xref: /titanic_51/usr/src/uts/common/os/strsubr.c (revision 554ff184129088135ad2643c1c9832174a17be88)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/param.h>
36 #include <sys/errno.h>
37 #include <sys/signal.h>
38 #include <sys/proc.h>
39 #include <sys/conf.h>
40 #include <sys/cred.h>
41 #include <sys/user.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/session.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/stropts.h>
48 #include <sys/poll.h>
49 #include <sys/systm.h>
50 #include <sys/cpuvar.h>
51 #include <sys/uio.h>
52 #include <sys/cmn_err.h>
53 #include <sys/priocntl.h>
54 #include <sys/procset.h>
55 #include <sys/vmem.h>
56 #include <sys/bitmap.h>
57 #include <sys/kmem.h>
58 #include <sys/siginfo.h>
59 #include <sys/vtrace.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/modctl.h>
63 #include <sys/vmsystm.h>
64 #include <vm/page.h>
65 #include <sys/atomic.h>
66 #include <sys/suntpi.h>
67 #include <sys/strlog.h>
68 #include <sys/promif.h>
69 #include <sys/project.h>
70 #include <sys/vm.h>
71 #include <sys/taskq.h>
72 #include <sys/sunddi.h>
73 #include <sys/sunldi_impl.h>
74 #include <sys/strsun.h>
75 #include <sys/isa_defs.h>
76 #include <sys/multidata.h>
77 #include <sys/pattr.h>
78 #include <sys/strft.h>
79 #include <sys/zone.h>
80 
81 #define	O_SAMESTR(q)	(((q)->q_next) && \
82 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
83 
84 /*
85  * WARNING:
86  * The variables and routines in this file are private, belonging
87  * to the STREAMS subsystem. These should not be used by modules
88  * or drivers. Compatibility will not be guaranteed.
89  */
90 
91 /*
92  * Id value used to distinguish between different multiplexor links.
93  */
94 static int32_t lnk_id = 0;
95 
96 #define	STREAMS_LOPRI MINCLSYSPRI
97 static pri_t streams_lopri = STREAMS_LOPRI;
98 
99 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
100 typedef struct str_stat {
101 	kstat_named_t	sqenables;
102 	kstat_named_t	stenables;
103 	kstat_named_t	syncqservice;
104 	kstat_named_t	freebs;
105 	kstat_named_t	qwr_outer;
106 	kstat_named_t	rservice;
107 	kstat_named_t	strwaits;
108 	kstat_named_t	taskqfails;
109 	kstat_named_t	bufcalls;
110 	kstat_named_t	qhelps;
111 	kstat_named_t	qremoved;
112 	kstat_named_t	sqremoved;
113 	kstat_named_t	bcwaits;
114 	kstat_named_t	sqtoomany;
115 } str_stat_t;
116 
117 static str_stat_t str_statistics = {
118 	{ "sqenables",		KSTAT_DATA_UINT64 },
119 	{ "stenables",		KSTAT_DATA_UINT64 },
120 	{ "syncqservice",	KSTAT_DATA_UINT64 },
121 	{ "freebs",		KSTAT_DATA_UINT64 },
122 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
123 	{ "rservice",		KSTAT_DATA_UINT64 },
124 	{ "strwaits",		KSTAT_DATA_UINT64 },
125 	{ "taskqfails",		KSTAT_DATA_UINT64 },
126 	{ "bufcalls",		KSTAT_DATA_UINT64 },
127 	{ "qhelps",		KSTAT_DATA_UINT64 },
128 	{ "qremoved",		KSTAT_DATA_UINT64 },
129 	{ "sqremoved",		KSTAT_DATA_UINT64 },
130 	{ "bcwaits",		KSTAT_DATA_UINT64 },
131 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
132 };
133 
134 static kstat_t *str_kstat;
135 
136 /*
137  * qrunflag was used previously to control background scheduling of queues. It
138  * is not used anymore, but kept here in case some module still wants to access
139  * it via qready() and setqsched macros.
140  */
141 char qrunflag;			/*  Unused */
142 
143 /*
144  * Most of the streams scheduling is done via task queues. Task queues may fail
145  * for non-sleep dispatches, so there are two backup threads servicing failed
146  * requests for queues and syncqs. Both of these threads also service failed
147  * dispatches freebs requests. Queues are put in the list specified by `qhead'
148  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
149  * requests are put into `freebs_list' which has no tail pointer. All three
150  * lists are protected by a single `service_queue' lock and use
151  * `services_to_run' condition variable for signaling background threads. Use of
152  * a single lock should not be a problem because it is only used under heavy
153  * loads when task queues start to fail and at that time it may be a good idea
154  * to throttle scheduling requests.
155  *
156  * NOTE: queues and syncqs should be scheduled by two separate threads because
157  * queue servicing may be blocked waiting for a syncq which may be also
158  * scheduled for background execution. This may create a deadlock when only one
159  * thread is used for both.
160  */
161 
162 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
163 
164 static kmutex_t service_queue;		/* protects all of servicing vars */
165 static kcondvar_t services_to_run;	/* wake up background service thread */
166 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
167 
168 /*
169  * List of queues scheduled for background processing dueue to lack of resources
170  * in the task queues. Protected by service_queue lock;
171  */
172 static struct queue *qhead;
173 static struct queue *qtail;
174 
175 /*
176  * Same list for syncqs
177  */
178 static syncq_t *sqhead;
179 static syncq_t *sqtail;
180 
181 static mblk_t *freebs_list;	/* list of buffers to free */
182 
183 /*
184  * Backup threads for servicing queues and syncqs
185  */
186 kthread_t *streams_qbkgrnd_thread;
187 kthread_t *streams_sqbkgrnd_thread;
188 
189 /*
190  * Bufcalls related variables.
191  */
192 struct bclist	strbcalls;	/* list of waiting bufcalls */
193 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
194 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
195 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
196 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
197 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
198 
199 kmutex_t	strresources;	/* protects global resources */
200 kmutex_t	muxifier;	/* single-threads multiplexor creation */
201 
202 extern void	time_to_wait(clock_t *, clock_t);
203 
204 /*
205  * run_queues is no longer used, but is kept in case some 3-d party
206  * module/driver decides to use it.
207  */
208 int run_queues = 0;
209 
210 /*
211  * sq_max_size is the depth of the syncq (in number of messages) before
212  * qfill_syncq() starts QFULL'ing destination queues. As its primary
213  * consumer - IP is no longer D_MTPERMOD, but there may be other
214  * modules/drivers depend on this syncq flow control, we prefer to
215  * choose a large number as the default value. For potential
216  * performance gain, this value is tunable in /etc/system.
217  */
218 int sq_max_size = 10000;
219 
220 /*
221  * the number of ciputctrl structures per syncq and stream we create when
222  * needed.
223  */
224 int n_ciputctrl;
225 int max_n_ciputctrl = 16;
226 /*
227  * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
228  */
229 int min_n_ciputctrl = 2;
230 
231 static struct mux_node *mux_nodes;	/* mux info for cycle checking */
232 
233 /*
234  * Per-driver/module syncqs
235  * ========================
236  *
237  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
238  * perdm structures, new entries being added (and new syncqs allocated) when
239  * setq() encounters a module/driver with a streamtab that it hasn't seen
240  * before.
241  * The reason for this mechanism is that some modules and drivers share a
242  * common streamtab and it is necessary for those modules and drivers to also
243  * share a common PERMOD syncq.
244  *
245  * perdm_list --> dm_str == streamtab_1
246  *                dm_sq == syncq_1
247  *                dm_ref
248  *                dm_next --> dm_str == streamtab_2
249  *                            dm_sq == syncq_2
250  *                            dm_ref
251  *                            dm_next --> ... NULL
252  *
253  * The dm_ref field is incremented for each new driver/module that takes
254  * a reference to the perdm structure and hence shares the syncq.
255  * References are held in the fmodsw_impl_t structure for each STREAMS module
256  * or the dev_impl array (indexed by device major number) for each driver.
257  *
258  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
259  *		     ^                 ^ ^               ^
260  *                   |  ______________/  |               |
261  *                   | /                 |               |
262  * dev_impl:     ...|x|y|...          module A	      module B
263  *
264  * When a module/driver is unloaded the reference count is decremented and,
265  * when it falls to zero, the perdm structure is removed from the list and
266  * the syncq is freed (see rele_dm()).
267  */
268 perdm_t *perdm_list = NULL;
269 static krwlock_t perdm_rwlock;
270 cdevsw_impl_t *devimpl;
271 
272 extern struct qinit strdata;
273 extern struct qinit stwdata;
274 
275 static void runservice(queue_t *);
276 static void streams_bufcall_service(void);
277 static void streams_qbkgrnd_service(void);
278 static void streams_sqbkgrnd_service(void);
279 static syncq_t *new_syncq(void);
280 static void free_syncq(syncq_t *);
281 static void outer_insert(syncq_t *, syncq_t *);
282 static void outer_remove(syncq_t *, syncq_t *);
283 static void write_now(syncq_t *);
284 static void clr_qfull(queue_t *);
285 static void enable_svc(queue_t *);
286 static void runbufcalls(void);
287 static void sqenable(syncq_t *);
288 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
289 static void wait_q_syncq(queue_t *);
290 
291 static void queue_service(queue_t *);
292 static void stream_service(stdata_t *);
293 static void syncq_service(syncq_t *);
294 static void qwriter_outer_service(syncq_t *);
295 static void mblk_free(mblk_t *);
296 #ifdef DEBUG
297 static int qprocsareon(queue_t *);
298 #endif
299 
300 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
301 static void reset_nfsrv_ptr(queue_t *, queue_t *);
302 
303 static void sq_run_events(syncq_t *);
304 static int propagate_syncq(queue_t *);
305 
306 static void	blocksq(syncq_t *, ushort_t, int);
307 static void	unblocksq(syncq_t *, ushort_t, int);
308 static int	dropsq(syncq_t *, uint16_t);
309 static void	emptysq(syncq_t *);
310 static sqlist_t *sqlist_alloc(struct stdata *, int);
311 static void	sqlist_free(sqlist_t *);
312 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
313 static void	sqlist_insert(sqlist_t *, syncq_t *);
314 static void	sqlist_insertall(sqlist_t *, queue_t *);
315 
316 static void	strsetuio(stdata_t *);
317 
318 struct kmem_cache *stream_head_cache;
319 struct kmem_cache *queue_cache;
320 struct kmem_cache *syncq_cache;
321 struct kmem_cache *qband_cache;
322 struct kmem_cache *linkinfo_cache;
323 struct kmem_cache *ciputctrl_cache = NULL;
324 
325 static linkinfo_t *linkinfo_list;
326 
327 /*
328  *  Qinit structure and Module_info structures
329  *	for passthru read and write queues
330  */
331 
332 static void pass_wput(queue_t *, mblk_t *);
333 static queue_t *link_addpassthru(stdata_t *);
334 static void link_rempassthru(queue_t *);
335 
336 struct  module_info passthru_info = {
337 	0,
338 	"passthru",
339 	0,
340 	INFPSZ,
341 	STRHIGH,
342 	STRLOW
343 };
344 
345 struct  qinit passthru_rinit = {
346 	(int (*)())putnext,
347 	NULL,
348 	NULL,
349 	NULL,
350 	NULL,
351 	&passthru_info,
352 	NULL
353 };
354 
355 struct  qinit passthru_winit = {
356 	(int (*)()) pass_wput,
357 	NULL,
358 	NULL,
359 	NULL,
360 	NULL,
361 	&passthru_info,
362 	NULL
363 };
364 
365 /*
366  * Special form of assertion: verify that X implies Y i.e. when X is true Y
367  * should also be true.
368  */
369 #define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
370 
371 /*
372  * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
373  */
374 #define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
375 
376 /*
377  * Verify correctness of list head/tail pointers.
378  */
379 #define	LISTCHECK(head, tail, link) {				\
380 	EQUIV(head, tail);					\
381 	IMPLY(tail != NULL, tail->link == NULL);		\
382 }
383 
384 /*
385  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
386  * using a `link' field.
387  */
388 #define	ENQUEUE(el, head, tail, link) {				\
389 	ASSERT(el->link == NULL);				\
390 	LISTCHECK(head, tail, link);				\
391 	if (head == NULL)					\
392 		head = el;					\
393 	else							\
394 		tail->link = el;				\
395 	tail = el;						\
396 }
397 
398 /*
399  * Dequeue the first element of the list denoted by `head' and `tail' pointers
400  * using a `link' field and put result into `el'.
401  */
402 #define	DQ(el, head, tail, link) {				\
403 	LISTCHECK(head, tail, link);				\
404 	el = head;						\
405 	if (head != NULL) {					\
406 		head = head->link;				\
407 		if (head == NULL)				\
408 			tail = NULL;				\
409 		el->link = NULL;				\
410 	}							\
411 }
412 
413 /*
414  * Remove `el' from the list using `chase' and `curr' pointers and return result
415  * in `succeed'.
416  */
417 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
418 	LISTCHECK(head, tail, link);				\
419 	chase = NULL;						\
420 	succeed = 0;						\
421 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
422 		chase = curr;					\
423 	if (curr != NULL) {					\
424 		succeed = 1;					\
425 		ASSERT(curr == el);				\
426 		if (chase != NULL)				\
427 			chase->link = curr->link;		\
428 		else						\
429 			head = curr->link;			\
430 		curr->link = NULL;				\
431 		if (curr == tail)				\
432 			tail = chase;				\
433 	}							\
434 	LISTCHECK(head, tail, link);				\
435 }
436 
437 /* Handling of delayed messages on the inner syncq. */
438 
439 /*
440  * DEBUG versions should use function versions (to simplify tracing) and
441  * non-DEBUG kernels should use macro versions.
442  */
443 
444 /*
445  * Put a queue on the syncq list of queues.
446  * Assumes SQLOCK held.
447  */
448 #define	SQPUT_Q(sq, qp)							\
449 {									\
450 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
451 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
452 		/* The queue should not be linked anywhere */		\
453 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
454 		/* Head and tail may only be NULL simultaneously */	\
455 		EQUIV(sq->sq_head, sq->sq_tail);			\
456 		/* Queue may be only enqueyed on its syncq */		\
457 		ASSERT(sq == qp->q_syncq);				\
458 		/* Check the correctness of SQ_MESSAGES flag */		\
459 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
460 		/* Sanity check first/last elements of the list */	\
461 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
462 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
463 		/*							\
464 		 * Sanity check of priority field: empty queue should	\
465 		 * have zero priority					\
466 		 * and nqueues equal to zero.				\
467 		 */							\
468 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
469 		/* Sanity check of sq_nqueues field */			\
470 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
471 		if (sq->sq_head == NULL) {				\
472 			sq->sq_head = sq->sq_tail = qp;			\
473 			sq->sq_flags |= SQ_MESSAGES;			\
474 		} else if (qp->q_spri == 0) {				\
475 			qp->q_sqprev = sq->sq_tail;			\
476 			sq->sq_tail->q_sqnext = qp;			\
477 			sq->sq_tail = qp;				\
478 		} else {						\
479 			/*						\
480 			 * Put this queue in priority order: higher	\
481 			 * priority gets closer to the head.		\
482 			 */						\
483 			queue_t **qpp = &sq->sq_tail;			\
484 			queue_t *qnext = NULL;				\
485 									\
486 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
487 				qnext = *qpp;				\
488 				qpp = &(*qpp)->q_sqprev;		\
489 			}						\
490 			qp->q_sqnext = qnext;				\
491 			qp->q_sqprev = *qpp;				\
492 			if (*qpp != NULL) {				\
493 				(*qpp)->q_sqnext = qp;			\
494 			} else {					\
495 				sq->sq_head = qp;			\
496 				sq->sq_pri = sq->sq_head->q_spri;	\
497 			}						\
498 			*qpp = qp;					\
499 		}							\
500 		qp->q_sqflags |= Q_SQQUEUED;				\
501 		qp->q_sqtstamp = lbolt;					\
502 		sq->sq_nqueues++;					\
503 	}								\
504 }
505 
506 /*
507  * Remove a queue from the syncq list
508  * Assumes SQLOCK held.
509  */
510 #define	SQRM_Q(sq, qp)							\
511 	{								\
512 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
513 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
514 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
515 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
516 		/* Check that the queue is actually in the list */	\
517 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
518 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
519 		ASSERT(sq->sq_nqueues != 0);				\
520 		if (qp->q_sqprev == NULL) {				\
521 			/* First queue on list, make head q_sqnext */	\
522 			sq->sq_head = qp->q_sqnext;			\
523 		} else {						\
524 			/* Make prev->next == next */			\
525 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
526 		}							\
527 		if (qp->q_sqnext == NULL) {				\
528 			/* Last queue on list, make tail sqprev */	\
529 			sq->sq_tail = qp->q_sqprev;			\
530 		} else {						\
531 			/* Make next->prev == prev */			\
532 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
533 		}							\
534 		/* clear out references on this queue */		\
535 		qp->q_sqprev = qp->q_sqnext = NULL;			\
536 		qp->q_sqflags &= ~Q_SQQUEUED;				\
537 		/* If there is nothing queued, clear SQ_MESSAGES */	\
538 		if (sq->sq_head != NULL) {				\
539 			sq->sq_pri = sq->sq_head->q_spri;		\
540 		} else	{						\
541 			sq->sq_flags &= ~SQ_MESSAGES;			\
542 			sq->sq_pri = 0;					\
543 		}							\
544 		sq->sq_nqueues--;					\
545 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
546 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
547 	}
548 
549 /* Hide the definition from the header file. */
550 #ifdef SQPUT_MP
551 #undef SQPUT_MP
552 #endif
553 
554 /*
555  * Put a message on the queue syncq.
556  * Assumes QLOCK held.
557  */
558 #define	SQPUT_MP(qp, mp)						\
559 	{								\
560 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
561 		ASSERT(qp->q_sqhead == NULL ||				\
562 		    (qp->q_sqtail != NULL &&				\
563 		    qp->q_sqtail->b_next == NULL));			\
564 		qp->q_syncqmsgs++;					\
565 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
566 		if (qp->q_sqhead == NULL) {				\
567 			qp->q_sqhead = qp->q_sqtail = mp;		\
568 		} else {						\
569 			qp->q_sqtail->b_next = mp;			\
570 			qp->q_sqtail = mp;				\
571 		}							\
572 		ASSERT(qp->q_syncqmsgs > 0);				\
573 	}
574 
575 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
576 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
577 		if ((sq)->sq_ciputctrl != NULL) {			\
578 			int i;						\
579 			int nlocks = (sq)->sq_nciputctrl;		\
580 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
581 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
582 			for (i = 0; i <= nlocks; i++) {			\
583 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
584 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
585 			}						\
586 		}							\
587 	}
588 
589 
590 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
591 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
592 		if ((sq)->sq_ciputctrl != NULL) {			\
593 			int i;						\
594 			int nlocks = (sq)->sq_nciputctrl;		\
595 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
596 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
597 			for (i = 0; i <= nlocks; i++) {			\
598 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
599 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
600 			}						\
601 		}							\
602 	}
603 
604 /*
605  * Run service procedures for all queues in the stream head.
606  */
607 #define	STR_SERVICE(stp, q) {						\
608 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
609 	while (stp->sd_qhead != NULL) {					\
610 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
611 		ASSERT(stp->sd_nqueues > 0);				\
612 		stp->sd_nqueues--;					\
613 		ASSERT(!(q->q_flag & QINSERVICE));			\
614 		mutex_exit(&stp->sd_qlock);				\
615 		queue_service(q);					\
616 		mutex_enter(&stp->sd_qlock);				\
617 	}								\
618 	ASSERT(stp->sd_nqueues == 0);					\
619 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
620 }
621 
622 /*
623  * constructor/destructor routines for the stream head cache
624  */
625 /* ARGSUSED */
626 static int
627 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
628 {
629 	stdata_t *stp = buf;
630 
631 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
632 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
633 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
634 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
635 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
636 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
637 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
638 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
639 	stp->sd_wrq = NULL;
640 
641 	return (0);
642 }
643 
644 /* ARGSUSED */
645 static void
646 stream_head_destructor(void *buf, void *cdrarg)
647 {
648 	stdata_t *stp = buf;
649 
650 	mutex_destroy(&stp->sd_lock);
651 	mutex_destroy(&stp->sd_reflock);
652 	mutex_destroy(&stp->sd_qlock);
653 	cv_destroy(&stp->sd_monitor);
654 	cv_destroy(&stp->sd_iocmonitor);
655 	cv_destroy(&stp->sd_refmonitor);
656 	cv_destroy(&stp->sd_qcv);
657 	cv_destroy(&stp->sd_zcopy_wait);
658 }
659 
660 /*
661  * constructor/destructor routines for the queue cache
662  */
663 /* ARGSUSED */
664 static int
665 queue_constructor(void *buf, void *cdrarg, int kmflags)
666 {
667 	queinfo_t *qip = buf;
668 	queue_t *qp = &qip->qu_rqueue;
669 	queue_t *wqp = &qip->qu_wqueue;
670 	syncq_t	*sq = &qip->qu_syncq;
671 
672 	qp->q_first = NULL;
673 	qp->q_link = NULL;
674 	qp->q_count = 0;
675 	qp->q_mblkcnt = 0;
676 	qp->q_sqhead = NULL;
677 	qp->q_sqtail = NULL;
678 	qp->q_sqnext = NULL;
679 	qp->q_sqprev = NULL;
680 	qp->q_sqflags = 0;
681 	qp->q_rwcnt = 0;
682 	qp->q_spri = 0;
683 
684 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
685 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
686 
687 	wqp->q_first = NULL;
688 	wqp->q_link = NULL;
689 	wqp->q_count = 0;
690 	wqp->q_mblkcnt = 0;
691 	wqp->q_sqhead = NULL;
692 	wqp->q_sqtail = NULL;
693 	wqp->q_sqnext = NULL;
694 	wqp->q_sqprev = NULL;
695 	wqp->q_sqflags = 0;
696 	wqp->q_rwcnt = 0;
697 	wqp->q_spri = 0;
698 
699 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
700 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
701 
702 	sq->sq_head = NULL;
703 	sq->sq_tail = NULL;
704 	sq->sq_evhead = NULL;
705 	sq->sq_evtail = NULL;
706 	sq->sq_callbpend = NULL;
707 	sq->sq_outer = NULL;
708 	sq->sq_onext = NULL;
709 	sq->sq_oprev = NULL;
710 	sq->sq_next = NULL;
711 	sq->sq_svcflags = 0;
712 	sq->sq_servcount = 0;
713 	sq->sq_needexcl = 0;
714 	sq->sq_nqueues = 0;
715 	sq->sq_pri = 0;
716 
717 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
718 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
719 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
720 
721 	return (0);
722 }
723 
724 /* ARGSUSED */
725 static void
726 queue_destructor(void *buf, void *cdrarg)
727 {
728 	queinfo_t *qip = buf;
729 	queue_t *qp = &qip->qu_rqueue;
730 	queue_t *wqp = &qip->qu_wqueue;
731 	syncq_t	*sq = &qip->qu_syncq;
732 
733 	ASSERT(qp->q_sqhead == NULL);
734 	ASSERT(wqp->q_sqhead == NULL);
735 	ASSERT(qp->q_sqnext == NULL);
736 	ASSERT(wqp->q_sqnext == NULL);
737 	ASSERT(qp->q_rwcnt == 0);
738 	ASSERT(wqp->q_rwcnt == 0);
739 
740 	mutex_destroy(&qp->q_lock);
741 	cv_destroy(&qp->q_wait);
742 
743 	mutex_destroy(&wqp->q_lock);
744 	cv_destroy(&wqp->q_wait);
745 
746 	mutex_destroy(&sq->sq_lock);
747 	cv_destroy(&sq->sq_wait);
748 	cv_destroy(&sq->sq_exitwait);
749 }
750 
751 /*
752  * constructor/destructor routines for the syncq cache
753  */
754 /* ARGSUSED */
755 static int
756 syncq_constructor(void *buf, void *cdrarg, int kmflags)
757 {
758 	syncq_t	*sq = buf;
759 
760 	bzero(buf, sizeof (syncq_t));
761 
762 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
763 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
764 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
765 
766 	return (0);
767 }
768 
769 /* ARGSUSED */
770 static void
771 syncq_destructor(void *buf, void *cdrarg)
772 {
773 	syncq_t	*sq = buf;
774 
775 	ASSERT(sq->sq_head == NULL);
776 	ASSERT(sq->sq_tail == NULL);
777 	ASSERT(sq->sq_evhead == NULL);
778 	ASSERT(sq->sq_evtail == NULL);
779 	ASSERT(sq->sq_callbpend == NULL);
780 	ASSERT(sq->sq_callbflags == 0);
781 	ASSERT(sq->sq_outer == NULL);
782 	ASSERT(sq->sq_onext == NULL);
783 	ASSERT(sq->sq_oprev == NULL);
784 	ASSERT(sq->sq_next == NULL);
785 	ASSERT(sq->sq_needexcl == 0);
786 	ASSERT(sq->sq_svcflags == 0);
787 	ASSERT(sq->sq_servcount == 0);
788 	ASSERT(sq->sq_nqueues == 0);
789 	ASSERT(sq->sq_pri == 0);
790 	ASSERT(sq->sq_count == 0);
791 	ASSERT(sq->sq_rmqcount == 0);
792 	ASSERT(sq->sq_cancelid == 0);
793 	ASSERT(sq->sq_ciputctrl == NULL);
794 	ASSERT(sq->sq_nciputctrl == 0);
795 	ASSERT(sq->sq_type == 0);
796 	ASSERT(sq->sq_flags == 0);
797 
798 	mutex_destroy(&sq->sq_lock);
799 	cv_destroy(&sq->sq_wait);
800 	cv_destroy(&sq->sq_exitwait);
801 }
802 
803 /* ARGSUSED */
804 static int
805 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
806 {
807 	ciputctrl_t *cip = buf;
808 	int i;
809 
810 	for (i = 0; i < n_ciputctrl; i++) {
811 		cip[i].ciputctrl_count = SQ_FASTPUT;
812 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
813 	}
814 
815 	return (0);
816 }
817 
818 /* ARGSUSED */
819 static void
820 ciputctrl_destructor(void *buf, void *cdrarg)
821 {
822 	ciputctrl_t *cip = buf;
823 	int i;
824 
825 	for (i = 0; i < n_ciputctrl; i++) {
826 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
827 		mutex_destroy(&cip[i].ciputctrl_lock);
828 	}
829 }
830 
831 /*
832  * Init routine run from main at boot time.
833  */
834 void
835 strinit(void)
836 {
837 	int i;
838 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
839 
840 	/*
841 	 * Set up mux_node structures.
842 	 */
843 	mux_nodes = kmem_zalloc((sizeof (struct mux_node) * devcnt), KM_SLEEP);
844 	for (i = 0; i < devcnt; i++)
845 		mux_nodes[i].mn_imaj = i;
846 
847 	stream_head_cache = kmem_cache_create("stream_head_cache",
848 		sizeof (stdata_t), 0,
849 		stream_head_constructor, stream_head_destructor, NULL,
850 		NULL, NULL, 0);
851 
852 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
853 		queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
854 
855 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
856 		syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
857 
858 	qband_cache = kmem_cache_create("qband_cache",
859 		sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
860 
861 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
862 		sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
863 
864 	n_ciputctrl = ncpus;
865 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
866 	ASSERT(n_ciputctrl >= 1);
867 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
868 	if (n_ciputctrl >= min_n_ciputctrl) {
869 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
870 			sizeof (ciputctrl_t) * n_ciputctrl,
871 			sizeof (ciputctrl_t), ciputctrl_constructor,
872 			ciputctrl_destructor, NULL, NULL, NULL, 0);
873 	}
874 
875 	streams_taskq = system_taskq;
876 
877 	if (streams_taskq == NULL)
878 		panic("strinit: no memory for streams taskq!");
879 
880 	bc_bkgrnd_thread = thread_create(NULL, 0,
881 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
882 
883 	streams_qbkgrnd_thread = thread_create(NULL, 0,
884 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
885 
886 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
887 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
888 
889 	/*
890 	 * Create STREAMS kstats.
891 	 */
892 	str_kstat = kstat_create("streams", 0, "strstat",
893 	    "net", KSTAT_TYPE_NAMED,
894 	    sizeof (str_statistics) / sizeof (kstat_named_t),
895 	    KSTAT_FLAG_VIRTUAL);
896 
897 	if (str_kstat != NULL) {
898 		str_kstat->ks_data = &str_statistics;
899 		kstat_install(str_kstat);
900 	}
901 
902 	/*
903 	 * TPI support routine initialisation.
904 	 */
905 	tpi_init();
906 }
907 
908 void
909 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
910 {
911 	struct stdata *stp;
912 
913 	ASSERT(vp->v_stream);
914 	stp = vp->v_stream;
915 	/* Have to hold sd_lock to prevent siglist from changing */
916 	mutex_enter(&stp->sd_lock);
917 	if (stp->sd_sigflags & event)
918 		strsendsig(stp->sd_siglist, event, band, error);
919 	mutex_exit(&stp->sd_lock);
920 }
921 
922 /*
923  * Send the "sevent" set of signals to a process.
924  * This might send more than one signal if the process is registered
925  * for multiple events. The caller should pass in an sevent that only
926  * includes the events for which the process has registered.
927  */
928 static void
929 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
930 	uchar_t band, int error)
931 {
932 	ASSERT(MUTEX_HELD(&proc->p_lock));
933 
934 	info->si_band = 0;
935 	info->si_errno = 0;
936 
937 	if (sevent & S_ERROR) {
938 		sevent &= ~S_ERROR;
939 		info->si_code = POLL_ERR;
940 		info->si_errno = error;
941 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
942 			"strsendsig:proc %p info %p", proc, info);
943 		sigaddq(proc, NULL, info, KM_NOSLEEP);
944 		info->si_errno = 0;
945 	}
946 	if (sevent & S_HANGUP) {
947 		sevent &= ~S_HANGUP;
948 		info->si_code = POLL_HUP;
949 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
950 			"strsendsig:proc %p info %p", proc, info);
951 		sigaddq(proc, NULL, info, KM_NOSLEEP);
952 	}
953 	if (sevent & S_HIPRI) {
954 		sevent &= ~S_HIPRI;
955 		info->si_code = POLL_PRI;
956 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
957 			"strsendsig:proc %p info %p", proc, info);
958 		sigaddq(proc, NULL, info, KM_NOSLEEP);
959 	}
960 	if (sevent & S_RDBAND) {
961 		sevent &= ~S_RDBAND;
962 		if (events & S_BANDURG)
963 			sigtoproc(proc, NULL, SIGURG);
964 		else
965 			sigtoproc(proc, NULL, SIGPOLL);
966 	}
967 	if (sevent & S_WRBAND) {
968 		sevent &= ~S_WRBAND;
969 		sigtoproc(proc, NULL, SIGPOLL);
970 	}
971 	if (sevent & S_INPUT) {
972 		sevent &= ~S_INPUT;
973 		info->si_code = POLL_IN;
974 		info->si_band = band;
975 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
976 			"strsendsig:proc %p info %p", proc, info);
977 		sigaddq(proc, NULL, info, KM_NOSLEEP);
978 		info->si_band = 0;
979 	}
980 	if (sevent & S_OUTPUT) {
981 		sevent &= ~S_OUTPUT;
982 		info->si_code = POLL_OUT;
983 		info->si_band = band;
984 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
985 			"strsendsig:proc %p info %p", proc, info);
986 		sigaddq(proc, NULL, info, KM_NOSLEEP);
987 		info->si_band = 0;
988 	}
989 	if (sevent & S_MSG) {
990 		sevent &= ~S_MSG;
991 		info->si_code = POLL_MSG;
992 		info->si_band = band;
993 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
994 			"strsendsig:proc %p info %p", proc, info);
995 		sigaddq(proc, NULL, info, KM_NOSLEEP);
996 		info->si_band = 0;
997 	}
998 	if (sevent & S_RDNORM) {
999 		sevent &= ~S_RDNORM;
1000 		sigtoproc(proc, NULL, SIGPOLL);
1001 	}
1002 	if (sevent != 0) {
1003 		panic("strsendsig: unknown event(s) %x", sevent);
1004 	}
1005 }
1006 
1007 /*
1008  * Send SIGPOLL/SIGURG signal to all processes and process groups
1009  * registered on the given signal list that want a signal for at
1010  * least one of the specified events.
1011  *
1012  * Must be called with exclusive access to siglist (caller holding sd_lock).
1013  *
1014  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1015  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1016  * while it is in the siglist.
1017  *
1018  * For performance reasons (MP scalability) the code drops pidlock
1019  * when sending signals to a single process.
1020  * When sending to a process group the code holds
1021  * pidlock to prevent the membership in the process group from changing
1022  * while walking the p_pglink list.
1023  */
1024 void
1025 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1026 {
1027 	strsig_t *ssp;
1028 	k_siginfo_t info;
1029 	struct pid *pidp;
1030 	proc_t  *proc;
1031 
1032 	info.si_signo = SIGPOLL;
1033 	info.si_errno = 0;
1034 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1035 		int sevent;
1036 
1037 		sevent = ssp->ss_events & event;
1038 		if (sevent == 0)
1039 			continue;
1040 
1041 		if ((pidp = ssp->ss_pidp) == NULL) {
1042 			/* pid was released but still on event list */
1043 			continue;
1044 		}
1045 
1046 
1047 		if (ssp->ss_pid > 0) {
1048 			/*
1049 			 * XXX This unfortunately still generates
1050 			 * a signal when a fd is closed but
1051 			 * the proc is active.
1052 			 */
1053 			ASSERT(ssp->ss_pid == pidp->pid_id);
1054 
1055 			mutex_enter(&pidlock);
1056 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1057 			if (proc == NULL) {
1058 				mutex_exit(&pidlock);
1059 				continue;
1060 			}
1061 			mutex_enter(&proc->p_lock);
1062 			mutex_exit(&pidlock);
1063 			dosendsig(proc, ssp->ss_events, sevent, &info,
1064 				band, error);
1065 			mutex_exit(&proc->p_lock);
1066 		} else {
1067 			/*
1068 			 * Send to process group. Hold pidlock across
1069 			 * calls to dosendsig().
1070 			 */
1071 			pid_t pgrp = -ssp->ss_pid;
1072 
1073 			mutex_enter(&pidlock);
1074 			proc = pgfind_zone(pgrp, ALL_ZONES);
1075 			while (proc != NULL) {
1076 				mutex_enter(&proc->p_lock);
1077 				dosendsig(proc, ssp->ss_events, sevent,
1078 					&info, band, error);
1079 				mutex_exit(&proc->p_lock);
1080 				proc = proc->p_pglink;
1081 			}
1082 			mutex_exit(&pidlock);
1083 		}
1084 	}
1085 }
1086 
1087 /*
1088  * Attach a stream device or module.
1089  * qp is a read queue; the new queue goes in so its next
1090  * read ptr is the argument, and the write queue corresponding
1091  * to the argument points to this queue. Return 0 on success,
1092  * or a non-zero errno on failure.
