xref: /titanic_51/usr/src/uts/common/os/streamio.c (revision c3a558e7c77127215b010652905be7916ec5a080)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/stat.h>
36 #include <sys/proc.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/stream.h>
42 #include <sys/strsubr.h>
43 #include <sys/stropts.h>
44 #include <sys/tihdr.h>
45 #include <sys/var.h>
46 #include <sys/poll.h>
47 #include <sys/termio.h>
48 #include <sys/ttold.h>
49 #include <sys/systm.h>
50 #include <sys/uio.h>
51 #include <sys/cmn_err.h>
52 #include <sys/sad.h>
53 #include <sys/netstack.h>
54 #include <sys/priocntl.h>
55 #include <sys/jioctl.h>
56 #include <sys/procset.h>
57 #include <sys/session.h>
58 #include <sys/kmem.h>
59 #include <sys/filio.h>
60 #include <sys/vtrace.h>
61 #include <sys/debug.h>
62 #include <sys/strredir.h>
63 #include <sys/fs/fifonode.h>
64 #include <sys/fs/snode.h>
65 #include <sys/strlog.h>
66 #include <sys/strsun.h>
67 #include <sys/project.h>
68 #include <sys/kbio.h>
69 #include <sys/msio.h>
70 #include <sys/tty.h>
71 #include <sys/ptyvar.h>
72 #include <sys/vuid_event.h>
73 #include <sys/modctl.h>
74 #include <sys/sunddi.h>
75 #include <sys/sunldi_impl.h>
76 #include <sys/autoconf.h>
77 #include <sys/policy.h>
78 #include <sys/dld.h>
79 #include <sys/zone.h>
80 #include <c2/audit.h>
81 
82 /*
83  * This define helps improve the readability of streams code while
84  * still maintaining a very old streams performance enhancement.  The
85  * performance enhancement basically involved having all callers
86  * of straccess() perform the first check that straccess() will do
87  * locally before actually calling straccess().  (There by reducing
88  * the number of unnecessary calls to straccess().)
89  */
90 #define	i_straccess(x, y)	((stp->sd_sidp == NULL) ? 0 : \
91 				    (stp->sd_vnode->v_type == VFIFO) ? 0 : \
92 				    straccess((x), (y)))
93 
94 /*
95  * what is mblk_pull_len?
96  *
97  * If a streams message consists of many short messages,
98  * a performance degradation occurs from copyout overhead.
99  * To decrease the per mblk overhead, messages that are
100  * likely to consist of many small mblks are pulled up into
101  * one continuous chunk of memory.
102  *
103  * To avoid the processing overhead of examining every
104  * mblk, a quick heuristic is used. If the first mblk in
105  * the message is shorter than mblk_pull_len, it is likely
106  * that the rest of the mblk will be short.
107  *
108  * This heuristic was decided upon after performance tests
109  * indicated that anything more complex slowed down the main
110  * code path.
111  */
112 #define	MBLK_PULL_LEN 64
113 uint32_t mblk_pull_len = MBLK_PULL_LEN;
114 
115 /*
116  * The sgttyb_handling flag controls the handling of the old BSD
117  * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
118  *
119  * 0 - Emit no warnings at all and retain old, broken behavior.
120  * 1 - Emit no warnings and silently handle new semantics.
121  * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
122  *     (once per system invocation).  Handle with new semantics.
123  * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
124  *     made (so that offenders drop core and are easy to debug).
125  *
126  * The "new semantics" are that TIOCGETP returns B38400 for
127  * sg_[io]speed if the corresponding value is over B38400, and that
128  * TIOCSET[PN] accept B38400 in these cases to mean "retain current
129  * bit rate."
130  */
131 int sgttyb_handling = 1;
132 static boolean_t sgttyb_complaint;
133 
134 /* don't push drcompat module by default on Style-2 streams */
135 static int push_drcompat = 0;
136 
137 /*
138  * id value used to distinguish between different ioctl messages
139  */
140 static uint32_t ioc_id;
141 
142 static void putback(struct stdata *, queue_t *, mblk_t *, int);
143 static void strcleanall(struct vnode *);
144 static int strwsrv(queue_t *);
145 static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
146 
147 /*
148  * qinit and module_info structures for stream head read and write queues
149  */
150 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
151 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
152 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
153 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
154 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
155     FIFOLOWAT };
156 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
157 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
158 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
159 
160 extern kmutex_t	strresources;	/* protects global resources */
161 extern kmutex_t muxifier;	/* single-threads multiplexor creation */
162 
163 static boolean_t msghasdata(mblk_t *bp);
164 #define	msgnodata(bp) (!msghasdata(bp))
165 
166 /*
167  * Stream head locking notes:
168  *	There are four monitors associated with the stream head:
169  *	1. v_stream monitor: in stropen() and strclose() v_lock
170  *		is held while the association of vnode and stream
171  *		head is established or tested for.
172  *	2. open/close/push/pop monitor: sd_lock is held while each
173  *		thread bids for exclusive access to this monitor
174  *		for opening or closing a stream.  In addition, this
175  *		monitor is entered during pushes and pops.  This
176  *		guarantees that during plumbing operations there
177  *		is only one thread trying to change the plumbing.
178  *		Any other threads present in the stream are only
179  *		using the plumbing.
180  *	3. read/write monitor: in the case of read, a thread holds
181  *		sd_lock while trying to get data from the stream
182  *		head queue.  if there is none to fulfill a read
183  *		request, it sets RSLEEP and calls cv_wait_sig() down
184  *		in strwaitq() to await the arrival of new data.
185  *		when new data arrives in strrput(), sd_lock is acquired
186  *		before testing for RSLEEP and calling cv_broadcast().
187  *		the behavior of strwrite(), strwsrv(), and WSLEEP
188  *		mirror this.
189  *	4. ioctl monitor: sd_lock is gotten to ensure that only one
190  *		thread is doing an ioctl at a time.
191  */
192 
193 static int
194 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
195     int anchor, cred_t *crp, uint_t anchor_zoneid)
196 {
197 	int error;
198 	fmodsw_impl_t *fp;
199 
200 	if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
201 		error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
202 		return (error);
203 	}
204 	if (stp->sd_pushcnt >= nstrpush) {
205 		return (EINVAL);
206 	}
207 
208 	if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
209 		stp->sd_flag |= STREOPENFAIL;
210 		return (EINVAL);
211 	}
212 
213 	/*
214 	 * push new module and call its open routine via qattach
215 	 */
216 	if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
217 		return (error);
218 
219 	/*
220 	 * Check to see if caller wants a STREAMS anchor
221 	 * put at this place in the stream, and add if so.
222 	 */
223 	mutex_enter(&stp->sd_lock);
224 	if (anchor == stp->sd_pushcnt) {
225 		stp->sd_anchor = stp->sd_pushcnt;
226 		stp->sd_anchorzone = anchor_zoneid;
227 	}
228 	mutex_exit(&stp->sd_lock);
229 
230 	return (0);
231 }
232 
233 /*
234  * Open a stream device.
235  */
236 int
237 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
238 {
239 	struct stdata *stp;
240 	queue_t *qp;
241 	int s;
242 	dev_t dummydev, savedev;
243 	struct autopush *ap;
244 	struct dlautopush dlap;
245 	int error = 0;
246 	ssize_t	rmin, rmax;
247 	int cloneopen;
248 	queue_t *brq;
249 	major_t major;
250 	str_stack_t *ss;
251 	zoneid_t zoneid;
252 	uint_t anchor;
253 
254 	if (AU_AUDITING())
255 		audit_stropen(vp, devp, flag, crp);
256 
257 	/*
258 	 * If the stream already exists, wait for any open in progress
259 	 * to complete, then call the open function of each module and
260 	 * driver in the stream.  Otherwise create the stream.
261 	 */
262 	TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
263 retry:
264 	mutex_enter(&vp->v_lock);
265 	if ((stp = vp->v_stream) != NULL) {
266 
267 		/*
268 		 * Waiting for stream to be created to device
269 		 * due to another open.
270 		 */
271 		mutex_exit(&vp->v_lock);
272 
273 		if (STRMATED(stp)) {
274 			struct stdata *strmatep = stp->sd_mate;
275 
276 			STRLOCKMATES(stp);
277 			if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
278 				if (flag & (FNDELAY|FNONBLOCK)) {
279 					error = EAGAIN;
280 					mutex_exit(&strmatep->sd_lock);
281 					goto ckreturn;
282 				}
283 				mutex_exit(&stp->sd_lock);
284 				if (!cv_wait_sig(&strmatep->sd_monitor,
285 				    &strmatep->sd_lock)) {
286 					error = EINTR;
287 					mutex_exit(&strmatep->sd_lock);
288 					mutex_enter(&stp->sd_lock);
289 					goto ckreturn;
290 				}
291 				mutex_exit(&strmatep->sd_lock);
292 				goto retry;
293 			}
294 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
295 				if (flag & (FNDELAY|FNONBLOCK)) {
296 					error = EAGAIN;
297 					mutex_exit(&strmatep->sd_lock);
298 					goto ckreturn;
299 				}
300 				mutex_exit(&strmatep->sd_lock);
301 				if (!cv_wait_sig(&stp->sd_monitor,
302 				    &stp->sd_lock)) {
303 					error = EINTR;
304 					goto ckreturn;
305 				}
306 				mutex_exit(&stp->sd_lock);
307 				goto retry;
308 			}
309 
310 			if (stp->sd_flag & (STRDERR|STWRERR)) {
311 				error = EIO;
312 				mutex_exit(&strmatep->sd_lock);
313 				goto ckreturn;
314 			}
315 
316 			stp->sd_flag |= STWOPEN;
317 			STRUNLOCKMATES(stp);
318 		} else {
319 			mutex_enter(&stp->sd_lock);
320 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
321 				if (flag & (FNDELAY|FNONBLOCK)) {
322 					error = EAGAIN;
323 					goto ckreturn;
324 				}
325 				if (!cv_wait_sig(&stp->sd_monitor,
326 				    &stp->sd_lock)) {
327 					error = EINTR;
328 					goto ckreturn;
329 				}
330 				mutex_exit(&stp->sd_lock);
331 				goto retry;  /* could be clone! */
332 			}
333 
334 			if (stp->sd_flag & (STRDERR|STWRERR)) {
335 				error = EIO;
336 				goto ckreturn;
337 			}
338 
339 			stp->sd_flag |= STWOPEN;
340 			mutex_exit(&stp->sd_lock);
341 		}
342 
343 		/*
344 		 * Open all modules and devices down stream to notify
345 		 * that another user is streaming.  For modules, set the
346 		 * last argument to MODOPEN and do not pass any open flags.
347 		 * Ignore dummydev since this is not the first open.
348 		 */
349 		claimstr(stp->sd_wrq);
350 		qp = stp->sd_wrq;
351 		while (_SAMESTR(qp)) {
352 			qp = qp->q_next;
353 			if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
354 				break;
355 		}
356 		releasestr(stp->sd_wrq);
357 		mutex_enter(&stp->sd_lock);
358 		stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
359 		stp->sd_rerror = 0;
360 		stp->sd_werror = 0;
361 ckreturn:
362 		cv_broadcast(&stp->sd_monitor);
363 		mutex_exit(&stp->sd_lock);
364 		return (error);
365 	}
366 
367 	/*
368 	 * This vnode isn't streaming.  SPECFS already
369 	 * checked for multiple vnodes pointing to the
370 	 * same stream, so create a stream to the driver.
371 	 */
372 	qp = allocq();
373 	stp = shalloc(qp);
374 
375 	/*
376 	 * Initialize stream head.  shalloc() has given us
377 	 * exclusive access, and we have the vnode locked;
378 	 * we can do whatever we want with stp.
379 	 */
380 	stp->sd_flag = STWOPEN;
381 	stp->sd_siglist = NULL;
382 	stp->sd_pollist.ph_list = NULL;
383 	stp->sd_sigflags = 0;
384 	stp->sd_mark = NULL;
385 	stp->sd_closetime = STRTIMOUT;
386 	stp->sd_sidp = NULL;
387 	stp->sd_pgidp = NULL;
388 	stp->sd_vnode = vp;
389 	stp->sd_rerror = 0;
390 	stp->sd_werror = 0;
391 	stp->sd_wroff = 0;
392 	stp->sd_tail = 0;
393 	stp->sd_iocblk = NULL;
394 	stp->sd_cmdblk = NULL;
395 	stp->sd_pushcnt = 0;
396 	stp->sd_qn_minpsz = 0;
397 	stp->sd_qn_maxpsz = INFPSZ - 1;	/* used to check for initialization */
398 	stp->sd_maxblk = INFPSZ;
399 	qp->q_ptr = _WR(qp)->q_ptr = stp;
400 	STREAM(qp) = STREAM(_WR(qp)) = stp;
401 	vp->v_stream = stp;
402 	mutex_exit(&vp->v_lock);
403 	if (vp->v_type == VFIFO) {
404 		stp->sd_flag |= OLDNDELAY;
405 		/*
406 		 * This means, both for pipes and fifos
407 		 * strwrite will send SIGPIPE if the other
408 		 * end is closed. For putmsg it depends
409 		 * on whether it is a XPG4_2 application
410 		 * or not
411 		 */
412 		stp->sd_wput_opt = SW_SIGPIPE;
413 
414 		/* setq might sleep in kmem_alloc - avoid holding locks. */
415 		setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
416 		    SQ_CI|SQ_CO, B_FALSE);
417 
418 		set_qend(qp);
419 		stp->sd_strtab = fifo_getinfo();
420 		_WR(qp)->q_nfsrv = _WR(qp);
421 		qp->q_nfsrv = qp;
422 		/*
423 		 * Wake up others that are waiting for stream to be created.
424 		 */
425 		mutex_enter(&stp->sd_lock);
426 		/*
427 		 * nothing is be pushed on stream yet, so
428 		 * optimized stream head packetsizes are just that
429 		 * of the read queue
430 		 */
431 		stp->sd_qn_minpsz = qp->q_minpsz;
432 		stp->sd_qn_maxpsz = qp->q_maxpsz;
433 		stp->sd_flag &= ~STWOPEN;
434 		goto fifo_opendone;
435 	}
436 	/* setq might sleep in kmem_alloc - avoid holding locks. */
437 	setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
438 
439 	set_qend(qp);
440 
441 	/*
442 	 * Open driver and create stream to it (via qattach).
443 	 */
444 	savedev = *devp;
445 	cloneopen = (getmajor(*devp) == clone_major);
446 	if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
447 		mutex_enter(&vp->v_lock);
448 		vp->v_stream = NULL;
449 		mutex_exit(&vp->v_lock);
450 		mutex_enter(&stp->sd_lock);
451 		cv_broadcast(&stp->sd_monitor);
452 		mutex_exit(&stp->sd_lock);
453 		freeq(_RD(qp));
454 		shfree(stp);
455 		return (error);
456 	}
457 	/*
458 	 * Set sd_strtab after open in order to handle clonable drivers
459 	 */
460 	stp->sd_strtab = STREAMSTAB(getmajor(*devp));
461 
462 	/*
463 	 * Historical note: dummydev used to be be prior to the initial
464 	 * open (via qattach above), which made the value seen
465 	 * inconsistent between an I_PUSH and an autopush of a module.
466 	 */
467 	dummydev = *devp;
468 
469 	/*
470 	 * For clone open of old style (Q not associated) network driver,
471 	 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
472 	 */
473 	brq = _RD(_WR(qp)->q_next);
474 	major = getmajor(*devp);
475 	if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
476 	    ((brq->q_flag & _QASSOCIATED) == 0)) {
477 		if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
478 			cmn_err(CE_WARN, "cannot push " DRMODNAME
479 			    " streams module");
480 	}
481 
482 	if (!NETWORK_DRV(major)) {
483 		savedev = *devp;
484 	} else {
485 		/*
486 		 * For network devices, process differently based on the
487 		 * return value from dld_autopush():
488 		 *
489 		 *   0: the passed-in device points to a GLDv3 datalink with
490 		 *   per-link autopush configuration; use that configuration
491 		 *   and ignore any per-driver autopush configuration.
492 		 *
493 		 *   1: the passed-in device points to a physical GLDv3
494 		 *   datalink without per-link autopush configuration.  The
495 		 *   passed in device was changed to refer to the actual
496 		 *   physical device (if it's not already); we use that new
497 		 *   device to look up any per-driver autopush configuration.
498 		 *
499 		 *   -1: neither of the above cases applied; use the initial
500 		 *   device to look up any per-driver autopush configuration.
501 		 */
502 		switch (dld_autopush(&savedev, &dlap)) {
503 		case 0:
504 			zoneid = crgetzoneid(crp);
505 			for (s = 0; s < dlap.dap_npush; s++) {
506 				error = push_mod(qp, &dummydev, stp,
507 				    dlap.dap_aplist[s], dlap.dap_anchor, crp,
508 				    zoneid);
509 				if (error != 0)
510 					break;
511 			}
512 			goto opendone;
513 		case 1:
514 			break;
515 		case -1:
516 			savedev = *devp;
517 			break;
518 		}
519 	}
520 	/*
521 	 * Find the autopush configuration based on "savedev". Start with the
522 	 * global zone. If not found check in the local zone.
523 	 */
524 	zoneid = GLOBAL_ZONEID;
525 retryap:
526 	ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
527 	    netstack_str;
528 	if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
529 		netstack_rele(ss->ss_netstack);
530 		if (zoneid == GLOBAL_ZONEID) {
531 			/*
532 			 * None found. Also look in the zone's autopush table.
533 			 */
534 			zoneid = crgetzoneid(crp);
535 			if (zoneid != GLOBAL_ZONEID)
536 				goto retryap;
537 		}
538 		goto opendone;
539 	}
540 	anchor = ap->ap_anchor;
541 	zoneid = crgetzoneid(crp);
542 	for (s = 0; s < ap->ap_npush; s++) {
543 		error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
544 		    anchor, crp, zoneid);
545 		if (error != 0)
546 			break;
547 	}
548 	sad_ap_rele(ap, ss);
549 	netstack_rele(ss->ss_netstack);
550 
551 opendone:
552 
553 	/*
554 	 * let specfs know that open failed part way through
555 	 */
556 	if (error) {
557 		mutex_enter(&stp->sd_lock);
558 		stp->sd_flag |= STREOPENFAIL;
559 		mutex_exit(&stp->sd_lock);
560 	}
561 
562 	/*
563 	 * Wake up others that are waiting for stream to be created.
564 	 */
565 	mutex_enter(&stp->sd_lock);
566 	stp->sd_flag &= ~STWOPEN;
567 
568 	/*
569 	 * As a performance concern we are caching the values of
570 	 * q_minpsz and q_maxpsz of the module below the stream
571 	 * head in the stream head.
572 	 */
573 	mutex_enter(QLOCK(stp->sd_wrq->q_next));
574 	rmin = stp->sd_wrq->q_next->q_minpsz;
575 	rmax = stp->sd_wrq->q_next->q_maxpsz;
576 	mutex_exit(QLOCK(stp->sd_wrq->q_next));
577 
578 	/* do this processing here as a performance concern */
579 	if (strmsgsz != 0) {
580 		if (rmax == INFPSZ)
581 			rmax = strmsgsz;
582 		else
583 			rmax = MIN(strmsgsz, rmax);
584 	}
585 
586 	mutex_enter(QLOCK(stp->sd_wrq));
587 	stp->sd_qn_minpsz = rmin;
588 	stp->sd_qn_maxpsz = rmax;
589 	mutex_exit(QLOCK(stp->sd_wrq));
590 
591 fifo_opendone:
592 	cv_broadcast(&stp->sd_monitor);
593 	mutex_exit(&stp->sd_lock);
594 	return (error);
595 }
596 
597 static int strsink(queue_t *, mblk_t *);
598 static struct qinit deadrend = {
599 	strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
600 };
601 static struct qinit deadwend = {
602 	NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
603 };
604 
605 /*
606  * Close a stream.
607  * This is called from closef() on the last close of an open stream.
608  * Strclean() will already have removed the siglist and pollist
609  * information, so all that remains is to remove all multiplexor links
610  * for the stream, pop all the modules (and the driver), and free the
611  * stream structure.
612  */
613 
614 int
615 strclose(struct vnode *vp, int flag, cred_t *crp)
616 {
617 	struct stdata *stp;
618 	queue_t *qp;
619 	int rval;
620 	int freestp = 1;
621 	queue_t *rmq;
622 
623 	if (AU_AUDITING())
624 		audit_strclose(vp, flag, crp);
625 
626 	TRACE_1(TR_FAC_STREAMS_FR,
627 	    TR_STRCLOSE, "strclose:%p", vp);
628 	ASSERT(vp->v_stream);
629 
630 	stp = vp->v_stream;
631 	ASSERT(!(stp->sd_flag & STPLEX));
632 	qp = stp->sd_wrq;
633 
634 	/*
635 	 * Needed so that strpoll will return non-zero for this fd.
636 	 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
637 	 */
638 	mutex_enter(&stp->sd_lock);
639 	stp->sd_flag |= STRHUP;
640 	mutex_exit(&stp->sd_lock);
641 
642 	/*
643 	 * If the registered process or process group did not have an
644 	 * open instance of this stream then strclean would not be
645 	 * called. Thus at the time of closing all remaining siglist entries
646 	 * are removed.
647 	 */
648 	if (stp->sd_siglist != NULL)
649 		strcleanall(vp);
650 
651 	ASSERT(stp->sd_siglist == NULL);
652 	ASSERT(stp->sd_sigflags == 0);
653 
654 	if (STRMATED(stp)) {
655 		struct stdata *strmatep = stp->sd_mate;
656 		int waited = 1;
657 
658 		STRLOCKMATES(stp);
659 		while (waited) {
660 			waited = 0;
661 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
662 				mutex_exit(&strmatep->sd_lock);
663 				cv_wait(&stp->sd_monitor, &stp->sd_lock);
664 				mutex_exit(&stp->sd_lock);
665 				STRLOCKMATES(stp);
666 				waited = 1;
667 			}
668 			while (strmatep->sd_flag &
669 			    (STWOPEN|STRCLOSE|STRPLUMB)) {
670 				mutex_exit(&stp->sd_lock);
671 				cv_wait(&strmatep->sd_monitor,
672 				    &strmatep->sd_lock);
673 				mutex_exit(&strmatep->sd_lock);
674 				STRLOCKMATES(stp);
675 				waited = 1;
676 			}
677 		}
678 		stp->sd_flag |= STRCLOSE;
679 		STRUNLOCKMATES(stp);
680 	} else {
681 		mutex_enter(&stp->sd_lock);
682 		stp->sd_flag |= STRCLOSE;
683 		mutex_exit(&stp->sd_lock);
684 	}
685 
686 	ASSERT(qp->q_first == NULL);	/* No more delayed write */
687 
688 	/* Check if an I_LINK was ever done on this stream */
689 	if (stp->sd_flag & STRHASLINKS) {
690 		netstack_t *ns;
691 		str_stack_t *ss;
692 
693 		ns = netstack_find_by_cred(crp);
694 		ASSERT(ns != NULL);
695 		ss = ns->netstack_str;
696 		ASSERT(ss != NULL);
697 
698 		(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
699 		netstack_rele(ss->ss_netstack);
700 	}
701 
702 	while (_SAMESTR(qp)) {
703 		/*
704 		 * Holding sd_lock prevents q_next from changing in
705 		 * this stream.
706 		 */
707 		mutex_enter(&stp->sd_lock);
708 		if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
709 
710 			/*
711 			 * sleep until awakened by strwsrv() or timeout
712 			 */
713 			for (;;) {
714 				mutex_enter(QLOCK(qp->q_next));
715 				if (!(qp->q_next->q_mblkcnt)) {
716 					mutex_exit(QLOCK(qp->q_next));
717 					break;
718 				}
719 				stp->sd_flag |= WSLEEP;
720 
721 				/* ensure strwsrv gets enabled */
722 				qp->q_next->q_flag |= QWANTW;
723 				mutex_exit(QLOCK(qp->q_next));
724 				/* get out if we timed out or recv'd a signal */
725 				if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
726 				    stp->sd_closetime, 0) <= 0) {
727 					break;
728 				}
729 			}
730 			stp->sd_flag &= ~WSLEEP;
731 		}
732 		mutex_exit(&stp->sd_lock);
733 
734 		rmq = qp->q_next;
735 		if (rmq->q_flag & QISDRV) {
736 			ASSERT(!_SAMESTR(rmq));
737 			wait_sq_svc(_RD(qp)->q_syncq);
738 		}
739 
740 		qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
741 	}
742 
743 	/*
744 	 * Since we call pollwakeup in close() now, the poll list should
745 	 * be empty in most cases. The only exception is the layered devices
746 	 * (e.g. the console drivers with redirection modules pushed on top
747 	 * of it).  We have to do this after calling qdetach() because
748 	 * the redirection module won't have torn down the console
749 	 * redirection until after qdetach() has been invoked.
750 	 */
751 	if (stp->sd_pollist.ph_list != NULL) {
752 		pollwakeup(&stp->sd_pollist, POLLERR);
753 		pollhead_clean(&stp->sd_pollist);
754 	}
755 	ASSERT(stp->sd_pollist.ph_list == NULL);
756 	ASSERT(stp->sd_sidp == NULL);
757 	ASSERT(stp->sd_pgidp == NULL);
758 
759 	/* Prevent qenable from re-enabling the stream head queue */
760 	disable_svc(_RD(qp));
761 
762 	/*
763 	 * Wait until service procedure of each queue is
764 	 * run, if QINSERVICE is set.
765 	 */
766 	wait_svc(_RD(qp));
767 
768 	/*
769 	 * Now, flush both queues.
770 	 */
771 	flushq(_RD(qp), FLUSHALL);
772 	flushq(qp, FLUSHALL);
773 
774 	/*
775 	 * If the write queue of the stream head is pointing to a
776 	 * read queue, we have a twisted stream.  If the read queue
777 	 * is alive, convert the stream head queues into a dead end.
778 	 * If the read queue is dead, free the dead pair.
779 	 */
780 	if (qp->q_next && !_SAMESTR(qp)) {
781 		if (qp->q_next->q_qinfo == &deadrend) {	/* half-closed pipe */
782 			flushq(qp->q_next, FLUSHALL); /* ensure no message */
783 			shfree(qp->q_next->q_stream);
784 			freeq(qp->q_next);
785 			freeq(_RD(qp));
786 		} else if (qp->q_next == _RD(qp)) {	/* fifo */
787 			freeq(_RD(qp));
788 		} else {				/* pipe */
789 			freestp = 0;
790 			/*
791 			 * The q_info pointers are never accessed when
792 			 * SQLOCK is held.
793 			 */
794 			ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
795 			mutex_enter(SQLOCK(qp->q_syncq));
796 			qp->q_qinfo = &deadwend;
797 			_RD(qp)->q_qinfo = &deadrend;
798 			mutex_exit(SQLOCK(qp->q_syncq));
799 		}
800 	} else {
801 		freeq(_RD(qp)); /* free stream head queue pair */
802 	}
803 
804 	mutex_enter(&vp->v_lock);
805 	if (stp->sd_iocblk) {
806 		if (stp->sd_iocblk != (mblk_t *)-1) {
807 			freemsg(stp->sd_iocblk);
808 		}
809 		stp->sd_iocblk = NULL;
810 	}
811 	stp->sd_vnode = NULL;
812 	vp->v_stream = NULL;
813 	mutex_exit(&vp->v_lock);
814 	mutex_enter(&stp->sd_lock);
815 	freemsg(stp->sd_cmdblk);
816 	stp->sd_cmdblk = NULL;
817 	stp->sd_flag &= ~STRCLOSE;
818 	cv_broadcast(&stp->sd_monitor);
819 	mutex_exit(&stp->sd_lock);
820 
821 	if (freestp)
822 		shfree(stp);
823 	return (0);
824 }
825 
826 static int
827 strsink(queue_t *q, mblk_t *bp)
828 {
829 	struct copyresp *resp;
830 
831 	switch (bp->b_datap->db_type) {
832 	case M_FLUSH:
833 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
834 			*bp->b_rptr &= ~FLUSHR;
835 			bp->b_flag |= MSGNOLOOP;
836 			/*
837 			 * Protect against the driver passing up
838 			 * messages after it has done a qprocsoff.
839 			 */
840 			if (_OTHERQ(q)->q_next == NULL)
841 				freemsg(bp);
842 			else
843 				qreply(q, bp);
844 		} else {
845 			freemsg(bp);
846 		}
847 		break;
848 
849 	case M_COPYIN:
850 	case M_COPYOUT:
851 		if (bp->b_cont) {
852 			freemsg(bp->b_cont);
853 			bp->b_cont = NULL;
854 		}
855 		bp->b_datap->db_type = M_IOCDATA;
856 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
857 		resp = (struct copyresp *)bp->b_rptr;
858 		resp->cp_rval = (caddr_t)1;	/* failure */
859 		/*
860 		 * Protect against the driver passing up
861 		 * messages after it has done a qprocsoff.
862 		 */
863 		if (_OTHERQ(q)->q_next == NULL)
864 			freemsg(bp);
865 		else
866 			qreply(q, bp);
867 		break;
868 
869 	case M_IOCTL:
870 		if (bp->b_cont) {
871 			freemsg(bp->b_cont);
872 			bp->b_cont = NULL;
873 		}
874 		bp->b_datap->db_type = M_IOCNAK;
875 		/*
876 		 * Protect against the driver passing up
877 		 * messages after it has done a qprocsoff.
878 		 */
879 		if (_OTHERQ(q)->q_next == NULL)
880 			freemsg(bp);
881 		else
882 			qreply(q, bp);
883 		break;
884 
885 	default:
886 		freemsg(bp);
887 		break;
888 	}
889 
890 	return (0);
891 }
892 
893 /*
894  * Clean up after a process when it closes a stream.  This is called
895  * from closef for all closes, whereas strclose is called only for the
896  * last close on a stream.  The siglist is scanned for entries for the
897  * current process, and these are removed.
898  */
899 void
900 strclean(struct vnode *vp)
901 {
902 	strsig_t *ssp, *pssp, *tssp;
903 	stdata_t *stp;
904 	int update = 0;
905 
906 	TRACE_1(TR_FAC_STREAMS_FR,
907 	    TR_STRCLEAN, "strclean:%p", vp);
908 	stp = vp->v_stream;
909 	pssp = NULL;
910 	mutex_enter(&stp->sd_lock);
911 	ssp = stp->sd_siglist;
912 	while (ssp) {
913 		if (ssp->ss_pidp == curproc->p_pidp) {
914 			tssp = ssp->ss_next;
915 			if (pssp)
916 				pssp->ss_next = tssp;
917 			else
918 				stp->sd_siglist = tssp;
919 			mutex_enter(&pidlock);
920 			PID_RELE(ssp->ss_pidp);
921 			mutex_exit(&pidlock);
922 			kmem_free(ssp, sizeof (strsig_t));
923 			update = 1;
924 			ssp = tssp;
925 		} else {
926 			pssp = ssp;
927 			ssp = ssp->ss_next;
928 		}
929 	}
930 	if (update) {
931 		stp->sd_sigflags = 0;
932 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
933 			stp->sd_sigflags |= ssp->ss_events;
934 	}
935 	mutex_exit(&stp->sd_lock);
936 }
937 
938 /*
939  * Used on the last close to remove any remaining items on the siglist.
940  * These could be present on the siglist due to I_ESETSIG calls that
941  * use process groups or processed that do not have an open file descriptor
942  * for this stream (Such entries would not be removed by strclean).
943  */
944 static void
945 strcleanall(struct vnode *vp)
946 {
947 	strsig_t *ssp, *nssp;
948 	stdata_t *stp;
949 
950 	stp = vp->v_stream;
951 	mutex_enter(&stp->sd_lock);
952 	ssp = stp->sd_siglist;
953 	stp->sd_siglist = NULL;
954 	while (ssp) {
955 		nssp = ssp->ss_next;
956 		mutex_enter(&pidlock);
957 		PID_RELE(ssp->ss_pidp);
958 		mutex_exit(&pidlock);
959 		kmem_free(ssp, sizeof (strsig_t));
960 		ssp = nssp;
961 	}
962 	stp->sd_sigflags = 0;
963 	mutex_exit(&stp->sd_lock);
964 }
965 
966 /*
967  * Retrieve the next message from the logical stream head read queue
968  * using either rwnext (if sync stream) or getq_noenab.
969  * It is the callers responsibility to call qbackenable after
970  * it is finished with the message. The caller should not call
971  * qbackenable until after any putback calls to avoid spurious backenabling.
972  */
973 mblk_t *
974 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
975     int *errorp)
976 {
977 	mblk_t *bp;
978 	int error;
979 	ssize_t rbytes = 0;
980 
981 	/* Holding sd_lock prevents the read queue from changing  */
982 	ASSERT(MUTEX_HELD(&stp->sd_lock));
983 
984 	if (uiop != NULL && stp->sd_struiordq != NULL &&
985 	    q->q_first == NULL &&
986 	    (!first || (stp->sd_wakeq & RSLEEP))) {
987 		/*
988 		 * Stream supports rwnext() for the read side.
989 		 * If this is the first time we're called by e.g. strread
990 		 * only do the downcall if there is a deferred wakeup
991 		 * (registered in sd_wakeq).
992 		 */
993 		struiod_t uiod;
994 
995 		if (first)
996 			stp->sd_wakeq &= ~RSLEEP;
997 
998 		(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
999 		    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
1000 		uiod.d_mp = 0;
1001 		/*
1002 		 * Mark that a thread is in rwnext on the read side
1003 		 * to prevent strrput from nacking ioctls immediately.
1004 		 * When the last concurrent rwnext returns
1005 		 * the ioctls are nack'ed.
1006 		 */
1007 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1008 		stp->sd_struiodnak++;
1009 		/*
1010 		 * Note: rwnext will drop sd_lock.
1011 		 */
1012 		error = rwnext(q, &uiod);
1013 		ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1014 		mutex_enter(&stp->sd_lock);
1015 		stp->sd_struiodnak--;
1016 		while (stp->sd_struiodnak == 0 &&
1017 		    ((bp = stp->sd_struionak) != NULL)) {
1018 			stp->sd_struionak = bp->b_next;
1019 			bp->b_next = NULL;
1020 			bp->b_datap->db_type = M_IOCNAK;
1021 			/*
1022 			 * Protect against the driver passing up
1023 			 * messages after it has done a qprocsoff.
1024 			 */
1025 			if (_OTHERQ(q)->q_next == NULL)
1026 				freemsg(bp);
1027 			else {
1028 				mutex_exit(&stp->sd_lock);
1029 				qreply(q, bp);
1030 				mutex_enter(&stp->sd_lock);
1031 			}
1032 		}
1033 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1034 		if (error == 0 || error == EWOULDBLOCK) {
1035 			if ((bp = uiod.d_mp) != NULL) {
1036 				*errorp = 0;
1037 				ASSERT(MUTEX_HELD(&stp->sd_lock));
1038 				return (bp);
1039 			}
1040 			error = 0;
1041 		} else if (error == EINVAL) {
1042 			/*
1043 			 * The stream plumbing must have
1044 			 * changed while we were away, so
1045 			 * just turn off rwnext()s.
1046 			 */
1047 			error = 0;
1048 		} else if (error == EBUSY) {
1049 			/*
1050 			 * The module might have data in transit using putnext
1051 			 * Fall back on waiting + getq.
1052 			 */
1053 			error = 0;
1054 		} else {
1055 			*errorp = error;
1056 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1057 			return (NULL);
1058 		}
1059 		/*
1060 		 * Try a getq in case a rwnext() generated mblk
1061 		 * has bubbled up via strrput().
1062 		 */
1063 	}
1064 	*errorp = 0;
1065 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1066 
1067 	/*
1068 	 * If we have a valid uio, try and use this as a guide for how
1069 	 * many bytes to retrieve from the queue via getq_noenab().
1070 	 * Doing this can avoid unneccesary counting of overlong
1071 	 * messages in putback(). We currently only do this for sockets
1072 	 * and only if there is no sd_rputdatafunc hook.
1073 	 *
1074 	 * The sd_rputdatafunc hook transforms the entire message
1075 	 * before any bytes in it can be given to a client. So, rbytes
1076 	 * must be 0 if there is a hook.
1077 	 */
1078 	if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
1079 	    (stp->sd_rputdatafunc == NULL))
1080 		rbytes = uiop->uio_resid;
1081 
1082 	return (getq_noenab(q, rbytes));
1083 }
1084 
1085 /*
1086  * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1087  * If the message does not fit in the uio the remainder of it is returned;
1088  * otherwise NULL is returned.  Any embedded zero-length mblk_t's are
1089  * consumed, even if uio_resid reaches zero.  On error, `*errorp' is set to
1090  * the error code, the message is consumed, and NULL is returned.
1091  */
1092 static mblk_t *
1093 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1094 {
1095 	int error;
1096 	ptrdiff_t n;
1097 	mblk_t *nbp;
1098 
1099 	ASSERT(bp->b_wptr >= bp->b_rptr);
1100 
1101 	do {
1102 		if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1103 			ASSERT(n > 0);
1104 
1105 			error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1106 			if (error != 0) {
1107 				freemsg(bp);
1108 				*errorp = error;
1109 				return (NULL);
1110 			}
1111 		}
1112 
1113 		bp->b_rptr += n;
1114 		while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1115 			nbp = bp;
1116 			bp = bp->b_cont;
1117 			freeb(nbp);
1118 		}
1119 	} while (bp != NULL && uiop->uio_resid > 0);
1120 
1121 	*errorp = 0;
1122 	return (bp);
1123 }
1124 
1125 /*
1126  * Read a stream according to the mode flags in sd_flag:
1127  *
1128  * (default mode)		- Byte stream, msg boundaries are ignored
1129  * RD_MSGDIS (msg discard)	- Read on msg boundaries and throw away
1130  *				any data remaining in msg
1131  * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1132  *				any remaining data on head of read queue
1133  *
1134  * Consume readable messages on the front of the queue until
1135  * ttolwp(curthread)->lwp_count
1136  * is satisfied, the readable messages are exhausted, or a message
1137  * boundary is reached in a message mode.  If no data was read and
1138  * the stream was not opened with the NDELAY flag, block until data arrives.
