUED	sq_head/tail has messages or eventsqueued.
5678  *
5679  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5680  *			setting the SQ_WRITER flag.
5681  */
5682 
5683 /*
5684  * Get write access at the outer perimeter.
5685  * Note that read access is done by entersq, putnext, and put by simply
5686  * incrementing sq_count in the inner syncq.
5687  *
5688  * Waits until "flags" is no longer set in the outer to prevent multiple
5689  * threads from having write access at the same time. SQ_WRITER has to be part
5690  * of "flags".
5691  *
5692  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5693  * until the outer_exit is finished.
5694  *
5695  * outer_enter is vulnerable to starvation since it does not prevent new
5696  * threads from entering the inner syncqs while it is waiting for sq_count to
5697  * go to zero.
5698  */
5699 void
5700 outer_enter(syncq_t *outer, uint16_t flags)
5701 {
5702 	syncq_t	*sq;
5703 	int	wait_needed;
5704 	uint16_t	count;
5705 
5706 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5707 	    outer->sq_oprev != NULL);
5708 	ASSERT(flags & SQ_WRITER);
5709 
5710 retry:
5711 	mutex_enter(SQLOCK(outer));
5712 	while (outer->sq_flags & flags) {
5713 		outer->sq_flags |= SQ_WANTWAKEUP;
5714 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5715 	}
5716 
5717 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5718 	outer->sq_flags |= SQ_WRITER;
5719 	outer->sq_count++;
5720 	ASSERT(outer->sq_count != 0);	/* wraparound */
5721 	wait_needed = 0;
5722 	/*
5723 	 * Set SQ_WRITER on all the inner syncqs while holding
5724 	 * the SQLOCK on the outer syncq. This ensures that the changing
5725 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5726 	 */
5727 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5728 		mutex_enter(SQLOCK(sq));
5729 		count = sq->sq_count;
5730 		SQ_PUTLOCKS_ENTER(sq);
5731 		sq->sq_flags |= SQ_WRITER;
5732 		SUM_SQ_PUTCOUNTS(sq, count);
5733 		if (count != 0)
5734 			wait_needed = 1;
5735 		SQ_PUTLOCKS_EXIT(sq);
5736 		mutex_exit(SQLOCK(sq));
5737 	}
5738 	mutex_exit(SQLOCK(outer));
5739 
5740 	/*
5741 	 * Get everybody out of the syncqs sequentially.
5742 	 * Note that we don't actually need to aqiure the PUTLOCKS, since
5743 	 * we have already cleared the fastbit, and set QWRITER.  By
5744 	 * definition, the count can not increase since putnext will
5745 	 * take the slowlock path (and the purpose of aquiring the
5746 	 * putlocks was to make sure it didn't increase while we were
5747 	 * waiting).
5748 	 *
5749 	 * Note that we still aquire the PUTLOCKS to be safe.
5750 	 */
5751 	if (wait_needed) {
5752 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5753 			mutex_enter(SQLOCK(sq));
5754 			count = sq->sq_count;
5755 			SQ_PUTLOCKS_ENTER(sq);
5756 			SUM_SQ_PUTCOUNTS(sq, count);
5757 			while (count != 0) {
5758 				sq->sq_flags |= SQ_WANTWAKEUP;
5759 				SQ_PUTLOCKS_EXIT(sq);
5760 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5761 				count = sq->sq_count;
5762 				SQ_PUTLOCKS_ENTER(sq);
5763 				SUM_SQ_PUTCOUNTS(sq, count);
5764 			}
5765 			SQ_PUTLOCKS_EXIT(sq);
5766 			mutex_exit(SQLOCK(sq));
5767 		}
5768 		/*
5769 		 * Verify that none of the flags got set while we
5770 		 * were waiting for the sq_counts to drop.
5771 		 * If this happens we exit and retry entering the
5772 		 * outer perimeter.
5773 		 */
5774 		mutex_enter(SQLOCK(outer));
5775 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5776 			mutex_exit(SQLOCK(outer));
5777 			outer_exit(outer);
5778 			goto retry;
5779 		}
5780 		mutex_exit(SQLOCK(outer));
5781 	}
5782 }
5783 
5784 /*
5785  * Drop the write access at the outer perimeter.
5786  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5787  * decrementing sq_count.
5788  */
5789 void
5790 outer_exit(syncq_t *outer)
5791 {
5792 	syncq_t	*sq;
5793 	int	 drain_needed;
5794 	uint16_t flags;
5795 
5796 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5797 	    outer->sq_oprev != NULL);
5798 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5799 
5800 	/*
5801 	 * Atomically (from the perspective of threads calling become_writer)
5802 	 * drop the write access at the outer perimeter by holding
5803 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5804 	 * SQ_WRITER.
5805 	 * This defines a locking order between the outer perimeter
5806 	 * SQLOCK and the inner perimeter SQLOCKs.
5807 	 */
5808 	mutex_enter(SQLOCK(outer));
5809 	flags = outer->sq_flags;
5810 	ASSERT(outer->sq_flags & SQ_WRITER);
5811 	if (flags & SQ_QUEUED) {
5812 		write_now(outer);
5813 		flags = outer->sq_flags;
5814 	}
5815 
5816 	/*
5817 	 * sq_onext is stable since sq_count has not yet been decreased.
5818 	 * Reset the SQ_WRITER flags in all syncqs.
5819 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5820 	 * inner syncqs.
5821 	 */
5822 	drain_needed = 0;
5823 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5824 		drain_needed += dropsq(sq, SQ_WRITER);
5825 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5826 	flags &= ~SQ_WRITER;
5827 	if (drain_needed) {
5828 		outer->sq_flags = flags;
5829 		mutex_exit(SQLOCK(outer));
5830 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5831 			emptysq(sq);
5832 		mutex_enter(SQLOCK(outer));
5833 		flags = outer->sq_flags;
5834 	}
5835 	if (flags & SQ_WANTWAKEUP) {
5836 		flags &= ~SQ_WANTWAKEUP;
5837 		cv_broadcast(&outer->sq_wait);
5838 	}
5839 	outer->sq_flags = flags;
5840 	ASSERT(outer->sq_count > 0);
5841 	outer->sq_count--;
5842 	mutex_exit(SQLOCK(outer));
5843 }
5844 
5845 /*
5846  * Add another syncq to an outer perimeter.
5847  * Block out all other access to the outer perimeter while it is being
5848  * changed using blocksq.
5849  * Assumes that the caller has *not* done an outer_enter.
5850  *
5851  * Vulnerable to starvation in blocksq.
5852  */
5853 static void
5854 outer_insert(syncq_t *outer, syncq_t *sq)
5855 {
5856 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5857 	    outer->sq_oprev != NULL);
5858 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5859 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5860 
5861 	/* Get exclusive access to the outer perimeter list */
5862 	blocksq(outer, SQ_BLOCKED, 0);
5863 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5864 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5865 
5866 	mutex_enter(SQLOCK(sq));
5867 	sq->sq_outer = outer;
5868 	outer->sq_onext->sq_oprev = sq;
5869 	sq->sq_onext = outer->sq_onext;
5870 	outer->sq_onext = sq;
5871 	sq->sq_oprev = outer;
5872 	mutex_exit(SQLOCK(sq));
5873 	unblocksq(outer, SQ_BLOCKED, 1);
5874 }
5875 
5876 /*
5877  * Remove a syncq from an outer perimeter.
5878  * Block out all other access to the outer perimeter while it is being
5879  * changed using blocksq.
5880  * Assumes that the caller has *not* done an outer_enter.
5881  *
5882  * Vulnerable to starvation in blocksq.
5883  */
5884 static void
5885 outer_remove(syncq_t *outer, syncq_t *sq)
5886 {
5887 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5888 	    outer->sq_oprev != NULL);
5889 	ASSERT(sq->sq_outer == outer);
5890 
5891 	/* Get exclusive access to the outer perimeter list */
5892 	blocksq(outer, SQ_BLOCKED, 0);
5893 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5894 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5895 
5896 	mutex_enter(SQLOCK(sq));
5897 	sq->sq_outer = NULL;
5898 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5899 	sq->sq_oprev->sq_onext = sq->sq_onext;
5900 	sq->sq_oprev = sq->sq_onext = NULL;
5901 	mutex_exit(SQLOCK(sq));
5902 	unblocksq(outer, SQ_BLOCKED, 1);
5903 }
5904 
5905 /*
5906  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5907  * If this is the first callback for this outer perimeter then add
5908  * this outer perimeter to the list of outer perimeters that
5909  * the qwriter_outer_thread will process.
5910  *
5911  * Increments sq_count in the outer syncq to prevent the membership
5912  * of the outer perimeter (in terms of inner syncqs) to change while
5913  * the callback is pending.
5914  */
5915 static void
5916 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5917 {
5918 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5919 
5920 	mp->b_prev = (mblk_t *)func;
5921 	mp->b_queue = q;
5922 	mp->b_next = NULL;
5923 	outer->sq_count++;	/* Decremented when dequeued */
5924 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5925 	if (outer->sq_evhead == NULL) {
5926 		/* First message. */
5927 		outer->sq_evhead = outer->sq_evtail = mp;
5928 		outer->sq_flags |= SQ_EVENTS;
5929 		mutex_exit(SQLOCK(outer));
5930 		STRSTAT(qwr_outer);
5931 		(void) taskq_dispatch(streams_taskq,
5932 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5933 	} else {
5934 		ASSERT(outer->sq_flags & SQ_EVENTS);
5935 		outer->sq_evtail->b_next = mp;
5936 		outer->sq_evtail = mp;
5937 		mutex_exit(SQLOCK(outer));
5938 	}
5939 }
5940 
5941 /*
5942  * Try and upgrade to write access at the outer perimeter. If this can
5943  * not be done without blocking then queue the callback to be done
5944  * by the qwriter_outer_thread.
5945  *
5946  * This routine can only be called from put or service procedures plus
5947  * asynchronous callback routines that have properly entered to
5948  * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
5949  * on the syncq associated with q.
5950  */
5951 void
5952 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5953 {
5954 	syncq_t	*osq, *sq, *outer;
5955 	int	failed;
5956 	uint16_t flags;
5957 
5958 	osq = q->q_syncq;
5959 	outer = osq->sq_outer;
5960 	if (outer == NULL)
5961 		panic("qwriter(PERIM_OUTER): no outer perimeter");
5962 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5963 	    outer->sq_oprev != NULL);
5964 
5965 	mutex_enter(SQLOCK(outer));
5966 	flags = outer->sq_flags;
5967 	/*
5968 	 * If some thread is traversing sq_next, or if we are blocked by
5969 	 * outer_insert or outer_remove, or if the we already have queued
5970 	 * callbacks, then queue this callback for later processing.
5971 	 *
5972 	 * Also queue the qwriter for an interrupt thread in order
5973 	 * to reduce the time spent running at high IPL.
5974 	 * to identify there are events.
5975 	 */
5976 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5977 		/*
5978 		 * Queue the become_writer request.
5979 		 * The queueing is atomic under SQLOCK(outer) in order
5980 		 * to synchronize with outer_exit.
5981 		 * queue_writer will drop the outer SQLOCK
5982 		 */
5983 		if (flags & SQ_BLOCKED) {
5984 			/* Must set SQ_WRITER on inner perimeter */
5985 			mutex_enter(SQLOCK(osq));
5986 			osq->sq_flags |= SQ_WRITER;
5987 			mutex_exit(SQLOCK(osq));
5988 		} else {
5989 			if (!(flags & SQ_WRITER)) {
5990 				/*
5991 				 * The outer could have been SQ_BLOCKED thus
5992 				 * SQ_WRITER might not be set on the inner.
5993 				 */
5994 				mutex_enter(SQLOCK(osq));
5995 				osq->sq_flags |= SQ_WRITER;
5996 				mutex_exit(SQLOCK(osq));
5997 			}
5998 			ASSERT(osq->sq_flags & SQ_WRITER);
5999 		}
6000 		queue_writer(outer, func, q, mp);
6001 		return;
6002 	}
6003 	/*
6004 	 * We are half-way to exclusive access to the outer perimeter.
6005 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6006 	 * while the inner syncqs are traversed.
6007 	 */
6008 	outer->sq_count++;
6009 	ASSERT(outer->sq_count != 0);	/* wraparound */
6010 	flags |= SQ_WRITER;
6011 	/*
6012 	 * Check if we can run the function immediately. Mark all
6013 	 * syncqs with the writer flag to prevent new entries into
6014 	 * put and service procedures.
6015 	 *
6016 	 * Set SQ_WRITER on all the inner syncqs while holding
6017 	 * the SQLOCK on the outer syncq. This ensures that the changing
6018 	 * of SQ_WRITER is atomic under the outer SQLOCK.
6019 	 */
6020 	failed = 0;
6021 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6022 		uint16_t count;
6023 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
6024 
6025 		mutex_enter(SQLOCK(sq));
6026 		count = sq->sq_count;
6027 		SQ_PUTLOCKS_ENTER(sq);
6028 		SUM_SQ_PUTCOUNTS(sq, count);
6029 		if (sq->sq_count > maxcnt)
6030 			failed = 1;
6031 		sq->sq_flags |= SQ_WRITER;
6032 		SQ_PUTLOCKS_EXIT(sq);
6033 		mutex_exit(SQLOCK(sq));
6034 	}
6035 	if (failed) {
6036 		/*
6037 		 * Some other thread has a read claim on the outer perimeter.