1093  */
1094 int
1095 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1096     boolean_t is_insert)
1097 {
1098 	major_t			major;
1099 	cdevsw_impl_t		*dp;
1100 	struct streamtab	*str;
1101 	queue_t			*rq;
1102 	queue_t			*wrq;
1103 	uint32_t		qflag;
1104 	uint32_t		sqtype;
1105 	perdm_t			*dmp;
1106 	int			error;
1107 	int			sflag;
1108 
1109 	rq = allocq();
1110 	wrq = _WR(rq);
1111 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1112 
1113 	if (fp != NULL) {
1114 		str = fp->f_str;
1115 		qflag = fp->f_qflag;
1116 		sqtype = fp->f_sqtype;
1117 		dmp = fp->f_dmp;
1118 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1119 		sflag = MODOPEN;
1120 
1121 		/*
1122 		 * stash away a pointer to the module structure so we can
1123 		 * unref it in qdetach.
1124 		 */
1125 		rq->q_fp = fp;
1126 	} else {
1127 		ASSERT(!is_insert);
1128 
1129 		major = getmajor(*devp);
1130 		dp = &devimpl[major];
1131 
1132 		str = dp->d_str;
1133 		ASSERT(str == STREAMSTAB(major));
1134 
1135 		qflag = dp->d_qflag;
1136 		ASSERT(qflag & QISDRV);
1137 		sqtype = dp->d_sqtype;
1138 
1139 		/* create perdm_t if needed */
1140 		if (NEED_DM(dp->d_dmp, qflag))
1141 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1142 
1143 		dmp = dp->d_dmp;
1144 		sflag = 0;
1145 	}
1146 
1147 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1148 	    "qattach:qflag == %X(%X)", qflag, *devp);
1149 
1150 	/* setq might sleep in allocator - avoid holding locks. */
1151 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1152 
1153 	/*
1154 	 * Before calling the module's open routine, set up the q_next
1155 	 * pointer for inserting a module in the middle of a stream.
1156 	 *
1157 	 * Note that we can always set _QINSERTING and set up q_next
1158 	 * pointer for both inserting and pushing a module.  Then there
1159 	 * is no need for the is_insert parameter.  In insertq(), called
1160 	 * by qprocson(), assume that q_next of the new module always points
1161 	 * to the correct queue and use it for insertion.  Everything should
1162 	 * work out fine.  But in the first release of _I_INSERT, we
1163 	 * distinguish between inserting and pushing to make sure that
1164 	 * pushing a module follows the same code path as before.
1165 	 */
1166 	if (is_insert) {
1167 		rq->q_flag |= _QINSERTING;
1168 		rq->q_next = qp;
1169 	}
1170 
1171 	/*
1172 	 * If there is an outer perimeter get exclusive access during
1173 	 * the open procedure.  Bump up the reference count on the queue.
1174 	 */
1175 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1176 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1177 	if (error != 0)
1178 		goto failed;
1179 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1180 	ASSERT(qprocsareon(rq));
1181 	return (0);
1182 
1183 failed:
1184 	rq->q_flag &= ~_QINSERTING;
1185 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1186 		qprocsoff(rq);
1187 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1188 	rq->q_next = wrq->q_next = NULL;
1189 	qdetach(rq, 0, 0, crp, B_FALSE);
1190 	return (error);
1191 }
1192 
1193 /*
1194  * Handle second open of stream. For modules, set the
1195  * last argument to MODOPEN and do not pass any open flags.
1196  * Ignore dummydev since this is not the first open.
1197  */
1198 int
1199 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1200 {
1201 	int	error;
1202 	dev_t dummydev;
1203 	queue_t *wqp = _WR(qp);
1204 
1205 	ASSERT(qp->q_flag & QREADR);
1206 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1207 
1208 	dummydev = *devp;
1209 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1210 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1211 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1212 		mutex_enter(&STREAM(qp)->sd_lock);
1213 		qp->q_stream->sd_flag |= STREOPENFAIL;
1214 		mutex_exit(&STREAM(qp)->sd_lock);
1215 		return (error);
1216 	}
1217 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1218 
1219 	/*
1220 	 * successful open should have done qprocson()
1221 	 */
1222 	ASSERT(qprocsareon(_RD(qp)));
1223 	return (0);
1224 }
1225 
1226 /*
1227  * Detach a stream module or device.
1228  * If clmode == 1 then the module or driver was opened and its
1229  * close routine must be called. If clmode == 0, the module
1230  * or driver was never opened or the open failed, and so its close
1231  * should not be called.
1232  */
1233 void
1234 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1235 {
1236 	queue_t *wqp = _WR(qp);
1237 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1238 
1239 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1240 		stream_runservice(STREAM(qp));
1241 
1242 	if (clmode) {
1243 		/*
1244 		 * Make sure that all the messages on the write side syncq are
1245 		 * processed and nothing is left. Since we are closing, no new
1246 		 * messages may appear there.
1247 		 */
1248 		wait_q_syncq(wqp);
1249 
1250 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1251 		if (is_remove) {
1252 			mutex_enter(QLOCK(qp));
1253 			qp->q_flag |= _QREMOVING;
1254 			mutex_exit(QLOCK(qp));
1255 		}
1256 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1257 		/*
1258 		 * Check that qprocsoff() was actually called.
1259 		 */
1260 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1261 
1262 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1263 	} else {
1264 		disable_svc(qp);
1265 	}
1266 
1267 	/*
1268 	 * Allow any threads blocked in entersq to proceed and discover
1269 	 * the QWCLOSE is set.
1270 	 * Note: This assumes that all users of entersq check QWCLOSE.
1271 	 * Currently runservice is the only entersq that can happen
1272 	 * after removeq has finished.
1273 	 * Removeq will have discarded all messages destined to the closing
1274 	 * pair of queues from the syncq.
1275 	 * NOTE: Calling a function inside an assert is unconventional.
1276 	 * However, it does not cause any problem since flush_syncq() does
1277 	 * not change any state except when it returns non-zero i.e.
1278 	 * when the assert will trigger.
1279 	 */
1280 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1281 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1282 	ASSERT((qp->q_flag & QPERMOD) ||
1283 		((qp->q_syncq->sq_head == NULL) &&
1284 		(wqp->q_syncq->sq_head == NULL)));
1285 
1286 	/*
1287 	 * Flush the queues before q_next is set to NULL. This is needed
1288 	 * in order to backenable any downstream queue before we go away.
1289 	 * Note: we are already removed from the stream so that the
1290 	 * backenabling will not cause any messages to be delivered to our
1291 	 * put procedures.
1292 	 */
1293 	flushq(qp, FLUSHALL);
1294 	flushq(wqp, FLUSHALL);
1295 
1296 	/*
1297 	 * wait for any pending service processing to complete
1298 	 */
1299 	wait_svc(qp);
1300 
1301 	/* Tidy up - removeq only does a half-remove from stream */
1302 	qp->q_next = wqp->q_next = NULL;
1303 	ASSERT(!(qp->q_flag & QENAB));
1304 	ASSERT(!(wqp->q_flag & QENAB));
1305 
1306 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1307 
1308 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1309 	if (qp->q_fp != NULL)
1310 		fmodsw_rele(qp->q_fp);
1311 
1312 	/* freeq removes us from the outer perimeter if any */
1313 	freeq(qp);
1314 }
1315 
1316 /* Prevent service procedures from being called */
1317 void
1318 disable_svc(queue_t *qp)
1319 {
1320 	queue_t *wqp = _WR(qp);
1321 
1322 	ASSERT(qp->q_flag & QREADR);
1323 	mutex_enter(QLOCK(qp));
1324 	qp->q_flag |= QWCLOSE;
1325 	mutex_exit(QLOCK(qp));
1326 	mutex_enter(QLOCK(wqp));
1327 	wqp->q_flag |= QWCLOSE;
1328 	mutex_exit(QLOCK(wqp));
1329 }
1330 
1331 /* allow service procedures to be called again */
1332 void
1333 enable_svc(queue_t *qp)
1334 {
1335 	queue_t *wqp = _WR(qp);
1336 
1337 	ASSERT(qp->q_flag & QREADR);
1338 	mutex_enter(QLOCK(qp));
1339 	qp->q_flag &= ~QWCLOSE;
1340 	mutex_exit(QLOCK(qp));
1341 	mutex_enter(QLOCK(wqp));
1342 	wqp->q_flag &= ~QWCLOSE;
1343 	mutex_exit(QLOCK(wqp));
1344 }
1345 
1346 /*
1347  * Remove queue from qhead/qtail if it is enabled.
1348  * Only reset QENAB if the queue was removed from the runlist.
1349  * A queue goes through 3 stages:
1350  *	It is on the service list and QENAB is set.
1351  *	It is removed from the service list but QENAB is still set.
1352  *	QENAB gets changed to QINSERVICE.
1353  *	QINSERVICE is reset (when the service procedure is done)
1354  * Thus we can not reset QENAB unless we actually removed it from the service
1355  * queue.
1356  */
1357 void
1358 remove_runlist(queue_t *qp)
1359 {
1360 	if (qp->q_flag & QENAB && qhead != NULL) {
1361 		queue_t *q_chase;
1362 		queue_t *q_curr;
1363 		int removed;
1364 
1365 		mutex_enter(&service_queue);
1366 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1367 		mutex_exit(&service_queue);
1368 		if (removed) {
1369 			STRSTAT(qremoved);
1370 			qp->q_flag &= ~QENAB;
1371 		}
1372 	}
1373 }
1374 
1375 
1376 /*
1377  * wait for any pending service processing to complete.
1378  * The removal of queues from the runlist is not atomic with the
1379  * clearing of the QENABLED flag and setting the INSERVICE flag.
1380  * consequently it is possible for remove_runlist in strclose
1381  * to not find the queue on the runlist but for it to be QENABLED
1382  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1383  * as well as INSERVICE.
1384  */
1385 void
1386 wait_svc(queue_t *qp)
1387 {
1388 	queue_t *wqp = _WR(qp);
1389 
1390 	ASSERT(qp->q_flag & QREADR);
1391 
1392 	/*
1393 	 * Try to remove queues from qhead/qtail list.
1394 	 */
1395 	if (qhead != NULL) {
1396 		remove_runlist(qp);
1397 		remove_runlist(wqp);
1398 	}
1399 	/*
1400 	 * Wait till the syncqs associated with the queue
1401 	 * will dissapear from background processing list.
1402 	 * This only needs to be done for non-PERMOD perimeters since
1403 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1404 	 * when the last module/driver is unloaded.
1405 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1406 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1407 	 * function remove the queue from its syncq list, so sqthread will not
1408 	 * try to access the queue.
1409 	 */
1410 	if (!(qp->q_flag & QPERMOD)) {
1411 		syncq_t *rsq = qp->q_syncq;
1412 		syncq_t *wsq = wqp->q_syncq;
1413 
1414 		/*
1415 		 * Disable rsq and wsq and wait for any background processing of
1416 		 * syncq to complete.
1417 		 */
1418 		wait_sq_svc(rsq);
1419 		if (wsq != rsq)
1420 			wait_sq_svc(wsq);
1421 	}
1422 
1423 	mutex_enter(QLOCK(qp));
1424 	while (qp->q_flag & (QINSERVICE|QENAB))
1425 		cv_wait(&qp->q_wait, QLOCK(qp));
1426 	mutex_exit(QLOCK(qp));
1427 	mutex_enter(QLOCK(wqp));
1428 	while (wqp->q_flag & (QINSERVICE|QENAB))
1429 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1430 	mutex_exit(QLOCK(wqp));
1431 }
1432 
1433 /*
1434  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1435  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1436  * also be set, and is passed through to allocb_cred_wait().
1437  *
1438  * Returns errno on failure, zero on success.
1439  */
1440 int
1441 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1442 {
1443 	mblk_t *tmp;
1444 	ssize_t  count;
1445 	size_t n;
1446 	int error = 0;
1447 
1448 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1449 		(flag & (U_TO_K | K_TO_K)) == K_TO_K);
1450 
1451 	if (bp->b_datap->db_type == M_IOCTL) {
1452 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1453 	} else {
1454 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1455 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1456 	}
1457 	/*
1458 	 * strdoioctl validates ioc_count, so if this assert fails it
1459 	 * cannot be due to user error.
1460 	 */
1461 	ASSERT(count >= 0);
1462 
1463 	while (count > 0) {
1464 		n = MIN(MAXIOCBSZ, count);
1465 		if ((tmp = allocb_cred_wait(n, (flag & STR_NOSIG), &error,
1466 		    cr)) == NULL) {
1467 			return (error);
1468 		}
1469 		error = strcopyin(arg, tmp->b_wptr, n, flag & (U_TO_K|K_TO_K));
1470 		if (error != 0) {
1471 			freeb(tmp);
1472 			return (error);
1473 		}
1474 		arg += n;
1475 		DB_CPID(tmp) = curproc->p_pid;
1476 		tmp->b_wptr += n;
1477 		count -= n;
1478 		bp = (bp->b_cont = tmp);
1479 	}
1480 
1481 	return (0);
1482 }
1483 
1484 /*
1485  * Copy ioctl data to user-land. Return non-zero errno on failure,
1486  * 0 for success.
1487  */
1488 int
1489 getiocd(mblk_t *bp, char *arg, int copymode)
1490 {
1491 	ssize_t count;
1492 	size_t  n;
1493 	int	error;
1494 
1495 	if (bp->b_datap->db_type == M_IOCACK)
1496 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1497 	else {
1498 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1499 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1500 	}
1501 	ASSERT(count >= 0);
1502 
1503 	for (bp = bp->b_cont; bp && count;
1504 	    count -= n, bp = bp->b_cont, arg += n) {
1505 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1506 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1507 		if (error)
1508 			return (error);
1509 	}
1510 	ASSERT(count == 0);
1511 	return (0);
1512 }
1513 
1514 /*
1515  * Allocate a linkinfo entry given the write queue of the
1516  * bottom module of the top stream and the write queue of the
1517  * stream head of the bottom stream.
1518  */
1519 linkinfo_t *
1520 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1521 {
1522 	linkinfo_t *linkp;
1523 
1524 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1525 
1526 	linkp->li_lblk.l_qtop = qup;
1527 	linkp->li_lblk.l_qbot = qdown;
1528 	linkp->li_fpdown = fpdown;
1529 
1530 	mutex_enter(&strresources);
1531 	linkp->li_next = linkinfo_list;
1532 	linkp->li_prev = NULL;
1533 	if (linkp->li_next)
1534 		linkp->li_next->li_prev = linkp;
1535 	linkinfo_list = linkp;
1536 	linkp->li_lblk.l_index = ++lnk_id;
1537 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1538 	mutex_exit(&strresources);
1539 
1540 	return (linkp);
1541 }
1542 
1543 /*
1544  * Free a linkinfo entry.
1545  */
1546 void
1547 lbfree(linkinfo_t *linkp)
1548 {
1549 	mutex_enter(&strresources);
1550 	if (linkp->li_next)
1551 		linkp->li_next->li_prev = linkp->li_prev;
1552 	if (linkp->li_prev)
1553 		linkp->li_prev->li_next = linkp->li_next;
1554 	else
1555 		linkinfo_list = linkp->li_next;
1556 	mutex_exit(&strresources);
1557 
1558 	kmem_cache_free(linkinfo_cache, linkp);
1559 }
1560 
1561 /*
1562  * Check for a potential linking cycle.
1563  * Return 1 if a link will result in a cycle,
1564  * and 0 otherwise.
1565  */
1566 int
1567 linkcycle(stdata_t *upstp, stdata_t *lostp)
1568 {
1569 	struct mux_node *np;
1570 	struct mux_edge *ep;
1571 	int i;
1572 	major_t lomaj;
1573 	major_t upmaj;
1574 	/*
1575 	 * if the lower stream is a pipe/FIFO, return, since link
1576 	 * cycles can not happen on pipes/FIFOs
1577 	 */
1578 	if (lostp->sd_vnode->v_type == VFIFO)
1579 		return (0);
1580 
1581 	for (i = 0; i < devcnt; i++) {
1582 		np = &mux_nodes[i];
1583 		MUX_CLEAR(np);
1584 	}
1585 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1586 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1587 	np = &mux_nodes[lomaj];
1588 	for (;;) {
1589 		if (!MUX_DIDVISIT(np)) {
1590 			if (np->mn_imaj == upmaj)
1591 				return (1);
1592 			if (np->mn_outp == NULL) {
1593 				MUX_VISIT(np);
1594 				if (np->mn_originp == NULL)
1595 					return (0);
1596 				np = np->mn_originp;
1597 				continue;
1598 			}
1599 			MUX_VISIT(np);
1600 			np->mn_startp = np->mn_outp;
1601 		} else {
1602 			if (np->mn_startp == NULL) {
1603 				if (np->mn_originp == NULL)
1604 					return (0);
1605 				else {
1606 					np = np->mn_originp;
1607 					continue;
1608 				}
1609 			}
1610 			/*
1611 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1612 			 * ignore the edge and move on. ep->me_nodep gets
1613 			 * set to NULL in mux_addedge() if it is a FIFO.
1614 			 *
1615 			 */
1616 			ep = np->mn_startp;
1617 			np->mn_startp = ep->me_nextp;
1618 			if (ep->me_nodep == NULL)
1619 				continue;
1620 			ep->me_nodep->mn_originp = np;
1621 			np = ep->me_nodep;
1622 		}
1623 	}
1624 }
1625 
1626 /*
1627  * Find linkinfo entry corresponding to the parameters.
1628  */
1629 linkinfo_t *
1630 findlinks(stdata_t *stp, int index, int type)
1631 {
1632 	linkinfo_t *linkp;
1633 	struct mux_edge *mep;
1634 	struct mux_node *mnp;
1635 	queue_t *qup;
1636 
1637 	mutex_enter(&strresources);
1638 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1639 		qup = getendq(stp->sd_wrq);
1640 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1641 			if ((qup == linkp->li_lblk.l_qtop) &&
1642 			    (!index || (index == linkp->li_lblk.l_index))) {
1643 				mutex_exit(&strresources);
1644 				return (linkp);
1645 			}
1646 		}
1647 	} else {
1648 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1649 		mnp = &mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1650 		mep = mnp->mn_outp;
1651 		while (mep) {
1652 			if ((index == 0) || (index == mep->me_muxid))
1653 				break;
1654 			mep = mep->me_nextp;
1655 		}
1656 		if (!mep) {
1657 			mutex_exit(&strresources);
1658 			return (NULL);
1659 		}
1660 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1661 			if ((!linkp->li_lblk.l_qtop) &&
1662 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1663 				mutex_exit(&strresources);
1664 				return (linkp);
1665 			}
1666 		}
1667 	}
1668 	mutex_exit(&strresources);
1669 	return (NULL);
1670 }
1671 
1672 /*
1673  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1674  * last queue on the chain and return it.
1675  */
1676 queue_t *
1677 getendq(queue_t *q)
1678 {
1679 	ASSERT(q != NULL);
1680 	while (_SAMESTR(q))
1681 		q = q->q_next;
1682 	return (q);
1683 }
1684 
1685 /*
1686  * wait for the syncq count to drop to zero.
1687  * sq could be either outer or inner.
1688  */
1689 
1690 static void
1691 wait_syncq(syncq_t *sq)
1692 {
1693 	uint16_t count;
1694 
1695 	mutex_enter(SQLOCK(sq));
1696 	count = sq->sq_count;
1697 	SQ_PUTLOCKS_ENTER(sq);
1698 	SUM_SQ_PUTCOUNTS(sq, count);
1699 	while (count != 0) {
1700 		sq->sq_flags |= SQ_WANTWAKEUP;
1701 		SQ_PUTLOCKS_EXIT(sq);
1702 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1703 		count = sq->sq_count;
1704 		SQ_PUTLOCKS_ENTER(sq);
1705 		SUM_SQ_PUTCOUNTS(sq, count);
1706 	}
1707 	SQ_PUTLOCKS_EXIT(sq);
1708 	mutex_exit(SQLOCK(sq));
1709 }
1710 
1711 /*
1712  * Wait while there are any messages for the queue in its syncq.
1713  */
1714 static void
1715 wait_q_syncq(queue_t *q)
1716 {
1717 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1718 		syncq_t *sq = q->q_syncq;
1719 
1720 		mutex_enter(SQLOCK(sq));
1721 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1722 			sq->sq_flags |= SQ_WANTWAKEUP;
1723 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1724 		}
1725 		mutex_exit(SQLOCK(sq));
1726 	}
1727 }
1728 
1729 
1730 int
1731 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1732     int lhlink)
1733 {
1734 	struct stdata *stp;
1735 	struct strioctl strioc;
1736 	struct linkinfo *linkp;
1737 	struct stdata *stpdown;
1738 	struct streamtab *str;
1739 	queue_t *passq;
1740 	syncq_t *passyncq;
1741 	queue_t *rq;
1742 	cdevsw_impl_t *dp;
1743 	uint32_t qflag;
1744 	uint32_t sqtype;
1745 	perdm_t *dmp;
1746 	int error = 0;
1747 
1748 	stp = vp->v_stream;
1749 	TRACE_1(TR_FAC_STREAMS_FR,
1750 		TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1751 	/*
1752 	 * Test for invalid upper stream
1753 	 */
1754 	if (stp->sd_flag & STRHUP) {
1755 		return (ENXIO);
1756 	}
1757 	if (vp->v_type == VFIFO) {
1758 		return (EINVAL);
1759 	}
1760 	if (stp->sd_strtab == NULL) {
1761 		return (EINVAL);
1762 	}
1763 	if (!stp->sd_strtab->st_muxwinit) {
1764 		return (EINVAL);
1765 	}
1766 	if (fpdown == NULL) {
1767 		return (EBADF);
1768 	}
1769 	if (getmajor(stp->sd_vnode->v_rdev) >= devcnt) {
1770 		return (EINVAL);
1771 	}
1772 	mutex_enter(&muxifier);
1773 	if (stp->sd_flag & STPLEX) {
1774 		mutex_exit(&muxifier);
1775 		return (ENXIO);
1776 	}
1777 
1778 	/*
1779 	 * Test for invalid lower stream.
1780 	 * The check for the v_type != VFIFO and having a major
1781 	 * number not >= devcnt is done to avoid problems with
1782 	 * adding mux_node entry past the end of mux_nodes[].
1783 	 * For FIFO's we don't add an entry so this isn't a
1784 	 * problem.
1785 	 */
1786 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1787 	    (stpdown == stp) || (stpdown->sd_flag &
1788 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1789 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1790 	    (getmajor(stpdown->sd_vnode->v_rdev) >= devcnt)) ||
1791 	    linkcycle(stp, stpdown)) {
1792 		mutex_exit(&muxifier);
1793 		return (EINVAL);
1794 	}
1795 	TRACE_1(TR_FAC_STREAMS_FR,
1796 		TR_STPDOWN, "stpdown:%p", stpdown);
1797 	rq = getendq(stp->sd_wrq);
1798 	if (cmd == I_PLINK)
1799 		rq = NULL;
1800 
1801 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1802 
1803 	strioc.ic_cmd = cmd;
1804 	strioc.ic_timout = INFTIM;
1805 	strioc.ic_len = sizeof (struct linkblk);
1806 	strioc.ic_dp = (char *)&linkp->li_lblk;
1807 
1808 	/*
1809 	 * STRPLUMB protects plumbing changes and should be set before
1810 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1811 	 * and cleared in the end of mlink when passthru queue is removed.
1812 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1813 	 * queue is in-place (it is not a proper module and doesn't have open
1814 	 * entry point).
1815 	 *
1816 	 * STPLEX prevents any threads from entering the stream from above. It
1817 	 * can't be set before the call to link_addpassthru() because putnext
1818 	 * from below may cause stream head I/O routines to be called and these
1819 	 * routines assert that STPLEX is not set. After link_addpassthru()
1820 	 * nothing may come from below since the pass queue syncq is blocked.
1821 	 * Note also that STPLEX should be cleared before the call to
1822 	 * link_remmpassthru() since when messages start flowing to the stream
1823 	 * head (e.g. because of message propagation from the pass queue) stream
1824 	 * head I/O routines may be called with STPLEX flag set.
1825 	 *
1826 	 * When STPLEX is set, nothing may come into the stream from above and
1827 	 * it is safe to do a setq which will change stream head. So, the
1828 	 * correct sequence of actions is:
1829 	 *
1830 	 * 1) Set STRPLUMB
1831 	 * 2) Call link_addpassthru()
1832 	 * 3) Set STPLEX
1833 	 * 4) Call setq and update the stream state
1834 	 * 5) Clear STPLEX
1835 	 * 6) Call link_rempassthru()
1836 	 * 7) Clear STRPLUMB
1837 	 *
1838 	 * The same sequence applies to munlink() code.
1839 	 */
1840 	mutex_enter(&stpdown->sd_lock);
1841 	stpdown->sd_flag |= STRPLUMB;
1842 	mutex_exit(&stpdown->sd_lock);
1843 	/*
1844 	 * Add passthru queue below lower mux. This will block
1845 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1846 	 */
1847 	passq = link_addpassthru(stpdown);
1848 
1849 	mutex_enter(&stpdown->sd_lock);
1850 	stpdown->sd_flag |= STPLEX;
1851 	mutex_exit(&stpdown->sd_lock);
1852 
1853 	rq = _RD(stpdown->sd_wrq);
1854 	/*
1855 	 * There may be messages in the streamhead's syncq due to messages
1856 	 * that arrived before link_addpassthru() was done. To avoid
1857 	 * background processing of the syncq happening simultaneous with
1858 	 * setq processing, we disable the streamhead syncq and wait until
1859 	 * existing background thread finishes working on it.
1860 	 */
1861 	wait_sq_svc(rq->q_syncq);
1862 	passyncq = passq->q_syncq;
1863 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1864 		blocksq(passyncq, SQ_BLOCKED, 0);
1865 
1866 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1867 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1868 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1869 
1870 	/* setq might sleep in allocator - avoid holding locks. */
1871 	/* Note: we are holding muxifier here. */
1872 
1873 	str = stp->sd_strtab;
1874 	dp = &devimpl[getmajor(vp->v_rdev)];
1875 	ASSERT(dp->d_str == str);
1876 
1877 	qflag = dp->d_qflag;
1878 	sqtype = dp->d_sqtype;
1879 
1880 	/* create perdm_t if needed */
1881 	if (NEED_DM(dp->d_dmp, qflag))
1882 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1883 
1884 	dmp = dp->d_dmp;
1885 
1886 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1887 	    B_TRUE);
1888 
1889 	/*
1890 	 * XXX Remove any "odd" messages from the queue.
1891 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1892 	 */
1893 	error = strdoioctl(stp, &strioc, FNATIVE,
1894 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1895 	if (error != 0) {
1896 		lbfree(linkp);
1897 
1898 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1899 			blocksq(passyncq, SQ_BLOCKED, 0);
1900 		/*
1901 		 * Restore the stream head queue and then remove
1902 		 * the passq. Turn off STPLEX before we turn on
1903 		 * the stream by removing the passq.
1904 		 */
1905 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1906 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1907 		    B_TRUE);
1908 
1909 		mutex_enter(&stpdown->sd_lock);
1910 		stpdown->sd_flag &= ~STPLEX;
1911 		mutex_exit(&stpdown->sd_lock);
1912 
1913 		link_rempassthru(passq);
1914 
1915 		mutex_enter(&stpdown->sd_lock);
1916 		stpdown->sd_flag &= ~STRPLUMB;
1917 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1918 		cv_broadcast(&stpdown->sd_monitor);
1919 		mutex_exit(&stpdown->sd_lock);
1920 
1921 		mutex_exit(&muxifier);
1922 		return (error);
1923 	}
1924 	mutex_enter(&fpdown->f_tlock);
1925 	fpdown->f_count++;
1926 	mutex_exit(&fpdown->f_tlock);
1927 
1928 	/*
1929 	 * if we've made it here the linkage is all set up so we should also
1930 	 * set up the layered driver linkages
1931 	 */
1932 
1933 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1934 	if (cmd == I_LINK) {
1935 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1936 	} else {
1937 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1938 	}
1939 
1940 	link_rempassthru(passq);
1941 
1942 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index);
1943 
1944 	/*
1945 	 * Mark the upper stream as having dependent links
1946 	 * so that strclose can clean it up.
1947 	 */
1948 	if (cmd == I_LINK) {
1949 		mutex_enter(&stp->sd_lock);
1950 		stp->sd_flag |= STRHASLINKS;
1951 		mutex_exit(&stp->sd_lock);
1952 	}
1953 	/*
1954 	 * Wake up any other processes that may have been
1955 	 * waiting on the lower stream. These will all
1956 	 * error out.
1957 	 */
1958 	mutex_enter(&stpdown->sd_lock);
1959 	/* The passthru module is removed so we may release STRPLUMB */
1960 	stpdown->sd_flag &= ~STRPLUMB;
1961 	cv_broadcast(&rq->q_wait);
1962 	cv_broadcast(&_WR(rq)->q_wait);
1963 	cv_broadcast(&stpdown->sd_monitor);
1964 	mutex_exit(&stpdown->sd_lock);
1965 	mutex_exit(&muxifier);
1966 	*rvalp = linkp->li_lblk.l_index;
1967 	return (0);
1968 }
1969 
1970 int
1971 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1972 {
1973 	int		ret;
1974 	struct file	*fpdown;
1975 
1976 	fpdown = getf(arg);
1977 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1978 	if (fpdown != NULL)
1979 		releasef(arg);
1980 	return (ret);
1981 }
1982 
1983 /*
1984  * Unlink a multiplexor link. Stp is the controlling stream for the
1985  * link, and linkp points to the link's entry in the linkinfo list.
1986  * The muxifier lock must be held on entry and is dropped on exit.
1987  *
1988  * NOTE : Currently it is assumed that mux would process all the messages
1989  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
1990  * of the mux to handle all the messages that arrive before UNLINK.
1991  * If the mux has to send down messages on its lower stream before
1992  * ACKing I_UNLINK, then it *should* know to handle messages even
1993  * after the UNLINK is acked (actually it should be able to handle till we
1994  * re-block the read side of the pass queue here). If the mux does not
1995  * open up the lower stream, any messages that arrive during UNLINK
1996  * will be put in the stream head. In the case of lower stream opening
1997  * up, some messages might land in the stream head depending on when
1998  * the message arrived and when the read side of the pass queue was
1999  * re-blocked.
2000  */
2001 int
2002 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp)
2003 {
2004 	struct strioctl strioc;
2005 	struct stdata *stpdown;
2006 	queue_t *rq, *wrq;
2007 	queue_t	*passq;
2008 	syncq_t *passyncq;
2009 	int error = 0;
2010 	file_t *fpdown;
2011 
2012 	ASSERT(MUTEX_HELD(&muxifier));
2013 
2014 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2015 
2016 	/*
2017 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2018 	 */
2019 	mutex_enter(&stpdown->sd_lock);
2020 	stpdown->sd_flag |= STRPLUMB;
2021 	mutex_exit(&stpdown->sd_lock);
2022 
2023 	/*
2024 	 * Add passthru queue below lower mux. This will block
2025 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2026 	 */
2027 	passq = link_addpassthru(stpdown);
2028 
2029 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2030 		strioc.ic_cmd = I_UNLINK;
2031 	else
2032 		strioc.ic_cmd = I_PUNLINK;
2033 	strioc.ic_timout = INFTIM;
2034 	strioc.ic_len = sizeof (struct linkblk);
2035 	strioc.ic_dp = (char *)&linkp->li_lblk;
2036 
2037 	error = strdoioctl(stp, &strioc, FNATIVE,
2038 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2039 
2040 	/*
2041 	 * If there was an error and this is not called via strclose,
2042 	 * return to the user. Otherwise, pretend there was no error
2043 	 * and close the link.
2044 	 */
2045 	if (error) {
2046 		if (flag & LINKCLOSE) {
2047 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2048 			    "unlink ioctl, closing anyway (%d)\n", error);
2049 		} else {
2050 			link_rempassthru(passq);
2051 			mutex_enter(&stpdown->sd_lock);
2052 			stpdown->sd_flag &= ~STRPLUMB;
2053 			cv_broadcast(&stpdown->sd_monitor);
2054 			mutex_exit(&stpdown->sd_lock);
2055 			mutex_exit(&muxifier);
2056 			return (error);
2057 		}
2058 	}
2059 
2060 	mux_rmvedge(stp, linkp->li_lblk.l_index);
2061 	fpdown = linkp->li_fpdown;
2062 	lbfree(linkp);
2063 
2064 	/*
2065 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2066 	 * can slow others down. It's okay to since attempts to mlink() this
2067 	 * stream will be stopped because STPLEX is still set in the stdata
2068 	 * structure, and munlink() is stopped because mux_rmvedge() and
2069 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2070 	 * respectively.  Note that we defer the closef() of fpdown until
2071 	 * after we drop muxifier since strclose() can call munlinkall().
2072 	 */
2073 	mutex_exit(&muxifier);
2074 
2075 	wrq = stpdown->sd_wrq;
2076 	rq = _RD(wrq);
2077 
2078 	/*
2079 	 * Get rid of outstanding service procedure runs, before we make
2080 	 * it a stream head, since a stream head doesn't have any service
2081 	 * procedure.
2082 	 */
2083 	disable_svc(rq);
2084 	wait_svc(rq);
2085 
2086 	/*
2087 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2088 	 * is queued up to be finished. mux should take care that nothing is
2089 	 * send down to this queue. We should do it now as we're going to block
2090 	 * passyncq if it was unblocked.
2091 	 */
2092 	if (wrq->q_flag & QPERMOD) {
2093 		syncq_t	*sq = wrq->q_syncq;
2094 
2095 		mutex_enter(SQLOCK(sq));
2096 		while (wrq->q_sqflags & Q_SQQUEUED) {
2097 			sq->sq_flags |= SQ_WANTWAKEUP;
2098 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2099 		}
2100 		mutex_exit(SQLOCK(sq));
2101 	}
2102 	passyncq = passq->q_syncq;
2103 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2104 
2105 		syncq_t *sq, *outer;
2106 
2107 		/*
2108 		 * Messages could be flowing from underneath. We will
2109 		 * block the read side of the passq. This would be
2110 		 * sufficient for QPAIR and QPERQ muxes to ensure
2111 		 * that no data is flowing up into this queue
2112 		 * and hence no thread active in this instance of
2113 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2114 		 * could be messages on the inner and outer/inner
2115 		 * syncqs respectively. We will wait for them to drain.
2116 		 * Because passq is blocked messages end up in the syncq
2117 		 * And qfill_syncq could possibly end up setting QFULL
2118 		 * which will access the rq->q_flag. Hence, we have to
2119 		 * acquire the QLOCK in setq.
2120 		 *
2121 		 * XXX Messages can also flow from top into this
2122 		 * queue though the unlink is over (Ex. some instance
2123 		 * in putnext() called from top that has still not
2124 		 * accessed this queue. And also putq(lowerq) ?).
2125 		 * Solution : How about blocking the l_qtop queue ?
2126 		 * Do we really care about such pure D_MP muxes ?
2127 		 */
2128 
2129 		blocksq(passyncq, SQ_BLOCKED, 0);
2130 
2131 		sq = rq->q_syncq;
2132 		if ((outer = sq->sq_outer) != NULL) {
2133 
2134 			/*
2135 			 * We have to just wait for the outer sq_count
2136 			 * drop to zero. As this does not prevent new
2137 			 * messages to enter the outer perimeter, this
2138 			 * is subject to starvation.