1139  * Otherwise return the data read and update the count.
1140  *
1141  * In default mode a 0 length message signifies end-of-file and terminates
1142  * a read in progress.  The 0 length message is removed from the queue
1143  * only if it is the only message read (no data is read).
1144  *
1145  * An attempt to read an M_PROTO or M_PCPROTO message results in an
1146  * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1147  * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1148  * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1149  * are unlinked from and M_DATA blocks in the message, the protos are
1150  * thrown away, and the data is read.
1151  */
1152 /* ARGSUSED */
1153 int
1154 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1155 {
1156 	struct stdata *stp;
1157 	mblk_t *bp, *nbp;
1158 	queue_t *q;
1159 	int error = 0;
1160 	uint_t old_sd_flag;
1161 	int first;
1162 	char rflg;
1163 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
1164 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
1165 	short delim;
1166 	unsigned char pri = 0;
1167 	char waitflag;
1168 	unsigned char type;
1169 
1170 	TRACE_1(TR_FAC_STREAMS_FR,
1171 	    TR_STRREAD_ENTER, "strread:%p", vp);
1172 	ASSERT(vp->v_stream);
1173 	stp = vp->v_stream;
1174 
1175 	mutex_enter(&stp->sd_lock);
1176 
1177 	if ((error = i_straccess(stp, JCREAD)) != 0) {
1178 		mutex_exit(&stp->sd_lock);
1179 		return (error);
1180 	}
1181 
1182 	if (stp->sd_flag & (STRDERR|STPLEX)) {
1183 		error = strgeterr(stp, STRDERR|STPLEX, 0);
1184 		if (error != 0) {
1185 			mutex_exit(&stp->sd_lock);
1186 			return (error);
1187 		}
1188 	}
1189 
1190 	/*
1191 	 * Loop terminates when uiop->uio_resid == 0.
1192 	 */
1193 	rflg = 0;
1194 	waitflag = READWAIT;
1195 	q = _RD(stp->sd_wrq);
1196 	for (;;) {
1197 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1198 		old_sd_flag = stp->sd_flag;
1199 		mark = 0;
1200 		delim = 0;
1201 		first = 1;
1202 		while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1203 			int done = 0;
1204 
1205 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1206 
1207 			if (error != 0)
1208 				goto oops;
1209 
1210 			if (stp->sd_flag & (STRHUP|STREOF)) {
1211 				goto oops;
1212 			}
1213 			if (rflg && !(stp->sd_flag & STRDELIM)) {
1214 				goto oops;
1215 			}
1216 			/*
1217 			 * If a read(fd,buf,0) has been done, there is no
1218 			 * need to sleep. We always have zero bytes to
1219 			 * return.
1220 			 */
1221 			if (uiop->uio_resid == 0) {
1222 				goto oops;
1223 			}
1224 
1225 			qbackenable(q, 0);
1226 
1227 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1228 			    "strread calls strwaitq:%p, %p, %p",
1229 			    vp, uiop, crp);
1230 			if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1231 			    uiop->uio_fmode, -1, &done)) != 0 || done) {
1232 				TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1233 				    "strread error or done:%p, %p, %p",
1234 				    vp, uiop, crp);
1235 				if ((uiop->uio_fmode & FNDELAY) &&
1236 				    (stp->sd_flag & OLDNDELAY) &&
1237 				    (error == EAGAIN))
1238 					error = 0;
1239 				goto oops;
1240 			}
1241 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1242 			    "strread awakes:%p, %p, %p", vp, uiop, crp);
1243 			if ((error = i_straccess(stp, JCREAD)) != 0) {
1244 				goto oops;
1245 			}
1246 			first = 0;
1247 		}
1248 
1249 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1250 		ASSERT(bp);
1251 		pri = bp->b_band;
1252 		/*
1253 		 * Extract any mark information. If the message is not
1254 		 * completely consumed this information will be put in the mblk
1255 		 * that is putback.
1256 		 * If MSGMARKNEXT is set and the message is completely consumed
1257 		 * the STRATMARK flag will be set below. Likewise, if
1258 		 * MSGNOTMARKNEXT is set and the message is
1259 		 * completely consumed STRNOTATMARK will be set.
1260 		 *
1261 		 * For some unknown reason strread only breaks the read at the
1262 		 * last mark.
1263 		 */
1264 		mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1265 		ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1266 		    (MSGMARKNEXT|MSGNOTMARKNEXT));
1267 		if (mark != 0 && bp == stp->sd_mark) {
1268 			if (rflg) {
1269 				putback(stp, q, bp, pri);
1270 				goto oops;
1271 			}
1272 			mark |= _LASTMARK;
1273 			stp->sd_mark = NULL;
1274 		}
1275 		if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1276 			delim = 1;
1277 		mutex_exit(&stp->sd_lock);
1278 
1279 		if (STREAM_NEEDSERVICE(stp))
1280 			stream_runservice(stp);
1281 
1282 		type = bp->b_datap->db_type;
1283 
1284 		switch (type) {
1285 
1286 		case M_DATA:
1287 ismdata:
1288 			if (msgnodata(bp)) {
1289 				if (mark || delim) {
1290 					freemsg(bp);
1291 				} else if (rflg) {
1292 
1293 					/*
1294 					 * If already read data put zero
1295 					 * length message back on queue else
1296 					 * free msg and return 0.
1297 					 */
1298 					bp->b_band = pri;
1299 					mutex_enter(&stp->sd_lock);
1300 					putback(stp, q, bp, pri);
1301 					mutex_exit(&stp->sd_lock);
1302 				} else {
1303 					freemsg(bp);
1304 				}
1305 				error =  0;
1306 				goto oops1;
1307 			}
1308 
1309 			rflg = 1;
1310 			waitflag |= NOINTR;
1311 			bp = struiocopyout(bp, uiop, &error);
1312 			if (error != 0)
1313 				goto oops1;
1314 
1315 			mutex_enter(&stp->sd_lock);
1316 			if (bp) {
1317 				/*
1318 				 * Have remaining data in message.
1319 				 * Free msg if in discard mode.
1320 				 */
1321 				if (stp->sd_read_opt & RD_MSGDIS) {
1322 					freemsg(bp);
1323 				} else {
1324 					bp->b_band = pri;
1325 					if ((mark & _LASTMARK) &&
1326 					    (stp->sd_mark == NULL))
1327 						stp->sd_mark = bp;
1328 					bp->b_flag |= mark & ~_LASTMARK;
1329 					if (delim)
1330 						bp->b_flag |= MSGDELIM;
1331 					if (msgnodata(bp))
1332 						freemsg(bp);
1333 					else
1334 						putback(stp, q, bp, pri);
1335 				}
1336 			} else {
1337 				/*
1338 				 * Consumed the complete message.
1339 				 * Move the MSG*MARKNEXT information
1340 				 * to the stream head just in case
1341 				 * the read queue becomes empty.
1342 				 *
1343 				 * If the stream head was at the mark
1344 				 * (STRATMARK) before we dropped sd_lock above
1345 				 * and some data was consumed then we have
1346 				 * moved past the mark thus STRATMARK is
1347 				 * cleared. However, if a message arrived in
1348 				 * strrput during the copyout above causing
1349 				 * STRATMARK to be set we can not clear that
1350 				 * flag.
1351 				 */
1352 				if (mark &
1353 				    (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1354 					if (mark & MSGMARKNEXT) {
1355 						stp->sd_flag &= ~STRNOTATMARK;
1356 						stp->sd_flag |= STRATMARK;
1357 					} else if (mark & MSGNOTMARKNEXT) {
1358 						stp->sd_flag &= ~STRATMARK;
1359 						stp->sd_flag |= STRNOTATMARK;
1360 					} else {
1361 						stp->sd_flag &=
1362 						    ~(STRATMARK|STRNOTATMARK);
1363 					}
1364 				} else if (rflg && (old_sd_flag & STRATMARK)) {
1365 					stp->sd_flag &= ~STRATMARK;
1366 				}
1367 			}
1368 
1369 			/*
1370 			 * Check for signal messages at the front of the read
1371 			 * queue and generate the signal(s) if appropriate.
1372 			 * The only signal that can be on queue is M_SIG at
1373 			 * this point.
1374 			 */
1375 			while ((((bp = q->q_first)) != NULL) &&
1376 			    (bp->b_datap->db_type == M_SIG)) {
1377 				bp = getq_noenab(q, 0);
1378 				/*
1379 				 * sd_lock is held so the content of the
1380 				 * read queue can not change.
1381 				 */
1382 				ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG);
1383 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
1384 				mutex_exit(&stp->sd_lock);
1385 				freemsg(bp);
1386 				if (STREAM_NEEDSERVICE(stp))
1387 					stream_runservice(stp);
1388 				mutex_enter(&stp->sd_lock);
1389 			}
1390 
1391 			if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1392 			    delim ||
1393 			    (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1394 				goto oops;
1395 			}
1396 			continue;
1397 
1398 		case M_SIG:
1399 			strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1400 			freemsg(bp);
1401 			mutex_enter(&stp->sd_lock);
1402 			continue;
1403 
1404 		case M_PROTO:
1405 		case M_PCPROTO:
1406 			/*
1407 			 * Only data messages are readable.
1408 			 * Any others generate an error, unless
1409 			 * RD_PROTDIS or RD_PROTDAT is set.
1410 			 */
1411 			if (stp->sd_read_opt & RD_PROTDAT) {
1412 				for (nbp = bp; nbp; nbp = nbp->b_next) {
1413 					if ((nbp->b_datap->db_type ==
1414 					    M_PROTO) ||
1415 					    (nbp->b_datap->db_type ==
1416 					    M_PCPROTO)) {
1417 						nbp->b_datap->db_type = M_DATA;
1418 					} else {
1419 						break;
1420 					}
1421 				}
1422 				/*
1423 				 * clear stream head hi pri flag based on
1424 				 * first message
1425 				 */
1426 				if (type == M_PCPROTO) {
1427 					mutex_enter(&stp->sd_lock);
1428 					stp->sd_flag &= ~STRPRI;
1429 					mutex_exit(&stp->sd_lock);
1430 				}
1431 				goto ismdata;
1432 			} else if (stp->sd_read_opt & RD_PROTDIS) {
1433 				/*
1434 				 * discard non-data messages
1435 				 */
1436 				while (bp &&
1437 				    ((bp->b_datap->db_type == M_PROTO) ||
1438 				    (bp->b_datap->db_type == M_PCPROTO))) {
1439 					nbp = unlinkb(bp);
1440 					freeb(bp);
1441 					bp = nbp;
1442 				}
1443 				/*
1444 				 * clear stream head hi pri flag based on
1445 				 * first message
1446 				 */
1447 				if (type == M_PCPROTO) {
1448 					mutex_enter(&stp->sd_lock);
1449 					stp->sd_flag &= ~STRPRI;
1450 					mutex_exit(&stp->sd_lock);
1451 				}
1452 				if (bp) {
1453 					bp->b_band = pri;
1454 					goto ismdata;
1455 				} else {
1456 					break;
1457 				}
1458 			}
1459 			/* FALLTHRU */
1460 		case M_PASSFP:
1461 			if ((bp->b_datap->db_type == M_PASSFP) &&
1462 			    (stp->sd_read_opt & RD_PROTDIS)) {
1463 				freemsg(bp);
1464 				break;
1465 			}
1466 			mutex_enter(&stp->sd_lock);
1467 			putback(stp, q, bp, pri);
1468 			mutex_exit(&stp->sd_lock);
1469 			if (rflg == 0)
1470 				error = EBADMSG;
1471 			goto oops1;
1472 
1473 		default:
1474 			/*
1475 			 * Garbage on stream head read queue.
1476 			 */
1477 			cmn_err(CE_WARN, "bad %x found at stream head\n",
1478 			    bp->b_datap->db_type);
1479 			freemsg(bp);
1480 			goto oops1;
1481 		}
1482 		mutex_enter(&stp->sd_lock);
1483 	}
1484 oops:
1485 	mutex_exit(&stp->sd_lock);
1486 oops1:
1487 	qbackenable(q, pri);
1488 	return (error);
1489 #undef	_LASTMARK
1490 }
1491 
1492 /*
1493  * Default processing of M_PROTO/M_PCPROTO messages.
1494  * Determine which wakeups and signals are needed.
1495  * This can be replaced by a user-specified procedure for kernel users
1496  * of STREAMS.
1497  */
1498 /* ARGSUSED */
1499 mblk_t *
1500 strrput_proto(vnode_t *vp, mblk_t *mp,
1501     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1502     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1503 {
1504 	*wakeups = RSLEEP;
1505 	*allmsgsigs = 0;
1506 
1507 	switch (mp->b_datap->db_type) {
1508 	case M_PROTO:
1509 		if (mp->b_band == 0) {
1510 			*firstmsgsigs = S_INPUT | S_RDNORM;
1511 			*pollwakeups = POLLIN | POLLRDNORM;
1512 		} else {
1513 			*firstmsgsigs = S_INPUT | S_RDBAND;
1514 			*pollwakeups = POLLIN | POLLRDBAND;
1515 		}
1516 		break;
1517 	case M_PCPROTO:
1518 		*firstmsgsigs = S_HIPRI;
1519 		*pollwakeups = POLLPRI;
1520 		break;
1521 	}
1522 	return (mp);
1523 }
1524 
1525 /*
1526  * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1527  * M_PASSFP messages.
1528  * Determine which wakeups and signals are needed.
1529  * This can be replaced by a user-specified procedure for kernel users
1530  * of STREAMS.
1531  */
1532 /* ARGSUSED */
1533 mblk_t *
1534 strrput_misc(vnode_t *vp, mblk_t *mp,
1535     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1536     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1537 {
1538 	*wakeups = 0;
1539 	*firstmsgsigs = 0;
1540 	*allmsgsigs = 0;
1541 	*pollwakeups = 0;
1542 	return (mp);
1543 }
1544 
1545 /*
1546  * Stream read put procedure.  Called from downstream driver/module
1547  * with messages for the stream head.  Data, protocol, and in-stream
1548  * signal messages are placed on the queue, others are handled directly.
1549  */
1550 int
1551 strrput(queue_t *q, mblk_t *bp)
1552 {
1553 	struct stdata	*stp;
1554 	ulong_t		rput_opt;
1555 	strwakeup_t	wakeups;
1556 	strsigset_t	firstmsgsigs;	/* Signals if first message on queue */
1557 	strsigset_t	allmsgsigs;	/* Signals for all messages */
1558 	strsigset_t	signals;	/* Signals events to generate */
1559 	strpollset_t	pollwakeups;
1560 	mblk_t		*nextbp;
1561 	uchar_t		band = 0;
1562 	int		hipri_sig;
1563 
1564 	stp = (struct stdata *)q->q_ptr;
1565 	/*
1566 	 * Use rput_opt for optimized access to the SR_ flags except
1567 	 * SR_POLLIN. That flag has to be checked under sd_lock since it
1568 	 * is modified by strpoll().
1569 	 */
1570 	rput_opt = stp->sd_rput_opt;
1571 
1572 	ASSERT(qclaimed(q));
1573 	TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1574 	    "strrput called with message type:q %p bp %p", q, bp);
1575 
1576 	/*
1577 	 * Perform initial processing and pass to the parameterized functions.
1578 	 */
1579 	ASSERT(bp->b_next == NULL);
1580 
1581 	switch (bp->b_datap->db_type) {
1582 	case M_DATA:
1583 		/*
1584 		 * sockfs is the only consumer of STREOF and when it is set,
1585 		 * it implies that the receiver is not interested in receiving
1586 		 * any more data, hence the mblk is freed to prevent unnecessary
1587 		 * message queueing at the stream head.
1588 		 */
1589 		if (stp->sd_flag == STREOF) {
1590 			freemsg(bp);
1591 			return (0);
1592 		}
1593 		if ((rput_opt & SR_IGN_ZEROLEN) &&
1594 		    bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1595 			/*
1596 			 * Ignore zero-length M_DATA messages. These might be
1597 			 * generated by some transports.
1598 			 * The zero-length M_DATA messages, even if they
1599 			 * are ignored, should effect the atmark tracking and
1600 			 * should wake up a thread sleeping in strwaitmark.
1601 			 */
1602 			mutex_enter(&stp->sd_lock);
1603 			if (bp->b_flag & MSGMARKNEXT) {
1604 				/*
1605 				 * Record the position of the mark either
1606 				 * in q_last or in STRATMARK.
1607 				 */
1608 				if (q->q_last != NULL) {
1609 					q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1610 					q->q_last->b_flag |= MSGMARKNEXT;
1611 				} else {
1612 					stp->sd_flag &= ~STRNOTATMARK;
1613 					stp->sd_flag |= STRATMARK;
1614 				}
1615 			} else if (bp->b_flag & MSGNOTMARKNEXT) {
1616 				/*
1617 				 * Record that this is not the position of
1618 				 * the mark either in q_last or in
1619 				 * STRNOTATMARK.
1620 				 */
1621 				if (q->q_last != NULL) {
1622 					q->q_last->b_flag &= ~MSGMARKNEXT;
1623 					q->q_last->b_flag |= MSGNOTMARKNEXT;
1624 				} else {
1625 					stp->sd_flag &= ~STRATMARK;
1626 					stp->sd_flag |= STRNOTATMARK;
1627 				}
1628 			}
1629 			if (stp->sd_flag & RSLEEP) {
1630 				stp->sd_flag &= ~RSLEEP;
1631 				cv_broadcast(&q->q_wait);
1632 			}
1633 			mutex_exit(&stp->sd_lock);
1634 			freemsg(bp);
1635 			return (0);
1636 		}
1637 		wakeups = RSLEEP;
1638 		if (bp->b_band == 0) {
1639 			firstmsgsigs = S_INPUT | S_RDNORM;
1640 			pollwakeups = POLLIN | POLLRDNORM;
1641 		} else {
1642 			firstmsgsigs = S_INPUT | S_RDBAND;
1643 			pollwakeups = POLLIN | POLLRDBAND;
1644 		}
1645 		if (rput_opt & SR_SIGALLDATA)
1646 			allmsgsigs = firstmsgsigs;
1647 		else
1648 			allmsgsigs = 0;
1649 
1650 		mutex_enter(&stp->sd_lock);
1651 		if ((rput_opt & SR_CONSOL_DATA) &&
1652 		    (q->q_last != NULL) &&
1653 		    (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1654 			/*
1655 			 * Consolidate an M_DATA message onto an M_DATA,
1656 			 * M_PROTO, or M_PCPROTO by merging it with q_last.
1657 			 * The consolidation does not take place if
1658 			 * the old message is marked with either of the
1659 			 * marks or the delim flag or if the new
1660 			 * message is marked with MSGMARK. The MSGMARK
1661 			 * check is needed to handle the odd semantics of
1662 			 * MSGMARK where essentially the whole message
1663 			 * is to be treated as marked.
1664 			 * Carry any MSGMARKNEXT  and MSGNOTMARKNEXT from the
1665 			 * new message to the front of the b_cont chain.
1666 			 */
1667 			mblk_t *lbp = q->q_last;
1668 			unsigned char db_type = lbp->b_datap->db_type;
1669 
1670 			if ((db_type == M_DATA || db_type == M_PROTO ||
1671 			    db_type == M_PCPROTO) &&
1672 			    !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1673 				rmvq_noenab(q, lbp);
1674 				/*
1675 				 * The first message in the b_cont list
1676 				 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1677 				 * We need to handle the case where we
1678 				 * are appending:
1679 				 *
1680 				 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1681 				 * 2) a MSGMARKNEXT to a plain message.
1682 				 * 3) a MSGNOTMARKNEXT to a plain message
1683 				 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1684 				 *    message.
1685 				 *
1686 				 * Thus we never append a MSGMARKNEXT or
1687 				 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1688 				 */
1689 				if (bp->b_flag & MSGMARKNEXT) {
1690 					lbp->b_flag |= MSGMARKNEXT;
1691 					lbp->b_flag &= ~MSGNOTMARKNEXT;
1692 					bp->b_flag &= ~MSGMARKNEXT;
1693 				} else if (bp->b_flag & MSGNOTMARKNEXT) {
1694 					lbp->b_flag |= MSGNOTMARKNEXT;
1695 					bp->b_flag &= ~MSGNOTMARKNEXT;
1696 				}
1697 
1698 				linkb(lbp, bp);
1699 				bp = lbp;
1700 				/*
1701 				 * The new message logically isn't the first
1702 				 * even though the q_first check below thinks
1703 				 * it is. Clear the firstmsgsigs to make it
1704 				 * not appear to be first.
1705 				 */
1706 				firstmsgsigs = 0;
1707 			}
1708 		}
1709 		break;
1710 
1711 	case M_PASSFP:
1712 		wakeups = RSLEEP;
1713 		allmsgsigs = 0;
1714 		if (bp->b_band == 0) {
1715 			firstmsgsigs = S_INPUT | S_RDNORM;
1716 			pollwakeups = POLLIN | POLLRDNORM;
1717 		} else {
1718 			firstmsgsigs = S_INPUT | S_RDBAND;
1719 			pollwakeups = POLLIN | POLLRDBAND;
1720 		}
1721 		mutex_enter(&stp->sd_lock);
1722 		break;
1723 
1724 	case M_PROTO:
1725 	case M_PCPROTO:
1726 		ASSERT(stp->sd_rprotofunc != NULL);
1727 		bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1728 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1729 #define	ALLSIG	(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1730 		S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1731 #define	ALLPOLL	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1732 		POLLWRBAND)
1733 
1734 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1735 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1736 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1737 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1738 
1739 		mutex_enter(&stp->sd_lock);
1740 		break;
1741 
1742 	default:
1743 		ASSERT(stp->sd_rmiscfunc != NULL);
1744 		bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1745 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1746 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1747 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1748 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1749 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1750 #undef	ALLSIG
1751 #undef	ALLPOLL
1752 		mutex_enter(&stp->sd_lock);
1753 		break;
1754 	}
1755 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1756 
1757 	/* By default generate superset of signals */
1758 	signals = (firstmsgsigs | allmsgsigs);
1759 
1760 	/*
1761 	 * The  proto and misc functions can return multiple messages
1762 	 * as a b_next chain. Such messages are processed separately.
1763 	 */
1764 one_more:
1765 	hipri_sig = 0;
1766 	if (bp == NULL) {
1767 		nextbp = NULL;
1768 	} else {
1769 		nextbp = bp->b_next;
1770 		bp->b_next = NULL;
1771 
1772 		switch (bp->b_datap->db_type) {
1773 		case M_PCPROTO:
1774 			/*
1775 			 * Only one priority protocol message is allowed at the
1776 			 * stream head at a time.
1777 			 */
1778 			if (stp->sd_flag & STRPRI) {
1779 				TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1780 				    "M_PCPROTO already at head");
1781 				freemsg(bp);
1782 				mutex_exit(&stp->sd_lock);
1783 				goto done;
1784 			}
1785 			stp->sd_flag |= STRPRI;
1786 			hipri_sig = 1;
1787 			/* FALLTHRU */
1788 		case M_DATA:
1789 		case M_PROTO:
1790 		case M_PASSFP:
1791 			band = bp->b_band;
1792 			/*
1793 			 * Marking doesn't work well when messages
1794 			 * are marked in more than one band.  We only
1795 			 * remember the last message received, even if
1796 			 * it is placed on the queue ahead of other
1797 			 * marked messages.
1798 			 */
1799 			if (bp->b_flag & MSGMARK)
1800 				stp->sd_mark = bp;
1801 			(void) putq(q, bp);
1802 
1803 			/*
1804 			 * If message is a PCPROTO message, always use
1805 			 * firstmsgsigs to determine if a signal should be
1806 			 * sent as strrput is the only place to send
1807 			 * signals for PCPROTO. Other messages are based on
1808 			 * the STRGETINPROG flag. The flag determines if
1809 			 * strrput or (k)strgetmsg will be responsible for
1810 			 * sending the signals, in the firstmsgsigs case.
1811 			 */
1812 			if ((hipri_sig == 1) ||
1813 			    (((stp->sd_flag & STRGETINPROG) == 0) &&
1814 			    (q->q_first == bp)))
1815 				signals = (firstmsgsigs | allmsgsigs);
1816 			else
1817 				signals = allmsgsigs;
1818 			break;
1819 
1820 		default:
1821 			mutex_exit(&stp->sd_lock);
1822 			(void) strrput_nondata(q, bp);
1823 			mutex_enter(&stp->sd_lock);
1824 			break;
1825 		}
1826 	}
1827 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1828 	/*
1829 	 * Wake sleeping read/getmsg and cancel deferred wakeup
1830 	 */
1831 	if (wakeups & RSLEEP)
1832 		stp->sd_wakeq &= ~RSLEEP;
1833 
1834 	wakeups &= stp->sd_flag;
1835 	if (wakeups & RSLEEP) {
1836 		stp->sd_flag &= ~RSLEEP;
1837 		cv_broadcast(&q->q_wait);
1838 	}
1839 	if (wakeups & WSLEEP) {
1840 		stp->sd_flag &= ~WSLEEP;
1841 		cv_broadcast(&_WR(q)->q_wait);
1842 	}
1843 
1844 	if (pollwakeups != 0) {
1845 		if (pollwakeups == (POLLIN | POLLRDNORM)) {
1846 			/*
1847 			 * Can't use rput_opt since it was not
1848 			 * read when sd_lock was held and SR_POLLIN is changed
1849 			 * by strpoll() under sd_lock.
1850 			 */
1851 			if (!(stp->sd_rput_opt & SR_POLLIN))
1852 				goto no_pollwake;
1853 			stp->sd_rput_opt &= ~SR_POLLIN;
1854 		}
1855 		mutex_exit(&stp->sd_lock);
1856 		pollwakeup(&stp->sd_pollist, pollwakeups);
1857 		mutex_enter(&stp->sd_lock);
1858 	}
1859 no_pollwake:
1860 
1861 	/*
1862 	 * strsendsig can handle multiple signals with a
1863 	 * single call.
1864 	 */
1865 	if (stp->sd_sigflags & signals)
1866 		strsendsig(stp->sd_siglist, signals, band, 0);
1867 	mutex_exit(&stp->sd_lock);
1868 
1869 
1870 done:
1871 	if (nextbp == NULL)
1872 		return (0);
1873 
1874 	/*
1875 	 * Any signals were handled the first time.
1876 	 * Wakeups and pollwakeups are redone to avoid any race
1877 	 * conditions - all the messages are not queued until the
1878 	 * last message has been processed by strrput.
1879 	 */
1880 	bp = nextbp;
1881 	signals = firstmsgsigs = allmsgsigs = 0;
1882 	mutex_enter(&stp->sd_lock);
1883 	goto one_more;
1884 }
1885 
1886 static void
1887 log_dupioc(queue_t *rq, mblk_t *bp)
1888 {
1889 	queue_t *wq, *qp;
1890 	char *modnames, *mnp, *dname;
1891 	size_t maxmodstr;
1892 	boolean_t islast;
1893 
1894 	/*
1895 	 * Allocate a buffer large enough to hold the names of nstrpush modules
1896 	 * and one driver, with spaces between and NUL terminator.  If we can't
1897 	 * get memory, then we'll just log the driver name.
1898 	 */
1899 	maxmodstr = nstrpush * (FMNAMESZ + 1);
1900 	mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1901 
1902 	/* march down write side to print log message down to the driver */
1903 	wq = WR(rq);
1904 
1905 	/* make sure q_next doesn't shift around while we're grabbing data */
1906 	claimstr(wq);
1907 	qp = wq->q_next;
1908 	do {
1909 		dname = Q2NAME(qp);
1910 		islast = !SAMESTR(qp) || qp->q_next == NULL;
1911 		if (modnames == NULL) {
1912 			/*
1913 			 * If we don't have memory, then get the driver name in
1914 			 * the log where we can see it.  Note that memory
1915 			 * pressure is a possible cause of these sorts of bugs.
1916 			 */
1917 			if (islast) {
1918 				modnames = dname;
1919 				maxmodstr = 0;
1920 			}
1921 		} else {
1922 			mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1923 			if (!islast)
1924 				*mnp++ = ' ';
1925 		}
1926 		qp = qp->q_next;
1927 	} while (!islast);
1928 	releasestr(wq);
1929 	/* Cannot happen unless stream head is corrupt. */
1930 	ASSERT(modnames != NULL);
1931 	(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1932 	    SL_CONSOLE|SL_TRACE|SL_ERROR,
1933 	    "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1934 	    rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1935 	    (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1936 	if (maxmodstr != 0)
1937 		kmem_free(modnames, maxmodstr);
1938 }
1939 
1940 int
1941 strrput_nondata(queue_t *q, mblk_t *bp)
1942 {
1943 	struct stdata *stp;
1944 	struct iocblk *iocbp;
1945 	struct stroptions *sop;
1946 	struct copyreq *reqp;
1947 	struct copyresp *resp;
1948 	unsigned char bpri;
1949 	unsigned char  flushed_already = 0;
1950 
1951 	stp = (struct stdata *)q->q_ptr;
1952 
1953 	ASSERT(!(stp->sd_flag & STPLEX));
1954 	ASSERT(qclaimed(q));
1955 
1956 	switch (bp->b_datap->db_type) {
1957 	case M_ERROR:
1958 		/*
1959 		 * An error has occurred downstream, the errno is in the first
1960 		 * bytes of the message.
1961 		 */
1962 		if ((bp->b_wptr - bp->b_rptr) == 2) {	/* New flavor */
1963 			unsigned char rw = 0;
1964 
1965 			mutex_enter(&stp->sd_lock);
1966 			if (*bp->b_rptr != NOERROR) {	/* read error */
1967 				if (*bp->b_rptr != 0) {
1968 					if (stp->sd_flag & STRDERR)
1969 						flushed_already |= FLUSHR;
1970 					stp->sd_flag |= STRDERR;
1971 					rw |= FLUSHR;
1972 				} else {
1973 					stp->sd_flag &= ~STRDERR;
1974 				}
1975 				stp->sd_rerror = *bp->b_rptr;
1976 			}
1977 			bp->b_rptr++;
1978 			if (*bp->b_rptr != NOERROR) {	/* write error */
1979 				if (*bp->b_rptr != 0) {
1980 					if (stp->sd_flag & STWRERR)
1981 						flushed_already |= FLUSHW;
1982 					stp->sd_flag |= STWRERR;
1983 					rw |= FLUSHW;
1984 				} else {
1985 					stp->sd_flag &= ~STWRERR;
1986 				}
1987 				stp->sd_werror = *bp->b_rptr;
1988 			}
1989 			if (rw) {
1990 				TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
1991 				    "strrput cv_broadcast:q %p, bp %p",
1992 				    q, bp);
1993 				cv_broadcast(&q->q_wait); /* readers */
1994 				cv_broadcast(&_WR(q)->q_wait); /* writers */
1995 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
1996 
1997 				mutex_exit(&stp->sd_lock);
1998 				pollwakeup(&stp->sd_pollist, POLLERR);
1999 				mutex_enter(&stp->sd_lock);
2000 
2001 				if (stp->sd_sigflags & S_ERROR)
2002 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2003 					    ((rw & FLUSHR) ? stp->sd_rerror :
2004 					    stp->sd_werror));
2005 				mutex_exit(&stp->sd_lock);
2006 				/*
2007 				 * Send the M_FLUSH only
2008 				 * for the first M_ERROR
2009 				 * message on the stream
2010 				 */
2011 				if (flushed_already == rw) {
2012 					freemsg(bp);
2013 					return (0);
2014 				}
2015 
2016 				bp->b_datap->db_type = M_FLUSH;
2017 				*bp->b_rptr = rw;
2018 				bp->b_wptr = bp->b_rptr + 1;
2019 				/*
2020 				 * Protect against the driver
2021 				 * passing up messages after
2022 				 * it has done a qprocsoff
2023 				 */
2024 				if (_OTHERQ(q)->q_next == NULL)
2025 					freemsg(bp);
2026 				else
2027 					qreply(q, bp);
2028 				return (0);
2029 			} else
2030 				mutex_exit(&stp->sd_lock);
2031 		} else if (*bp->b_rptr != 0) {		/* Old flavor */
2032 				if (stp->sd_flag & (STRDERR|STWRERR))
2033 					flushed_already = FLUSHRW;
2034 				mutex_enter(&stp->sd_lock);
2035 				stp->sd_flag |= (STRDERR|STWRERR);
2036 				stp->sd_rerror = *bp->b_rptr;
2037 				stp->sd_werror = *bp->b_rptr;
2038 				TRACE_2(TR_FAC_STREAMS_FR,
2039 				    TR_STRRPUT_WAKE2,
2040 				    "strrput wakeup #2:q %p, bp %p", q, bp);
2041 				cv_broadcast(&q->q_wait); /* the readers */
2042 				cv_broadcast(&_WR(q)->q_wait); /* the writers */
2043 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2044 
2045 				mutex_exit(&stp->sd_lock);
2046 				pollwakeup(&stp->sd_pollist, POLLERR);
2047 				mutex_enter(&stp->sd_lock);
2048 
2049 				if (stp->sd_sigflags & S_ERROR)
2050 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2051 					    (stp->sd_werror ? stp->sd_werror :
2052 					    stp->sd_rerror));
2053 				mutex_exit(&stp->sd_lock);
2054 
2055 				/*
2056 				 * Send the M_FLUSH only
2057 				 * for the first M_ERROR
2058 				 * message on the stream
2059 				 */
2060 				if (flushed_already != FLUSHRW) {
2061 					bp->b_datap->db_type = M_FLUSH;
2062 					*bp->b_rptr = FLUSHRW;
2063 					/*
2064 					 * Protect against the driver passing up
2065 					 * messages after it has done a
2066 					 * qprocsoff.
2067 					 */
2068 				if (_OTHERQ(q)->q_next == NULL)
2069 					freemsg(bp);
2070 				else
2071 					qreply(q, bp);
2072 				return (0);
2073 				}
2074 		}
2075 		freemsg(bp);
2076 		return (0);
2077 
2078 	case M_HANGUP:
2079 
2080 		freemsg(bp);
2081 		mutex_enter(&stp->sd_lock);
2082 		stp->sd_werror = ENXIO;
2083 		stp->sd_flag |= STRHUP;
2084 		stp->sd_flag &= ~(WSLEEP|RSLEEP);
2085 
2086 		/*
2087 		 * send signal if controlling tty
2088 		 */
2089 
2090 		if (stp->sd_sidp) {
2091 			prsignal(stp->sd_sidp, SIGHUP);
2092 			if (stp->sd_sidp != stp->sd_pgidp)
2093 				pgsignal(stp->sd_pgidp, SIGTSTP);
2094 		}
2095 
2096 		/*
2097 		 * wake up read, write, and exception pollers and
2098 		 * reset wakeup mechanism.
2099 		 */
2100 		cv_broadcast(&q->q_wait);	/* the readers */
2101 		cv_broadcast(&_WR(q)->q_wait);	/* the writers */
2102 		cv_broadcast(&stp->sd_monitor);	/* the ioctllers */
2103 		strhup(stp);
2104 		mutex_exit(&stp->sd_lock);
2105 		return (0);
2106 
2107 	case M_UNHANGUP:
2108 		freemsg(bp);
2109 		mutex_enter(&stp->sd_lock);
2110 		stp->sd_werror = 0;
2111 		stp->sd_flag &= ~STRHUP;
2112 		mutex_exit(&stp->sd_lock);
2113 		return (0);
2114 
2115 	case M_SIG:
2116 		/*
2117 		 * Someone downstream wants to post a signal.  The
2118 		 * signal to post is contained in the first byte of the
2119 		 * message.  If the message would go on the front of
2120 		 * the queue, send a signal to the process group
2121 		 * (if not SIGPOLL) or to the siglist processes
2122 		 * (SIGPOLL).  If something is already on the queue,
2123 		 * OR if we are delivering a delayed suspend (*sigh*
2124 		 * another "tty" hack) and there's no one sleeping already,
2125 		 * just enqueue the message.
2126 		 */
2127 		mutex_enter(&stp->sd_lock);
2128 		if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2129 		    !(stp->sd_flag & RSLEEP))) {
2130 			(void) putq(q, bp);
2131 			mutex_exit(&stp->sd_lock);
2132 			return (0);
2133 		}
2134 		mutex_exit(&stp->sd_lock);
2135 		/* FALLTHRU */
2136 
2137 	case M_PCSIG:
2138 		/*
2139 		 * Don't enqueue, just post the signal.
2140 		 */
2141 		strsignal(stp, *bp->b_rptr, 0L);
2142 		freemsg(bp);
2143 		return (0);
2144 
2145 	case M_CMD:
2146 		if (MBLKL(bp) != sizeof (cmdblk_t)) {
2147 			freemsg(bp);
2148 			return (0);
2149 		}
2150 
2151 		mutex_enter(&stp->sd_lock);
2152 		if (stp->sd_flag & STRCMDWAIT) {
2153 			ASSERT(stp->sd_cmdblk == NULL);
2154 			stp->sd_cmdblk = bp;
2155 			cv_broadcast(&stp->sd_monitor);
2156 			mutex_exit(&stp->sd_lock);
2157 		} else {
2158 			mutex_exit(&stp->sd_lock);
2159 			freemsg(bp);
2160 		}
2161 		return (0);
2162 
2163 	case M_FLUSH:
2164 		/*
2165 		 * Flush queues.  The indication of which queues to flush
2166 		 * is in the first byte of the message.  If the read queue
2167 		 * is specified, then flush it.  If FLUSHBAND is set, just
2168 		 * flush the band specified by the second byte of the message.