6038 		 * Queue the callback for deferred processing.
6039 		 *
6040 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6041 		 * so that other qwriter(OUTER) calls will queue their
6042 		 * callbacks as well. queue_writer increments sq_count so we
6043 		 * decrement to compensate for the our increment.
6044 		 *
6045 		 * Dropping SQ_WRITER enables the writer thread to work
6046 		 * on this outer perimeter.
6047 		 */
6048 		outer->sq_flags = flags;
6049 		queue_writer(outer, func, q, mp);
6050 		/* queue_writer dropper the lock */
6051 		mutex_enter(SQLOCK(outer));
6052 		ASSERT(outer->sq_count > 0);
6053 		outer->sq_count--;
6054 		ASSERT(outer->sq_flags & SQ_WRITER);
6055 		flags = outer->sq_flags;
6056 		flags &= ~SQ_WRITER;
6057 		if (flags & SQ_WANTWAKEUP) {
6058 			flags &= ~SQ_WANTWAKEUP;
6059 			cv_broadcast(&outer->sq_wait);
6060 		}
6061 		outer->sq_flags = flags;
6062 		mutex_exit(SQLOCK(outer));
6063 		return;
6064 	} else {
6065 		outer->sq_flags = flags;
6066 		mutex_exit(SQLOCK(outer));
6067 	}
6068 
6069 	/* Can run it immediately */
6070 	(*func)(q, mp);
6071 
6072 	outer_exit(outer);
6073 }
6074 
6075 /*
6076  * Dequeue all writer callbacks from the outer perimeter and run them.
6077  */
6078 static void
6079 write_now(syncq_t *outer)
6080 {
6081 	mblk_t		*mp;
6082 	queue_t		*q;
6083 	void	(*func)();
6084 
6085 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6086 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6087 	    outer->sq_oprev != NULL);
6088 	while ((mp = outer->sq_evhead) != NULL) {
6089 		/*
6090 		 * queues cannot be placed on the queuelist on the outer
6091 		 * perimiter.
6092 		 */
6093 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6094 		ASSERT((outer->sq_flags & SQ_EVENTS));
6095 
6096 		outer->sq_evhead = mp->b_next;
6097 		if (outer->sq_evhead == NULL) {
6098 			outer->sq_evtail = NULL;
6099 			outer->sq_flags &= ~SQ_EVENTS;
6100 		}
6101 		ASSERT(outer->sq_count != 0);
6102 		outer->sq_count--;	/* Incremented when enqueued. */
6103 		mutex_exit(SQLOCK(outer));
6104 		/*
6105 		 * Drop the message if the queue is closing.
6106 		 * Make sure that the queue is "claimed" when the callback
6107 		 * is run in order to satisfy various ASSERTs.
6108 		 */
6109 		q = mp->b_queue;
6110 		func = (void (*)())mp->b_prev;
6111 		ASSERT(func != NULL);
6112 		mp->b_next = mp->b_prev = NULL;
6113 		if (q->q_flag & QWCLOSE) {
6114 			freemsg(mp);
6115 		} else {
6116 			claimq(q);
6117 			(*func)(q, mp);
6118 			releaseq(q);
6119 		}
6120 		mutex_enter(SQLOCK(outer));
6121 	}
6122 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6123 }
6124 
6125 /*
6126  * The list of messages on the inner syncq is effectively hashed
6127  * by destination queue.  These destination queues are doubly
6128  * linked lists (hopefully) in priority order.  Messages are then
6129  * put on the queue referenced by the q_sqhead/q_sqtail elements.
6130  * Additional messages are linked together by the b_next/b_prev
6131  * elements in the mblk, with (similar to putq()) the first message
6132  * having a NULL b_prev and the last message having a NULL b_next.
6133  *
6134  * Events, such as qwriter callbacks, are put onto a list in FIFO
6135  * order referenced by sq_evhead, and sq_evtail.  This is a singly
6136  * linked list, and messages here MUST be processed in the order queued.
6137  */
6138 
6139 /*
6140  * Run the events on the syncq event list (sq_evhead).
6141  * Assumes there is only one claim on the syncq, it is
6142  * already exclusive (SQ_EXCL set), and the SQLOCK held.
6143  * Messages here are processed in order, with the SQ_EXCL bit
6144  * held all the way through till the last message is processed.
6145  */
6146 void
6147 sq_run_events(syncq_t *sq)
6148 {
6149 	mblk_t		*bp;
6150 	queue_t		*qp;
6151 	uint16_t	flags = sq->sq_flags;
6152 	void		(*func)();
6153 
6154 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6155 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6156 	    sq->sq_oprev == NULL) ||
6157 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6158 	    sq->sq_oprev != NULL));
6159 
6160 	ASSERT(flags & SQ_EXCL);
6161 	ASSERT(sq->sq_count == 1);
6162 
6163 	/*
6164 	 * We need to process all of the events on this list.  It
6165 	 * is possible that new events will be added while we are
6166 	 * away processing a callback, so on every loop, we start
6167 	 * back at the beginning of the list.
6168 	 */
6169 	/*
6170 	 * We have to reaccess sq_evhead since there is a
6171 	 * possibility of a new entry while we were running
6172 	 * the callback.
6173 	 */
6174 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6175 		ASSERT(bp->b_queue->q_syncq == sq);
6176 		ASSERT(sq->sq_flags & SQ_EVENTS);
6177 
6178 		qp = bp->b_queue;
6179 		func = (void (*)())bp->b_prev;
6180 		ASSERT(func != NULL);
6181 
6182 		/*
6183 		 * Messages from the event queue must be taken off in
6184 		 * FIFO order.
6185 		 */
6186 		ASSERT(sq->sq_evhead == bp);
6187 		sq->sq_evhead = bp->b_next;
6188 
6189 		if (bp->b_next == NULL) {
6190 			/* Deleting last */
6191 			ASSERT(sq->sq_evtail == bp);
6192 			sq->sq_evtail = NULL;
6193 			sq->sq_flags &= ~SQ_EVENTS;
6194 		}
6195 		bp->b_prev = bp->b_next = NULL;
6196 		ASSERT(bp->b_datap->db_ref != 0);
6197 
6198 		mutex_exit(SQLOCK(sq));
6199 
6200 		(*func)(qp, bp);
6201 
6202 		mutex_enter(SQLOCK(sq));
6203 		/*
6204 		 * re-read the flags, since they could have changed.
6205 		 */
6206 		flags = sq->sq_flags;
6207 		ASSERT(flags & SQ_EXCL);
6208 	}
6209 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6210 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6211 
6212 	if (flags & SQ_WANTWAKEUP) {
6213 		flags &= ~SQ_WANTWAKEUP;
6214 		cv_broadcast(&sq->sq_wait);
6215 	}
6216 	if (flags & SQ_WANTEXWAKEUP) {
6217 		flags &= ~SQ_WANTEXWAKEUP;
6218 		cv_broadcast(&sq->sq_exitwait);
6219 	}
6220 	sq->sq_flags = flags;
6221 }
6222 
6223 /*
6224  * Put messages on the event list.
6225  * If we can go exclusive now, do so and process the event list, otherwise
6226  * let the last claim service this list (or wake the sqthread).
6227  * This procedure assumes SQLOCK is held.  To run the event list, it
6228  * must be called with no claims.
6229  */
6230 static void
6231 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6232 {
6233 	uint16_t count;
6234 
6235 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6236 	ASSERT(func != NULL);
6237 
6238 	/*
6239 	 * This is a callback.  Add it to the list of callbacks
6240 	 * and see about upgrading.
6241 	 */
6242 	mp->b_prev = (mblk_t *)func;
6243 	mp->b_queue = q;
6244 	mp->b_next = NULL;
6245 	if (sq->sq_evhead == NULL) {
6246 		sq->sq_evhead = sq->sq_evtail = mp;
6247 		sq->sq_flags |= SQ_EVENTS;
6248 	} else {
6249 		ASSERT(sq->sq_evtail != NULL);
6250 		ASSERT(sq->sq_evtail->b_next == NULL);
6251 		ASSERT(sq->sq_flags & SQ_EVENTS);
6252 		sq->sq_evtail->b_next = mp;
6253 		sq->sq_evtail = mp;
6254 	}
6255 	/*
6256 	 * We have set SQ_EVENTS, so threads will have to
6257 	 * unwind out of the perimiter, and new entries will
6258 	 * not grab a putlock.  But we still need to know
6259 	 * how many threads have already made a claim to the
6260 	 * syncq, so grab the putlocks, and sum the counts.
6261 	 * If there are no claims on the syncq, we can upgrade
6262 	 * to exclusive, and run the event list.
6263 	 * NOTE: We hold the SQLOCK, so we can just grab the
6264 	 * putlocks.
6265 	 */
6266 	count = sq->sq_count;
6267 	SQ_PUTLOCKS_ENTER(sq);
6268 	SUM_SQ_PUTCOUNTS(sq, count);
6269 	/*
6270 	 * We have no claim, so we need to check if there
6271 	 * are no others, then we can upgrade.
6272 	 */
6273 	/*
6274 	 * There are currently no claims on
6275 	 * the syncq by this thread (at least on this entry). The thread who has
6276 	 * the claim should drain syncq.
6277 	 */
6278 	if (count > 0) {
6279 		/*
6280 		 * Can't upgrade - other threads inside.
6281 		 */
6282 		SQ_PUTLOCKS_EXIT(sq);
6283 		mutex_exit(SQLOCK(sq));
6284 		return;
6285 	}
6286 	/*
6287 	 * Need to set SQ_EXCL and make a claim on the syncq.
6288 	 */
6289 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6290 	sq->sq_flags |= SQ_EXCL;
6291 	ASSERT(sq->sq_count == 0);
6292 	sq->sq_count++;
6293 	SQ_PUTLOCKS_EXIT(sq);
6294 
6295 	/* Process the events list */
6296 	sq_run_events(sq);
6297 
6298 	/*
6299 	 * Release our claim...
6300 	 */
6301 	sq->sq_count--;
6302 
6303 	/*
6304 	 * And release SQ_EXCL.
6305 	 * We don't need to acquire the putlocks to release
6306 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6307 	 */
6308 	sq->sq_flags &= ~SQ_EXCL;
6309 
6310 	/*
6311 	 * sq_run_events should have released SQ_EXCL
6312 	 */
6313 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6314 
6315 	/*
6316 	 * If anything happened while we were running the
6317 	 * events (or was there before), we need to process
6318 	 * them now.  We shouldn't be exclusive sine we
6319 	 * released the perimiter above (plus, we asserted
6320 	 * for it).
6321 	 */
6322 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6323 		drain_syncq(sq);
6324 	else
6325 		mutex_exit(SQLOCK(sq));
6326 }
6327 
6328 /*
6329  * Perform delayed processing. The caller has to make sure that it is safe
6330  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6331  * set.)
6332  *
6333  * Assume that the caller has NO claims on the syncq.  However, a claim
6334  * on the syncq does not indicate that a thread is draining the syncq.
6335  * There may be more claims on the syncq than there are threads draining
6336  * (i.e.  #_threads_draining <= sq_count)
6337  *
6338  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6339  * in order to preserve qwriter(OUTER) ordering constraints.
6340  *
6341  * sq_putcount only needs to be checked when dispatching the queued
6342  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6343  */
6344 void
6345 drain_syncq(syncq_t *sq)
6346 {
6347 	queue_t		*qp;
6348 	uint16_t	count;
6349 	uint16_t	type = sq->sq_type;
6350 	uint16_t	flags = sq->sq_flags;
6351 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6352 
6353 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6354 	    "drain_syncq start:%p", sq);
6355 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6356 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6357 	    sq->sq_oprev == NULL) ||
6358 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6359 	    sq->sq_oprev != NULL));
6360 
6361 	/*
6362 	 * Drop SQ_SERVICE flag.
6363 	 */
6364 	if (bg_service)
6365 		sq->sq_svcflags &= ~SQ_SERVICE;
6366 
6367 	/*
6368 	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6369 	 * finish the job.
6370 	 */
6371 	if (flags & SQ_EXCL) {
6372 		if (bg_service) {
6373 			ASSERT(sq->sq_servcount != 0);
6374 			sq->sq_servcount--;
6375 		}
6376 		mutex_exit(SQLOCK(sq));
6377 		return;
6378 	}
6379 
6380 	/*
6381 	 * This routine can be called by a background thread if
6382 	 * it was scheduled by a hi-priority thread.  SO, if there are
6383 	 * NOT messages queued, return (remember, we have the SQLOCK,
6384 	 * and it cannot change until we release it). Wakeup any waiters also.
6385 	 */
6386 	if (!(flags & SQ_QUEUED)) {
6387 		if (flags & SQ_WANTWAKEUP) {
6388 			flags &= ~SQ_WANTWAKEUP;
6389 			cv_broadcast(&sq->sq_wait);
6390 		}
6391 		if (flags & SQ_WANTEXWAKEUP) {
6392 			flags &= ~SQ_WANTEXWAKEUP;
6393 			cv_broadcast(&sq->sq_exitwait);
6394 		}
6395 		sq->sq_flags = flags;
6396 		if (bg_service) {
6397 			ASSERT(sq->sq_servcount != 0);
6398 			sq->sq_servcount--;
6399 		}
6400 		mutex_exit(SQLOCK(sq));
6401 		return;
6402 	}
6403 
6404 	/*
6405 	 * If this is not a concurrent put perimiter, we need to
6406 	 * become exclusive to drain.  Also, if not CIPUT, we would
6407 	 * not have acquired a putlock, so we don't need to check
6408 	 * the putcounts.  If not entering with a claim, we test
6409 	 * for sq_count == 0.