2139 			 *
2140 			 * NOTE :Because of blocksq above, messages could
2141 			 * be in the inner syncq only because of some
2142 			 * thread holding the outer perimeter exclusively.
2143 			 * Hence it would be sufficient to wait for the
2144 			 * exclusive holder of the outer perimeter to drain
2145 			 * the inner and outer syncqs. But we will not depend
2146 			 * on this feature and hence check the inner syncqs
2147 			 * separately.
2148 			 */
2149 			wait_syncq(outer);
2150 		}
2151 
2152 
2153 		/*
2154 		 * There could be messages destined for
2155 		 * this queue. Let the exclusive holder
2156 		 * drain it.
2157 		 */
2158 
2159 		wait_syncq(sq);
2160 		ASSERT((rq->q_flag & QPERMOD) ||
2161 			((rq->q_syncq->sq_head == NULL) &&
2162 			(_WR(rq)->q_syncq->sq_head == NULL)));
2163 	}
2164 
2165 	/*
2166 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2167 	 * case as we don't disable its syncq or remove it off the syncq
2168 	 * service list.
2169 	 */
2170 	if (rq->q_flag & QPERMOD) {
2171 		syncq_t	*sq = rq->q_syncq;
2172 
2173 		mutex_enter(SQLOCK(sq));
2174 		while (rq->q_sqflags & Q_SQQUEUED) {
2175 			sq->sq_flags |= SQ_WANTWAKEUP;
2176 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2177 		}
2178 		mutex_exit(SQLOCK(sq));
2179 	}
2180 
2181 	/*
2182 	 * flush_syncq changes states only when there is some messages to
2183 	 * free. ie when it returns non-zero value to return.
2184 	 */
2185 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2186 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2187 
2188 	/*
2189 	 * No body else should know about this queue now.
2190 	 * If the mux did not process the messages before
2191 	 * acking the I_UNLINK, free them now.
2192 	 */
2193 
2194 	flushq(rq, FLUSHALL);
2195 	flushq(_WR(rq), FLUSHALL);
2196 
2197 	/*
2198 	 * Convert the mux lower queue into a stream head queue.
2199 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2200 	 */
2201 	rq->q_ptr = wrq->q_ptr = stpdown;
2202 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2203 
2204 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2205 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2206 
2207 	enable_svc(rq);
2208 
2209 	/*
2210 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2211 	 * needs to be set to prevent reopen() of the stream - such reopen may
2212 	 * try to call non-existent pass queue open routine and panic.
2213 	 */
2214 	mutex_enter(&stpdown->sd_lock);
2215 	stpdown->sd_flag &= ~STPLEX;
2216 	mutex_exit(&stpdown->sd_lock);
2217 
2218 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2219 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2220 
2221 	/* clean up the layered driver linkages */
2222 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2223 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2224 	} else {
2225 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2226 	}
2227 
2228 	link_rempassthru(passq);
2229 
2230 	/*
2231 	 * Now all plumbing changes are finished and STRPLUMB is no
2232 	 * longer needed.
2233 	 */
2234 	mutex_enter(&stpdown->sd_lock);
2235 	stpdown->sd_flag &= ~STRPLUMB;
2236 	cv_broadcast(&stpdown->sd_monitor);
2237 	mutex_exit(&stpdown->sd_lock);
2238 
2239 	(void) closef(fpdown);
2240 	return (0);
2241 }
2242 
2243 /*
2244  * Unlink all multiplexor links for which stp is the controlling stream.
2245  * Return 0, or a non-zero errno on failure.
2246  */
2247 int
2248 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp)
2249 {
2250 	linkinfo_t *linkp;
2251 	int error = 0;
2252 
2253 	mutex_enter(&muxifier);
2254 	while (linkp = findlinks(stp, 0, flag)) {
2255 		/*
2256 		 * munlink() releases the muxifier lock.
2257 		 */
2258 		if (error = munlink(stp, linkp, flag, crp, rvalp))
2259 			return (error);
2260 		mutex_enter(&muxifier);
2261 	}
2262 	mutex_exit(&muxifier);
2263 	return (0);
2264 }
2265 
2266 /*
2267  * A multiplexor link has been made. Add an
2268  * edge to the directed graph.
2269  */
2270 void
2271 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid)
2272 {
2273 	struct mux_node *np;
2274 	struct mux_edge *ep;
2275 	major_t upmaj;
2276 	major_t lomaj;
2277 
2278 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2279 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2280 	np = &mux_nodes[upmaj];
2281 	if (np->mn_outp) {
2282 		ep = np->mn_outp;
2283 		while (ep->me_nextp)
2284 			ep = ep->me_nextp;
2285 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2286 		ep = ep->me_nextp;
2287 	} else {
2288 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2289 		ep = np->mn_outp;
2290 	}
2291 	ep->me_nextp = NULL;
2292 	ep->me_muxid = muxid;
2293 	if (lostp->sd_vnode->v_type == VFIFO)
2294 		ep->me_nodep = NULL;
2295 	else
2296 		ep->me_nodep = &mux_nodes[lomaj];
2297 }
2298 
2299 /*
2300  * A multiplexor link has been removed. Remove the
2301  * edge in the directed graph.
2302  */
2303 void
2304 mux_rmvedge(stdata_t *upstp, int muxid)
2305 {
2306 	struct mux_node *np;
2307 	struct mux_edge *ep;
2308 	struct mux_edge *pep = NULL;
2309 	major_t upmaj;
2310 
2311 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2312 	np = &mux_nodes[upmaj];
2313 	ASSERT(np->mn_outp != NULL);
2314 	ep = np->mn_outp;
2315 	while (ep) {
2316 		if (ep->me_muxid == muxid) {
2317 			if (pep)
2318 				pep->me_nextp = ep->me_nextp;
2319 			else
2320 				np->mn_outp = ep->me_nextp;
2321 			kmem_free(ep, sizeof (struct mux_edge));
2322 			return;
2323 		}
2324 		pep = ep;
2325 		ep = ep->me_nextp;
2326 	}
2327 	ASSERT(0);	/* should not reach here */
2328 }
2329 
2330 /*
2331  * Translate the device flags (from conf.h) to the corresponding
2332  * qflag and sq_flag (type) values.
2333  */
2334 int
2335 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2336 	uint32_t *sqtypep)
2337 {
2338 	uint32_t qflag = 0;
2339 	uint32_t sqtype = 0;
2340 
2341 	if (devflag & _D_OLD)
2342 		goto bad;
2343 
2344 	/* Inner perimeter presence and scope */
2345 	switch (devflag & D_MTINNER_MASK) {
2346 	case D_MP:
2347 		qflag |= QMTSAFE;
2348 		sqtype |= SQ_CI;
2349 		break;
2350 	case D_MTPERQ|D_MP:
2351 		qflag |= QPERQ;
2352 		break;
2353 	case D_MTQPAIR|D_MP:
2354 		qflag |= QPAIR;
2355 		break;
2356 	case D_MTPERMOD|D_MP:
2357 		qflag |= QPERMOD;
2358 		break;
2359 	default:
2360 		goto bad;
2361 	}
2362 
2363 	/* Outer perimeter */
2364 	if (devflag & D_MTOUTPERIM) {
2365 		switch (devflag & D_MTINNER_MASK) {
2366 		case D_MP:
2367 		case D_MTPERQ|D_MP:
2368 		case D_MTQPAIR|D_MP:
2369 			break;
2370 		default:
2371 			goto bad;
2372 		}
2373 		qflag |= QMTOUTPERIM;
2374 	}
2375 
2376 	/* Inner perimeter modifiers */
2377 	if (devflag & D_MTINNER_MOD) {
2378 		switch (devflag & D_MTINNER_MASK) {
2379 		case D_MP:
2380 			goto bad;
2381 		default:
2382 			break;
2383 		}
2384 		if (devflag & D_MTPUTSHARED)
2385 			sqtype |= SQ_CIPUT;
2386 		if (devflag & _D_MTOCSHARED) {
2387 			/*
2388 			 * The code in putnext assumes that it has the
2389 			 * highest concurrency by not checking sq_count.
2390 			 * Thus _D_MTOCSHARED can only be supported when
2391 			 * D_MTPUTSHARED is set.
2392 			 */
2393 			if (!(devflag & D_MTPUTSHARED))
2394 				goto bad;
2395 			sqtype |= SQ_CIOC;
2396 		}
2397 		if (devflag & _D_MTCBSHARED) {
2398 			/*
2399 			 * The code in putnext assumes that it has the
2400 			 * highest concurrency by not checking sq_count.
2401 			 * Thus _D_MTCBSHARED can only be supported when
2402 			 * D_MTPUTSHARED is set.
2403 			 */
2404 			if (!(devflag & D_MTPUTSHARED))
2405 				goto bad;
2406 			sqtype |= SQ_CICB;
2407 		}
2408 		if (devflag & _D_MTSVCSHARED) {
2409 			/*
2410 			 * The code in putnext assumes that it has the
2411 			 * highest concurrency by not checking sq_count.
2412 			 * Thus _D_MTSVCSHARED can only be supported when
2413 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2414 			 * supported only for QPERMOD.
2415 			 */
2416 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2417 				goto bad;
2418 			sqtype |= SQ_CISVC;
2419 		}
2420 	}
2421 
2422 	/* Default outer perimeter concurrency */
2423 	sqtype |= SQ_CO;
2424 
2425 	/* Outer perimeter modifiers */
2426 	if (devflag & D_MTOCEXCL) {
2427 		if (!(devflag & D_MTOUTPERIM)) {
2428 			/* No outer perimeter */
2429 			goto bad;
2430 		}
2431 		sqtype &= ~SQ_COOC;
2432 	}
2433 
2434 	/* Synchronous Streams extended qinit structure */
2435 	if (devflag & D_SYNCSTR)
2436 		qflag |= QSYNCSTR;
2437 
2438 	*qflagp = qflag;
2439 	*sqtypep = sqtype;
2440 	return (0);
2441 
2442 bad:
2443 	cmn_err(CE_WARN,
2444 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2445 	    (int)(qflag & D_MTSAFETY_MASK),
2446 	    stp->st_rdinit->qi_minfo->mi_idname);
2447 
2448 	return (EINVAL);
2449 }
2450 
2451 /*
2452  * Set the interface values for a pair of queues (qinit structure,
2453  * packet sizes, water marks).
2454  * setq assumes that the caller does not have a claim (entersq or claimq)
2455  * on the queue.
2456  */
2457 void
2458 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2459     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2460 {
2461 	queue_t *wq;
2462 	syncq_t	*sq, *outer;
2463 
2464 	ASSERT(rq->q_flag & QREADR);
2465 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2466 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2467 
2468 	wq = _WR(rq);
2469 	rq->q_qinfo = rinit;
2470 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2471 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2472 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2473 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2474 	wq->q_qinfo = winit;
2475 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2476 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2477 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2478 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2479 
2480 	/* Remove old syncqs */
2481 	sq = rq->q_syncq;
2482 	outer = sq->sq_outer;
2483 	if (outer != NULL) {
2484 		ASSERT(wq->q_syncq->sq_outer == outer);
2485 		outer_remove(outer, rq->q_syncq);
2486 		if (wq->q_syncq != rq->q_syncq)
2487 			outer_remove(outer, wq->q_syncq);
2488 	}
2489 	ASSERT(sq->sq_outer == NULL);
2490 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2491 
2492 	if (sq != SQ(rq)) {
2493 		if (!(rq->q_flag & QPERMOD))
2494 			free_syncq(sq);
2495 		if (wq->q_syncq == rq->q_syncq)
2496 			wq->q_syncq = NULL;
2497 		rq->q_syncq = NULL;
2498 	}
2499 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2500 	    wq->q_syncq != SQ(rq)) {
2501 		free_syncq(wq->q_syncq);
2502 		wq->q_syncq = NULL;
2503 	}
2504 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2505 				rq->q_syncq->sq_tail == NULL));
2506 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2507 				wq->q_syncq->sq_tail == NULL));
2508 
2509 	if (!(rq->q_flag & QPERMOD) &&
2510 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2511 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2512 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2513 		    rq->q_syncq->sq_nciputctrl, 0);
2514 		ASSERT(ciputctrl_cache != NULL);
2515 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2516 		rq->q_syncq->sq_ciputctrl = NULL;
2517 		rq->q_syncq->sq_nciputctrl = 0;
2518 	}
2519 
2520 	if (!(wq->q_flag & QPERMOD) &&
2521 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2522 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2523 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2524 		    wq->q_syncq->sq_nciputctrl, 0);
2525 		ASSERT(ciputctrl_cache != NULL);
2526 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2527 		wq->q_syncq->sq_ciputctrl = NULL;
2528 		wq->q_syncq->sq_nciputctrl = 0;
2529 	}
2530 
2531 	sq = SQ(rq);
2532 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2533 	ASSERT(sq->sq_outer == NULL);
2534 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2535 
2536 	/*
2537 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2538 	 * bits in sq_flag based on the sqtype.
2539 	 */
2540 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2541 
2542 	rq->q_syncq = wq->q_syncq = sq;
2543 	sq->sq_type = sqtype;
2544 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2545 
2546 	/*
2547 	 *  We are making sq_svcflags zero,
2548 	 *  resetting SQ_DISABLED in case it was set by
2549 	 *  wait_svc() in the munlink path.
2550 	 *
2551 	 */
2552 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2553 	sq->sq_svcflags = 0;
2554 
2555 	/*
2556 	 * We need to acquire the lock here for the mlink and munlink case,
2557 	 * where canputnext, backenable, etc can access the q_flag.
2558 	 */
2559 	if (lock_needed) {
2560 		mutex_enter(QLOCK(rq));
2561 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2562 		mutex_exit(QLOCK(rq));
2563 		mutex_enter(QLOCK(wq));
2564 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2565 		mutex_exit(QLOCK(wq));
2566 	} else {
2567 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2568 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2569 	}
2570 
2571 	if (qflag & QPERQ) {
2572 		/* Allocate a separate syncq for the write side */
2573 		sq = new_syncq();
2574 		sq->sq_type = rq->q_syncq->sq_type;
2575 		sq->sq_flags = rq->q_syncq->sq_flags;
2576 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2577 		    sq->sq_oprev == NULL);
2578 		wq->q_syncq = sq;
2579 	}
2580 	if (qflag & QPERMOD) {
2581 		sq = dmp->dm_sq;
2582 
2583 		/*
2584 		 * Assert that we do have an inner perimeter syncq and that it
2585 		 * does not have an outer perimeter associated with it.
2586 		 */
2587 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2588 		    sq->sq_oprev == NULL);
2589 		rq->q_syncq = wq->q_syncq = sq;
2590 	}
2591 	if (qflag & QMTOUTPERIM) {
2592 		outer = dmp->dm_sq;
2593 
2594 		ASSERT(outer->sq_outer == NULL);
2595 		outer_insert(outer, rq->q_syncq);
2596 		if (wq->q_syncq != rq->q_syncq)
2597 			outer_insert(outer, wq->q_syncq);
2598 	}
2599 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2600 		(rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2601 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2602 		(wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2603 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2604 
2605 	/*
2606 	 * Initialize struio() types.
2607 	 */
2608 	rq->q_struiot =
2609 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2610 	wq->q_struiot =
2611 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2612 }
2613 
2614 perdm_t *
2615 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2616 {
2617 	syncq_t	*sq;
2618 	perdm_t	**pp;
2619 	perdm_t	*p;
2620 	perdm_t	*dmp;
2621 
2622 	ASSERT(str != NULL);
2623 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2624 
2625 	rw_enter(&perdm_rwlock, RW_READER);
2626 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2627 		if (p->dm_str == str) {	/* found one */
2628 			atomic_add_32(&(p->dm_ref), 1);
2629 			rw_exit(&perdm_rwlock);
2630 			return (p);
2631 		}
2632 	}
2633 	rw_exit(&perdm_rwlock);
2634 
2635 	sq = new_syncq();
2636 	if (qflag & QPERMOD) {
2637 		sq->sq_type = sqtype | SQ_PERMOD;
2638 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2639 	} else {
2640 		ASSERT(qflag & QMTOUTPERIM);
2641 		sq->sq_onext = sq->sq_oprev = sq;
2642 	}
2643 
2644 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2645 	dmp->dm_sq = sq;
2646 	dmp->dm_str = str;
2647 	dmp->dm_ref = 1;
2648 	dmp->dm_next = NULL;
2649 
2650 	rw_enter(&perdm_rwlock, RW_WRITER);
2651 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2652 		if (p->dm_str == str) {	/* already present */
2653 			p->dm_ref++;
2654 			rw_exit(&perdm_rwlock);
2655 			free_syncq(sq);
2656 			kmem_free(dmp, sizeof (perdm_t));
2657 			return (p);
2658 		}
2659 	}
2660 
2661 	*pp = dmp;
2662 	rw_exit(&perdm_rwlock);
2663 	return (dmp);
2664 }
2665 
2666 void
2667 rele_dm(perdm_t *dmp)
2668 {
2669 	perdm_t **pp;
2670 	perdm_t *p;
2671 
2672 	rw_enter(&perdm_rwlock, RW_WRITER);
2673 	ASSERT(dmp->dm_ref > 0);
2674 
2675 	if (--dmp->dm_ref > 0) {
2676 		rw_exit(&perdm_rwlock);
2677 		return;
2678 	}
2679 
2680 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2681 		if (p == dmp)
2682 			break;
2683 	ASSERT(p == dmp);
2684 	*pp = p->dm_next;
2685 	rw_exit(&perdm_rwlock);
2686 
2687 	/*
2688 	 * Wait for any background processing that relies on the
2689 	 * syncq to complete before it is freed.
2690 	 */
2691 	wait_sq_svc(p->dm_sq);
2692 	free_syncq(p->dm_sq);
2693 	kmem_free(p, sizeof (perdm_t));
2694 }
2695 
2696 /*
2697  * Make a protocol message given control and data buffers.
2698  * n.b., this can block; be careful of what locks you hold when calling it.
2699  *
2700  * If sd_maxblk is less than *iosize this routine can fail part way through
2701  * (due to an allocation failure). In this case on return *iosize will contain
2702  * the amount that was consumed. Otherwise *iosize will not be modified
2703  * i.e. it will contain the amount that was consumed.
2704  */
2705 int
2706 strmakemsg(
2707 	struct strbuf *mctl,
2708 	ssize_t *iosize,
2709 	struct uio *uiop,
2710 	stdata_t *stp,
2711 	int32_t flag,
2712 	mblk_t **mpp)
2713 {
2714 	mblk_t *mpctl = NULL;
2715 	mblk_t *mpdata = NULL;
2716 	int error;
2717 
2718 	ASSERT(uiop != NULL);
2719 
2720 	*mpp = NULL;
2721 	/* Create control part, if any */
2722 	if ((mctl != NULL) && (mctl->len >= 0)) {
2723 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2724 		if (error)
2725 			return (error);
2726 	}
2727 	/* Create data part, if any */
2728 	if (*iosize >= 0) {
2729 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2730 		if (error) {
2731 			freemsg(mpctl);
2732 			return (error);
2733 		}
2734 	}
2735 	if (mpctl != NULL) {
2736 		if (mpdata != NULL)
2737 			linkb(mpctl, mpdata);
2738 		*mpp = mpctl;
2739 	} else {
2740 		*mpp = mpdata;
2741 	}
2742 	return (0);
2743 }
2744 
2745 /*
2746  * Make the control part of a protocol message given a control buffer.
2747  * n.b., this can block; be careful of what locks you hold when calling it.
2748  */
2749 int
2750 strmakectl(
2751 	struct strbuf *mctl,
2752 	int32_t flag,
2753 	int32_t fflag,
2754 	mblk_t **mpp)
2755 {
2756 	mblk_t *bp = NULL;
2757 	unsigned char msgtype;
2758 	int error = 0;
2759 
2760 	*mpp = NULL;
2761 	/*
2762 	 * Create control part of message, if any.
2763 	 */
2764 	if ((mctl != NULL) && (mctl->len >= 0)) {
2765 		caddr_t base;
2766 		int ctlcount;
2767 		int allocsz;
2768 
2769 		if (flag & RS_HIPRI)
2770 			msgtype = M_PCPROTO;
2771 		else
2772 			msgtype = M_PROTO;
2773 
2774 		ctlcount = mctl->len;
2775 		base = mctl->buf;
2776 
2777 		/*
2778 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2779 		 * blocks by increasing the size to something more usable.
2780 		 */
2781 		allocsz = MAX(ctlcount, 64);
2782 
2783 		/*
2784 		 * Range checking has already been done; simply try
2785 		 * to allocate a message block for the ctl part.
2786 		 */
2787 		while (!(bp = allocb(allocsz, BPRI_MED))) {
2788 			if (fflag & (FNDELAY|FNONBLOCK))
2789 				return (EAGAIN);
2790 			if (error = strwaitbuf(allocsz, BPRI_MED))
2791 				return (error);
2792 		}
2793 
2794 		bp->b_datap->db_type = msgtype;
2795 		if (copyin(base, bp->b_wptr, ctlcount)) {
2796 			freeb(bp);
2797 			return (EFAULT);
2798 		}
2799 		bp->b_wptr += ctlcount;
2800 	}
2801 	*mpp = bp;
2802 	return (0);
2803 }
2804 
2805 /*
2806  * Make a protocol message given data buffers.
2807  * n.b., this can block; be careful of what locks you hold when calling it.
2808  *
2809  * If sd_maxblk is less than *iosize this routine can fail part way through
2810  * (due to an allocation failure). In this case on return *iosize will contain
2811  * the amount that was consumed. Otherwise *iosize will not be modified
2812  * i.e. it will contain the amount that was consumed.
2813  */
2814 int
2815 strmakedata(
2816 	ssize_t   *iosize,
2817 	struct uio *uiop,
2818 	stdata_t *stp,
2819 	int32_t flag,
2820 	mblk_t **mpp)
2821 {
2822 	mblk_t *mp = NULL;
2823 	mblk_t *bp;
2824 	int wroff = (int)stp->sd_wroff;
2825 	int error = 0;
2826 	ssize_t maxblk;
2827 	ssize_t count = *iosize;
2828 	cred_t *cr = CRED();
2829 
2830 	*mpp = NULL;
2831 	if (count < 0)
2832 		return (0);
2833 
2834 	maxblk = stp->sd_maxblk;
2835 	if (maxblk == INFPSZ)
2836 		maxblk = count;
2837 
2838 	/*
2839 	 * Create data part of message, if any.
2840 	 */
2841 	do {
2842 		ssize_t size;
2843 		dblk_t  *dp;
2844 
2845 		ASSERT(uiop);
2846 
2847 		size = MIN(count, maxblk);
2848 
2849 		while ((bp = allocb_cred(size + wroff, cr)) == NULL) {
2850 			error = EAGAIN;
2851 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2852 			    (error = strwaitbuf(size + wroff, BPRI_MED)) != 0) {
2853 				if (count == *iosize) {
2854 					freemsg(mp);
2855 					return (error);
2856 				} else {
2857 					*iosize -= count;
2858 					*mpp = mp;
2859 					return (0);
2860 				}
2861 			}
2862 		}
2863 		dp = bp->b_datap;
2864 		dp->db_cpid = curproc->p_pid;
2865 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2866 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2867 
2868 		if (flag & STRUIO_POSTPONE) {
2869 			/*
2870 			 * Setup the stream uio portion of the
2871 			 * dblk for subsequent use by struioget().
2872 			 */
2873 			dp->db_struioflag = STRUIO_SPEC;
2874 			dp->db_cksumstart = 0;
2875 			dp->db_cksumstuff = 0;
2876 			dp->db_cksumend = size;
2877 			*(long long *)dp->db_struioun.data = 0ll;
2878 		} else {
2879 			if (stp->sd_copyflag & STRCOPYCACHED)
2880 				uiop->uio_extflg |= UIO_COPY_CACHED;
2881 
2882 			if (size != 0) {
2883 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2884 				    uiop);
2885 				if (error != 0) {
2886 					freeb(bp);
2887 					freemsg(mp);
2888 					return (error);
2889 				}
2890 			}
2891 		}
2892 
2893 		bp->b_wptr += size;
2894 		count -= size;
2895 
2896 		if (mp == NULL)
2897 			mp = bp;
2898 		else
2899 			linkb(mp, bp);
2900 	} while (count > 0);
2901 
2902 	*mpp = mp;
2903 	return (0);
2904 }
2905 
2906 /*
2907  * Wait for a buffer to become available. Return non-zero errno
2908  * if not able to wait, 0 if buffer is probably there.
2909  */
2910 int
2911 strwaitbuf(size_t size, int pri)
2912 {
2913 	bufcall_id_t id;
2914 
2915 	mutex_enter(&bcall_monitor);
2916 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2917 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2918 		mutex_exit(&bcall_monitor);
2919 		return (ENOSR);
2920 	}
2921 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2922 		unbufcall(id);
2923 		mutex_exit(&bcall_monitor);
2924 		return (EINTR);
2925 	}
2926 	unbufcall(id);
2927 	mutex_exit(&bcall_monitor);
2928 	return (0);
2929 }
2930 
2931 /*
2932  * This function waits for a read or write event to happen on a stream.
2933  * fmode can specify FNDELAY and/or FNONBLOCK.
2934  * The timeout is in ms with -1 meaning infinite.
2935  * The flag values work as follows:
2936  *	READWAIT	Check for read side errors, send M_READ
2937  *	GETWAIT		Check for read side errors, no M_READ
2938  *	WRITEWAIT	Check for write side errors.
2939  *	NOINTR		Do not return error if nonblocking or timeout.
2940  * 	STR_NOERROR	Ignore all errors except STPLEX.
2941  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
2942  *	STR_PEEK	Pass through the strgeterr().
2943  */
2944 int
2945 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
2946     int *done)
2947 {
2948 	int slpflg, errs;
2949 	int error;
2950 	kcondvar_t *sleepon;
2951 	mblk_t *mp;
2952 	ssize_t *rd_count;
2953 	clock_t rval;
2954 
2955 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2956 	if ((flag & READWAIT) || (flag & GETWAIT)) {
2957 		slpflg = RSLEEP;
2958 		sleepon = &_RD(stp->sd_wrq)->q_wait;
2959 		errs = STRDERR|STPLEX;
2960 	} else {
2961 		slpflg = WSLEEP;
2962 		sleepon = &stp->sd_wrq->q_wait;
2963 		errs = STWRERR|STRHUP|STPLEX;
2964 	}
2965 	if (flag & STR_NOERROR)
2966 		errs = STPLEX;
2967 
2968 	if (stp->sd_wakeq & slpflg) {
2969 		/*
2970 		 * A strwakeq() is pending, no need to sleep.
2971 		 */
2972 		stp->sd_wakeq &= ~slpflg;
2973 		*done = 0;
2974 		return (0);
2975 	}
2976 
2977 	if (fmode & (FNDELAY|FNONBLOCK)) {
2978 		if (!(flag & NOINTR))
2979 			error = EAGAIN;
2980 		else
2981 			error = 0;
2982 		*done = 1;
2983 		return (error);
2984 	}
2985 
2986 	if (stp->sd_flag & errs) {
2987 		/*
2988 		 * Check for errors before going to sleep since the
2989 		 * caller might not have checked this while holding
2990 		 * sd_lock.
2991 		 */
2992 		error = strgeterr(stp, errs, (flag & STR_PEEK));
2993 		if (error != 0) {
2994 			*done = 1;
2995 			return (error);
2996 		}
2997 	}
2998 
2999 	/*
3000 	 * If any module downstream has requested read notification
3001 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3002 	 * down stream.
3003 	 */
3004 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3005 		mutex_exit(&stp->sd_lock);
3006 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3007 		    (flag & STR_NOSIG), &error))) {
3008 			mutex_enter(&stp->sd_lock);
3009 			*done = 1;
3010 			return (error);
3011 		}
3012 		mp->b_datap->db_type = M_READ;
3013 		rd_count = (ssize_t *)mp->b_wptr;
3014 		*rd_count = count;
3015 		mp->b_wptr += sizeof (ssize_t);
3016 		/*
3017 		 * Send the number of bytes requested by the
3018 		 * read as the argument to M_READ.
3019 		 */
3020 		stream_willservice(stp);
3021 		putnext(stp->sd_wrq, mp);
3022 		stream_runservice(stp);
3023 		mutex_enter(&stp->sd_lock);
3024 
3025 		/*
3026 		 * If any data arrived due to inline processing
3027 		 * of putnext(), don't sleep.
3028 		 */
3029 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3030 			*done = 0;
3031 			return (0);
3032 		}
3033 	}
3034 
3035 	stp->sd_flag |= slpflg;
3036 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3037 		"strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3038 		stp, flag, count, fmode, done);
3039 
3040 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3041 	if (rval > 0) {
3042 		/* EMPTY */
3043 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3044 			"strwaitq awakes(2):%X, %X, %X, %X, %X",
3045 			stp, flag, count, fmode, done);
3046 	} else if (rval == 0) {
3047 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3048 			"strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3049 			stp, flag, count, fmode, done);
3050 		stp->sd_flag &= ~slpflg;
3051 		cv_broadcast(sleepon);
3052 		if (!(flag & NOINTR))
3053 			error = EINTR;
3054 		else
3055 			error = 0;
3056 		*done = 1;
3057 		return (error);
3058 	} else {
3059 		/* timeout */
3060 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3061 			"strwaitq timeout:%p, %X, %lX, %X, %p",
3062 			stp, flag, count, fmode, done);
3063 		*done = 1;
3064 		if (!(flag & NOINTR))
3065 			return (ETIME);
3066 		else
3067 			return (0);
3068 	}
3069 	/*
3070 	 * If the caller implements delayed errors (i.e. queued after data)
3071 	 * we can not check for errors here since data as well as an
3072 	 * error might have arrived at the stream head. We return to
3073 	 * have the caller check the read queue before checking for errors.
3074 	 */
3075 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3076 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3077 		if (error != 0) {
3078 			*done = 1;
3079 			return (error);
3080 		}
3081 	}
3082 	*done = 0;
3083 	return (0);
3084 }
3085 
3086 /*
3087  * Perform job control discipline access checks.
3088  * Return 0 for success and the errno for failure.
3089  */
3090 
3091 #define	cantsend(p, t, sig) \
3092 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3093 
3094 int
3095 straccess(struct stdata *stp, enum jcaccess mode)
3096 {
3097 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3098 	kthread_t *t = curthread;
3099 	proc_t *p = ttoproc(t);
3100 	sess_t *sp;
3101 
3102 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3103 		return (0);
3104 
3105 	mutex_enter(&p->p_lock);
3106 	sp = p->p_sessp;
3107 
3108 	for (;;) {
3109 		/*
3110 		 * If this is not the calling process's controlling terminal
3111 		 * or if the calling process is already in the foreground
3112 		 * then allow access.
3113 		 */
3114 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3115 		    p->p_pgidp == stp->sd_pgidp) {
3116 			mutex_exit(&p->p_lock);
3117 			return (0);
3118 		}
3119 
3120 		/*
3121 		 * Check to see if controlling terminal has been deallocated.
3122 		 */
3123 		if (sp->s_vp == NULL) {
3124 			if (!cantsend(p, t, SIGHUP))
3125 				sigtoproc(p, t, SIGHUP);
3126 			mutex_exit(&p->p_lock);
3127 			return (EIO);
3128 		}
3129 
3130 		if (mode == JCGETP) {
3131 			mutex_exit(&p->p_lock);
3132 			return (0);
3133 		}
3134 
3135 		if (mode == JCREAD) {
3136 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3137 				mutex_exit(&p->p_lock);
3138 				return (EIO);
3139 			}
3140 			mutex_exit(&p->p_lock);
3141 			pgsignal(p->p_pgidp, SIGTTIN);
3142 			mutex_enter(&p->p_lock);
3143 		} else {  /* mode == JCWRITE or JCSETP */
3144 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3145 			    cantsend(p, t, SIGTTOU)) {
3146 				mutex_exit(&p->p_lock);
3147 				return (0);
3148 			}
3149 			if (p->p_detached) {
3150 				mutex_exit(&p->p_lock);
3151 				return (EIO);
3152 			}
3153 			mutex_exit(&p->p_lock);
3154 			pgsignal(p->p_pgidp, SIGTTOU);
3155 			mutex_enter(&p->p_lock);
3156 		}
3157 
3158 		/*
3159 		 * We call cv_wait_sig_swap() to cause the appropriate
3160 		 * action for the jobcontrol signal to take place.
3161 		 * If the signal is being caught, we will take the
3162 		 * EINTR error return.  Otherwise, the default action
3163 		 * of causing the process to stop will take place.
3164 		 * In this case, we rely on the periodic cv_broadcast() on
3165 		 * &lbolt_cv to wake us up to loop around and test again.
3166 		 * We can't get here if the signal is ignored or
3167 		 * if the current thread is blocking the signal.
3168 		 */
3169 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3170 			mutex_exit(&p->p_lock);
3171 			return (EINTR);
3172 		}
3173 	}
3174 }
3175 
3176 /*
3177  * Return size of message of block type (bp->b_datap->db_type)
3178  */
3179 size_t
3180 xmsgsize(mblk_t *bp)
3181 {
3182 	unsigned char type;
3183 	size_t count = 0;
3184 
3185 	type = bp->b_datap->db_type;
3186 
3187 	for (; bp; bp = bp->b_cont) {
3188 		if (type != bp->b_datap->db_type)
3189 			break;
3190 		ASSERT(bp->b_wptr >= bp->b_rptr);
3191 		count += bp->b_wptr - bp->b_rptr;
3192 	}
3193 	return (count);
3194 }
3195 
3196 /*
3197  * Allocate a stream head.
3198  */
3199 struct stdata *
3200 shalloc(queue_t *qp)
3201 {
3202 	stdata_t *stp;
3203 
3204 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3205 
3206 	stp->sd_wrq = _WR(qp);
3207 	stp->sd_strtab = NULL;
3208 	stp->sd_iocid = 0;
3209 	stp->sd_mate = NULL;
3210 	stp->sd_freezer = NULL;
3211 	stp->sd_refcnt = 0;
3212 	stp->sd_wakeq = 0;
3213 	stp->sd_anchor = 0;
3214 	stp->sd_struiowrq = NULL;
3215 	stp->sd_struiordq = NULL;
3216 	stp->sd_struiodnak = 0;
3217 	stp->sd_struionak = NULL;
3218 #ifdef C2_AUDIT
3219 	stp->sd_t_audit_data = NULL;
3220 #endif
3221 	stp->sd_rput_opt = 0;
3222 	stp->sd_wput_opt = 0;
3223 	stp->sd_read_opt = 0;
3224 	stp->sd_rprotofunc = strrput_proto;
3225 	stp->sd_rmiscfunc = strrput_misc;
3226 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3227 	stp->sd_ciputctrl = NULL;
3228 	stp->sd_nciputctrl = 0;
3229 	stp->sd_qhead = NULL;
3230 	stp->sd_qtail = NULL;
3231 	stp->sd_servid = NULL;
3232 	stp->sd_nqueues = 0;
3233 	stp->sd_svcflags = 0;
3234 	stp->sd_copyflag = 0;
3235 	return (stp);
3236 }
3237 
3238 /*
3239  * Free a stream head.
