xref: /titanic_51/usr/src/uts/common/os/streamio.c (revision 8cd108911b492c7a96794e47d7064a4c4c064338)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/types.h>
33 #include <sys/sysmacros.h>
34 #include <sys/param.h>
35 #include <sys/errno.h>
36 #include <sys/signal.h>
37 #include <sys/stat.h>
38 #include <sys/proc.h>
39 #include <sys/cred.h>
40 #include <sys/user.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/stream.h>
44 #include <sys/strsubr.h>
45 #include <sys/stropts.h>
46 #include <sys/tihdr.h>
47 #include <sys/var.h>
48 #include <sys/poll.h>
49 #include <sys/termio.h>
50 #include <sys/ttold.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/cmn_err.h>
54 #include <sys/sad.h>
55 #include <sys/netstack.h>
56 #include <sys/priocntl.h>
57 #include <sys/jioctl.h>
58 #include <sys/procset.h>
59 #include <sys/session.h>
60 #include <sys/kmem.h>
61 #include <sys/filio.h>
62 #include <sys/vtrace.h>
63 #include <sys/debug.h>
64 #include <sys/strredir.h>
65 #include <sys/fs/fifonode.h>
66 #include <sys/fs/snode.h>
67 #include <sys/strlog.h>
68 #include <sys/strsun.h>
69 #include <sys/project.h>
70 #include <sys/kbio.h>
71 #include <sys/msio.h>
72 #include <sys/tty.h>
73 #include <sys/ptyvar.h>
74 #include <sys/vuid_event.h>
75 #include <sys/modctl.h>
76 #include <sys/sunddi.h>
77 #include <sys/sunldi_impl.h>
78 #include <sys/autoconf.h>
79 #include <sys/policy.h>
80 #include <sys/dld.h>
81 #include <sys/zone.h>
82 
83 /*
84  * This define helps improve the readability of streams code while
85  * still maintaining a very old streams performance enhancement.  The
86  * performance enhancement basically involved having all callers
87  * of straccess() perform the first check that straccess() will do
88  * locally before actually calling straccess().  (There by reducing
89  * the number of unnecessary calls to straccess().)
90  */
91 #define	i_straccess(x, y)	((stp->sd_sidp == NULL) ? 0 : \
92 				    (stp->sd_vnode->v_type == VFIFO) ? 0 : \
93 				    straccess((x), (y)))
94 
95 /*
96  * what is mblk_pull_len?
97  *
98  * If a streams message consists of many short messages,
99  * a performance degradation occurs from copyout overhead.
100  * To decrease the per mblk overhead, messages that are
101  * likely to consist of many small mblks are pulled up into
102  * one continuous chunk of memory.
103  *
104  * To avoid the processing overhead of examining every
105  * mblk, a quick heuristic is used. If the first mblk in
106  * the message is shorter than mblk_pull_len, it is likely
107  * that the rest of the mblk will be short.
108  *
109  * This heuristic was decided upon after performance tests
110  * indicated that anything more complex slowed down the main
111  * code path.
112  */
113 #define	MBLK_PULL_LEN 64
114 uint32_t mblk_pull_len = MBLK_PULL_LEN;
115 
116 /*
117  * The sgttyb_handling flag controls the handling of the old BSD
118  * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
119  *
120  * 0 - Emit no warnings at all and retain old, broken behavior.
121  * 1 - Emit no warnings and silently handle new semantics.
122  * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
123  *     (once per system invocation).  Handle with new semantics.
124  * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
125  *     made (so that offenders drop core and are easy to debug).
126  *
127  * The "new semantics" are that TIOCGETP returns B38400 for
128  * sg_[io]speed if the corresponding value is over B38400, and that
129  * TIOCSET[PN] accept B38400 in these cases to mean "retain current
130  * bit rate."