2169 		 *
2170 		 * If a module has issued a M_SETOPT to not flush hi
2171 		 * priority messages off of the stream head, then pass this
2172 		 * flag into the flushq code to preserve such messages.
2173 		 */
2174 
2175 		if (*bp->b_rptr & FLUSHR) {
2176 			mutex_enter(&stp->sd_lock);
2177 			if (*bp->b_rptr & FLUSHBAND) {
2178 				ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2179 				flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2180 			} else
2181 				flushq_common(q, FLUSHALL,
2182 				    stp->sd_read_opt & RFLUSHPCPROT);
2183 			if ((q->q_first == NULL) ||
2184 			    (q->q_first->b_datap->db_type < QPCTL))
2185 				stp->sd_flag &= ~STRPRI;
2186 			else {
2187 				ASSERT(stp->sd_flag & STRPRI);
2188 			}
2189 			mutex_exit(&stp->sd_lock);
2190 		}
2191 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2192 			*bp->b_rptr &= ~FLUSHR;
2193 			bp->b_flag |= MSGNOLOOP;
2194 			/*
2195 			 * Protect against the driver passing up
2196 			 * messages after it has done a qprocsoff.
2197 			 */
2198 			if (_OTHERQ(q)->q_next == NULL)
2199 				freemsg(bp);
2200 			else
2201 				qreply(q, bp);
2202 			return (0);
2203 		}
2204 		freemsg(bp);
2205 		return (0);
2206 
2207 	case M_IOCACK:
2208 	case M_IOCNAK:
2209 		iocbp = (struct iocblk *)bp->b_rptr;
2210 		/*
2211 		 * If not waiting for ACK or NAK then just free msg.
2212 		 * If incorrect id sequence number then just free msg.
2213 		 * If already have ACK or NAK for user then this is a
2214 		 *    duplicate, display a warning and free the msg.
2215 		 */
2216 		mutex_enter(&stp->sd_lock);
2217 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2218 		    (stp->sd_iocid != iocbp->ioc_id)) {
2219 			/*
2220 			 * If the ACK/NAK is a dup, display a message
2221 			 * Dup is when sd_iocid == ioc_id, and
2222 			 * sd_iocblk == <valid ptr> or -1 (the former
2223 			 * is when an ioctl has been put on the stream
2224 			 * head, but has not yet been consumed, the
2225 			 * later is when it has been consumed).
2226 			 */
2227 			if ((stp->sd_iocid == iocbp->ioc_id) &&
2228 			    (stp->sd_iocblk != NULL)) {
2229 				log_dupioc(q, bp);
2230 			}
2231 			freemsg(bp);
2232 			mutex_exit(&stp->sd_lock);
2233 			return (0);
2234 		}
2235 
2236 		/*
2237 		 * Assign ACK or NAK to user and wake up.
2238 		 */
2239 		stp->sd_iocblk = bp;
2240 		cv_broadcast(&stp->sd_monitor);
2241 		mutex_exit(&stp->sd_lock);
2242 		return (0);
2243 
2244 	case M_COPYIN:
2245 	case M_COPYOUT:
2246 		reqp = (struct copyreq *)bp->b_rptr;
2247 
2248 		/*
2249 		 * If not waiting for ACK or NAK then just fail request.
2250 		 * If already have ACK, NAK, or copy request, then just
2251 		 * fail request.
2252 		 * If incorrect id sequence number then just fail request.
2253 		 */
2254 		mutex_enter(&stp->sd_lock);
2255 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2256 		    (stp->sd_iocid != reqp->cq_id)) {
2257 			if (bp->b_cont) {
2258 				freemsg(bp->b_cont);
2259 				bp->b_cont = NULL;
2260 			}
2261 			bp->b_datap->db_type = M_IOCDATA;
2262 			bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2263 			resp = (struct copyresp *)bp->b_rptr;
2264 			resp->cp_rval = (caddr_t)1;	/* failure */
2265 			mutex_exit(&stp->sd_lock);
2266 			putnext(stp->sd_wrq, bp);
2267 			return (0);
2268 		}
2269 
2270 		/*
2271 		 * Assign copy request to user and wake up.
2272 		 */
2273 		stp->sd_iocblk = bp;
2274 		cv_broadcast(&stp->sd_monitor);
2275 		mutex_exit(&stp->sd_lock);
2276 		return (0);
2277 
2278 	case M_SETOPTS:
2279 		/*
2280 		 * Set stream head options (read option, write offset,
2281 		 * min/max packet size, and/or high/low water marks for
2282 		 * the read side only).
2283 		 */
2284 
2285 		bpri = 0;
2286 		sop = (struct stroptions *)bp->b_rptr;
2287 		mutex_enter(&stp->sd_lock);
2288 		if (sop->so_flags & SO_READOPT) {
2289 			switch (sop->so_readopt & RMODEMASK) {
2290 			case RNORM:
2291 				stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2292 				break;
2293 
2294 			case RMSGD:
2295 				stp->sd_read_opt =
2296 				    ((stp->sd_read_opt & ~RD_MSGNODIS) |
2297 				    RD_MSGDIS);
2298 				break;
2299 
2300 			case RMSGN:
2301 				stp->sd_read_opt =
2302 				    ((stp->sd_read_opt & ~RD_MSGDIS) |
2303 				    RD_MSGNODIS);
2304 				break;
2305 			}
2306 			switch (sop->so_readopt & RPROTMASK) {
2307 			case RPROTNORM:
2308 				stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2309 				break;
2310 
2311 			case RPROTDAT:
2312 				stp->sd_read_opt =
2313 				    ((stp->sd_read_opt & ~RD_PROTDIS) |
2314 				    RD_PROTDAT);
2315 				break;
2316 
2317 			case RPROTDIS:
2318 				stp->sd_read_opt =
2319 				    ((stp->sd_read_opt & ~RD_PROTDAT) |
2320 				    RD_PROTDIS);
2321 				break;
2322 			}
2323 			switch (sop->so_readopt & RFLUSHMASK) {
2324 			case RFLUSHPCPROT:
2325 				/*
2326 				 * This sets the stream head to NOT flush
2327 				 * M_PCPROTO messages.
2328 				 */
2329 				stp->sd_read_opt |= RFLUSHPCPROT;
2330 				break;
2331 			}
2332 		}
2333 		if (sop->so_flags & SO_ERROPT) {
2334 			switch (sop->so_erropt & RERRMASK) {
2335 			case RERRNORM:
2336 				stp->sd_flag &= ~STRDERRNONPERSIST;
2337 				break;
2338 			case RERRNONPERSIST:
2339 				stp->sd_flag |= STRDERRNONPERSIST;
2340 				break;
2341 			}
2342 			switch (sop->so_erropt & WERRMASK) {
2343 			case WERRNORM:
2344 				stp->sd_flag &= ~STWRERRNONPERSIST;
2345 				break;
2346 			case WERRNONPERSIST:
2347 				stp->sd_flag |= STWRERRNONPERSIST;
2348 				break;
2349 			}
2350 		}
2351 		if (sop->so_flags & SO_COPYOPT) {
2352 			if (sop->so_copyopt & ZCVMSAFE) {
2353 				stp->sd_copyflag |= STZCVMSAFE;
2354 				stp->sd_copyflag &= ~STZCVMUNSAFE;
2355 			} else if (sop->so_copyopt & ZCVMUNSAFE) {
2356 				stp->sd_copyflag |= STZCVMUNSAFE;
2357 				stp->sd_copyflag &= ~STZCVMSAFE;
2358 			}
2359 
2360 			if (sop->so_copyopt & COPYCACHED) {
2361 				stp->sd_copyflag |= STRCOPYCACHED;
2362 			}
2363 		}
2364 		if (sop->so_flags & SO_WROFF)
2365 			stp->sd_wroff = sop->so_wroff;
2366 		if (sop->so_flags & SO_TAIL)
2367 			stp->sd_tail = sop->so_tail;
2368 		if (sop->so_flags & SO_MINPSZ)
2369 			q->q_minpsz = sop->so_minpsz;
2370 		if (sop->so_flags & SO_MAXPSZ)
2371 			q->q_maxpsz = sop->so_maxpsz;
2372 		if (sop->so_flags & SO_MAXBLK)
2373 			stp->sd_maxblk = sop->so_maxblk;
2374 		if (sop->so_flags & SO_HIWAT) {
2375 			if (sop->so_flags & SO_BAND) {
2376 				if (strqset(q, QHIWAT,
2377 				    sop->so_band, sop->so_hiwat)) {
2378 					cmn_err(CE_WARN, "strrput: could not "
2379 					    "allocate qband\n");
2380 				} else {
2381 					bpri = sop->so_band;
2382 				}
2383 			} else {
2384 				q->q_hiwat = sop->so_hiwat;
2385 			}
2386 		}
2387 		if (sop->so_flags & SO_LOWAT) {
2388 			if (sop->so_flags & SO_BAND) {
2389 				if (strqset(q, QLOWAT,
2390 				    sop->so_band, sop->so_lowat)) {
2391 					cmn_err(CE_WARN, "strrput: could not "
2392 					    "allocate qband\n");
2393 				} else {
2394 					bpri = sop->so_band;
2395 				}
2396 			} else {
2397 				q->q_lowat = sop->so_lowat;
2398 			}
2399 		}
2400 		if (sop->so_flags & SO_MREADON)
2401 			stp->sd_flag |= SNDMREAD;
2402 		if (sop->so_flags & SO_MREADOFF)
2403 			stp->sd_flag &= ~SNDMREAD;
2404 		if (sop->so_flags & SO_NDELON)
2405 			stp->sd_flag |= OLDNDELAY;
2406 		if (sop->so_flags & SO_NDELOFF)
2407 			stp->sd_flag &= ~OLDNDELAY;
2408 		if (sop->so_flags & SO_ISTTY)
2409 			stp->sd_flag |= STRISTTY;
2410 		if (sop->so_flags & SO_ISNTTY)
2411 			stp->sd_flag &= ~STRISTTY;
2412 		if (sop->so_flags & SO_TOSTOP)
2413 			stp->sd_flag |= STRTOSTOP;
2414 		if (sop->so_flags & SO_TONSTOP)
2415 			stp->sd_flag &= ~STRTOSTOP;
2416 		if (sop->so_flags & SO_DELIM)
2417 			stp->sd_flag |= STRDELIM;
2418 		if (sop->so_flags & SO_NODELIM)
2419 			stp->sd_flag &= ~STRDELIM;
2420 
2421 		mutex_exit(&stp->sd_lock);
2422 		freemsg(bp);
2423 
2424 		/* Check backenable in case the water marks changed */
2425 		qbackenable(q, bpri);
2426 		return (0);
2427 
2428 	/*
2429 	 * The following set of cases deal with situations where two stream
2430 	 * heads are connected to each other (twisted streams).  These messages
2431 	 * have no meaning at the stream head.
2432 	 */
2433 	case M_BREAK:
2434 	case M_CTL:
2435 	case M_DELAY:
2436 	case M_START:
2437 	case M_STOP:
2438 	case M_IOCDATA:
2439 	case M_STARTI:
2440 	case M_STOPI:
2441 		freemsg(bp);
2442 		return (0);
2443 
2444 	case M_IOCTL:
2445 		/*
2446 		 * Always NAK this condition
2447 		 * (makes no sense)
2448 		 * If there is one or more threads in the read side
2449 		 * rwnext we have to defer the nacking until that thread
2450 		 * returns (in strget).
2451 		 */
2452 		mutex_enter(&stp->sd_lock);
2453 		if (stp->sd_struiodnak != 0) {
2454 			/*
2455 			 * Defer NAK to the streamhead. Queue at the end
2456 			 * the list.
2457 			 */
2458 			mblk_t *mp = stp->sd_struionak;
2459 
2460 			while (mp && mp->b_next)
2461 				mp = mp->b_next;
2462 			if (mp)
2463 				mp->b_next = bp;
2464 			else
2465 				stp->sd_struionak = bp;
2466 			bp->b_next = NULL;
2467 			mutex_exit(&stp->sd_lock);
2468 			return (0);
2469 		}
2470 		mutex_exit(&stp->sd_lock);
2471 
2472 		bp->b_datap->db_type = M_IOCNAK;
2473 		/*
2474 		 * Protect against the driver passing up
2475 		 * messages after it has done a qprocsoff.
2476 		 */
2477 		if (_OTHERQ(q)->q_next == NULL)
2478 			freemsg(bp);
2479 		else
2480 			qreply(q, bp);
2481 		return (0);
2482 
2483 	default:
2484 #ifdef DEBUG
2485 		cmn_err(CE_WARN,
2486 		    "bad message type %x received at stream head\n",
2487 		    bp->b_datap->db_type);
2488 #endif
2489 		freemsg(bp);
2490 		return (0);
2491 	}
2492 
2493 	/* NOTREACHED */
2494 }
2495 
2496 /*
2497  * Check if the stream pointed to by `stp' can be written to, and return an
2498  * error code if not.  If `eiohup' is set, then return EIO if STRHUP is set.
2499  * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2500  * then always return EPIPE and send a SIGPIPE to the invoking thread.
2501  */
2502 static int
2503 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2504 {
2505 	int error;
2506 
2507 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2508 
2509 	/*
2510 	 * For modem support, POSIX states that on writes, EIO should
2511 	 * be returned if the stream has been hung up.
2512 	 */
2513 	if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2514 		error = EIO;
2515 	else
2516 		error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2517 
2518 	if (error != 0) {
2519 		if (!(stp->sd_flag & STPLEX) &&
2520 		    (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2521 			tsignal(curthread, SIGPIPE);
2522 			error = EPIPE;
2523 		}
2524 	}
2525 
2526 	return (error);
2527 }
2528 
2529 /*
2530  * Copyin and send data down a stream.
2531  * The caller will allocate and copyin any control part that precedes the
2532  * message and pass that in as mctl.
2533  *
2534  * Caller should *not* hold sd_lock.
2535  * When EWOULDBLOCK is returned the caller has to redo the canputnext
2536  * under sd_lock in order to avoid missing a backenabling wakeup.
2537  *
2538  * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2539  *
2540  * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2541  * For sync streams we can only ignore flow control by reverting to using
2542  * putnext.
2543  *
2544  * If sd_maxblk is less than *iosize this routine might return without
2545  * transferring all of *iosize. In all cases, on return *iosize will contain
2546  * the amount of data that was transferred.
2547  */
2548 static int
2549 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2550     int b_flag, int pri, int flags)
2551 {
2552 	struiod_t uiod;
2553 	mblk_t *mp;
2554 	queue_t *wqp = stp->sd_wrq;
2555 	int error = 0;
2556 	ssize_t count = *iosize;
2557 
2558 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2559 
2560 	if (uiop != NULL && count >= 0)
2561 		flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2562 
2563 	if (!(flags & STRUIO_POSTPONE)) {
2564 		/*
2565 		 * Use regular canputnext, strmakedata, putnext sequence.
2566 		 */
2567 		if (pri == 0) {
2568 			if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2569 				freemsg(mctl);
2570 				return (EWOULDBLOCK);
2571 			}
2572 		} else {
2573 			if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2574 				freemsg(mctl);
2575 				return (EWOULDBLOCK);
2576 			}
2577 		}
2578 
2579 		if ((error = strmakedata(iosize, uiop, stp, flags,
2580 		    &mp)) != 0) {
2581 			freemsg(mctl);
2582 			/*
2583 			 * need to change return code to ENOMEM
2584 			 * so that this is not confused with
2585 			 * flow control, EAGAIN.
2586 			 */
2587 
2588 			if (error == EAGAIN)
2589 				return (ENOMEM);
2590 			else
2591 				return (error);
2592 		}
2593 		if (mctl != NULL) {
2594 			if (mctl->b_cont == NULL)
2595 				mctl->b_cont = mp;
2596 			else if (mp != NULL)
2597 				linkb(mctl, mp);
2598 			mp = mctl;
2599 		} else if (mp == NULL)
2600 			return (0);
2601 
2602 		mp->b_flag |= b_flag;
2603 		mp->b_band = (uchar_t)pri;
2604 
2605 		if (flags & MSG_IGNFLOW) {
2606 			/*
2607 			 * XXX Hack: Don't get stuck running service
2608 			 * procedures. This is needed for sockfs when
2609 			 * sending the unbind message out of the rput
2610 			 * procedure - we don't want a put procedure
2611 			 * to run service procedures.
2612 			 */
2613 			putnext(wqp, mp);
2614 		} else {
2615 			stream_willservice(stp);
2616 			putnext(wqp, mp);
2617 			stream_runservice(stp);
2618 		}
2619 		return (0);
2620 	}
2621 	/*
2622 	 * Stream supports rwnext() for the write side.
2623 	 */
2624 	if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2625 		freemsg(mctl);
2626 		/*
2627 		 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2628 		 */
2629 		return (error == EAGAIN ? ENOMEM : error);
2630 	}
2631 	if (mctl != NULL) {
2632 		if (mctl->b_cont == NULL)
2633 			mctl->b_cont = mp;
2634 		else if (mp != NULL)
2635 			linkb(mctl, mp);
2636 		mp = mctl;
2637 	} else if (mp == NULL) {
2638 		return (0);
2639 	}
2640 
2641 	mp->b_flag |= b_flag;
2642 	mp->b_band = (uchar_t)pri;
2643 
2644 	(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2645 	    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2646 	uiod.d_uio.uio_offset = 0;
2647 	uiod.d_mp = mp;
2648 	error = rwnext(wqp, &uiod);
2649 	if (! uiod.d_mp) {
2650 		uioskip(uiop, *iosize);
2651 		return (error);
2652 	}
2653 	ASSERT(mp == uiod.d_mp);
2654 	if (error == EINVAL) {
2655 		/*
2656 		 * The stream plumbing must have changed while
2657 		 * we were away, so just turn off rwnext()s.
2658 		 */
2659 		error = 0;
2660 	} else if (error == EBUSY || error == EWOULDBLOCK) {
2661 		/*
2662 		 * Couldn't enter a perimeter or took a page fault,
2663 		 * so fall-back to putnext().
2664 		 */
2665 		error = 0;
2666 	} else {
2667 		freemsg(mp);
2668 		return (error);
2669 	}
2670 	/* Have to check canput before consuming data from the uio */
2671 	if (pri == 0) {
2672 		if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2673 			freemsg(mp);
2674 			return (EWOULDBLOCK);
2675 		}
2676 	} else {
2677 		if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2678 			freemsg(mp);
2679 			return (EWOULDBLOCK);
2680 		}
2681 	}
2682 	ASSERT(mp == uiod.d_mp);
2683 	/* Copyin data from the uio */
2684 	if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2685 		freemsg(mp);
2686 		return (error);
2687 	}
2688 	uioskip(uiop, *iosize);
2689 	if (flags & MSG_IGNFLOW) {
2690 		/*
2691 		 * XXX Hack: Don't get stuck running service procedures.
2692 		 * This is needed for sockfs when sending the unbind message
2693 		 * out of the rput procedure - we don't want a put procedure
2694 		 * to run service procedures.
2695 		 */
2696 		putnext(wqp, mp);
2697 	} else {
2698 		stream_willservice(stp);
2699 		putnext(wqp, mp);
2700 		stream_runservice(stp);
2701 	}
2702 	return (0);
2703 }
2704 
2705 /*
2706  * Write attempts to break the write request into messages conforming
2707  * with the minimum and maximum packet sizes set downstream.
2708  *
2709  * Write will not block if downstream queue is full and
2710  * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2711  *
2712  * A write of zero bytes gets packaged into a zero length message and sent
2713  * downstream like any other message.
2714  *
2715  * If buffers of the requested sizes are not available, the write will
2716  * sleep until the buffers become available.
2717  *
2718  * Write (if specified) will supply a write offset in a message if it
2719  * makes sense. This can be specified by downstream modules as part of
2720  * a M_SETOPTS message.  Write will not supply the write offset if it
2721  * cannot supply any data in a buffer.  In other words, write will never
2722  * send down an empty packet due to a write offset.
2723  */
2724 /* ARGSUSED2 */
2725 int
2726 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2727 {
2728 	return (strwrite_common(vp, uiop, crp, 0));
2729 }
2730 
2731 /* ARGSUSED2 */
2732 int
2733 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2734 {
2735 	struct stdata *stp;
2736 	struct queue *wqp;
2737 	ssize_t rmin, rmax;
2738 	ssize_t iosize;
2739 	int waitflag;
2740 	int tempmode;
2741 	int error = 0;
2742 	int b_flag;
2743 
2744 	ASSERT(vp->v_stream);
2745 	stp = vp->v_stream;
2746 
2747 	mutex_enter(&stp->sd_lock);
2748 
2749 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
2750 		mutex_exit(&stp->sd_lock);
2751 		return (error);
2752 	}
2753 
2754 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2755 		error = strwriteable(stp, B_TRUE, B_TRUE);
2756 		if (error != 0) {
2757 			mutex_exit(&stp->sd_lock);
2758 			return (error);
2759 		}
2760 	}
2761 
2762 	mutex_exit(&stp->sd_lock);
2763 
2764 	wqp = stp->sd_wrq;
2765 
2766 	/* get these values from them cached in the stream head */
2767 	rmin = stp->sd_qn_minpsz;
2768 	rmax = stp->sd_qn_maxpsz;
2769 
2770 	/*
2771 	 * Check the min/max packet size constraints.  If min packet size
2772 	 * is non-zero, the write cannot be split into multiple messages
2773 	 * and still guarantee the size constraints.
2774 	 */
2775 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2776 
2777 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
2778 	if (rmax == 0) {
2779 		return (0);
2780 	}
2781 	if (rmin > 0) {
2782 		if (uiop->uio_resid < rmin) {
2783 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2784 			    "strwrite out:q %p out %d error %d",
2785 			    wqp, 0, ERANGE);
2786 			return (ERANGE);
2787 		}
2788 		if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2789 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2790 			    "strwrite out:q %p out %d error %d",
2791 			    wqp, 1, ERANGE);
2792 			return (ERANGE);
2793 		}
2794 	}
2795 
2796 	/*
2797 	 * Do until count satisfied or error.
2798 	 */
2799 	waitflag = WRITEWAIT | wflag;
2800 	if (stp->sd_flag & OLDNDELAY)
2801 		tempmode = uiop->uio_fmode & ~FNDELAY;
2802 	else
2803 		tempmode = uiop->uio_fmode;
2804 
2805 	if (rmax == INFPSZ)
2806 		rmax = uiop->uio_resid;
2807 
2808 	/*
2809 	 * Note that tempmode does not get used in strput/strmakedata
2810 	 * but only in strwaitq. The other routines use uio_fmode
2811 	 * unmodified.
2812 	 */
2813 
2814 	/* LINTED: constant in conditional context */
2815 	while (1) {	/* breaks when uio_resid reaches zero */
2816 		/*
2817 		 * Determine the size of the next message to be
2818 		 * packaged.  May have to break write into several
2819 		 * messages based on max packet size.
2820 		 */
2821 		iosize = MIN(uiop->uio_resid, rmax);
2822 
2823 		/*
2824 		 * Put block downstream when flow control allows it.
2825 		 */
2826 		if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2827 			b_flag = MSGDELIM;
2828 		else
2829 			b_flag = 0;
2830 
2831 		for (;;) {
2832 			int done = 0;
2833 
2834 			error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2835 			if (error == 0)
2836 				break;
2837 			if (error != EWOULDBLOCK)
2838 				goto out;
2839 
2840 			mutex_enter(&stp->sd_lock);
2841 			/*
2842 			 * Check for a missed wakeup.
2843 			 * Needed since strput did not hold sd_lock across
2844 			 * the canputnext.
2845 			 */
2846 			if (canputnext(wqp)) {
2847 				/* Try again */
2848 				mutex_exit(&stp->sd_lock);
2849 				continue;
2850 			}
2851 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2852 			    "strwrite wait:q %p wait", wqp);
2853 			if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2854 			    tempmode, -1, &done)) != 0 || done) {
2855 				mutex_exit(&stp->sd_lock);
2856 				if ((vp->v_type == VFIFO) &&
2857 				    (uiop->uio_fmode & FNDELAY) &&
2858 				    (error == EAGAIN))
2859 					error = 0;
2860 				goto out;
2861 			}
2862 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2863 			    "strwrite wake:q %p awakes", wqp);
2864 			if ((error = i_straccess(stp, JCWRITE)) != 0) {
2865 				mutex_exit(&stp->sd_lock);
2866 				goto out;
2867 			}
2868 			mutex_exit(&stp->sd_lock);
2869 		}
2870 		waitflag |= NOINTR;
2871 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2872 		    "strwrite resid:q %p uiop %p", wqp, uiop);
2873 		if (uiop->uio_resid) {
2874 			/* Recheck for errors - needed for sockets */
2875 			if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2876 			    (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2877 				mutex_enter(&stp->sd_lock);
2878 				error = strwriteable(stp, B_FALSE, B_TRUE);
2879 				mutex_exit(&stp->sd_lock);
2880 				if (error != 0)
2881 					return (error);
2882 			}
2883 			continue;
2884 		}
2885 		break;
2886 	}
2887 out:
2888 	/*
2889 	 * For historical reasons, applications expect EAGAIN when a data
2890 	 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2891 	 */
2892 	if (error == ENOMEM)
2893 		error = EAGAIN;
2894 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2895 	    "strwrite out:q %p out %d error %d", wqp, 2, error);
2896 	return (error);
2897 }
2898 
2899 /*
2900  * Stream head write service routine.
2901  * Its job is to wake up any sleeping writers when a queue
2902  * downstream needs data (part of the flow control in putq and getq).
2903  * It also must wake anyone sleeping on a poll().
2904  * For stream head right below mux module, it must also invoke put procedure
2905  * of next downstream module.
2906  */
2907 int
2908 strwsrv(queue_t *q)
2909 {
2910 	struct stdata *stp;
2911 	queue_t *tq;
2912 	qband_t *qbp;
2913 	int i;
2914 	qband_t *myqbp;
2915 	int isevent;
2916 	unsigned char	qbf[NBAND];	/* band flushing backenable flags */
2917 
2918 	TRACE_1(TR_FAC_STREAMS_FR,
2919 	    TR_STRWSRV, "strwsrv:q %p", q);
2920 	stp = (struct stdata *)q->q_ptr;
2921 	ASSERT(qclaimed(q));
2922 	mutex_enter(&stp->sd_lock);
2923 	ASSERT(!(stp->sd_flag & STPLEX));
2924 
2925 	if (stp->sd_flag & WSLEEP) {
2926 		stp->sd_flag &= ~WSLEEP;
2927 		cv_broadcast(&q->q_wait);
2928 	}
2929 	mutex_exit(&stp->sd_lock);
2930 
2931 	/* The other end of a stream pipe went away. */
2932 	if ((tq = q->q_next) == NULL) {
2933 		return (0);
2934 	}
2935 
2936 	/* Find the next module forward that has a service procedure */
2937 	claimstr(q);
2938 	tq = q->q_nfsrv;
2939 	ASSERT(tq != NULL);
2940 
2941 	if ((q->q_flag & QBACK)) {
2942 		if ((tq->q_flag & QFULL)) {
2943 			mutex_enter(QLOCK(tq));
2944 			if (!(tq->q_flag & QFULL)) {
2945 				mutex_exit(QLOCK(tq));
2946 				goto wakeup;
2947 			}
2948 			/*
2949 			 * The queue must have become full again. Set QWANTW
2950 			 * again so strwsrv will be back enabled when
2951 			 * the queue becomes non-full next time.
2952 			 */
2953 			tq->q_flag |= QWANTW;
2954 			mutex_exit(QLOCK(tq));
2955 		} else {
2956 		wakeup:
2957 			pollwakeup(&stp->sd_pollist, POLLWRNORM);
2958 			mutex_enter(&stp->sd_lock);
2959 			if (stp->sd_sigflags & S_WRNORM)
2960 				strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
2961 			mutex_exit(&stp->sd_lock);
2962 		}
2963 	}
2964 
2965 	isevent = 0;
2966 	i = 1;
2967 	bzero((caddr_t)qbf, NBAND);
2968 	mutex_enter(QLOCK(tq));
2969 	if ((myqbp = q->q_bandp) != NULL)
2970 		for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
2971 			ASSERT(myqbp);
2972 			if ((myqbp->qb_flag & QB_BACK)) {
2973 				if (qbp->qb_flag & QB_FULL) {
2974 					/*
2975 					 * The band must have become full again.
2976 					 * Set QB_WANTW again so strwsrv will
2977 					 * be back enabled when the band becomes
2978 					 * non-full next time.
2979 					 */
2980 					qbp->qb_flag |= QB_WANTW;
2981 				} else {
2982 					isevent = 1;
2983 					qbf[i] = 1;
2984 				}
2985 			}
2986 			myqbp = myqbp->qb_next;
2987 			i++;
2988 		}
2989 	mutex_exit(QLOCK(tq));
2990 
2991 	if (isevent) {
2992 		for (i = tq->q_nband; i; i--) {
2993 			if (qbf[i]) {
2994 				pollwakeup(&stp->sd_pollist, POLLWRBAND);
2995 				mutex_enter(&stp->sd_lock);
2996 				if (stp->sd_sigflags & S_WRBAND)
2997 					strsendsig(stp->sd_siglist, S_WRBAND,
2998 					    (uchar_t)i, 0);
2999 				mutex_exit(&stp->sd_lock);
3000 			}
3001 		}
3002 	}
3003 
3004 	releasestr(q);
3005 	return (0);
3006 }
3007 
3008 /*
3009  * Special case of strcopyin/strcopyout for copying
3010  * struct strioctl that can deal with both data
3011  * models.
3012  */
3013 
3014 #ifdef	_LP64
3015 
3016 static int
3017 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3018 {
3019 	struct	strioctl32 strioc32;
3020 	struct	strioctl *striocp;
3021 
3022 	if (copyflag & U_TO_K) {
3023 		ASSERT((copyflag & K_TO_K) == 0);
3024 
3025 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3026 			if (copyin(from, &strioc32, sizeof (strioc32)))
3027 				return (EFAULT);
3028 
3029 			striocp = (struct strioctl *)to;
3030 			striocp->ic_cmd	= strioc32.ic_cmd;
3031 			striocp->ic_timout = strioc32.ic_timout;
3032 			striocp->ic_len	= strioc32.ic_len;
3033 			striocp->ic_dp	= (char *)(uintptr_t)strioc32.ic_dp;
3034 
3035 		} else { /* NATIVE data model */
3036 			if (copyin(from, to, sizeof (struct strioctl))) {
3037 				return (EFAULT);
3038 			} else {
3039 				return (0);
3040 			}
3041 		}
3042 	} else {
3043 		ASSERT(copyflag & K_TO_K);
3044 		bcopy(from, to, sizeof (struct strioctl));
3045 	}
3046 	return (0);
3047 }
3048 
3049 static int
3050 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3051 {
3052 	struct	strioctl32 strioc32;
3053 	struct	strioctl *striocp;
3054 
3055 	if (copyflag & U_TO_K) {
3056 		ASSERT((copyflag & K_TO_K) == 0);
3057 
3058 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3059 			striocp = (struct strioctl *)from;
3060 			strioc32.ic_cmd	= striocp->ic_cmd;
3061 			strioc32.ic_timout = striocp->ic_timout;
3062 			strioc32.ic_len	= striocp->ic_len;
3063 			strioc32.ic_dp	= (caddr32_t)(uintptr_t)striocp->ic_dp;
3064 			ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3065 			    striocp->ic_dp);
3066 
3067 			if (copyout(&strioc32, to, sizeof (strioc32)))
3068 				return (EFAULT);
3069 
3070 		} else { /* NATIVE data model */
3071 			if (copyout(from, to, sizeof (struct strioctl))) {
3072 				return (EFAULT);
3073 			} else {
3074 				return (0);
3075 			}
3076 		}
3077 	} else {
3078 		ASSERT(copyflag & K_TO_K);
3079 		bcopy(from, to, sizeof (struct strioctl));
3080 	}
3081 	return (0);
3082 }
3083 
3084 #else	/* ! _LP64 */
3085 
3086 /* ARGSUSED2 */
3087 static int
3088 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3089 {
3090 	return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3091 }
3092 
3093 /* ARGSUSED2 */
3094 static int
3095 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3096 {
3097 	return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3098 }
3099 
3100 #endif	/* _LP64 */
3101 
3102 /*
3103  * Determine type of job control semantics expected by user.  The
3104  * possibilities are:
3105  *	JCREAD	- Behaves like read() on fd; send SIGTTIN
3106  *	JCWRITE	- Behaves like write() on fd; send SIGTTOU if TOSTOP set
3107  *	JCSETP	- Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3108  *	JCGETP	- Gets a value in the stream; no signals.
3109  * See straccess in strsubr.c for usage of these values.
3110  *
3111  * This routine also returns -1 for I_STR as a special case; the
3112  * caller must call again with the real ioctl number for
3113  * classification.
3114  */
3115 static int
3116 job_control_type(int cmd)
3117 {
3118 	switch (cmd) {
3119 	case I_STR:
3120 		return (-1);
3121 
3122 	case I_RECVFD:
3123 	case I_E_RECVFD:
3124 		return (JCREAD);
3125 
3126 	case I_FDINSERT:
3127 	case I_SENDFD:
3128 		return (JCWRITE);
3129 
3130 	case TCSETA:
3131 	case TCSETAW:
3132 	case TCSETAF:
3133 	case TCSBRK:
3134 	case TCXONC:
3135 	case TCFLSH:
3136 	case TCDSET:	/* Obsolete */
3137 	case TIOCSWINSZ:
3138 	case TCSETS:
3139 	case TCSETSW:
3140 	case TCSETSF:
3141 	case TIOCSETD:
3142 	case TIOCHPCL:
3143 	case TIOCSETP:
3144 	case TIOCSETN:
3145 	case TIOCEXCL:
3146 	case TIOCNXCL:
3147 	case TIOCFLUSH:
3148 	case TIOCSETC:
3149 	case TIOCLBIS:
3150 	case TIOCLBIC:
3151 	case TIOCLSET:
3152 	case TIOCSBRK:
3153 	case TIOCCBRK:
3154 	case TIOCSDTR:
3155 	case TIOCCDTR:
3156 	case TIOCSLTC:
3157 	case TIOCSTOP:
3158 	case TIOCSTART:
3159 	case TIOCSTI:
3160 	case TIOCSPGRP:
3161 	case TIOCMSET:
3162 	case TIOCMBIS:
3163 	case TIOCMBIC:
3164 	case TIOCREMOTE:
3165 	case TIOCSIGNAL:
3166 	case LDSETT:
3167 	case LDSMAP:	/* Obsolete */
3168 	case DIOCSETP:
3169 	case I_FLUSH:
3170 	case I_SRDOPT:
3171 	case I_SETSIG:
3172 	case I_SWROPT:
3173 	case I_FLUSHBAND:
3174 	case I_SETCLTIME:
3175 	case I_SERROPT:
3176 	case I_ESETSIG:
3177 	case FIONBIO:
3178 	case FIOASYNC:
3179 	case FIOSETOWN:
3180 	case JBOOT:	/* Obsolete */
3181 	case JTERM:	/* Obsolete */
3182 	case JTIMOM:	/* Obsolete */
3183 	case JZOMBOOT:	/* Obsolete */
3184 	case JAGENT:	/* Obsolete */
3185 	case JTRUN:	/* Obsolete */
3186 	case JXTPROTO:	/* Obsolete */
3187 	case TIOCSETLD:
3188 		return (JCSETP);
3189 	}
3190 
3191 	return (JCGETP);
3192 }
3193 
3194 /*
3195  * ioctl for streams
3196  */
3197 int
3198 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3199     cred_t *crp, int *rvalp)
3200 {
3201 	struct stdata *stp;
3202 	struct strcmd *scp;
3203 	struct strioctl strioc;
3204 	struct uio uio;
3205 	struct iovec iov;
3206 	int access;
3207 	mblk_t *mp;
3208 	int error = 0;
3209 	int done = 0;
3210 	ssize_t	rmin, rmax;
3211 	queue_t *wrq;
3212 	queue_t *rdq;
3213 	boolean_t kioctl = B_FALSE;
3214 	uint32_t auditing = AU_AUDITING();
3215 
3216 	if (flag & FKIOCTL) {
3217 		copyflag = K_TO_K;
3218 		kioctl = B_TRUE;
3219 	}
3220 	ASSERT(vp->v_stream);
3221 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3222 	stp = vp->v_stream;
3223 
3224 	TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3225 	    "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3226 
3227 	if (auditing)
3228 		audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp);
3229 
3230 	/*
3231 	 * If the copy is kernel to kernel, make sure that the FNATIVE
3232 	 * flag is set.  After this it would be a serious error to have
3233 	 * no model flag.
3234 	 */
3235 	if (copyflag == K_TO_K)
3236 		flag = (flag & ~FMODELS) | FNATIVE;
3237 
3238 	ASSERT((flag & FMODELS) != 0);
3239 
3240 	wrq = stp->sd_wrq;
3241 	rdq = _RD(wrq);
3242 
3243 	access = job_control_type(cmd);
3244 
3245 	/* We should never see these here, should be handled by iwscn */
3246 	if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3247 		return (EINVAL);
3248 
3249 	mutex_enter(&stp->sd_lock);
3250 	if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3251 		mutex_exit(&stp->sd_lock);
3252 		return (error);
3253 	}
3254 	mutex_exit(&stp->sd_lock);
3255 
3256 	/*
3257 	 * Check for sgttyb-related ioctls first, and complain as
3258 	 * necessary.