3240  */
3241 void
3242 shfree(stdata_t *stp)
3243 {
3244 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3245 
3246 	stp->sd_wrq = NULL;
3247 
3248 	mutex_enter(&stp->sd_qlock);
3249 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3250 		STRSTAT(strwaits);
3251 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3252 	}
3253 	mutex_exit(&stp->sd_qlock);
3254 
3255 	if (stp->sd_ciputctrl != NULL) {
3256 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3257 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3258 		    stp->sd_nciputctrl, 0);
3259 		ASSERT(ciputctrl_cache != NULL);
3260 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3261 		stp->sd_ciputctrl = NULL;
3262 		stp->sd_nciputctrl = 0;
3263 	}
3264 	ASSERT(stp->sd_qhead == NULL);
3265 	ASSERT(stp->sd_qtail == NULL);
3266 	ASSERT(stp->sd_nqueues == 0);
3267 	kmem_cache_free(stream_head_cache, stp);
3268 }
3269 
3270 /*
3271  * Allocate a pair of queues and a syncq for the pair
3272  */
3273 queue_t *
3274 allocq(void)
3275 {
3276 	queinfo_t *qip;
3277 	queue_t *qp, *wqp;
3278 	syncq_t	*sq;
3279 
3280 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3281 
3282 	qp = &qip->qu_rqueue;
3283 	wqp = &qip->qu_wqueue;
3284 	sq = &qip->qu_syncq;
3285 
3286 	qp->q_last	= NULL;
3287 	qp->q_next	= NULL;
3288 	qp->q_ptr	= NULL;
3289 	qp->q_flag	= QUSE | QREADR;
3290 	qp->q_bandp	= NULL;
3291 	qp->q_stream	= NULL;
3292 	qp->q_syncq	= sq;
3293 	qp->q_nband	= 0;
3294 	qp->q_nfsrv	= NULL;
3295 	qp->q_draining	= 0;
3296 	qp->q_syncqmsgs	= 0;
3297 	qp->q_spri	= 0;
3298 	qp->q_qtstamp	= 0;
3299 	qp->q_sqtstamp	= 0;
3300 	qp->q_fp	= NULL;
3301 
3302 	wqp->q_last	= NULL;
3303 	wqp->q_next	= NULL;
3304 	wqp->q_ptr	= NULL;
3305 	wqp->q_flag	= QUSE;
3306 	wqp->q_bandp	= NULL;
3307 	wqp->q_stream	= NULL;
3308 	wqp->q_syncq	= sq;
3309 	wqp->q_nband	= 0;
3310 	wqp->q_nfsrv	= NULL;
3311 	wqp->q_draining	= 0;
3312 	wqp->q_syncqmsgs = 0;
3313 	wqp->q_qtstamp	= 0;
3314 	wqp->q_sqtstamp	= 0;
3315 	wqp->q_spri	= 0;
3316 
3317 	sq->sq_count	= 0;
3318 	sq->sq_rmqcount	= 0;
3319 	sq->sq_flags	= 0;
3320 	sq->sq_type	= 0;
3321 	sq->sq_callbflags = 0;
3322 	sq->sq_cancelid	= 0;
3323 	sq->sq_ciputctrl = NULL;
3324 	sq->sq_nciputctrl = 0;
3325 	sq->sq_needexcl = 0;
3326 	sq->sq_svcflags = 0;
3327 
3328 	return (qp);
3329 }
3330 
3331 /*
3332  * Free a pair of queues and the "attached" syncq.
3333  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3334  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3335  */
3336 void
3337 freeq(queue_t *qp)
3338 {
3339 	qband_t *qbp, *nqbp;
3340 	syncq_t *sq, *outer;
3341 	queue_t *wqp = _WR(qp);
3342 
3343 	ASSERT(qp->q_flag & QREADR);
3344 
3345 	(void) flush_syncq(qp->q_syncq, qp);
3346 	(void) flush_syncq(wqp->q_syncq, wqp);
3347 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3348 
3349 	outer = qp->q_syncq->sq_outer;
3350 	if (outer != NULL) {
3351 		outer_remove(outer, qp->q_syncq);
3352 		if (wqp->q_syncq != qp->q_syncq)
3353 			outer_remove(outer, wqp->q_syncq);
3354 	}
3355 	/*
3356 	 * Free any syncqs that are outside what allocq returned.
3357 	 */
3358 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3359 		free_syncq(qp->q_syncq);
3360 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3361 		free_syncq(wqp->q_syncq);
3362 
3363 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3364 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3365 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3366 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3367 	sq = SQ(qp);
3368 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3369 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3370 	ASSERT(sq->sq_outer == NULL);
3371 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3372 	ASSERT(sq->sq_callbpend == NULL);
3373 	ASSERT(sq->sq_needexcl == 0);
3374 
3375 	if (sq->sq_ciputctrl != NULL) {
3376 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3377 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3378 		    sq->sq_nciputctrl, 0);
3379 		ASSERT(ciputctrl_cache != NULL);
3380 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3381 		sq->sq_ciputctrl = NULL;
3382 		sq->sq_nciputctrl = 0;
3383 	}
3384 
3385 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3386 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3387 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3388 
3389 	qp->q_flag &= ~QUSE;
3390 	wqp->q_flag &= ~QUSE;
3391 
3392 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3393 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3394 
3395 	qbp = qp->q_bandp;
3396 	while (qbp) {
3397 		nqbp = qbp->qb_next;
3398 		freeband(qbp);
3399 		qbp = nqbp;
3400 	}
3401 	qbp = wqp->q_bandp;
3402 	while (qbp) {
3403 		nqbp = qbp->qb_next;
3404 		freeband(qbp);
3405 		qbp = nqbp;
3406 	}
3407 	kmem_cache_free(queue_cache, qp);
3408 }
3409 
3410 /*
3411  * Allocate a qband structure.
3412  */
3413 qband_t *
3414 allocband(void)
3415 {
3416 	qband_t *qbp;
3417 
3418 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3419 	if (qbp == NULL)
3420 		return (NULL);
3421 
3422 	qbp->qb_next	= NULL;
3423 	qbp->qb_count	= 0;
3424 	qbp->qb_mblkcnt	= 0;
3425 	qbp->qb_first	= NULL;
3426 	qbp->qb_last	= NULL;
3427 	qbp->qb_flag	= 0;
3428 
3429 	return (qbp);
3430 }
3431 
3432 /*
3433  * Free a qband structure.
3434  */
3435 void
3436 freeband(qband_t *qbp)
3437 {
3438 	kmem_cache_free(qband_cache, qbp);
3439 }
3440 
3441 /*
3442  * Just like putnextctl(9F), except that allocb_wait() is used.
3443  *
3444  * Consolidation Private, and of course only callable from the stream head or
3445  * routines that may block.
3446  */
3447 int
3448 putnextctl_wait(queue_t *q, int type)
3449 {
3450 	mblk_t *bp;
3451 	int error;
3452 
3453 	if ((datamsg(type) && (type != M_DELAY)) ||
3454 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3455 		return (0);
3456 
3457 	bp->b_datap->db_type = (unsigned char)type;
3458 	putnext(q, bp);
3459 	return (1);
3460 }
3461 
3462 /*
3463  * run any possible bufcalls.
3464  */
3465 void
3466 runbufcalls(void)
3467 {
3468 	strbufcall_t *bcp;
3469 
3470 	mutex_enter(&bcall_monitor);
3471 	mutex_enter(&strbcall_lock);
3472 
3473 	if (strbcalls.bc_head) {
3474 		size_t count;
3475 		int nevent;
3476 
3477 		/*
3478 		 * count how many events are on the list
3479 		 * now so we can check to avoid looping
3480 		 * in low memory situations
3481 		 */
3482 		nevent = 0;
3483 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3484 			nevent++;
3485 
3486 		/*
3487 		 * get estimate of available memory from kmem_avail().
3488 		 * awake all bufcall functions waiting for
3489 		 * memory whose request could be satisfied
3490 		 * by 'count' memory and let 'em fight for it.
3491 		 */
3492 		count = kmem_avail();
3493 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3494 			STRSTAT(bufcalls);
3495 			--nevent;
3496 			if (bcp->bc_size <= count) {
3497 				bcp->bc_executor = curthread;
3498 				mutex_exit(&strbcall_lock);
3499 				(*bcp->bc_func)(bcp->bc_arg);
3500 				mutex_enter(&strbcall_lock);
3501 				bcp->bc_executor = NULL;
3502 				cv_broadcast(&bcall_cv);
3503 				strbcalls.bc_head = bcp->bc_next;
3504 				kmem_free(bcp, sizeof (strbufcall_t));
3505 			} else {
3506 				/*
3507 				 * too big, try again later - note
3508 				 * that nevent was decremented above
3509 				 * so we won't retry this one on this
3510 				 * iteration of the loop
3511 				 */
3512 				if (bcp->bc_next != NULL) {
3513 					strbcalls.bc_head = bcp->bc_next;
3514 					bcp->bc_next = NULL;
3515 					strbcalls.bc_tail->bc_next = bcp;
3516 					strbcalls.bc_tail = bcp;
3517 				}
3518 			}
3519 		}
3520 		if (strbcalls.bc_head == NULL)
3521 			strbcalls.bc_tail = NULL;
3522 	}
3523 
3524 	mutex_exit(&strbcall_lock);
3525 	mutex_exit(&bcall_monitor);
3526 }
3527 
3528 
3529 /*
3530  * actually run queue's service routine.
3531  */
3532 static void
3533 runservice(queue_t *q)
3534 {
3535 	qband_t *qbp;
3536 
3537 	ASSERT(q->q_qinfo->qi_srvp);
3538 again:
3539 	entersq(q->q_syncq, SQ_SVC);
3540 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3541 		"runservice starts:%p", q);
3542 
3543 	if (!(q->q_flag & QWCLOSE))
3544 		(*q->q_qinfo->qi_srvp)(q);
3545 
3546 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3547 		"runservice ends:(%p)", q);
3548 
3549 	leavesq(q->q_syncq, SQ_SVC);
3550 
3551 	mutex_enter(QLOCK(q));
3552 	if (q->q_flag & QENAB) {
3553 		q->q_flag &= ~QENAB;
3554 		mutex_exit(QLOCK(q));
3555 		goto again;
3556 	}
3557 	q->q_flag &= ~QINSERVICE;
3558 	q->q_flag &= ~QBACK;
3559 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3560 		qbp->qb_flag &= ~QB_BACK;
3561 	/*
3562 	 * Wakeup thread waiting for the service procedure
3563 	 * to be run (strclose and qdetach).
3564 	 */
3565 	cv_broadcast(&q->q_wait);
3566 
3567 	mutex_exit(QLOCK(q));
3568 }
3569 
3570 /*
3571  * Background processing of bufcalls.
3572  */
3573 void
3574 streams_bufcall_service(void)
3575 {
3576 	callb_cpr_t	cprinfo;
3577 
3578 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3579 	    "streams_bufcall_service");
3580 
3581 	mutex_enter(&strbcall_lock);
3582 
3583 	for (;;) {
3584 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3585 			mutex_exit(&strbcall_lock);
3586 			runbufcalls();
3587 			mutex_enter(&strbcall_lock);
3588 		}
3589 		if (strbcalls.bc_head != NULL) {
3590 			clock_t wt, tick;
3591 
3592 			STRSTAT(bcwaits);
3593 			/* Wait for memory to become available */
3594 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3595 			tick = SEC_TO_TICK(60);
3596 			time_to_wait(&wt, tick);
3597 			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3598 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3599 		}
3600 
3601 		/* Wait for new work to arrive */
3602 		if (strbcalls.bc_head == NULL) {
3603 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3604 			cv_wait(&strbcall_cv, &strbcall_lock);
3605 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3606 		}
3607 	}
3608 }
3609 
3610 /*
3611  * Background processing of streams background tasks which failed
3612  * taskq_dispatch.
3613  */
3614 static void
3615 streams_qbkgrnd_service(void)
3616 {
3617 	callb_cpr_t cprinfo;
3618 	queue_t *q;
3619 
3620 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3621 	    "streams_bkgrnd_service");
3622 
3623 	mutex_enter(&service_queue);
3624 
3625 	for (;;) {
3626 		/*
3627 		 * Wait for work to arrive.
3628 		 */
3629 		while ((freebs_list == NULL) && (qhead == NULL)) {
3630 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3631 			cv_wait(&services_to_run, &service_queue);
3632 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3633 		}
3634 		/*
3635 		 * Handle all pending freebs requests to free memory.
3636 		 */
3637 		while (freebs_list != NULL) {
3638 			mblk_t *mp = freebs_list;
3639 			freebs_list = mp->b_next;
3640 			mutex_exit(&service_queue);
3641 			mblk_free(mp);
3642 			mutex_enter(&service_queue);
3643 		}
3644 		/*
3645 		 * Run pending queues.
3646 		 */
3647 		while (qhead != NULL) {
3648 			DQ(q, qhead, qtail, q_link);
3649 			ASSERT(q != NULL);
3650 			mutex_exit(&service_queue);
3651 			queue_service(q);
3652 			mutex_enter(&service_queue);
3653 		}
3654 		ASSERT(qhead == NULL && qtail == NULL);
3655 	}
3656 }
3657 
3658 /*
3659  * Background processing of streams background tasks which failed
3660  * taskq_dispatch.
3661  */
3662 static void
3663 streams_sqbkgrnd_service(void)
3664 {
3665 	callb_cpr_t cprinfo;
3666 	syncq_t *sq;
3667 
3668 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3669 	    "streams_sqbkgrnd_service");
3670 
3671 	mutex_enter(&service_queue);
3672 
3673 	for (;;) {
3674 		/*
3675 		 * Wait for work to arrive.
3676 		 */
3677 		while (sqhead == NULL) {
3678 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3679 			cv_wait(&syncqs_to_run, &service_queue);
3680 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3681 		}
3682 
3683 		/*
3684 		 * Run pending syncqs.
3685 		 */
3686 		while (sqhead != NULL) {
3687 			DQ(sq, sqhead, sqtail, sq_next);
3688 			ASSERT(sq != NULL);
3689 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3690 			mutex_exit(&service_queue);
3691 			syncq_service(sq);
3692 			mutex_enter(&service_queue);
3693 		}
3694 	}
3695 }
3696 
3697 /*
3698  * Disable the syncq and wait for background syncq processing to complete.
3699  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3700  * list.
3701  */
3702 void
3703 wait_sq_svc(syncq_t *sq)
3704 {
3705 	mutex_enter(SQLOCK(sq));
3706 	sq->sq_svcflags |= SQ_DISABLED;
3707 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3708 		syncq_t *sq_chase;
3709 		syncq_t *sq_curr;
3710 		int removed;
3711 
3712 		ASSERT(sq->sq_servcount == 1);
3713 		mutex_enter(&service_queue);
3714 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3715 		mutex_exit(&service_queue);
3716 		if (removed) {
3717 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3718 			sq->sq_servcount = 0;
3719 			STRSTAT(sqremoved);
3720 			goto done;
3721 		}
3722 	}
3723 	while (sq->sq_servcount != 0) {
3724 		sq->sq_flags |= SQ_WANTWAKEUP;
3725 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3726 	}
3727 done:
3728 	mutex_exit(SQLOCK(sq));
3729 }
3730 
3731 /*
3732  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3733  * Add the argument to the end of the sqhead list and set the flag
3734  * indicating this syncq has been enabled.  If it has already been
3735  * enabled, don't do anything.
3736  * This routine assumes that SQLOCK is held.
3737  * NOTE that the lock order is to have the SQLOCK first,
3738  * so if the service_syncq lock is held, we need to release it
3739  * before aquiring the SQLOCK (mostly relevant for the background
3740  * thread, and this seems to be common among the STREAMS global locks).
3741  * Note the the sq_svcflags are protected by the SQLOCK.
3742  */
3743 void
3744 sqenable(syncq_t *sq)
3745 {
3746 	/*
3747 	 * This is probably not important except for where I believe it
3748 	 * is being called.  At that point, it should be held (and it
3749 	 * is a pain to release it just for this routine, so don't do
3750 	 * it).
3751 	 */
3752 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3753 
3754 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3755 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3756 
3757 	/*
3758 	 * Do not put on list if background thread is scheduled or
3759 	 * syncq is disabled.
3760 	 */
3761 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3762 		return;
3763 
3764 	/*
3765 	 * Check whether we should enable sq at all.
3766 	 * Non PERMOD syncqs may be drained by at most one thread.
3767 	 * PERMOD syncqs may be drained by several threads but we limit the
3768 	 * total amount to the lesser of
3769 	 *	Number of queues on the squeue and
3770 	 *	Number of CPUs.
3771 	 */
3772 	if (sq->sq_servcount != 0) {
3773 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3774 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3775 			STRSTAT(sqtoomany);
3776 			return;
3777 		}
3778 	}
3779 
3780 	sq->sq_tstamp = lbolt;
3781 	STRSTAT(sqenables);
3782 
3783 	/* Attempt a taskq dispatch */
3784 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3785 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3786 	if (sq->sq_servid != NULL) {
3787 		sq->sq_servcount++;
3788 		return;
3789 	}
3790 
3791 	/*
3792 	 * This taskq dispatch failed, but a previous one may have succeeded.
3793 	 * Don't try to schedule on the background thread whilst there is
3794 	 * outstanding taskq processing.
3795 	 */
3796 	if (sq->sq_servcount != 0)
3797 		return;
3798 
3799 	/*
3800 	 * System is low on resources and can't perform a non-sleeping
3801 	 * dispatch. Schedule the syncq for a background thread and mark the
3802 	 * syncq to avoid any further taskq dispatch attempts.
3803 	 */
3804 	mutex_enter(&service_queue);
3805 	STRSTAT(taskqfails);
3806 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3807 	sq->sq_svcflags |= SQ_BGTHREAD;
3808 	sq->sq_servcount = 1;
3809 	cv_signal(&syncqs_to_run);
3810 	mutex_exit(&service_queue);
3811 }
3812 
3813 /*
3814  * Note: fifo_close() depends on the mblk_t on the queue being freed
3815  * asynchronously. The asynchronous freeing of messages breaks the
3816  * recursive call chain of fifo_close() while there are I_SENDFD type of
3817  * messages refering other file pointers on the queue. Then when
3818  * closing pipes it can avoid stack overflow in case of daisy-chained
3819  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3820  * share the same fifolock_t).
3821  */
3822 
3823 /* ARGSUSED */
3824 void
3825 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3826 {
3827 	ASSERT(dbp->db_mblk == mp);
3828 
3829 	/*
3830 	 * Check data sanity. The dblock should have non-empty free function.
3831 	 * It is better to panic here then later when the dblock is freed
3832 	 * asynchronously when the context is lost.
3833 	 */
3834 	if (dbp->db_frtnp->free_func == NULL) {
3835 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3836 		    (void *) dbp);
3837 	}
3838 
3839 	STRSTAT(freebs);
3840 	if (taskq_dispatch(streams_taskq, (task_func_t *)mblk_free, mp,
3841 	    TQ_NOSLEEP) == NULL) {
3842 		/*
3843 		 * System is low on resources and can't perform a non-sleeping
3844 		 * dispatch. Schedule for a background thread.
3845 		 */
3846 		mutex_enter(&service_queue);
3847 		STRSTAT(taskqfails);
3848 		mp->b_next = freebs_list;
3849 		freebs_list = mp;
3850 		cv_signal(&services_to_run);
3851 		mutex_exit(&service_queue);
3852 	}
3853 }
3854 
3855 /*
3856  * Set the QBACK or QB_BACK flag in the given queue for
3857  * the given priority band.
3858  */
3859 void
3860 setqback(queue_t *q, unsigned char pri)
3861 {
3862 	int i;
3863 	qband_t *qbp;
3864 	qband_t **qbpp;
3865 
3866 	ASSERT(MUTEX_HELD(QLOCK(q)));
3867 	if (pri != 0) {
3868 		if (pri > q->q_nband) {
3869 			qbpp = &q->q_bandp;
3870 			while (*qbpp)
3871 				qbpp = &(*qbpp)->qb_next;
3872 			while (pri > q->q_nband) {
3873 				if ((*qbpp = allocband()) == NULL) {
3874 					cmn_err(CE_WARN,
3875 					    "setqback: can't allocate qband\n");
3876 					return;
3877 				}
3878 				(*qbpp)->qb_hiwat = q->q_hiwat;
3879 				(*qbpp)->qb_lowat = q->q_lowat;
3880 				q->q_nband++;
3881 				qbpp = &(*qbpp)->qb_next;
3882 			}
3883 		}
3884 		qbp = q->q_bandp;
3885 		i = pri;
3886 		while (--i)
3887 			qbp = qbp->qb_next;
3888 		qbp->qb_flag |= QB_BACK;
3889 	} else {
3890 		q->q_flag |= QBACK;
3891 	}
3892 }
3893 
3894 int
3895 strcopyin(void *from, void *to, size_t len, int copyflag)
3896 {
3897 	if (copyflag & U_TO_K) {
3898 		ASSERT((copyflag & K_TO_K) == 0);
3899 		if (copyin(from, to, len))
3900 			return (EFAULT);
3901 	} else {
3902 		ASSERT(copyflag & K_TO_K);
3903 		bcopy(from, to, len);
3904 	}
3905 	return (0);
3906 }
3907 
3908 int
3909 strcopyout(void *from, void *to, size_t len, int copyflag)
3910 {
3911 	if (copyflag & U_TO_K) {
3912 		if (copyout(from, to, len))
3913 			return (EFAULT);
3914 	} else {
3915 		ASSERT(copyflag & K_TO_K);
3916 		bcopy(from, to, len);
3917 	}
3918 	return (0);
3919 }
3920 
3921 /*
3922  * strsignal_nolock() posts a signal to the process(es) at the stream head.
3923  * It assumes that the stream head lock is already held, whereas strsignal()
3924  * acquires the lock first.  This routine was created because a few callers
3925  * release the stream head lock before calling only to re-acquire it after
3926  * it returns.
3927  */
3928 void
3929 strsignal_nolock(stdata_t *stp, int sig, int32_t band)
3930 {
3931 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3932 	switch (sig) {
3933 	case SIGPOLL:
3934 		if (stp->sd_sigflags & S_MSG)
3935 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
3936 		break;
3937 
3938 	default:
3939 		if (stp->sd_pgidp) {
3940 			pgsignal(stp->sd_pgidp, sig);
3941 		}
3942 		break;
3943 	}
3944 }
3945 
3946 void
3947 strsignal(stdata_t *stp, int sig, int32_t band)
3948 {
3949 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
3950 		"strsignal:%p, %X, %X", stp, sig, band);
3951 
3952 	mutex_enter(&stp->sd_lock);
3953 	switch (sig) {
3954 	case SIGPOLL:
3955 		if (stp->sd_sigflags & S_MSG)
3956 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
3957 		break;
3958 
3959 	default:
3960 		if (stp->sd_pgidp) {
3961 			pgsignal(stp->sd_pgidp, sig);
3962 		}
3963 		break;
3964 	}
3965 	mutex_exit(&stp->sd_lock);
3966 }
3967 
3968 void
3969 strhup(stdata_t *stp)
3970 {
3971 	pollwakeup(&stp->sd_pollist, POLLHUP);
3972 	mutex_enter(&stp->sd_lock);
3973 	if (stp->sd_sigflags & S_HANGUP)
3974 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
3975 	mutex_exit(&stp->sd_lock);
3976 }
3977 
3978 void
3979 stralloctty(sess_t *sp, stdata_t *stp)
3980 {
3981 	mutex_enter(&stp->sd_lock);
3982 	mutex_enter(&pidlock);
3983 	stp->sd_sidp = sp->s_sidp;
3984 	stp->sd_pgidp = sp->s_sidp;
3985 	PID_HOLD(stp->sd_pgidp);
3986 	PID_HOLD(stp->sd_sidp);
3987 	mutex_exit(&pidlock);
3988 	mutex_exit(&stp->sd_lock);
3989 }
3990 
3991 void
3992 strfreectty(stdata_t *stp)
3993 {
3994 	mutex_enter(&stp->sd_lock);
3995 	pgsignal(stp->sd_pgidp, SIGHUP);
3996 	mutex_enter(&pidlock);
3997 	PID_RELE(stp->sd_pgidp);
3998 	PID_RELE(stp->sd_sidp);
3999 	stp->sd_pgidp = NULL;
4000 	stp->sd_sidp = NULL;
4001 	mutex_exit(&pidlock);
4002 	mutex_exit(&stp->sd_lock);
4003 	if (!(stp->sd_flag & STRHUP))
4004 		strhup(stp);
4005 }
4006 
4007 void
4008 strctty(stdata_t *stp)
4009 {
4010 	extern vnode_t *makectty();
4011 	proc_t *p = curproc;
4012 	sess_t *sp = p->p_sessp;
4013 
4014 	mutex_enter(&stp->sd_lock);
4015 	/*
4016 	 * No need to hold the session lock or do a TTYHOLD,
4017 	 * because this is the only thread that can be the
4018 	 * session leader and not have a controlling tty.
4019 	 */
4020 	if ((stp->sd_flag & (STRHUP|STRDERR|STWRERR|STPLEX)) == 0 &&
4021 	    stp->sd_sidp == NULL &&		/* not allocated as ctty */
4022 	    sp->s_sidp == p->p_pidp &&		/* session leader */
4023 	    sp->s_flag != SESS_CLOSE &&		/* session is not closing */
4024 	    sp->s_vp == NULL) {			/* without ctty */
4025 		mutex_exit(&stp->sd_lock);
4026 		ASSERT(stp->sd_pgidp == NULL);
4027 		alloctty(p, makectty(stp->sd_vnode));
4028 		stralloctty(sp, stp);
4029 		mutex_enter(&stp->sd_lock);
4030 		stp->sd_flag |= STRISTTY;	/* just to be sure */
4031 	}
4032 	mutex_exit(&stp->sd_lock);
4033 }
4034 
4035 /*
4036  * enable first back queue with svc procedure.
4037  * Use pri == -1 to avoid the setqback
4038  */
4039 void
4040 backenable(queue_t *q, int pri)
4041 {
4042 	queue_t	*nq;
4043 
4044 	/*
4045 	 * our presence might not prevent other modules in our own
4046 	 * stream from popping/pushing since the caller of getq might not
4047 	 * have a claim on the queue (some drivers do a getq on somebody
4048 	 * else's queue - they know that the queue itself is not going away
4049 	 * but the framework has to guarantee q_next in that stream.)
4050 	 */
4051 	claimstr(q);
4052 
4053 	/* find nearest back queue with service proc */
4054 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4055 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4056 	}
4057 
4058 	if (nq) {
4059 		kthread_t *freezer;
4060 		/*
4061 		 * backenable can be called either with no locks held
4062 		 * or with the stream frozen (the latter occurs when a module
4063 		 * calls rmvq with the stream frozen.) If the stream is frozen
4064 		 * by the caller the caller will hold all qlocks in the stream.
4065 		 */
4066 		freezer = STREAM(q)->sd_freezer;
4067 		if (freezer != curthread) {
4068 			mutex_enter(QLOCK(nq));
4069 		}
4070 #ifdef DEBUG
4071 		else {
4072 			ASSERT(frozenstr(q));
4073 			ASSERT(MUTEX_HELD(QLOCK(q)));
4074 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4075 		}
4076 #endif
4077 		if (pri != -1)
4078 			setqback(nq, pri);
4079 		qenable_locked(nq);
4080 		if (freezer != curthread)
4081 			mutex_exit(QLOCK(nq));
4082 	}
4083 	releasestr(q);
4084 }
4085 
4086 /*
4087  * Return the appropriate errno when one of flags_to_check is set
4088  * in sd_flags. Uses the exported error routines if they are set.
4089  * Will return 0 if non error is set (or if the exported error routines
4090  * do not return an error).
4091  *
4092  * If there is both a read and write error to check we prefer the read error.
4093  * Also, give preference to recorded errno's over the error functions.
4094  * The flags that are handled are:
4095  *	STPLEX		return EINVAL
4096  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4097  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4098  *	STRHUP		return sd_werror
4099  *
4100  * If the caller indicates that the operation is a peek a nonpersistent error
4101  * is not cleared.
4102  */
4103 int
4104 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4105 {
4106 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4107 	int error = 0;
4108 
4109 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4110 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4111 	if (sd_flag & STPLEX)
4112 		error = EINVAL;
4113 	else if (sd_flag & STRDERR) {
4114 		error = stp->sd_rerror;
4115 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4116 			/*
4117 			 * Read errors are non-persistent i.e. discarded once
4118 			 * returned to a non-peeking caller,
4119 			 */
4120 			stp->sd_rerror = 0;
4121 			stp->sd_flag &= ~STRDERR;
4122 		}
4123 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4124 			int clearerr = 0;
4125 
4126 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4127 						&clearerr);
4128 			if (clearerr) {
4129 				stp->sd_flag &= ~STRDERR;
4130 				stp->sd_rderrfunc = NULL;
4131 			}
4132 		}
4133 	} else if (sd_flag & STWRERR) {
4134 		error = stp->sd_werror;
4135 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4136 			/*
4137 			 * Write errors are non-persistent i.e. discarded once
4138 			 * returned to a non-peeking caller,
4139 			 */
4140 			stp->sd_werror = 0;
4141 			stp->sd_flag &= ~STWRERR;
4142 		}
4143 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4144 			int clearerr = 0;
4145 
4146 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4147 						&clearerr);
4148 			if (clearerr) {
4149 				stp->sd_flag &= ~STWRERR;
4150 				stp->sd_wrerrfunc = NULL;
4151 			}
4152 		}
4153 	} else if (sd_flag & STRHUP) {
4154 		/* sd_werror set when STRHUP */
4155 		error = stp->sd_werror;
4156 	}
4157 	return (error);
4158 }
4159 
4160 
4161 /*
4162  * single-thread open/close/push/pop
4163  * for twisted streams also
4164  */
4165 int
4166 strstartplumb(stdata_t *stp, int flag, int cmd)
4167 {
4168 	int waited = 1;
4169 	int error = 0;
4170 
4171 	if (STRMATED(stp)) {
4172 		struct stdata *stmatep = stp->sd_mate;
4173 
4174 		STRLOCKMATES(stp);
4175 		while (waited) {
4176 			waited = 0;
4177 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4178 				if ((cmd == I_POP) &&
4179 				    (flag & (FNDELAY|FNONBLOCK))) {
4180 					STRUNLOCKMATES(stp);
4181 					return (EAGAIN);
4182 				}
4183 				waited = 1;
4184 				mutex_exit(&stp->sd_lock);
4185 				if (!cv_wait_sig(&stmatep->sd_monitor,
4186 				    &stmatep->sd_lock)) {
4187 					mutex_exit(&stmatep->sd_lock);
4188 					return (EINTR);
4189 				}
4190 				mutex_exit(&stmatep->sd_lock);
4191 				STRLOCKMATES(stp);
4192 			}
4193 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4194 				if ((cmd == I_POP) &&
4195 					(flag & (FNDELAY|FNONBLOCK))) {
4196 					STRUNLOCKMATES(stp);
4197 					return (EAGAIN);
4198 				}
4199 				waited = 1;
4200 				mutex_exit(&stmatep->sd_lock);
4201 				if (!cv_wait_sig(&stp->sd_monitor,
4202 				    &stp->sd_lock)) {
4203 					mutex_exit(&stp->sd_lock);
4204 					return (EINTR);
4205 				}
4206 				mutex_exit(&stp->sd_lock);
4207 				STRLOCKMATES(stp);
4208 			}
4209 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4210 				error = strgeterr(stp,
4211 					STRDERR|STWRERR|STRHUP|STPLEX, 0);
4212 				if (error != 0) {
4213 					STRUNLOCKMATES(stp);
4214 					return (error);
4215 				}
4216 			}
4217 		}
4218 		stp->sd_flag |= STRPLUMB;
4219 		STRUNLOCKMATES(stp);
4220 	} else {
4221 		mutex_enter(&stp->sd_lock);
4222 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4223 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4224 			    (flag & (FNDELAY|FNONBLOCK))) {
4225 				mutex_exit(&stp->sd_lock);
4226 				return (EAGAIN);
4227 			}
4228 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4229 				mutex_exit(&stp->sd_lock);
4230 				return (EINTR);
4231 			}
4232 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4233 				error = strgeterr(stp,
4234 					STRDERR|STWRERR|STRHUP|STPLEX, 0);
4235 				if (error != 0) {
4236 					mutex_exit(&stp->sd_lock);
4237 					return (error);
4238 				}
4239 			}
4240 		}
4241 		stp->sd_flag |= STRPLUMB;
4242 		mutex_exit(&stp->sd_lock);
4243 	}
4244 	return (0);
4245 }
4246 
4247 /*
4248  * Complete the plumbing operation associated with stream `stp'.
4249  */
4250 void
4251 strendplumb(stdata_t *stp)
4252 {
4253 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4254 	ASSERT(stp->sd_flag & STRPLUMB);
4255 	stp->sd_flag &= ~STRPLUMB;
4256 	cv_broadcast(&stp->sd_monitor);
4257 }
4258 
4259 /*
4260  * This describes how the STREAMS framework handles synchronization
4261  * during open/push and close/pop.
4262  * The key interfaces for open and close are qprocson and qprocsoff,
4263  * respectively. While the close case in general is harder both open
4264  * have close have significant similarities.
4265  *
4266  * During close the STREAMS framework has to both ensure that there
4267  * are no stale references to the queue pair (and syncq) that
4268  * are being closed and also provide the guarantees that are documented
4269  * in qprocsoff(9F).
4270  * If there are stale references to the queue that is closing it can
4271  * result in kernel memory corruption or kernel panics.
4272  *
4273  * Note that is it up to the module/driver to ensure that it itself
4274  * does not have any stale references to the closing queues once its close
4275  * routine returns. This includes:
4276  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4277  *    associated with the queues. For timeout and bufcall callbacks the
4278  *    module/driver also has to ensure (or wait for) any callbacks that
4279  *    are in progress.
4280  *  - If the module/driver is using esballoc it has to ensure that any
4281  *    esballoc free functions do not refer to a queue that has closed.
4282  *    (Note that in general the close routine can not wait for the esballoc'ed
4283  *    messages to be freed since that can cause a deadlock.)
4284  *  - Cancelling any interrupts that refer to the closing queues and
4285  *    also ensuring that there are no interrupts in progress that will
4286  *    refer to the closing queues once the close routine returns.
4287  *  - For multiplexors removing any driver global state that refers to
4288  *    the closing queue and also ensuring that there are no threads in
4289  *    the multiplexor that has picked up a queue pointer but not yet
4290  *    finished using it.
4291  *
4292  * In addition, a driver/module can only reference the q_next pointer
4293  * in its open, close, put, or service procedures or in a
4294  * qtimeout/qbufcall callback procedure executing "on" the correct
4295  * stream. Thus it can not reference the q_next pointer in an interrupt
4296  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4297  * it can not reference q_next of a different queue e.g. in a mux that
4298  * passes messages from one queues put/service procedure to another queue.
4299  * In all the cases when the driver/module can not access the q_next
4300  * field it must use the *next* versions e.g. canputnext instead of
4301  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4302  *
4303  *
4304  * Assuming that the driver/module conforms to the above constraints
4305  * the STREAMS framework has to avoid stale references to q_next for all
4306  * the framework internal cases which include (but are not limited to):
4307  *  - Threads in canput/canputnext/backenable and elsewhere that are
4308  *    walking q_next.