131  */
132 int sgttyb_handling = 1;
133 static boolean_t sgttyb_complaint;
134 
135 /* don't push drcompat module by default on Style-2 streams */
136 static int push_drcompat = 0;
137 
138 /*
139  * id value used to distinguish between different ioctl messages
140  */
141 static uint32_t ioc_id;
142 
143 static void putback(struct stdata *, queue_t *, mblk_t *, int);
144 static void strcleanall(struct vnode *);
145 static int strwsrv(queue_t *);
146 static void struioainit(queue_t *, sodirect_t *, uio_t *);
147 
148 /*
149  * qinit and module_info structures for stream head read and write queues
150  */
151 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
152 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
153 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
154 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
155 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
156     FIFOLOWAT };
157 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
158 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
159 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
160 
161 extern kmutex_t	strresources;	/* protects global resources */
162 extern kmutex_t muxifier;	/* single-threads multiplexor creation */
163 
164 static boolean_t msghasdata(mblk_t *bp);
165 #define	msgnodata(bp) (!msghasdata(bp))
166 
167 /*
168  * Stream head locking notes:
169  *	There are four monitors associated with the stream head:
170  *	1. v_stream monitor: in stropen() and strclose() v_lock
171  *		is held while the association of vnode and stream
172  *		head is established or tested for.
173  *	2. open/close/push/pop monitor: sd_lock is held while each
174  *		thread bids for exclusive access to this monitor
175  *		for opening or closing a stream.  In addition, this
176  *		monitor is entered during pushes and pops.  This
177  *		guarantees that during plumbing operations there
178  *		is only one thread trying to change the plumbing.
179  *		Any other threads present in the stream are only
180  *		using the plumbing.
181  *	3. read/write monitor: in the case of read, a thread holds
182  *		sd_lock while trying to get data from the stream
183  *		head queue.  if there is none to fulfill a read
184  *		request, it sets RSLEEP and calls cv_wait_sig() down
185  *		in strwaitq() to await the arrival of new data.
186  *		when new data arrives in strrput(), sd_lock is acquired
187  *		before testing for RSLEEP and calling cv_broadcast().
188  *		the behavior of strwrite(), strwsrv(), and WSLEEP
189  *		mirror this.
190  *	4. ioctl monitor: sd_lock is gotten to ensure that only one
191  *		thread is doing an ioctl at a time.
192  *
193  * Note, for sodirect case 3. is extended to (*sodirect_t.sod_enqueue)()
194  * call-back from below, further the sodirect support is for code paths
195  * called via kstgetmsg(), all other code paths ASSERT() that sodirect
196  * uioa generated mblk_t's (i.e. DBLK_UIOA) aren't processed.
197  */
198 
199 static int
200 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
201     int anchor, cred_t *crp, uint_t anchor_zoneid)
202 {
203 	int error;
204 	fmodsw_impl_t *fp;
205 
206 	if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
207 		error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
208 		return (error);
209 	}
210 	if (stp->sd_pushcnt >= nstrpush) {
211 		return (EINVAL);
212 	}
213 
214 	if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
215 		stp->sd_flag |= STREOPENFAIL;
216 		return (EINVAL);
217 	}
218 
219 	/*
220 	 * push new module and call its open routine via qattach
221 	 */
222 	if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
223 		return (error);
224 
225 	/*
226 	 * Check to see if caller wants a STREAMS anchor
227 	 * put at this place in the stream, and add if so.
228 	 */
229 	mutex_enter(&stp->sd_lock);
230 	if (anchor == stp->sd_pushcnt) {
231 		stp->sd_anchor = stp->sd_pushcnt;
232 		stp->sd_anchorzone = anchor_zoneid;
233 	}
234 	mutex_exit(&stp->sd_lock);
235 
236 	return (0);
237 }
238 
239 /*
240  * Open a stream device.
241  */
242 int
243 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
244 {
245 	struct stdata *stp;
246 	queue_t *qp;
247 	int s;
248 	dev_t dummydev, savedev;
249 	struct autopush *ap;
250 	struct dlautopush dlap;
251 	int error = 0;
252 	ssize_t	rmin, rmax;
253 	int cloneopen;
254 	queue_t *brq;
255 	major_t major;
256 	str_stack_t *ss;
257 	zoneid_t zoneid;
258 	uint_t anchor;
259 
260 	if (audit_active)
261 		audit_stropen(vp, devp, flag, crp);
262 
263 	/*
264 	 * If the stream already exists, wait for any open in progress
265 	 * to complete, then call the open function of each module and
266 	 * driver in the stream.  Otherwise create the stream.