6410 	 */
6411 	type = sq->sq_type;
6412 	if (!(type & SQ_CIPUT)) {
6413 		if (sq->sq_count > 1) {
6414 			if (bg_service) {
6415 				ASSERT(sq->sq_servcount != 0);
6416 				sq->sq_servcount--;
6417 			}
6418 			mutex_exit(SQLOCK(sq));
6419 			return;
6420 		}
6421 		sq->sq_flags |= SQ_EXCL;
6422 	}
6423 
6424 	/*
6425 	 * This is where we make a claim to the syncq.
6426 	 * This can either be done by incrementing a putlock, or
6427 	 * the sq_count.  But since we already have the SQLOCK
6428 	 * here, we just bump the sq_count.
6429 	 *
6430 	 * Note that after we make a claim, we need to let the code
6431 	 * fall through to the end of this routine to clean itself
6432 	 * up.  A return in the while loop will put the syncq in a
6433 	 * very bad state.
6434 	 */
6435 	sq->sq_count++;
6436 	ASSERT(sq->sq_count != 0);	/* wraparound */
6437 
6438 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6439 		/*
6440 		 * If we are told to stayaway or went exclusive,
6441 		 * we are done.
6442 		 */
6443 		if (flags & (SQ_STAYAWAY)) {
6444 			break;
6445 		}
6446 
6447 		/*
6448 		 * If there are events to run, do so.
6449 		 * We have one claim to the syncq, so if there are
6450 		 * more than one, other threads are running.
6451 		 */
6452 		if (sq->sq_evhead != NULL) {
6453 			ASSERT(sq->sq_flags & SQ_EVENTS);
6454 
6455 			count = sq->sq_count;
6456 			SQ_PUTLOCKS_ENTER(sq);
6457 			SUM_SQ_PUTCOUNTS(sq, count);
6458 			if (count > 1) {
6459 				SQ_PUTLOCKS_EXIT(sq);
6460 				/* Can't upgrade - other threads inside */
6461 				break;
6462 			}
6463 			ASSERT((flags & SQ_EXCL) == 0);
6464 			sq->sq_flags = flags | SQ_EXCL;
6465 			SQ_PUTLOCKS_EXIT(sq);
6466 			/*
6467 			 * we have the only claim, run the events,
6468 			 * sq_run_events will clear the SQ_EXCL flag.
6469 			 */
6470 			sq_run_events(sq);
6471 
6472 			/*
6473 			 * If this is a CIPUT perimiter, we need
6474 			 * to drop the SQ_EXCL flag so we can properly
6475 			 * continue draining the syncq.
6476 			 */
6477 			if (type & SQ_CIPUT) {
6478 				ASSERT(sq->sq_flags & SQ_EXCL);
6479 				sq->sq_flags &= ~SQ_EXCL;
6480 			}
6481 
6482 			/*
6483 			 * And go back to the beginning just in case
6484 			 * anything changed while we were away.
6485 			 */
6486 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6487 			continue;
6488 		}
6489 
6490 		ASSERT(sq->sq_evhead == NULL);
6491 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6492 
6493 		/*
6494 		 * Find the queue that is not draining.
6495 		 *
6496 		 * q_draining is protected by QLOCK which we do not hold.
6497 		 * But if it was set, then a thread was draining, and if it gets
6498 		 * cleared, then it was because the thread has successfully
6499 		 * drained the syncq, or a GOAWAY state occured. For the GOAWAY
6500 		 * state to happen, a thread needs the SQLOCK which we hold, and
6501 		 * if there was such a flag, we whould have already seen it.
6502 		 */
6503 
6504 		for (qp = sq->sq_head;
6505 		    qp != NULL && (qp->q_draining ||
6506 		    (qp->q_sqflags & Q_SQDRAINING));
6507 		    qp = qp->q_sqnext)
6508 			;
6509 
6510 		if (qp == NULL)
6511 			break;
6512 
6513 		/*
6514 		 * We have a queue to work on, and we hold the
6515 		 * SQLOCK and one claim, call qdrain_syncq.
6516 		 * This means we need to release the SQLOCK and
6517 		 * aquire the QLOCK (OK since we have a claim).
6518 		 * Note that qdrain_syncq will actually dequeue
6519 		 * this queue from the sq_head list when it is
6520 		 * convinced all the work is done and release
6521 		 * the QLOCK before returning.
6522 		 */
6523 		qp->q_sqflags |= Q_SQDRAINING;
6524 		mutex_exit(SQLOCK(sq));
6525 		mutex_enter(QLOCK(qp));
6526 		qdrain_syncq(sq, qp);
6527 		mutex_enter(SQLOCK(sq));
6528 
6529 		/* The queue is drained */
6530 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6531 		qp->q_sqflags &= ~Q_SQDRAINING;
6532 		/*
6533 		 * NOTE: After this point qp should not be used since it may be
6534 		 * closed.
6535 		 */
6536 	}
6537 
6538 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6539 	flags = sq->sq_flags;
6540 
6541 	/*
6542 	 * sq->sq_head cannot change because we hold the
6543 	 * sqlock. However, a thread CAN decide that it is no longer
6544 	 * going to drain that queue.  However, this should be due to
6545 	 * a GOAWAY state, and we should see that here.
6546 	 *
6547 	 * This loop is not very efficient. One solution may be adding a second
6548 	 * pointer to the "draining" queue, but it is difficult to do when
6549 	 * queues are inserted in the middle due to priority ordering. Another
6550 	 * possibility is to yank the queue out of the sq list and put it onto
6551 	 * the "draining list" and then put it back if it can't be drained.
6552 	 */
6553 
6554 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6555 	    (type & SQ_CI) || sq->sq_head->q_draining);
6556 
6557 	/* Drop SQ_EXCL for non-CIPUT perimiters */
6558 	if (!(type & SQ_CIPUT))
6559 		flags &= ~SQ_EXCL;
6560 	ASSERT((flags & SQ_EXCL) == 0);
6561 
6562 	/* Wake up any waiters. */
6563 	if (flags & SQ_WANTWAKEUP) {
6564 		flags &= ~SQ_WANTWAKEUP;
6565 		cv_broadcast(&sq->sq_wait);
6566 	}
6567 	if (flags & SQ_WANTEXWAKEUP) {
6568 		flags &= ~SQ_WANTEXWAKEUP;
6569 		cv_broadcast(&sq->sq_exitwait);
6570 	}
6571 	sq->sq_flags = flags;
6572 
6573 	ASSERT(sq->sq_count != 0);
6574 	/* Release our claim. */
6575 	sq->sq_count--;
6576 
6577 	if (bg_service) {
6578 		ASSERT(sq->sq_servcount != 0);
6579 		sq->sq_servcount--;
6580 	}
6581 
6582 	mutex_exit(SQLOCK(sq));
6583 
6584 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6585 	    "drain_syncq end:%p", sq);
6586 }
6587 
6588 
6589 /*
6590  *
6591  * qdrain_syncq can be called (currently) from only one of two places:
6592  *	drain_syncq
6593  * 	putnext  (or some variation of it).
6594  * and eventually
6595  * 	qwait(_sig)
6596  *
6597  * If called from drain_syncq, we found it in the list
6598  * of queue's needing service, so there is work to be done (or it
6599  * wouldn't be on the list).
6600  *
6601  * If called from some putnext variation, it was because the
6602  * perimiter is open, but messages are blocking a putnext and
6603  * there is not a thread working on it.  Now a thread could start
6604  * working on it while we are getting ready to do so ourself, but
6605  * the thread would set the q_draining flag, and we can spin out.
6606  *
6607  * As for qwait(_sig), I think I shall let it continue to call
6608  * drain_syncq directly (after all, it will get here eventually).
6609  *
6610  * qdrain_syncq has to terminate when:
6611  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6612  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6613  *
6614  * ASSUMES:
6615  *	One claim
6616  * 	QLOCK held
6617  * 	SQLOCK not held
6618  *	Will release QLOCK before returning
6619  */
6620 void
6621 qdrain_syncq(syncq_t *sq, queue_t *q)
6622 {
6623 	mblk_t		*bp;
6624 	boolean_t	do_clr;
6625 #ifdef DEBUG
6626 	uint16_t	count;
6627 #endif
6628 
6629 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6630 	    "drain_syncq start:%p", sq);
6631 	ASSERT(q->q_syncq == sq);
6632 	ASSERT(MUTEX_HELD(QLOCK(q)));
6633 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6634 	/*
6635 	 * For non-CIPUT perimiters, we should be called with the
6636 	 * exclusive bit set already.  For non-CIPUT perimiters we
6637 	 * will be doing a concurrent drain, so it better not be set.
6638 	 */
6639 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6640 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6641 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6642 	/*
6643 	 * All outer pointers are set, or none of them are
6644 	 */
6645 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6646 	    sq->sq_oprev == NULL) ||
6647 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6648 	    sq->sq_oprev != NULL));
6649 #ifdef DEBUG
6650 	count = sq->sq_count;
6651 	/*
6652 	 * This is OK without the putlocks, because we have one
6653 	 * claim either from the sq_count, or a putcount.  We could
6654 	 * get an erroneous value from other counts, but ours won't
6655 	 * change, so one way or another, we will have at least a
6656 	 * value of one.
6657 	 */
6658 	SUM_SQ_PUTCOUNTS(sq, count);
6659 	ASSERT(count >= 1);
6660 #endif /* DEBUG */
6661 
6662 	/*
6663 	 * The first thing to do here, is find out if a thread is already
6664 	 * draining this queue or the queue is closing. If so, we are done,
6665 	 * just return. Also, if there are no messages, we are done as well.
6666 	 * Note that we check the q_sqhead since there is s window of
6667 	 * opportunity for us to enter here because Q_SQQUEUED was set, but is
6668 	 * not anymore.
6669 	 */
6670 	if (q->q_draining || (q->q_sqhead == NULL)) {
6671 		mutex_exit(QLOCK(q));
6672 		return;
6673 	}
6674 
6675 	/*
6676 	 * If the perimiter is exclusive, there is nothing we can
6677 	 * do right now, go away.
6678 	 * Note that there is nothing to prevent this case from changing
6679 	 * right after this check, but the spin-out will catch it.
6680 	 */
6681 
6682 	/* Tell other threads that we are draining this queue */
6683 	q->q_draining = 1;	/* Protected by QLOCK */
6684 
6685 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6686 
6687 		/*
6688 		 * Because we can enter this routine just because
6689 		 * a putnext is blocked, we need to spin out if
6690 		 * the perimiter wants to go exclusive as well
6691 		 * as just blocked. We need to spin out also if
6692 		 * events are queued on the syncq.
6693 		 * Don't check for SQ_EXCL, because non-CIPUT
6694 		 * perimiters would set it, and it can't become
6695 		 * exclusive while we hold a claim.
6696 		 */
6697 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6698 			break;
6699 		}
6700 
6701 #ifdef DEBUG
6702 		/*
6703 		 * Since we are in qdrain_syncq, we already know the queue,
6704 		 * but for sanity, we want to check this against the qp that
6705 		 * was passed in by bp->b_queue.
6706 		 */
6707 
6708 		ASSERT(bp->b_queue == q);
6709 		ASSERT(bp->b_queue->q_syncq == sq);
6710 		bp->b_queue = NULL;
6711 
6712 		/*
6713 		 * We would have the following check in the DEBUG code:
6714 		 *
6715 		 * if (bp->b_prev != NULL)  {
6716 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6717 		 * }
6718 		 *
6719 		 * This can't be done, however, since IP modifies qinfo
6720 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6721 		 * qinfo), invalidating the check.
6722 		 * So the assignment to func is left here, but the ASSERT itself
6723 		 * is removed until the whole issue is resolved.
6724 		 */
6725 #endif
6726 		ASSERT(q->q_sqhead == bp);
6727 		q->q_sqhead = bp->b_next;
6728 		bp->b_prev = bp->b_next = NULL;
6729 		ASSERT(q->q_syncqmsgs > 0);
6730 		mutex_exit(QLOCK(q));
6731 
6732 		ASSERT(bp->b_datap->db_ref != 0);
6733 
6734 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6735 
6736 		mutex_enter(QLOCK(q));
6737 		/*
6738 		 * We should decrement q_syncqmsgs only after executing the
6739 		 * put procedure to avoid a possible race with putnext().
6740 		 * In putnext() though it sees Q_SQQUEUED is set, there is
6741 		 * an optimization which allows putnext to call the put
6742 		 * procedure directly if (q_syncqmsgs == 0) and thus
6743 		 * a message reodering could otherwise occur.
6744 		 */
6745 		q->q_syncqmsgs--;
6746 
6747 		/*
6748 		 * Clear QFULL in the next service procedure queue if
6749 		 * this is the last message destined to that queue.
6750 		 *
6751 		 * It would make better sense to have some sort of
6752 		 * tunable for the low water mark, but these symantics
6753 		 * are not yet defined.  So, alas, we use a constant.
6754 		 */
6755 		do_clr = (q->q_syncqmsgs == 0);
6756 		mutex_exit(QLOCK(q));
6757 
6758 		if (do_clr)
6759 			clr_qfull(q);
6760 
6761 		mutex_enter(QLOCK(q));
6762 		/*
6763 		 * Always clear SQ_EXCL when CIPUT in order to handle
6764 		 * qwriter(INNER).