4309  *  - Messages on a syncq that have a reference to the queue through b_queue.
4310  *  - Messages on an outer perimeter (syncq) that have a reference to the
4311  *    queue through b_queue.
4312  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4313  *    Note that only canput and bcanput use q_nfsrv without any locking.
4314  *
4315  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4316  * after qprocsoff returns, the framework has to ensure that no threads can
4317  * enter the put or service routines for the closing read or write-side queue.
4318  * In addition to preventing "direct" entry into the put procedures
4319  * the framework also has to prevent messages being drained from
4320  * the syncq or the outer perimeter.
4321  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4322  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4323  * qprocsoff has returned.
4324  * Note that if a module/driver uses put(9F) on one of its own queues
4325  * it is up to the module/driver to ensure that the put() doesn't
4326  * get called when the queue is closing.
4327  *
4328  *
4329  * The framework aspects of the above "contract" is implemented by
4330  * qprocsoff, removeq, and strlock:
4331  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4332  *    entering the service procedures.
4333  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4334  *    canputnext, backenable etc from dereferencing the q_next that will
4335  *    soon change.
4336  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4337  *    or other q_next walker that uses claimstr/releasestr to finish.
4338  *  - optionally for every syncq in the stream strlock acquires all the
4339  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4340  *    that no thread executes in the put or service procedures and that no
4341  *    thread is draining into the module/driver. This ensures that no
4342  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4343  *    currently executing hence no such thread can end up with the old stale
4344  *    q_next value and no canput/backenable can have the old stale
4345  *    q_nfsrv/q_next.
4346  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4347  *    have either finished or observed the QWCLOSE flag and gone away.
4348  */
4349 
4350 
4351 /*
4352  * Get all the locks necessary to change q_next.
4353  *
4354  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for  the
4355  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4356  * the only threads inside the sqncq are threads currently calling removeq().
4357  * Since threads calling removeq() are in the process of removing their queues
4358  * from the stream, we do not need to worry about them accessing a stale q_next
4359  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4360  * for them can cause deadlock).
4361  *
4362  * This routine is subject to starvation since it does not set any flag to
4363  * prevent threads from entering a module in the stream(i.e. sq_count can
4364  * increase on some syncq while it is waiting on some other syncq.)
4365  *
4366  * Assumes that only one thread attempts to call strlock for a given
4367  * stream. If this is not the case the two threads would deadlock.
4368  * This assumption is guaranteed since strlock is only called by insertq
4369  * and removeq and streams plumbing changes are single-threaded for
4370  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4371  *
4372  * For pipes, it is not difficult to atomically designate a pair of streams
4373  * to be mated. Once mated atomically by the framework the twisted pair remain
4374  * configured that way until dismantled atomically by the framework.
4375  * When plumbing takes place on a twisted stream it is necessary to ensure that
4376  * this operation is done exclusively on the twisted stream since two such
4377  * operations, each initiated on different ends of the pipe will deadlock
4378  * waiting for each other to complete.
4379  *
4380  * On entry, no locks should be held.
4381  * The locks acquired and held by strlock depends on a few factors.
4382  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4383  *   and held on exit and all sq_count are at an acceptable level.
4384  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4385  *   sd_refcnt being zero.
4386  */
4387 
4388 static void
4389 strlock(struct stdata *stp, sqlist_t *sqlist)
4390 {
4391 	syncql_t *sql, *sql2;
4392 retry:
4393 	/*
4394 	 * Wait for any claimstr to go away.
4395 	 */
4396 	if (STRMATED(stp)) {
4397 		struct stdata *stp1, *stp2;
4398 
4399 		STRLOCKMATES(stp);
4400 		/*
4401 		 * Note that the selection of locking order is not
4402 		 * important, just that they are always aquired in
4403 		 * the same order.  To assure this, we choose this
4404 		 * order based on the value of the pointer, and since
4405 		 * the pointer will not change for the life of this
4406 		 * pair, we will always grab the locks in the same
4407 		 * order (and hence, prevent deadlocks).
4408 		 */
4409 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4410 			stp1 = stp;
4411 			stp2 = stp->sd_mate;
4412 		} else {
4413 			stp2 = stp;
4414 			stp1 = stp->sd_mate;
4415 		}
4416 		mutex_enter(&stp1->sd_reflock);
4417 		if (stp1->sd_refcnt > 0) {
4418 			STRUNLOCKMATES(stp);
4419 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4420 			mutex_exit(&stp1->sd_reflock);
4421 			goto retry;
4422 		}
4423 		mutex_enter(&stp2->sd_reflock);
4424 		if (stp2->sd_refcnt > 0) {
4425 			STRUNLOCKMATES(stp);
4426 			mutex_exit(&stp1->sd_reflock);
4427 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4428 			mutex_exit(&stp2->sd_reflock);
4429 			goto retry;
4430 		}
4431 		STREAM_PUTLOCKS_ENTER(stp1);
4432 		STREAM_PUTLOCKS_ENTER(stp2);
4433 	} else {
4434 		mutex_enter(&stp->sd_lock);
4435 		mutex_enter(&stp->sd_reflock);
4436 		while (stp->sd_refcnt > 0) {
4437 			mutex_exit(&stp->sd_lock);
4438 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4439 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4440 				mutex_exit(&stp->sd_reflock);
4441 				mutex_enter(&stp->sd_lock);
4442 				mutex_enter(&stp->sd_reflock);
4443 			}
4444 		}
4445 		STREAM_PUTLOCKS_ENTER(stp);
4446 	}
4447 
4448 	if (sqlist == NULL)
4449 		return;
4450 
4451 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4452 		syncq_t *sq = sql->sql_sq;
4453 		uint16_t count;
4454 
4455 		mutex_enter(SQLOCK(sq));
4456 		count = sq->sq_count;
4457 		ASSERT(sq->sq_rmqcount <= count);
4458 		SQ_PUTLOCKS_ENTER(sq);
4459 		SUM_SQ_PUTCOUNTS(sq, count);
4460 		if (count == sq->sq_rmqcount)
4461 			continue;
4462 
4463 		/* Failed - drop all locks that we have acquired so far */
4464 		if (STRMATED(stp)) {
4465 			STREAM_PUTLOCKS_EXIT(stp);
4466 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4467 			STRUNLOCKMATES(stp);
4468 			mutex_exit(&stp->sd_reflock);
4469 			mutex_exit(&stp->sd_mate->sd_reflock);
4470 		} else {
4471 			STREAM_PUTLOCKS_EXIT(stp);
4472 			mutex_exit(&stp->sd_lock);
4473 			mutex_exit(&stp->sd_reflock);
4474 		}
4475 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4476 		    sql2 = sql2->sql_next) {
4477 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4478 			mutex_exit(SQLOCK(sql2->sql_sq));
4479 		}
4480 
4481 		/*
4482 		 * The wait loop below may starve when there are many threads
4483 		 * claiming the syncq. This is especially a problem with permod
4484 		 * syncqs (IP). To lessen the impact of the problem we increment
4485 		 * sq_needexcl and clear fastbits so that putnexts will slow
4486 		 * down and call sqenable instead of draining right away.
4487 		 */
4488 		sq->sq_needexcl++;
4489 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4490 		while (count > sq->sq_rmqcount) {
4491 			sq->sq_flags |= SQ_WANTWAKEUP;
4492 			SQ_PUTLOCKS_EXIT(sq);
4493 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4494 			count = sq->sq_count;
4495 			SQ_PUTLOCKS_ENTER(sq);
4496 			SUM_SQ_PUTCOUNTS(sq, count);
4497 		}
4498 		sq->sq_needexcl--;
4499 		if (sq->sq_needexcl == 0)
4500 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4501 		SQ_PUTLOCKS_EXIT(sq);
4502 		ASSERT(count == sq->sq_rmqcount);
4503 		mutex_exit(SQLOCK(sq));
4504 		goto retry;
4505 	}
4506 }
4507 
4508 /*
4509  * Drop all the locks that strlock acquired.
4510  */
4511 static void
4512 strunlock(struct stdata *stp, sqlist_t *sqlist)
4513 {
4514 	syncql_t *sql;
4515 
4516 	if (STRMATED(stp)) {
4517 		STREAM_PUTLOCKS_EXIT(stp);
4518 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4519 		STRUNLOCKMATES(stp);
4520 		mutex_exit(&stp->sd_reflock);
4521 		mutex_exit(&stp->sd_mate->sd_reflock);
4522 	} else {
4523 		STREAM_PUTLOCKS_EXIT(stp);
4524 		mutex_exit(&stp->sd_lock);
4525 		mutex_exit(&stp->sd_reflock);
4526 	}
4527 
4528 	if (sqlist == NULL)
4529 		return;
4530 
4531 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4532 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4533 		mutex_exit(SQLOCK(sql->sql_sq));
4534 	}
4535 }
4536 
4537 
4538 /*
4539  * Given two read queues, insert a new single one after another.
4540  *
4541  * This routine acquires all the necessary locks in order to change
4542  * q_next and related pointer using strlock().
4543  * It depends on the stream head ensuring that there are no concurrent
4544  * insertq or removeq on the same stream. The stream head ensures this
4545  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4546  *
4547  * Note that no syncq locks are held during the q_next change. This is
4548  * applied to all streams since, unlike removeq, there is no problem of stale
4549  * pointers when adding a module to the stream. Thus drivers/modules that do a
4550  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4551  * applied this optimization to all streams.
4552  */
4553 void
4554 insertq(struct stdata *stp, queue_t *new)
4555 {
4556 	queue_t	*after;
4557 	queue_t *wafter;
4558 	queue_t *wnew = _WR(new);
4559 	boolean_t have_fifo = B_FALSE;
4560 
4561 	if (new->q_flag & _QINSERTING) {
4562 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4563 		after = new->q_next;
4564 		wafter = _WR(new->q_next);
4565 	} else {
4566 		after = _RD(stp->sd_wrq);
4567 		wafter = stp->sd_wrq;
4568 	}
4569 
4570 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4571 		"insertq:%p, %p", after, new);
4572 	ASSERT(after->q_flag & QREADR);
4573 	ASSERT(new->q_flag & QREADR);
4574 
4575 	strlock(stp, NULL);
4576 
4577 	/* Do we have a FIFO? */
4578 	if (wafter->q_next == after) {
4579 		have_fifo = B_TRUE;
4580 		wnew->q_next = new;
4581 	} else {
4582 		wnew->q_next = wafter->q_next;
4583 	}
4584 	new->q_next = after;
4585 
4586 	set_nfsrv_ptr(new, wnew, after, wafter);
4587 	/*
4588 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4589 	 * so only reset this flag after calling it.
4590 	 */
4591 	new->q_flag &= ~_QINSERTING;
4592 
4593 	if (have_fifo) {
4594 		wafter->q_next = wnew;
4595 	} else {
4596 		if (wafter->q_next)
4597 			_OTHERQ(wafter->q_next)->q_next = new;
4598 		wafter->q_next = wnew;
4599 	}
4600 
4601 	set_qend(new);
4602 	/* The QEND flag might have to be updated for the upstream guy */
4603 	set_qend(after);
4604 
4605 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4606 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4607 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4608 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4609 	strsetuio(stp);
4610 
4611 	/*
4612 	 * If this was a module insertion, bump the push count.
4613 	 */
4614 	if (!(new->q_flag & QISDRV))
4615 		stp->sd_pushcnt++;
4616 
4617 	strunlock(stp, NULL);
4618 }
4619 
4620 /*
4621  * Given a read queue, unlink it from any neighbors.
4622  *
4623  * This routine acquires all the necessary locks in order to
4624  * change q_next and related pointers and also guard against
4625  * stale references (e.g. through q_next) to the queue that
4626  * is being removed. It also plays part of the role in ensuring
4627  * that the module's/driver's put procedure doesn't get called
4628  * after qprocsoff returns.
4629  *
4630  * Removeq depends on the stream head ensuring that there are
4631  * no concurrent insertq or removeq on the same stream. The
4632  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4633  * STRPLUMB.
4634  *
4635  * The set of locks needed to remove the queue is different in
4636  * different cases:
4637  *
4638  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4639  * waiting for the syncq reference count to drop to 0 indicating that no
4640  * non-close threads are present anywhere in the stream. This ensures that any
4641  * module/driver can reference q_next in its open, close, put, or service
4642  * procedures.
4643  *
4644  * The sq_rmqcount counter tracks the number of threads inside removeq().
4645  * strlock() ensures that there is either no threads executing inside perimeter
4646  * or there is only a thread calling qprocsoff().
4647  *
4648  * strlock() compares the value of sq_count with the number of threads inside
4649  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4650  * any threads waiting in strlock() when the sq_rmqcount increases.
4651  */
4652 
4653 void
4654 removeq(queue_t *qp)
4655 {
4656 	queue_t *wqp = _WR(qp);
4657 	struct stdata *stp = STREAM(qp);
4658 	sqlist_t *sqlist = NULL;
4659 	boolean_t isdriver;
4660 	int moved;
4661 	syncq_t *sq = qp->q_syncq;
4662 	syncq_t *wsq = wqp->q_syncq;
4663 
4664 	ASSERT(stp);
4665 
4666 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4667 		"removeq:%p %p", qp, wqp);
4668 	ASSERT(qp->q_flag&QREADR);
4669 
4670 	/*
4671 	 * For queues using Synchronous streams, we must wait for all threads in
4672 	 * rwnext() to drain out before proceeding.
4673 	 */
4674 	if (qp->q_flag & QSYNCSTR) {
4675 		/* First, we need wakeup any threads blocked in rwnext() */
4676 		mutex_enter(SQLOCK(sq));
4677 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4678 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4679 			cv_broadcast(&sq->sq_wait);
4680 		}
4681 		mutex_exit(SQLOCK(sq));
4682 
4683 		if (wsq != sq) {
4684 			mutex_enter(SQLOCK(wsq));
4685 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4686 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4687 				cv_broadcast(&wsq->sq_wait);
4688 			}
4689 			mutex_exit(SQLOCK(wsq));
4690 		}
4691 
4692 		mutex_enter(QLOCK(qp));
4693 		while (qp->q_rwcnt > 0) {
4694 			qp->q_flag |= QWANTRMQSYNC;
4695 			cv_wait(&qp->q_wait, QLOCK(qp));
4696 		}
4697 		mutex_exit(QLOCK(qp));
4698 
4699 		mutex_enter(QLOCK(wqp));
4700 		while (wqp->q_rwcnt > 0) {
4701 			wqp->q_flag |= QWANTRMQSYNC;
4702 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4703 		}
4704 		mutex_exit(QLOCK(wqp));
4705 	}
4706 
4707 	mutex_enter(SQLOCK(sq));
4708 	sq->sq_rmqcount++;
4709 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4710 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4711 		cv_broadcast(&sq->sq_wait);
4712 	}
4713 	mutex_exit(SQLOCK(sq));
4714 
4715 	isdriver = (qp->q_flag & QISDRV);
4716 
4717 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4718 	strlock(stp, sqlist);
4719 
4720 	reset_nfsrv_ptr(qp, wqp);
4721 
4722 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4723 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4724 	/* Do we have a FIFO? */
4725 	if (wqp->q_next == qp) {
4726 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4727 	} else {
4728 		if (wqp->q_next)
4729 			backq(qp)->q_next = qp->q_next;
4730 		if (qp->q_next)
4731 			backq(wqp)->q_next = wqp->q_next;
4732 	}
4733 
4734 	/* The QEND flag might have to be updated for the upstream guy */
4735 	if (qp->q_next)
4736 		set_qend(qp->q_next);
4737 
4738 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4739 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4740 
4741 	/*
4742 	 * Move any messages destined for the put procedures to the next
4743 	 * syncq in line. Otherwise free them.
4744 	 */
4745 	moved = 0;
4746 	/*
4747 	 * Quick check to see whether there are any messages or events.
4748 	 */
4749 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4750 		moved += propagate_syncq(qp);
4751 	if (wqp->q_syncqmsgs != 0 ||
4752 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4753 		moved += propagate_syncq(wqp);
4754 
4755 	strsetuio(stp);
4756 
4757 	/*
4758 	 * If this was a module removal, decrement the push count.
4759 	 */
4760 	if (!isdriver)
4761 		stp->sd_pushcnt--;
4762 
4763 	strunlock(stp, sqlist);
4764 	sqlist_free(sqlist);
4765 
4766 	/*
4767 	 * Make sure any messages that were propagated are drained.
4768 	 * Also clear any QFULL bit caused by messages that were propagated.
4769 	 */
4770 
4771 	if (qp->q_next != NULL) {
4772 		clr_qfull(qp);
4773 		/*
4774 		 * For the driver calling qprocsoff, propagate_syncq
4775 		 * frees all the messages instead of putting it in
4776 		 * the stream head
4777 		 */
4778 		if (!isdriver && (moved > 0))
4779 			emptysq(qp->q_next->q_syncq);
4780 	}
4781 	if (wqp->q_next != NULL) {
4782 		clr_qfull(wqp);
4783 		/*
4784 		 * We come here for any pop of a module except for the
4785 		 * case of driver being removed. We don't call emptysq
4786 		 * if we did not move any messages. This will avoid holding
4787 		 * PERMOD syncq locks in emptysq
4788 		 */
4789 		if (moved > 0)
4790 			emptysq(wqp->q_next->q_syncq);
4791 	}
4792 
4793 	mutex_enter(SQLOCK(sq));
4794 	sq->sq_rmqcount--;
4795 	mutex_exit(SQLOCK(sq));
4796 }
4797 
4798 /*
4799  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4800  * SQ_WRITER) on a syncq.
4801  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4802  * sync queue and waits until sq_count reaches maxcnt.
4803  *
4804  * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
4805  * does not care about putnext threads that are in the middle of calling put
4806  * entry points.
4807  *
4808  * This routine is used for both inner and outer syncqs.
4809  */
4810 static void
4811 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4812 {
4813 	uint16_t count = 0;
4814 
4815 	mutex_enter(SQLOCK(sq));
4816 	/*
4817 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4818 	 * SQ_FROZEN will be set if there is a frozen stream that has a
4819 	 * queue which also refers to this "shared" syncq.
4820 	 * SQ_BLOCKED will be set if there is "off" queue which also
4821 	 * refers to this "shared" syncq.
4822 	 */
4823 	if (maxcnt != -1) {
4824 		count = sq->sq_count;
4825 		SQ_PUTLOCKS_ENTER(sq);
4826 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4827 		SUM_SQ_PUTCOUNTS(sq, count);
4828 	}
4829 	sq->sq_needexcl++;
4830 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
4831 
4832 	while ((sq->sq_flags & flag) ||
4833 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
4834 		sq->sq_flags |= SQ_WANTWAKEUP;
4835 		if (maxcnt != -1) {
4836 			SQ_PUTLOCKS_EXIT(sq);
4837 		}
4838 		cv_wait(&sq->sq_wait, SQLOCK(sq));
4839 		if (maxcnt != -1) {
4840 			count = sq->sq_count;
4841 			SQ_PUTLOCKS_ENTER(sq);
4842 			SUM_SQ_PUTCOUNTS(sq, count);
4843 		}
4844 	}
4845 	sq->sq_needexcl--;
4846 	sq->sq_flags |= flag;
4847 	ASSERT(maxcnt == -1 || count == maxcnt);
4848 	if (maxcnt != -1) {
4849 		if (sq->sq_needexcl == 0) {
4850 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4851 		}
4852 		SQ_PUTLOCKS_EXIT(sq);
4853 	} else if (sq->sq_needexcl == 0) {
4854 		SQ_PUTCOUNT_SETFAST(sq);
4855 	}
4856 
4857 	mutex_exit(SQLOCK(sq));
4858 }
4859 
4860 /*
4861  * Reset a flag that was set with blocksq.
4862  *
4863  * Can not use this routine to reset SQ_WRITER.
4864  *
4865  * If "isouter" is set then the syncq is assumed to be an outer perimeter
4866  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
4867  * to handle the queued qwriter operations.
4868  *
4869  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4870  * sq_putlocks are used.
4871  */
4872 static void
4873 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
4874 {
4875 	uint16_t flags;
4876 
4877 	mutex_enter(SQLOCK(sq));
4878 	ASSERT(resetflag != SQ_WRITER);
4879 	ASSERT(sq->sq_flags & resetflag);
4880 	flags = sq->sq_flags & ~resetflag;
4881 	sq->sq_flags = flags;
4882 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
4883 		if (flags & SQ_WANTWAKEUP) {
4884 			flags &= ~SQ_WANTWAKEUP;
4885 			cv_broadcast(&sq->sq_wait);
4886 		}
4887 		sq->sq_flags = flags;
4888 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
4889 			if (!isouter) {
4890 				/* drain_syncq drops SQLOCK */
4891 				drain_syncq(sq);
4892 				return;
4893 			}
4894 		}
4895 	}
4896 	mutex_exit(SQLOCK(sq));
4897 }
4898 
4899 /*
4900  * Reset a flag that was set with blocksq.
4901  * Does not drain the syncq. Use emptysq() for that.
4902  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
4903  *
4904  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4905  * sq_putlocks are used.
4906  */
4907 static int
4908 dropsq(syncq_t *sq, uint16_t resetflag)
4909 {
4910 	uint16_t flags;
4911 
4912 	mutex_enter(SQLOCK(sq));
4913 	ASSERT(sq->sq_flags & resetflag);
4914 	flags = sq->sq_flags & ~resetflag;
4915 	if (flags & SQ_WANTWAKEUP) {
4916 		flags &= ~SQ_WANTWAKEUP;
4917 		cv_broadcast(&sq->sq_wait);
4918 	}
4919 	sq->sq_flags = flags;
4920 	mutex_exit(SQLOCK(sq));
4921 	if (flags & SQ_QUEUED)
4922 		return (1);
4923 	return (0);
4924 }
4925 
4926 /*
4927  * Empty all the messages on a syncq.
4928  *
4929  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4930  * sq_putlocks are used.
4931  */
4932 static void
4933 emptysq(syncq_t *sq)
4934 {
4935 	uint16_t flags;
4936 
4937 	mutex_enter(SQLOCK(sq));
4938 	flags = sq->sq_flags;
4939 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
4940 		/*
4941 		 * To prevent potential recursive invocation of drain_syncq we
4942 		 * do not call drain_syncq if count is non-zero.
4943 		 */
4944 		if (sq->sq_count == 0) {
4945 			/* drain_syncq() drops SQLOCK */
4946 			drain_syncq(sq);
4947 			return;
4948 		} else
4949 			sqenable(sq);
4950 	}
4951 	mutex_exit(SQLOCK(sq));
4952 }
4953 
4954 /*
4955  * Ordered insert while removing duplicates.
4956  */
4957 static void
4958 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
4959 {
4960 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
4961 
4962 	prev_sqlpp = &sqlist->sqlist_head;
4963 	while ((sqlp = *prev_sqlpp) != NULL) {
4964 		if (sqlp->sql_sq >= sqp) {
4965 			if (sqlp->sql_sq == sqp)	/* duplicate */
4966 				return;
4967 			break;
4968 		}
4969 		prev_sqlpp = &sqlp->sql_next;
4970 	}
4971 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
4972 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
4973 	new_sqlp->sql_next = sqlp;
4974 	new_sqlp->sql_sq = sqp;
4975 	*prev_sqlpp = new_sqlp;
4976 }
4977 
4978 /*
4979  * Walk the write side queues until we hit either the driver
4980  * or a twist in the stream (_SAMESTR will return false in both
4981  * these cases) then turn around and walk the read side queues
4982  * back up to the stream head.
4983  */
4984 static void
4985 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
4986 {
4987 	while (q != NULL) {
4988 		sqlist_insert(sqlist, q->q_syncq);
4989 
4990 		if (_SAMESTR(q))
4991 			q = q->q_next;
4992 		else if (!(q->q_flag & QREADR))
4993 			q = _RD(q);
4994 		else
4995 			q = NULL;
4996 	}
4997 }
4998 
4999 /*
5000  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5001  * associated with the "q" parameter. The resulting list is sorted in a
5002  * canonical order and is free of duplicates.
5003  * Assumes the passed queue is a _RD(q).
5004  */
5005 static sqlist_t *
5006 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5007 {
5008 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5009 
5010 	/*
5011 	 * start with the current queue/qpair
5012 	 */
5013 	ASSERT(q->q_flag & QREADR);
5014 
5015 	sqlist_insert(sqlist, q->q_syncq);
5016 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5017 
5018 	sqlist_insertall(sqlist, stp->sd_wrq);
5019 	if (do_twist)
5020 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5021 
5022 	return (sqlist);
5023 }
5024 
5025 static sqlist_t *
5026 sqlist_alloc(struct stdata *stp, int kmflag)
5027 {
5028 	size_t sqlist_size;
5029 	sqlist_t *sqlist;
5030 
5031 	/*
5032 	 * Allocate 2 syncql_t's for each pushed module. Note that
5033 	 * the sqlist_t structure already has 4 syncql_t's built in:
5034 	 * 2 for the stream head, and 2 for the driver/other stream head.
5035 	 */
5036 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5037 		sizeof (sqlist_t);
5038 	if (STRMATED(stp))
5039 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5040 	sqlist = kmem_alloc(sqlist_size, kmflag);
5041 
5042 	sqlist->sqlist_head = NULL;
5043 	sqlist->sqlist_size = sqlist_size;
5044 	sqlist->sqlist_index = 0;
5045 
5046 	return (sqlist);
5047 }
5048 
5049 /*
5050  * Free the list created by sqlist_alloc()
5051  */
5052 static void
5053 sqlist_free(sqlist_t *sqlist)
5054 {
5055 	kmem_free(sqlist, sqlist->sqlist_size);
5056 }
5057 
5058 /*
5059  * Prevent any new entries into any syncq in this stream.
5060  * Used by freezestr.
5061  */
5062 void
5063 strblock(queue_t *q)
5064 {
5065 	struct stdata	*stp;
5066 	syncql_t	*sql;
5067 	sqlist_t	*sqlist;
5068 
5069 	q = _RD(q);
5070 
5071 	stp = STREAM(q);
5072 	ASSERT(stp != NULL);
5073 
5074 	/*
5075 	 * Get a sorted list with all the duplicates removed containing
5076 	 * all the syncqs referenced by this stream.
5077 	 */
5078 	sqlist = sqlist_build(q, stp, B_FALSE);
5079 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5080 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5081 	sqlist_free(sqlist);
5082 }
5083 
5084 /*
5085  * Release the block on new entries into this stream
5086  */
5087 void
5088 strunblock(queue_t *q)
5089 {
5090 	struct stdata	*stp;
5091 	syncql_t	*sql;
5092 	sqlist_t	*sqlist;
5093 	int		drain_needed;
5094 
5095 	q = _RD(q);
5096 
5097 	/*
5098 	 * Get a sorted list with all the duplicates removed containing
5099 	 * all the syncqs referenced by this stream.
5100 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5101 	 * starting to drain them; otherwise the draining might
5102 	 * cause a freezestr in some module on the stream (which
5103 	 * would deadlock.)
5104 	 */
5105 	stp = STREAM(q);
5106 	ASSERT(stp != NULL);
5107 	sqlist = sqlist_build(q, stp, B_FALSE);
5108 	drain_needed = 0;
5109 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5110 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5111 	if (drain_needed) {
5112 		for (sql = sqlist->sqlist_head; sql != NULL;
5113 		    sql = sql->sql_next)
5114 			emptysq(sql->sql_sq);
5115 	}
5116 	sqlist_free(sqlist);
5117 }
5118 
5119 #ifdef DEBUG
5120 static int
5121 qprocsareon(queue_t *rq)
5122 {
5123 	if (rq->q_next == NULL)
5124 		return (0);
5125 	return (_WR(rq->q_next)->q_next == _WR(rq));
5126 }
5127 
5128 int
5129 qclaimed(queue_t *q)
5130 {
5131 	uint_t count;
5132 
5133 	count = q->q_syncq->sq_count;
5134 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5135 	return (count != 0);
5136 }
5137 
5138 /*
5139  * Check if anyone has frozen this stream with freezestr
5140  */
5141 int
5142 frozenstr(queue_t *q)
5143 {
5144 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5145 }
5146 #endif /* DEBUG */
5147 
5148 /*
5149  * Enter a queue.
5150  * Obsoleted interface. Should not be used.
5151  */
5152 void
5153 enterq(queue_t *q)
5154 {
5155 	entersq(q->q_syncq, SQ_CALLBACK);
5156 }
5157 
5158 void
5159 leaveq(queue_t *q)
5160 {
5161 	leavesq(q->q_syncq, SQ_CALLBACK);
5162 }
5163 
5164 /*
5165  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5166  * to check.
5167  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5168  * calls and the running of open, close and service procedures.
5169  *
5170  * if c_inner bit is set no need to grab sq_putlocks since we don't care
5171  * if other threads have entered or are entering put entry point.
5172  *
5173  * if c_inner bit is set it might have been posible to use
5174  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5175  * open/close path for IP) but since the count may need to be decremented in
5176  * qwait() we wouldn't know which counter to decrement. Currently counter is
5177  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5178  * in the future we might use curthread id bits to select the counter and this
5179  * would stay constant across routine calls.
5180  */
5181 void
5182 entersq(syncq_t *sq, int entrypoint)
5183 {
5184 	uint16_t	count = 0;
5185 	uint16_t	flags;
5186 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5187 	uint16_t	type;
5188 	uint_t		c_inner = entrypoint & SQ_CI;
5189 	uint_t		c_outer = entrypoint & SQ_CO;
5190 
5191 	/*
5192 	 * Increment ref count to keep closes out of this queue.
5193 	 */
5194 	ASSERT(sq);
5195 	ASSERT(c_inner && c_outer);
5196 	mutex_enter(SQLOCK(sq));
5197 	flags = sq->sq_flags;
5198 	type = sq->sq_type;
5199 	if (!(type & c_inner)) {
5200 		/* Make sure all putcounts now use slowlock. */
5201 		count = sq->sq_count;
5202 		SQ_PUTLOCKS_ENTER(sq);
5203 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5204 		SUM_SQ_PUTCOUNTS(sq, count);
5205 		sq->sq_needexcl++;
5206 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5207 		waitflags |= SQ_MESSAGES;
5208 	}
5209 	/*
5210 	 * Wait until we can enter the inner perimeter.
5211 	 * If we want exclusive access we wait until sq_count is 0.
5212 	 * We have to do this before entering the outer perimeter in order
5213 	 * to preserve put/close message ordering.
5214 	 */
5215 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5216 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5217 		if (!(type & c_inner)) {
5218 			SQ_PUTLOCKS_EXIT(sq);
5219 		}
5220 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5221 		if (!(type & c_inner)) {
5222 			count = sq->sq_count;
5223 			SQ_PUTLOCKS_ENTER(sq);
5224 			SUM_SQ_PUTCOUNTS(sq, count);
5225 		}
5226 		flags = sq->sq_flags;
5227 	}
5228 
5229 	if (!(type & c_inner)) {
5230 		ASSERT(sq->sq_needexcl > 0);
5231 		sq->sq_needexcl--;
5232 		if (sq->sq_needexcl == 0) {
5233 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5234 		}
5235 	}
5236 
5237 	/* Check if we need to enter the outer perimeter */
5238 	if (!(type & c_outer)) {
5239 		/*
5240 		 * We have to enter the outer perimeter exclusively before
5241 		 * we can increment sq_count to avoid deadlock. This implies
5242 		 * that we have to re-check sq_flags and sq_count.
5243 		 *
5244 		 * is it possible to have c_inner set when c_outer is not set?
5245 		 */
5246 		if (!(type & c_inner)) {
5247 			SQ_PUTLOCKS_EXIT(sq);
5248 		}
5249 		mutex_exit(SQLOCK(sq));
5250 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5251 		mutex_enter(SQLOCK(sq));
5252 		flags = sq->sq_flags;
5253 		/*
5254 		 * there should be no need to recheck sq_putcounts
5255 		 * because outer_enter() has already waited for them to clear
5256 		 * after setting SQ_WRITER.
5257 		 */
5258 		count = sq->sq_count;
5259 #ifdef DEBUG
5260 		/*
5261 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5262 		 * of doing an ASSERT internally. Others should do
5263 		 * something like
5264 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5265 		 * without the need to #ifdef DEBUG it.
5266 		 */
5267 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5268 #endif
5269 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5270 		    (!(type & c_inner) && count != 0)) {
5271 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5272 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5273 			count = sq->sq_count;
5274 			flags = sq->sq_flags;
5275 		}
5276 	}
5277 
5278 	sq->sq_count++;
5279 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5280 	if (!(type & c_inner)) {
5281 		/* Exclusive entry */
5282 		ASSERT(sq->sq_count == 1);
5283 		sq->sq_flags |= SQ_EXCL;
5284 		if (type & c_outer) {
5285 			SQ_PUTLOCKS_EXIT(sq);
5286 		}
5287 	}
5288 	mutex_exit(SQLOCK(sq));
5289 }
5290 
5291 /*
5292  * leave a syncq. announce to framework that closes may proceed.
5293  * c_inner and c_outer specifies which concurrency bits
5294  * to check.
5295  *
5296  * must never be called from driver or module put entry point.
5297  *
5298  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5299  * sq_putlocks are used.
5300  */
5301 void
5302 leavesq(syncq_t *sq, int entrypoint)
5303 {
5304 	uint16_t	flags;
5305 	uint16_t	type;
5306 	uint_t		c_outer = entrypoint & SQ_CO;
5307 #ifdef DEBUG
5308 	uint_t		c_inner = entrypoint & SQ_CI;
5309 #endif
5310 
5311 	/*
5312 	 * decrement ref count, drain the syncq if possible, and wake up
5313 	 * any waiting close.
5314 	 */
5315 	ASSERT(sq);
5316 	ASSERT(c_inner && c_outer);
5317 	mutex_enter(SQLOCK(sq));
5318 	flags = sq->sq_flags;
5319 	type = sq->sq_type;
5320 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5321 
5322 		if (flags & SQ_WANTWAKEUP) {
5323 			flags &= ~SQ_WANTWAKEUP;
5324 			cv_broadcast(&sq->sq_wait);
5325 		}
5326 		if (flags & SQ_WANTEXWAKEUP) {
5327 			flags &= ~SQ_WANTEXWAKEUP;
5328 			cv_broadcast(&sq->sq_exitwait);
5329 		}
5330 
5331 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5332 			/*
5333 			 * The syncq needs to be drained. "Exit" the syncq
5334 			 * before calling drain_syncq.
5335 			 */
5336 			ASSERT(sq->sq_count != 0);
5337 			sq->sq_count--;
5338 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5339 			sq->sq_flags = flags & ~SQ_EXCL;
5340 			drain_syncq(sq);
5341 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5342 			/* Check if we need to exit the outer perimeter */
5343 			/* XXX will this ever be true? */
5344 			if (!(type & c_outer))
5345 				outer_exit(sq->sq_outer);
5346 			return;
5347 		}
5348 	}
5349 	ASSERT(sq->sq_count != 0);
5350 	sq->sq_count--;
5351 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5352 	sq->sq_flags = flags & ~SQ_EXCL;
5353 	mutex_exit(SQLOCK(sq));
5354 
5355 	/* Check if we need to exit the outer perimeter */
5356 	if (!(sq->sq_type & c_outer))
5357 		outer_exit(sq->sq_outer);
5358 }
5359 
5360 /*
5361  * Prevent q_next from changing in this stream by incrementing sq_count.