267 	 */
268 	TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
269 retry:
270 	mutex_enter(&vp->v_lock);
271 	if ((stp = vp->v_stream) != NULL) {
272 
273 		/*
274 		 * Waiting for stream to be created to device
275 		 * due to another open.
276 		 */
277 		mutex_exit(&vp->v_lock);
278 
279 		if (STRMATED(stp)) {
280 			struct stdata *strmatep = stp->sd_mate;
281 
282 			STRLOCKMATES(stp);
283 			if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
284 				if (flag & (FNDELAY|FNONBLOCK)) {
285 					error = EAGAIN;
286 					mutex_exit(&strmatep->sd_lock);
287 					goto ckreturn;
288 				}
289 				mutex_exit(&stp->sd_lock);
290 				if (!cv_wait_sig(&strmatep->sd_monitor,
291 				    &strmatep->sd_lock)) {
292 					error = EINTR;
293 					mutex_exit(&strmatep->sd_lock);
294 					mutex_enter(&stp->sd_lock);
295 					goto ckreturn;
296 				}
297 				mutex_exit(&strmatep->sd_lock);
298 				goto retry;
299 			}
300 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
301 				if (flag & (FNDELAY|FNONBLOCK)) {
302 					error = EAGAIN;
303 					mutex_exit(&strmatep->sd_lock);
304 					goto ckreturn;
305 				}
306 				mutex_exit(&strmatep->sd_lock);
307 				if (!cv_wait_sig(&stp->sd_monitor,
308 				    &stp->sd_lock)) {
309 					error = EINTR;
310 					goto ckreturn;
311 				}
312 				mutex_exit(&stp->sd_lock);
313 				goto retry;
314 			}
315 
316 			if (stp->sd_flag & (STRDERR|STWRERR)) {
317 				error = EIO;
318 				mutex_exit(&strmatep->sd_lock);
319 				goto ckreturn;
320 			}
321 
322 			stp->sd_flag |= STWOPEN;
323 			STRUNLOCKMATES(stp);
324 		} else {
325 			mutex_enter(&stp->sd_lock);
326 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
327 				if (flag & (FNDELAY|FNONBLOCK)) {
328 					error = EAGAIN;
329 					goto ckreturn;
330 				}
331 				if (!cv_wait_sig(&stp->sd_monitor,
332 				    &stp->sd_lock)) {
333 					error = EINTR;
334 					goto ckreturn;
335 				}
336 				mutex_exit(&stp->sd_lock);
337 				goto retry;  /* could be clone! */
338 			}
339 
340 			if (stp->sd_flag & (STRDERR|STWRERR)) {
341 				error = EIO;
342 				goto ckreturn;
343 			}
344 
345 			stp->sd_flag |= STWOPEN;
346 			mutex_exit(&stp->sd_lock);
347 		}
348 
349 		/*
350 		 * Open all modules and devices down stream to notify
351 		 * that another user is streaming.  For modules, set the
352 		 * last argument to MODOPEN and do not pass any open flags.
353 		 * Ignore dummydev since this is not the first open.
354 		 */
355 		claimstr(stp->sd_wrq);
356 		qp = stp->sd_wrq;
357 		while (_SAMESTR(qp)) {
358 			qp = qp->q_next;
359 			if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
360 				break;
361 		}
362 		releasestr(stp->sd_wrq);
363 		mutex_enter(&stp->sd_lock);
364 		stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
365 		stp->sd_rerror = 0;
366 		stp->sd_werror = 0;
367 ckreturn:
368 		cv_broadcast(&stp->sd_monitor);
369 		mutex_exit(&stp->sd_lock);
370 		return (error);
371 	}
372 
373 	/*
374 	 * This vnode isn't streaming.  SPECFS already
375 	 * checked for multiple vnodes pointing to the
376 	 * same stream, so create a stream to the driver.
377 	 */
378 	qp = allocq();
379 	stp = shalloc(qp);
380 
381 	/*
382 	 * Initialize stream head.  shalloc() has given us
383 	 * exclusive access, and we have the vnode locked;
384 	 * we can do whatever we want with stp.