3259 	 */
3260 	switch (cmd) {
3261 	case TIOCGETP:
3262 	case TIOCSETP:
3263 	case TIOCSETN:
3264 		if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3265 			sgttyb_complaint = B_TRUE;
3266 			cmn_err(CE_NOTE,
3267 			    "application used obsolete TIOC[GS]ET");
3268 		}
3269 		if (sgttyb_handling >= 3) {
3270 			tsignal(curthread, SIGSYS);
3271 			return (EIO);
3272 		}
3273 		break;
3274 	}
3275 
3276 	mutex_enter(&stp->sd_lock);
3277 
3278 	switch (cmd) {
3279 	case I_RECVFD:
3280 	case I_E_RECVFD:
3281 	case I_PEEK:
3282 	case I_NREAD:
3283 	case FIONREAD:
3284 	case FIORDCHK:
3285 	case I_ATMARK:
3286 	case FIONBIO:
3287 	case FIOASYNC:
3288 		if (stp->sd_flag & (STRDERR|STPLEX)) {
3289 			error = strgeterr(stp, STRDERR|STPLEX, 0);
3290 			if (error != 0) {
3291 				mutex_exit(&stp->sd_lock);
3292 				return (error);
3293 			}
3294 		}
3295 		break;
3296 
3297 	default:
3298 		if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3299 			error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3300 			if (error != 0) {
3301 				mutex_exit(&stp->sd_lock);
3302 				return (error);
3303 			}
3304 		}
3305 	}
3306 
3307 	mutex_exit(&stp->sd_lock);
3308 
3309 	switch (cmd) {
3310 	default:
3311 		/*
3312 		 * The stream head has hardcoded knowledge of a
3313 		 * miscellaneous collection of terminal-, keyboard- and
3314 		 * mouse-related ioctls, enumerated below.  This hardcoded
3315 		 * knowledge allows the stream head to automatically
3316 		 * convert transparent ioctl requests made by userland
3317 		 * programs into I_STR ioctls which many old STREAMS
3318 		 * modules and drivers require.
3319 		 *
3320 		 * No new ioctls should ever be added to this list.
3321 		 * Instead, the STREAMS module or driver should be written
3322 		 * to either handle transparent ioctls or require any
3323 		 * userland programs to use I_STR ioctls (by returning
3324 		 * EINVAL to any transparent ioctl requests).
3325 		 *
3326 		 * More importantly, removing ioctls from this list should
3327 		 * be done with the utmost care, since our STREAMS modules
3328 		 * and drivers *count* on the stream head performing this
3329 		 * conversion, and thus may panic while processing
3330 		 * transparent ioctl request for one of these ioctls (keep
3331 		 * in mind that third party modules and drivers may have
3332 		 * similar problems).
3333 		 */
3334 		if (((cmd & IOCTYPE) == LDIOC) ||
3335 		    ((cmd & IOCTYPE) == tIOC) ||
3336 		    ((cmd & IOCTYPE) == TIOC) ||
3337 		    ((cmd & IOCTYPE) == KIOC) ||
3338 		    ((cmd & IOCTYPE) == MSIOC) ||
3339 		    ((cmd & IOCTYPE) == VUIOC)) {
3340 			/*
3341 			 * The ioctl is a tty ioctl - set up strioc buffer
3342 			 * and call strdoioctl() to do the work.
3343 			 */
3344 			if (stp->sd_flag & STRHUP)
3345 				return (ENXIO);
3346 			strioc.ic_cmd = cmd;
3347 			strioc.ic_timout = INFTIM;
3348 
3349 			switch (cmd) {
3350 
3351 			case TCXONC:
3352 			case TCSBRK:
3353 			case TCFLSH:
3354 			case TCDSET:
3355 				{
3356 				int native_arg = (int)arg;
3357 				strioc.ic_len = sizeof (int);
3358 				strioc.ic_dp = (char *)&native_arg;
3359 				return (strdoioctl(stp, &strioc, flag,
3360 				    K_TO_K, crp, rvalp));
3361 				}
3362 
3363 			case TCSETA:
3364 			case TCSETAW:
3365 			case TCSETAF:
3366 				strioc.ic_len = sizeof (struct termio);
3367 				strioc.ic_dp = (char *)arg;
3368 				return (strdoioctl(stp, &strioc, flag,
3369 				    copyflag, crp, rvalp));
3370 
3371 			case TCSETS:
3372 			case TCSETSW:
3373 			case TCSETSF:
3374 				strioc.ic_len = sizeof (struct termios);
3375 				strioc.ic_dp = (char *)arg;
3376 				return (strdoioctl(stp, &strioc, flag,
3377 				    copyflag, crp, rvalp));
3378 
3379 			case LDSETT:
3380 				strioc.ic_len = sizeof (struct termcb);
3381 				strioc.ic_dp = (char *)arg;
3382 				return (strdoioctl(stp, &strioc, flag,
3383 				    copyflag, crp, rvalp));
3384 
3385 			case TIOCSETP:
3386 				strioc.ic_len = sizeof (struct sgttyb);
3387 				strioc.ic_dp = (char *)arg;
3388 				return (strdoioctl(stp, &strioc, flag,
3389 				    copyflag, crp, rvalp));
3390 
3391 			case TIOCSTI:
3392 				if ((flag & FREAD) == 0 &&
3393 				    secpolicy_sti(crp) != 0) {
3394 					return (EPERM);
3395 				}
3396 				mutex_enter(&stp->sd_lock);
3397 				mutex_enter(&curproc->p_splock);
3398 				if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3399 				    secpolicy_sti(crp) != 0) {
3400 					mutex_exit(&curproc->p_splock);
3401 					mutex_exit(&stp->sd_lock);
3402 					return (EACCES);
3403 				}
3404 				mutex_exit(&curproc->p_splock);
3405 				mutex_exit(&stp->sd_lock);
3406 
3407 				strioc.ic_len = sizeof (char);
3408 				strioc.ic_dp = (char *)arg;
3409 				return (strdoioctl(stp, &strioc, flag,
3410 				    copyflag, crp, rvalp));
3411 
3412 			case TIOCSWINSZ:
3413 				strioc.ic_len = sizeof (struct winsize);
3414 				strioc.ic_dp = (char *)arg;
3415 				return (strdoioctl(stp, &strioc, flag,
3416 				    copyflag, crp, rvalp));
3417 
3418 			case TIOCSSIZE:
3419 				strioc.ic_len = sizeof (struct ttysize);
3420 				strioc.ic_dp = (char *)arg;
3421 				return (strdoioctl(stp, &strioc, flag,
3422 				    copyflag, crp, rvalp));
3423 
3424 			case TIOCSSOFTCAR:
3425 			case KIOCTRANS:
3426 			case KIOCTRANSABLE:
3427 			case KIOCCMD:
3428 			case KIOCSDIRECT:
3429 			case KIOCSCOMPAT:
3430 			case KIOCSKABORTEN:
3431 			case KIOCSRPTDELAY:
3432 			case KIOCSRPTRATE:
3433 			case VUIDSFORMAT:
3434 			case TIOCSPPS:
3435 				strioc.ic_len = sizeof (int);
3436 				strioc.ic_dp = (char *)arg;
3437 				return (strdoioctl(stp, &strioc, flag,
3438 				    copyflag, crp, rvalp));
3439 
3440 			case KIOCSETKEY:
3441 			case KIOCGETKEY:
3442 				strioc.ic_len = sizeof (struct kiockey);
3443 				strioc.ic_dp = (char *)arg;
3444 				return (strdoioctl(stp, &strioc, flag,
3445 				    copyflag, crp, rvalp));
3446 
3447 			case KIOCSKEY:
3448 			case KIOCGKEY:
3449 				strioc.ic_len = sizeof (struct kiockeymap);
3450 				strioc.ic_dp = (char *)arg;
3451 				return (strdoioctl(stp, &strioc, flag,
3452 				    copyflag, crp, rvalp));
3453 
3454 			case KIOCSLED:
3455 				/* arg is a pointer to char */
3456 				strioc.ic_len = sizeof (char);
3457 				strioc.ic_dp = (char *)arg;
3458 				return (strdoioctl(stp, &strioc, flag,
3459 				    copyflag, crp, rvalp));
3460 
3461 			case MSIOSETPARMS:
3462 				strioc.ic_len = sizeof (Ms_parms);
3463 				strioc.ic_dp = (char *)arg;
3464 				return (strdoioctl(stp, &strioc, flag,
3465 				    copyflag, crp, rvalp));
3466 
3467 			case VUIDSADDR:
3468 			case VUIDGADDR:
3469 				strioc.ic_len = sizeof (struct vuid_addr_probe);
3470 				strioc.ic_dp = (char *)arg;
3471 				return (strdoioctl(stp, &strioc, flag,
3472 				    copyflag, crp, rvalp));
3473 
3474 			/*
3475 			 * These M_IOCTL's don't require any data to be sent
3476 			 * downstream, and the driver will allocate and link
3477 			 * on its own mblk_t upon M_IOCACK -- thus we set
3478 			 * ic_len to zero and set ic_dp to arg so we know
3479 			 * where to copyout to later.
3480 			 */
3481 			case TIOCGSOFTCAR:
3482 			case TIOCGWINSZ:
3483 			case TIOCGSIZE:
3484 			case KIOCGTRANS:
3485 			case KIOCGTRANSABLE:
3486 			case KIOCTYPE:
3487 			case KIOCGDIRECT:
3488 			case KIOCGCOMPAT:
3489 			case KIOCLAYOUT:
3490 			case KIOCGLED:
3491 			case MSIOGETPARMS:
3492 			case MSIOBUTTONS:
3493 			case VUIDGFORMAT:
3494 			case TIOCGPPS:
3495 			case TIOCGPPSEV:
3496 			case TCGETA:
3497 			case TCGETS:
3498 			case LDGETT:
3499 			case TIOCGETP:
3500 			case KIOCGRPTDELAY:
3501 			case KIOCGRPTRATE:
3502 				strioc.ic_len = 0;
3503 				strioc.ic_dp = (char *)arg;
3504 				return (strdoioctl(stp, &strioc, flag,
3505 				    copyflag, crp, rvalp));
3506 			}
3507 		}
3508 
3509 		/*
3510 		 * Unknown cmd - send it down as a transparent ioctl.
3511 		 */
3512 		strioc.ic_cmd = cmd;
3513 		strioc.ic_timout = INFTIM;
3514 		strioc.ic_len = TRANSPARENT;
3515 		strioc.ic_dp = (char *)&arg;
3516 
3517 		return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3518 
3519 	case I_STR:
3520 		/*
3521 		 * Stream ioctl.  Read in an strioctl buffer from the user
3522 		 * along with any data specified and send it downstream.
3523 		 * Strdoioctl will wait allow only one ioctl message at
3524 		 * a time, and waits for the acknowledgement.
3525 		 */
3526 
3527 		if (stp->sd_flag & STRHUP)
3528 			return (ENXIO);
3529 
3530 		error = strcopyin_strioctl((void *)arg, &strioc, flag,
3531 		    copyflag);
3532 		if (error != 0)
3533 			return (error);
3534 
3535 		if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3536 			return (EINVAL);
3537 
3538 		access = job_control_type(strioc.ic_cmd);
3539 		mutex_enter(&stp->sd_lock);
3540 		if ((access != -1) &&
3541 		    ((error = i_straccess(stp, access)) != 0)) {
3542 			mutex_exit(&stp->sd_lock);
3543 			return (error);
3544 		}
3545 		mutex_exit(&stp->sd_lock);
3546 
3547 		/*
3548 		 * The I_STR facility provides a trap door for malicious
3549 		 * code to send down bogus streamio(7I) ioctl commands to
3550 		 * unsuspecting STREAMS modules and drivers which expect to
3551 		 * only get these messages from the stream head.
3552 		 * Explicitly prohibit any streamio ioctls which can be
3553 		 * passed downstream by the stream head.  Note that we do
3554 		 * not block all streamio ioctls because the ioctl
3555 		 * numberspace is not well managed and thus it's possible
3556 		 * that a module or driver's ioctl numbers may accidentally
3557 		 * collide with them.
3558 		 */
3559 		switch (strioc.ic_cmd) {
3560 		case I_LINK:
3561 		case I_PLINK:
3562 		case I_UNLINK:
3563 		case I_PUNLINK:
3564 		case _I_GETPEERCRED:
3565 		case _I_PLINK_LH:
3566 			return (EINVAL);
3567 		}
3568 
3569 		error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3570 		if (error == 0) {
3571 			error = strcopyout_strioctl(&strioc, (void *)arg,
3572 			    flag, copyflag);
3573 		}
3574 		return (error);
3575 
3576 	case _I_CMD:
3577 		/*
3578 		 * Like I_STR, but without using M_IOC* messages and without
3579 		 * copyins/copyouts beyond the passed-in argument.
3580 		 */
3581 		if (stp->sd_flag & STRHUP)
3582 			return (ENXIO);
3583 
3584 		if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL)
3585 			return (ENOMEM);
3586 
3587 		if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3588 			kmem_free(scp, sizeof (strcmd_t));
3589 			return (EFAULT);
3590 		}
3591 
3592 		access = job_control_type(scp->sc_cmd);
3593 		mutex_enter(&stp->sd_lock);
3594 		if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3595 			mutex_exit(&stp->sd_lock);
3596 			kmem_free(scp, sizeof (strcmd_t));
3597 			return (error);
3598 		}
3599 		mutex_exit(&stp->sd_lock);
3600 
3601 		*rvalp = 0;
3602 		if ((error = strdocmd(stp, scp, crp)) == 0) {
3603 			if (copyout(scp, (void *)arg, sizeof (strcmd_t)))
3604 				error = EFAULT;
3605 		}
3606 		kmem_free(scp, sizeof (strcmd_t));
3607 		return (error);
3608 
3609 	case I_NREAD:
3610 		/*
3611 		 * Return number of bytes of data in first message
3612 		 * in queue in "arg" and return the number of messages
3613 		 * in queue in return value.
3614 		 */
3615 	{
3616 		size_t	size;
3617 		int	retval;
3618 		int	count = 0;
3619 
3620 		mutex_enter(QLOCK(rdq));
3621 
3622 		size = msgdsize(rdq->q_first);
3623 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3624 			count++;
3625 
3626 		mutex_exit(QLOCK(rdq));
3627 		if (stp->sd_struiordq) {
3628 			infod_t infod;
3629 
3630 			infod.d_cmd = INFOD_COUNT;
3631 			infod.d_count = 0;
3632 			if (count == 0) {
3633 				infod.d_cmd |= INFOD_FIRSTBYTES;
3634 				infod.d_bytes = 0;
3635 			}
3636 			infod.d_res = 0;
3637 			(void) infonext(rdq, &infod);
3638 			count += infod.d_count;
3639 			if (infod.d_res & INFOD_FIRSTBYTES)
3640 				size = infod.d_bytes;
3641 		}
3642 
3643 		/*
3644 		 * Drop down from size_t to the "int" required by the
3645 		 * interface.  Cap at INT_MAX.
3646 		 */
3647 		retval = MIN(size, INT_MAX);
3648 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3649 		    copyflag);
3650 		if (!error)
3651 			*rvalp = count;
3652 		return (error);
3653 	}
3654 
3655 	case FIONREAD:
3656 		/*
3657 		 * Return number of bytes of data in all data messages
3658 		 * in queue in "arg".
3659 		 */
3660 	{
3661 		size_t	size = 0;
3662 		int	retval;
3663 
3664 		mutex_enter(QLOCK(rdq));
3665 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3666 			size += msgdsize(mp);
3667 		mutex_exit(QLOCK(rdq));
3668 
3669 		if (stp->sd_struiordq) {
3670 			infod_t infod;
3671 
3672 			infod.d_cmd = INFOD_BYTES;
3673 			infod.d_res = 0;
3674 			infod.d_bytes = 0;
3675 			(void) infonext(rdq, &infod);
3676 			size += infod.d_bytes;
3677 		}
3678 
3679 		/*
3680 		 * Drop down from size_t to the "int" required by the
3681 		 * interface.  Cap at INT_MAX.
3682 		 */
3683 		retval = MIN(size, INT_MAX);
3684 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3685 		    copyflag);
3686 
3687 		*rvalp = 0;
3688 		return (error);
3689 	}
3690 	case FIORDCHK:
3691 		/*
3692 		 * FIORDCHK does not use arg value (like FIONREAD),
3693 		 * instead a count is returned. I_NREAD value may
3694 		 * not be accurate but safe. The real thing to do is
3695 		 * to add the msgdsizes of all data  messages until
3696 		 * a non-data message.
3697 		 */
3698 	{
3699 		size_t size = 0;
3700 
3701 		mutex_enter(QLOCK(rdq));
3702 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3703 			size += msgdsize(mp);
3704 		mutex_exit(QLOCK(rdq));
3705 
3706 		if (stp->sd_struiordq) {
3707 			infod_t infod;
3708 
3709 			infod.d_cmd = INFOD_BYTES;
3710 			infod.d_res = 0;
3711 			infod.d_bytes = 0;
3712 			(void) infonext(rdq, &infod);
3713 			size += infod.d_bytes;
3714 		}
3715 
3716 		/*
3717 		 * Since ioctl returns an int, and memory sizes under
3718 		 * LP64 may not fit, we return INT_MAX if the count was
3719 		 * actually greater.
3720 		 */
3721 		*rvalp = MIN(size, INT_MAX);
3722 		return (0);
3723 	}
3724 
3725 	case I_FIND:
3726 		/*
3727 		 * Get module name.
3728 		 */
3729 	{
3730 		char mname[FMNAMESZ + 1];
3731 		queue_t *q;
3732 
3733 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3734 		    mname, FMNAMESZ + 1, NULL);
3735 		if (error)
3736 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3737 
3738 		/*
3739 		 * Return EINVAL if we're handed a bogus module name.
3740 		 */
3741 		if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3742 			TRACE_0(TR_FAC_STREAMS_FR,
3743 			    TR_I_CANT_FIND, "couldn't I_FIND");
3744 			return (EINVAL);
3745 		}
3746 
3747 		*rvalp = 0;
3748 
3749 		/* Look downstream to see if module is there. */
3750 		claimstr(stp->sd_wrq);
3751 		for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3752 			if (q->q_flag & QREADR) {
3753 				q = NULL;
3754 				break;
3755 			}
3756 			if (strcmp(mname, Q2NAME(q)) == 0)
3757 				break;
3758 		}
3759 		releasestr(stp->sd_wrq);
3760 
3761 		*rvalp = (q ? 1 : 0);
3762 		return (error);
3763 	}
3764 
3765 	case I_PUSH:
3766 	case __I_PUSH_NOCTTY:
3767 		/*
3768 		 * Push a module.
3769 		 * For the case __I_PUSH_NOCTTY push a module but
3770 		 * do not allocate controlling tty. See bugid 4025044
3771 		 */
3772 
3773 	{
3774 		char mname[FMNAMESZ + 1];
3775 		fmodsw_impl_t *fp;
3776 		dev_t dummydev;
3777 
3778 		if (stp->sd_flag & STRHUP)
3779 			return (ENXIO);
3780 
3781 		/*
3782 		 * Get module name and look up in fmodsw.
3783 		 */
3784 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3785 		    mname, FMNAMESZ + 1, NULL);
3786 		if (error)
3787 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3788 
3789 		if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3790 		    NULL)
3791 			return (EINVAL);
3792 
3793 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3794 		    "I_PUSH:fp %p stp %p", fp, stp);
3795 
3796 		if (error = strstartplumb(stp, flag, cmd)) {
3797 			fmodsw_rele(fp);
3798 			return (error);
3799 		}
3800 
3801 		/*
3802 		 * See if any more modules can be pushed on this stream.
3803 		 * Note that this check must be done after strstartplumb()
3804 		 * since otherwise multiple threads issuing I_PUSHes on
3805 		 * the same stream will be able to exceed nstrpush.
3806 		 */
3807 		mutex_enter(&stp->sd_lock);
3808 		if (stp->sd_pushcnt >= nstrpush) {
3809 			fmodsw_rele(fp);
3810 			strendplumb(stp);
3811 			mutex_exit(&stp->sd_lock);
3812 			return (EINVAL);
3813 		}
3814 		mutex_exit(&stp->sd_lock);
3815 
3816 		/*
3817 		 * Push new module and call its open routine
3818 		 * via qattach().  Modules don't change device
3819 		 * numbers, so just ignore dummydev here.
3820 		 */
3821 		dummydev = vp->v_rdev;
3822 		if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3823 		    B_FALSE)) == 0) {
3824 			if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3825 			    (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3826 				/*
3827 				 * try to allocate it as a controlling terminal
3828 				 */
3829 				(void) strctty(stp);
3830 			}
3831 		}
3832 
3833 		mutex_enter(&stp->sd_lock);
3834 
3835 		/*
3836 		 * As a performance concern we are caching the values of
3837 		 * q_minpsz and q_maxpsz of the module below the stream
3838 		 * head in the stream head.
3839 		 */
3840 		mutex_enter(QLOCK(stp->sd_wrq->q_next));
3841 		rmin = stp->sd_wrq->q_next->q_minpsz;
3842 		rmax = stp->sd_wrq->q_next->q_maxpsz;
3843 		mutex_exit(QLOCK(stp->sd_wrq->q_next));
3844 
3845 		/* Do this processing here as a performance concern */
3846 		if (strmsgsz != 0) {
3847 			if (rmax == INFPSZ)
3848 				rmax = strmsgsz;
3849 			else  {
3850 				if (vp->v_type == VFIFO)
3851 					rmax = MIN(PIPE_BUF, rmax);
3852 				else	rmax = MIN(strmsgsz, rmax);
3853 			}
3854 		}
3855 
3856 		mutex_enter(QLOCK(wrq));
3857 		stp->sd_qn_minpsz = rmin;
3858 		stp->sd_qn_maxpsz = rmax;
3859 		mutex_exit(QLOCK(wrq));
3860 
3861 		strendplumb(stp);
3862 		mutex_exit(&stp->sd_lock);
3863 		return (error);
3864 	}
3865 
3866 	case I_POP:
3867 	{
3868 		queue_t	*q;
3869 
3870 		if (stp->sd_flag & STRHUP)
3871 			return (ENXIO);
3872 		if (!wrq->q_next)	/* for broken pipes */
3873 			return (EINVAL);
3874 
3875 		if (error = strstartplumb(stp, flag, cmd))
3876 			return (error);
3877 
3878 		/*
3879 		 * If there is an anchor on this stream and popping
3880 		 * the current module would attempt to pop through the
3881 		 * anchor, then disallow the pop unless we have sufficient
3882 		 * privileges; take the cheapest (non-locking) check
3883 		 * first.
3884 		 */
3885 		if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3886 		    (stp->sd_anchorzone != crgetzoneid(crp))) {
3887 			mutex_enter(&stp->sd_lock);
3888 			/*
3889 			 * Anchors only apply if there's at least one
3890 			 * module on the stream (sd_pushcnt > 0).
3891 			 */
3892 			if (stp->sd_pushcnt > 0 &&
3893 			    stp->sd_pushcnt == stp->sd_anchor &&
3894 			    stp->sd_vnode->v_type != VFIFO) {
3895 				strendplumb(stp);
3896 				mutex_exit(&stp->sd_lock);
3897 				if (stp->sd_anchorzone != crgetzoneid(crp))
3898 					return (EINVAL);
3899 				/* Audit and report error */
3900 				return (secpolicy_ip_config(crp, B_FALSE));
3901 			}
3902 			mutex_exit(&stp->sd_lock);
3903 		}
3904 
3905 		q = wrq->q_next;
3906 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3907 		    "I_POP:%p from %p", q, stp);
3908 		if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3909 			error = EINVAL;
3910 		} else {
3911 			qdetach(_RD(q), 1, flag, crp, B_FALSE);
3912 			error = 0;
3913 		}
3914 		mutex_enter(&stp->sd_lock);
3915 
3916 		/*
3917 		 * As a performance concern we are caching the values of
3918 		 * q_minpsz and q_maxpsz of the module below the stream
3919 		 * head in the stream head.
3920 		 */
3921 		mutex_enter(QLOCK(wrq->q_next));
3922 		rmin = wrq->q_next->q_minpsz;
3923 		rmax = wrq->q_next->q_maxpsz;
3924 		mutex_exit(QLOCK(wrq->q_next));
3925 
3926 		/* Do this processing here as a performance concern */
3927 		if (strmsgsz != 0) {
3928 			if (rmax == INFPSZ)
3929 				rmax = strmsgsz;
3930 			else  {
3931 				if (vp->v_type == VFIFO)
3932 					rmax = MIN(PIPE_BUF, rmax);
3933 				else	rmax = MIN(strmsgsz, rmax);
3934 			}
3935 		}
3936 
3937 		mutex_enter(QLOCK(wrq));
3938 		stp->sd_qn_minpsz = rmin;
3939 		stp->sd_qn_maxpsz = rmax;
3940 		mutex_exit(QLOCK(wrq));
3941 
3942 		/* If we popped through the anchor, then reset the anchor. */
3943 		if (stp->sd_pushcnt < stp->sd_anchor) {
3944 			stp->sd_anchor = 0;
3945 			stp->sd_anchorzone = 0;
3946 		}
3947 		strendplumb(stp);
3948 		mutex_exit(&stp->sd_lock);
3949 		return (error);
3950 	}
3951 
3952 	case _I_MUXID2FD:
3953 	{
3954 		/*
3955 		 * Create a fd for a I_PLINK'ed lower stream with a given
3956 		 * muxid.  With the fd, application can send down ioctls,
3957 		 * like I_LIST, to the previously I_PLINK'ed stream.  Note
3958 		 * that after getting the fd, the application has to do an
3959 		 * I_PUNLINK on the muxid before it can do any operation
3960 		 * on the lower stream.  This is required by spec1170.
3961 		 *
3962 		 * The fd used to do this ioctl should point to the same
3963 		 * controlling device used to do the I_PLINK.  If it uses
3964 		 * a different stream or an invalid muxid, I_MUXID2FD will
3965 		 * fail.  The error code is set to EINVAL.
3966 		 *
3967 		 * The intended use of this interface is the following.
3968 		 * An application I_PLINK'ed a stream and exits.  The fd
3969 		 * to the lower stream is gone.  Another application
3970 		 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
3971 		 */
3972 		int muxid = (int)arg;
3973 		int fd;
3974 		linkinfo_t *linkp;
3975 		struct file *fp;
3976 		netstack_t *ns;
3977 		str_stack_t *ss;
3978 
3979 		/*
3980 		 * Do not allow the wildcard muxid.  This ioctl is not
3981 		 * intended to find arbitrary link.
3982 		 */
3983 		if (muxid == 0) {
3984 			return (EINVAL);
3985 		}
3986 
3987 		ns = netstack_find_by_cred(crp);
3988 		ASSERT(ns != NULL);
3989 		ss = ns->netstack_str;
3990 		ASSERT(ss != NULL);
3991 
3992 		mutex_enter(&muxifier);
3993 		linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
3994 		if (linkp == NULL) {
3995 			mutex_exit(&muxifier);
3996 			netstack_rele(ss->ss_netstack);
3997 			return (EINVAL);
3998 		}
3999 
4000 		if ((fd = ufalloc(0)) == -1) {
4001 			mutex_exit(&muxifier);
4002 			netstack_rele(ss->ss_netstack);
4003 			return (EMFILE);
4004 		}
4005 		fp = linkp->li_fpdown;
4006 		mutex_enter(&fp->f_tlock);
4007 		fp->f_count++;
4008 		mutex_exit(&fp->f_tlock);
4009 		mutex_exit(&muxifier);
4010 		setf(fd, fp);
4011 		*rvalp = fd;
4012 		netstack_rele(ss->ss_netstack);
4013 		return (0);
4014 	}
4015 
4016 	case _I_INSERT:
4017 	{
4018 		/*
4019 		 * To insert a module to a given position in a stream.
4020 		 * In the first release, only allow privileged user
4021 		 * to use this ioctl. Furthermore, the insert is only allowed
4022 		 * below an anchor if the zoneid is the same as the zoneid
4023 		 * which created the anchor.
4024 		 *
4025 		 * Note that we do not plan to support this ioctl
4026 		 * on pipes in the first release.  We want to learn more
4027 		 * about the implications of these ioctls before extending
4028 		 * their support.  And we do not think these features are
4029 		 * valuable for pipes.
4030 		 */
4031 		STRUCT_DECL(strmodconf, strmodinsert);
4032 		char mod_name[FMNAMESZ + 1];
4033 		fmodsw_impl_t *fp;
4034 		dev_t dummydev;
4035 		queue_t *tmp_wrq;
4036 		int pos;
4037 		boolean_t is_insert;
4038 
4039 		STRUCT_INIT(strmodinsert, flag);
4040 		if (stp->sd_flag & STRHUP)
4041 			return (ENXIO);
4042 		if (STRMATED(stp))
4043 			return (EINVAL);
4044 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4045 			return (error);
4046 		if (stp->sd_anchor != 0 &&
4047 		    stp->sd_anchorzone != crgetzoneid(crp))
4048 			return (EINVAL);
4049 
4050 		error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4051 		    STRUCT_SIZE(strmodinsert), copyflag);
4052 		if (error)
4053 			return (error);
4054 
4055 		/*
4056 		 * Get module name and look up in fmodsw.
4057 		 */
4058 		error = (copyflag & U_TO_K ? copyinstr :
4059 		    copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4060 		    mod_name, FMNAMESZ + 1, NULL);
4061 		if (error)
4062 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4063 
4064 		if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4065 		    NULL)
4066 			return (EINVAL);
4067 
4068 		if (error = strstartplumb(stp, flag, cmd)) {
4069 			fmodsw_rele(fp);
4070 			return (error);
4071 		}
4072 
4073 		/*
4074 		 * Is this _I_INSERT just like an I_PUSH?  We need to know
4075 		 * this because we do some optimizations if this is a
4076 		 * module being pushed.
4077 		 */
4078 		pos = STRUCT_FGET(strmodinsert, pos);
4079 		is_insert = (pos != 0);
4080 
4081 		/*
4082 		 * Make sure pos is valid.  Even though it is not an I_PUSH,
4083 		 * we impose the same limit on the number of modules in a
4084 		 * stream.
4085 		 */
4086 		mutex_enter(&stp->sd_lock);
4087 		if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4088 		    pos > stp->sd_pushcnt) {
4089 			fmodsw_rele(fp);
4090 			strendplumb(stp);
4091 			mutex_exit(&stp->sd_lock);
4092 			return (EINVAL);
4093 		}
4094 		if (stp->sd_anchor != 0) {
4095 			/*
4096 			 * Is this insert below the anchor?
4097 			 * Pushcnt hasn't been increased yet hence
4098 			 * we test for greater than here, and greater or
4099 			 * equal after qattach.
4100 			 */
4101 			if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4102 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4103 				fmodsw_rele(fp);
4104 				strendplumb(stp);
4105 				mutex_exit(&stp->sd_lock);
4106 				return (EPERM);
4107 			}
4108 		}
4109 
4110 		mutex_exit(&stp->sd_lock);
4111 
4112 		/*
4113 		 * First find the correct position this module to
4114 		 * be inserted.  We don't need to call claimstr()
4115 		 * as the stream should not be changing at this point.
4116 		 *
4117 		 * Insert new module and call its open routine
4118 		 * via qattach().  Modules don't change device
4119 		 * numbers, so just ignore dummydev here.
4120 		 */
4121 		for (tmp_wrq = stp->sd_wrq; pos > 0;
4122 		    tmp_wrq = tmp_wrq->q_next, pos--) {
4123 			ASSERT(SAMESTR(tmp_wrq));
4124 		}
4125 		dummydev = vp->v_rdev;
4126 		if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4127 		    fp, is_insert)) != 0) {
4128 			mutex_enter(&stp->sd_lock);
4129 			strendplumb(stp);
4130 			mutex_exit(&stp->sd_lock);
4131 			return (error);
4132 		}
4133 
4134 		mutex_enter(&stp->sd_lock);
4135 
4136 		/*
4137 		 * As a performance concern we are caching the values of
4138 		 * q_minpsz and q_maxpsz of the module below the stream
4139 		 * head in the stream head.
4140 		 */
4141 		if (!is_insert) {
4142 			mutex_enter(QLOCK(stp->sd_wrq->q_next));
4143 			rmin = stp->sd_wrq->q_next->q_minpsz;
4144 			rmax = stp->sd_wrq->q_next->q_maxpsz;
4145 			mutex_exit(QLOCK(stp->sd_wrq->q_next));
4146 
4147 			/* Do this processing here as a performance concern */
4148 			if (strmsgsz != 0) {
4149 				if (rmax == INFPSZ) {
4150 					rmax = strmsgsz;
4151 				} else  {
4152 					rmax = MIN(strmsgsz, rmax);
4153 				}
4154 			}
4155 
4156 			mutex_enter(QLOCK(wrq));
4157 			stp->sd_qn_minpsz = rmin;
4158 			stp->sd_qn_maxpsz = rmax;
4159 			mutex_exit(QLOCK(wrq));
4160 		}
4161 
4162 		/*
4163 		 * Need to update the anchor value if this module is
4164 		 * inserted below the anchor point.
4165 		 */
4166 		if (stp->sd_anchor != 0) {
4167 			pos = STRUCT_FGET(strmodinsert, pos);
4168 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4169 				stp->sd_anchor++;
4170 		}
4171 
4172 		strendplumb(stp);
4173 		mutex_exit(&stp->sd_lock);
4174 		return (0);
4175 	}
4176 
4177 	case _I_REMOVE:
4178 	{
4179 		/*
4180 		 * To remove a module with a given name in a stream.  The
4181 		 * caller of this ioctl needs to provide both the name and
4182 		 * the position of the module to be removed.  This eliminates
4183 		 * the ambiguity of removal if a module is inserted/pushed
4184 		 * multiple times in a stream.  In the first release, only
4185 		 * allow privileged user to use this ioctl.
4186 		 * Furthermore, the remove is only allowed
4187 		 * below an anchor if the zoneid is the same as the zoneid
4188 		 * which created the anchor.
4189 		 *
4190 		 * Note that we do not plan to support this ioctl
4191 		 * on pipes in the first release.  We want to learn more
4192 		 * about the implications of these ioctls before extending
4193 		 * their support.  And we do not think these features are
4194 		 * valuable for pipes.
4195 		 *
4196 		 * Also note that _I_REMOVE cannot be used to remove a
4197 		 * driver or the stream head.
4198 		 */
4199 		STRUCT_DECL(strmodconf, strmodremove);
4200 		queue_t	*q;
4201 		int pos;
4202 		char mod_name[FMNAMESZ + 1];
4203 		boolean_t is_remove;
4204 
4205 		STRUCT_INIT(strmodremove, flag);
4206 		if (stp->sd_flag & STRHUP)
4207 			return (ENXIO);
4208 		if (STRMATED(stp))
4209 			return (EINVAL);
4210 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4211 			return (error);
4212 		if (stp->sd_anchor != 0 &&
4213 		    stp->sd_anchorzone != crgetzoneid(crp))
4214 			return (EINVAL);
4215 
4216 		error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4217 		    STRUCT_SIZE(strmodremove), copyflag);
4218 		if (error)
4219 			return (error);
4220 
4221 		error = (copyflag & U_TO_K ? copyinstr :
4222 		    copystr)(STRUCT_FGETP(strmodremove, mod_name),
4223 		    mod_name, FMNAMESZ + 1, NULL);
4224 		if (error)
4225 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4226 
4227 		if ((error = strstartplumb(stp, flag, cmd)) != 0)
4228 			return (error);
4229 
4230 		/*
4231 		 * Match the name of given module to the name of module at
4232 		 * the given position.
4233 		 */
4234 		pos = STRUCT_FGET(strmodremove, pos);
4235 
4236 		is_remove = (pos != 0);
4237 		for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4238 		    q = q->q_next, pos--)
4239 			;
4240 		if (pos > 0 || !SAMESTR(q) ||
4241 		    strcmp(Q2NAME(q), mod_name) != 0) {
4242 			mutex_enter(&stp->sd_lock);
4243 			strendplumb(stp);
4244 			mutex_exit(&stp->sd_lock);
4245 			return (EINVAL);
4246 		}
4247 
4248 		/*
4249 		 * If the position is at or below an anchor, then the zoneid
4250 		 * must match the zoneid that created the anchor.
4251 		 */
4252 		if (stp->sd_anchor != 0) {
4253 			pos = STRUCT_FGET(strmodremove, pos);
4254 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4255 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4256 				mutex_enter(&stp->sd_lock);
4257 				strendplumb(stp);
4258 				mutex_exit(&stp->sd_lock);
4259 				return (EPERM);
4260 			}
4261 		}
4262 
4263 
4264 		ASSERT(!(q->q_flag & QREADR));
4265 		qdetach(_RD(q), 1, flag, crp, is_remove);
4266 
4267 		mutex_enter(&stp->sd_lock);
4268 
4269 		/*
4270 		 * As a performance concern we are caching the values of
4271 		 * q_minpsz and q_maxpsz of the module below the stream
4272 		 * head in the stream head.