5362  *
5363  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5364  * sq_putlocks are used.
5365  */
5366 void
5367 claimq(queue_t *qp)
5368 {
5369 	syncq_t	*sq = qp->q_syncq;
5370 
5371 	mutex_enter(SQLOCK(sq));
5372 	sq->sq_count++;
5373 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5374 	mutex_exit(SQLOCK(sq));
5375 }
5376 
5377 /*
5378  * Undo claimq.
5379  *
5380  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5381  * sq_putlocks are used.
5382  */
5383 void
5384 releaseq(queue_t *qp)
5385 {
5386 	syncq_t	*sq = qp->q_syncq;
5387 	uint16_t flags;
5388 
5389 	mutex_enter(SQLOCK(sq));
5390 	ASSERT(sq->sq_count > 0);
5391 	sq->sq_count--;
5392 
5393 	flags = sq->sq_flags;
5394 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5395 		if (flags & SQ_WANTWAKEUP) {
5396 			flags &= ~SQ_WANTWAKEUP;
5397 			cv_broadcast(&sq->sq_wait);
5398 		}
5399 		sq->sq_flags = flags;
5400 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5401 			/*
5402 			 * To prevent potential recursive invocation of
5403 			 * drain_syncq we do not call drain_syncq if count is
5404 			 * non-zero.
5405 			 */
5406 			if (sq->sq_count == 0) {
5407 				drain_syncq(sq);
5408 				return;
5409 			} else
5410 				sqenable(sq);
5411 		}
5412 	}
5413 	mutex_exit(SQLOCK(sq));
5414 }
5415 
5416 /*
5417  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5418  */
5419 void
5420 claimstr(queue_t *qp)
5421 {
5422 	struct stdata *stp = STREAM(qp);
5423 
5424 	mutex_enter(&stp->sd_reflock);
5425 	stp->sd_refcnt++;
5426 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5427 	mutex_exit(&stp->sd_reflock);
5428 }
5429 
5430 /*
5431  * Undo claimstr.
5432  */
5433 void
5434 releasestr(queue_t *qp)
5435 {
5436 	struct stdata *stp = STREAM(qp);
5437 
5438 	mutex_enter(&stp->sd_reflock);
5439 	ASSERT(stp->sd_refcnt != 0);
5440 	if (--stp->sd_refcnt == 0)
5441 		cv_broadcast(&stp->sd_refmonitor);
5442 	mutex_exit(&stp->sd_reflock);
5443 }
5444 
5445 static syncq_t *
5446 new_syncq(void)
5447 {
5448 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5449 }
5450 
5451 static void
5452 free_syncq(syncq_t *sq)
5453 {
5454 	ASSERT(sq->sq_head == NULL);
5455 	ASSERT(sq->sq_outer == NULL);
5456 	ASSERT(sq->sq_callbpend == NULL);
5457 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5458 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5459 
5460 	if (sq->sq_ciputctrl != NULL) {
5461 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5462 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5463 		    sq->sq_nciputctrl, 0);
5464 		ASSERT(ciputctrl_cache != NULL);
5465 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5466 	}
5467 
5468 	sq->sq_tail = NULL;
5469 	sq->sq_evhead = NULL;
5470 	sq->sq_evtail = NULL;
5471 	sq->sq_ciputctrl = NULL;
5472 	sq->sq_nciputctrl = 0;
5473 	sq->sq_count = 0;
5474 	sq->sq_rmqcount = 0;
5475 	sq->sq_callbflags = 0;
5476 	sq->sq_cancelid = 0;
5477 	sq->sq_next = NULL;
5478 	sq->sq_needexcl = 0;
5479 	sq->sq_svcflags = 0;
5480 	sq->sq_nqueues = 0;
5481 	sq->sq_pri = 0;
5482 	sq->sq_onext = NULL;
5483 	sq->sq_oprev = NULL;
5484 	sq->sq_flags = 0;
5485 	sq->sq_type = 0;
5486 	sq->sq_servcount = 0;
5487 
5488 	kmem_cache_free(syncq_cache, sq);
5489 }
5490 
5491 /* Outer perimeter code */
5492 
5493 /*
5494  * The outer syncq uses the fields and flags in the syncq slightly
5495  * differently from the inner syncqs.
5496  *	sq_count	Incremented when there are pending or running
5497  *			writers at the outer perimeter to prevent the set of
5498  *			inner syncqs that belong to the outer perimeter from
5499  *			changing.
5500  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5501  *
5502  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5503  *			inner syncqs are added to or removed from the
5504  *			outer perimeter.
5505  *	SQ_QUEUED	sq_head/tail has messages or eventsqueued.
5506  *
5507  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5508  *			setting the SQ_WRITER flag.
5509  */
5510 
5511 /*
5512  * Get write access at the outer perimeter.
5513  * Note that read access is done by entersq, putnext, and put by simply
5514  * incrementing sq_count in the inner syncq.
5515  *
5516  * Waits until "flags" is no longer set in the outer to prevent multiple
5517  * threads from having write access at the same time. SQ_WRITER has to be part
5518  * of "flags".
5519  *
5520  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5521  * until the outer_exit is finished.
5522  *
5523  * outer_enter is vulnerable to starvation since it does not prevent new
5524  * threads from entering the inner syncqs while it is waiting for sq_count to
5525  * go to zero.
5526  */
5527 void
5528 outer_enter(syncq_t *outer, uint16_t flags)
5529 {
5530 	syncq_t	*sq;
5531 	int	wait_needed;
5532 	uint16_t	count;
5533 
5534 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5535 	    outer->sq_oprev != NULL);
5536 	ASSERT(flags & SQ_WRITER);
5537 
5538 retry:
5539 	mutex_enter(SQLOCK(outer));
5540 	while (outer->sq_flags & flags) {
5541 		outer->sq_flags |= SQ_WANTWAKEUP;
5542 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5543 	}
5544 
5545 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5546 	outer->sq_flags |= SQ_WRITER;
5547 	outer->sq_count++;
5548 	ASSERT(outer->sq_count != 0);	/* wraparound */
5549 	wait_needed = 0;
5550 	/*
5551 	 * Set SQ_WRITER on all the inner syncqs while holding
5552 	 * the SQLOCK on the outer syncq. This ensures that the changing
5553 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5554 	 */
5555 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5556 		mutex_enter(SQLOCK(sq));
5557 		count = sq->sq_count;
5558 		SQ_PUTLOCKS_ENTER(sq);
5559 		sq->sq_flags |= SQ_WRITER;
5560 		SUM_SQ_PUTCOUNTS(sq, count);
5561 		if (count != 0)
5562 			wait_needed = 1;
5563 		SQ_PUTLOCKS_EXIT(sq);
5564 		mutex_exit(SQLOCK(sq));
5565 	}
5566 	mutex_exit(SQLOCK(outer));
5567 
5568 	/*
5569 	 * Get everybody out of the syncqs sequentially.
5570 	 * Note that we don't actually need to aqiure the PUTLOCKS, since
5571 	 * we have already cleared the fastbit, and set QWRITER.  By
5572 	 * definition, the count can not increase since putnext will
5573 	 * take the slowlock path (and the purpose of aquiring the
5574 	 * putlocks was to make sure it didn't increase while we were
5575 	 * waiting).
5576 	 *
5577 	 * Note that we still aquire the PUTLOCKS to be safe.
5578 	 */
5579 	if (wait_needed) {
5580 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5581 			mutex_enter(SQLOCK(sq));
5582 			count = sq->sq_count;
5583 			SQ_PUTLOCKS_ENTER(sq);
5584 			SUM_SQ_PUTCOUNTS(sq, count);
5585 			while (count != 0) {
5586 				sq->sq_flags |= SQ_WANTWAKEUP;
5587 				SQ_PUTLOCKS_EXIT(sq);
5588 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5589 				count = sq->sq_count;
5590 				SQ_PUTLOCKS_ENTER(sq);
5591 				SUM_SQ_PUTCOUNTS(sq, count);
5592 			}
5593 			SQ_PUTLOCKS_EXIT(sq);
5594 			mutex_exit(SQLOCK(sq));
5595 		}
5596 		/*
5597 		 * Verify that none of the flags got set while we
5598 		 * were waiting for the sq_counts to drop.
5599 		 * If this happens we exit and retry entering the
5600 		 * outer perimeter.
5601 		 */
5602 		mutex_enter(SQLOCK(outer));
5603 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5604 			mutex_exit(SQLOCK(outer));
5605 			outer_exit(outer);
5606 			goto retry;
5607 		}
5608 		mutex_exit(SQLOCK(outer));
5609 	}
5610 }
5611 
5612 /*
5613  * Drop the write access at the outer perimeter.
5614  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5615  * decrementing sq_count.
5616  */
5617 void
5618 outer_exit(syncq_t *outer)
5619 {
5620 	syncq_t	*sq;
5621 	int	 drain_needed;
5622 	uint16_t flags;
5623 
5624 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5625 	    outer->sq_oprev != NULL);
5626 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5627 
5628 	/*
5629 	 * Atomically (from the perspective of threads calling become_writer)
5630 	 * drop the write access at the outer perimeter by holding
5631 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5632 	 * SQ_WRITER.
5633 	 * This defines a locking order between the outer perimeter
5634 	 * SQLOCK and the inner perimeter SQLOCKs.
5635 	 */
5636 	mutex_enter(SQLOCK(outer));
5637 	flags = outer->sq_flags;
5638 	ASSERT(outer->sq_flags & SQ_WRITER);
5639 	if (flags & SQ_QUEUED) {
5640 		write_now(outer);
5641 		flags = outer->sq_flags;
5642 	}
5643 
5644 	/*
5645 	 * sq_onext is stable since sq_count has not yet been decreased.
5646 	 * Reset the SQ_WRITER flags in all syncqs.
5647 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5648 	 * inner syncqs.
5649 	 */
5650 	drain_needed = 0;
5651 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5652 		drain_needed += dropsq(sq, SQ_WRITER);
5653 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5654 	flags &= ~SQ_WRITER;
5655 	if (drain_needed) {
5656 		outer->sq_flags = flags;
5657 		mutex_exit(SQLOCK(outer));
5658 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5659 			emptysq(sq);
5660 		mutex_enter(SQLOCK(outer));
5661 		flags = outer->sq_flags;
5662 	}
5663 	if (flags & SQ_WANTWAKEUP) {
5664 		flags &= ~SQ_WANTWAKEUP;
5665 		cv_broadcast(&outer->sq_wait);
5666 	}
5667 	outer->sq_flags = flags;
5668 	ASSERT(outer->sq_count > 0);
5669 	outer->sq_count--;
5670 	mutex_exit(SQLOCK(outer));
5671 }
5672 
5673 /*
5674  * Add another syncq to an outer perimeter.
5675  * Block out all other access to the outer perimeter while it is being
5676  * changed using blocksq.
5677  * Assumes that the caller has *not* done an outer_enter.
5678  *
5679  * Vulnerable to starvation in blocksq.
5680  */
5681 static void
5682 outer_insert(syncq_t *outer, syncq_t *sq)
5683 {
5684 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5685 	    outer->sq_oprev != NULL);
5686 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5687 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5688 
5689 	/* Get exclusive access to the outer perimeter list */
5690 	blocksq(outer, SQ_BLOCKED, 0);
5691 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5692 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5693 
5694 	mutex_enter(SQLOCK(sq));
5695 	sq->sq_outer = outer;
5696 	outer->sq_onext->sq_oprev = sq;
5697 	sq->sq_onext = outer->sq_onext;
5698 	outer->sq_onext = sq;
5699 	sq->sq_oprev = outer;
5700 	mutex_exit(SQLOCK(sq));
5701 	unblocksq(outer, SQ_BLOCKED, 1);
5702 }
5703 
5704 /*
5705  * Remove a syncq from an outer perimeter.
5706  * Block out all other access to the outer perimeter while it is being
5707  * changed using blocksq.
5708  * Assumes that the caller has *not* done an outer_enter.
5709  *
5710  * Vulnerable to starvation in blocksq.
5711  */
5712 static void
5713 outer_remove(syncq_t *outer, syncq_t *sq)
5714 {
5715 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5716 	    outer->sq_oprev != NULL);
5717 	ASSERT(sq->sq_outer == outer);
5718 
5719 	/* Get exclusive access to the outer perimeter list */
5720 	blocksq(outer, SQ_BLOCKED, 0);
5721 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5722 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5723 
5724 	mutex_enter(SQLOCK(sq));
5725 	sq->sq_outer = NULL;
5726 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5727 	sq->sq_oprev->sq_onext = sq->sq_onext;
5728 	sq->sq_oprev = sq->sq_onext = NULL;
5729 	mutex_exit(SQLOCK(sq));
5730 	unblocksq(outer, SQ_BLOCKED, 1);
5731 }
5732 
5733 /*
5734  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5735  * If this is the first callback for this outer perimeter then add
5736  * this outer perimeter to the list of outer perimeters that
5737  * the qwriter_outer_thread will process.
5738  *
5739  * Increments sq_count in the outer syncq to prevent the membership
5740  * of the outer perimeter (in terms of inner syncqs) to change while
5741  * the callback is pending.
5742  */
5743 static void
5744 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5745 {
5746 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5747 
5748 	mp->b_prev = (mblk_t *)func;
5749 	mp->b_queue = q;
5750 	mp->b_next = NULL;
5751 	outer->sq_count++;	/* Decremented when dequeued */
5752 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5753 	if (outer->sq_evhead == NULL) {
5754 		/* First message. */
5755 		outer->sq_evhead = outer->sq_evtail = mp;
5756 		outer->sq_flags |= SQ_EVENTS;
5757 		mutex_exit(SQLOCK(outer));
5758 		STRSTAT(qwr_outer);
5759 		(void) taskq_dispatch(streams_taskq,
5760 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5761 	} else {
5762 		ASSERT(outer->sq_flags & SQ_EVENTS);
5763 		outer->sq_evtail->b_next = mp;
5764 		outer->sq_evtail = mp;
5765 		mutex_exit(SQLOCK(outer));
5766 	}
5767 }
5768 
5769 /*
5770  * Try and upgrade to write access at the outer perimeter. If this can
5771  * not be done without blocking then queue the callback to be done
5772  * by the qwriter_outer_thread.
5773  *
5774  * This routine can only be called from put or service procedures plus
5775  * asynchronous callback routines that have properly entered to
5776  * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
5777  * on the syncq associated with q.
5778  */
5779 void
5780 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5781 {
5782 	syncq_t	*osq, *sq, *outer;
5783 	int	failed;
5784 	uint16_t flags;
5785 
5786 	osq = q->q_syncq;
5787 	outer = osq->sq_outer;
5788 	if (outer == NULL)
5789 		panic("qwriter(PERIM_OUTER): no outer perimeter");
5790 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5791 	    outer->sq_oprev != NULL);
5792 
5793 	mutex_enter(SQLOCK(outer));
5794 	flags = outer->sq_flags;
5795 	/*
5796 	 * If some thread is traversing sq_next, or if we are blocked by
5797 	 * outer_insert or outer_remove, or if the we already have queued
5798 	 * callbacks, then queue this callback for later processing.
5799 	 *
5800 	 * Also queue the qwriter for an interrupt thread in order
5801 	 * to reduce the time spent running at high IPL.
5802 	 * to identify there are events.
5803 	 */
5804 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5805 		/*
5806 		 * Queue the become_writer request.
5807 		 * The queueing is atomic under SQLOCK(outer) in order
5808 		 * to synchronize with outer_exit.
5809 		 * queue_writer will drop the outer SQLOCK
5810 		 */
5811 		if (flags & SQ_BLOCKED) {
5812 			/* Must set SQ_WRITER on inner perimeter */
5813 			mutex_enter(SQLOCK(osq));
5814 			osq->sq_flags |= SQ_WRITER;
5815 			mutex_exit(SQLOCK(osq));
5816 		} else {
5817 			if (!(flags & SQ_WRITER)) {
5818 				/*
5819 				 * The outer could have been SQ_BLOCKED thus
5820 				 * SQ_WRITER might not be set on the inner.
5821 				 */
5822 				mutex_enter(SQLOCK(osq));
5823 				osq->sq_flags |= SQ_WRITER;
5824 				mutex_exit(SQLOCK(osq));
5825 			}
5826 			ASSERT(osq->sq_flags & SQ_WRITER);
5827 		}
5828 		queue_writer(outer, func, q, mp);
5829 		return;
5830 	}
5831 	/*
5832 	 * We are half-way to exclusive access to the outer perimeter.
5833 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
5834 	 * while the inner syncqs are traversed.
5835 	 */
5836 	outer->sq_count++;
5837 	ASSERT(outer->sq_count != 0);	/* wraparound */
5838 	flags |= SQ_WRITER;
5839 	/*
5840 	 * Check if we can run the function immediately. Mark all
5841 	 * syncqs with the writer flag to prevent new entries into
5842 	 * put and service procedures.
5843 	 *
5844 	 * Set SQ_WRITER on all the inner syncqs while holding
5845 	 * the SQLOCK on the outer syncq. This ensures that the changing
5846 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5847 	 */
5848 	failed = 0;
5849 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5850 		uint16_t count;
5851 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
5852 
5853 		mutex_enter(SQLOCK(sq));
5854 		count = sq->sq_count;
5855 		SQ_PUTLOCKS_ENTER(sq);
5856 		SUM_SQ_PUTCOUNTS(sq, count);
5857 		if (sq->sq_count > maxcnt)
5858 			failed = 1;
5859 		sq->sq_flags |= SQ_WRITER;
5860 		SQ_PUTLOCKS_EXIT(sq);
5861 		mutex_exit(SQLOCK(sq));
5862 	}
5863 	if (failed) {
5864 		/*
5865 		 * Some other thread has a read claim on the outer perimeter.
5866 		 * Queue the callback for deferred processing.
5867 		 *
5868 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
5869 		 * so that other qwriter(OUTER) calls will queue their
5870 		 * callbacks as well. queue_writer increments sq_count so we
5871 		 * decrement to compensate for the our increment.
5872 		 *
5873 		 * Dropping SQ_WRITER enables the writer thread to work
5874 		 * on this outer perimeter.
5875 		 */
5876 		outer->sq_flags = flags;
5877 		queue_writer(outer, func, q, mp);
5878 		/* queue_writer dropper the lock */
5879 		mutex_enter(SQLOCK(outer));
5880 		ASSERT(outer->sq_count > 0);
5881 		outer->sq_count--;
5882 		ASSERT(outer->sq_flags & SQ_WRITER);
5883 		flags = outer->sq_flags;
5884 		flags &= ~SQ_WRITER;
5885 		if (flags & SQ_WANTWAKEUP) {
5886 			flags &= ~SQ_WANTWAKEUP;
5887 			cv_broadcast(&outer->sq_wait);
5888 		}
5889 		outer->sq_flags = flags;
5890 		mutex_exit(SQLOCK(outer));
5891 		return;
5892 	} else {
5893 		outer->sq_flags = flags;
5894 		mutex_exit(SQLOCK(outer));
5895 	}
5896 
5897 	/* Can run it immediately */
5898 	(*func)(q, mp);
5899 
5900 	outer_exit(outer);
5901 }
5902 
5903 /*
5904  * Dequeue all writer callbacks from the outer perimeter and run them.
5905  */
5906 static void
5907 write_now(syncq_t *outer)
5908 {
5909 	mblk_t		*mp;
5910 	queue_t		*q;
5911 	void	(*func)();
5912 
5913 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5914 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5915 	    outer->sq_oprev != NULL);
5916 	while ((mp = outer->sq_evhead) != NULL) {
5917 		/*
5918 		 * queues cannot be placed on the queuelist on the outer
5919 		 * perimiter.
5920 		 */
5921 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
5922 		ASSERT((outer->sq_flags & SQ_EVENTS));
5923 
5924 		outer->sq_evhead = mp->b_next;
5925 		if (outer->sq_evhead == NULL) {
5926 			outer->sq_evtail = NULL;
5927 			outer->sq_flags &= ~SQ_EVENTS;
5928 		}
5929 		ASSERT(outer->sq_count != 0);
5930 		outer->sq_count--;	/* Incremented when enqueued. */
5931 		mutex_exit(SQLOCK(outer));
5932 		/*
5933 		 * Drop the message if the queue is closing.
5934 		 * Make sure that the queue is "claimed" when the callback
5935 		 * is run in order to satisfy various ASSERTs.
5936 		 */
5937 		q = mp->b_queue;
5938 		func = (void (*)())mp->b_prev;
5939 		ASSERT(func != NULL);
5940 		mp->b_next = mp->b_prev = NULL;
5941 		if (q->q_flag & QWCLOSE) {
5942 			freemsg(mp);
5943 		} else {
5944 			claimq(q);
5945 			(*func)(q, mp);
5946 			releaseq(q);
5947 		}
5948 		mutex_enter(SQLOCK(outer));
5949 	}
5950 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5951 }
5952 
5953 /*
5954  * The list of messages on the inner syncq is effectively hashed
5955  * by destination queue.  These destination queues are doubly
5956  * linked lists (hopefully) in priority order.  Messages are then
5957  * put on the queue referenced by the q_sqhead/q_sqtail elements.
5958  * Additional messages are linked together by the b_next/b_prev
5959  * elements in the mblk, with (similar to putq()) the first message
5960  * having a NULL b_prev and the last message having a NULL b_next.
5961  *
5962  * Events, such as qwriter callbacks, are put onto a list in FIFO
5963  * order referenced by sq_evhead, and sq_evtail.  This is a singly
5964  * linked list, and messages here MUST be processed in the order queued.
5965  */
5966 
5967 /*
5968  * Run the events on the syncq event list (sq_evhead).
5969  * Assumes there is only one claim on the syncq, it is
5970  * already exclusive (SQ_EXCL set), and the SQLOCK held.
5971  * Messages here are processed in order, with the SQ_EXCL bit
5972  * held all the way through till the last message is processed.
5973  */
5974 void
5975 sq_run_events(syncq_t *sq)
5976 {
5977 	mblk_t		*bp;
5978 	queue_t		*qp;
5979 	uint16_t	flags = sq->sq_flags;
5980 	void		(*func)();
5981 
5982 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
5983 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
5984 		sq->sq_oprev == NULL) ||
5985 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
5986 		sq->sq_oprev != NULL));
5987 
5988 	ASSERT(flags & SQ_EXCL);
5989 	ASSERT(sq->sq_count == 1);
5990 
5991 	/*
5992 	 * We need to process all of the events on this list.  It
5993 	 * is possible that new events will be added while we are
5994 	 * away processing a callback, so on every loop, we start
5995 	 * back at the beginning of the list.
5996 	 */
5997 	/*
5998 	 * We have to reaccess sq_evhead since there is a
5999 	 * possibility of a new entry while we were running
6000 	 * the callback.
6001 	 */
6002 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6003 		ASSERT(bp->b_queue->q_syncq == sq);
6004 		ASSERT(sq->sq_flags & SQ_EVENTS);
6005 
6006 		qp = bp->b_queue;
6007 		func = (void (*)())bp->b_prev;
6008 		ASSERT(func != NULL);
6009 
6010 		/*
6011 		 * Messages from the event queue must be taken off in
6012 		 * FIFO order.
6013 		 */
6014 		ASSERT(sq->sq_evhead == bp);
6015 		sq->sq_evhead = bp->b_next;
6016 
6017 		if (bp->b_next == NULL) {
6018 			/* Deleting last */
6019 			ASSERT(sq->sq_evtail == bp);
6020 			sq->sq_evtail = NULL;
6021 			sq->sq_flags &= ~SQ_EVENTS;
6022 		}
6023 		bp->b_prev = bp->b_next = NULL;
6024 		ASSERT(bp->b_datap->db_ref != 0);
6025 
6026 		mutex_exit(SQLOCK(sq));
6027 
6028 		(*func)(qp, bp);
6029 
6030 		mutex_enter(SQLOCK(sq));
6031 		/*
6032 		 * re-read the flags, since they could have changed.
6033 		 */
6034 		flags = sq->sq_flags;
6035 		ASSERT(flags & SQ_EXCL);
6036 	}
6037 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6038 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6039 
6040 	if (flags & SQ_WANTWAKEUP) {
6041 		flags &= ~SQ_WANTWAKEUP;
6042 		cv_broadcast(&sq->sq_wait);
6043 	}
6044 	if (flags & SQ_WANTEXWAKEUP) {
6045 		flags &= ~SQ_WANTEXWAKEUP;
6046 		cv_broadcast(&sq->sq_exitwait);
6047 	}
6048 	sq->sq_flags = flags;
6049 }
6050 
6051 /*
6052  * Put messages on the event list.
6053  * If we can go exclusive now, do so and process the event list, otherwise
6054  * let the last claim service this list (or wake the sqthread).
6055  * This procedure assumes SQLOCK is held.  To run the event list, it
6056  * must be called with no claims.
6057  */
6058 static void
6059 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6060 {
6061 	uint16_t count;
6062 
6063 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6064 	ASSERT(func != NULL);
6065 
6066 	/*
6067 	 * This is a callback.  Add it to the list of callbacks
6068 	 * and see about upgrading.
6069 	 */
6070 	mp->b_prev = (mblk_t *)func;
6071 	mp->b_queue = q;
6072 	mp->b_next = NULL;
6073 	if (sq->sq_evhead == NULL) {
6074 		sq->sq_evhead = sq->sq_evtail = mp;
6075 		sq->sq_flags |= SQ_EVENTS;
6076 	} else {
6077 		ASSERT(sq->sq_evtail != NULL);
6078 		ASSERT(sq->sq_evtail->b_next == NULL);
6079 		ASSERT(sq->sq_flags & SQ_EVENTS);
6080 		sq->sq_evtail->b_next = mp;
6081 		sq->sq_evtail = mp;
6082 	}
6083 	/*
6084 	 * We have set SQ_EVENTS, so threads will have to
6085 	 * unwind out of the perimiter, and new entries will
6086 	 * not grab a putlock.  But we still need to know
6087 	 * how many threads have already made a claim to the
6088 	 * syncq, so grab the putlocks, and sum the counts.
6089 	 * If there are no claims on the syncq, we can upgrade
6090 	 * to exclusive, and run the event list.
6091 	 * NOTE: We hold the SQLOCK, so we can just grab the
6092 	 * putlocks.
6093 	 */
6094 	count = sq->sq_count;
6095 	SQ_PUTLOCKS_ENTER(sq);
6096 	SUM_SQ_PUTCOUNTS(sq, count);
6097 	/*
6098 	 * We have no claim, so we need to check if there
6099 	 * are no others, then we can upgrade.
6100 	 */
6101 	/*
6102 	 * There are currently no claims on
6103 	 * the syncq by this thread (at least on this entry). The thread who has
6104 	 * the claim should drain syncq.
6105 	 */
6106 	if (count > 0) {
6107 		/*
6108 		 * Can't upgrade - other threads inside.
6109 		 */
6110 		SQ_PUTLOCKS_EXIT(sq);
6111 		mutex_exit(SQLOCK(sq));
6112 		return;
6113 	}
6114 	/*
6115 	 * Need to set SQ_EXCL and make a claim on the syncq.
6116 	 */
6117 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6118 	sq->sq_flags |= SQ_EXCL;
6119 	ASSERT(sq->sq_count == 0);
6120 	sq->sq_count++;
6121 	SQ_PUTLOCKS_EXIT(sq);
6122 
6123 	/* Process the events list */
6124 	sq_run_events(sq);
6125 
6126 	/*
6127 	 * Release our claim...
6128 	 */
6129 	sq->sq_count--;
6130 
6131 	/*
6132 	 * And release SQ_EXCL.
6133 	 * We don't need to acquire the putlocks to release
6134 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6135 	 */
6136 	sq->sq_flags &= ~SQ_EXCL;
6137 
6138 	/*
6139 	 * sq_run_events should have released SQ_EXCL
6140 	 */
6141 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6142 
6143 	/*
6144 	 * If anything happened while we were running the
6145 	 * events (or was there before), we need to process
6146 	 * them now.  We shouldn't be exclusive sine we
6147 	 * released the perimiter above (plus, we asserted
6148 	 * for it).
6149 	 */
6150 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6151 		drain_syncq(sq);
6152 	else
6153 		mutex_exit(SQLOCK(sq));
6154 }
6155 
6156 /*
6157  * Perform delayed processing. The caller has to make sure that it is safe
6158  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6159  * set.)
6160  *
6161  * Assume that the caller has NO claims on the syncq.  However, a claim
6162  * on the syncq does not indicate that a thread is draining the syncq.
6163  * There may be more claims on the syncq than there are threads draining
6164  * (i.e.  #_threads_draining <= sq_count)
6165  *
6166  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6167  * in order to preserve qwriter(OUTER) ordering constraints.
6168  *
6169  * sq_putcount only needs to be checked when dispatching the queued
6170  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6171  */
6172 void
6173 drain_syncq(syncq_t *sq)
6174 {
6175 	queue_t		*qp;
6176 	uint16_t	count;
6177 	uint16_t	type = sq->sq_type;
6178 	uint16_t	flags = sq->sq_flags;
6179 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6180 
6181 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6182 		"drain_syncq start:%p", sq);
6183 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6184 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6185 		sq->sq_oprev == NULL) ||
6186 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6187 		sq->sq_oprev != NULL));
6188 
6189 	/*
6190 	 * Drop SQ_SERVICE flag.
6191 	 */
6192 	if (bg_service)
6193 		sq->sq_svcflags &= ~SQ_SERVICE;
6194 
6195 	/*
6196 	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6197 	 * finish the job.
6198 	 */
6199 	if (flags & SQ_EXCL) {
6200 		if (bg_service) {
6201 			ASSERT(sq->sq_servcount != 0);
6202 			sq->sq_servcount--;
6203 		}
6204 		mutex_exit(SQLOCK(sq));
6205 		return;
6206 	}
6207 
6208 	/*
6209 	 * This routine can be called by a background thread if
6210 	 * it was scheduled by a hi-priority thread.  SO, if there are
6211 	 * NOT messages queued, return (remember, we have the SQLOCK,
6212 	 * and it cannot change until we release it). Wakeup any waiters also.
6213 	 */
6214 	if (!(flags & SQ_QUEUED)) {
6215 		if (flags & SQ_WANTWAKEUP) {
6216 			flags &= ~SQ_WANTWAKEUP;
6217 			cv_broadcast(&sq->sq_wait);
6218 		}
6219 		if (flags & SQ_WANTEXWAKEUP) {
6220 			flags &= ~SQ_WANTEXWAKEUP;
6221 			cv_broadcast(&sq->sq_exitwait);
6222 		}
6223 		sq->sq_flags = flags;
6224 		if (bg_service) {
6225 			ASSERT(sq->sq_servcount != 0);
6226 			sq->sq_servcount--;
6227 		}
6228 		mutex_exit(SQLOCK(sq));
6229 		return;
6230 	}
6231 
6232 	/*
6233 	 * If this is not a concurrent put perimiter, we need to
6234 	 * become exclusive to drain.  Also, if not CIPUT, we would
6235 	 * not have acquired a putlock, so we don't need to check
6236 	 * the putcounts.  If not entering with a claim, we test
6237 	 * for sq_count == 0.
6238 	 */
6239 	type = sq->sq_type;
6240 	if (!(type & SQ_CIPUT)) {
6241 		if (sq->sq_count > 1) {
6242 			if (bg_service) {
6243 				ASSERT(sq->sq_servcount != 0);
6244 				sq->sq_servcount--;
6245 			}
6246 			mutex_exit(SQLOCK(sq));
6247 			return;
6248 		}
6249 		sq->sq_flags |= SQ_EXCL;
6250 	}
6251 
6252 	/*
6253 	 * This is where we make a claim to the syncq.
6254 	 * This can either be done by incrementing a putlock, or
6255 	 * the sq_count.  But since we already have the SQLOCK
6256 	 * here, we just bump the sq_count.
6257 	 *
6258 	 * Note that after we make a claim, we need to let the code
6259 	 * fall through to the end of this routine to clean itself
6260 	 * up.  A return in the while loop will put the syncq in a
6261 	 * very bad state.
6262 	 */
6263 	sq->sq_count++;
6264 	ASSERT(sq->sq_count != 0);	/* wraparound */
6265 
6266 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6267 		/*
6268 		 * If we are told to stayaway or went exclusive,
6269 		 * we are done.
6270 		 */
6271 		if (flags & (SQ_STAYAWAY)) {
6272 			break;
6273 		}
6274 
6275 		/*
6276 		 * If there are events to run, do so.
6277 		 * We have one claim to the syncq, so if there are
6278 		 * more than one, other threads are running.
6279 		 */
6280 		if (sq->sq_evhead != NULL) {
6281 			ASSERT(sq->sq_flags & SQ_EVENTS);
6282 
6283 			count = sq->sq_count;
6284 			SQ_PUTLOCKS_ENTER(sq);
6285 			SUM_SQ_PUTCOUNTS(sq, count);
6286 			if (count > 1) {
6287 				SQ_PUTLOCKS_EXIT(sq);
6288 				/* Can't upgrade - other threads inside */
6289 				break;
6290 			}
6291 			ASSERT((flags & SQ_EXCL) == 0);
6292 			sq->sq_flags = flags | SQ_EXCL;
6293 			SQ_PUTLOCKS_EXIT(sq);
6294 			/*
6295 			 * we have the only claim, run the events,
6296 			 * sq_run_events will clear the SQ_EXCL flag.
6297 			 */
6298 			sq_run_events(sq);
6299 
6300 			/*
6301 			 * If this is a CIPUT perimiter, we need
6302 			 * to drop the SQ_EXCL flag so we can properly
6303 			 * continue draining the syncq.
6304 			 */
6305 			if (type & SQ_CIPUT) {
6306 				ASSERT(sq->sq_flags & SQ_EXCL);
6307 				sq->sq_flags &= ~SQ_EXCL;
6308 			}
6309 
6310 			/*
6311 			 * And go back to the beginning just in case
6312 			 * anything changed while we were away.
6313 			 */
6314 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6315 			continue;
6316 		}
6317 
6318 		ASSERT(sq->sq_evhead == NULL);
6319 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6320 
6321 		/*
6322 		 * Find the queue that is not draining.
6323 		 *
6324 		 * q_draining is protected by QLOCK which we do not hold.
6325 		 * But if it was set, then a thread was draining, and if it gets
6326 		 * cleared, then it was because the thread has successfully
6327 		 * drained the syncq, or a GOAWAY state occured. For the GOAWAY
6328 		 * state to happen, a thread needs the SQLOCK which we hold, and
6329 		 * if there was such a flag, we whould have already seen it.
6330 		 */
6331 
6332 		for (qp = sq->sq_head;
6333 		    qp != NULL && (qp->q_draining ||
6334 			(qp->q_sqflags & Q_SQDRAINING));
6335 		    qp = qp->q_sqnext)
6336 			;
6337 
6338 		if (qp == NULL)
6339 			break;
6340 
6341 		/*
6342 		 * We have a queue to work on, and we hold the
6343 		 * SQLOCK and one claim, call qdrain_syncq.
6344 		 * This means we need to release the SQLOCK and
6345 		 * aquire the QLOCK (OK since we have a claim).
6346 		 * Note that qdrain_syncq will actually dequeue
6347 		 * this queue from the sq_head list when it is
6348 		 * convinced all the work is done and release
6349 		 * the QLOCK before returning.