385 	 */
386 	stp->sd_flag = STWOPEN;
387 	stp->sd_siglist = NULL;
388 	stp->sd_pollist.ph_list = NULL;
389 	stp->sd_sigflags = 0;
390 	stp->sd_mark = NULL;
391 	stp->sd_closetime = STRTIMOUT;
392 	stp->sd_sidp = NULL;
393 	stp->sd_pgidp = NULL;
394 	stp->sd_vnode = vp;
395 	stp->sd_rerror = 0;
396 	stp->sd_werror = 0;
397 	stp->sd_wroff = 0;
398 	stp->sd_tail = 0;
399 	stp->sd_iocblk = NULL;
400 	stp->sd_pushcnt = 0;
401 	stp->sd_qn_minpsz = 0;
402 	stp->sd_qn_maxpsz = INFPSZ - 1;	/* used to check for initialization */
403 	stp->sd_maxblk = INFPSZ;
404 	stp->sd_sodirect = NULL;
405 	qp->q_ptr = _WR(qp)->q_ptr = stp;
406 	STREAM(qp) = STREAM(_WR(qp)) = stp;
407 	vp->v_stream = stp;
408 	mutex_exit(&vp->v_lock);
409 	if (vp->v_type == VFIFO) {
410 		stp->sd_flag |= OLDNDELAY;
411 		/*
412 		 * This means, both for pipes and fifos
413 		 * strwrite will send SIGPIPE if the other
414 		 * end is closed. For putmsg it depends
415 		 * on whether it is a XPG4_2 application
416 		 * or not
417 		 */
418 		stp->sd_wput_opt = SW_SIGPIPE;
419 
420 		/* setq might sleep in kmem_alloc - avoid holding locks. */
421 		setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
422 		    SQ_CI|SQ_CO, B_FALSE);
423 
424 		set_qend(qp);
425 		stp->sd_strtab = fifo_getinfo();
426 		_WR(qp)->q_nfsrv = _WR(qp);
427 		qp->q_nfsrv = qp;
428 		/*
429 		 * Wake up others that are waiting for stream to be created.
430 		 */
431 		mutex_enter(&stp->sd_lock);
432 		/*
433 		 * nothing is be pushed on stream yet, so
434 		 * optimized stream head packetsizes are just that
435 		 * of the read queue
436 		 */
437 		stp->sd_qn_minpsz = qp->q_minpsz;
438 		stp->sd_qn_maxpsz = qp->q_maxpsz;
439 		stp->sd_flag &= ~STWOPEN;
440 		goto fifo_opendone;
441 	}
442 	/* setq might sleep in kmem_alloc - avoid holding locks. */
443 	setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
444 
445 	set_qend(qp);
446 
447 	/*
448 	 * Open driver and create stream to it (via qattach).
449 	 */
450 	savedev = *devp;
451 	cloneopen = (getmajor(*devp) == clone_major);
452 	if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
453 		mutex_enter(&vp->v_lock);
454 		vp->v_stream = NULL;
455 		mutex_exit(&vp->v_lock);
456 		mutex_enter(&stp->sd_lock);
457 		cv_broadcast(&stp->sd_monitor);
458 		mutex_exit(&stp->sd_lock);
459 		freeq(_RD(qp));
460 		shfree(stp);
461 		return (error);
462 	}
463 	/*
464 	 * Set sd_strtab after open in order to handle clonable drivers
465 	 */
466 	stp->sd_strtab = STREAMSTAB(getmajor(*devp));
467 
468 	/*
469 	 * Historical note: dummydev used to be be prior to the initial
470 	 * open (via qattach above), which made the value seen
471 	 * inconsistent between an I_PUSH and an autopush of a module.
472 	 */
473 	dummydev = *devp;
474 
475 	/*
476 	 * For clone open of old style (Q not associated) network driver,
477 	 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
478 	 */
479 	brq = _RD(_WR(qp)->q_next);
480 	major = getmajor(*devp);
481 	if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
482 	    ((brq->q_flag & _QASSOCIATED) == 0)) {
483 		if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
484 			cmn_err(CE_WARN, "cannot push " DRMODNAME
485 			    " streams module");
486 	}
487 
488 	if (!NETWORK_DRV(major)) {
489 		savedev = *devp;
490 	} else {
491 		/*
492 		 * For network devices, process differently based on the
493 		 * return value from dld_autopush():
494 		 *
495 		 *   0: the passed-in device points to a GLDv3 datalink with
496 		 *   per-link autopush configuration; use that configuration
497 		 *   and ignore any per-driver autopush configuration.