4273 		 */
4274 		if (!is_remove) {
4275 			mutex_enter(QLOCK(wrq->q_next));
4276 			rmin = wrq->q_next->q_minpsz;
4277 			rmax = wrq->q_next->q_maxpsz;
4278 			mutex_exit(QLOCK(wrq->q_next));
4279 
4280 			/* Do this processing here as a performance concern */
4281 			if (strmsgsz != 0) {
4282 				if (rmax == INFPSZ)
4283 					rmax = strmsgsz;
4284 				else  {
4285 					if (vp->v_type == VFIFO)
4286 						rmax = MIN(PIPE_BUF, rmax);
4287 					else	rmax = MIN(strmsgsz, rmax);
4288 				}
4289 			}
4290 
4291 			mutex_enter(QLOCK(wrq));
4292 			stp->sd_qn_minpsz = rmin;
4293 			stp->sd_qn_maxpsz = rmax;
4294 			mutex_exit(QLOCK(wrq));
4295 		}
4296 
4297 		/*
4298 		 * Need to update the anchor value if this module is removed
4299 		 * at or below the anchor point.  If the removed module is at
4300 		 * the anchor point, remove the anchor for this stream if
4301 		 * there is no module above the anchor point.  Otherwise, if
4302 		 * the removed module is below the anchor point, decrement the
4303 		 * anchor point by 1.
4304 		 */
4305 		if (stp->sd_anchor != 0) {
4306 			pos = STRUCT_FGET(strmodremove, pos);
4307 			if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4308 				stp->sd_anchor = 0;
4309 			else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4310 				stp->sd_anchor--;
4311 		}
4312 
4313 		strendplumb(stp);
4314 		mutex_exit(&stp->sd_lock);
4315 		return (0);
4316 	}
4317 
4318 	case I_ANCHOR:
4319 		/*
4320 		 * Set the anchor position on the stream to reside at
4321 		 * the top module (in other words, the top module
4322 		 * cannot be popped).  Anchors with a FIFO make no
4323 		 * obvious sense, so they're not allowed.
4324 		 */
4325 		mutex_enter(&stp->sd_lock);
4326 
4327 		if (stp->sd_vnode->v_type == VFIFO) {
4328 			mutex_exit(&stp->sd_lock);
4329 			return (EINVAL);
4330 		}
4331 		/* Only allow the same zoneid to update the anchor */
4332 		if (stp->sd_anchor != 0 &&
4333 		    stp->sd_anchorzone != crgetzoneid(crp)) {
4334 			mutex_exit(&stp->sd_lock);
4335 			return (EINVAL);
4336 		}
4337 		stp->sd_anchor = stp->sd_pushcnt;
4338 		stp->sd_anchorzone = crgetzoneid(crp);
4339 		mutex_exit(&stp->sd_lock);
4340 		return (0);
4341 
4342 	case I_LOOK:
4343 		/*
4344 		 * Get name of first module downstream.
4345 		 * If no module, return an error.
4346 		 */
4347 		claimstr(wrq);
4348 		if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) {
4349 			char *name = Q2NAME(wrq->q_next);
4350 
4351 			error = strcopyout(name, (void *)arg, strlen(name) + 1,
4352 			    copyflag);
4353 			releasestr(wrq);
4354 			return (error);
4355 		}
4356 		releasestr(wrq);
4357 		return (EINVAL);
4358 
4359 	case I_LINK:
4360 	case I_PLINK:
4361 		/*
4362 		 * Link a multiplexor.
4363 		 */
4364 		return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));
4365 
4366 	case _I_PLINK_LH:
4367 		/*
4368 		 * Link a multiplexor: Call must originate from kernel.
4369 		 */
4370 		if (kioctl)
4371 			return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4372 
4373 		return (EINVAL);
4374 	case I_UNLINK:
4375 	case I_PUNLINK:
4376 		/*
4377 		 * Unlink a multiplexor.
4378 		 * If arg is -1, unlink all links for which this is the
4379 		 * controlling stream.  Otherwise, arg is an index number
4380 		 * for a link to be removed.
4381 		 */
4382 	{
4383 		struct linkinfo *linkp;
4384 		int native_arg = (int)arg;
4385 		int type;
4386 		netstack_t *ns;
4387 		str_stack_t *ss;
4388 
4389 		TRACE_1(TR_FAC_STREAMS_FR,
4390 		    TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4391 		if (vp->v_type == VFIFO) {
4392 			return (EINVAL);
4393 		}
4394 		if (cmd == I_UNLINK)
4395 			type = LINKNORMAL;
4396 		else	/* I_PUNLINK */
4397 			type = LINKPERSIST;
4398 		if (native_arg == 0) {
4399 			return (EINVAL);
4400 		}
4401 		ns = netstack_find_by_cred(crp);
4402 		ASSERT(ns != NULL);
4403 		ss = ns->netstack_str;
4404 		ASSERT(ss != NULL);
4405 
4406 		if (native_arg == MUXID_ALL)
4407 			error = munlinkall(stp, type, crp, rvalp, ss);
4408 		else {
4409 			mutex_enter(&muxifier);
4410 			if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4411 				/* invalid user supplied index number */
4412 				mutex_exit(&muxifier);
4413 				netstack_rele(ss->ss_netstack);
4414 				return (EINVAL);
4415 			}
4416 			/* munlink drops the muxifier lock */
4417 			error = munlink(stp, linkp, type, crp, rvalp, ss);
4418 		}
4419 		netstack_rele(ss->ss_netstack);
4420 		return (error);
4421 	}
4422 
4423 	case I_FLUSH:
4424 		/*
4425 		 * send a flush message downstream
4426 		 * flush message can indicate
4427 		 * FLUSHR - flush read queue
4428 		 * FLUSHW - flush write queue
4429 		 * FLUSHRW - flush read/write queue
4430 		 */
4431 		if (stp->sd_flag & STRHUP)
4432 			return (ENXIO);
4433 		if (arg & ~FLUSHRW)
4434 			return (EINVAL);
4435 
4436 		for (;;) {
4437 			if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4438 				break;
4439 			}
4440 			if (error = strwaitbuf(1, BPRI_HI)) {
4441 				return (error);
4442 			}
4443 		}
4444 
4445 		/*
4446 		 * Send down an unsupported ioctl and wait for the nack
4447 		 * in order to allow the M_FLUSH to propagate back
4448 		 * up to the stream head.
4449 		 * Replaces if (qready()) runqueues();
4450 		 */
4451 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4452 		strioc.ic_timout = 0;
4453 		strioc.ic_len = 0;
4454 		strioc.ic_dp = NULL;
4455 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4456 		*rvalp = 0;
4457 		return (0);
4458 
4459 	case I_FLUSHBAND:
4460 	{
4461 		struct bandinfo binfo;
4462 
4463 		error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4464 		    copyflag);
4465 		if (error)
4466 			return (error);
4467 		if (stp->sd_flag & STRHUP)
4468 			return (ENXIO);
4469 		if (binfo.bi_flag & ~FLUSHRW)
4470 			return (EINVAL);
4471 		while (!(mp = allocb(2, BPRI_HI))) {
4472 			if (error = strwaitbuf(2, BPRI_HI))
4473 				return (error);
4474 		}
4475 		mp->b_datap->db_type = M_FLUSH;
4476 		*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4477 		*mp->b_wptr++ = binfo.bi_pri;
4478 		putnext(stp->sd_wrq, mp);
4479 		/*
4480 		 * Send down an unsupported ioctl and wait for the nack
4481 		 * in order to allow the M_FLUSH to propagate back
4482 		 * up to the stream head.
4483 		 * Replaces if (qready()) runqueues();
4484 		 */
4485 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4486 		strioc.ic_timout = 0;
4487 		strioc.ic_len = 0;
4488 		strioc.ic_dp = NULL;
4489 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4490 		*rvalp = 0;
4491 		return (0);
4492 	}
4493 
4494 	case I_SRDOPT:
4495 		/*
4496 		 * Set read options
4497 		 *
4498 		 * RNORM - default stream mode
4499 		 * RMSGN - message no discard
4500 		 * RMSGD - message discard
4501 		 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4502 		 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4503 		 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4504 		 */
4505 		if (arg & ~(RMODEMASK | RPROTMASK))
4506 			return (EINVAL);
4507 
4508 		if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4509 			return (EINVAL);
4510 
4511 		mutex_enter(&stp->sd_lock);
4512 		switch (arg & RMODEMASK) {
4513 		case RNORM:
4514 			stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4515 			break;
4516 		case RMSGD:
4517 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4518 			    RD_MSGDIS;
4519 			break;
4520 		case RMSGN:
4521 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4522 			    RD_MSGNODIS;
4523 			break;
4524 		}
4525 
4526 		switch (arg & RPROTMASK) {
4527 		case RPROTNORM:
4528 			stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4529 			break;
4530 
4531 		case RPROTDAT:
4532 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4533 			    RD_PROTDAT);
4534 			break;
4535 
4536 		case RPROTDIS:
4537 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4538 			    RD_PROTDIS);
4539 			break;
4540 		}
4541 		mutex_exit(&stp->sd_lock);
4542 		return (0);
4543 
4544 	case I_GRDOPT:
4545 		/*
4546 		 * Get read option and return the value
4547 		 * to spot pointed to by arg
4548 		 */
4549 	{
4550 		int rdopt;
4551 
4552 		rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4553 		    ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4554 		rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4555 		    ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4556 
4557 		return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4558 		    copyflag));
4559 	}
4560 
4561 	case I_SERROPT:
4562 		/*
4563 		 * Set error options
4564 		 *
4565 		 * RERRNORM - persistent read errors
4566 		 * RERRNONPERSIST - non-persistent read errors
4567 		 * WERRNORM - persistent write errors
4568 		 * WERRNONPERSIST - non-persistent write errors
4569 		 */
4570 		if (arg & ~(RERRMASK | WERRMASK))
4571 			return (EINVAL);
4572 
4573 		mutex_enter(&stp->sd_lock);
4574 		switch (arg & RERRMASK) {
4575 		case RERRNORM:
4576 			stp->sd_flag &= ~STRDERRNONPERSIST;
4577 			break;
4578 		case RERRNONPERSIST:
4579 			stp->sd_flag |= STRDERRNONPERSIST;
4580 			break;
4581 		}
4582 		switch (arg & WERRMASK) {
4583 		case WERRNORM:
4584 			stp->sd_flag &= ~STWRERRNONPERSIST;
4585 			break;
4586 		case WERRNONPERSIST:
4587 			stp->sd_flag |= STWRERRNONPERSIST;
4588 			break;
4589 		}
4590 		mutex_exit(&stp->sd_lock);
4591 		return (0);
4592 
4593 	case I_GERROPT:
4594 		/*
4595 		 * Get error option and return the value
4596 		 * to spot pointed to by arg
4597 		 */
4598 	{
4599 		int erropt = 0;
4600 
4601 		erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4602 		    RERRNORM;
4603 		erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4604 		    WERRNORM;
4605 		return (strcopyout(&erropt, (void *)arg, sizeof (int),
4606 		    copyflag));
4607 	}
4608 
4609 	case I_SETSIG:
4610 		/*
4611 		 * Register the calling proc to receive the SIGPOLL
4612 		 * signal based on the events given in arg.  If
4613 		 * arg is zero, remove the proc from register list.
4614 		 */
4615 	{
4616 		strsig_t *ssp, *pssp;
4617 		struct pid *pidp;
4618 
4619 		pssp = NULL;
4620 		pidp = curproc->p_pidp;
4621 		/*
4622 		 * Hold sd_lock to prevent traversal of sd_siglist while
4623 		 * it is modified.
4624 		 */
4625 		mutex_enter(&stp->sd_lock);
4626 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4627 		    pssp = ssp, ssp = ssp->ss_next)
4628 			;
4629 
4630 		if (arg) {
4631 			if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4632 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4633 				mutex_exit(&stp->sd_lock);
4634 				return (EINVAL);
4635 			}
4636 			if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4637 				mutex_exit(&stp->sd_lock);
4638 				return (EINVAL);
4639 			}
4640 
4641 			/*
4642 			 * If proc not already registered, add it
4643 			 * to list.
4644 			 */
4645 			if (!ssp) {
4646 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4647 				ssp->ss_pidp = pidp;
4648 				ssp->ss_pid = pidp->pid_id;
4649 				ssp->ss_next = NULL;
4650 				if (pssp)
4651 					pssp->ss_next = ssp;
4652 				else
4653 					stp->sd_siglist = ssp;
4654 				mutex_enter(&pidlock);
4655 				PID_HOLD(pidp);
4656 				mutex_exit(&pidlock);
4657 			}
4658 
4659 			/*
4660 			 * Set events.
4661 			 */
4662 			ssp->ss_events = (int)arg;
4663 		} else {
4664 			/*
4665 			 * Remove proc from register list.
4666 			 */
4667 			if (ssp) {
4668 				mutex_enter(&pidlock);
4669 				PID_RELE(pidp);
4670 				mutex_exit(&pidlock);
4671 				if (pssp)
4672 					pssp->ss_next = ssp->ss_next;
4673 				else
4674 					stp->sd_siglist = ssp->ss_next;
4675 				kmem_free(ssp, sizeof (strsig_t));
4676 			} else {
4677 				mutex_exit(&stp->sd_lock);
4678 				return (EINVAL);
4679 			}
4680 		}
4681 
4682 		/*
4683 		 * Recalculate OR of sig events.
4684 		 */
4685 		stp->sd_sigflags = 0;
4686 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4687 			stp->sd_sigflags |= ssp->ss_events;
4688 		mutex_exit(&stp->sd_lock);
4689 		return (0);
4690 	}
4691 
4692 	case I_GETSIG:
4693 		/*
4694 		 * Return (in arg) the current registration of events
4695 		 * for which the calling proc is to be signaled.
4696 		 */
4697 	{
4698 		struct strsig *ssp;
4699 		struct pid  *pidp;
4700 
4701 		pidp = curproc->p_pidp;
4702 		mutex_enter(&stp->sd_lock);
4703 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4704 			if (ssp->ss_pidp == pidp) {
4705 				error = strcopyout(&ssp->ss_events, (void *)arg,
4706 				    sizeof (int), copyflag);
4707 				mutex_exit(&stp->sd_lock);
4708 				return (error);
4709 			}
4710 		mutex_exit(&stp->sd_lock);
4711 		return (EINVAL);
4712 	}
4713 
4714 	case I_ESETSIG:
4715 		/*
4716 		 * Register the ss_pid to receive the SIGPOLL
4717 		 * signal based on the events is ss_events arg.  If
4718 		 * ss_events is zero, remove the proc from register list.
4719 		 */
4720 	{
4721 		struct strsig *ssp, *pssp;
4722 		struct proc *proc;
4723 		struct pid  *pidp;
4724 		pid_t pid;
4725 		struct strsigset ss;
4726 
4727 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4728 		if (error)
4729 			return (error);
4730 
4731 		pid = ss.ss_pid;
4732 
4733 		if (ss.ss_events != 0) {
4734 			/*
4735 			 * Permissions check by sending signal 0.
4736 			 * Note that when kill fails it does a set_errno
4737 			 * causing the system call to fail.
4738 			 */
4739 			error = kill(pid, 0);
4740 			if (error) {
4741 				return (error);
4742 			}
4743 		}
4744 		mutex_enter(&pidlock);
4745 		if (pid == 0)
4746 			proc = curproc;
4747 		else if (pid < 0)
4748 			proc = pgfind(-pid);
4749 		else
4750 			proc = prfind(pid);
4751 		if (proc == NULL) {
4752 			mutex_exit(&pidlock);
4753 			return (ESRCH);
4754 		}
4755 		if (pid < 0)
4756 			pidp = proc->p_pgidp;
4757 		else
4758 			pidp = proc->p_pidp;
4759 		ASSERT(pidp);
4760 		/*
4761 		 * Get a hold on the pid structure while referencing it.
4762 		 * There is a separate PID_HOLD should it be inserted
4763 		 * in the list below.
4764 		 */
4765 		PID_HOLD(pidp);
4766 		mutex_exit(&pidlock);
4767 
4768 		pssp = NULL;
4769 		/*
4770 		 * Hold sd_lock to prevent traversal of sd_siglist while
4771 		 * it is modified.
4772 		 */
4773 		mutex_enter(&stp->sd_lock);
4774 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4775 		    pssp = ssp, ssp = ssp->ss_next)
4776 			;
4777 
4778 		if (ss.ss_events) {
4779 			if (ss.ss_events &
4780 			    ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4781 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4782 				mutex_exit(&stp->sd_lock);
4783 				mutex_enter(&pidlock);
4784 				PID_RELE(pidp);
4785 				mutex_exit(&pidlock);
4786 				return (EINVAL);
4787 			}
4788 			if ((ss.ss_events & S_BANDURG) &&
4789 			    !(ss.ss_events & S_RDBAND)) {
4790 				mutex_exit(&stp->sd_lock);
4791 				mutex_enter(&pidlock);
4792 				PID_RELE(pidp);
4793 				mutex_exit(&pidlock);
4794 				return (EINVAL);
4795 			}
4796 
4797 			/*
4798 			 * If proc not already registered, add it
4799 			 * to list.
4800 			 */
4801 			if (!ssp) {
4802 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4803 				ssp->ss_pidp = pidp;
4804 				ssp->ss_pid = pid;
4805 				ssp->ss_next = NULL;
4806 				if (pssp)
4807 					pssp->ss_next = ssp;
4808 				else
4809 					stp->sd_siglist = ssp;
4810 				mutex_enter(&pidlock);
4811 				PID_HOLD(pidp);
4812 				mutex_exit(&pidlock);
4813 			}
4814 
4815 			/*
4816 			 * Set events.
4817 			 */
4818 			ssp->ss_events = ss.ss_events;
4819 		} else {
4820 			/*
4821 			 * Remove proc from register list.
4822 			 */
4823 			if (ssp) {
4824 				mutex_enter(&pidlock);
4825 				PID_RELE(pidp);
4826 				mutex_exit(&pidlock);
4827 				if (pssp)
4828 					pssp->ss_next = ssp->ss_next;
4829 				else
4830 					stp->sd_siglist = ssp->ss_next;
4831 				kmem_free(ssp, sizeof (strsig_t));
4832 			} else {
4833 				mutex_exit(&stp->sd_lock);
4834 				mutex_enter(&pidlock);
4835 				PID_RELE(pidp);
4836 				mutex_exit(&pidlock);
4837 				return (EINVAL);
4838 			}
4839 		}
4840 
4841 		/*
4842 		 * Recalculate OR of sig events.
4843 		 */
4844 		stp->sd_sigflags = 0;
4845 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4846 			stp->sd_sigflags |= ssp->ss_events;
4847 		mutex_exit(&stp->sd_lock);
4848 		mutex_enter(&pidlock);
4849 		PID_RELE(pidp);
4850 		mutex_exit(&pidlock);
4851 		return (0);
4852 	}
4853 
4854 	case I_EGETSIG:
4855 		/*
4856 		 * Return (in arg) the current registration of events
4857 		 * for which the calling proc is to be signaled.
4858 		 */
4859 	{
4860 		struct strsig *ssp;
4861 		struct proc *proc;
4862 		pid_t pid;
4863 		struct pid  *pidp;
4864 		struct strsigset ss;
4865 
4866 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4867 		if (error)
4868 			return (error);
4869 
4870 		pid = ss.ss_pid;
4871 		mutex_enter(&pidlock);
4872 		if (pid == 0)
4873 			proc = curproc;
4874 		else if (pid < 0)
4875 			proc = pgfind(-pid);
4876 		else
4877 			proc = prfind(pid);
4878 		if (proc == NULL) {
4879 			mutex_exit(&pidlock);
4880 			return (ESRCH);
4881 		}
4882 		if (pid < 0)
4883 			pidp = proc->p_pgidp;
4884 		else
4885 			pidp = proc->p_pidp;
4886 
4887 		/* Prevent the pidp from being reassigned */
4888 		PID_HOLD(pidp);
4889 		mutex_exit(&pidlock);
4890 
4891 		mutex_enter(&stp->sd_lock);
4892 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4893 			if (ssp->ss_pid == pid) {
4894 				ss.ss_pid = ssp->ss_pid;
4895 				ss.ss_events = ssp->ss_events;
4896 				error = strcopyout(&ss, (void *)arg,
4897 				    sizeof (struct strsigset), copyflag);
4898 				mutex_exit(&stp->sd_lock);
4899 				mutex_enter(&pidlock);
4900 				PID_RELE(pidp);
4901 				mutex_exit(&pidlock);
4902 				return (error);
4903 			}
4904 		mutex_exit(&stp->sd_lock);
4905 		mutex_enter(&pidlock);
4906 		PID_RELE(pidp);
4907 		mutex_exit(&pidlock);
4908 		return (EINVAL);
4909 	}
4910 
4911 	case I_PEEK:
4912 	{
4913 		STRUCT_DECL(strpeek, strpeek);
4914 		size_t n;
4915 		mblk_t *fmp, *tmp_mp = NULL;
4916 
4917 		STRUCT_INIT(strpeek, flag);
4918 
4919 		error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4920 		    STRUCT_SIZE(strpeek), copyflag);
4921 		if (error)
4922 			return (error);
4923 
4924 		mutex_enter(QLOCK(rdq));
4925 		/*
4926 		 * Skip the invalid messages
4927 		 */
4928 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
4929 			if (mp->b_datap->db_type != M_SIG)
4930 				break;
4931 
4932 		/*
4933 		 * If user has requested to peek at a high priority message
4934 		 * and first message is not, return 0
4935 		 */
4936 		if (mp != NULL) {
4937 			if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
4938 			    queclass(mp) == QNORM) {
4939 				*rvalp = 0;
4940 				mutex_exit(QLOCK(rdq));
4941 				return (0);
4942 			}
4943 		} else if (stp->sd_struiordq == NULL ||
4944 		    (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
4945 			/*
4946 			 * No mblks to look at at the streamhead and
4947 			 * 1). This isn't a synch stream or
4948 			 * 2). This is a synch stream but caller wants high
4949 			 *	priority messages which is not supported by
4950 			 *	the synch stream. (it only supports QNORM)
4951 			 */
4952 			*rvalp = 0;
4953 			mutex_exit(QLOCK(rdq));
4954 			return (0);
4955 		}
4956 
4957 		fmp = mp;
4958 
4959 		if (mp && mp->b_datap->db_type == M_PASSFP) {
4960 			mutex_exit(QLOCK(rdq));
4961 			return (EBADMSG);
4962 		}
4963 
4964 		ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
4965 		    mp->b_datap->db_type == M_PROTO ||
4966 		    mp->b_datap->db_type == M_DATA);
4967 
4968 		if (mp && mp->b_datap->db_type == M_PCPROTO) {
4969 			STRUCT_FSET(strpeek, flags, RS_HIPRI);
4970 		} else {
4971 			STRUCT_FSET(strpeek, flags, 0);
4972 		}
4973 
4974 
4975 		if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
4976 			mutex_exit(QLOCK(rdq));
4977 			return (ENOSR);
4978 		}
4979 		mutex_exit(QLOCK(rdq));
4980 
4981 		/*
4982 		 * set mp = tmp_mp, so that I_PEEK processing can continue.
4983 		 * tmp_mp is used to free the dup'd message.
4984 		 */
4985 		mp = tmp_mp;
4986 
4987 		uio.uio_fmode = 0;
4988 		uio.uio_extflg = UIO_COPY_CACHED;
4989 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
4990 		    UIO_SYSSPACE;
4991 		uio.uio_limit = 0;
4992 		/*
4993 		 * First process PROTO blocks, if any.
4994 		 * If user doesn't want to get ctl info by setting maxlen <= 0,
4995 		 * then set len to -1/0 and skip control blocks part.
4996 		 */
4997 		if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
4998 			STRUCT_FSET(strpeek, ctlbuf.len, -1);
4999 		else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
5000 			STRUCT_FSET(strpeek, ctlbuf.len, 0);
5001 		else {
5002 			int	ctl_part = 0;
5003 
5004 			iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
5005 			iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
5006 			uio.uio_iov = &iov;
5007 			uio.uio_resid = iov.iov_len;
5008 			uio.uio_loffset = 0;
5009 			uio.uio_iovcnt = 1;
5010 			while (mp && mp->b_datap->db_type != M_DATA &&
5011 			    uio.uio_resid >= 0) {
5012 				ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5013 				    mp->b_datap->db_type == M_PROTO :
5014 				    mp->b_datap->db_type == M_PCPROTO);
5015 
5016 				if ((n = MIN(uio.uio_resid,
5017 				    mp->b_wptr - mp->b_rptr)) != 0 &&
5018 				    (error = uiomove((char *)mp->b_rptr, n,
5019 				    UIO_READ, &uio)) != 0) {
5020 					freemsg(tmp_mp);
5021 					return (error);
5022 				}
5023 				ctl_part = 1;
5024 				mp = mp->b_cont;
5025 			}
5026 			/* No ctl message */
5027 			if (ctl_part == 0)
5028 				STRUCT_FSET(strpeek, ctlbuf.len, -1);
5029 			else
5030 				STRUCT_FSET(strpeek, ctlbuf.len,
5031 				    STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5032 				    uio.uio_resid);
5033 		}
5034 
5035 		/*
5036 		 * Now process DATA blocks, if any.
5037 		 * If user doesn't want to get data info by setting maxlen <= 0,
5038 		 * then set len to -1/0 and skip data blocks part.
5039 		 */
5040 		if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5041 			STRUCT_FSET(strpeek, databuf.len, -1);
5042 		else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5043 			STRUCT_FSET(strpeek, databuf.len, 0);
5044 		else {
5045 			int	data_part = 0;
5046 
5047 			iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5048 			iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5049 			uio.uio_iov = &iov;
5050 			uio.uio_resid = iov.iov_len;
5051 			uio.uio_loffset = 0;
5052 			uio.uio_iovcnt = 1;
5053 			while (mp && uio.uio_resid) {
5054 				if (mp->b_datap->db_type == M_DATA) {
5055 					if ((n = MIN(uio.uio_resid,
5056 					    mp->b_wptr - mp->b_rptr)) != 0 &&
5057 					    (error = uiomove((char *)mp->b_rptr,
5058 					    n, UIO_READ, &uio)) != 0) {
5059 						freemsg(tmp_mp);
5060 						return (error);
5061 					}
5062 					data_part = 1;
5063 				}
5064 				ASSERT(data_part == 0 ||
5065 				    mp->b_datap->db_type == M_DATA);
5066 				mp = mp->b_cont;
5067 			}
5068 			/* No data message */
5069 			if (data_part == 0)
5070 				STRUCT_FSET(strpeek, databuf.len, -1);
5071 			else
5072 				STRUCT_FSET(strpeek, databuf.len,
5073 				    STRUCT_FGET(strpeek, databuf.maxlen) -
5074 				    uio.uio_resid);
5075 		}
5076 		freemsg(tmp_mp);
5077 
5078 		/*
5079 		 * It is a synch stream and user wants to get
5080 		 * data (maxlen > 0).
5081 		 * uio setup is done by the codes that process DATA
5082 		 * blocks above.
5083 		 */
5084 		if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5085 			infod_t infod;
5086 
5087 			infod.d_cmd = INFOD_COPYOUT;
5088 			infod.d_res = 0;
5089 			infod.d_uiop = &uio;
5090 			error = infonext(rdq, &infod);
5091 			if (error == EINVAL || error == EBUSY)
5092 				error = 0;
5093 			if (error)
5094 				return (error);
5095 			STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5096 			    databuf.maxlen) - uio.uio_resid);
5097 			if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5098 				/*
5099 				 * No data found by the infonext().
5100 				 */
5101 				STRUCT_FSET(strpeek, databuf.len, -1);
5102 			}
5103 		}
5104 		error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5105 		    STRUCT_SIZE(strpeek), copyflag);
5106 		if (error) {
5107 			return (error);
5108 		}
5109 		/*
5110 		 * If there is no message retrieved, set return code to 0
5111 		 * otherwise, set it to 1.
5112 		 */
5113 		if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5114 		    STRUCT_FGET(strpeek, databuf.len) == -1)
5115 			*rvalp = 0;
5116 		else
5117 			*rvalp = 1;
5118 		return (0);
5119 	}
5120 
5121 	case I_FDINSERT:
5122 	{
5123 		STRUCT_DECL(strfdinsert, strfdinsert);
5124 		struct file *resftp;
5125 		struct stdata *resstp;
5126 		t_uscalar_t	ival;
5127 		ssize_t msgsize;
5128 		struct strbuf mctl;
5129 
5130 		STRUCT_INIT(strfdinsert, flag);
5131 		if (stp->sd_flag & STRHUP)
5132 			return (ENXIO);
5133 		/*
5134 		 * STRDERR, STWRERR and STPLEX tested above.
5135 		 */
5136 		error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5137 		    STRUCT_SIZE(strfdinsert), copyflag);
5138 		if (error)
5139 			return (error);
5140 
5141 		if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5142 		    (STRUCT_FGET(strfdinsert, offset) %
5143 		    sizeof (t_uscalar_t)) != 0)
5144 			return (EINVAL);
5145 		if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5146 			if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5147 				releasef(STRUCT_FGET(strfdinsert, fildes));
5148 				return (EINVAL);
5149 			}
5150 		} else
5151 			return (EINVAL);
5152 
5153 		mutex_enter(&resstp->sd_lock);
5154 		if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5155 			error = strgeterr(resstp,
5156 			    STRDERR|STWRERR|STRHUP|STPLEX, 0);
5157 			if (error != 0) {
5158 				mutex_exit(&resstp->sd_lock);
5159 				releasef(STRUCT_FGET(strfdinsert, fildes));
5160 				return (error);
5161 			}
5162 		}
5163 		mutex_exit(&resstp->sd_lock);
5164 
5165 #ifdef	_ILP32
5166 		{
5167 			queue_t	*q;
5168 			queue_t	*mate = NULL;
5169 
5170 			/* get read queue of stream terminus */
5171 			claimstr(resstp->sd_wrq);
5172 			for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5173 			    q = q->q_next)
5174 				if (!STRMATED(resstp) && STREAM(q) != resstp &&
5175 				    mate == NULL) {
5176 					ASSERT(q->q_qinfo->qi_srvp);
5177 					ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5178 					claimstr(q);
5179 					mate = q;
5180 				}
5181 			q = _RD(q);
5182 			if (mate)
5183 				releasestr(mate);
5184 			releasestr(resstp->sd_wrq);
5185 			ival = (t_uscalar_t)q;
5186 		}
5187 #else
5188 		ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5189 #endif	/* _ILP32 */
5190 
5191 		if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5192 		    STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5193 			releasef(STRUCT_FGET(strfdinsert, fildes));
5194 			return (EINVAL);
5195 		}
5196 
5197 		/*
5198 		 * Check for legal flag value.
5199 		 */
5200 		if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5201 			releasef(STRUCT_FGET(strfdinsert, fildes));
5202 			return (EINVAL);
5203 		}
5204 
5205 		/* get these values from those cached in the stream head */
5206 		mutex_enter(QLOCK(stp->sd_wrq));
5207 		rmin = stp->sd_qn_minpsz;
5208 		rmax = stp->sd_qn_maxpsz;
5209 		mutex_exit(QLOCK(stp->sd_wrq));
5210 
5211 		/*
5212 		 * Make sure ctl and data sizes together fall within
5213 		 * the limits of the max and min receive packet sizes
5214 		 * and do not exceed system limit.  A negative data
5215 		 * length means that no data part is to be sent.
5216 		 */
5217 		ASSERT((rmax >= 0) || (rmax == INFPSZ));
5218 		if (rmax == 0) {
5219 			releasef(STRUCT_FGET(strfdinsert, fildes));
5220 			return (ERANGE);
5221 		}
5222 		if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5223 			msgsize = 0;
5224 		if ((msgsize < rmin) ||
5225 		    ((msgsize > rmax) && (rmax != INFPSZ)) ||
5226 		    (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5227 			releasef(STRUCT_FGET(strfdinsert, fildes));
5228 			return (ERANGE);
5229 		}
5230 
5231 		mutex_enter(&stp->sd_lock);
5232 		while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5233 		    !canputnext(stp->sd_wrq)) {
5234 			if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5235 			    flag, -1, &done)) != 0 || done) {
5236 				mutex_exit(&stp->sd_lock);
5237 				releasef(STRUCT_FGET(strfdinsert, fildes));
5238 				return (error);
5239 			}
5240 			if ((error = i_straccess(stp, access)) != 0) {
5241 				mutex_exit(&stp->sd_lock);
5242 				releasef(
5243 				    STRUCT_FGET(strfdinsert, fildes));
5244 				return (error);
5245 			}
5246 		}
5247 		mutex_exit(&stp->sd_lock);
5248 
5249 		/*
5250 		 * Copy strfdinsert.ctlbuf into native form of
5251 		 * ctlbuf to pass down into strmakemsg().
5252 		 */
5253 		mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5254 		mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5255 		mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5256 
5257 		iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5258 		iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5259 		uio.uio_iov = &iov;
5260 		uio.uio_iovcnt = 1;
5261 		uio.uio_loffset = 0;
5262 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5263 		    UIO_SYSSPACE;
5264 		uio.uio_fmode = 0;
5265 		uio.uio_extflg = UIO_COPY_CACHED;
5266 		uio.uio_resid = iov.iov_len;
5267 		if ((error = strmakemsg(&mctl,
5268 		    &msgsize, &uio, stp,
5269 		    STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5270 			STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5271 			releasef(STRUCT_FGET(strfdinsert, fildes));
5272 			return (error);
5273 		}
5274 
5275 		STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5276 
5277 		/*
5278 		 * Place the possibly reencoded queue pointer 'offset' bytes
5279 		 * from the start of the control portion of the message.
5280 		 */
5281 		*((t_uscalar_t *)(mp->b_rptr +
5282 		    STRUCT_FGET(strfdinsert, offset))) = ival;
5283 
5284 		/*
5285 		 * Put message downstream.
5286 		 */
5287 		stream_willservice(stp);
5288 		putnext(stp->sd_wrq, mp);
5289 		stream_runservice(stp);
5290 		releasef(STRUCT_FGET(strfdinsert, fildes));
5291 		return (error);
5292 	}
5293 
5294 	case I_SENDFD:
5295 	{
5296 		struct file *fp;
5297 
5298 		if ((fp = getf((int)arg)) == NULL)
5299 			return (EBADF);
5300 		error = do_sendfp(stp, fp, crp);
5301 		if (auditing) {
5302 			audit_fdsend((int)arg, fp, error);
5303 		}
5304 		releasef((int)arg);
5305 		return (error);
5306 	}
5307 
5308 	case I_RECVFD:
5309 	case I_E_RECVFD:
5310 	{
5311 		struct k_strrecvfd *srf;
5312 		int i, fd;
5313 
5314 		mutex_enter(&stp->sd_lock);
5315 		while (!(mp = getq(rdq))) {
5316 			if (stp->sd_flag & (STRHUP|STREOF)) {
5317 				mutex_exit(&stp->sd_lock);
5318 				return (ENXIO);
5319 			}
5320 			if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5321 			    flag, -1, &done)) != 0 || done) {
5322 				mutex_exit(&stp->sd_lock);
5323 				return (error);
5324 			}
5325 			if ((error = i_straccess(stp, access)) != 0) {
5326 				mutex_exit(&stp->sd_lock);
5327 				return (error);
5328 			}
5329 		}
5330 		if (mp->b_datap->db_type != M_PASSFP) {
5331 			putback(stp, rdq, mp, mp->b_band);
5332 			mutex_exit(&stp->sd_lock);
5333 			return (EBADMSG);
5334 		}
5335 		mutex_exit(&stp->sd_lock);
5336 
5337 		srf = (struct k_strrecvfd *)mp->b_rptr;
5338 		if ((fd = ufalloc(0)) == -1) {
5339 			mutex_enter(&stp->sd_lock);
5340 			putback(stp, rdq, mp, mp->b_band);
5341 			mutex_exit(&stp->sd_lock);
5342 			return (EMFILE);
5343 		}
5344 		if (cmd == I_RECVFD) {
5345 			struct o_strrecvfd	ostrfd;
5346 
5347 			/* check to see if uid/gid values are too large. */
5348 
5349 			if (srf->uid > (o_uid_t)USHRT_MAX ||
5350 			    srf->gid > (o_gid_t)USHRT_MAX) {
5351 				mutex_enter(&stp->sd_lock);
5352 				putback(stp, rdq, mp, mp->b_band);
5353 				mutex_exit(&stp->sd_lock);
5354 				setf(fd, NULL);	/* release fd entry */
5355 				return (EOVERFLOW);
5356 			}
5357 
5358 			ostrfd.fd = fd;
5359 			ostrfd.uid = (o_uid_t)srf->uid;
5360 			ostrfd.gid = (o_gid_t)srf->gid;
5361 
5362 			/* Null the filler bits */
5363 			for (i = 0; i < 8; i++)
5364 				ostrfd.fill[i] = 0;
5365 
5366 			error = strcopyout(&ostrfd, (void *)arg,
5367 			    sizeof (struct o_strrecvfd), copyflag);
5368 		} else {		/* I_E_RECVFD */
5369 			struct strrecvfd	strfd;
5370 
5371 			strfd.fd = fd;
5372 			strfd.uid = srf->uid;
5373 			strfd.gid = srf->gid;
5374 
5375 			/* null the filler bits */
5376 			for (i = 0; i < 8; i++)
5377 				strfd.fill[i] = 0;
5378 
5379 			error = strcopyout(&strfd, (void *)arg,
5380 			    sizeof (struct strrecvfd), copyflag);
5381 		}
5382 
5383 		if (error) {
5384 			setf(fd, NULL);	/* release fd entry */
5385 			mutex_enter(&stp->sd_lock);
5386 			putback(stp, rdq, mp, mp->b_band);
5387 			mutex_exit(&stp->sd_lock);
5388 			return (error);
5389 		}
5390 		if (auditing) {
5391 			audit_fdrecv(fd, srf->fp);
5392 		}
5393 
5394 		/*
5395 		 * Always increment f_count since the freemsg() below will
5396 		 * always call free_passfp() which performs a closef().