6350 		 */
6351 		qp->q_sqflags |= Q_SQDRAINING;
6352 		mutex_exit(SQLOCK(sq));
6353 		mutex_enter(QLOCK(qp));
6354 		qdrain_syncq(sq, qp);
6355 		mutex_enter(SQLOCK(sq));
6356 
6357 		/* The queue is drained */
6358 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6359 		qp->q_sqflags &= ~Q_SQDRAINING;
6360 		/*
6361 		 * NOTE: After this point qp should not be used since it may be
6362 		 * closed.
6363 		 */
6364 	}
6365 
6366 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6367 	flags = sq->sq_flags;
6368 
6369 	/*
6370 	 * sq->sq_head cannot change because we hold the
6371 	 * sqlock. However, a thread CAN decide that it is no longer
6372 	 * going to drain that queue.  However, this should be due to
6373 	 * a GOAWAY state, and we should see that here.
6374 	 *
6375 	 * This loop is not very efficient. One solution may be adding a second
6376 	 * pointer to the "draining" queue, but it is difficult to do when
6377 	 * queues are inserted in the middle due to priority ordering. Another
6378 	 * possibility is to yank the queue out of the sq list and put it onto
6379 	 * the "draining list" and then put it back if it can't be drained.
6380 	 */
6381 
6382 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6383 		(type & SQ_CI) || sq->sq_head->q_draining);
6384 
6385 	/* Drop SQ_EXCL for non-CIPUT perimiters */
6386 	if (!(type & SQ_CIPUT))
6387 		flags &= ~SQ_EXCL;
6388 	ASSERT((flags & SQ_EXCL) == 0);
6389 
6390 	/* Wake up any waiters. */
6391 	if (flags & SQ_WANTWAKEUP) {
6392 		flags &= ~SQ_WANTWAKEUP;
6393 		cv_broadcast(&sq->sq_wait);
6394 	}
6395 	if (flags & SQ_WANTEXWAKEUP) {
6396 		flags &= ~SQ_WANTEXWAKEUP;
6397 		cv_broadcast(&sq->sq_exitwait);
6398 	}
6399 	sq->sq_flags = flags;
6400 
6401 	ASSERT(sq->sq_count != 0);
6402 	/* Release our claim. */
6403 	sq->sq_count--;
6404 
6405 	if (bg_service) {
6406 		ASSERT(sq->sq_servcount != 0);
6407 		sq->sq_servcount--;
6408 	}
6409 
6410 	mutex_exit(SQLOCK(sq));
6411 
6412 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6413 		"drain_syncq end:%p", sq);
6414 }
6415 
6416 
6417 /*
6418  *
6419  * qdrain_syncq can be called (currently) from only one of two places:
6420  *	drain_syncq
6421  * 	putnext  (or some variation of it).
6422  * and eventually
6423  * 	qwait(_sig)
6424  *
6425  * If called from drain_syncq, we found it in the list
6426  * of queue's needing service, so there is work to be done (or it
6427  * wouldn't be on the list).
6428  *
6429  * If called from some putnext variation, it was because the
6430  * perimiter is open, but messages are blocking a putnext and
6431  * there is not a thread working on it.  Now a thread could start
6432  * working on it while we are getting ready to do so ourself, but
6433  * the thread would set the q_draining flag, and we can spin out.
6434  *
6435  * As for qwait(_sig), I think I shall let it continue to call
6436  * drain_syncq directly (after all, it will get here eventually).
6437  *
6438  * qdrain_syncq has to terminate when:
6439  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6440  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6441  *
6442  * ASSUMES:
6443  *	One claim
6444  * 	QLOCK held
6445  * 	SQLOCK not held
6446  *	Will release QLOCK before returning
6447  */
6448 void
6449 qdrain_syncq(syncq_t *sq, queue_t *q)
6450 {
6451 	mblk_t		*bp;
6452 	boolean_t	do_clr;
6453 #ifdef DEBUG
6454 	uint16_t	count;
6455 #endif
6456 
6457 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6458 		"drain_syncq start:%p", sq);
6459 	ASSERT(q->q_syncq == sq);
6460 	ASSERT(MUTEX_HELD(QLOCK(q)));
6461 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6462 	/*
6463 	 * For non-CIPUT perimiters, we should be called with the
6464 	 * exclusive bit set already.  For non-CIPUT perimiters we
6465 	 * will be doing a concurrent drain, so it better not be set.
6466 	 */
6467 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6468 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6469 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6470 	/*
6471 	 * All outer pointers are set, or none of them are
6472 	 */
6473 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6474 		sq->sq_oprev == NULL) ||
6475 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6476 		sq->sq_oprev != NULL));
6477 #ifdef DEBUG
6478 	count = sq->sq_count;
6479 	/*
6480 	 * This is OK without the putlocks, because we have one
6481 	 * claim either from the sq_count, or a putcount.  We could
6482 	 * get an erroneous value from other counts, but ours won't
6483 	 * change, so one way or another, we will have at least a
6484 	 * value of one.
6485 	 */
6486 	SUM_SQ_PUTCOUNTS(sq, count);
6487 	ASSERT(count >= 1);
6488 #endif /* DEBUG */
6489 
6490 	/*
6491 	 * The first thing to do here, is find out if a thread is already
6492 	 * draining this queue or the queue is closing. If so, we are done,
6493 	 * just return. Also, if there are no messages, we are done as well.
6494 	 * Note that we check the q_sqhead since there is s window of
6495 	 * opportunity for us to enter here because Q_SQQUEUED was set, but is
6496 	 * not anymore.
6497 	 */
6498 	if (q->q_draining || (q->q_sqhead == NULL)) {
6499 		mutex_exit(QLOCK(q));
6500 		return;
6501 	}
6502 
6503 	/*
6504 	 * If the perimiter is exclusive, there is nothing we can
6505 	 * do right now, go away.
6506 	 * Note that there is nothing to prevent this case from changing
6507 	 * right after this check, but the spin-out will catch it.
6508 	 */
6509 
6510 	/* Tell other threads that we are draining this queue */
6511 	q->q_draining = 1;	/* Protected by QLOCK */
6512 
6513 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6514 
6515 		/*
6516 		 * Because we can enter this routine just because
6517 		 * a putnext is blocked, we need to spin out if
6518 		 * the perimiter wants to go exclusive as well
6519 		 * as just blocked. We need to spin out also if
6520 		 * events are queued on the syncq.
6521 		 * Don't check for SQ_EXCL, because non-CIPUT
6522 		 * perimiters would set it, and it can't become
6523 		 * exclusive while we hold a claim.
6524 		 */
6525 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6526 			break;
6527 		}
6528 
6529 #ifdef DEBUG
6530 		/*
6531 		 * Since we are in qdrain_syncq, we already know the queue,
6532 		 * but for sanity, we want to check this against the qp that
6533 		 * was passed in by bp->b_queue.
6534 		 */
6535 
6536 		ASSERT(bp->b_queue == q);
6537 		ASSERT(bp->b_queue->q_syncq == sq);
6538 		bp->b_queue = NULL;
6539 
6540 		/*
6541 		 * We would have the following check in the DEBUG code:
6542 		 *
6543 		 * if (bp->b_prev != NULL)  {
6544 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6545 		 * }
6546 		 *
6547 		 * This can't be done, however, since IP modifies qinfo
6548 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6549 		 * qinfo), invalidating the check.
6550 		 * So the assignment to func is left here, but the ASSERT itself
6551 		 * is removed until the whole issue is resolved.
6552 		 */
6553 #endif
6554 		ASSERT(q->q_sqhead == bp);
6555 		q->q_sqhead = bp->b_next;
6556 		bp->b_prev = bp->b_next = NULL;
6557 		ASSERT(q->q_syncqmsgs > 0);
6558 		mutex_exit(QLOCK(q));
6559 
6560 		ASSERT(bp->b_datap->db_ref != 0);
6561 
6562 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6563 
6564 		mutex_enter(QLOCK(q));
6565 		/*
6566 		 * We should decrement q_syncqmsgs only after executing the
6567 		 * put procedure to avoid a possible race with putnext().
6568 		 * In putnext() though it sees Q_SQQUEUED is set, there is
6569 		 * an optimization which allows putnext to call the put
6570 		 * procedure directly if (q_syncqmsgs == 0) and thus
6571 		 * a message reodering could otherwise occur.
6572 		 */
6573 		q->q_syncqmsgs--;
6574 
6575 		/*
6576 		 * Clear QFULL in the next service procedure queue if
6577 		 * this is the last message destined to that queue.
6578 		 *
6579 		 * It would make better sense to have some sort of
6580 		 * tunable for the low water mark, but these symantics
6581 		 * are not yet defined.  So, alas, we use a constant.
6582 		 */
6583 		do_clr = (q->q_syncqmsgs == 0);
6584 		mutex_exit(QLOCK(q));
6585 
6586 		if (do_clr)
6587 			clr_qfull(q);
6588 
6589 		mutex_enter(QLOCK(q));
6590 		/*
6591 		 * Always clear SQ_EXCL when CIPUT in order to handle
6592 		 * qwriter(INNER).
6593 		 */
6594 		/*
6595 		 * The putp() can call qwriter and get exclusive access
6596 		 * IFF this is the only claim.  So, we need to test for
6597 		 * this possibility so we can aquire the mutex and clear
6598 		 * the bit.
6599 		 */
6600 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6601 			mutex_enter(SQLOCK(sq));
6602 			sq->sq_flags &= ~SQ_EXCL;
6603 			mutex_exit(SQLOCK(sq));
6604 		}
6605 	}
6606 
6607 	/*
6608 	 * We should either have no queues on the syncq, or we were
6609 	 * told to goaway by a waiter (which we will wake up at the
6610 	 * end of this function).
6611 	 */
6612 	ASSERT((q->q_sqhead == NULL) ||
6613 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6614 
6615 	ASSERT(MUTEX_HELD(QLOCK(q)));
6616 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6617 
6618 	/*
6619 	 * Remove the q from the syncq list if all the messages are
6620 	 * drained.
6621 	 */
6622 	if (q->q_sqhead == NULL) {
6623 		mutex_enter(SQLOCK(sq));
6624 		if (q->q_sqflags & Q_SQQUEUED)
6625 			SQRM_Q(sq, q);
6626 		mutex_exit(SQLOCK(sq));
6627 		/*
6628 		 * Since the queue is removed from the list, reset its priority.
6629 		 */
6630 		q->q_spri = 0;
6631 	}
6632 
6633 	/*
6634 	 * Remember, the q_draining flag is used to let another
6635 	 * thread know that there is a thread currently draining
6636 	 * the messages for a queue.  Since we are now done with
6637 	 * this queue (even if there may be messages still there),
6638 	 * we need to clear this flag so some thread will work
6639 	 * on it if needed.
6640 	 */
6641 	ASSERT(q->q_draining);
6642 	q->q_draining = 0;
6643 
6644 	/* called with a claim, so OK to drop all locks. */
6645 	mutex_exit(QLOCK(q));
6646 
6647 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6648 		"drain_syncq end:%p", sq);
6649 }
6650 /* END OF QDRAIN_SYNCQ  */
6651 
6652 
6653 /*
6654  * This is the mate to qdrain_syncq, except that it is putting the
6655  * message onto the the queue instead draining.  Since the
6656  * message is destined for the queue that is selected, there is
6657  * no need to identify the function because the message is
6658  * intended for the put routine for the queue.  But this
6659  * routine will do it anyway just in case (but only for debug kernels).
6660  *
6661  * After the message is enqueued on the syncq, it calls putnext_tail()
6662  * which will schedule a background thread to actually process the message.
6663  *
6664  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6665  * SQLOCK(sq) and QLOCK(q) are not held.
6666  */
6667 void
6668 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6669 {
6670 	queue_t		*fq = NULL;
6671 
6672 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6673 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6674 	ASSERT(sq->sq_count > 0);
6675 	ASSERT(q->q_syncq == sq);
6676 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6677 		sq->sq_oprev == NULL) ||
6678 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6679 		sq->sq_oprev != NULL));
6680 
6681 	mutex_enter(QLOCK(q));
6682 
6683 	/*
6684 	 * Set QFULL in next service procedure queue (that cares) if not
6685 	 * already set and if there are already more messages on the syncq
6686 	 * than sq_max_size.  If sq_max_size is 0, no flow control will be
6687 	 * asserted on any syncq.
6688 	 *
6689 	 * The fq here is the next queue with a service procedure.
6690 	 * This is where we would fail canputnext, so this is where we
6691 	 * need to set QFULL.
6692 	 *
6693 	 * LOCKING HIERARCHY: In the case when fq != q we need to
6694 	 *  a) Take QLOCK(fq) to set QFULL flag and
6695 	 *  b) Take sd_reflock in the case of the hot stream to update
6696 	 *  	sd_refcnt.
6697 	 * We already have QLOCK at this point. To avoid cross-locks with
6698 	 * freezestr() which grabs all QLOCKs and with strlock() which grabs
6699 	 * both SQLOCK and sd_reflock, we need to drop respective locks first.
6700 	 */
6701 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
6702 	    (q->q_syncqmsgs > sq_max_size)) {
6703 		if ((fq = q->q_nfsrv) == q) {
6704 			fq->q_flag |= QFULL;
6705 		} else {
6706 			mutex_exit(QLOCK(q));
6707 			mutex_enter(QLOCK(fq));
6708 			fq->q_flag |= QFULL;
6709 			mutex_exit(QLOCK(fq));
6710 			mutex_enter(QLOCK(q));
6711 		}
6712 	}
6713 
6714 #ifdef DEBUG
6715 	/*
6716 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6717 	 * to trace the queue that the message is intended for.  Note
6718 	 * that the original use was to identify the queue and function
6719 	 * to call on the drain.  In the new syncq, we have the context
6720 	 * of the queue that we are draining, so call it's putproc and
6721 	 * don't rely on the saved values.  But for debug this is still
6722 	 * usefull information.
6723 	 */
6724 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6725 	mp->b_queue = q;
6726 	mp->b_next = NULL;
6727 #endif
6728 	ASSERT(q->q_syncq == sq);
6729 	/*
6730 	 * Enqueue the message on the list.
6731 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6732 	 * protect it.  So its ok to acquire SQLOCK after SQPUT_MP().
6733 	 */
6734 	SQPUT_MP(q, mp);
6735 	mutex_enter(SQLOCK(sq));
6736 
6737 	/*
6738 	 * And queue on syncq for scheduling, if not already queued.
6739 	 * Note that we need the SQLOCK for this, and for testing flags
6740 	 * at the end to see if we will drain.  So grab it now, and
6741 	 * release it before we call qdrain_syncq or return.
6742 	 */
6743 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6744 		q->q_spri = curthread->t_pri;
6745 		SQPUT_Q(sq, q);
6746 	}
6747 #ifdef DEBUG
6748 	else {
6749 		/*
6750 		 * All of these conditions MUST be true!
6751 		 */
6752 		ASSERT(sq->sq_tail != NULL);
6753 		if (sq->sq_tail == sq->sq_head) {
6754 			ASSERT((q->q_sqprev == NULL) &&
6755 			    (q->q_sqnext == NULL));
6756 		} else {
6757 			ASSERT((q->q_sqprev != NULL) ||
6758 			    (q->q_sqnext != NULL));
6759 		}
6760 		ASSERT(sq->sq_flags & SQ_QUEUED);
6761 		ASSERT(q->q_syncqmsgs != 0);
6762 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6763 	}
6764 #endif
6765 	mutex_exit(QLOCK(q));
6766 	/*
6767 	 * SQLOCK is still held, so sq_count can be safely decremented.
6768 	 */
6769 	sq->sq_count--;
6770 
6771 	putnext_tail(sq, q, 0);
6772 	/* Should not reference sq or q after this point. */
6773 }
6774 
6775 /*  End of qfill_syncq  */
6776 
6777 /*
6778  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6779  * that would be put into qp by drain_syncq.
6780  * Used when deleting the syncq (qp == NULL) or when detaching
6781  * a queue (qp != NULL).
6782  * Return non-zero if one or more messages were freed.
6783  *
6784  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
6785  * sq_putlocks are used.
6786  *
6787  * NOTE: This function assumes that it is called from the close() context and
6788  * that all the queues in the syncq are going aay. For this reason it doesn't
6789  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6790  * currently valid, but it is useful to rethink this function to behave properly
6791  * in other cases.
6792  */
6793 int
6794 flush_syncq(syncq_t *sq, queue_t *qp)
6795 {
6796 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6797 	queue_t		*q;
6798 	int		ret = 0;
6799 
6800 	mutex_enter(SQLOCK(sq));
6801 
6802 	/*
6803 	 * Before we leave, we need to make sure there are no
6804 	 * events listed for this queue.  All events for this queue
6805 	 * will just be freed.
6806 	 */
6807 	if (qp != NULL && sq->sq_evhead != NULL) {
6808 		ASSERT(sq->sq_flags & SQ_EVENTS);
6809 
6810 		mp_prev = NULL;
6811 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6812 			mp_next = bp->b_next;
6813 			if (bp->b_queue == qp) {
6814 				/* Delete this message */
6815 				if (mp_prev != NULL) {
6816 					mp_prev->b_next = mp_next;
6817 					/*
6818 					 * Update sq_evtail if the last element
6819 					 * is removed.
6820 					 */
6821 					if (bp == sq->sq_evtail) {
6822 						ASSERT(mp_next == NULL);
6823 						sq->sq_evtail = mp_prev;
6824 					}
6825 				} else
6826 					sq->sq_evhead = mp_next;
6827 				if (sq->sq_evhead == NULL)
6828 					sq->sq_flags &= ~SQ_EVENTS;
6829 				bp->b_prev = bp->b_next = NULL;
6830 				freemsg(bp);
6831 				ret++;
6832 			} else {
6833 				mp_prev = bp;
6834 			}
6835 		}
6836 	}
6837 
6838 	/*
6839 	 * Walk sq_head and:
6840 	 *	- match qp if qp is set, remove it's messages
6841 	 *	- all if qp is not set
6842 	 */
6843 	q = sq->sq_head;
6844 	while (q != NULL) {
6845 		ASSERT(q->q_syncq == sq);
6846 		if ((qp == NULL) || (qp == q)) {
6847 			/*
6848 			 * Yank the messages as a list off the queue
6849 			 */
6850 			mp_head = q->q_sqhead;
6851 			/*
6852 			 * We do not have QLOCK(q) here (which is safe due to
6853 			 * assumptions mentioned above). To obtain the lock we
6854 			 * need to release SQLOCK which may allow lots of things
6855 			 * to change upon us. This place requires more analysis.
6856 			 */
6857 			q->q_sqhead = q->q_sqtail = NULL;
6858 			ASSERT(mp_head->b_queue &&
6859 			    mp_head->b_queue->q_syncq == sq);
6860 
6861 			/*
6862 			 * Free each of the messages.
6863 			 */
6864 			for (bp = mp_head; bp != NULL; bp = mp_next) {
6865 				mp_next = bp->b_next;
6866 				bp->b_prev = bp->b_next = NULL;
6867 				freemsg(bp);
6868 				ret++;
6869 			}
6870 			/*
6871 			 * Now remove the queue from the syncq.
6872 			 */
6873 			ASSERT(q->q_sqflags & Q_SQQUEUED);
6874 			SQRM_Q(sq, q);
6875 			q->q_spri = 0;
6876 			q->q_syncqmsgs = 0;
6877 
6878 			/*
6879 			 * If qp was specified, we are done with it and are
6880 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
6881 			 * waiters while we still have the SQLOCK.
6882 			 */
6883 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
6884 				sq->sq_flags &= ~SQ_WANTWAKEUP;
6885 				cv_broadcast(&sq->sq_wait);
6886 			}
6887 			/* Drop SQLOCK across clr_qfull */
6888 			mutex_exit(SQLOCK(sq));
6889 
6890 			/*
6891 			 * We avoid doing the test that drain_syncq does and
6892 			 * unconditionally clear qfull for every flushed
6893 			 * message. Since flush_syncq is only called during
6894 			 * close this should not be a problem.
6895 			 */
6896 			clr_qfull(q);
6897 			if (qp != NULL) {
6898 				return (ret);
6899 			} else {
6900 				mutex_enter(SQLOCK(sq));
6901 				/*
6902 				 * The head was removed by SQRM_Q above.
6903 				 * reread the new head and flush it.
6904 				 */
6905 				q = sq->sq_head;
6906 			}
6907 		} else {
6908 			q = q->q_sqnext;
6909 		}
6910 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
6911 	}
6912 
6913 	if (sq->sq_flags & SQ_WANTWAKEUP) {
6914 		sq->sq_flags &= ~SQ_WANTWAKEUP;
6915 		cv_broadcast(&sq->sq_wait);
6916 	}
6917 
6918 	mutex_exit(SQLOCK(sq));
6919 	return (ret);
6920 }
6921 
6922 /*
6923  * Propagate all messages from a syncq to the next syncq that are associated
6924  * with the specified queue. If the queue is attached to a driver or if the
6925  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
6926  *
6927  * Assumes that the stream is strlock()'ed. We don't come here if there
6928  * are no messages to propagate.
6929  *
6930  * NOTE : If the queue is attached to a driver, all the messages are freed
6931  * as there is no point in propagating the messages from the driver syncq
6932  * to the closing stream head which will in turn get freed later.
6933  */
6934 static int
6935 propagate_syncq(queue_t *qp)
6936 {
6937 	mblk_t		*bp, *head, *tail, *prev, *next;
6938 	syncq_t 	*sq;
6939 	queue_t		*nqp;
6940 	syncq_t		*nsq;
6941 	boolean_t	isdriver;
6942 	int 		moved = 0;
6943 	uint16_t	flags;
6944 	pri_t		priority = curthread->t_pri;
6945 #ifdef DEBUG
6946 	void		(*func)();
6947 #endif
6948 
6949 	sq = qp->q_syncq;
6950 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6951 	/* debug macro */
6952 	SQ_PUTLOCKS_HELD(sq);
6953 	/*
6954 	 * As entersq() does not increment the sq_count for
6955 	 * the write side, check sq_count for non-QPERQ
6956 	 * perimeters alone.
6957 	 */
6958 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
6959 
6960 	/*
6961 	 * propagate_syncq() can be called because of either messages on the
6962 	 * queue syncq or because on events on the queue syncq. Do actual
6963 	 * message propagations if there are any messages.
6964 	 */
6965 	if (qp->q_syncqmsgs) {
6966 		isdriver = (qp->q_flag & QISDRV);
6967 
6968 		if (!isdriver) {
6969 			nqp = qp->q_next;
6970 			nsq = nqp->q_syncq;
6971 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
6972 			/* debug macro */
6973 			SQ_PUTLOCKS_HELD(nsq);
6974 #ifdef DEBUG
6975 			func = (void (*)())nqp->q_qinfo->qi_putp;
6976 #endif
6977 		}
6978 
6979 		SQRM_Q(sq, qp);
6980 		priority = MAX(qp->q_spri, priority);
6981 		qp->q_spri = 0;
6982 		head = qp->q_sqhead;
6983 		tail = qp->q_sqtail;
6984 		qp->q_sqhead = qp->q_sqtail = NULL;
6985 		qp->q_syncqmsgs = 0;
6986 
6987 		/*
6988 		 * Walk the list of messages, and free them if this is a driver,
6989 		 * otherwise reset the b_prev and b_queue value to the new putp.
6990 		 * Afterward, we will just add the head to the end of the next
6991 		 * syncq, and point the tail to the end of this one.
6992 		 */
6993 
6994 		for (bp = head; bp != NULL; bp = next) {
6995 			next = bp->b_next;
6996 			if (isdriver) {
6997 				bp->b_prev = bp->b_next = NULL;
6998 				freemsg(bp);
6999 				continue;
7000 			}
7001 			/* Change the q values for this message */
7002 			bp->b_queue = nqp;
7003 #ifdef DEBUG
7004 			bp->b_prev = (mblk_t *)func;
7005 #endif
7006 			moved++;
7007 		}
7008 		/*
7009 		 * Attach list of messages to the end of the new queue (if there
7010 		 * is a list of messages).
7011 		 */
7012 
7013 		if (!isdriver && head != NULL) {
7014 			ASSERT(tail != NULL);
7015 			if (nqp->q_sqhead == NULL) {
7016 				nqp->q_sqhead = head;
7017 			} else {
7018 				ASSERT(nqp->q_sqtail != NULL);
7019 				nqp->q_sqtail->b_next = head;
7020 			}
7021 			nqp->q_sqtail = tail;
7022 			/*
7023 			 * When messages are moved from high priority queue to
7024 			 * another queue, the destination queue priority is
7025 			 * upgraded.
7026 			 */
7027 
7028 			if (priority > nqp->q_spri)
7029 				nqp->q_spri = priority;
7030 
7031 			SQPUT_Q(nsq, nqp);
7032 
7033 			nqp->q_syncqmsgs += moved;
7034 			ASSERT(nqp->q_syncqmsgs != 0);
7035 		}
7036 	}
7037 
7038 	/*
7039 	 * Before we leave, we need to make sure there are no
7040 	 * events listed for this queue.  All events for this queue
7041 	 * will just be freed.
7042 	 */
7043 	if (sq->sq_evhead != NULL) {
7044 		ASSERT(sq->sq_flags & SQ_EVENTS);
7045 		prev = NULL;
7046 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7047 			next = bp->b_next;
7048 			if (bp->b_queue == qp) {
7049 				/* Delete this message */
7050 				if (prev != NULL) {
7051 					prev->b_next = next;
7052 					/*
7053 					 * Update sq_evtail if the last element
7054 					 * is removed.
7055 					 */
7056 					if (bp == sq->sq_evtail) {
7057 						ASSERT(next == NULL);
7058 						sq->sq_evtail = prev;
7059 					}
7060 				} else
7061 					sq->sq_evhead = next;
7062 				if (sq->sq_evhead == NULL)
7063 					sq->sq_flags &= ~SQ_EVENTS;
7064 				bp->b_prev = bp->b_next = NULL;
7065 				freemsg(bp);
7066 			} else {
7067 				prev = bp;
7068 			}
7069 		}
7070 	}
7071 
7072 	flags = sq->sq_flags;
7073 
7074 	/* Wake up any waiter before leaving. */
7075 	if (flags & SQ_WANTWAKEUP) {
7076 		flags &= ~SQ_WANTWAKEUP;
7077 		cv_broadcast(&sq->sq_wait);
7078 	}
7079 	sq->sq_flags = flags;
7080 
7081 	return (moved);
7082 }
7083 
7084 /*
7085  * Try and upgrade to exclusive access at the inner perimeter. If this can
7086  * not be done without blocking then request will be queued on the syncq
7087  * and drain_syncq will run it later.
7088  *
7089  * This routine can only be called from put or service procedures plus
7090  * asynchronous callback routines that have properly entered to
7091  * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
7092  * on the syncq associated with q.
7093  */
7094 void
7095 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7096 {
7097 	syncq_t	*sq = q->q_syncq;
7098 	uint16_t count;
7099 
7100 	mutex_enter(SQLOCK(sq));
7101 	count = sq->sq_count;
7102 	SQ_PUTLOCKS_ENTER(sq);
7103 	SUM_SQ_PUTCOUNTS(sq, count);
7104 	ASSERT(count >= 1);
7105 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7106 
7107 	if (count == 1) {
7108 		/*
7109 		 * Can upgrade. This case also handles nested qwriter calls
7110 		 * (when the qwriter callback function calls qwriter). In that
7111 		 * case SQ_EXCL is already set.
7112 		 */
7113 		sq->sq_flags |= SQ_EXCL;
7114 		SQ_PUTLOCKS_EXIT(sq);
7115 		mutex_exit(SQLOCK(sq));
7116 		(*func)(q, mp);
7117 		/*
7118 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7119 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7120 		 * until putnext, leavesq, or drain_syncq drops it.
7121 		 * That way we handle nested qwriter(INNER) without dropping
7122 		 * SQ_EXCL until the outermost qwriter callback routine is
7123 		 * done.
7124 		 */
7125 		return;
7126 	}
7127 	SQ_PUTLOCKS_EXIT(sq);
7128 	sqfill_events(sq, q, mp, func);
7129 }
7130 
7131 /*
7132  * Synchronous callback support functions
7133  */
7134 
7135 /*
7136  * Allocate a callback parameter structure.
7137  * Assumes that caller initializes the flags and the id.
7138  * Acquires SQLOCK(sq) if non-NULL is returned.
7139  */
7140 callbparams_t *
7141 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7142 {
7143 	callbparams_t *cbp;
7144 	size_t size = sizeof (callbparams_t);
7145 
7146 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7147 
7148 	/*
7149 	 * Only try tryhard allocation if the caller is ready to panic.
7150 	 * Otherwise just fail.
7151 	 */
7152 	if (cbp == NULL) {
7153 		if (kmflags & KM_PANIC)
7154 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7155 			    &size, kmflags);
7156 		else
7157 			return (NULL);
7158 	}
7159 
7160 	ASSERT(size >= sizeof (callbparams_t));
7161 	cbp->cbp_size = size;
7162 	cbp->cbp_sq = sq;
7163 	cbp->cbp_func = func;
7164 	cbp->cbp_arg = arg;
7165 	mutex_enter(SQLOCK(sq));
7166 	cbp->cbp_next = sq->sq_callbpend;
7167 	sq->sq_callbpend = cbp;
7168 	return (cbp);
7169 }
7170 
7171 void
7172 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7173 {
7174 	callbparams_t **pp, *p;
7175 
7176 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7177 
7178 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7179 		if (p == cbp) {
7180 			*pp = p->cbp_next;
7181 			kmem_free(p, p->cbp_size);
7182 			return;
7183 		}
7184 	}
7185 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7186 	    "callbparams_free: not found\n"));
7187 }
7188 
7189 void
7190 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7191 {
7192 	callbparams_t **pp, *p;
7193 
7194 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7195 
7196 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7197 		if (p->cbp_id == id && p->cbp_flags == flag) {
7198 			*pp = p->cbp_next;
7199 			kmem_free(p, p->cbp_size);
7200 			return;
7201 		}
7202 	}
7203 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7204 	    "callbparams_free_id: not found\n"));
7205 }
7206 
7207 /*
7208  * Callback wrapper function used by once-only callbacks that can be
7209  * cancelled (qtimeout and qbufcall)
7210  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7211  * cancelled by the qun* functions.
7212  */
7213 void
7214 qcallbwrapper(void *arg)
7215 {
7216 	callbparams_t *cbp = arg;
7217 	syncq_t	*sq;
7218 	uint16_t count = 0;
7219 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7220 	uint16_t type;
7221 
7222 	sq = cbp->cbp_sq;
7223 	mutex_enter(SQLOCK(sq));
7224 	type = sq->sq_type;
7225 	if (!(type & SQ_CICB)) {
7226 		count = sq->sq_count;
7227 		SQ_PUTLOCKS_ENTER(sq);
7228 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7229 		SUM_SQ_PUTCOUNTS(sq, count);
7230 		sq->sq_needexcl++;
7231 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7232 		waitflags |= SQ_MESSAGES;
7233 	}
7234 	/* Can not handle exlusive entry at outer perimeter */
7235 	ASSERT(type & SQ_COCB);
7236 
7237 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7238 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7239 		    (sq->sq_cancelid == cbp->cbp_id)) {
7240 			/* timeout has been cancelled */
7241 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7242 			callbparams_free(sq, cbp);
7243 			if (!(type & SQ_CICB)) {
7244 				ASSERT(sq->sq_needexcl > 0);
7245 				sq->sq_needexcl--;
7246 				if (sq->sq_needexcl == 0) {
7247 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7248 				}
7249 				SQ_PUTLOCKS_EXIT(sq);
7250 			}
7251 			mutex_exit(SQLOCK(sq));
7252 			return;
7253 		}
7254 		sq->sq_flags |= SQ_WANTWAKEUP;
7255 		if (!(type & SQ_CICB)) {
7256 			SQ_PUTLOCKS_EXIT(sq);
7257 		}
7258 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7259 		if (!(type & SQ_CICB)) {
7260 			count = sq->sq_count;
7261 			SQ_PUTLOCKS_ENTER(sq);
7262 			SUM_SQ_PUTCOUNTS(sq, count);
7263 		}
7264 	}
7265 
7266 	sq->sq_count++;
7267 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7268 	if (!(type & SQ_CICB)) {
7269 		ASSERT(count == 0);
7270 		sq->sq_flags |= SQ_EXCL;
7271 		ASSERT(sq->sq_needexcl > 0);
7272 		sq->sq_needexcl--;
7273 		if (sq->sq_needexcl == 0) {
7274 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7275 		}
7276 		SQ_PUTLOCKS_EXIT(sq);
7277 	}
7278 
7279 	mutex_exit(SQLOCK(sq));
7280 
7281 	cbp->cbp_func(cbp->cbp_arg);
7282 
7283 	/*
7284 	 * We drop the lock only for leavesq to re-acquire it.
7285 	 * Possible optimization is inline of leavesq.
7286 	 */
7287 	mutex_enter(SQLOCK(sq));
7288 	callbparams_free(sq, cbp);
7289 	mutex_exit(SQLOCK(sq));
7290 	leavesq(sq, SQ_CALLBACK);
7291 }
7292 
7293 /*
7294  * no need to grab sq_putlocks here. See comment in strsubr.h that
7295  * explains when sq_putlocks are used.
7296  *
7297  * sq_count (or one of the sq_putcounts) has already been
7298  * decremented by the caller, and if SQ_QUEUED, we need to call
7299  * drain_syncq (the global syncq drain).
7300  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7301  * one of two states, non-CIPUT perimiter, and we need to clear
7302  * it, or we went exclusive in the put procedure.  In any case,
7303  * we want to clear the bit now, and it is probably easier to do
7304  * this at the beginning of this function (remember, we hold
7305  * the SQLOCK).  Lastly, if there are other messages queued
7306  * on the syncq (and not for our destination), enable the syncq
7307  * for background work.
7308  */
7309 
7310 /* ARGSUSED */
7311 void
7312 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7313 {
7314 	uint16_t	flags = sq->sq_flags;
7315 
7316 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7317 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7318 
7319 	/* Clear SQ_EXCL if set in passflags */
7320 	if (passflags & SQ_EXCL) {
7321 		flags &= ~SQ_EXCL;
7322 	}
7323 	if (flags & SQ_WANTWAKEUP) {
7324 		flags &= ~SQ_WANTWAKEUP;
7325 		cv_broadcast(&sq->sq_wait);
7326 	}
7327 	if (flags & SQ_WANTEXWAKEUP) {
7328 		flags &= ~SQ_WANTEXWAKEUP;
7329 		cv_broadcast(&sq->sq_exitwait);
7330 	}
7331 	sq->sq_flags = flags;
7332 
7333 	/*
7334 	 * We have cleared SQ_EXCL if we were asked to, and started
7335 	 * the wakeup process for waiters.  If there are no writers
7336 	 * then we need to drain the syncq if we were told to, or
7337 	 * enable the background thread to do it.