498 		 *
499 		 *   1: the passed-in device points to a physical GLDv3
500 		 *   datalink without per-link autopush configuration.  The
501 		 *   passed in device was changed to refer to the actual
502 		 *   physical device (if it's not already); we use that new
503 		 *   device to look up any per-driver autopush configuration.
504 		 *
505 		 *   -1: neither of the above cases applied; use the initial
506 		 *   device to look up any per-driver autopush configuration.
507 		 */
508 		switch (dld_autopush(&savedev, &dlap)) {
509 		case 0:
510 			zoneid = crgetzoneid(crp);
511 			for (s = 0; s < dlap.dap_npush; s++) {
512 				error = push_mod(qp, &dummydev, stp,
513 				    dlap.dap_aplist[s], dlap.dap_anchor, crp,
514 				    zoneid);
515 				if (error != 0)
516 					break;
517 			}
518 			goto opendone;
519 		case 1:
520 			break;
521 		case -1:
522 			savedev = *devp;
523 			break;
524 		}
525 	}
526 	/*
527 	 * Find the autopush configuration based on "savedev". Start with the
528 	 * global zone. If not found check in the local zone.
529 	 */
530 	zoneid = GLOBAL_ZONEID;
531 retryap:
532 	ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
533 	    netstack_str;
534 	if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
535 		netstack_rele(ss->ss_netstack);
536 		if (zoneid == GLOBAL_ZONEID) {
537 			/*
538 			 * None found. Also look in the zone's autopush table.
539 			 */
540 			zoneid = crgetzoneid(crp);
541 			if (zoneid != GLOBAL_ZONEID)
542 				goto retryap;
543 		}
544 		goto opendone;
545 	}
546 	anchor = ap->ap_anchor;
547 	zoneid = crgetzoneid(crp);
548 	for (s = 0; s < ap->ap_npush; s++) {
549 		error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
550 		    anchor, crp, zoneid);
551 		if (error != 0)
552 			break;
553 	}
554 	sad_ap_rele(ap, ss);
555 	netstack_rele(ss->ss_netstack);
556 
557 opendone:
558 
559 	/*
560 	 * let specfs know that open failed part way through
561 	 */
562 	if (error) {
563 		mutex_enter(&stp->sd_lock);
564 		stp->sd_flag |= STREOPENFAIL;
565 		mutex_exit(&stp->sd_lock);
566 	}
567 
568 	/*
569 	 * Wake up others that are waiting for stream to be created.
570 	 */
571 	mutex_enter(&stp->sd_lock);
572 	stp->sd_flag &= ~STWOPEN;
573 
574 	/*
575 	 * As a performance concern we are caching the values of
576 	 * q_minpsz and q_maxpsz of the module below the stream
577 	 * head in the stream head.
578 	 */
579 	mutex_enter(QLOCK(stp->sd_wrq->q_next));
580 	rmin = stp->sd_wrq->q_next->q_minpsz;
581 	rmax = stp->sd_wrq->q_next->q_maxpsz;
582 	mutex_exit(QLOCK(stp->sd_wrq->q_next));
583 
584 	/* do this processing here as a performance concern */
585 	if (strmsgsz != 0) {
586 		if (rmax == INFPSZ)
587 			rmax = strmsgsz;
588 		else
589 			rmax = MIN(strmsgsz, rmax);
590 	}
591 
592 	mutex_enter(QLOCK(stp->sd_wrq));
593 	stp->sd_qn_minpsz = rmin;
594 	stp->sd_qn_maxpsz = rmax;
595 	mutex_exit(QLOCK(stp->sd_wrq));
596 
597 fifo_opendone:
598 	cv_broadcast(&stp->sd_monitor);
599 	mutex_exit(&stp->sd_lock);
600 	return (error);
601 }
602 
603 static int strsink(queue_t *, mblk_t *);
604 static struct qinit deadrend = {
605 	strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
606 };
607 static struct qinit deadwend = {
608 	NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
609 };
610 
611 /*
612  * Close a stream.