6765 		 */
6766 		/*
6767 		 * The putp() can call qwriter and get exclusive access
6768 		 * IFF this is the only claim.  So, we need to test for
6769 		 * this possibility so we can aquire the mutex and clear
6770 		 * the bit.
6771 		 */
6772 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6773 			mutex_enter(SQLOCK(sq));
6774 			sq->sq_flags &= ~SQ_EXCL;
6775 			mutex_exit(SQLOCK(sq));
6776 		}
6777 	}
6778 
6779 	/*
6780 	 * We should either have no queues on the syncq, or we were
6781 	 * told to goaway by a waiter (which we will wake up at the
6782 	 * end of this function).
6783 	 */
6784 	ASSERT((q->q_sqhead == NULL) ||
6785 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6786 
6787 	ASSERT(MUTEX_HELD(QLOCK(q)));
6788 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6789 
6790 	/*
6791 	 * Remove the q from the syncq list if all the messages are
6792 	 * drained.
6793 	 */
6794 	if (q->q_sqhead == NULL) {
6795 		mutex_enter(SQLOCK(sq));
6796 		if (q->q_sqflags & Q_SQQUEUED)
6797 			SQRM_Q(sq, q);
6798 		mutex_exit(SQLOCK(sq));
6799 		/*
6800 		 * Since the queue is removed from the list, reset its priority.
6801 		 */
6802 		q->q_spri = 0;
6803 	}
6804 
6805 	/*
6806 	 * Remember, the q_draining flag is used to let another
6807 	 * thread know that there is a thread currently draining
6808 	 * the messages for a queue.  Since we are now done with
6809 	 * this queue (even if there may be messages still there),
6810 	 * we need to clear this flag so some thread will work
6811 	 * on it if needed.
6812 	 */
6813 	ASSERT(q->q_draining);
6814 	q->q_draining = 0;
6815 
6816 	/* called with a claim, so OK to drop all locks. */
6817 	mutex_exit(QLOCK(q));
6818 
6819 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6820 	    "drain_syncq end:%p", sq);
6821 }
6822 /* END OF QDRAIN_SYNCQ  */
6823 
6824 
6825 /*
6826  * This is the mate to qdrain_syncq, except that it is putting the
6827  * message onto the the queue instead draining.  Since the
6828  * message is destined for the queue that is selected, there is
6829  * no need to identify the function because the message is
6830  * intended for the put routine for the queue.  But this
6831  * routine will do it anyway just in case (but only for debug kernels).
6832  *
6833  * After the message is enqueued on the syncq, it calls putnext_tail()
6834  * which will schedule a background thread to actually process the message.
6835  *
6836  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6837  * SQLOCK(sq) and QLOCK(q) are not held.
6838  */
6839 void
6840 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6841 {
6842 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6843 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6844 	ASSERT(sq->sq_count > 0);
6845 	ASSERT(q->q_syncq == sq);
6846 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6847 	    sq->sq_oprev == NULL) ||
6848 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6849 	    sq->sq_oprev != NULL));
6850 
6851 	mutex_enter(QLOCK(q));
6852 
6853 #ifdef DEBUG
6854 	/*
6855 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6856 	 * to trace the queue that the message is intended for.  Note
6857 	 * that the original use was to identify the queue and function
6858 	 * to call on the drain.  In the new syncq, we have the context
6859 	 * of the queue that we are draining, so call it's putproc and
6860 	 * don't rely on the saved values.  But for debug this is still
6861 	 * usefull information.
6862 	 */
6863 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6864 	mp->b_queue = q;
6865 	mp->b_next = NULL;
6866 #endif
6867 	ASSERT(q->q_syncq == sq);
6868 	/*
6869 	 * Enqueue the message on the list.
6870 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6871 	 * protect it.  So its ok to acquire SQLOCK after SQPUT_MP().
6872 	 */
6873 	SQPUT_MP(q, mp);
6874 	mutex_enter(SQLOCK(sq));
6875 
6876 	/*
6877 	 * And queue on syncq for scheduling, if not already queued.
6878 	 * Note that we need the SQLOCK for this, and for testing flags
6879 	 * at the end to see if we will drain.  So grab it now, and
6880 	 * release it before we call qdrain_syncq or return.
6881 	 */
6882 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6883 		q->q_spri = curthread->t_pri;
6884 		SQPUT_Q(sq, q);
6885 	}
6886 #ifdef DEBUG
6887 	else {
6888 		/*
6889 		 * All of these conditions MUST be true!
6890 		 */
6891 		ASSERT(sq->sq_tail != NULL);
6892 		if (sq->sq_tail == sq->sq_head) {
6893 			ASSERT((q->q_sqprev == NULL) &&
6894 			    (q->q_sqnext == NULL));
6895 		} else {
6896 			ASSERT((q->q_sqprev != NULL) ||
6897 			    (q->q_sqnext != NULL));
6898 		}
6899 		ASSERT(sq->sq_flags & SQ_QUEUED);
6900 		ASSERT(q->q_syncqmsgs != 0);
6901 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6902 	}
6903 #endif
6904 	mutex_exit(QLOCK(q));
6905 	/*
6906 	 * SQLOCK is still held, so sq_count can be safely decremented.
6907 	 */
6908 	sq->sq_count--;
6909 
6910 	putnext_tail(sq, q, 0);
6911 	/* Should not reference sq or q after this point. */
6912 }
6913 
6914 /*  End of qfill_syncq  */
6915 
6916 /*
6917  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6918  * that would be put into qp by drain_syncq.
6919  * Used when deleting the syncq (qp == NULL) or when detaching
6920  * a queue (qp != NULL).
6921  * Return non-zero if one or more messages were freed.
6922  *
6923  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
6924  * sq_putlocks are used.
6925  *
6926  * NOTE: This function assumes that it is called from the close() context and
6927  * that all the queues in the syncq are going aay. For this reason it doesn't
6928  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6929  * currently valid, but it is useful to rethink this function to behave properly
6930  * in other cases.
6931  */
6932 int
6933 flush_syncq(syncq_t *sq, queue_t *qp)
6934 {
6935 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6936 	queue_t		*q;
6937 	int		ret = 0;
6938 
6939 	mutex_enter(SQLOCK(sq));
6940 
6941 	/*
6942 	 * Before we leave, we need to make sure there are no
6943 	 * events listed for this queue.  All events for this queue
6944 	 * will just be freed.
6945 	 */
6946 	if (qp != NULL && sq->sq_evhead != NULL) {
6947 		ASSERT(sq->sq_flags & SQ_EVENTS);
6948 
6949 		mp_prev = NULL;
6950 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6951 			mp_next = bp->b_next;
6952 			if (bp->b_queue == qp) {
6953 				/* Delete this message */
6954 				if (mp_prev != NULL) {
6955 					mp_prev->b_next = mp_next;
6956 					/*
6957 					 * Update sq_evtail if the last element
6958 					 * is removed.
6959 					 */
6960 					if (bp == sq->sq_evtail) {
6961 						ASSERT(mp_next == NULL);
6962 						sq->sq_evtail = mp_prev;
6963 					}
6964 				} else
6965 					sq->sq_evhead = mp_next;
6966 				if (sq->sq_evhead == NULL)
6967 					sq->sq_flags &= ~SQ_EVENTS;
6968 				bp->b_prev = bp->b_next = NULL;
6969 				freemsg(bp);
6970 				ret++;
6971 			} else {
6972 				mp_prev = bp;
6973 			}
6974 		}
6975 	}
6976 
6977 	/*
6978 	 * Walk sq_head and:
6979 	 *	- match qp if qp is set, remove it's messages
6980 	 *	- all if qp is not set
6981 	 */
6982 	q = sq->sq_head;
6983 	while (q != NULL) {
6984 		ASSERT(q->q_syncq == sq);
6985 		if ((qp == NULL) || (qp == q)) {
6986 			/*
6987 			 * Yank the messages as a list off the queue
6988 			 */
6989 			mp_head = q->q_sqhead;
6990 			/*
6991 			 * We do not have QLOCK(q) here (which is safe due to
6992 			 * assumptions mentioned above). To obtain the lock we
6993 			 * need to release SQLOCK which may allow lots of things
6994 			 * to change upon us. This place requires more analysis.
6995 			 */
6996 			q->q_sqhead = q->q_sqtail = NULL;
6997 			ASSERT(mp_head->b_queue &&
6998 			    mp_head->b_queue->q_syncq == sq);
6999 
7000 			/*
7001 			 * Free each of the messages.
7002 			 */
7003 			for (bp = mp_head; bp != NULL; bp = mp_next) {
7004 				mp_next = bp->b_next;
7005 				bp->b_prev = bp->b_next = NULL;
7006 				freemsg(bp);
7007 				ret++;
7008 			}
7009 			/*
7010 			 * Now remove the queue from the syncq.
7011 			 */
7012 			ASSERT(q->q_sqflags & Q_SQQUEUED);
7013 			SQRM_Q(sq, q);
7014 			q->q_spri = 0;
7015 			q->q_syncqmsgs = 0;
7016 
7017 			/*
7018 			 * If qp was specified, we are done with it and are
7019 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
7020 			 * waiters while we still have the SQLOCK.
7021 			 */
7022 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7023 				sq->sq_flags &= ~SQ_WANTWAKEUP;
7024 				cv_broadcast(&sq->sq_wait);
7025 			}
7026 			/* Drop SQLOCK across clr_qfull */
7027 			mutex_exit(SQLOCK(sq));
7028 
7029 			/*
7030 			 * We avoid doing the test that drain_syncq does and
7031 			 * unconditionally clear qfull for every flushed
7032 			 * message. Since flush_syncq is only called during
7033 			 * close this should not be a problem.
7034 			 */
7035 			clr_qfull(q);
7036 			if (qp != NULL) {
7037 				return (ret);
7038 			} else {
7039 				mutex_enter(SQLOCK(sq));
7040 				/*
7041 				 * The head was removed by SQRM_Q above.
7042 				 * reread the new head and flush it.
7043 				 */
7044 				q = sq->sq_head;
7045 			}
7046 		} else {
7047 			q = q->q_sqnext;
7048 		}
7049 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
7050 	}
7051 
7052 	if (sq->sq_flags & SQ_WANTWAKEUP) {
7053 		sq->sq_flags &= ~SQ_WANTWAKEUP;
7054 		cv_broadcast(&sq->sq_wait);
7055 	}
7056 
7057 	mutex_exit(SQLOCK(sq));
7058 	return (ret);
7059 }
7060 
7061 /*
7062  * Propagate all messages from a syncq to the next syncq that are associated
7063  * with the specified queue. If the queue is attached to a driver or if the
7064  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7065  *
7066  * Assumes that the stream is strlock()'ed. We don't come here if there
7067  * are no messages to propagate.
7068  *
7069  * NOTE : If the queue is attached to a driver, all the messages are freed
7070  * as there is no point in propagating the messages from the driver syncq
7071  * to the closing stream head which will in turn get freed later.
7072  */
7073 static int
7074 propagate_syncq(queue_t *qp)
7075 {
7076 	mblk_t		*bp, *head, *tail, *prev, *next;
7077 	syncq_t 	*sq;
7078 	queue_t		*nqp;
7079 	syncq_t		*nsq;
7080 	boolean_t	isdriver;
7081 	int 		moved = 0;
7082 	uint16_t	flags;
7083 	pri_t		priority = curthread->t_pri;
7084 #ifdef DEBUG
7085 	void		(*func)();
7086 #endif
7087 
7088 	sq = qp->q_syncq;
7089 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7090 	/* debug macro */
7091 	SQ_PUTLOCKS_HELD(sq);
7092 	/*
7093 	 * As entersq() does not increment the sq_count for
7094 	 * the write side, check sq_count for non-QPERQ
7095 	 * perimeters alone.
7096 	 */
7097 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7098 
7099 	/*
7100 	 * propagate_syncq() can be called because of either messages on the
7101 	 * queue syncq or because on events on the queue syncq. Do actual
7102 	 * message propagations if there are any messages.
7103 	 */
7104 	if (qp->q_syncqmsgs) {
7105 		isdriver = (qp->q_flag & QISDRV);
7106 
7107 		if (!isdriver) {
7108 			nqp = qp->q_next;
7109 			nsq = nqp->q_syncq;
7110 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7111 			/* debug macro */
7112 			SQ_PUTLOCKS_HELD(nsq);
7113 #ifdef DEBUG
7114 			func = (void (*)())nqp->q_qinfo->qi_putp;
7115 #endif
7116 		}
7117 
7118 		SQRM_Q(sq, qp);
7119 		priority = MAX(qp->q_spri, priority);
7120 		qp->q_spri = 0;
7121 		head = qp->q_sqhead;
7122 		tail = qp->q_sqtail;
7123 		qp->q_sqhead = qp->q_sqtail = NULL;
7124 		qp->q_syncqmsgs = 0;
7125 
7126 		/*
7127 		 * Walk the list of messages, and free them if this is a driver,
7128 		 * otherwise reset the b_prev and b_queue value to the new putp.
7129 		 * Afterward, we will just add the head to the end of the next
7130 		 * syncq, and point the tail to the end of this one.