7338 	 */
7339 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7340 		if ((passflags & SQ_QUEUED) ||
7341 		    (sq->sq_svcflags & SQ_DISABLED)) {
7342 			/* drain_syncq will take care of events in the list */
7343 			drain_syncq(sq);
7344 			return;
7345 		} else if (flags & SQ_QUEUED) {
7346 			sqenable(sq);
7347 		}
7348 	}
7349 	/* Drop the SQLOCK on exit */
7350 	mutex_exit(SQLOCK(sq));
7351 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7352 		"putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7353 }
7354 
7355 void
7356 set_qend(queue_t *q)
7357 {
7358 	mutex_enter(QLOCK(q));
7359 	if (!O_SAMESTR(q))
7360 		q->q_flag |= QEND;
7361 	else
7362 		q->q_flag &= ~QEND;
7363 	mutex_exit(QLOCK(q));
7364 	q = _OTHERQ(q);
7365 	mutex_enter(QLOCK(q));
7366 	if (!O_SAMESTR(q))
7367 		q->q_flag |= QEND;
7368 	else
7369 		q->q_flag &= ~QEND;
7370 	mutex_exit(QLOCK(q));
7371 }
7372 
7373 
7374 void
7375 clr_qfull(queue_t *q)
7376 {
7377 	queue_t	*oq = q;
7378 
7379 	q = q->q_nfsrv;
7380 	/* Fast check if there is any work to do before getting the lock. */
7381 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7382 		return;
7383 	}
7384 
7385 	/*
7386 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7387 	 * for QFULL being set.
7388 	 */
7389 	mutex_enter(QLOCK(q));
7390 	/*
7391 	 * If both q_count and q_mblkcnt are less than the hiwat mark
7392 	 */
7393 	if ((q->q_count < q->q_hiwat) && (q->q_mblkcnt < q->q_hiwat)) {
7394 		q->q_flag &= ~QFULL;
7395 		/*
7396 		 * A little more confusing, how about this way:
7397 		 * if someone wants to write,
7398 		 * AND
7399 		 *    both counts are less than the lowat mark
7400 		 *    OR
7401 		 *    the lowat mark is zero
7402 		 * THEN
7403 		 * backenable
7404 		 */
7405 		if ((q->q_flag & QWANTW) &&
7406 		    (((q->q_count < q->q_lowat) &&
7407 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7408 			q->q_flag &= ~QWANTW;
7409 			mutex_exit(QLOCK(q));
7410 			backenable(oq, 0);
7411 		} else
7412 			mutex_exit(QLOCK(q));
7413 	} else
7414 		mutex_exit(QLOCK(q));
7415 }
7416 
7417 /*
7418  * Set the forward service procedure pointer.
7419  *
7420  * Called at insert-time to cache a queue's next forward service procedure in
7421  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7422  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7423  * inserted does not have a service procedure, then q_nfsrv points to the next
7424  * queue forward that has a service procedure.  If the queue is at the logical
7425  * end of the stream (driver for write side, stream head for the read side)
7426  * and does not have a service procedure, then q_nfsrv also points to itself.
7427  */
7428 void
7429 set_nfsrv_ptr(
7430 	queue_t  *rnew,		/* read queue pointer to new module */
7431 	queue_t  *wnew,		/* write queue pointer to new module */
7432 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7433 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7434 {
7435 	queue_t *qp;
7436 
7437 	if (prev_wq->q_next == NULL) {
7438 		/*
7439 		 * Insert the driver, initialize the driver and stream head.
7440 		 * In this case, prev_rq/prev_wq should be the stream head.
7441 		 * _I_INSERT does not allow inserting a driver.  Make sure
7442 		 * that it is not an insertion.
7443 		 */
7444 		ASSERT(!(rnew->q_flag & _QINSERTING));
7445 		wnew->q_nfsrv = wnew;
7446 		if (rnew->q_qinfo->qi_srvp)
7447 			rnew->q_nfsrv = rnew;
7448 		else
7449 			rnew->q_nfsrv = prev_rq;
7450 		prev_rq->q_nfsrv = prev_rq;
7451 		prev_wq->q_nfsrv = prev_wq;
7452 	} else {
7453 		/*
7454 		 * set up read side q_nfsrv pointer.  This MUST be done
7455 		 * before setting the write side, because the setting of
7456 		 * the write side for a fifo may depend on it.
7457 		 *
7458 		 * Suppose we have a fifo that only has pipemod pushed.
7459 		 * pipemod has no read or write service procedures, so
7460 		 * nfsrv for both pipemod queues points to prev_rq (the
7461 		 * stream read head).  Now push bufmod (which has only a
7462 		 * read service procedure).  Doing the write side first,
7463 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7464 		 * is WRONG; the next queue forward from wnew with a
7465 		 * service procedure will be rnew, not the stream read head.
7466 		 * Since the downstream queue (which in the case of a fifo
7467 		 * is the read queue rnew) can affect upstream queues, it
7468 		 * needs to be done first.  Setting up the read side first
7469 		 * sets nfsrv for both pipemod queues to rnew and then
7470 		 * when the write side is set up, wnew-q_nfsrv will also
7471 		 * point to rnew.
7472 		 */
7473 		if (rnew->q_qinfo->qi_srvp) {
7474 			/*
7475 			 * use _OTHERQ() because, if this is a pipe, next
7476 			 * module may have been pushed from other end and
7477 			 * q_next could be a read queue.
7478 			 */
7479 			qp = _OTHERQ(prev_wq->q_next);
7480 			while (qp && qp->q_nfsrv != qp) {
7481 				qp->q_nfsrv = rnew;
7482 				qp = backq(qp);
7483 			}
7484 			rnew->q_nfsrv = rnew;
7485 		} else
7486 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7487 
7488 		/* set up write side q_nfsrv pointer */
7489 		if (wnew->q_qinfo->qi_srvp) {
7490 			wnew->q_nfsrv = wnew;
7491 
7492 			/*
7493 			 * For insertion, need to update nfsrv of the modules
7494 			 * above which do not have a service routine.
7495 			 */
7496 			if (rnew->q_flag & _QINSERTING) {
7497 				for (qp = prev_wq;
7498 				    qp != NULL && qp->q_nfsrv != qp;
7499 				    qp = backq(qp)) {
7500 					qp->q_nfsrv = wnew->q_nfsrv;
7501 				}
7502 			}
7503 		} else {
7504 			if (prev_wq->q_next == prev_rq)
7505 				/*
7506 				 * Since prev_wq/prev_rq are the middle of a
7507 				 * fifo, wnew/rnew will also be the middle of
7508 				 * a fifo and wnew's nfsrv is same as rnew's.
7509 				 */
7510 				wnew->q_nfsrv = rnew->q_nfsrv;
7511 			else
7512 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7513 		}
7514 	}
7515 }
7516 
7517 /*
7518  * Reset the forward service procedure pointer; called at remove-time.
7519  */
7520 void
7521 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7522 {
7523 	queue_t *tmp_qp;
7524 
7525 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7526 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7527 		for (tmp_qp = backq(wqp);
7528 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7529 		    tmp_qp = backq(tmp_qp)) {
7530 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7531 		}
7532 	}
7533 
7534 	/* reset the read side q_nfsrv pointer */
7535 	if (rqp->q_qinfo->qi_srvp) {
7536 		if (wqp->q_next) {	/* non-driver case */
7537 			tmp_qp = _OTHERQ(wqp->q_next);
7538 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7539 				/* Note that rqp->q_next cannot be NULL */
7540 				ASSERT(rqp->q_next != NULL);
7541 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7542 				tmp_qp = backq(tmp_qp);
7543 			}
7544 		}
7545 	}
7546 }
7547 
7548 /*
7549  * This routine should be called after all stream geometry changes to update
7550  * the stream head cached struio() rd/wr queue pointers. Note must be called
7551  * with the streamlock()ed.
7552  *
7553  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7554  *	 an explicit synchronous barrier module queue. That is, a queue that
7555  *	 has specified a struio() type.
7556  */
7557 static void
7558 strsetuio(stdata_t *stp)
7559 {
7560 	queue_t *wrq;
7561 
7562 	if (stp->sd_flag & STPLEX) {
7563 		/*
7564 		 * Not stremahead, but a mux, so no Synchronous STREAMS.
7565 		 */
7566 		stp->sd_struiowrq = NULL;
7567 		stp->sd_struiordq = NULL;
7568 		return;
7569 	}
7570 	/*
7571 	 * Scan the write queue(s) while synchronous
7572 	 * until we find a qinfo uio type specified.
7573 	 */
7574 	wrq = stp->sd_wrq->q_next;
7575 	while (wrq) {
7576 		if (wrq->q_struiot == STRUIOT_NONE) {
7577 			wrq = 0;
7578 			break;
7579 		}
7580 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7581 			break;
7582 		if (! _SAMESTR(wrq)) {
7583 			wrq = 0;
7584 			break;
7585 		}
7586 		wrq = wrq->q_next;
7587 	}
7588 	stp->sd_struiowrq = wrq;
7589 	/*
7590 	 * Scan the read queue(s) while synchronous
7591 	 * until we find a qinfo uio type specified.
7592 	 */
7593 	wrq = stp->sd_wrq->q_next;
7594 	while (wrq) {
7595 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7596 			wrq = 0;
7597 			break;
7598 		}
7599 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7600 			break;
7601 		if (! _SAMESTR(wrq)) {
7602 			wrq = 0;
7603 			break;
7604 		}
7605 		wrq = wrq->q_next;
7606 	}
7607 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7608 }
7609 
7610 /*
7611  * pass_wput, unblocks the passthru queues, so that
7612  * messages can arrive at muxs lower read queue, before
7613  * I_LINK/I_UNLINK is acked/nacked.
7614  */
7615 static void
7616 pass_wput(queue_t *q, mblk_t *mp)
7617 {
7618 	syncq_t *sq;
7619 
7620 	sq = _RD(q)->q_syncq;
7621 	if (sq->sq_flags & SQ_BLOCKED)
7622 		unblocksq(sq, SQ_BLOCKED, 0);
7623 	putnext(q, mp);
7624 }
7625 
7626 /*
7627  * Set up queues for the link/unlink.
7628  * Create a new queue and block it and then insert it
7629  * below the stream head on the lower stream.
7630  * This prevents any messages from arriving during the setq
7631  * as well as while the mux is processing the LINK/I_UNLINK.
7632  * The blocked passq is unblocked once the LINK/I_UNLINK has
7633  * been acked or nacked or if a message is generated and sent
7634  * down muxs write put procedure.
7635  * see pass_wput().
7636  *
7637  * After the new queue is inserted, all messages coming from below are
7638  * blocked. The call to strlock will ensure that all activity in the stream head
7639  * read queue syncq is stopped (sq_count drops to zero).
7640  */
7641 static queue_t *
7642 link_addpassthru(stdata_t *stpdown)
7643 {
7644 	queue_t *passq;
7645 	sqlist_t sqlist;
7646 
7647 	passq = allocq();
7648 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7649 	/* setq might sleep in allocator - avoid holding locks. */
7650 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7651 	    SQ_CI|SQ_CO, B_FALSE);
7652 	claimq(passq);
7653 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7654 	insertq(STREAM(passq), passq);
7655 
7656 	/*
7657 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7658 	 * since we are going to change q_ptr in the stream head.  Note that
7659 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7660 	 */
7661 	sqlist.sqlist_head = NULL;
7662 	sqlist.sqlist_index = 0;
7663 	sqlist.sqlist_size = sizeof (sqlist_t);
7664 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7665 	strlock(stpdown, &sqlist);
7666 	strunlock(stpdown, &sqlist);
7667 
7668 	releaseq(passq);
7669 	return (passq);
7670 }
7671 
7672 /*
7673  * Let messages flow up into the mux by removing
7674  * the passq.
7675  */
7676 static void
7677 link_rempassthru(queue_t *passq)
7678 {
7679 	claimq(passq);
7680 	removeq(passq);
7681 	releaseq(passq);
7682 	freeq(passq);
7683 }
7684 
7685 /*
7686  * wait for an event with optional timeout and optional return if
7687  * a signal is sent to the thread
7688  * tim:  -1 : no timeout
7689  *       otherwise the value is relative time in milliseconds to wait
7690  * nosig:  if 0 then signals will be ignored, otherwise signals
7691  *       will terminate wait
7692  * returns >0 on success, 0 if signal was encountered, -1 if timeout
7693  * was reached.
7694  */
7695 clock_t
7696 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7697 {
7698 	clock_t ret, now, tick;
7699 
7700 	if (tim < 0) {
7701 		if (nosigs) {
7702 			cv_wait(cvp, mp);
7703 			ret = 1;
7704 		} else {
7705 			ret = cv_wait_sig(cvp, mp);
7706 		}
7707 	} else if (tim > 0) {
7708 		/*
7709 		 * convert milliseconds to clock ticks
7710 		 */
7711 		tick = MSEC_TO_TICK_ROUNDUP(tim);
7712 		time_to_wait(&now, tick);
7713 		if (nosigs) {
7714 			ret = cv_timedwait(cvp, mp, now);
7715 		} else {
7716 			ret = cv_timedwait_sig(cvp, mp, now);
7717 		}
7718 	} else {
7719 		ret = -1;
7720 	}
7721 	return (ret);
7722 }
7723 
7724 /*
7725  * Wait until the stream head can determine if it is at the mark but
7726  * don't wait forever to prevent a race condition between the "mark" state
7727  * in the stream head and any mark state in the caller/user of this routine.
7728  *
7729  * This is used by sockets and for a socket it would be incorrect
7730  * to return a failure for SIOCATMARK when there is no data in the receive
7731  * queue and the marked urgent data is traveling up the stream.
7732  *
7733  * This routine waits until the mark is known by waiting for one of these
7734  * three events:
7735  *	The stream head read queue becoming non-empty (including an EOF)
7736  *	The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
7737  *	The STRNOTATMARK flag being set (which indicates that the transport
7738  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7739  *	the mark).
7740  *
7741  * The routine returns 1 if the stream is at the mark; 0 if it can
7742  * be determined that the stream is not at the mark.
7743  * If the wait times out and it can't determine
7744  * whether or not the stream might be at the mark the routine will return -1.
7745  *
7746  * Note: This routine should only be used when a mark is pending i.e.,
7747  * in the socket case the SIGURG has been posted.
7748  * Note2: This can not wakeup just because synchronous streams indicate
7749  * that data is available since it is not possible to use the synchronous
7750  * streams interfaces to determine the b_flag value for the data queued below
7751  * the stream head.
7752  */
7753 int
7754 strwaitmark(vnode_t *vp)
7755 {
7756 	struct stdata *stp = vp->v_stream;
7757 	queue_t *rq = _RD(stp->sd_wrq);
7758 	int mark;
7759 
7760 	mutex_enter(&stp->sd_lock);
7761 	while (rq->q_first == NULL &&
7762 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7763 		stp->sd_flag |= RSLEEP;
7764 
7765 		/* Wait for 100 milliseconds for any state change. */
7766 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7767 			mutex_exit(&stp->sd_lock);
7768 			return (-1);
7769 		}
7770 	}
7771 	if (stp->sd_flag & STRATMARK)
7772 		mark = 1;
7773 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7774 		mark = 1;
7775 	else
7776 		mark = 0;
7777 
7778 	mutex_exit(&stp->sd_lock);
7779 	return (mark);
7780 }
7781 
7782 /*
7783  * Set a read side error. If persist is set change the socket error
7784  * to persistent. If errfunc is set install the function as the exported
7785  * error handler.
7786  */
7787 void
7788 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7789 {
7790 	struct stdata *stp = vp->v_stream;
7791 
7792 	mutex_enter(&stp->sd_lock);
7793 	stp->sd_rerror = error;
7794 	if (error == 0 && errfunc == NULL)
7795 		stp->sd_flag &= ~STRDERR;
7796 	else
7797 		stp->sd_flag |= STRDERR;
7798 	if (persist) {
7799 		stp->sd_flag &= ~STRDERRNONPERSIST;
7800 	} else {
7801 		stp->sd_flag |= STRDERRNONPERSIST;
7802 	}
7803 	stp->sd_rderrfunc = errfunc;
7804 	if (error != 0 || errfunc != NULL) {
7805 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7806 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7807 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7808 
7809 		mutex_exit(&stp->sd_lock);
7810 		pollwakeup(&stp->sd_pollist, POLLERR);
7811 		mutex_enter(&stp->sd_lock);
7812 
7813 		if (stp->sd_sigflags & S_ERROR)
7814 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7815 	}
7816 	mutex_exit(&stp->sd_lock);
7817 }
7818 
7819 /*
7820  * Set a write side error. If persist is set change the socket error
7821  * to persistent.
7822  */
7823 void
7824 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7825 {
7826 	struct stdata *stp = vp->v_stream;
7827 
7828 	mutex_enter(&stp->sd_lock);
7829 	stp->sd_werror = error;
7830 	if (error == 0 && errfunc == NULL)
7831 		stp->sd_flag &= ~STWRERR;
7832 	else
7833 		stp->sd_flag |= STWRERR;
7834 	if (persist) {
7835 		stp->sd_flag &= ~STWRERRNONPERSIST;
7836 	} else {
7837 		stp->sd_flag |= STWRERRNONPERSIST;
7838 	}
7839 	stp->sd_wrerrfunc = errfunc;
7840 	if (error != 0 || errfunc != NULL) {
7841 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7842 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7843 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7844 
7845 		mutex_exit(&stp->sd_lock);
7846 		pollwakeup(&stp->sd_pollist, POLLERR);
7847 		mutex_enter(&stp->sd_lock);
7848 
7849 		if (stp->sd_sigflags & S_ERROR)
7850 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7851 	}
7852 	mutex_exit(&stp->sd_lock);
7853 }
7854 
7855 /*
7856  * Make the stream return 0 (EOF) when all data has been read.
7857  * No effect on write side.
7858  */
7859 void
7860 strseteof(vnode_t *vp, int eof)
7861 {
7862 	struct stdata *stp = vp->v_stream;
7863 
7864 	mutex_enter(&stp->sd_lock);
7865 	if (!eof) {
7866 		stp->sd_flag &= ~STREOF;
7867 		mutex_exit(&stp->sd_lock);
7868 		return;
7869 	}
7870 	stp->sd_flag |= STREOF;
7871 	if (stp->sd_flag & RSLEEP) {
7872 		stp->sd_flag &= ~RSLEEP;
7873 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
7874 	}
7875 
7876 	mutex_exit(&stp->sd_lock);
7877 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
7878 	mutex_enter(&stp->sd_lock);
7879 
7880 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
7881 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
7882 	mutex_exit(&stp->sd_lock);
7883 }
7884 
7885 void
7886 strflushrq(vnode_t *vp, int flag)
7887 {
7888 	struct stdata *stp = vp->v_stream;
7889 
7890 	mutex_enter(&stp->sd_lock);
7891 	flushq(_RD(stp->sd_wrq), flag);
7892 	mutex_exit(&stp->sd_lock);
7893 }
7894 
7895 void
7896 strsetrputhooks(vnode_t *vp, uint_t flags,
7897 		msgfunc_t protofunc, msgfunc_t miscfunc)
7898 {
7899 	struct stdata *stp = vp->v_stream;
7900 
7901 	mutex_enter(&stp->sd_lock);
7902 
7903 	if (protofunc == NULL)
7904 		stp->sd_rprotofunc = strrput_proto;
7905 	else
7906 		stp->sd_rprotofunc = protofunc;
7907 
7908 	if (miscfunc == NULL)
7909 		stp->sd_rmiscfunc = strrput_misc;
7910 	else
7911 		stp->sd_rmiscfunc = miscfunc;
7912 
7913 	if (flags & SH_CONSOL_DATA)
7914 		stp->sd_rput_opt |= SR_CONSOL_DATA;
7915 	else
7916 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
7917 
7918 	if (flags & SH_SIGALLDATA)
7919 		stp->sd_rput_opt |= SR_SIGALLDATA;
7920 	else
7921 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
7922 
7923 	if (flags & SH_IGN_ZEROLEN)
7924 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
7925 	else
7926 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
7927 
7928 	mutex_exit(&stp->sd_lock);
7929 }
7930 
7931 void
7932 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
7933 {
7934 	struct stdata *stp = vp->v_stream;
7935 
7936 	mutex_enter(&stp->sd_lock);
7937 	stp->sd_closetime = closetime;
7938 
7939 	if (flags & SH_SIGPIPE)
7940 		stp->sd_wput_opt |= SW_SIGPIPE;
7941 	else
7942 		stp->sd_wput_opt &= ~SW_SIGPIPE;
7943 	if (flags & SH_RECHECK_ERR)
7944 		stp->sd_wput_opt |= SW_RECHECK_ERR;
7945 	else
7946 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
7947 
7948 	mutex_exit(&stp->sd_lock);
7949 }
7950 
7951 /* Used within framework when the queue is already locked */
7952 void
7953 qenable_locked(queue_t *q)
7954 {
7955 	stdata_t *stp = STREAM(q);
7956 
7957 	ASSERT(MUTEX_HELD(QLOCK(q)));
7958 
7959 	if (!q->q_qinfo->qi_srvp)
7960 		return;
7961 
7962 	/*
7963 	 * Do not place on run queue if already enabled or closing.
7964 	 */
7965 	if (q->q_flag & (QWCLOSE|QENAB))
7966 		return;
7967 
7968 	/*
7969 	 * mark queue enabled and place on run list if it is not already being
7970 	 * serviced. If it is serviced, the runservice() function will detect
7971 	 * that QENAB is set and call service procedure before clearing
7972 	 * QINSERVICE flag.
7973 	 */
7974 	q->q_flag |= QENAB;
7975 	if (q->q_flag & QINSERVICE)
7976 		return;
7977 
7978 	/* Record the time of qenable */
7979 	q->q_qtstamp = lbolt;
7980 
7981 	/*
7982 	 * Put the queue in the stp list and schedule it for background
7983 	 * processing if it is not already scheduled or if stream head does not
7984 	 * intent to process it in the foreground later by setting
7985 	 * STRS_WILLSERVICE flag.
7986 	 */
7987 	mutex_enter(&stp->sd_qlock);
7988 	/*
7989 	 * If there are already something on the list, stp flags should show
7990 	 * intention to drain it.
7991 	 */
7992 	IMPLY(STREAM_NEEDSERVICE(stp),
7993 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
7994 
7995 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
7996 	stp->sd_nqueues++;
7997 
7998 	/*
7999 	 * If no one will drain this stream we are the first producer and
8000 	 * need to schedule it for background thread.
8001 	 */
8002 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8003 		/*
8004 		 * No one will service this stream later, so we have to
8005 		 * schedule it now.
8006 		 */
8007 		STRSTAT(stenables);
8008 		stp->sd_svcflags |= STRS_SCHEDULED;
8009 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8010 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8011 
8012 		if (stp->sd_servid == NULL) {
8013 			/*
8014 			 * Task queue failed so fail over to the backup
8015 			 * servicing thread.
8016 			 */
8017 			STRSTAT(taskqfails);
8018 			/*
8019 			 * It is safe to clear STRS_SCHEDULED flag because it
8020 			 * was set by this thread above.
8021 			 */
8022 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8023 
8024 			/*
8025 			 * Failover scheduling is protected by service_queue
8026 			 * lock.
8027 			 */
8028 			mutex_enter(&service_queue);
8029 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8030 			ASSERT(q->q_link == NULL);
8031 			/*
8032 			 * Append the queue to qhead/qtail list.
8033 			 */
8034 			if (qhead == NULL)
8035 				qhead = q;
8036 			else
8037 				qtail->q_link = q;
8038 			qtail = q;
8039 			/*
8040 			 * Clear stp queue list.
8041 			 */
8042 			stp->sd_qhead = stp->sd_qtail = NULL;
8043 			stp->sd_nqueues = 0;
8044 			/*
8045 			 * Wakeup background queue processing thread.
8046 			 */
8047 			cv_signal(&services_to_run);
8048 			mutex_exit(&service_queue);
8049 		}
8050 	}
8051 	mutex_exit(&stp->sd_qlock);
8052 }
8053 
8054 static void
8055 queue_service(queue_t *q)
8056 {
8057 	/*
8058 	 * The queue in the list should have
8059 	 * QENAB flag set and should not have
8060 	 * QINSERVICE flag set. QINSERVICE is
8061 	 * set when the queue is dequeued and
8062 	 * qenable_locked doesn't enqueue a
8063 	 * queue with QINSERVICE set.
8064 	 */
8065 
8066 	ASSERT(!(q->q_flag & QINSERVICE));
8067 	ASSERT((q->q_flag & QENAB));
8068 	mutex_enter(QLOCK(q));
8069 	q->q_flag &= ~QENAB;
8070 	q->q_flag |= QINSERVICE;
8071 	mutex_exit(QLOCK(q));
8072 	runservice(q);
8073 }
8074 
8075 static void
8076 syncq_service(syncq_t *sq)
8077 {
8078 	STRSTAT(syncqservice);
8079 	mutex_enter(SQLOCK(sq));
8080 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8081 	ASSERT(sq->sq_servcount != 0);
8082 	ASSERT(sq->sq_next == NULL);
8083 
8084 	/* if we came here from the background thread, clear the flag */
8085 	if (sq->sq_svcflags & SQ_BGTHREAD)
8086 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8087 
8088 	/* let drain_syncq know that it's being called in the background */
8089 	sq->sq_svcflags |= SQ_SERVICE;
8090 	drain_syncq(sq);
8091 }
8092 
8093 static void
8094 qwriter_outer_service(syncq_t *outer)
8095 {
8096 	/*
8097 	 * Note that SQ_WRITER is used on the outer perimeter
8098 	 * to signal that a qwriter(OUTER) is either investigating
8099 	 * running or that it is actually running a function.
8100 	 */
8101 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8102 
8103 	/*
8104 	 * All inner syncq are empty and have SQ_WRITER set
8105 	 * to block entering the outer perimeter.
8106 	 *
8107 	 * We do not need to explicitly call write_now since
8108 	 * outer_exit does it for us.
8109 	 */
8110 	outer_exit(outer);
8111 }
8112 
8113 static void
8114 mblk_free(mblk_t *mp)
8115 {
8116 	dblk_t *dbp = mp->b_datap;
8117 	frtn_t *frp = dbp->db_frtnp;
8118 
8119 	mp->b_next = NULL;
8120 	if (dbp->db_fthdr != NULL)
8121 		str_ftfree(dbp);
8122 
8123 	ASSERT(dbp->db_fthdr == NULL);
8124 	frp->free_func(frp->free_arg);
8125 	ASSERT(dbp->db_mblk == mp);
8126 
8127 	if (dbp->db_credp != NULL) {
8128 		crfree(dbp->db_credp);
8129 		dbp->db_credp = NULL;
8130 	}
8131 	dbp->db_cpid = -1;
8132 	dbp->db_struioflag = 0;
8133 	dbp->db_struioun.cksum.flags = 0;
8134 
8135 	kmem_cache_free(dbp->db_cache, dbp);
8136 }
8137 
8138 /*
8139  * Background processing of the stream queue list.
8140  */
8141 static void
8142 stream_service(stdata_t *stp)
8143 {
8144 	queue_t *q;
8145 
8146 	mutex_enter(&stp->sd_qlock);
8147 
8148 	STR_SERVICE(stp, q);
8149 
8150 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8151 	stp->sd_servid = NULL;
8152 	cv_signal(&stp->sd_qcv);
8153 	mutex_exit(&stp->sd_qlock);
8154 }
8155 
8156 /*
8157  * Foreground processing of the stream queue list.
8158  */
8159 void
8160 stream_runservice(stdata_t *stp)
8161 {
8162 	queue_t *q;
8163 
8164 	mutex_enter(&stp->sd_qlock);
8165 	STRSTAT(rservice);
8166 	/*
8167 	 * We are going to drain this stream queue list, so qenable_locked will
8168 	 * not schedule it until we finish.
8169 	 */
8170 	stp->sd_svcflags |= STRS_WILLSERVICE;
8171 
8172 	STR_SERVICE(stp, q);
8173 
8174 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8175 	mutex_exit(&stp->sd_qlock);
8176 	/*
8177 	 * Help backup background thread to drain the qhead/qtail list.
8178 	 */
8179 	while (qhead != NULL) {
8180 		STRSTAT(qhelps);
8181 		mutex_enter(&service_queue);
8182 		DQ(q, qhead, qtail, q_link);
8183 		mutex_exit(&service_queue);
8184 		if (q != NULL)
8185 			queue_service(q);
8186 	}
8187 }
8188 
8189 void
8190 stream_willservice(stdata_t *stp)
8191 {
8192 	mutex_enter(&stp->sd_qlock);
8193 	stp->sd_svcflags |= STRS_WILLSERVICE;
8194 	mutex_exit(&stp->sd_qlock);
8195 }
8196 
8197 /*
8198  * Replace the cred currently in the mblk with a different one.
8199  */
8200 void
8201 mblk_setcred(mblk_t *mp, cred_t *cr)
8202 {
8203 	cred_t *ocr = DB_CRED(mp);
8204 
8205 	ASSERT(cr != NULL);
8206 
8207 	if (cr != ocr) {
8208 		crhold(mp->b_datap->db_credp = cr);
8209 		if (ocr != NULL)
8210 			crfree(ocr);
8211 	}
8212 }
8213 
8214 int
8215 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8216     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8217     uint32_t flags, int km_flags)
8218 {
8219 	int rc = 0;
8220 
8221 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8222 	if (mp->b_datap->db_type == M_DATA) {
8223 		/* Associate values for M_DATA type */
8224 		mp->b_datap->db_cksumstart = (intptr_t)start;
8225 		mp->b_datap->db_cksumstuff = (intptr_t)stuff;
8226 		mp->b_datap->db_cksumend = (intptr_t)end;
8227 		mp->b_datap->db_struioun.cksum.flags = flags;
8228 		mp->b_datap->db_cksum16 = (uint16_t)value;
8229 
8230 	} else {
8231 		pattrinfo_t pa_info;
8232 
8233 		ASSERT(mmd != NULL);
8234 
8235 		pa_info.type = PATTR_HCKSUM;
8236 		pa_info.len = sizeof (pattr_hcksum_t);
8237 
8238 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8239 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8240 
8241 			hck->hcksum_start_offset = start;
8242 			hck->hcksum_stuff_offset = stuff;
8243 			hck->hcksum_end_offset = end;
8244 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8245 			hck->hcksum_flags = flags;
8246 		}
8247 	}
8248 	return (rc);
8249 }
8250 
8251 void
8252 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8253     uint32_t *start, uint32_t *stuff, uint32_t *end,
8254     uint32_t *value, uint32_t *flags)
8255 {
8256 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8257 	if (mp->b_datap->db_type == M_DATA) {
8258 		if (flags != NULL) {
8259 			*flags = mp->b_datap->db_struioun.cksum.flags;
8260 			if (*flags & HCK_PARTIALCKSUM) {
8261 				if (start != NULL)
8262 					*start = (uint32_t)
8263 					    mp->b_datap->db_cksumstart;
8264 				if (stuff != NULL)
8265 					*stuff = (uint32_t)
8266 					    mp->b_datap->db_cksumstuff;
8267 				if (end != NULL)
8268 					*end =
8269 					    (uint32_t)mp->b_datap->db_cksumend;
8270 				if (value != NULL)
8271 					*value =
8272 					    (uint32_t)mp->b_datap->db_cksum16;
8273 			}
8274 		}
8275 	} else {
8276 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8277 
8278 		ASSERT(mmd != NULL);
8279 
8280 		/* get hardware checksum attribute */
8281 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8282 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8283 
8284 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8285 			if (flags != NULL)
8286 				*flags = hck->hcksum_flags;
8287 			if (start != NULL)
8288 				*start = hck->hcksum_start_offset;
8289 			if (stuff != NULL)
8290 				*stuff = hck->hcksum_stuff_offset;
8291 			if (end != NULL)
8292 				*end = hck->hcksum_end_offset;
8293 			if (value != NULL)
8294 				*value = (uint32_t)
8295 				    hck->hcksum_cksum_val.inet_cksum;
8296 		}
8297 	}
8298 }
8299 
8300 /*
8301  * Checksum buffer *bp for len bytes with psum partial checksum,
8302  * or 0 if none, and return the 16 bit partial checksum.
8303  */
8304 unsigned
8305 bcksum(uchar_t *bp, int len, unsigned int psum)
8306 {
8307 	int odd = len & 1;
8308 	extern unsigned int ip_ocsum();
8309 
8310 	if (((intptr_t)bp & 1) == 0 && !odd) {
8311 		/*
8312 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8313 		 */
8314 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8315 	}
8316 	if (((intptr_t)bp & 1) != 0) {
8317 		/*
8318 		 * Bp isn't 16 bit aligned.
8319 		 */
8320 		unsigned int tsum;
8321 
8322 #ifdef _LITTLE_ENDIAN
8323 		psum += *bp;
8324 #else
8325 		psum += *bp << 8;
8326 #endif
8327 		len--;
8328 		bp++;
8329 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8330 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8331 		if (len & 1) {
8332 			bp += len - 1;
8333 #ifdef _LITTLE_ENDIAN
8334 			psum += *bp << 8;
8335 #else
8336 			psum += *bp;
8337 #endif
8338 		}
8339 	} else {
8340 		/*
8341 		 * Bp is 16 bit aligned.
8342 		 */
8343 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8344 		if (odd) {
8345 			bp += len - 1;
8346 #ifdef _LITTLE_ENDIAN
8347 			psum += *bp;
8348 #else
8349 			psum += *bp << 8;
8350 #endif
8351 		}
8352 	}
8353 	/*
8354 	 * Normalize psum to 16 bits before returning the new partial
8355 	 * checksum. The max psum value before normalization is 0x3FDFE.
8356 	 */
8357 	return ((psum >> 16) + (psum & 0xFFFF));
8358 }
8359 
8360 boolean_t
8361 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8362 {
8363 	boolean_t rc;
8364 
8365 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8366 	if (DB_TYPE(mp) == M_DATA) {
8367 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8368 	} else {
8369 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8370 
8371 		ASSERT(mmd != NULL);
8372 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8373 	}
8374 	return (rc);
8375 }
8376 
8377 void
8378 freemsgchain(mblk_t *mp)
8379 {
8380 	mblk_t	*next;
8381 
8382 	while (mp != NULL) {
8383 		next = mp->b_next;
8384 		mp->b_next = NULL;
8385 
8386 		freemsg(mp);
8387 		mp = next;
8388 	}
8389 }
8390 
8391 mblk_t *
8392 copymsgchain(mblk_t *mp)
8393 {
8394 	mblk_t	*nmp = NULL;
8395 	mblk_t	**nmpp = &nmp;
8396 
8397 	for (; mp != NULL; mp = mp->b_next) {
8398 		if ((*nmpp = copymsg(mp)) == NULL) {
8399 			freemsgchain(nmp);
8400 			return (NULL);
8401 		}
8402 
8403 		nmpp = &((*nmpp)->b_next);
8404 	}
8405 
8406 	return (nmp);
8407 }
8408 
8409 /* NOTE: Do not add code after this point. */
8410 #undef QLOCK
8411 
8412 /*
8413  * replacement for QLOCK macro for those that can't use it.
8414  */
8415 kmutex_t *
8416 QLOCK(queue_t *q)
8417 {
8418 	return (&(q)->q_lock);
8419 }
8420 
8421 /*
8422  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8423  */
8424 #undef runqueues
8425 void
8426 runqueues(void)
8427 {
8428 }
8429 
8430 #undef queuerun
8431 void
8432 queuerun(void)
8433 {
8434 }
8435