5397 		 */
5398 		mutex_enter(&srf->fp->f_tlock);
5399 		srf->fp->f_count++;
5400 		mutex_exit(&srf->fp->f_tlock);
5401 		setf(fd, srf->fp);
5402 		freemsg(mp);
5403 		return (0);
5404 	}
5405 
5406 	case I_SWROPT:
5407 		/*
5408 		 * Set/clear the write options. arg is a bit
5409 		 * mask with any of the following bits set...
5410 		 * 	SNDZERO - send zero length message
5411 		 *	SNDPIPE - send sigpipe to process if
5412 		 *		sd_werror is set and process is
5413 		 *		doing a write or putmsg.
5414 		 * The new stream head write options should reflect
5415 		 * what is in arg.
5416 		 */
5417 		if (arg & ~(SNDZERO|SNDPIPE))
5418 			return (EINVAL);
5419 
5420 		mutex_enter(&stp->sd_lock);
5421 		stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5422 		if (arg & SNDZERO)
5423 			stp->sd_wput_opt |= SW_SNDZERO;
5424 		if (arg & SNDPIPE)
5425 			stp->sd_wput_opt |= SW_SIGPIPE;
5426 		mutex_exit(&stp->sd_lock);
5427 		return (0);
5428 
5429 	case I_GWROPT:
5430 	{
5431 		int wropt = 0;
5432 
5433 		if (stp->sd_wput_opt & SW_SNDZERO)
5434 			wropt |= SNDZERO;
5435 		if (stp->sd_wput_opt & SW_SIGPIPE)
5436 			wropt |= SNDPIPE;
5437 		return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5438 		    copyflag));
5439 	}
5440 
5441 	case I_LIST:
5442 		/*
5443 		 * Returns all the modules found on this stream,
5444 		 * upto the driver. If argument is NULL, return the
5445 		 * number of modules (including driver). If argument
5446 		 * is not NULL, copy the names into the structure
5447 		 * provided.
5448 		 */
5449 
5450 	{
5451 		queue_t *q;
5452 		char *qname;
5453 		int i, nmods;
5454 		struct str_mlist *mlist;
5455 		STRUCT_DECL(str_list, strlist);
5456 
5457 		if (arg == NULL) { /* Return number of modules plus driver */
5458 			if (stp->sd_vnode->v_type == VFIFO)
5459 				*rvalp = stp->sd_pushcnt;
5460 			else
5461 				*rvalp = stp->sd_pushcnt + 1;
5462 			return (0);
5463 		}
5464 
5465 		STRUCT_INIT(strlist, flag);
5466 
5467 		error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5468 		    STRUCT_SIZE(strlist), copyflag);
5469 		if (error != 0)
5470 			return (error);
5471 
5472 		mlist = STRUCT_FGETP(strlist, sl_modlist);
5473 		nmods = STRUCT_FGET(strlist, sl_nmods);
5474 		if (nmods <= 0)
5475 			return (EINVAL);
5476 
5477 		claimstr(stp->sd_wrq);
5478 		q = stp->sd_wrq;
5479 		for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) {
5480 			qname = Q2NAME(q->q_next);
5481 			error = strcopyout(qname, &mlist[i], strlen(qname) + 1,
5482 			    copyflag);
5483 			if (error != 0) {
5484 				releasestr(stp->sd_wrq);
5485 				return (error);
5486 			}
5487 		}
5488 		releasestr(stp->sd_wrq);
5489 		return (strcopyout(&i, (void *)arg, sizeof (int), copyflag));
5490 	}
5491 
5492 	case I_CKBAND:
5493 	{
5494 		queue_t *q;
5495 		qband_t *qbp;
5496 
5497 		if ((arg < 0) || (arg >= NBAND))
5498 			return (EINVAL);
5499 		q = _RD(stp->sd_wrq);
5500 		mutex_enter(QLOCK(q));
5501 		if (arg > (int)q->q_nband) {
5502 			*rvalp = 0;
5503 		} else {
5504 			if (arg == 0) {
5505 				if (q->q_first)
5506 					*rvalp = 1;
5507 				else
5508 					*rvalp = 0;
5509 			} else {
5510 				qbp = q->q_bandp;
5511 				while (--arg > 0)
5512 					qbp = qbp->qb_next;
5513 				if (qbp->qb_first)
5514 					*rvalp = 1;
5515 				else
5516 					*rvalp = 0;
5517 			}
5518 		}
5519 		mutex_exit(QLOCK(q));
5520 		return (0);
5521 	}
5522 
5523 	case I_GETBAND:
5524 	{
5525 		int intpri;
5526 		queue_t *q;
5527 
5528 		q = _RD(stp->sd_wrq);
5529 		mutex_enter(QLOCK(q));
5530 		mp = q->q_first;
5531 		if (!mp) {
5532 			mutex_exit(QLOCK(q));
5533 			return (ENODATA);
5534 		}
5535 		intpri = (int)mp->b_band;
5536 		error = strcopyout(&intpri, (void *)arg, sizeof (int),
5537 		    copyflag);
5538 		mutex_exit(QLOCK(q));
5539 		return (error);
5540 	}
5541 
5542 	case I_ATMARK:
5543 	{
5544 		queue_t *q;
5545 
5546 		if (arg & ~(ANYMARK|LASTMARK))
5547 			return (EINVAL);
5548 		q = _RD(stp->sd_wrq);
5549 		mutex_enter(&stp->sd_lock);
5550 		if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5551 			*rvalp = 1;
5552 		} else {
5553 			mutex_enter(QLOCK(q));
5554 			mp = q->q_first;
5555 
5556 			if (mp == NULL)
5557 				*rvalp = 0;
5558 			else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5559 				*rvalp = 1;
5560 			else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5561 				*rvalp = 1;
5562 			else
5563 				*rvalp = 0;
5564 			mutex_exit(QLOCK(q));
5565 		}
5566 		mutex_exit(&stp->sd_lock);
5567 		return (0);
5568 	}
5569 
5570 	case I_CANPUT:
5571 	{
5572 		char band;
5573 
5574 		if ((arg < 0) || (arg >= NBAND))
5575 			return (EINVAL);
5576 		band = (char)arg;
5577 		*rvalp = bcanputnext(stp->sd_wrq, band);
5578 		return (0);
5579 	}
5580 
5581 	case I_SETCLTIME:
5582 	{
5583 		int closetime;
5584 
5585 		error = strcopyin((void *)arg, &closetime, sizeof (int),
5586 		    copyflag);
5587 		if (error)
5588 			return (error);
5589 		if (closetime < 0)
5590 			return (EINVAL);
5591 
5592 		stp->sd_closetime = closetime;
5593 		return (0);
5594 	}
5595 
5596 	case I_GETCLTIME:
5597 	{
5598 		int closetime;
5599 
5600 		closetime = stp->sd_closetime;
5601 		return (strcopyout(&closetime, (void *)arg, sizeof (int),
5602 		    copyflag));
5603 	}
5604 
5605 	case TIOCGSID:
5606 	{
5607 		pid_t sid;
5608 
5609 		mutex_enter(&stp->sd_lock);
5610 		if (stp->sd_sidp == NULL) {
5611 			mutex_exit(&stp->sd_lock);
5612 			return (ENOTTY);
5613 		}
5614 		sid = stp->sd_sidp->pid_id;
5615 		mutex_exit(&stp->sd_lock);
5616 		return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5617 		    copyflag));
5618 	}
5619 
5620 	case TIOCSPGRP:
5621 	{
5622 		pid_t pgrp;
5623 		proc_t *q;
5624 		pid_t	sid, fg_pgid, bg_pgid;
5625 
5626 		if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5627 		    copyflag))
5628 			return (error);
5629 		mutex_enter(&stp->sd_lock);
5630 		mutex_enter(&pidlock);
5631 		if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5632 			mutex_exit(&pidlock);
5633 			mutex_exit(&stp->sd_lock);
5634 			return (ENOTTY);
5635 		}
5636 		if (pgrp == stp->sd_pgidp->pid_id) {
5637 			mutex_exit(&pidlock);
5638 			mutex_exit(&stp->sd_lock);
5639 			return (0);
5640 		}
5641 		if (pgrp <= 0 || pgrp >= maxpid) {
5642 			mutex_exit(&pidlock);
5643 			mutex_exit(&stp->sd_lock);
5644 			return (EINVAL);
5645 		}
5646 		if ((q = pgfind(pgrp)) == NULL ||
5647 		    q->p_sessp != ttoproc(curthread)->p_sessp) {
5648 			mutex_exit(&pidlock);
5649 			mutex_exit(&stp->sd_lock);
5650 			return (EPERM);
5651 		}
5652 		sid = stp->sd_sidp->pid_id;
5653 		fg_pgid = q->p_pgrp;
5654 		bg_pgid = stp->sd_pgidp->pid_id;
5655 		CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5656 		PID_RELE(stp->sd_pgidp);
5657 		ctty_clear_sighuped();
5658 		stp->sd_pgidp = q->p_pgidp;
5659 		PID_HOLD(stp->sd_pgidp);
5660 		mutex_exit(&pidlock);
5661 		mutex_exit(&stp->sd_lock);
5662 		return (0);
5663 	}
5664 
5665 	case TIOCGPGRP:
5666 	{
5667 		pid_t pgrp;
5668 
5669 		mutex_enter(&stp->sd_lock);
5670 		if (stp->sd_sidp == NULL) {
5671 			mutex_exit(&stp->sd_lock);
5672 			return (ENOTTY);
5673 		}
5674 		pgrp = stp->sd_pgidp->pid_id;
5675 		mutex_exit(&stp->sd_lock);
5676 		return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5677 		    copyflag));
5678 	}
5679 
5680 	case TIOCSCTTY:
5681 	{
5682 		return (strctty(stp));
5683 	}
5684 
5685 	case TIOCNOTTY:
5686 	{
5687 		/* freectty() always assumes curproc. */
5688 		if (freectty(B_FALSE) != 0)
5689 			return (0);
5690 		return (ENOTTY);
5691 	}
5692 
5693 	case FIONBIO:
5694 	case FIOASYNC:
5695 		return (0);	/* handled by the upper layer */
5696 	}
5697 }
5698 
5699 /*
5700  * Custom free routine used for M_PASSFP messages.
5701  */
5702 static void
5703 free_passfp(struct k_strrecvfd *srf)
5704 {
5705 	(void) closef(srf->fp);
5706 	kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5707 }
5708 
5709 /* ARGSUSED */
5710 int
5711 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5712 {
5713 	queue_t *qp, *nextqp;
5714 	struct k_strrecvfd *srf;
5715 	mblk_t *mp;
5716 	frtn_t *frtnp;
5717 	size_t bufsize;
5718 	queue_t	*mate = NULL;
5719 	syncq_t	*sq = NULL;
5720 	int retval = 0;
5721 
5722 	if (stp->sd_flag & STRHUP)
5723 		return (ENXIO);
5724 
5725 	claimstr(stp->sd_wrq);
5726 
5727 	/* Fastpath, we have a pipe, and we are already mated, use it. */
5728 	if (STRMATED(stp)) {
5729 		qp = _RD(stp->sd_mate->sd_wrq);
5730 		claimstr(qp);
5731 		mate = qp;
5732 	} else { /* Not already mated. */
5733 
5734 		/*
5735 		 * Walk the stream to the end of this one.
5736 		 * assumes that the claimstr() will prevent
5737 		 * plumbing between the stream head and the
5738 		 * driver from changing
5739 		 */
5740 		qp = stp->sd_wrq;
5741 
5742 		/*
5743 		 * Loop until we reach the end of this stream.
5744 		 * On completion, qp points to the write queue
5745 		 * at the end of the stream, or the read queue
5746 		 * at the stream head if this is a fifo.
5747 		 */
5748 		while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5749 			;
5750 
5751 		/*
5752 		 * Just in case we get a q_next which is NULL, but
5753 		 * not at the end of the stream.  This is actually
5754 		 * broken, so we set an assert to catch it in
5755 		 * debug, and set an error and return if not debug.
5756 		 */
5757 		ASSERT(qp);
5758 		if (qp == NULL) {
5759 			releasestr(stp->sd_wrq);
5760 			return (EINVAL);
5761 		}
5762 
5763 		/*
5764 		 * Enter the syncq for the driver, so (hopefully)
5765 		 * the queue values will not change on us.
5766 		 * XXXX - This will only prevent the race IFF only
5767 		 *   the write side modifies the q_next member, and
5768 		 *   the put procedure is protected by at least
5769 		 *   MT_PERQ.
5770 		 */
5771 		if ((sq = qp->q_syncq) != NULL)
5772 			entersq(sq, SQ_PUT);
5773 
5774 		/* Now get the q_next value from this qp. */
5775 		nextqp = qp->q_next;
5776 
5777 		/*
5778 		 * If nextqp exists and the other stream is different
5779 		 * from this one claim the stream, set the mate, and
5780 		 * get the read queue at the stream head of the other
5781 		 * stream.  Assumes that nextqp was at least valid when
5782 		 * we got it.  Hopefully the entersq of the driver
5783 		 * will prevent it from changing on us.
5784 		 */
5785 		if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5786 			ASSERT(qp->q_qinfo->qi_srvp);
5787 			ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5788 			ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5789 			claimstr(nextqp);
5790 
5791 			/* Make sure we still have a q_next */
5792 			if (nextqp != qp->q_next) {
5793 				releasestr(stp->sd_wrq);
5794 				releasestr(nextqp);
5795 				return (EINVAL);
5796 			}
5797 
5798 			qp = _RD(STREAM(nextqp)->sd_wrq);
5799 			mate = qp;
5800 		}
5801 		/* If we entered the synq above, leave it. */
5802 		if (sq != NULL)
5803 			leavesq(sq, SQ_PUT);
5804 	} /*  STRMATED(STP)  */
5805 
5806 	/* XXX prevents substitution of the ops vector */
5807 	if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5808 		retval = EINVAL;
5809 		goto out;
5810 	}
5811 
5812 	if (qp->q_flag & QFULL) {
5813 		retval = EAGAIN;
5814 		goto out;
5815 	}
5816 
5817 	/*
5818 	 * Since M_PASSFP messages include a file descriptor, we use
5819 	 * esballoc() and specify a custom free routine (free_passfp()) that
5820 	 * will close the descriptor as part of freeing the message.  For
5821 	 * convenience, we stash the frtn_t right after the data block.
5822 	 */
5823 	bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5824 	srf = kmem_alloc(bufsize, KM_NOSLEEP);
5825 	if (srf == NULL) {
5826 		retval = EAGAIN;
5827 		goto out;
5828 	}
5829 
5830 	frtnp = (frtn_t *)(srf + 1);
5831 	frtnp->free_arg = (caddr_t)srf;
5832 	frtnp->free_func = free_passfp;
5833 
5834 	mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5835 	if (mp == NULL) {
5836 		kmem_free(srf, bufsize);
5837 		retval = EAGAIN;
5838 		goto out;
5839 	}
5840 	mp->b_wptr += sizeof (struct k_strrecvfd);
5841 	mp->b_datap->db_type = M_PASSFP;
5842 
5843 	srf->fp = fp;
5844 	srf->uid = crgetuid(curthread->t_cred);
5845 	srf->gid = crgetgid(curthread->t_cred);
5846 	mutex_enter(&fp->f_tlock);
5847 	fp->f_count++;
5848 	mutex_exit(&fp->f_tlock);
5849 
5850 	put(qp, mp);
5851 out:
5852 	releasestr(stp->sd_wrq);
5853 	if (mate)
5854 		releasestr(mate);
5855 	return (retval);
5856 }
5857 
5858 /*
5859  * Send an ioctl message downstream and wait for acknowledgement.
5860  * flags may be set to either U_TO_K or K_TO_K and a combination
5861  * of STR_NOERROR or STR_NOSIG
5862  * STR_NOSIG: Signals are essentially ignored or held and have
5863  *	no effect for the duration of the call.
5864  * STR_NOERROR: Ignores stream head read, write and hup errors.
5865  *	Additionally, if an existing ioctl times out, it is assumed
5866  *	lost and and this ioctl will continue as if the previous ioctl had
5867  *	finished.  ETIME may be returned if this ioctl times out (i.e.
5868  *	ic_timout is not INFTIM).  Non-stream head errors may be returned if
5869  *	the ioc_error indicates that the driver/module had problems,
5870  *	an EFAULT was found when accessing user data, a lack of
5871  * 	resources, etc.
5872  */
5873 int
5874 strdoioctl(
5875 	struct stdata *stp,
5876 	struct strioctl *strioc,
5877 	int fflags,		/* file flags with model info */
5878 	int flag,
5879 	cred_t *crp,
5880 	int *rvalp)
5881 {
5882 	mblk_t *bp;
5883 	struct iocblk *iocbp;
5884 	struct copyreq *reqp;
5885 	struct copyresp *resp;
5886 	int id;
5887 	int transparent = 0;
5888 	int error = 0;
5889 	int len = 0;
5890 	caddr_t taddr;
5891 	int copyflag = (flag & (U_TO_K | K_TO_K));
5892 	int sigflag = (flag & STR_NOSIG);
5893 	int errs;
5894 	uint_t waitflags;
5895 
5896 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5897 	ASSERT((fflags & FMODELS) != 0);
5898 
5899 	TRACE_2(TR_FAC_STREAMS_FR,
5900 	    TR_STRDOIOCTL,
5901 	    "strdoioctl:stp %p strioc %p", stp, strioc);
5902 	if (strioc->ic_len == TRANSPARENT) {	/* send arg in M_DATA block */
5903 		transparent = 1;
5904 		strioc->ic_len = sizeof (intptr_t);
5905 	}
5906 
5907 	if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5908 		return (EINVAL);
5909 
5910 	if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5911 	    crp, curproc->p_pid)) == NULL)
5912 			return (error);
5913 
5914 	bzero(bp->b_wptr, sizeof (union ioctypes));
5915 
5916 	iocbp = (struct iocblk *)bp->b_wptr;
5917 	iocbp->ioc_count = strioc->ic_len;
5918 	iocbp->ioc_cmd = strioc->ic_cmd;
5919 	iocbp->ioc_flag = (fflags & FMODELS);
5920 
5921 	crhold(crp);
5922 	iocbp->ioc_cr = crp;
5923 	DB_TYPE(bp) = M_IOCTL;
5924 	bp->b_wptr += sizeof (struct iocblk);
5925 
5926 	if (flag & STR_NOERROR)
5927 		errs = STPLEX;
5928 	else
5929 		errs = STRHUP|STRDERR|STWRERR|STPLEX;
5930 
5931 	/*
5932 	 * If there is data to copy into ioctl block, do so.
5933 	 */
5934 	if (iocbp->ioc_count > 0) {
5935 		if (transparent)
5936 			/*
5937 			 * Note: STR_NOERROR does not have an effect
5938 			 * in putiocd()
5939 			 */
5940 			id = K_TO_K | sigflag;
5941 		else
5942 			id = flag;
5943 		if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
5944 			freemsg(bp);
5945 			crfree(crp);
5946 			return (error);
5947 		}
5948 
5949 		/*
5950 		 * We could have slept copying in user pages.
5951 		 * Recheck the stream head state (the other end
5952 		 * of a pipe could have gone away).
5953 		 */
5954 		if (stp->sd_flag & errs) {
5955 			mutex_enter(&stp->sd_lock);
5956 			error = strgeterr(stp, errs, 0);
5957 			mutex_exit(&stp->sd_lock);
5958 			if (error != 0) {
5959 				freemsg(bp);
5960 				crfree(crp);
5961 				return (error);
5962 			}
5963 		}
5964 	}
5965 	if (transparent)
5966 		iocbp->ioc_count = TRANSPARENT;
5967 
5968 	/*
5969 	 * Block for up to STRTIMOUT milliseconds if there is an outstanding
5970 	 * ioctl for this stream already running.  All processes
5971 	 * sleeping here will be awakened as a result of an ACK
5972 	 * or NAK being received for the outstanding ioctl, or
5973 	 * as a result of the timer expiring on the outstanding
5974 	 * ioctl (a failure), or as a result of any waiting
5975 	 * process's timer expiring (also a failure).
5976 	 */
5977 
5978 	error = 0;
5979 	mutex_enter(&stp->sd_lock);
5980 	while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) {
5981 		clock_t cv_rval;
5982 
5983 		TRACE_0(TR_FAC_STREAMS_FR,
5984 		    TR_STRDOIOCTL_WAIT,
5985 		    "strdoioctl sleeps - IOCWAIT");
5986 		cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
5987 		    STRTIMOUT, sigflag);
5988 		if (cv_rval <= 0) {
5989 			if (cv_rval == 0) {
5990 				error = EINTR;
5991 			} else {
5992 				if (flag & STR_NOERROR) {
5993 					/*
5994 					 * Terminating current ioctl in
5995 					 * progress -- assume it got lost and
5996 					 * wake up the other thread so that the
5997 					 * operation completes.
5998 					 */
5999 					if (!(stp->sd_flag & IOCWAITNE)) {
6000 						stp->sd_flag |= IOCWAITNE;
6001 						cv_broadcast(&stp->sd_monitor);
6002 					}
6003 					/*
6004 					 * Otherwise, there's a running
6005 					 * STR_NOERROR -- we have no choice
6006 					 * here but to wait forever (or until
6007 					 * interrupted).
6008 					 */
6009 				} else {
6010 					/*
6011 					 * pending ioctl has caused
6012 					 * us to time out
6013 					 */
6014 					error = ETIME;
6015 				}
6016 			}
6017 		} else if ((stp->sd_flag & errs)) {
6018 			error = strgeterr(stp, errs, 0);
6019 		}
6020 		if (error) {
6021 			mutex_exit(&stp->sd_lock);
6022 			freemsg(bp);
6023 			crfree(crp);
6024 			return (error);
6025 		}
6026 	}
6027 
6028 	/*
6029 	 * Have control of ioctl mechanism.
6030 	 * Send down ioctl packet and wait for response.
6031 	 */
6032 	if (stp->sd_iocblk != (mblk_t *)-1) {
6033 		freemsg(stp->sd_iocblk);
6034 	}
6035 	stp->sd_iocblk = NULL;
6036 
6037 	/*
6038 	 * If this is marked with 'noerror' (internal; mostly
6039 	 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6040 	 * in here by setting IOCWAITNE.
6041 	 */
6042 	waitflags = IOCWAIT;
6043 	if (flag & STR_NOERROR)
6044 		waitflags |= IOCWAITNE;
6045 
6046 	stp->sd_flag |= waitflags;
6047 
6048 	/*
6049 	 * Assign sequence number.
6050 	 */
6051 	iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6052 
6053 	mutex_exit(&stp->sd_lock);
6054 
6055 	TRACE_1(TR_FAC_STREAMS_FR,
6056 	    TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6057 	stream_willservice(stp);
6058 	putnext(stp->sd_wrq, bp);
6059 	stream_runservice(stp);
6060 
6061 	/*
6062 	 * Timed wait for acknowledgment.  The wait time is limited by the
6063 	 * timeout value, which must be a positive integer (number of
6064 	 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6065 	 * milliseconds), or -1 (wait forever).  This will be awakened
6066 	 * either by an ACK/NAK message arriving, the timer expiring, or
6067 	 * the timer expiring on another ioctl waiting for control of the
6068 	 * mechanism.
6069 	 */
6070 waitioc:
6071 	mutex_enter(&stp->sd_lock);
6072 
6073 
6074 	/*
6075 	 * If the reply has already arrived, don't sleep.  If awakened from
6076 	 * the sleep, fail only if the reply has not arrived by then.
6077 	 * Otherwise, process the reply.
6078 	 */
6079 	while (!stp->sd_iocblk) {
6080 		clock_t cv_rval;
6081 
6082 		if (stp->sd_flag & errs) {
6083 			error = strgeterr(stp, errs, 0);
6084 			if (error != 0) {
6085 				stp->sd_flag &= ~waitflags;
6086 				cv_broadcast(&stp->sd_iocmonitor);
6087 				mutex_exit(&stp->sd_lock);
6088 				crfree(crp);
6089 				return (error);
6090 			}
6091 		}
6092 
6093 		TRACE_0(TR_FAC_STREAMS_FR,
6094 		    TR_STRDOIOCTL_WAIT2,
6095 		    "strdoioctl sleeps awaiting reply");
6096 		ASSERT(error == 0);
6097 
6098 		cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6099 		    (strioc->ic_timout ?
6100 		    strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6101 
6102 		/*
6103 		 * There are four possible cases here: interrupt, timeout,
6104 		 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6105 		 * valid M_IOCTL reply).
6106 		 *
6107 		 * If we've been awakened by a STR_NOERROR ioctl on some other
6108 		 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6109 		 * will be set.  Pretend as if we just timed out.  Note that
6110 		 * this other thread waited at least STRTIMOUT before trying to
6111 		 * awaken our thread, so this is indistinguishable (even for
6112 		 * INFTIM) from the case where we failed with ETIME waiting on
6113 		 * IOCWAIT in the prior loop.
6114 		 */
6115 		if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6116 		    stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6117 			cv_rval = -1;
6118 		}
6119 
6120 		/*
6121 		 * note: STR_NOERROR does not protect
6122 		 * us here.. use ic_timout < 0
6123 		 */
6124 		if (cv_rval <= 0) {
6125 			if (cv_rval == 0) {
6126 				error = EINTR;
6127 			} else {
6128 				error =  ETIME;
6129 			}
6130 			/*
6131 			 * A message could have come in after we were scheduled
6132 			 * but before we were actually run.
6133 			 */
6134 			bp = stp->sd_iocblk;
6135 			stp->sd_iocblk = NULL;
6136 			if (bp != NULL) {
6137 				if ((bp->b_datap->db_type == M_COPYIN) ||
6138 				    (bp->b_datap->db_type == M_COPYOUT)) {
6139 					mutex_exit(&stp->sd_lock);
6140 					if (bp->b_cont) {
6141 						freemsg(bp->b_cont);
6142 						bp->b_cont = NULL;
6143 					}
6144 					bp->b_datap->db_type = M_IOCDATA;
6145 					bp->b_wptr = bp->b_rptr +
6146 					    sizeof (struct copyresp);
6147 					resp = (struct copyresp *)bp->b_rptr;
6148 					resp->cp_rval =
6149 					    (caddr_t)1; /* failure */
6150 					stream_willservice(stp);
6151 					putnext(stp->sd_wrq, bp);
6152 					stream_runservice(stp);
6153 					mutex_enter(&stp->sd_lock);
6154 				} else {
6155 					freemsg(bp);
6156 				}
6157 			}
6158 			stp->sd_flag &= ~waitflags;
6159 			cv_broadcast(&stp->sd_iocmonitor);
6160 			mutex_exit(&stp->sd_lock);
6161 			crfree(crp);
6162 			return (error);
6163 		}
6164 	}
6165 	bp = stp->sd_iocblk;
6166 	/*
6167 	 * Note: it is strictly impossible to get here with sd_iocblk set to
6168 	 * -1.  This is because the initial loop above doesn't allow any new
6169 	 * ioctls into the fray until all others have passed this point.
6170 	 */
6171 	ASSERT(bp != NULL && bp != (mblk_t *)-1);
6172 	TRACE_1(TR_FAC_STREAMS_FR,
6173 	    TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6174 	if ((bp->b_datap->db_type == M_IOCACK) ||
6175 	    (bp->b_datap->db_type == M_IOCNAK)) {
6176 		/* for detection of duplicate ioctl replies */
6177 		stp->sd_iocblk = (mblk_t *)-1;
6178 		stp->sd_flag &= ~waitflags;
6179 		cv_broadcast(&stp->sd_iocmonitor);
6180 		mutex_exit(&stp->sd_lock);
6181 	} else {
6182 		/*
6183 		 * flags not cleared here because we're still doing
6184 		 * copy in/out for ioctl.
6185 		 */
6186 		stp->sd_iocblk = NULL;
6187 		mutex_exit(&stp->sd_lock);
6188 	}
6189 
6190 
6191 	/*
6192 	 * Have received acknowledgment.
6193 	 */
6194 
6195 	switch (bp->b_datap->db_type) {
6196 	case M_IOCACK:
6197 		/*
6198 		 * Positive ack.
6199 		 */
6200 		iocbp = (struct iocblk *)bp->b_rptr;
6201 
6202 		/*
6203 		 * Set error if indicated.
6204 		 */
6205 		if (iocbp->ioc_error) {
6206 			error = iocbp->ioc_error;
6207 			break;
6208 		}
6209 
6210 		/*
6211 		 * Set return value.
6212 		 */
6213 		*rvalp = iocbp->ioc_rval;
6214 
6215 		/*
6216 		 * Data may have been returned in ACK message (ioc_count > 0).
6217 		 * If so, copy it out to the user's buffer.
6218 		 */
6219 		if (iocbp->ioc_count && !transparent) {
6220 			if (error = getiocd(bp, strioc->ic_dp, copyflag))
6221 				break;
6222 		}
6223 		if (!transparent) {
6224 			if (len)	/* an M_COPYOUT was used with I_STR */
6225 				strioc->ic_len = len;
6226 			else
6227 				strioc->ic_len = (int)iocbp->ioc_count;
6228 		}
6229 		break;
6230 
6231 	case M_IOCNAK:
6232 		/*
6233 		 * Negative ack.
6234 		 *
6235 		 * The only thing to do is set error as specified
6236 		 * in neg ack packet.
6237 		 */
6238 		iocbp = (struct iocblk *)bp->b_rptr;
6239 
6240 		error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6241 		break;
6242 
6243 	case M_COPYIN:
6244 		/*
6245 		 * Driver or module has requested user ioctl data.
6246 		 */
6247 		reqp = (struct copyreq *)bp->b_rptr;
6248 
6249 		/*
6250 		 * M_COPYIN should *never* have a message attached, though
6251 		 * it's harmless if it does -- thus, panic on a DEBUG
6252 		 * kernel and just free it on a non-DEBUG build.
6253 		 */
6254 		ASSERT(bp->b_cont == NULL);
6255 		if (bp->b_cont != NULL) {
6256 			freemsg(bp->b_cont);
6257 			bp->b_cont = NULL;
6258 		}
6259 
6260 		error = putiocd(bp, reqp->cq_addr, flag, crp);
6261 		if (error && bp->b_cont) {
6262 			freemsg(bp->b_cont);
6263 			bp->b_cont = NULL;
6264 		}
6265 
6266 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6267 		bp->b_datap->db_type = M_IOCDATA;
6268 
6269 		mblk_setcred(bp, crp, curproc->p_pid);
6270 		resp = (struct copyresp *)bp->b_rptr;
6271 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6272 		resp->cp_flag = (fflags & FMODELS);
6273 
6274 		stream_willservice(stp);
6275 		putnext(stp->sd_wrq, bp);
6276 		stream_runservice(stp);
6277 
6278 		if (error) {
6279 			mutex_enter(&stp->sd_lock);
6280 			stp->sd_flag &= ~waitflags;
6281 			cv_broadcast(&stp->sd_iocmonitor);
6282 			mutex_exit(&stp->sd_lock);
6283 			crfree(crp);
6284 			return (error);
6285 		}
6286 
6287 		goto waitioc;
6288 
6289 	case M_COPYOUT:
6290 		/*
6291 		 * Driver or module has ioctl data for a user.
6292 		 */
6293 		reqp = (struct copyreq *)bp->b_rptr;
6294 		ASSERT(bp->b_cont != NULL);
6295 
6296 		/*
6297 		 * Always (transparent or non-transparent )
6298 		 * use the address specified in the request
6299 		 */
6300 		taddr = reqp->cq_addr;
6301 		if (!transparent)
6302 			len = (int)reqp->cq_size;
6303 
6304 		/* copyout data to the provided address */
6305 		error = getiocd(bp, taddr, copyflag);
6306 
6307 		freemsg(bp->b_cont);
6308 		bp->b_cont = NULL;
6309 
6310 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6311 		bp->b_datap->db_type = M_IOCDATA;
6312 
6313 		mblk_setcred(bp, crp, curproc->p_pid);
6314 		resp = (struct copyresp *)bp->b_rptr;
6315 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6316 		resp->cp_flag = (fflags & FMODELS);
6317 
6318 		stream_willservice(stp);
6319 		putnext(stp->sd_wrq, bp);
6320 		stream_runservice(stp);
6321 
6322 		if (error) {
6323 			mutex_enter(&stp->sd_lock);
6324 			stp->sd_flag &= ~waitflags;
6325 			cv_broadcast(&stp->sd_iocmonitor);
6326 			mutex_exit(&stp->sd_lock);
6327 			crfree(crp);
6328 			return (error);
6329 		}
6330 		goto waitioc;
6331 
6332 	default:
6333 		ASSERT(0);
6334 		mutex_enter(&stp->sd_lock);
6335 		stp->sd_flag &= ~waitflags;
6336 		cv_broadcast(&stp->sd_iocmonitor);
6337 		mutex_exit(&stp->sd_lock);
6338 		break;
6339 	}
6340 
6341 	freemsg(bp);
6342 	crfree(crp);
6343 	return (error);
6344 }
6345 
6346 /*
6347  * Send an M_CMD message downstream and wait for a reply.  This is a ptools
6348  * special used to retrieve information from modules/drivers a stream without
6349  * being subjected to flow control or interfering with pending messages on the
6350  * stream (e.g. an ioctl in flight).
6351  */
6352 int
6353 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6354 {
6355 	mblk_t *mp;
6356 	struct cmdblk *cmdp;
6357 	int error = 0;
6358 	int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6359 	clock_t rval, timeout = STRTIMOUT;
6360 
6361 	if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6362 	    scp->sc_timeout < -1)
6363 		return (EINVAL);
6364 
6365 	if (scp->sc_timeout > 0)
6366 		timeout = scp->sc_timeout * MILLISEC;
6367 
6368 	if ((mp = allocb_cred(sizeof (struct cmdblk), crp,
6369 	    curproc->p_pid)) == NULL)
6370 		return (ENOMEM);
6371 
6372 	crhold(crp);
6373 
6374 	cmdp = (struct cmdblk *)mp->b_wptr;
6375 	cmdp->cb_cr = crp;
6376 	cmdp->cb_cmd = scp->sc_cmd;
6377 	cmdp->cb_len = scp->sc_len;
6378 	cmdp->cb_error = 0;
6379 	mp->b_wptr += sizeof (struct cmdblk);
6380 
6381 	DB_TYPE(mp) = M_CMD;
6382 	DB_CPID(mp) = curproc->p_pid;
6383 
6384 	/*
6385 	 * Copy in the payload.
6386 	 */
6387 	if (cmdp->cb_len > 0) {
6388 		mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp,
6389 		    curproc->p_pid);
6390 		if (mp->b_cont == NULL) {
6391 			error = ENOMEM;
6392 			goto out;
6393 		}
6394 
6395 		/* cb_len comes from sc_len, which has already been checked */
6396 		ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6397 		(void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6398 		mp->b_cont->b_wptr += cmdp->cb_len;
6399 		DB_CPID(mp->b_cont) = curproc->p_pid;
6400 	}
6401 
6402 	/*
6403 	 * Since this mechanism is strictly for ptools, and since only one
6404 	 * process can be grabbed at a time, we simply fail if there's
6405 	 * currently an operation pending.
6406 	 */
6407 	mutex_enter(&stp->sd_lock);
6408 	if (stp->sd_flag & STRCMDWAIT) {
6409 		mutex_exit(&stp->sd_lock);
6410 		error = EBUSY;
6411 		goto out;
6412 	}
6413 	stp->sd_flag |= STRCMDWAIT;
6414 	ASSERT(stp->sd_cmdblk == NULL);
6415 	mutex_exit(&stp->sd_lock);
6416 
6417 	putnext(stp->sd_wrq, mp);
6418 	mp = NULL;
6419 
6420 	/*
6421 	 * Timed wait for acknowledgment.  If the reply has already arrived,
6422 	 * don't sleep.  If awakened from the sleep, fail only if the reply
6423 	 * has not arrived by then.  Otherwise, process the reply.
6424 	 */
6425 	mutex_enter(&stp->sd_lock);
6426 	while (stp->sd_cmdblk == NULL) {
6427 		if (stp->sd_flag & errs) {
6428 			if ((error = strgeterr(stp, errs, 0)) != 0)
6429 				goto waitout;
6430 		}
6431 
6432 		rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6433 		if (stp->sd_cmdblk != NULL)
6434 			break;
6435 
6436 		if (rval <= 0) {
6437 			error = (rval == 0) ? EINTR : ETIME;
6438 			goto waitout;
6439 		}
6440 	}
6441 
6442 	/*
6443 	 * We received a reply.
6444 	 */
6445 	mp = stp->sd_cmdblk;
6446 	stp->sd_cmdblk = NULL;
6447 	ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6448 	ASSERT(stp->sd_flag & STRCMDWAIT);
6449 	stp->sd_flag &= ~STRCMDWAIT;
6450 	mutex_exit(&stp->sd_lock);
6451 
6452 	cmdp = (struct cmdblk *)mp->b_rptr;
6453 	if ((error = cmdp->cb_error) != 0)
6454 		goto out;
6455 
6456 	/*
6457 	 * Data may have been returned in the reply (cb_len > 0).
6458 	 * If so, copy it out to the user's buffer.