7131 		 */
7132 
7133 		for (bp = head; bp != NULL; bp = next) {
7134 			next = bp->b_next;
7135 			if (isdriver) {
7136 				bp->b_prev = bp->b_next = NULL;
7137 				freemsg(bp);
7138 				continue;
7139 			}
7140 			/* Change the q values for this message */
7141 			bp->b_queue = nqp;
7142 #ifdef DEBUG
7143 			bp->b_prev = (mblk_t *)func;
7144 #endif
7145 			moved++;
7146 		}
7147 		/*
7148 		 * Attach list of messages to the end of the new queue (if there
7149 		 * is a list of messages).
7150 		 */
7151 
7152 		if (!isdriver && head != NULL) {
7153 			ASSERT(tail != NULL);
7154 			if (nqp->q_sqhead == NULL) {
7155 				nqp->q_sqhead = head;
7156 			} else {
7157 				ASSERT(nqp->q_sqtail != NULL);
7158 				nqp->q_sqtail->b_next = head;
7159 			}
7160 			nqp->q_sqtail = tail;
7161 			/*
7162 			 * When messages are moved from high priority queue to
7163 			 * another queue, the destination queue priority is
7164 			 * upgraded.
7165 			 */
7166 
7167 			if (priority > nqp->q_spri)
7168 				nqp->q_spri = priority;
7169 
7170 			SQPUT_Q(nsq, nqp);
7171 
7172 			nqp->q_syncqmsgs += moved;
7173 			ASSERT(nqp->q_syncqmsgs != 0);
7174 		}
7175 	}
7176 
7177 	/*
7178 	 * Before we leave, we need to make sure there are no
7179 	 * events listed for this queue.  All events for this queue
7180 	 * will just be freed.
7181 	 */
7182 	if (sq->sq_evhead != NULL) {
7183 		ASSERT(sq->sq_flags & SQ_EVENTS);
7184 		prev = NULL;
7185 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7186 			next = bp->b_next;
7187 			if (bp->b_queue == qp) {
7188 				/* Delete this message */
7189 				if (prev != NULL) {
7190 					prev->b_next = next;
7191 					/*
7192 					 * Update sq_evtail if the last element
7193 					 * is removed.
7194 					 */
7195 					if (bp == sq->sq_evtail) {
7196 						ASSERT(next == NULL);
7197 						sq->sq_evtail = prev;
7198 					}
7199 				} else
7200 					sq->sq_evhead = next;
7201 				if (sq->sq_evhead == NULL)
7202 					sq->sq_flags &= ~SQ_EVENTS;
7203 				bp->b_prev = bp->b_next = NULL;
7204 				freemsg(bp);
7205 			} else {
7206 				prev = bp;
7207 			}
7208 		}
7209 	}
7210 
7211 	flags = sq->sq_flags;
7212 
7213 	/* Wake up any waiter before leaving. */
7214 	if (flags & SQ_WANTWAKEUP) {
7215 		flags &= ~SQ_WANTWAKEUP;
7216 		cv_broadcast(&sq->sq_wait);
7217 	}
7218 	sq->sq_flags = flags;
7219 
7220 	return (moved);
7221 }
7222 
7223 /*
7224  * Try and upgrade to exclusive access at the inner perimeter. If this can
7225  * not be done without blocking then request will be queued on the syncq
7226  * and drain_syncq will run it later.
7227  *
7228  * This routine can only be called from put or service procedures plus
7229  * asynchronous callback routines that have properly entered to
7230  * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
7231  * on the syncq associated with q.
7232  */
7233 void
7234 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7235 {
7236 	syncq_t	*sq = q->q_syncq;
7237 	uint16_t count;
7238 
7239 	mutex_enter(SQLOCK(sq));
7240 	count = sq->sq_count;
7241 	SQ_PUTLOCKS_ENTER(sq);
7242 	SUM_SQ_PUTCOUNTS(sq, count);
7243 	ASSERT(count >= 1);
7244 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7245 
7246 	if (count == 1) {
7247 		/*
7248 		 * Can upgrade. This case also handles nested qwriter calls
7249 		 * (when the qwriter callback function calls qwriter). In that
7250 		 * case SQ_EXCL is already set.
7251 		 */
7252 		sq->sq_flags |= SQ_EXCL;
7253 		SQ_PUTLOCKS_EXIT(sq);
7254 		mutex_exit(SQLOCK(sq));
7255 		(*func)(q, mp);
7256 		/*
7257 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7258 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7259 		 * until putnext, leavesq, or drain_syncq drops it.
7260 		 * That way we handle nested qwriter(INNER) without dropping
7261 		 * SQ_EXCL until the outermost qwriter callback routine is
7262 		 * done.
7263 		 */
7264 		return;
7265 	}
7266 	SQ_PUTLOCKS_EXIT(sq);
7267 	sqfill_events(sq, q, mp, func);
7268 }
7269 
7270 /*
7271  * Synchronous callback support functions
7272  */
7273 
7274 /*
7275  * Allocate a callback parameter structure.
7276  * Assumes that caller initializes the flags and the id.
7277  * Acquires SQLOCK(sq) if non-NULL is returned.
7278  */
7279 callbparams_t *
7280 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7281 {
7282 	callbparams_t *cbp;
7283 	size_t size = sizeof (callbparams_t);
7284 
7285 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7286 
7287 	/*
7288 	 * Only try tryhard allocation if the caller is ready to panic.
7289 	 * Otherwise just fail.
7290 	 */
7291 	if (cbp == NULL) {
7292 		if (kmflags & KM_PANIC)
7293 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7294 			    &size, kmflags);
7295 		else
7296 			return (NULL);
7297 	}
7298 
7299 	ASSERT(size >= sizeof (callbparams_t));
7300 	cbp->cbp_size = size;
7301 	cbp->cbp_sq = sq;
7302 	cbp->cbp_func = func;
7303 	cbp->cbp_arg = arg;
7304 	mutex_enter(SQLOCK(sq));
7305 	cbp->cbp_next = sq->sq_callbpend;
7306 	sq->sq_callbpend = cbp;
7307 	return (cbp);
7308 }
7309 
7310 void
7311 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7312 {
7313 	callbparams_t **pp, *p;
7314 
7315 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7316 
7317 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7318 		if (p == cbp) {
7319 			*pp = p->cbp_next;
7320 			kmem_free(p, p->cbp_size);
7321 			return;
7322 		}
7323 	}
7324 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7325 	    "callbparams_free: not found\n"));
7326 }
7327 
7328 void
7329 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7330 {
7331 	callbparams_t **pp, *p;
7332 
7333 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7334 
7335 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7336 		if (p->cbp_id == id && p->cbp_flags == flag) {
7337 			*pp = p->cbp_next;
7338 			kmem_free(p, p->cbp_size);
7339 			return;
7340 		}
7341 	}
7342 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7343 	    "callbparams_free_id: not found\n"));
7344 }
7345 
7346 /*
7347  * Callback wrapper function used by once-only callbacks that can be
7348  * cancelled (qtimeout and qbufcall)
7349  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7350  * cancelled by the qun* functions.
7351  */
7352 void
7353 qcallbwrapper(void *arg)
7354 {
7355 	callbparams_t *cbp = arg;
7356 	syncq_t	*sq;
7357 	uint16_t count = 0;
7358 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7359 	uint16_t type;
7360 
7361 	sq = cbp->cbp_sq;
7362 	mutex_enter(SQLOCK(sq));
7363 	type = sq->sq_type;
7364 	if (!(type & SQ_CICB)) {
7365 		count = sq->sq_count;
7366 		SQ_PUTLOCKS_ENTER(sq);
7367 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7368 		SUM_SQ_PUTCOUNTS(sq, count);
7369 		sq->sq_needexcl++;
7370 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7371 		waitflags |= SQ_MESSAGES;
7372 	}
7373 	/* Can not handle exlusive entry at outer perimeter */
7374 	ASSERT(type & SQ_COCB);
7375 
7376 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7377 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7378 		    (sq->sq_cancelid == cbp->cbp_id)) {
7379 			/* timeout has been cancelled */
7380 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7381 			callbparams_free(sq, cbp);
7382 			if (!(type & SQ_CICB)) {
7383 				ASSERT(sq->sq_needexcl > 0);
7384 				sq->sq_needexcl--;
7385 				if (sq->sq_needexcl == 0) {
7386 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7387 				}
7388 				SQ_PUTLOCKS_EXIT(sq);
7389 			}
7390 			mutex_exit(SQLOCK(sq));
7391 			return;
7392 		}
7393 		sq->sq_flags |= SQ_WANTWAKEUP;
7394 		if (!(type & SQ_CICB)) {
7395 			SQ_PUTLOCKS_EXIT(sq);
7396 		}
7397 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7398 		if (!(type & SQ_CICB)) {
7399 			count = sq->sq_count;
7400 			SQ_PUTLOCKS_ENTER(sq);
7401 			SUM_SQ_PUTCOUNTS(sq, count);
7402 		}
7403 	}
7404 
7405 	sq->sq_count++;
7406 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7407 	if (!(type & SQ_CICB)) {
7408 		ASSERT(count == 0);
7409 		sq->sq_flags |= SQ_EXCL;
7410 		ASSERT(sq->sq_needexcl > 0);
7411 		sq->sq_needexcl--;
7412 		if (sq->sq_needexcl == 0) {
7413 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7414 		}
7415 		SQ_PUTLOCKS_EXIT(sq);
7416 	}
7417 
7418 	mutex_exit(SQLOCK(sq));
7419 
7420 	cbp->cbp_func(cbp->cbp_arg);
7421 
7422 	/*
7423 	 * We drop the lock only for leavesq to re-acquire it.
7424 	 * Possible optimization is inline of leavesq.
7425 	 */
7426 	mutex_enter(SQLOCK(sq));
7427 	callbparams_free(sq, cbp);
7428 	mutex_exit(SQLOCK(sq));
7429 	leavesq(sq, SQ_CALLBACK);
7430 }
7431 
7432 /*
7433  * no need to grab sq_putlocks here. See comment in strsubr.h that
7434  * explains when sq_putlocks are used.
7435  *
7436  * sq_count (or one of the sq_putcounts) has already been
7437  * decremented by the caller, and if SQ_QUEUED, we need to call
7438  * drain_syncq (the global syncq drain).
7439  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7440  * one of two states, non-CIPUT perimiter, and we need to clear
7441  * it, or we went exclusive in the put procedure.  In any case,
7442  * we want to clear the bit now, and it is probably easier to do
7443  * this at the beginning of this function (remember, we hold
7444  * the SQLOCK).  Lastly, if there are other messages queued
7445  * on the syncq (and not for our destination), enable the syncq
7446  * for background work.
7447  */
7448 
7449 /* ARGSUSED */
7450 void
7451 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7452 {
7453 	uint16_t	flags = sq->sq_flags;
7454 
7455 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7456 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7457 
7458 	/* Clear SQ_EXCL if set in passflags */
7459 	if (passflags & SQ_EXCL) {
7460 		flags &= ~SQ_EXCL;
7461 	}
7462 	if (flags & SQ_WANTWAKEUP) {
7463 		flags &= ~SQ_WANTWAKEUP;
7464 		cv_broadcast(&sq->sq_wait);
7465 	}
7466 	if (flags & SQ_WANTEXWAKEUP) {
7467 		flags &= ~SQ_WANTEXWAKEUP;
7468 		cv_broadcast(&sq->sq_exitwait);
7469 	}
7470 	sq->sq_flags = flags;
7471 
7472 	/*
7473 	 * We have cleared SQ_EXCL if we were asked to, and started
7474 	 * the wakeup process for waiters.  If there are no writers
7475 	 * then we need to drain the syncq if we were told to, or
7476 	 * enable the background thread to do it.
7477 	 */
7478 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7479 		if ((passflags & SQ_QUEUED) ||
7480 		    (sq->sq_svcflags & SQ_DISABLED)) {
7481 			/* drain_syncq will take care of events in the list */
7482 			drain_syncq(sq);
7483 			return;
7484 		} else if (flags & SQ_QUEUED) {
7485 			sqenable(sq);
7486 		}
7487 	}
7488 	/* Drop the SQLOCK on exit */
7489 	mutex_exit(SQLOCK(sq));
7490 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7491 	    "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7492 }
7493 
7494 void
7495 set_qend(queue_t *q)
7496 {
7497 	mutex_enter(QLOCK(q));
7498 	if (!O_SAMESTR(q))
7499 		q->q_flag |= QEND;
7500 	else
7501 		q->q_flag &= ~QEND;
7502 	mutex_exit(QLOCK(q));
7503 	q = _OTHERQ(q);
7504 	mutex_enter(QLOCK(q));
7505 	if (!O_SAMESTR(q))
7506 		q->q_flag |= QEND;
7507 	else
7508 		q->q_flag &= ~QEND;
7509 	mutex_exit(QLOCK(q));
7510 }
7511 
7512 /*
7513  * Set QFULL in next service procedure queue (that cares) if not already
7514  * set and if there are already more messages on the syncq than
7515  * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7516  * any syncq.
7517  *
7518  * The fq here is the next queue with a service procedure.  This is where
7519  * we would fail canputnext, so this is where we need to set QFULL.
7520  * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7521  *
7522  * We already have QLOCK at this point. To avoid cross-locks with
7523  * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7524  * SQLOCK and sd_reflock, we need to drop respective locks first.
7525  */
7526 void
7527 set_qfull(queue_t *q)
7528 {
7529 	queue_t		*fq = NULL;
7530 
7531 	ASSERT(MUTEX_HELD(QLOCK(q)));
7532 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7533 	    (q->q_syncqmsgs > sq_max_size)) {
7534 		if ((fq = q->q_nfsrv) == q) {
7535 			fq->q_flag |= QFULL;
7536 		} else {
7537 			mutex_exit(QLOCK(q));
7538 			mutex_enter(QLOCK(fq));
7539 			fq->q_flag |= QFULL;
7540 			mutex_exit(QLOCK(fq));
7541 			mutex_enter(QLOCK(q));
7542 		}
7543 	}
7544 }
7545 
7546 void
7547 clr_qfull(queue_t *q)
7548 {
7549 	queue_t	*oq = q;
7550 
7551 	q = q->q_nfsrv;
7552 	/* Fast check if there is any work to do before getting the lock. */
7553 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7554 		return;
7555 	}
7556 
7557 	/*
7558 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7559 	 * for QFULL being set.
7560 	 */
7561 	mutex_enter(QLOCK(q));
7562 	/*
7563 	 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7564 	 * Hence clear the QFULL.
7565 	 * If both q_count and q_mblkcnt are less than the hiwat mark,
7566 	 * clear the QFULL.
7567 	 */
7568 	if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7569 	    (q->q_mblkcnt < q->q_hiwat))) {
7570 		q->q_flag &= ~QFULL;
7571 		/*
7572 		 * A little more confusing, how about this way:
7573 		 * if someone wants to write,
7574 		 * AND
7575 		 *    both counts are less than the lowat mark
7576 		 *    OR
7577 		 *    the lowat mark is zero
7578 		 * THEN
7579 		 * backenable
7580 		 */
7581 		if ((q->q_flag & QWANTW) &&
7582 		    (((q->q_count < q->q_lowat) &&
7583 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7584 			q->q_flag &= ~QWANTW;
7585 			mutex_exit(QLOCK(q));
7586 			backenable(oq, 0);
7587 		} else
7588 			mutex_exit(QLOCK(q));
7589 	} else
7590 		mutex_exit(QLOCK(q));
7591 }
7592 
7593 /*
7594  * Set the forward service procedure pointer.
7595  *
7596  * Called at insert-time to cache a queue's next forward service procedure in
7597  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7598  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7599  * inserted does not have a service procedure, then q_nfsrv points to the next
7600  * queue forward that has a service procedure.  If the queue is at the logical
7601  * end of the stream (driver for write side, stream head for the read side)
7602  * and does not have a service procedure, then q_nfsrv also points to itself.
7603  */
7604 void
7605 set_nfsrv_ptr(
7606 	queue_t  *rnew,		/* read queue pointer to new module */
7607 	queue_t  *wnew,		/* write queue pointer to new module */
7608 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7609 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7610 {
7611 	queue_t *qp;
7612 
7613 	if (prev_wq->q_next == NULL) {
7614 		/*
7615 		 * Insert the driver, initialize the driver and stream head.
7616 		 * In this case, prev_rq/prev_wq should be the stream head.
7617 		 * _I_INSERT does not allow inserting a driver.  Make sure
7618 		 * that it is not an insertion.
7619 		 */
7620 		ASSERT(!(rnew->q_flag & _QINSERTING));
7621 		wnew->q_nfsrv = wnew;
7622 		if (rnew->q_qinfo->qi_srvp)
7623 			rnew->q_nfsrv = rnew;
7624 		else
7625 			rnew->q_nfsrv = prev_rq;
7626 		prev_rq->q_nfsrv = prev_rq;
7627 		prev_wq->q_nfsrv = prev_wq;
7628 	} else {
7629 		/*
7630 		 * set up read side q_nfsrv pointer.  This MUST be done
7631 		 * before setting the write side, because the setting of
7632 		 * the write side for a fifo may depend on it.
7633 		 *
7634 		 * Suppose we have a fifo that only has pipemod pushed.
7635 		 * pipemod has no read or write service procedures, so
7636 		 * nfsrv for both pipemod queues points to prev_rq (the
7637 		 * stream read head).  Now push bufmod (which has only a
7638 		 * read service procedure).  Doing the write side first,
7639 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7640 		 * is WRONG; the next queue forward from wnew with a
7641 		 * service procedure will be rnew, not the stream read head.
7642 		 * Since the downstream queue (which in the case of a fifo
7643 		 * is the read queue rnew) can affect upstream queues, it
7644 		 * needs to be done first.  Setting up the read side first
7645 		 * sets nfsrv for both pipemod queues to rnew and then
7646 		 * when the write side is set up, wnew-q_nfsrv will also
7647 		 * point to rnew.
7648 		 */
7649 		if (rnew->q_qinfo->qi_srvp) {
7650 			/*
7651 			 * use _OTHERQ() because, if this is a pipe, next
7652 			 * module may have been pushed from other end and
7653 			 * q_next could be a read queue.
7654 			 */
7655 			qp = _OTHERQ(prev_wq->q_next);
7656 			while (qp && qp->q_nfsrv != qp) {
7657 				qp->q_nfsrv = rnew;
7658 				qp = backq(qp);
7659 			}
7660 			rnew->q_nfsrv = rnew;
7661 		} else
7662 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7663 
7664 		/* set up write side q_nfsrv pointer */
7665 		if (wnew->q_qinfo->qi_srvp) {
7666 			wnew->q_nfsrv = wnew;
7667 
7668 			/*
7669 			 * For insertion, need to update nfsrv of the modules
7670 			 * above which do not have a service routine.
7671 			 */
7672 			if (rnew->q_flag & _QINSERTING) {
7673 				for (qp = prev_wq;
7674 				    qp != NULL && qp->q_nfsrv != qp;
7675 				    qp = backq(qp)) {
7676 					qp->q_nfsrv = wnew->q_nfsrv;
7677 				}
7678 			}
7679 		} else {
7680 			if (prev_wq->q_next == prev_rq)
7681 				/*
7682 				 * Since prev_wq/prev_rq are the middle of a
7683 				 * fifo, wnew/rnew will also be the middle of
7684 				 * a fifo and wnew's nfsrv is same as rnew's.
7685 				 */
7686 				wnew->q_nfsrv = rnew->q_nfsrv;
7687 			else
7688 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7689 		}
7690 	}
7691 }
7692 
7693 /*
7694  * Reset the forward service procedure pointer; called at remove-time.
7695  */
7696 void
7697 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7698 {
7699 	queue_t *tmp_qp;
7700 
7701 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7702 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7703 		for (tmp_qp = backq(wqp);
7704 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7705 		    tmp_qp = backq(tmp_qp)) {
7706 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7707 		}
7708 	}
7709 
7710 	/* reset the read side q_nfsrv pointer */
7711 	if (rqp->q_qinfo->qi_srvp) {
7712 		if (wqp->q_next) {	/* non-driver case */
7713 			tmp_qp = _OTHERQ(wqp->q_next);
7714 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7715 				/* Note that rqp->q_next cannot be NULL */
7716 				ASSERT(rqp->q_next != NULL);
7717 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7718 				tmp_qp = backq(tmp_qp);
7719 			}
7720 		}
7721 	}
7722 }
7723 
7724 /*
7725  * This routine should be called after all stream geometry changes to update
7726  * the stream head cached struio() rd/wr queue pointers. Note must be called
7727  * with the streamlock()ed.
7728  *
7729  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7730  *	 an explicit synchronous barrier module queue. That is, a queue that
7731  *	 has specified a struio() type.
7732  */
7733 static void
7734 strsetuio(stdata_t *stp)
7735 {
7736 	queue_t *wrq;
7737 
7738 	if (stp->sd_flag & STPLEX) {
7739 		/*
7740 		 * Not stremahead, but a mux, so no Synchronous STREAMS.
7741 		 */
7742 		stp->sd_struiowrq = NULL;
7743 		stp->sd_struiordq = NULL;
7744 		return;
7745 	}
7746 	/*
7747 	 * Scan the write queue(s) while synchronous
7748 	 * until we find a qinfo uio type specified.
7749 	 */
7750 	wrq = stp->sd_wrq->q_next;
7751 	while (wrq) {
7752 		if (wrq->q_struiot == STRUIOT_NONE) {
7753 			wrq = 0;
7754 			break;
7755 		}
7756 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7757 			break;
7758 		if (! _SAMESTR(wrq)) {
7759 			wrq = 0;
7760 			break;
7761 		}
7762 		wrq = wrq->q_next;
7763 	}
7764 	stp->sd_struiowrq = wrq;
7765 	/*
7766 	 * Scan the read queue(s) while synchronous
7767 	 * until we find a qinfo uio type specified.
7768 	 */
7769 	wrq = stp->sd_wrq->q_next;
7770 	while (wrq) {
7771 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7772 			wrq = 0;
7773 			break;
7774 		}
7775 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7776 			break;
7777 		if (! _SAMESTR(wrq)) {
7778 			wrq = 0;
7779 			break;
7780 		}
7781 		wrq = wrq->q_next;
7782 	}
7783 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7784 }
7785 
7786 /*
7787  * pass_wput, unblocks the passthru queues, so that
7788  * messages can arrive at muxs lower read queue, before
7789  * I_LINK/I_UNLINK is acked/nacked.
7790  */
7791 static void
7792 pass_wput(queue_t *q, mblk_t *mp)
7793 {
7794 	syncq_t *sq;
7795 
7796 	sq = _RD(q)->q_syncq;
7797 	if (sq->sq_flags & SQ_BLOCKED)
7798 		unblocksq(sq, SQ_BLOCKED, 0);
7799 	putnext(q, mp);
7800 }
7801 
7802 /*
7803  * Set up queues for the link/unlink.
7804  * Create a new queue and block it and then insert it
7805  * below the stream head on the lower stream.
7806  * This prevents any messages from arriving during the setq
7807  * as well as while the mux is processing the LINK/I_UNLINK.
7808  * The blocked passq is unblocked once the LINK/I_UNLINK has
7809  * been acked or nacked or if a message is generated and sent
7810  * down muxs write put procedure.
7811  * see pass_wput().
7812  *
7813  * After the new queue is inserted, all messages coming from below are
7814  * blocked. The call to strlock will ensure that all activity in the stream head
7815  * read queue syncq is stopped (sq_count drops to zero).
7816  */
7817 static queue_t *
7818 link_addpassthru(stdata_t *stpdown)
7819 {
7820 	queue_t *passq;
7821 	sqlist_t sqlist;
7822 
7823 	passq = allocq();
7824 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7825 	/* setq might sleep in allocator - avoid holding locks. */
7826 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7827 	    SQ_CI|SQ_CO, B_FALSE);
7828 	claimq(passq);
7829 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7830 	insertq(STREAM(passq), passq);
7831 
7832 	/*
7833 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7834 	 * since we are going to change q_ptr in the stream head.  Note that
7835 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7836 	 */
7837 	sqlist.sqlist_head = NULL;
7838 	sqlist.sqlist_index = 0;
7839 	sqlist.sqlist_size = sizeof (sqlist_t);
7840 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7841 	strlock(stpdown, &sqlist);
7842 	strunlock(stpdown, &sqlist);
7843 
7844 	releaseq(passq);
7845 	return (passq);
7846 }
7847 
7848 /*
7849  * Let messages flow up into the mux by removing
7850  * the passq.
7851  */
7852 static void
7853 link_rempassthru(queue_t *passq)
7854 {
7855 	claimq(passq);
7856 	removeq(passq);
7857 	releaseq(passq);
7858 	freeq(passq);
7859 }
7860 
7861 /*
7862  * Wait for the condition variable pointed to by `cvp' to be signaled,
7863  * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7864  * is negative, then there is no time limit.  If `nosigs' is non-zero,
7865  * then the wait will be non-interruptible.
7866  *
7867  * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7868  */
7869 clock_t
7870 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7871 {
7872 	clock_t ret, now, tick;
7873 
7874 	if (tim < 0) {
7875 		if (nosigs) {
7876 			cv_wait(cvp, mp);
7877 			ret = 1;
7878 		} else {
7879 			ret = cv_wait_sig(cvp, mp);
7880 		}
7881 	} else if (tim > 0) {
7882 		/*
7883 		 * convert milliseconds to clock ticks
7884 		 */
7885 		tick = MSEC_TO_TICK_ROUNDUP(tim);
7886 		time_to_wait(&now, tick);
7887 		if (nosigs) {
7888 			ret = cv_timedwait(cvp, mp, now);
7889 		} else {
7890 			ret = cv_timedwait_sig(cvp, mp, now);
7891 		}
7892 	} else {
7893 		ret = -1;
7894 	}
7895 	return (ret);
7896 }
7897 
7898 /*
7899  * Wait until the stream head can determine if it is at the mark but
7900  * don't wait forever to prevent a race condition between the "mark" state
7901  * in the stream head and any mark state in the caller/user of this routine.
7902  *
7903  * This is used by sockets and for a socket it would be incorrect
7904  * to return a failure for SIOCATMARK when there is no data in the receive
7905  * queue and the marked urgent data is traveling up the stream.
7906  *
7907  * This routine waits until the mark is known by waiting for one of these
7908  * three events:
7909  *	The stream head read queue becoming non-empty (including an EOF)
7910  *	The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
7911  *	The STRNOTATMARK flag being set (which indicates that the transport
7912  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7913  *	the mark).
7914  *
7915  * The routine returns 1 if the stream is at the mark; 0 if it can
7916  * be determined that the stream is not at the mark.
7917  * If the wait times out and it can't determine
7918  * whether or not the stream might be at the mark the routine will return -1.