6459 	 */
6460 	if (cmdp->cb_len > 0) {
6461 		if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6462 			error = EPROTO;
6463 			goto out;
6464 		}
6465 
6466 		cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6467 		(void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6468 	}
6469 	scp->sc_len = cmdp->cb_len;
6470 out:
6471 	freemsg(mp);
6472 	crfree(crp);
6473 	return (error);
6474 waitout:
6475 	ASSERT(stp->sd_cmdblk == NULL);
6476 	stp->sd_flag &= ~STRCMDWAIT;
6477 	mutex_exit(&stp->sd_lock);
6478 	crfree(crp);
6479 	return (error);
6480 }
6481 
6482 /*
6483  * For the SunOS keyboard driver.
6484  * Return the next available "ioctl" sequence number.
6485  * Exported, so that streams modules can send "ioctl" messages
6486  * downstream from their open routine.
6487  */
6488 int
6489 getiocseqno(void)
6490 {
6491 	int	i;
6492 
6493 	mutex_enter(&strresources);
6494 	i = ++ioc_id;
6495 	mutex_exit(&strresources);
6496 	return (i);
6497 }
6498 
6499 /*
6500  * Get the next message from the read queue.  If the message is
6501  * priority, STRPRI will have been set by strrput().  This flag
6502  * should be reset only when the entire message at the front of the
6503  * queue as been consumed.
6504  *
6505  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6506  */
6507 int
6508 strgetmsg(
6509 	struct vnode *vp,
6510 	struct strbuf *mctl,
6511 	struct strbuf *mdata,
6512 	unsigned char *prip,
6513 	int *flagsp,
6514 	int fmode,
6515 	rval_t *rvp)
6516 {
6517 	struct stdata *stp;
6518 	mblk_t *bp, *nbp;
6519 	mblk_t *savemp = NULL;
6520 	mblk_t *savemptail = NULL;
6521 	uint_t old_sd_flag;
6522 	int flg;
6523 	int more = 0;
6524 	int error = 0;
6525 	char first = 1;
6526 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6527 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6528 	unsigned char pri = 0;
6529 	queue_t *q;
6530 	int	pr = 0;			/* Partial read successful */
6531 	struct uio uios;
6532 	struct uio *uiop = &uios;
6533 	struct iovec iovs;
6534 	unsigned char type;
6535 
6536 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6537 	    "strgetmsg:%p", vp);
6538 
6539 	ASSERT(vp->v_stream);
6540 	stp = vp->v_stream;
6541 	rvp->r_val1 = 0;
6542 
6543 	mutex_enter(&stp->sd_lock);
6544 
6545 	if ((error = i_straccess(stp, JCREAD)) != 0) {
6546 		mutex_exit(&stp->sd_lock);
6547 		return (error);
6548 	}
6549 
6550 	if (stp->sd_flag & (STRDERR|STPLEX)) {
6551 		error = strgeterr(stp, STRDERR|STPLEX, 0);
6552 		if (error != 0) {
6553 			mutex_exit(&stp->sd_lock);
6554 			return (error);
6555 		}
6556 	}
6557 	mutex_exit(&stp->sd_lock);
6558 
6559 	switch (*flagsp) {
6560 	case MSG_HIPRI:
6561 		if (*prip != 0)
6562 			return (EINVAL);
6563 		break;
6564 
6565 	case MSG_ANY:
6566 	case MSG_BAND:
6567 		break;
6568 
6569 	default:
6570 		return (EINVAL);
6571 	}
6572 	/*
6573 	 * Setup uio and iov for data part
6574 	 */
6575 	iovs.iov_base = mdata->buf;
6576 	iovs.iov_len = mdata->maxlen;
6577 	uios.uio_iov = &iovs;
6578 	uios.uio_iovcnt = 1;
6579 	uios.uio_loffset = 0;
6580 	uios.uio_segflg = UIO_USERSPACE;
6581 	uios.uio_fmode = 0;
6582 	uios.uio_extflg = UIO_COPY_CACHED;
6583 	uios.uio_resid = mdata->maxlen;
6584 	uios.uio_offset = 0;
6585 
6586 	q = _RD(stp->sd_wrq);
6587 	mutex_enter(&stp->sd_lock);
6588 	old_sd_flag = stp->sd_flag;
6589 	mark = 0;
6590 	for (;;) {
6591 		int done = 0;
6592 		mblk_t *q_first = q->q_first;
6593 
6594 		/*
6595 		 * Get the next message of appropriate priority
6596 		 * from the stream head.  If the caller is interested
6597 		 * in band or hipri messages, then they should already
6598 		 * be enqueued at the stream head.  On the other hand
6599 		 * if the caller wants normal (band 0) messages, they
6600 		 * might be deferred in a synchronous stream and they
6601 		 * will need to be pulled up.
6602 		 *
6603 		 * After we have dequeued a message, we might find that
6604 		 * it was a deferred M_SIG that was enqueued at the
6605 		 * stream head.  It must now be posted as part of the
6606 		 * read by calling strsignal_nolock().
6607 		 *
6608 		 * Also note that strrput does not enqueue an M_PCSIG,
6609 		 * and there cannot be more than one hipri message,
6610 		 * so there was no need to have the M_PCSIG case.
6611 		 *
6612 		 * At some time it might be nice to try and wrap the
6613 		 * functionality of kstrgetmsg() and strgetmsg() into
6614 		 * a common routine so to reduce the amount of replicated
6615 		 * code (since they are extremely similar).
6616 		 */
6617 		if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6618 			/* Asking for normal, band0 data */
6619 			bp = strget(stp, q, uiop, first, &error);
6620 			ASSERT(MUTEX_HELD(&stp->sd_lock));
6621 			if (bp != NULL) {
6622 				if (DB_TYPE(bp) == M_SIG) {
6623 					strsignal_nolock(stp, *bp->b_rptr,
6624 					    bp->b_band);
6625 					freemsg(bp);
6626 					continue;
6627 				} else {
6628 					break;
6629 				}
6630 			}
6631 			if (error != 0)
6632 				goto getmout;
6633 
6634 		/*
6635 		 * We can't depend on the value of STRPRI here because
6636 		 * the stream head may be in transit. Therefore, we
6637 		 * must look at the type of the first message to
6638 		 * determine if a high priority messages is waiting
6639 		 */
6640 		} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6641 		    DB_TYPE(q_first) >= QPCTL &&
6642 		    (bp = getq_noenab(q, 0)) != NULL) {
6643 			/* Asked for HIPRI and got one */
6644 			ASSERT(DB_TYPE(bp) >= QPCTL);
6645 			break;
6646 		} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6647 		    ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
6648 		    (bp = getq_noenab(q, 0)) != NULL) {
6649 			/*
6650 			 * Asked for at least band "prip" and got either at
6651 			 * least that band or a hipri message.
6652 			 */
6653 			ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
6654 			if (DB_TYPE(bp) == M_SIG) {
6655 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6656 				freemsg(bp);
6657 				continue;
6658 			} else {
6659 				break;
6660 			}
6661 		}
6662 
6663 		/* No data. Time to sleep? */
6664 		qbackenable(q, 0);
6665 
6666 		/*
6667 		 * If STRHUP or STREOF, return 0 length control and data.
6668 		 * If resid is 0, then a read(fd,buf,0) was done. Do not
6669 		 * sleep to satisfy this request because by default we have
6670 		 * zero bytes to return.
6671 		 */
6672 		if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6673 		    mdata->maxlen == 0)) {
6674 			mctl->len = mdata->len = 0;
6675 			*flagsp = 0;
6676 			mutex_exit(&stp->sd_lock);
6677 			return (0);
6678 		}
6679 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6680 		    "strgetmsg calls strwaitq:%p, %p",
6681 		    vp, uiop);
6682 		if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6683 		    &done)) != 0) || done) {
6684 			TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6685 			    "strgetmsg error or done:%p, %p",
6686 			    vp, uiop);
6687 			mutex_exit(&stp->sd_lock);
6688 			return (error);
6689 		}
6690 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6691 		    "strgetmsg awakes:%p, %p", vp, uiop);
6692 		if ((error = i_straccess(stp, JCREAD)) != 0) {
6693 			mutex_exit(&stp->sd_lock);
6694 			return (error);
6695 		}
6696 		first = 0;
6697 	}
6698 	ASSERT(bp != NULL);
6699 	/*
6700 	 * Extract any mark information. If the message is not completely
6701 	 * consumed this information will be put in the mblk
6702 	 * that is putback.
6703 	 * If MSGMARKNEXT is set and the message is completely consumed
6704 	 * the STRATMARK flag will be set below. Likewise, if
6705 	 * MSGNOTMARKNEXT is set and the message is
6706 	 * completely consumed STRNOTATMARK will be set.
6707 	 */
6708 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6709 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6710 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
6711 	if (mark != 0 && bp == stp->sd_mark) {
6712 		mark |= _LASTMARK;
6713 		stp->sd_mark = NULL;
6714 	}
6715 	/*
6716 	 * keep track of the original message type and priority
6717 	 */
6718 	pri = bp->b_band;
6719 	type = bp->b_datap->db_type;
6720 	if (type == M_PASSFP) {
6721 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6722 			stp->sd_mark = bp;
6723 		bp->b_flag |= mark & ~_LASTMARK;
6724 		putback(stp, q, bp, pri);
6725 		qbackenable(q, pri);
6726 		mutex_exit(&stp->sd_lock);
6727 		return (EBADMSG);
6728 	}
6729 	ASSERT(type != M_SIG);
6730 
6731 	/*
6732 	 * Set this flag so strrput will not generate signals. Need to
6733 	 * make sure this flag is cleared before leaving this routine
6734 	 * else signals will stop being sent.
6735 	 */
6736 	stp->sd_flag |= STRGETINPROG;
6737 	mutex_exit(&stp->sd_lock);
6738 
6739 	if (STREAM_NEEDSERVICE(stp))
6740 		stream_runservice(stp);
6741 
6742 	/*
6743 	 * Set HIPRI flag if message is priority.
6744 	 */
6745 	if (type >= QPCTL)
6746 		flg = MSG_HIPRI;
6747 	else
6748 		flg = MSG_BAND;
6749 
6750 	/*
6751 	 * First process PROTO or PCPROTO blocks, if any.
6752 	 */
6753 	if (mctl->maxlen >= 0 && type != M_DATA) {
6754 		size_t	n, bcnt;
6755 		char	*ubuf;
6756 
6757 		bcnt = mctl->maxlen;
6758 		ubuf = mctl->buf;
6759 		while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6760 			if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6761 			    copyout(bp->b_rptr, ubuf, n)) {
6762 				error = EFAULT;
6763 				mutex_enter(&stp->sd_lock);
6764 				/*
6765 				 * clear stream head pri flag based on
6766 				 * first message type
6767 				 */
6768 				if (type >= QPCTL) {
6769 					ASSERT(type == M_PCPROTO);
6770 					stp->sd_flag &= ~STRPRI;
6771 				}
6772 				more = 0;
6773 				freemsg(bp);
6774 				goto getmout;
6775 			}
6776 			ubuf += n;
6777 			bp->b_rptr += n;
6778 			if (bp->b_rptr >= bp->b_wptr) {
6779 				nbp = bp;
6780 				bp = bp->b_cont;
6781 				freeb(nbp);
6782 			}
6783 			ASSERT(n <= bcnt);
6784 			bcnt -= n;
6785 			if (bcnt == 0)
6786 				break;
6787 		}
6788 		mctl->len = mctl->maxlen - bcnt;
6789 	} else
6790 		mctl->len = -1;
6791 
6792 	if (bp && bp->b_datap->db_type != M_DATA) {
6793 		/*
6794 		 * More PROTO blocks in msg.
6795 		 */
6796 		more |= MORECTL;
6797 		savemp = bp;
6798 		while (bp && bp->b_datap->db_type != M_DATA) {
6799 			savemptail = bp;
6800 			bp = bp->b_cont;
6801 		}
6802 		savemptail->b_cont = NULL;
6803 	}
6804 
6805 	/*
6806 	 * Now process DATA blocks, if any.
6807 	 */
6808 	if (mdata->maxlen >= 0 && bp) {
6809 		/*
6810 		 * struiocopyout will consume a potential zero-length
6811 		 * M_DATA even if uio_resid is zero.
6812 		 */
6813 		size_t oldresid = uiop->uio_resid;
6814 
6815 		bp = struiocopyout(bp, uiop, &error);
6816 		if (error != 0) {
6817 			mutex_enter(&stp->sd_lock);
6818 			/*
6819 			 * clear stream head hi pri flag based on
6820 			 * first message
6821 			 */
6822 			if (type >= QPCTL) {
6823 				ASSERT(type == M_PCPROTO);
6824 				stp->sd_flag &= ~STRPRI;
6825 			}
6826 			more = 0;
6827 			freemsg(savemp);
6828 			goto getmout;
6829 		}
6830 		/*
6831 		 * (pr == 1) indicates a partial read.
6832 		 */
6833 		if (oldresid > uiop->uio_resid)
6834 			pr = 1;
6835 		mdata->len = mdata->maxlen - uiop->uio_resid;
6836 	} else
6837 		mdata->len = -1;
6838 
6839 	if (bp) {			/* more data blocks in msg */
6840 		more |= MOREDATA;
6841 		if (savemp)
6842 			savemptail->b_cont = bp;
6843 		else
6844 			savemp = bp;
6845 	}
6846 
6847 	mutex_enter(&stp->sd_lock);
6848 	if (savemp) {
6849 		if (pr && (savemp->b_datap->db_type == M_DATA) &&
6850 		    msgnodata(savemp)) {
6851 			/*
6852 			 * Avoid queuing a zero-length tail part of
6853 			 * a message. pr=1 indicates that we read some of
6854 			 * the message.
6855 			 */
6856 			freemsg(savemp);
6857 			more &= ~MOREDATA;
6858 			/*
6859 			 * clear stream head hi pri flag based on
6860 			 * first message
6861 			 */
6862 			if (type >= QPCTL) {
6863 				ASSERT(type == M_PCPROTO);
6864 				stp->sd_flag &= ~STRPRI;
6865 			}
6866 		} else {
6867 			savemp->b_band = pri;
6868 			/*
6869 			 * If the first message was HIPRI and the one we're
6870 			 * putting back isn't, then clear STRPRI, otherwise
6871 			 * set STRPRI again.  Note that we must set STRPRI
6872 			 * again since the flush logic in strrput_nondata()
6873 			 * may have cleared it while we had sd_lock dropped.
6874 			 */
6875 			if (type >= QPCTL) {
6876 				ASSERT(type == M_PCPROTO);
6877 				if (queclass(savemp) < QPCTL)
6878 					stp->sd_flag &= ~STRPRI;
6879 				else
6880 					stp->sd_flag |= STRPRI;
6881 			} else if (queclass(savemp) >= QPCTL) {
6882 				/*
6883 				 * The first message was not a HIPRI message,
6884 				 * but the one we are about to putback is.
6885 				 * For simplicitly, we do not allow for HIPRI
6886 				 * messages to be embedded in the message
6887 				 * body, so just force it to same type as
6888 				 * first message.
6889 				 */
6890 				ASSERT(type == M_DATA || type == M_PROTO);
6891 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6892 				savemp->b_datap->db_type = type;
6893 			}
6894 			if (mark != 0) {
6895 				savemp->b_flag |= mark & ~_LASTMARK;
6896 				if ((mark & _LASTMARK) &&
6897 				    (stp->sd_mark == NULL)) {
6898 					/*
6899 					 * If another marked message arrived
6900 					 * while sd_lock was not held sd_mark
6901 					 * would be non-NULL.
6902 					 */
6903 					stp->sd_mark = savemp;
6904 				}
6905 			}
6906 			putback(stp, q, savemp, pri);
6907 		}
6908 	} else {
6909 		/*
6910 		 * The complete message was consumed.
6911 		 *
6912 		 * If another M_PCPROTO arrived while sd_lock was not held
6913 		 * it would have been discarded since STRPRI was still set.
6914 		 *
6915 		 * Move the MSG*MARKNEXT information
6916 		 * to the stream head just in case
6917 		 * the read queue becomes empty.
6918 		 * clear stream head hi pri flag based on
6919 		 * first message
6920 		 *
6921 		 * If the stream head was at the mark
6922 		 * (STRATMARK) before we dropped sd_lock above
6923 		 * and some data was consumed then we have
6924 		 * moved past the mark thus STRATMARK is
6925 		 * cleared. However, if a message arrived in
6926 		 * strrput during the copyout above causing
6927 		 * STRATMARK to be set we can not clear that
6928 		 * flag.
6929 		 */
6930 		if (type >= QPCTL) {
6931 			ASSERT(type == M_PCPROTO);
6932 			stp->sd_flag &= ~STRPRI;
6933 		}
6934 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
6935 			if (mark & MSGMARKNEXT) {
6936 				stp->sd_flag &= ~STRNOTATMARK;
6937 				stp->sd_flag |= STRATMARK;
6938 			} else if (mark & MSGNOTMARKNEXT) {
6939 				stp->sd_flag &= ~STRATMARK;
6940 				stp->sd_flag |= STRNOTATMARK;
6941 			} else {
6942 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
6943 			}
6944 		} else if (pr && (old_sd_flag & STRATMARK)) {
6945 			stp->sd_flag &= ~STRATMARK;
6946 		}
6947 	}
6948 
6949 	*flagsp = flg;
6950 	*prip = pri;
6951 
6952 	/*
6953 	 * Getmsg cleanup processing - if the state of the queue has changed
6954 	 * some signals may need to be sent and/or poll awakened.
6955 	 */
6956 getmout:
6957 	qbackenable(q, pri);
6958 
6959 	/*
6960 	 * We dropped the stream head lock above. Send all M_SIG messages
6961 	 * before processing stream head for SIGPOLL messages.
6962 	 */
6963 	ASSERT(MUTEX_HELD(&stp->sd_lock));
6964 	while ((bp = q->q_first) != NULL &&
6965 	    (bp->b_datap->db_type == M_SIG)) {
6966 		/*
6967 		 * sd_lock is held so the content of the read queue can not
6968 		 * change.
6969 		 */
6970 		bp = getq(q);
6971 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
6972 
6973 		strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6974 		mutex_exit(&stp->sd_lock);
6975 		freemsg(bp);
6976 		if (STREAM_NEEDSERVICE(stp))
6977 			stream_runservice(stp);
6978 		mutex_enter(&stp->sd_lock);
6979 	}
6980 
6981 	/*
6982 	 * stream head cannot change while we make the determination
6983 	 * whether or not to send a signal. Drop the flag to allow strrput
6984 	 * to send firstmsgsigs again.
6985 	 */
6986 	stp->sd_flag &= ~STRGETINPROG;
6987 
6988 	/*
6989 	 * If the type of message at the front of the queue changed
6990 	 * due to the receive the appropriate signals and pollwakeup events
6991 	 * are generated. The type of changes are:
6992 	 *	Processed a hipri message, q_first is not hipri.
6993 	 *	Processed a band X message, and q_first is band Y.
6994 	 * The generated signals and pollwakeups are identical to what
6995 	 * strrput() generates should the message that is now on q_first
6996 	 * arrive to an empty read queue.
6997 	 *
6998 	 * Note: only strrput will send a signal for a hipri message.
6999 	 */
7000 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7001 		strsigset_t signals = 0;
7002 		strpollset_t pollwakeups = 0;
7003 
7004 		if (flg & MSG_HIPRI) {
7005 			/*
7006 			 * Removed a hipri message. Regular data at
7007 			 * the front of  the queue.
7008 			 */
7009 			if (bp->b_band == 0) {
7010 				signals = S_INPUT | S_RDNORM;
7011 				pollwakeups = POLLIN | POLLRDNORM;
7012 			} else {
7013 				signals = S_INPUT | S_RDBAND;
7014 				pollwakeups = POLLIN | POLLRDBAND;
7015 			}
7016 		} else if (pri != bp->b_band) {
7017 			/*
7018 			 * The band is different for the new q_first.
7019 			 */
7020 			if (bp->b_band == 0) {
7021 				signals = S_RDNORM;
7022 				pollwakeups = POLLIN | POLLRDNORM;
7023 			} else {
7024 				signals = S_RDBAND;
7025 				pollwakeups = POLLIN | POLLRDBAND;
7026 			}
7027 		}
7028 
7029 		if (pollwakeups != 0) {
7030 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7031 				if (!(stp->sd_rput_opt & SR_POLLIN))
7032 					goto no_pollwake;
7033 				stp->sd_rput_opt &= ~SR_POLLIN;
7034 			}
7035 			mutex_exit(&stp->sd_lock);
7036 			pollwakeup(&stp->sd_pollist, pollwakeups);
7037 			mutex_enter(&stp->sd_lock);
7038 		}
7039 no_pollwake:
7040 
7041 		if (stp->sd_sigflags & signals)
7042 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7043 	}
7044 	mutex_exit(&stp->sd_lock);
7045 
7046 	rvp->r_val1 = more;
7047 	return (error);
7048 #undef	_LASTMARK
7049 }
7050 
7051 /*
7052  * Get the next message from the read queue.  If the message is
7053  * priority, STRPRI will have been set by strrput().  This flag
7054  * should be reset only when the entire message at the front of the
7055  * queue as been consumed.
7056  *
7057  * If uiop is NULL all data is returned in mctlp.
7058  * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7059  * not enabled.
7060  * The timeout parameter is in milliseconds; -1 for infinity.
7061  * This routine handles the consolidation private flags:
7062  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7063  *	MSG_DELAYERROR	Defer the error check until the queue is empty.
7064  *	MSG_HOLDSIG	Hold signals while waiting for data.
7065  *	MSG_IPEEK	Only peek at messages.
7066  *	MSG_DISCARDTAIL	Discard the tail M_DATA part of the message
7067  *			that doesn't fit.
7068  *	MSG_NOMARK	If the message is marked leave it on the queue.
7069  *
7070  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7071  */
7072 int
7073 kstrgetmsg(
7074 	struct vnode *vp,
7075 	mblk_t **mctlp,
7076 	struct uio *uiop,
7077 	unsigned char *prip,
7078 	int *flagsp,
7079 	clock_t timout,
7080 	rval_t *rvp)
7081 {
7082 	struct stdata *stp;
7083 	mblk_t *bp, *nbp;
7084 	mblk_t *savemp = NULL;
7085 	mblk_t *savemptail = NULL;
7086 	int flags;
7087 	uint_t old_sd_flag;
7088 	int flg;
7089 	int more = 0;
7090 	int error = 0;
7091 	char first = 1;
7092 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
7093 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
7094 	unsigned char pri = 0;
7095 	queue_t *q;
7096 	int	pr = 0;			/* Partial read successful */
7097 	unsigned char type;
7098 
7099 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7100 	    "kstrgetmsg:%p", vp);
7101 
7102 	ASSERT(vp->v_stream);
7103 	stp = vp->v_stream;
7104 	rvp->r_val1 = 0;
7105 
7106 	mutex_enter(&stp->sd_lock);
7107 
7108 	if ((error = i_straccess(stp, JCREAD)) != 0) {
7109 		mutex_exit(&stp->sd_lock);
7110 		return (error);
7111 	}
7112 
7113 	flags = *flagsp;
7114 	if (stp->sd_flag & (STRDERR|STPLEX)) {
7115 		if ((stp->sd_flag & STPLEX) ||
7116 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7117 			error = strgeterr(stp, STRDERR|STPLEX,
7118 			    (flags & MSG_IPEEK));
7119 			if (error != 0) {
7120 				mutex_exit(&stp->sd_lock);
7121 				return (error);
7122 			}
7123 		}
7124 	}
7125 	mutex_exit(&stp->sd_lock);
7126 
7127 	switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7128 	case MSG_HIPRI:
7129 		if (*prip != 0)
7130 			return (EINVAL);
7131 		break;
7132 
7133 	case MSG_ANY:
7134 	case MSG_BAND:
7135 		break;
7136 
7137 	default:
7138 		return (EINVAL);
7139 	}
7140 
7141 retry:
7142 	q = _RD(stp->sd_wrq);
7143 	mutex_enter(&stp->sd_lock);
7144 	old_sd_flag = stp->sd_flag;
7145 	mark = 0;
7146 	for (;;) {
7147 		int done = 0;
7148 		int waitflag;
7149 		int fmode;
7150 		mblk_t *q_first = q->q_first;
7151 
7152 		/*
7153 		 * This section of the code operates just like the code
7154 		 * in strgetmsg().  There is a comment there about what
7155 		 * is going on here.
7156 		 */
7157 		if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7158 			/* Asking for normal, band0 data */
7159 			bp = strget(stp, q, uiop, first, &error);
7160 			ASSERT(MUTEX_HELD(&stp->sd_lock));
7161 			if (bp != NULL) {
7162 				if (DB_TYPE(bp) == M_SIG) {
7163 					strsignal_nolock(stp, *bp->b_rptr,
7164 					    bp->b_band);
7165 					freemsg(bp);
7166 					continue;
7167 				} else {
7168 					break;
7169 				}
7170 			}
7171 			if (error != 0) {
7172 				goto getmout;
7173 			}
7174 		/*
7175 		 * We can't depend on the value of STRPRI here because
7176 		 * the stream head may be in transit. Therefore, we
7177 		 * must look at the type of the first message to
7178 		 * determine if a high priority messages is waiting
7179 		 */
7180 		} else if ((flags & MSG_HIPRI) && q_first != NULL &&
7181 		    DB_TYPE(q_first) >= QPCTL &&
7182 		    (bp = getq_noenab(q, 0)) != NULL) {
7183 			ASSERT(DB_TYPE(bp) >= QPCTL);
7184 			break;
7185 		} else if ((flags & MSG_BAND) && q_first != NULL &&
7186 		    ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
7187 		    (bp = getq_noenab(q, 0)) != NULL) {
7188 			/*
7189 			 * Asked for at least band "prip" and got either at
7190 			 * least that band or a hipri message.
7191 			 */
7192 			ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
7193 			if (DB_TYPE(bp) == M_SIG) {
7194 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7195 				freemsg(bp);
7196 				continue;
7197 			} else {
7198 				break;
7199 			}
7200 		}
7201 
7202 		/* No data. Time to sleep? */
7203 		qbackenable(q, 0);
7204 
7205 		/*
7206 		 * Delayed error notification?
7207 		 */
7208 		if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7209 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7210 			error = strgeterr(stp, STRDERR|STPLEX,
7211 			    (flags & MSG_IPEEK));
7212 			if (error != 0) {
7213 				mutex_exit(&stp->sd_lock);
7214 				return (error);
7215 			}
7216 		}
7217 
7218 		/*
7219 		 * If STRHUP or STREOF, return 0 length control and data.
7220 		 * If a read(fd,buf,0) has been done, do not sleep, just
7221 		 * return.
7222 		 *
7223 		 * If mctlp == NULL and uiop == NULL, then the code will
7224 		 * do the strwaitq. This is an understood way of saying
7225 		 * sleep "polling" until a message is received.
7226 		 */
7227 		if ((stp->sd_flag & (STRHUP|STREOF)) ||
7228 		    (uiop != NULL && uiop->uio_resid == 0)) {
7229 			if (mctlp != NULL)
7230 				*mctlp = NULL;
7231 			*flagsp = 0;
7232 			mutex_exit(&stp->sd_lock);
7233 			return (0);
7234 		}
7235 
7236 		waitflag = GETWAIT;
7237 		if (flags &
7238 		    (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7239 			if (flags & MSG_HOLDSIG)
7240 				waitflag |= STR_NOSIG;
7241 			if (flags & MSG_IGNERROR)
7242 				waitflag |= STR_NOERROR;
7243 			if (flags & MSG_IPEEK)
7244 				waitflag |= STR_PEEK;
7245 			if (flags & MSG_DELAYERROR)
7246 				waitflag |= STR_DELAYERR;
7247 		}
7248 		if (uiop != NULL)
7249 			fmode = uiop->uio_fmode;
7250 		else
7251 			fmode = 0;
7252 
7253 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7254 		    "kstrgetmsg calls strwaitq:%p, %p",
7255 		    vp, uiop);
7256 		if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7257 		    fmode, timout, &done))) != 0 || done) {
7258 			TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7259 			    "kstrgetmsg error or done:%p, %p",
7260 			    vp, uiop);
7261 			mutex_exit(&stp->sd_lock);
7262 			return (error);
7263 		}
7264 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7265 		    "kstrgetmsg awakes:%p, %p", vp, uiop);
7266 		if ((error = i_straccess(stp, JCREAD)) != 0) {
7267 			mutex_exit(&stp->sd_lock);
7268 			return (error);
7269 		}
7270 		first = 0;
7271 	}
7272 	ASSERT(bp != NULL);
7273 	/*
7274 	 * Extract any mark information. If the message is not completely
7275 	 * consumed this information will be put in the mblk
7276 	 * that is putback.
7277 	 * If MSGMARKNEXT is set and the message is completely consumed
7278 	 * the STRATMARK flag will be set below. Likewise, if
7279 	 * MSGNOTMARKNEXT is set and the message is
7280 	 * completely consumed STRNOTATMARK will be set.
7281 	 */
7282 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7283 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7284 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
7285 	pri = bp->b_band;
7286 	if (mark != 0) {
7287 		/*
7288 		 * If the caller doesn't want the mark return.
7289 		 * Used to implement MSG_WAITALL in sockets.
7290 		 */
7291 		if (flags & MSG_NOMARK) {
7292 			putback(stp, q, bp, pri);
7293 			qbackenable(q, pri);
7294 			mutex_exit(&stp->sd_lock);
7295 			return (EWOULDBLOCK);
7296 		}
7297 		if (bp == stp->sd_mark) {
7298 			mark |= _LASTMARK;
7299 			stp->sd_mark = NULL;
7300 		}
7301 	}
7302 
7303 	/*
7304 	 * keep track of the first message type
7305 	 */
7306 	type = bp->b_datap->db_type;
7307 
7308 	if (bp->b_datap->db_type == M_PASSFP) {
7309 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7310 			stp->sd_mark = bp;
7311 		bp->b_flag |= mark & ~_LASTMARK;
7312 		putback(stp, q, bp, pri);
7313 		qbackenable(q, pri);
7314 		mutex_exit(&stp->sd_lock);
7315 		return (EBADMSG);
7316 	}
7317 	ASSERT(type != M_SIG);
7318 
7319 	if (flags & MSG_IPEEK) {
7320 		/*
7321 		 * Clear any struioflag - we do the uiomove over again
7322 		 * when peeking since it simplifies the code.
7323 		 *
7324 		 * Dup the message and put the original back on the queue.
7325 		 * If dupmsg() fails, try again with copymsg() to see if
7326 		 * there is indeed a shortage of memory.  dupmsg() may fail
7327 		 * if db_ref in any of the messages reaches its limit.
7328 		 */
7329 
7330 		if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7331 			/*
7332 			 * Restore the state of the stream head since we
7333 			 * need to drop sd_lock (strwaitbuf is sleeping).
7334 			 */
7335 			size_t size = msgdsize(bp);
7336 
7337 			if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7338 				stp->sd_mark = bp;
7339 			bp->b_flag |= mark & ~_LASTMARK;
7340 			putback(stp, q, bp, pri);
7341 			mutex_exit(&stp->sd_lock);
7342 			error = strwaitbuf(size, BPRI_HI);
7343 			if (error) {
7344 				/*
7345 				 * There is no net change to the queue thus
7346 				 * no need to qbackenable.
7347 				 */
7348 				return (error);
7349 			}
7350 			goto retry;
7351 		}
7352 
7353 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7354 			stp->sd_mark = bp;
7355 		bp->b_flag |= mark & ~_LASTMARK;
7356 		putback(stp, q, bp, pri);
7357 		bp = nbp;
7358 	}
7359 
7360 	/*
7361 	 * Set this flag so strrput will not generate signals. Need to
7362 	 * make sure this flag is cleared before leaving this routine
7363 	 * else signals will stop being sent.
7364 	 */
7365 	stp->sd_flag |= STRGETINPROG;
7366 	mutex_exit(&stp->sd_lock);
7367 
7368 	if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7369 		mblk_t *tmp, *prevmp;
7370 
7371 		/*
7372 		 * Put first non-data mblk back to stream head and
7373 		 * cut the mblk chain so sd_rputdatafunc only sees
7374 		 * M_DATA mblks. We can skip the first mblk since it
7375 		 * is M_DATA according to the condition above.
7376 		 */
7377 		for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7378 		    prevmp = tmp, tmp = tmp->b_cont) {
7379 			if (DB_TYPE(tmp) != M_DATA) {
7380 				prevmp->b_cont = NULL;
7381 				mutex_enter(&stp->sd_lock);
7382 				putback(stp, q, tmp, tmp->b_band);
7383 				mutex_exit(&stp->sd_lock);
7384 				break;
7385 			}
7386 		}
7387 
7388 		bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7389 		    NULL, NULL, NULL, NULL);
7390 
7391 		if (bp == NULL)
7392 			goto retry;
7393 	}
7394 
7395 	if (STREAM_NEEDSERVICE(stp))
7396 		stream_runservice(stp);
7397 
7398 	/*
7399 	 * Set HIPRI flag if message is priority.
7400 	 */
7401 	if (type >= QPCTL)
7402 		flg = MSG_HIPRI;
7403 	else
7404 		flg = MSG_BAND;
7405 
7406 	/*
7407 	 * First process PROTO or PCPROTO blocks, if any.
7408 	 */
7409 	if (mctlp != NULL && type != M_DATA) {
7410 		mblk_t *nbp;
7411 
7412 		*mctlp = bp;
7413 		while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7414 			bp = bp->b_cont;
7415 		nbp = bp->b_cont;
7416 		bp->b_cont = NULL;
7417 		bp = nbp;
7418 	}
7419 
7420 	if (bp && bp->b_datap->db_type != M_DATA) {
7421 		/*
7422 		 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7423 		 */
7424 		more |= MORECTL;
7425 		savemp = bp;
7426 		while (bp && bp->b_datap->db_type != M_DATA) {
7427 			savemptail = bp;
7428 			bp = bp->b_cont;
7429 		}
7430 		savemptail->b_cont = NULL;
7431 	}
7432 
7433 	/*
7434 	 * Now process DATA blocks, if any.
7435 	 */
7436 	if (uiop == NULL) {
7437 		/* Append data to tail of mctlp */
7438 
7439 		if (mctlp != NULL) {
7440 			mblk_t **mpp = mctlp;
7441 
7442 			while (*mpp != NULL)
7443 				mpp = &((*mpp)->b_cont);
7444 			*mpp = bp;
7445 			bp = NULL;
7446 		}
7447 	} else if (uiop->uio_resid >= 0 && bp) {
7448 		size_t oldresid = uiop->uio_resid;
7449 
7450 		/*
7451 		 * If a streams message is likely to consist
7452 		 * of many small mblks, it is pulled up into
7453 		 * one continuous chunk of memory.
7454 		 * The size of the first mblk may be bogus because
7455 		 * successive read() calls on the socket reduce
7456 		 * the size of this mblk until it is exhausted
7457 		 * and then the code walks on to the next. Thus
7458 		 * the size of the mblk may not be the original size
7459 		 * that was passed up, it's simply a remainder
7460 		 * and hence can be very small without any
7461 		 * implication that the packet is badly fragmented.
7462 		 * So the size of the possible second mblk is
7463 		 * used to spot a badly fragmented packet.
7464 		 * see longer comment at top of page
7465 		 * by mblk_pull_len declaration.
7466 		 */
7467 
7468 		if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) {
7469 			(void) pullupmsg(bp, -1);
7470 		}
7471 
7472 		bp = struiocopyout(bp, uiop, &error);
7473 		if (error != 0) {
7474 			if (mctlp != NULL) {
7475 				freemsg(*mctlp);
7476 				*mctlp = NULL;
7477 			} else
7478 				freemsg(savemp);
7479 			mutex_enter(&stp->sd_lock);
7480 			/*
7481 			 * clear stream head hi pri flag based on
7482 			 * first message
7483 			 */
7484 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7485 				ASSERT(type == M_PCPROTO);
7486 				stp->sd_flag &= ~STRPRI;
7487 			}
7488 			more = 0;
7489 			goto getmout;
7490 		}
7491 		/*
7492 		 * (pr == 1) indicates a partial read.
7493 		 */
7494 		if (oldresid > uiop->uio_resid)
7495 			pr = 1;
7496 	}
7497 
7498 	if (bp) {			/* more data blocks in msg */
7499 		more |= MOREDATA;
7500 		if (savemp)
7501 			savemptail->b_cont = bp;
7502 		else
7503 			savemp = bp;
7504 	}
7505 
7506 	mutex_enter(&stp->sd_lock);
7507 	if (savemp) {
7508 		if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7509 			/*
7510 			 * When MSG_DISCARDTAIL is set or
7511 			 * when peeking discard any tail. When peeking this
7512 			 * is the tail of the dup that was copied out - the
7513 			 * message has already been putback on the queue.
7514 			 * Return MOREDATA to the caller even though the data
7515 			 * is discarded. This is used by sockets (to
7516 			 * set MSG_TRUNC).
7517 			 */
7518 			freemsg(savemp);
7519 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7520 				ASSERT(type == M_PCPROTO);
7521 				stp->sd_flag &= ~STRPRI;
7522 			}
7523 		} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7524 		    msgnodata(savemp)) {
7525 			/*
7526 			 * Avoid queuing a zero-length tail part of
7527 			 * a message. pr=1 indicates that we read some of
7528 			 * the message.
7529 			 */
7530 			freemsg(savemp);
7531 			more &= ~MOREDATA;
7532 			if (type >= QPCTL) {
7533 				ASSERT(type == M_PCPROTO);
7534 				stp->sd_flag &= ~STRPRI;
7535 			}
7536 		} else {
7537 			savemp->b_band = pri;
7538 			/*
7539 			 * If the first message was HIPRI and the one we're
7540 			 * putting back isn't, then clear STRPRI, otherwise
7541 			 * set STRPRI again.  Note that we must set STRPRI
7542 			 * again since the flush logic in strrput_nondata()
7543 			 * may have cleared it while we had sd_lock dropped.
7544 			 */
7545 
7546 			if (type >= QPCTL) {
7547 				ASSERT(type == M_PCPROTO);
7548 				if (queclass(savemp) < QPCTL)
7549 					stp->sd_flag &= ~STRPRI;
7550 				else
7551 					stp->sd_flag |= STRPRI;
7552 			} else if (queclass(savemp) >= QPCTL) {
7553 				/*
7554 				 * The first message was not a HIPRI message,
7555 				 * but the one we are about to putback is.
7556 				 * For simplicitly, we do not allow for HIPRI
7557 				 * messages to be embedded in the message
7558 				 * body, so just force it to same type as
7559 				 * first message.
7560 				 */
7561 				ASSERT(type == M_DATA || type == M_PROTO);
7562 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7563 				savemp->b_datap->db_type = type;
7564 			}
7565 			if (mark != 0) {
7566 				if ((mark & _LASTMARK) &&
7567 				    (stp->sd_mark == NULL)) {
7568 					/*
7569 					 * If another marked message arrived
7570 					 * while sd_lock was not held sd_mark
7571 					 * would be non-NULL.
7572 					 */
7573 					stp->sd_mark = savemp;
7574 				}
7575 				savemp->b_flag |= mark & ~_LASTMARK;
7576 			}
7577 			putback(stp, q, savemp, pri);
7578 		}
7579 	} else if (!(flags & MSG_IPEEK)) {
7580 		/*
7581 		 * The complete message was consumed.
7582 		 *
7583 		 * If another M_PCPROTO arrived while sd_lock was not held
7584 		 * it would have been discarded since STRPRI was still set.
7585 		 *
7586 		 * Move the MSG*MARKNEXT information
7587 		 * to the stream head just in case
7588 		 * the read queue becomes empty.
7589 		 * clear stream head hi pri flag based on
7590 		 * first message
7591 		 *
7592 		 * If the stream head was at the mark
7593 		 * (STRATMARK) before we dropped sd_lock above
7594 		 * and some data was consumed then we have
7595 		 * moved past the mark thus STRATMARK is
7596 		 * cleared. However, if a message arrived in
7597 		 * strrput during the copyout above causing
7598 		 * STRATMARK to be set we can not clear that
7599 		 * flag.
7600 		 * XXX A "perimeter" would help by single-threading strrput,
7601 		 * strread, strgetmsg and kstrgetmsg.
7602 		 */
7603 		if (type >= QPCTL) {
7604 			ASSERT(type == M_PCPROTO);
7605 			stp->sd_flag &= ~STRPRI;
7606 		}
7607 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7608 			if (mark & MSGMARKNEXT) {
7609 				stp->sd_flag &= ~STRNOTATMARK;
7610 				stp->sd_flag |= STRATMARK;
7611 			} else if (mark & MSGNOTMARKNEXT) {
7612 				stp->sd_flag &= ~STRATMARK;
7613 				stp->sd_flag |= STRNOTATMARK;
7614 			} else {
7615 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7616 			}
7617 		} else if (pr && (old_sd_flag & STRATMARK)) {
7618 			stp->sd_flag &= ~STRATMARK;
7619 		}
7620 	}
7621 
7622 	*flagsp = flg;
7623 	*prip = pri;
7624 
7625 	/*
7626 	 * Getmsg cleanup processing - if the state of the queue has changed
7627 	 * some signals may need to be sent and/or poll awakened.
7628 	 */
7629 getmout:
7630 	qbackenable(q, pri);
7631 
7632 	/*
7633 	 * We dropped the stream head lock above. Send all M_SIG messages
7634 	 * before processing stream head for SIGPOLL messages.
7635 	 */
7636 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7637 	while ((bp = q->q_first) != NULL &&
7638 	    (bp->b_datap->db_type == M_SIG)) {
7639 		/*
7640 		 * sd_lock is held so the content of the read queue can not
7641 		 * change.
7642 		 */
7643 		bp = getq(q);
7644 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7645 
7646 		strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7647 		mutex_exit(&stp->sd_lock);
7648 		freemsg(bp);
7649 		if (STREAM_NEEDSERVICE(stp))
7650 			stream_runservice(stp);
7651 		mutex_enter(&stp->sd_lock);
7652 	}
7653 
7654 	/*
7655 	 * stream head cannot change while we make the determination
7656 	 * whether or not to send a signal. Drop the flag to allow strrput
7657 	 * to send firstmsgsigs again.
7658 	 */
7659 	stp->sd_flag &= ~STRGETINPROG;
7660 
7661 	/*
7662 	 * If the type of message at the front of the queue changed
7663 	 * due to the receive the appropriate signals and pollwakeup events
7664 	 * are generated. The type of changes are:
7665 	 *	Processed a hipri message, q_first is not hipri.
7666 	 *	Processed a band X message, and q_first is band Y.
7667 	 * The generated signals and pollwakeups are identical to what
7668 	 * strrput() generates should the message that is now on q_first
7669 	 * arrive to an empty read queue.
7670 	 *
7671 	 * Note: only strrput will send a signal for a hipri message.
7672 	 */
7673 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7674 		strsigset_t signals = 0;
7675 		strpollset_t pollwakeups = 0;
7676 
7677 		if (flg & MSG_HIPRI) {
7678 			/*
7679 			 * Removed a hipri message. Regular data at
7680 			 * the front of  the queue.
7681 			 */
7682 			if (bp->b_band == 0) {
7683 				signals = S_INPUT | S_RDNORM;
7684 				pollwakeups = POLLIN | POLLRDNORM;
7685 			} else {
7686 				signals = S_INPUT | S_RDBAND;
7687 				pollwakeups = POLLIN | POLLRDBAND;
7688 			}
7689 		} else if (pri != bp->b_band) {
7690 			/*
7691 			 * The band is different for the new q_first.
7692 			 */
7693 			if (bp->b_band == 0) {
7694 				signals = S_RDNORM;
7695 				pollwakeups = POLLIN | POLLRDNORM;
7696 			} else {
7697 				signals = S_RDBAND;
7698 				pollwakeups = POLLIN | POLLRDBAND;
7699 			}
7700 		}
7701 
7702 		if (pollwakeups != 0) {
7703 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7704 				if (!(stp->sd_rput_opt & SR_POLLIN))
7705 					goto no_pollwake;
7706 				stp->sd_rput_opt &= ~SR_POLLIN;
7707 			}
7708 			mutex_exit(&stp->sd_lock);
7709 			pollwakeup(&stp->sd_pollist, pollwakeups);
7710 			mutex_enter(&stp->sd_lock);
7711 		}
7712 no_pollwake:
7713 
7714 		if (stp->sd_sigflags & signals)
7715 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7716 	}
7717 	mutex_exit(&stp->sd_lock);
7718 
7719 	rvp->r_val1 = more;
7720 	return (error);
7721 #undef	_LASTMARK
7722 }
7723 
7724 /*
7725  * Put a message downstream.
7726  *
7727  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7728  */
7729 int
7730 strputmsg(
7731 	struct vnode *vp,
7732 	struct strbuf *mctl,
7733 	struct strbuf *mdata,
7734 	unsigned char pri,
7735 	int flag,
7736 	int fmode)
7737 {
7738 	struct stdata *stp;
7739 	queue_t *wqp;
7740 	mblk_t *mp;
7741 	ssize_t msgsize;
7742 	ssize_t rmin, rmax;
7743 	int error;
7744 	struct uio uios;
7745 	struct uio *uiop = &uios;
7746 	struct iovec iovs;
7747 	int xpg4 = 0;
7748 
7749 	ASSERT(vp->v_stream);
7750 	stp = vp->v_stream;
7751 	wqp = stp->sd_wrq;
7752 
7753 	/*
7754 	 * If it is an XPG4 application, we need to send
7755 	 * SIGPIPE below
7756 	 */
7757 
7758 	xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7759 	flag &= ~MSG_XPG4;
7760 
7761 	if (AU_AUDITING())
7762 		audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7763 
7764 	mutex_enter(&stp->sd_lock);
7765 
7766 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7767 		mutex_exit(&stp->sd_lock);
7768 		return (error);
7769 	}
7770 
7771 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7772 		error = strwriteable(stp, B_FALSE, xpg4);
7773 		if (error != 0) {
7774 			mutex_exit(&stp->sd_lock);
7775 			return (error);
7776 		}
7777 	}
7778 
7779 	mutex_exit(&stp->sd_lock);
7780 
7781 	/*
7782 	 * Check for legal flag value.
7783 	 */
7784 	switch (flag) {
7785 	case MSG_HIPRI:
7786 		if ((mctl->len < 0) || (pri != 0))
7787 			return (EINVAL);
7788 		break;
7789 	case MSG_BAND:
7790 		break;
7791 
7792 	default:
7793 		return (EINVAL);
7794 	}
7795 
7796 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7797 	    "strputmsg in:stp %p", stp);
7798 
7799 	/* get these values from those cached in the stream head */
7800 	rmin = stp->sd_qn_minpsz;
7801 	rmax = stp->sd_qn_maxpsz;
7802 
7803 	/*
7804 	 * Make sure ctl and data sizes together fall within the
7805 	 * limits of the max and min receive packet sizes and do
7806 	 * not exceed system limit.
7807 	 */
7808 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7809 	if (rmax == 0) {
7810 		return (ERANGE);
7811 	}
7812 	/*
7813 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7814 	 * Needed to prevent partial failures in the strmakedata loop.
7815 	 */
7816 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7817 		rmax = stp->sd_maxblk;
7818 
7819 	if ((msgsize = mdata->len) < 0) {
7820 		msgsize = 0;
7821 		rmin = 0;	/* no range check for NULL data part */
7822 	}
7823 	if ((msgsize < rmin) ||
7824 	    ((msgsize > rmax) && (rmax != INFPSZ)) ||
7825 	    (mctl->len > strctlsz)) {
7826 		return (ERANGE);
7827 	}
7828 
7829 	/*
7830 	 * Setup uio and iov for data part
7831 	 */
7832 	iovs.iov_base = mdata->buf;
7833 	iovs.iov_len = msgsize;
7834 	uios.uio_iov = &iovs;
7835 	uios.uio_iovcnt = 1;
7836 	uios.uio_loffset = 0;
7837 	uios.uio_segflg = UIO_USERSPACE;
7838 	uios.uio_fmode = fmode;
7839 	uios.uio_extflg = UIO_COPY_DEFAULT;
7840 	uios.uio_resid = msgsize;
7841 	uios.uio_offset = 0;
7842 
7843 	/* Ignore flow control in strput for HIPRI */
7844 	if (flag & MSG_HIPRI)
7845 		flag |= MSG_IGNFLOW;
7846 
7847 	for (;;) {
7848 		int done = 0;
7849 
7850 		/*
7851 		 * strput will always free the ctl mblk - even when strput
7852 		 * fails.
7853 		 */
7854 		if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7855 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7856 			    "strputmsg out:stp %p out %d error %d",
7857 			    stp, 1, error);
7858 			return (error);
7859 		}
7860 		/*
7861 		 * Verify that the whole message can be transferred by
7862 		 * strput.
7863 		 */
7864 		ASSERT(stp->sd_maxblk == INFPSZ ||
7865 		    stp->sd_maxblk >= mdata->len);
7866 
7867 		msgsize = mdata->len;
7868 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7869 		mdata->len = msgsize;
7870 
7871 		if (error == 0)
7872 			break;
7873 
7874 		if (error != EWOULDBLOCK)
7875 			goto out;
7876 
7877 		mutex_enter(&stp->sd_lock);
7878 		/*
7879 		 * Check for a missed wakeup.
7880 		 * Needed since strput did not hold sd_lock across
7881 		 * the canputnext.
7882 		 */
7883 		if (bcanputnext(wqp, pri)) {
7884 			/* Try again */
7885 			mutex_exit(&stp->sd_lock);
7886 			continue;
7887 		}
7888 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7889 		    "strputmsg wait:stp %p waits pri %d", stp, pri);
7890 		if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7891 		    &done)) != 0) || done) {
7892 			mutex_exit(&stp->sd_lock);
7893 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7894 			    "strputmsg out:q %p out %d error %d",
7895 			    stp, 0, error);
7896 			return (error);
7897 		}
7898 		TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7899 		    "strputmsg wake:stp %p wakes", stp);
7900 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
7901 			mutex_exit(&stp->sd_lock);
7902 			return (error);
7903 		}
7904 		mutex_exit(&stp->sd_lock);
7905 	}
7906 out:
7907 	/*
7908 	 * For historic reasons, applications expect EAGAIN
7909 	 * when data mblk could not be allocated. so change
7910 	 * ENOMEM back to EAGAIN
7911 	 */
7912 	if (error == ENOMEM)
7913 		error = EAGAIN;
7914 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7915 	    "strputmsg out:stp %p out %d error %d", stp, 2, error);
7916 	return (error);
7917 }
7918 
7919 /*
7920  * Put a message downstream.
7921  * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
7922  * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
7923  * and the fmode parameter.
7924  *
7925  * This routine handles the consolidation private flags:
7926  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7927  *	MSG_HOLDSIG	Hold signals while waiting for data.
7928  *	MSG_IGNFLOW	Don't check streams flow control.
7929  *
7930  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7931  */
7932 int
7933 kstrputmsg(
7934 	struct vnode *vp,
7935 	mblk_t *mctl,
7936 	struct uio *uiop,
7937 	ssize_t msgsize,
7938 	unsigned char pri,
7939 	int flag,
7940 	int fmode)
7941 {
7942 	struct stdata *stp;
7943 	queue_t *wqp;
7944 	ssize_t rmin, rmax;
7945 	int error;
7946 
7947 	ASSERT(vp->v_stream);
7948 	stp = vp->v_stream;
7949 	wqp = stp->sd_wrq;
7950 	if (AU_AUDITING())
7951 		audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
7952 	if (mctl == NULL)
7953 		return (EINVAL);
7954 
7955 	mutex_enter(&stp->sd_lock);
7956 
7957 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7958 		mutex_exit(&stp->sd_lock);
7959 		freemsg(mctl);
7960 		return (error);
7961 	}
7962 
7963 	if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
7964 		if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7965 			error = strwriteable(stp, B_FALSE, B_TRUE);
7966 			if (error != 0) {
7967 				mutex_exit(&stp->sd_lock);
7968 				freemsg(mctl);
7969 				return (error);
7970 			}
7971 		}
7972 	}
7973 
7974 	mutex_exit(&stp->sd_lock);
7975 
7976 	/*
7977 	 * Check for legal flag value.
7978 	 */
7979 	switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
7980 	case MSG_HIPRI:
7981 		if (pri != 0) {
7982 			freemsg(mctl);
7983 			return (EINVAL);
7984 		}
7985 		break;
7986 	case MSG_BAND:
7987 		break;
7988 	default:
7989 		freemsg(mctl);
7990 		return (EINVAL);
7991 	}
7992 
7993 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
7994 	    "kstrputmsg in:stp %p", stp);
7995 
7996 	/* get these values from those cached in the stream head */
7997 	rmin = stp->sd_qn_minpsz;
7998 	rmax = stp->sd_qn_maxpsz;
7999 
8000 	/*
8001 	 * Make sure ctl and data sizes together fall within the
8002 	 * limits of the max and min receive packet sizes and do
8003 	 * not exceed system limit.
8004 	 */
8005 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
8006 	if (rmax == 0) {
8007 		freemsg(mctl);
8008 		return (ERANGE);
8009 	}
8010 	/*
8011 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8012 	 * Needed to prevent partial failures in the strmakedata loop.
8013 	 */
8014 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8015 		rmax = stp->sd_maxblk;
8016 
8017 	if (uiop == NULL) {
8018 		msgsize = -1;
8019 		rmin = -1;	/* no range check for NULL data part */
8020 	} else {
8021 		/* Use uio flags as well as the fmode parameter flags */
8022 		fmode |= uiop->uio_fmode;
8023 
8024 		if ((msgsize < rmin) ||
8025 		    ((msgsize > rmax) && (rmax != INFPSZ))) {
8026 			freemsg(mctl);
8027 			return (ERANGE);
8028 		}
8029 	}
8030 
8031 	/* Ignore flow control in strput for HIPRI */
8032 	if (flag & MSG_HIPRI)
8033 		flag |= MSG_IGNFLOW;
8034 
8035 	for (;;) {
8036 		int done = 0;
8037 		int waitflag;
8038 		mblk_t *mp;
8039 
8040 		/*
8041 		 * strput will always free the ctl mblk - even when strput
8042 		 * fails. If MSG_IGNFLOW is set then any error returned
8043 		 * will cause us to break the loop, so we don't need a copy
8044 		 * of the message. If MSG_IGNFLOW is not set, then we can
8045 		 * get hit by flow control and be forced to try again. In
8046 		 * this case we need to have a copy of the message. We
8047 		 * do this using copymsg since the message may get modified
8048 		 * by something below us.
8049 		 *
8050 		 * We've observed that many TPI providers do not check db_ref
8051 		 * on the control messages but blindly reuse them for the
8052 		 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8053 		 * friendly to such providers than using dupmsg. Also, note
8054 		 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8055 		 * Only data messages are subject to flow control, hence
8056 		 * subject to this copymsg.
8057 		 */
8058 		if (flag & MSG_IGNFLOW) {
8059 			mp = mctl;
8060 			mctl = NULL;
8061 		} else {
8062 			do {
8063 				/*
8064 				 * If a message has a free pointer, the message
8065 				 * must be dupmsg to maintain this pointer.
8066 				 * Code using this facility must be sure
8067 				 * that modules below will not change the
8068 				 * contents of the dblk without checking db_ref
8069 				 * first. If db_ref is > 1, then the module
8070 				 * needs to do a copymsg first. Otherwise,
8071 				 * the contents of the dblk may become
8072 				 * inconsistent because the freesmg/freeb below
8073 				 * may end up calling atomic_add_32_nv.
8074 				 * The atomic_add_32_nv in freeb (accessing
8075 				 * all of db_ref, db_type, db_flags, and
8076 				 * db_struioflag) does not prevent other threads
8077 				 * from concurrently trying to modify e.g.
8078 				 * db_type.
8079 				 */
8080 				if (mctl->b_datap->db_frtnp != NULL)
8081 					mp = dupmsg(mctl);
8082 				else
8083 					mp = copymsg(mctl);
8084 
8085 				if (mp != NULL)
8086 					break;
8087 
8088 				error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8089 				if (error) {
8090 					freemsg(mctl);
8091 					return (error);
8092 				}
8093 			} while (mp == NULL);
8094 		}
8095 		/*
8096 		 * Verify that all of msgsize can be transferred by
8097 		 * strput.
8098 		 */
8099 		ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8100 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8101 		if (error == 0)
8102 			break;
8103 
8104 		if (error != EWOULDBLOCK)
8105 			goto out;
8106 
8107 		/*
8108 		 * IF MSG_IGNFLOW is set we should have broken out of loop
8109 		 * above.
8110 		 */
8111 		ASSERT(!(flag & MSG_IGNFLOW));
8112 		mutex_enter(&stp->sd_lock);
8113 		/*
8114 		 * Check for a missed wakeup.
8115 		 * Needed since strput did not hold sd_lock across
8116 		 * the canputnext.
8117 		 */
8118 		if (bcanputnext(wqp, pri)) {
8119 			/* Try again */
8120 			mutex_exit(&stp->sd_lock);
8121 			continue;
8122 		}
8123 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8124 		    "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8125 
8126 		waitflag = WRITEWAIT;
8127 		if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8128 			if (flag & MSG_HOLDSIG)
8129 				waitflag |= STR_NOSIG;
8130 			if (flag & MSG_IGNERROR)
8131 				waitflag |= STR_NOERROR;
8132 		}
8133 		if (((error = strwaitq(stp, waitflag,
8134 		    (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8135 			mutex_exit(&stp->sd_lock);
8136 			TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8137 			    "kstrputmsg out:stp %p out %d error %d",
8138 			    stp, 0, error);
8139 			freemsg(mctl);
8140 			return (error);
8141 		}
8142 		TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8143 		    "kstrputmsg wake:stp %p wakes", stp);
8144 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
8145 			mutex_exit(&stp->sd_lock);
8146 			freemsg(mctl);
8147 			return (error);
8148 		}
8149 		mutex_exit(&stp->sd_lock);
8150 	}
8151 out:
8152 	freemsg(mctl);
8153 	/*
8154 	 * For historic reasons, applications expect EAGAIN
8155 	 * when data mblk could not be allocated. so change
8156 	 * ENOMEM back to EAGAIN
8157 	 */
8158 	if (error == ENOMEM)
8159 		error = EAGAIN;
8160 	TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8161 	    "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8162 	return (error);
8163 }
8164 
8165 /*
8166  * Determines whether the necessary conditions are set on a stream
8167  * for it to be readable, writeable, or have exceptions.
8168  *
8169  * strpoll handles the consolidation private events:
8170  *	POLLNOERR	Do not return POLLERR even if there are stream
8171  *			head errors.
8172  *			Used by sockfs.
8173  *	POLLRDDATA	Do not return POLLIN unless at least one message on
8174  *			the queue contains one or more M_DATA mblks. Thus
8175  *			when this flag is set a queue with only
8176  *			M_PROTO/M_PCPROTO mblks does not return POLLIN.
8177  *			Used by sockfs to ignore T_EXDATA_IND messages.
8178  *
8179  * Note: POLLRDDATA assumes that synch streams only return messages with
8180  * an M_DATA attached (i.e. not messages consisting of only
8181  * an M_PROTO/M_PCPROTO part).
8182  */
8183 int
8184 strpoll(
8185 	struct stdata *stp,
8186 	short events_arg,
8187 	int anyyet,
8188 	short *reventsp,
8189 	struct pollhead **phpp)
8190 {
8191 	int events = (ushort_t)events_arg;
8192 	int retevents = 0;
8193 	mblk_t *mp;
8194 	qband_t *qbp;
8195 	long sd_flags = stp->sd_flag;
8196 	int headlocked = 0;
8197 
8198 	/*
8199 	 * For performance, a single 'if' tests for most possible edge
8200 	 * conditions in one shot
8201 	 */
8202 	if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8203 		if (sd_flags & STPLEX) {
8204 			*reventsp = POLLNVAL;
8205 			return (EINVAL);
8206 		}
8207 		if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8208 		    (sd_flags & STRDERR)) ||
8209 		    ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8210 		    (sd_flags & STWRERR))) {
8211 			if (!(events & POLLNOERR)) {
8212 				*reventsp = POLLERR;
8213 				return (0);
8214 			}
8215 		}
8216 	}
8217 	if (sd_flags & STRHUP) {
8218 		retevents |= POLLHUP;
8219 	} else if (events & (POLLWRNORM | POLLWRBAND)) {
8220 		queue_t *tq;
8221 		queue_t	*qp = stp->sd_wrq;
8222 
8223 		claimstr(qp);
8224 		/* Find next module forward that has a service procedure */
8225 		tq = qp->q_next->q_nfsrv;
8226 		ASSERT(tq != NULL);
8227 
8228 		polllock(&stp->sd_pollist, QLOCK(tq));
8229 		if (events & POLLWRNORM) {
8230 			queue_t *sqp;
8231 
8232 			if (tq->q_flag & QFULL)
8233 				/* ensure backq svc procedure runs */
8234 				tq->q_flag |= QWANTW;
8235 			else if ((sqp = stp->sd_struiowrq) != NULL) {
8236 				/* Check sync stream barrier write q */
8237 				mutex_exit(QLOCK(tq));
8238 				polllock(&stp->sd_pollist, QLOCK(sqp));
8239 				if (sqp->q_flag & QFULL)
8240 					/* ensure pollwakeup() is done */
8241 					sqp->q_flag |= QWANTWSYNC;
8242 				else
8243 					retevents |= POLLOUT;
8244 				/* More write events to process ??? */
8245 				if (! (events & POLLWRBAND)) {
8246 					mutex_exit(QLOCK(sqp));
8247 					releasestr(qp);
8248 					goto chkrd;
8249 				}
8250 				mutex_exit(QLOCK(sqp));
8251 				polllock(&stp->sd_pollist, QLOCK(tq));
8252 			} else
8253 				retevents |= POLLOUT;
8254 		}
8255 		if (events & POLLWRBAND) {
8256 			qbp = tq->q_bandp;
8257 			if (qbp) {
8258 				while (qbp) {
8259 					if (qbp->qb_flag & QB_FULL)
8260 						qbp->qb_flag |= QB_WANTW;
8261 					else
8262 						retevents |= POLLWRBAND;
8263 					qbp = qbp->qb_next;
8264 				}
8265 			} else {
8266 				retevents |= POLLWRBAND;
8267 			}
8268 		}
8269 		mutex_exit(QLOCK(tq));
8270 		releasestr(qp);
8271 	}
8272 chkrd:
8273 	if (sd_flags & STRPRI) {
8274 		retevents |= (events & POLLPRI);
8275 	} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8276 		queue_t	*qp = _RD(stp->sd_wrq);
8277 		int normevents = (events & (POLLIN | POLLRDNORM));
8278 
8279 		/*
8280 		 * Note: Need to do polllock() here since ps_lock may be
8281 		 * held. See bug 4191544.
8282 		 */
8283 		polllock(&stp->sd_pollist, &stp->sd_lock);
8284 		headlocked = 1;
8285 		mp = qp->q_first;
8286 		while (mp) {
8287 			/*
8288 			 * For POLLRDDATA we scan b_cont and b_next until we
8289 			 * find an M_DATA.
8290 			 */
8291 			if ((events & POLLRDDATA) &&
8292 			    mp->b_datap->db_type != M_DATA) {
8293 				mblk_t *nmp = mp->b_cont;
8294 
8295 				while (nmp != NULL &&
8296 				    nmp->b_datap->db_type != M_DATA)
8297 					nmp = nmp->b_cont;
8298 				if (nmp == NULL) {
8299 					mp = mp->b_next;
8300 					continue;
8301 				}
8302 			}
8303 			if (mp->b_band == 0)
8304 				retevents |= normevents;
8305 			else
8306 				retevents |= (events & (POLLIN | POLLRDBAND));
8307 			break;
8308 		}
8309 		if (! (retevents & normevents) &&
8310 		    (stp->sd_wakeq & RSLEEP)) {
8311 			/*
8312 			 * Sync stream barrier read queue has data.
8313 			 */
8314 			retevents |= normevents;
8315 		}
8316 		/* Treat eof as normal data */
8317 		if (sd_flags & STREOF)
8318 			retevents |= normevents;
8319 	}
8320 
8321 	*reventsp = (short)retevents;
8322 	if (retevents) {
8323 		if (headlocked)
8324 			mutex_exit(&stp->sd_lock);
8325 		return (0);
8326 	}
8327 
8328 	/*
8329 	 * If poll() has not found any events yet, set up event cell
8330 	 * to wake up the poll if a requested event occurs on this
8331 	 * stream.  Check for collisions with outstanding poll requests.
8332 	 */
8333 	if (!anyyet) {
8334 		*phpp = &stp->sd_pollist;
8335 		if (headlocked == 0) {
8336 			polllock(&stp->sd_pollist, &stp->sd_lock);
8337 			headlocked = 1;
8338 		}
8339 		stp->sd_rput_opt |= SR_POLLIN;
8340 	}
8341 	if (headlocked)
8342 		mutex_exit(&stp->sd_lock);
8343 	return (0);
8344 }
8345 
8346 /*
8347  * The purpose of putback() is to assure sleeping polls/reads
8348  * are awakened when there are no new messages arriving at the,
8349  * stream head, and a message is placed back on the read queue.
8350  *
8351  * sd_lock must be held when messages are placed back on stream
8352  * head.  (getq() holds sd_lock when it removes messages from
8353  * the queue)
8354  */
8355 
8356 static void
8357 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8358 {
8359 	mblk_t	*qfirst;
8360 	ASSERT(MUTEX_HELD(&stp->sd_lock));
8361 
8362 	/*
8363 	 * As a result of lock-step ordering around q_lock and sd_lock,
8364 	 * it's possible for function calls like putnext() and
8365 	 * canputnext() to get an inaccurate picture of how much
8366 	 * data is really being processed at the stream head.
8367 	 * We only consolidate with existing messages on the queue
8368 	 * if the length of the message we want to put back is smaller
8369 	 * than the queue hiwater mark.
8370 	 */
8371 	if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8372 	    (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8373 	    (DB_TYPE(qfirst) == M_DATA) &&
8374 	    ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8375 	    ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8376 	    (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8377 		/*
8378 		 * We use the same logic as defined in strrput()
8379 		 * but in reverse as we are putting back onto the
8380 		 * queue and want to retain byte ordering.
8381 		 * Consolidate M_DATA messages with M_DATA ONLY.
8382 		 * strrput() allows the consolidation of M_DATA onto
8383 		 * M_PROTO | M_PCPROTO but not the other way round.
8384 		 *
8385 		 * The consolidation does not take place if the message
8386 		 * we are returning to the queue is marked with either
8387 		 * of the marks or the delim flag or if q_first
8388 		 * is marked with MSGMARK. The MSGMARK check is needed to
8389 		 * handle the odd semantics of MSGMARK where essentially
8390 		 * the whole message is to be treated as marked.
8391 		 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8392 		 * to the front of the b_cont chain.
8393 		 */
8394 		rmvq_noenab(q, qfirst);
8395 
8396 		/*
8397 		 * The first message in the b_cont list
8398 		 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8399 		 * We need to handle the case where we
8400 		 * are appending:
8401 		 *
8402 		 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8403 		 * 2) a MSGMARKNEXT to a plain message.
8404 		 * 3) a MSGNOTMARKNEXT to a plain message
8405 		 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8406 		 *    message.
8407 		 *
8408 		 * Thus we never append a MSGMARKNEXT or
8409 		 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8410 		 */
8411 		if (qfirst->b_flag & MSGMARKNEXT) {
8412 			bp->b_flag |= MSGMARKNEXT;
8413 			bp->b_flag &= ~MSGNOTMARKNEXT;
8414 			qfirst->b_flag &= ~MSGMARKNEXT;
8415 		} else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8416 			bp->b_flag |= MSGNOTMARKNEXT;
8417 			qfirst->b_flag &= ~MSGNOTMARKNEXT;
8418 		}
8419 
8420 		linkb(bp, qfirst);
8421 	}
8422 	(void) putbq(q, bp);
8423 
8424 	/*
8425 	 * A message may have come in when the sd_lock was dropped in the
8426 	 * calling routine. If this is the case and STR*ATMARK info was
8427 	 * received, need to move that from the stream head to the q_last
8428 	 * so that SIOCATMARK can return the proper value.
8429 	 */
8430 	if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8431 		unsigned short *flagp = &q->q_last->b_flag;
8432 		uint_t b_flag = (uint_t)*flagp;
8433 
8434 		if (stp->sd_flag & STRATMARK) {
8435 			b_flag &= ~MSGNOTMARKNEXT;
8436 			b_flag |= MSGMARKNEXT;
8437 			stp->sd_flag &= ~STRATMARK;
8438 		} else {
8439 			b_flag &= ~MSGMARKNEXT;
8440 			b_flag |= MSGNOTMARKNEXT;
8441 			stp->sd_flag &= ~STRNOTATMARK;
8442 		}
8443 		*flagp = (unsigned short) b_flag;
8444 	}
8445 
8446 #ifdef	DEBUG
8447 	/*
8448 	 * Make sure that the flags are not messed up.
8449 	 */
8450 	{
8451 		mblk_t *mp;
8452 		mp = q->q_last;
8453 		while (mp != NULL) {
8454 			ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8455 			    (MSGMARKNEXT|MSGNOTMARKNEXT));
8456 			mp = mp->b_cont;
8457 		}
8458 	}
8459 #endif
8460 	if (q->q_first == bp) {
8461 		short pollevents;
8462 
8463 		if (stp->sd_flag & RSLEEP) {
8464 			stp->sd_flag &= ~RSLEEP;
8465 			cv_broadcast(&q->q_wait);
8466 		}
8467 		if (stp->sd_flag & STRPRI) {
8468 			pollevents = POLLPRI;
8469 		} else {
8470 			if (band == 0) {
8471 				if (!(stp->sd_rput_opt & SR_POLLIN))
8472 					return;
8473 				stp->sd_rput_opt &= ~SR_POLLIN;
8474 				pollevents = POLLIN | POLLRDNORM;
8475 			} else {
8476 				pollevents = POLLIN | POLLRDBAND;
8477 			}
8478 		}
8479 		mutex_exit(&stp->sd_lock);
8480 		pollwakeup(&stp->sd_pollist, pollevents);
8481 		mutex_enter(&stp->sd_lock);
8482 	}
8483 }
8484 
8485 /*
8486  * Return the held vnode attached to the stream head of a
8487  * given queue
8488  * It is the responsibility of the calling routine to ensure
8489  * that the queue does not go away (e.g. pop).
8490  */
8491 vnode_t *
8492 strq2vp(queue_t *qp)
8493 {
8494 	vnode_t *vp;
8495 	vp = STREAM(qp)->sd_vnode;
8496 	ASSERT(vp != NULL);
8497 	VN_HOLD(vp);
8498 	return (vp);
8499 }
8500 
8501 /*
8502  * return the stream head write queue for the given vp
8503  * It is the responsibility of the calling routine to ensure
8504  * that the stream or vnode do not close.
8505  */
8506 queue_t *
8507 strvp2wq(vnode_t *vp)
8508 {
8509 	ASSERT(vp->v_stream != NULL);
8510 	return (vp->v_stream->sd_wrq);
8511 }
8512 
8513 /*
8514  * pollwakeup stream head
8515  * It is the responsibility of the calling routine to ensure
8516  * that the stream or vnode do not close.
8517  */
8518 void
8519 strpollwakeup(vnode_t *vp, short event)
8520 {
8521 	ASSERT(vp->v_stream);
8522 	pollwakeup(&vp->v_stream->sd_pollist, event);
8523 }
8524 
8525 /*
8526  * Mate the stream heads of two vnodes together. If the two vnodes are the
8527  * same, we just make the write-side point at the read-side -- otherwise,
8528  * we do a full mate.  Only works on vnodes associated with streams that are
8529  * still being built and thus have only a stream head.
8530  */
8531 void
8532 strmate(vnode_t *vp1, vnode_t *vp2)
8533 {
8534 	queue_t *wrq1 = strvp2wq(vp1);
8535 	queue_t *wrq2 = strvp2wq(vp2);
8536 
8537 	/*
8538 	 * Verify that there are no modules on the stream yet.  We also
8539 	 * rely on the stream head always having a service procedure to
8540 	 * avoid tweaking q_nfsrv.
8541 	 */
8542 	ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8543 	ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8544 	ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8545 
8546 	/*
8547 	 * If the queues are the same, just twist; otherwise do a full mate.
8548 	 */
8549 	if (wrq1 == wrq2) {
8550 		wrq1->q_next = _RD(wrq1);
8551 	} else {
8552 		wrq1->q_next = _RD(wrq2);
8553 		wrq2->q_next = _RD(wrq1);
8554 		STREAM(wrq1)->sd_mate = STREAM(wrq2);
8555 		STREAM(wrq1)->sd_flag |= STRMATE;
8556 		STREAM(wrq2)->sd_mate = STREAM(wrq1);
8557 		STREAM(wrq2)->sd_flag |= STRMATE;
8558 	}
8559 }
8560 
8561 /*
8562  * XXX will go away when console is correctly fixed.
8563  * Clean up the console PIDS, from previous I_SETSIG,
8564  * called only for cnopen which never calls strclean().
8565  */
8566 void
8567 str_cn_clean(struct vnode *vp)
8568 {
8569 	strsig_t *ssp, *pssp, *tssp;
8570 	struct stdata *stp;
8571 	struct pid  *pidp;
8572 	int update = 0;
8573 
8574 	ASSERT(vp->v_stream);
8575 	stp = vp->v_stream;
8576 	pssp = NULL;
8577 	mutex_enter(&stp->sd_lock);
8578 	ssp = stp->sd_siglist;
8579 	while (ssp) {
8580 		mutex_enter(&pidlock);
8581 		pidp = ssp->ss_pidp;
8582 		/*
8583 		 * Get rid of PID if the proc is gone.
8584 		 */
8585 		if (pidp->pid_prinactive) {
8586 			tssp = ssp->ss_next;
8587 			if (pssp)
8588 				pssp->ss_next = tssp;
8589 			else
8590 				stp->sd_siglist = tssp;
8591 			ASSERT(pidp->pid_ref <= 1);
8592 			PID_RELE(ssp->ss_pidp);
8593 			mutex_exit(&pidlock);
8594 			kmem_free(ssp, sizeof (strsig_t));
8595 			update = 1;
8596 			ssp = tssp;
8597 			continue;
8598 		} else
8599 			mutex_exit(&pidlock);
8600 		pssp = ssp;
8601 		ssp = ssp->ss_next;
8602 	}
8603 	if (update) {
8604 		stp->sd_sigflags = 0;
8605 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8606 			stp->sd_sigflags |= ssp->ss_events;
8607 	}
8608 	mutex_exit(&stp->sd_lock);
8609 }
8610 
8611 /*
8612  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8613  */
8614 static boolean_t
8615 msghasdata(mblk_t *bp)
8616 {
8617 	for (; bp; bp = bp->b_cont)
8618 		if (bp->b_datap->db_type == M_DATA) {
8619 			ASSERT(bp->b_wptr >= bp->b_rptr);
8620 			if (bp->b_wptr > bp->b_rptr)
8621 				return (B_TRUE);
8622 		}
8623 	return (B_FALSE);
8624 }
8625