7919  *
7920  * Note: This routine should only be used when a mark is pending i.e.,
7921  * in the socket case the SIGURG has been posted.
7922  * Note2: This can not wakeup just because synchronous streams indicate
7923  * that data is available since it is not possible to use the synchronous
7924  * streams interfaces to determine the b_flag value for the data queued below
7925  * the stream head.
7926  */
7927 int
7928 strwaitmark(vnode_t *vp)
7929 {
7930 	struct stdata *stp = vp->v_stream;
7931 	queue_t *rq = _RD(stp->sd_wrq);
7932 	int mark;
7933 
7934 	mutex_enter(&stp->sd_lock);
7935 	while (rq->q_first == NULL &&
7936 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7937 		stp->sd_flag |= RSLEEP;
7938 
7939 		/* Wait for 100 milliseconds for any state change. */
7940 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7941 			mutex_exit(&stp->sd_lock);
7942 			return (-1);
7943 		}
7944 	}
7945 	if (stp->sd_flag & STRATMARK)
7946 		mark = 1;
7947 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7948 		mark = 1;
7949 	else
7950 		mark = 0;
7951 
7952 	mutex_exit(&stp->sd_lock);
7953 	return (mark);
7954 }
7955 
7956 /*
7957  * Set a read side error. If persist is set change the socket error
7958  * to persistent. If errfunc is set install the function as the exported
7959  * error handler.
7960  */
7961 void
7962 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7963 {
7964 	struct stdata *stp = vp->v_stream;
7965 
7966 	mutex_enter(&stp->sd_lock);
7967 	stp->sd_rerror = error;
7968 	if (error == 0 && errfunc == NULL)
7969 		stp->sd_flag &= ~STRDERR;
7970 	else
7971 		stp->sd_flag |= STRDERR;
7972 	if (persist) {
7973 		stp->sd_flag &= ~STRDERRNONPERSIST;
7974 	} else {
7975 		stp->sd_flag |= STRDERRNONPERSIST;
7976 	}
7977 	stp->sd_rderrfunc = errfunc;
7978 	if (error != 0 || errfunc != NULL) {
7979 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7980 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7981 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7982 
7983 		mutex_exit(&stp->sd_lock);
7984 		pollwakeup(&stp->sd_pollist, POLLERR);
7985 		mutex_enter(&stp->sd_lock);
7986 
7987 		if (stp->sd_sigflags & S_ERROR)
7988 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7989 	}
7990 	mutex_exit(&stp->sd_lock);
7991 }
7992 
7993 /*
7994  * Set a write side error. If persist is set change the socket error
7995  * to persistent.
7996  */
7997 void
7998 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7999 {
8000 	struct stdata *stp = vp->v_stream;
8001 
8002 	mutex_enter(&stp->sd_lock);
8003 	stp->sd_werror = error;
8004 	if (error == 0 && errfunc == NULL)
8005 		stp->sd_flag &= ~STWRERR;
8006 	else
8007 		stp->sd_flag |= STWRERR;
8008 	if (persist) {
8009 		stp->sd_flag &= ~STWRERRNONPERSIST;
8010 	} else {
8011 		stp->sd_flag |= STWRERRNONPERSIST;
8012 	}
8013 	stp->sd_wrerrfunc = errfunc;
8014 	if (error != 0 || errfunc != NULL) {
8015 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8016 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8017 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8018 
8019 		mutex_exit(&stp->sd_lock);
8020 		pollwakeup(&stp->sd_pollist, POLLERR);
8021 		mutex_enter(&stp->sd_lock);
8022 
8023 		if (stp->sd_sigflags & S_ERROR)
8024 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8025 	}
8026 	mutex_exit(&stp->sd_lock);
8027 }
8028 
8029 /*
8030  * Make the stream return 0 (EOF) when all data has been read.
8031  * No effect on write side.
8032  */
8033 void
8034 strseteof(vnode_t *vp, int eof)
8035 {
8036 	struct stdata *stp = vp->v_stream;
8037 
8038 	mutex_enter(&stp->sd_lock);
8039 	if (!eof) {
8040 		stp->sd_flag &= ~STREOF;
8041 		mutex_exit(&stp->sd_lock);
8042 		return;
8043 	}
8044 	stp->sd_flag |= STREOF;
8045 	if (stp->sd_flag & RSLEEP) {
8046 		stp->sd_flag &= ~RSLEEP;
8047 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8048 	}
8049 
8050 	mutex_exit(&stp->sd_lock);
8051 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8052 	mutex_enter(&stp->sd_lock);
8053 
8054 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8055 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8056 	mutex_exit(&stp->sd_lock);
8057 }
8058 
8059 void
8060 strflushrq(vnode_t *vp, int flag)
8061 {
8062 	struct stdata *stp = vp->v_stream;
8063 
8064 	mutex_enter(&stp->sd_lock);
8065 	flushq(_RD(stp->sd_wrq), flag);
8066 	mutex_exit(&stp->sd_lock);
8067 }
8068 
8069 void
8070 strsetrputhooks(vnode_t *vp, uint_t flags,
8071 		msgfunc_t protofunc, msgfunc_t miscfunc)
8072 {
8073 	struct stdata *stp = vp->v_stream;
8074 
8075 	mutex_enter(&stp->sd_lock);
8076 
8077 	if (protofunc == NULL)
8078 		stp->sd_rprotofunc = strrput_proto;
8079 	else
8080 		stp->sd_rprotofunc = protofunc;
8081 
8082 	if (miscfunc == NULL)
8083 		stp->sd_rmiscfunc = strrput_misc;
8084 	else
8085 		stp->sd_rmiscfunc = miscfunc;
8086 
8087 	if (flags & SH_CONSOL_DATA)
8088 		stp->sd_rput_opt |= SR_CONSOL_DATA;
8089 	else
8090 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8091 
8092 	if (flags & SH_SIGALLDATA)
8093 		stp->sd_rput_opt |= SR_SIGALLDATA;
8094 	else
8095 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
8096 
8097 	if (flags & SH_IGN_ZEROLEN)
8098 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8099 	else
8100 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8101 
8102 	mutex_exit(&stp->sd_lock);
8103 }
8104 
8105 void
8106 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8107 {
8108 	struct stdata *stp = vp->v_stream;
8109 
8110 	mutex_enter(&stp->sd_lock);
8111 	stp->sd_closetime = closetime;
8112 
8113 	if (flags & SH_SIGPIPE)
8114 		stp->sd_wput_opt |= SW_SIGPIPE;
8115 	else
8116 		stp->sd_wput_opt &= ~SW_SIGPIPE;
8117 	if (flags & SH_RECHECK_ERR)
8118 		stp->sd_wput_opt |= SW_RECHECK_ERR;
8119 	else
8120 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8121 
8122 	mutex_exit(&stp->sd_lock);
8123 }
8124 
8125 void
8126 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8127 {
8128 	struct stdata *stp = vp->v_stream;
8129 
8130 	mutex_enter(&stp->sd_lock);
8131 
8132 	stp->sd_rputdatafunc = rdatafunc;
8133 	stp->sd_wputdatafunc = wdatafunc;
8134 
8135 	mutex_exit(&stp->sd_lock);
8136 }
8137 
8138 /* Used within framework when the queue is already locked */
8139 void
8140 qenable_locked(queue_t *q)
8141 {
8142 	stdata_t *stp = STREAM(q);
8143 
8144 	ASSERT(MUTEX_HELD(QLOCK(q)));
8145 
8146 	if (!q->q_qinfo->qi_srvp)
8147 		return;
8148 
8149 	/*
8150 	 * Do not place on run queue if already enabled or closing.
8151 	 */
8152 	if (q->q_flag & (QWCLOSE|QENAB))
8153 		return;
8154 
8155 	/*
8156 	 * mark queue enabled and place on run list if it is not already being
8157 	 * serviced. If it is serviced, the runservice() function will detect
8158 	 * that QENAB is set and call service procedure before clearing
8159 	 * QINSERVICE flag.
8160 	 */
8161 	q->q_flag |= QENAB;
8162 	if (q->q_flag & QINSERVICE)
8163 		return;
8164 
8165 	/* Record the time of qenable */
8166 	q->q_qtstamp = lbolt;
8167 
8168 	/*
8169 	 * Put the queue in the stp list and schedule it for background
8170 	 * processing if it is not already scheduled or if stream head does not
8171 	 * intent to process it in the foreground later by setting
8172 	 * STRS_WILLSERVICE flag.
8173 	 */
8174 	mutex_enter(&stp->sd_qlock);
8175 	/*
8176 	 * If there are already something on the list, stp flags should show
8177 	 * intention to drain it.
8178 	 */
8179 	IMPLY(STREAM_NEEDSERVICE(stp),
8180 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8181 
8182 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8183 	stp->sd_nqueues++;
8184 
8185 	/*
8186 	 * If no one will drain this stream we are the first producer and
8187 	 * need to schedule it for background thread.
8188 	 */
8189 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8190 		/*
8191 		 * No one will service this stream later, so we have to
8192 		 * schedule it now.
8193 		 */
8194 		STRSTAT(stenables);
8195 		stp->sd_svcflags |= STRS_SCHEDULED;
8196 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8197 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8198 
8199 		if (stp->sd_servid == NULL) {
8200 			/*
8201 			 * Task queue failed so fail over to the backup
8202 			 * servicing thread.
8203 			 */
8204 			STRSTAT(taskqfails);
8205 			/*
8206 			 * It is safe to clear STRS_SCHEDULED flag because it
8207 			 * was set by this thread above.
8208 			 */
8209 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8210 
8211 			/*
8212 			 * Failover scheduling is protected by service_queue
8213 			 * lock.
8214 			 */
8215 			mutex_enter(&service_queue);
8216 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8217 			ASSERT(q->q_link == NULL);
8218 			/*
8219 			 * Append the queue to qhead/qtail list.
8220 			 */
8221 			if (qhead == NULL)
8222 				qhead = q;
8223 			else
8224 				qtail->q_link = q;
8225 			qtail = q;
8226 			/*
8227 			 * Clear stp queue list.
8228 			 */
8229 			stp->sd_qhead = stp->sd_qtail = NULL;
8230 			stp->sd_nqueues = 0;
8231 			/*
8232 			 * Wakeup background queue processing thread.
8233 			 */
8234 			cv_signal(&services_to_run);
8235 			mutex_exit(&service_queue);
8236 		}
8237 	}
8238 	mutex_exit(&stp->sd_qlock);
8239 }
8240 
8241 static void
8242 queue_service(queue_t *q)
8243 {
8244 	/*
8245 	 * The queue in the list should have
8246 	 * QENAB flag set and should not have
8247 	 * QINSERVICE flag set. QINSERVICE is
8248 	 * set when the queue is dequeued and
8249 	 * qenable_locked doesn't enqueue a
8250 	 * queue with QINSERVICE set.
8251 	 */
8252 
8253 	ASSERT(!(q->q_flag & QINSERVICE));
8254 	ASSERT((q->q_flag & QENAB));
8255 	mutex_enter(QLOCK(q));
8256 	q->q_flag &= ~QENAB;
8257 	q->q_flag |= QINSERVICE;
8258 	mutex_exit(QLOCK(q));
8259 	runservice(q);
8260 }
8261 
8262 static void
8263 syncq_service(syncq_t *sq)
8264 {
8265 	STRSTAT(syncqservice);
8266 	mutex_enter(SQLOCK(sq));
8267 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8268 	ASSERT(sq->sq_servcount != 0);
8269 	ASSERT(sq->sq_next == NULL);
8270 
8271 	/* if we came here from the background thread, clear the flag */
8272 	if (sq->sq_svcflags & SQ_BGTHREAD)
8273 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8274 
8275 	/* let drain_syncq know that it's being called in the background */
8276 	sq->sq_svcflags |= SQ_SERVICE;
8277 	drain_syncq(sq);
8278 }
8279 
8280 static void
8281 qwriter_outer_service(syncq_t *outer)
8282 {
8283 	/*
8284 	 * Note that SQ_WRITER is used on the outer perimeter
8285 	 * to signal that a qwriter(OUTER) is either investigating
8286 	 * running or that it is actually running a function.
8287 	 */
8288 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8289 
8290 	/*
8291 	 * All inner syncq are empty and have SQ_WRITER set
8292 	 * to block entering the outer perimeter.
8293 	 *
8294 	 * We do not need to explicitly call write_now since
8295 	 * outer_exit does it for us.
8296 	 */
8297 	outer_exit(outer);
8298 }
8299 
8300 static void
8301 mblk_free(mblk_t *mp)
8302 {
8303 	dblk_t *dbp = mp->b_datap;
8304 	frtn_t *frp = dbp->db_frtnp;
8305 
8306 	mp->b_next = NULL;
8307 	if (dbp->db_fthdr != NULL)
8308 		str_ftfree(dbp);
8309 
8310 	ASSERT(dbp->db_fthdr == NULL);
8311 	frp->free_func(frp->free_arg);
8312 	ASSERT(dbp->db_mblk == mp);
8313 
8314 	if (dbp->db_credp != NULL) {
8315 		crfree(dbp->db_credp);
8316 		dbp->db_credp = NULL;
8317 	}
8318 	dbp->db_cpid = -1;
8319 	dbp->db_struioflag = 0;
8320 	dbp->db_struioun.cksum.flags = 0;
8321 
8322 	kmem_cache_free(dbp->db_cache, dbp);
8323 }
8324 
8325 /*
8326  * Background processing of the stream queue list.
8327  */
8328 static void
8329 stream_service(stdata_t *stp)
8330 {
8331 	queue_t *q;
8332 
8333 	mutex_enter(&stp->sd_qlock);
8334 
8335 	STR_SERVICE(stp, q);
8336 
8337 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8338 	stp->sd_servid = NULL;
8339 	cv_signal(&stp->sd_qcv);
8340 	mutex_exit(&stp->sd_qlock);
8341 }
8342 
8343 /*
8344  * Foreground processing of the stream queue list.
8345  */
8346 void
8347 stream_runservice(stdata_t *stp)
8348 {
8349 	queue_t *q;
8350 
8351 	mutex_enter(&stp->sd_qlock);
8352 	STRSTAT(rservice);
8353 	/*
8354 	 * We are going to drain this stream queue list, so qenable_locked will
8355 	 * not schedule it until we finish.
8356 	 */
8357 	stp->sd_svcflags |= STRS_WILLSERVICE;
8358 
8359 	STR_SERVICE(stp, q);
8360 
8361 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8362 	mutex_exit(&stp->sd_qlock);
8363 	/*
8364 	 * Help backup background thread to drain the qhead/qtail list.
8365 	 */
8366 	while (qhead != NULL) {
8367 		STRSTAT(qhelps);
8368 		mutex_enter(&service_queue);
8369 		DQ(q, qhead, qtail, q_link);
8370 		mutex_exit(&service_queue);
8371 		if (q != NULL)
8372 			queue_service(q);
8373 	}
8374 }
8375 
8376 void
8377 stream_willservice(stdata_t *stp)
8378 {
8379 	mutex_enter(&stp->sd_qlock);
8380 	stp->sd_svcflags |= STRS_WILLSERVICE;
8381 	mutex_exit(&stp->sd_qlock);
8382 }
8383 
8384 /*
8385  * Replace the cred currently in the mblk with a different one.
8386  */
8387 void
8388 mblk_setcred(mblk_t *mp, cred_t *cr)
8389 {
8390 	cred_t *ocr = DB_CRED(mp);
8391 
8392 	ASSERT(cr != NULL);
8393 
8394 	if (cr != ocr) {
8395 		crhold(mp->b_datap->db_credp = cr);
8396 		if (ocr != NULL)
8397 			crfree(ocr);
8398 	}
8399 }
8400 
8401 /*
8402  * Set the cred and pid for each mblk in the message. It is assumed that
8403  * the message passed in does not already have a cred.
8404  */
8405 void
8406 msg_setcredpid(mblk_t *mp, cred_t *cr, pid_t pid)
8407 {
8408 	while (mp != NULL) {
8409 		ASSERT(DB_CRED(mp) == NULL);
8410 		mblk_setcred(mp, cr);
8411 		DB_CPID(mp) = pid;
8412 		mp = mp->b_cont;
8413 	}
8414 }
8415 
8416 int
8417 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8418     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8419     uint32_t flags, int km_flags)
8420 {
8421 	int rc = 0;
8422 
8423 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8424 	if (mp->b_datap->db_type == M_DATA) {
8425 		/* Associate values for M_DATA type */
8426 		DB_CKSUMSTART(mp) = (intptr_t)start;
8427 		DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8428 		DB_CKSUMEND(mp) = (intptr_t)end;
8429 		DB_CKSUMFLAGS(mp) = flags;
8430 		DB_CKSUM16(mp) = (uint16_t)value;
8431 
8432 	} else {
8433 		pattrinfo_t pa_info;
8434 
8435 		ASSERT(mmd != NULL);
8436 
8437 		pa_info.type = PATTR_HCKSUM;
8438 		pa_info.len = sizeof (pattr_hcksum_t);
8439 
8440 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8441 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8442 
8443 			hck->hcksum_start_offset = start;
8444 			hck->hcksum_stuff_offset = stuff;
8445 			hck->hcksum_end_offset = end;
8446 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8447 			hck->hcksum_flags = flags;
8448 		} else {
8449 			rc = -1;
8450 		}
8451 	}
8452 	return (rc);
8453 }
8454 
8455 void
8456 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8457     uint32_t *start, uint32_t *stuff, uint32_t *end,
8458     uint32_t *value, uint32_t *flags)
8459 {
8460 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8461 	if (mp->b_datap->db_type == M_DATA) {
8462 		if (flags != NULL) {
8463 			*flags = DB_CKSUMFLAGS(mp) & (HCK_IPV4_HDRCKSUM |
8464 			    HCK_PARTIALCKSUM | HCK_FULLCKSUM |
8465 			    HCK_FULLCKSUM_OK);
8466 			if ((*flags & (HCK_PARTIALCKSUM |
8467 			    HCK_FULLCKSUM)) != 0) {
8468 				if (value != NULL)
8469 					*value = (uint32_t)DB_CKSUM16(mp);
8470 				if ((*flags & HCK_PARTIALCKSUM) != 0) {
8471 					if (start != NULL)
8472 						*start =
8473 						    (uint32_t)DB_CKSUMSTART(mp);
8474 					if (stuff != NULL)
8475 						*stuff =
8476 						    (uint32_t)DB_CKSUMSTUFF(mp);
8477 					if (end != NULL)
8478 						*end =
8479 						    (uint32_t)DB_CKSUMEND(mp);
8480 				}
8481 			}
8482 		}
8483 	} else {
8484 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8485 
8486 		ASSERT(mmd != NULL);
8487 
8488 		/* get hardware checksum attribute */
8489 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8490 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8491 
8492 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8493 			if (flags != NULL)
8494 				*flags = hck->hcksum_flags;
8495 			if (start != NULL)
8496 				*start = hck->hcksum_start_offset;
8497 			if (stuff != NULL)
8498 				*stuff = hck->hcksum_stuff_offset;
8499 			if (end != NULL)
8500 				*end = hck->hcksum_end_offset;
8501 			if (value != NULL)
8502 				*value = (uint32_t)
8503 				    hck->hcksum_cksum_val.inet_cksum;
8504 		}
8505 	}
8506 }
8507 
8508 void
8509 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8510 {
8511 	ASSERT(DB_TYPE(mp) == M_DATA);
8512 
8513 	/* Set the flags */
8514 	DB_LSOFLAGS(mp) |= flags;
8515 	DB_LSOMSS(mp) = mss;
8516 }
8517 
8518 void
8519 lso_info_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
8520 {
8521 	ASSERT(DB_TYPE(mp) == M_DATA);
8522 
8523 	if (flags != NULL) {
8524 		*flags = DB_CKSUMFLAGS(mp) & HW_LSO;
8525 		if ((*flags != 0) && (mss != NULL))
8526 			*mss = (uint32_t)DB_LSOMSS(mp);
8527 	}
8528 }
8529 
8530 /*
8531  * Checksum buffer *bp for len bytes with psum partial checksum,
8532  * or 0 if none, and return the 16 bit partial checksum.
8533  */
8534 unsigned
8535 bcksum(uchar_t *bp, int len, unsigned int psum)
8536 {
8537 	int odd = len & 1;
8538 	extern unsigned int ip_ocsum();
8539 
8540 	if (((intptr_t)bp & 1) == 0 && !odd) {
8541 		/*
8542 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8543 		 */
8544 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8545 	}
8546 	if (((intptr_t)bp & 1) != 0) {
8547 		/*
8548 		 * Bp isn't 16 bit aligned.
8549 		 */
8550 		unsigned int tsum;
8551 
8552 #ifdef _LITTLE_ENDIAN
8553 		psum += *bp;
8554 #else
8555 		psum += *bp << 8;
8556 #endif
8557 		len--;
8558 		bp++;
8559 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8560 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8561 		if (len & 1) {
8562 			bp += len - 1;
8563 #ifdef _LITTLE_ENDIAN
8564 			psum += *bp << 8;
8565 #else
8566 			psum += *bp;
8567 #endif
8568 		}
8569 	} else {
8570 		/*
8571 		 * Bp is 16 bit aligned.
8572 		 */
8573 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8574 		if (odd) {
8575 			bp += len - 1;
8576 #ifdef _LITTLE_ENDIAN
8577 			psum += *bp;
8578 #else
8579 			psum += *bp << 8;
8580 #endif
8581 		}
8582 	}
8583 	/*
8584 	 * Normalize psum to 16 bits before returning the new partial
8585 	 * checksum. The max psum value before normalization is 0x3FDFE.
8586 	 */
8587 	return ((psum >> 16) + (psum & 0xFFFF));
8588 }
8589 
8590 boolean_t
8591 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8592 {
8593 	boolean_t rc;
8594 
8595 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8596 	if (DB_TYPE(mp) == M_DATA) {
8597 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8598 	} else {
8599 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8600 
8601 		ASSERT(mmd != NULL);
8602 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8603 	}
8604 	return (rc);
8605 }
8606 
8607 void
8608 freemsgchain(mblk_t *mp)
8609 {
8610 	mblk_t	*next;
8611 
8612 	while (mp != NULL) {
8613 		next = mp->b_next;
8614 		mp->b_next = NULL;
8615 
8616 		freemsg(mp);
8617 		mp = next;
8618 	}
8619 }
8620 
8621 mblk_t *
8622 copymsgchain(mblk_t *mp)
8623 {
8624 	mblk_t	*nmp = NULL;
8625 	mblk_t	**nmpp = &nmp;
8626 
8627 	for (; mp != NULL; mp = mp->b_next) {
8628 		if ((*nmpp = copymsg(mp)) == NULL) {
8629 			freemsgchain(nmp);
8630 			return (NULL);
8631 		}
8632 
8633 		nmpp = &((*nmpp)->b_next);
8634 	}
8635 
8636 	return (nmp);
8637 }
8638 
8639 /* NOTE: Do not add code after this point. */
8640 #undef QLOCK
8641 
8642 /*
8643  * replacement for QLOCK macro for those that can't use it.
8644  */
8645 kmutex_t *
8646 QLOCK(queue_t *q)
8647 {
8648 	return (&(q)->q_lock);
8649 }
8650 
8651 /*
8652  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8653  */
8654 #undef runqueues
8655 void
8656 runqueues(void)
8657 {
8658 }
8659 
8660 #undef queuerun
8661 void
8662 queuerun(void)
8663 {
8664 }
8665 
8666 /*
8667  * Initialize the STR stack instance, which tracks autopush and persistent
8668  * links.
8669  */
8670 /* ARGSUSED */
8671 static void *
8672 str_stack_init(netstackid_t stackid, netstack_t *ns)
8673 {
8674 	str_stack_t	*ss;
8675 	int i;
8676 
8677 	ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8678 	ss->ss_netstack = ns;
8679 
8680 	/*
8681 	 * set up autopush
8682 	 */
8683 	sad_initspace(ss);
8684 
8685 	/*
8686 	 * set up mux_node structures.
8687 	 */
8688 	ss->ss_devcnt = devcnt;	/* In case it should change before free */
8689 	ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8690 	    ss->ss_devcnt), KM_SLEEP);
8691 	for (i = 0; i < ss->ss_devcnt; i++)
8692 		ss->ss_mux_nodes[i].mn_imaj = i;
8693 	return (ss);
8694 }
8695 
8696 /*
8697  * Note: run at zone shutdown and not destroy so that the PLINKs are
8698  * gone by the time other cleanup happens from the destroy callbacks.
8699  */
8700 static void
8701 str_stack_shutdown(netstackid_t stackid, void *arg)
8702 {
8703 	str_stack_t *ss = (str_stack_t *)arg;
8704 	int i;
8705 	cred_t *cr;
8706 
8707 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8708 	ASSERT(cr != NULL);
8709 
8710 	/* Undo all the I_PLINKs for this zone */
8711 	for (i = 0; i < ss->ss_devcnt; i++) {
8712 		struct mux_edge		*ep;
8713 		ldi_handle_t		lh;
8714 		ldi_ident_t		li;
8715 		int			ret;
8716 		int			rval;
8717 		dev_t			rdev;
8718 
8719 		ep = ss->ss_mux_nodes[i].mn_outp;
8720 		if (ep == NULL)
8721 			continue;
8722 		ret = ldi_ident_from_major((major_t)i, &li);
8723 		if (ret != 0) {
8724 			continue;
8725 		}
8726 		rdev = ep->me_dev;
8727 		ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8728 		    cr, &lh, li);
8729 		if (ret != 0) {
8730 			ldi_ident_release(li);
8731 			continue;
8732 		}
8733 
8734 		ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8735 		    cr, &rval);
8736 		if (ret) {
8737 			(void) ldi_close(lh, FREAD|FWRITE, cr);
8738 			ldi_ident_release(li);
8739 			continue;
8740 		}
8741 		(void) ldi_close(lh, FREAD|FWRITE, cr);
8742 
8743 		/* Close layered handles */
8744 		ldi_ident_release(li);
8745 	}
8746 	crfree(cr);
8747 
8748 	sad_freespace(ss);
8749 
8750 	kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8751 	ss->ss_mux_nodes = NULL;
8752 }
8753 
8754 /*
8755  * Free the structure; str_stack_shutdown did the other cleanup work.
8756  */
8757 /* ARGSUSED */
8758 static void
8759 str_stack_fini(netstackid_t stackid, void *arg)
8760 {
8761 	str_stack_t	*ss = (str_stack_t *)arg;
8762 
8763 	kmem_free(ss, sizeof (*ss));
8764 }
8765