613  * This is called from closef() on the last close of an open stream.
614  * Strclean() will already have removed the siglist and pollist
615  * information, so all that remains is to remove all multiplexor links
616  * for the stream, pop all the modules (and the driver), and free the
617  * stream structure.
618  */
619 
620 int
621 strclose(struct vnode *vp, int flag, cred_t *crp)
622 {
623 	struct stdata *stp;
624 	queue_t *qp;
625 	int rval;
626 	int freestp = 1;
627 	queue_t *rmq;
628 
629 	if (audit_active)
630 		audit_strclose(vp, flag, crp);
631 
632 	TRACE_1(TR_FAC_STREAMS_FR,
633 	    TR_STRCLOSE, "strclose:%p", vp);
634 	ASSERT(vp->v_stream);
635 
636 	stp = vp->v_stream;
637 	ASSERT(!(stp->sd_flag & STPLEX));
638 	qp = stp->sd_wrq;
639 
640 	/*
641 	 * Needed so that strpoll will return non-zero for this fd.
642 	 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
643 	 */
644 	mutex_enter(&stp->sd_lock);
645 	stp->sd_flag |= STRHUP;
646 	mutex_exit(&stp->sd_lock);
647 
648 	/*
649 	 * If the registered process or process group did not have an
650 	 * open instance of this stream then strclean would not be
651 	 * called. Thus at the time of closing all remaining siglist entries
652 	 * are removed.
653 	 */
654 	if (stp->sd_siglist != NULL)
655 		strcleanall(vp);
656 
657 	ASSERT(stp->sd_siglist == NULL);
658 	ASSERT(stp->sd_sigflags == 0);
659 
660 	if (STRMATED(stp)) {
661 		struct stdata *strmatep = stp->sd_mate;
662 		int waited = 1;
663 
664 		STRLOCKMATES(stp);
665 		while (waited) {
666 			waited = 0;
667 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
668 				mutex_exit(&strmatep->sd_lock);
669 				cv_wait(&stp->sd_monitor, &stp->sd_lock);
670 				mutex_exit(&stp->sd_lock);
671 				STRLOCKMATES(stp);
672 				waited = 1;
673 			}
674 			while (strmatep->sd_flag &
675 			    (STWOPEN|STRCLOSE|STRPLUMB)) {
676 				mutex_exit(&stp->sd_lock);
677 				cv_wait(&strmatep->sd_monitor,
678 				    &strmatep->sd_lock);
679 				mutex_exit(&strmatep->sd_lock);
680 				STRLOCKMATES(stp);
681 				waited = 1;
682 			}
683 		}
684 		stp->sd_flag |= STRCLOSE;
685 		STRUNLOCKMATES(stp);
686 	} else {
687 		mutex_enter(&stp->sd_lock);
688 		stp->sd_flag |= STRCLOSE;
689 		mutex_exit(&stp->sd_lock);
690 	}
691 
692 	ASSERT(qp->q_first == NULL);	/* No more delayed write */
693 
694 	/* Check if an I_LINK was ever done on this stream */
695 	if (stp->sd_flag & STRHASLINKS) {
696 		netstack_t *ns;
697 		str_stack_t *ss;
698 
699 		ns = netstack_find_by_cred(crp);
700 		ASSERT(ns != NULL);
701 		ss = ns->netstack_str;
702 		ASSERT(ss != NULL);
703 
704 		(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
705 		netstack_rele(ss->ss_netstack);
706 	}
707 
708 	while (_SAMESTR(qp)) {
709 		/*
710 		 * Holding sd_lock prevents q_next from changing in
711 		 * this stream.
712 		 */
713 		mutex_enter(&stp->sd_lock);
714 		if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
715 
716 			/*
717 			 * sleep until awakened by strwsrv() or timeout
718 			 */
719 			for (;;) {
720 				mutex_enter(QLOCK(qp->q_next));
721 				if (!(qp->q_next->q_mblkcnt)) {
722 					mutex_exit(QLOCK(qp->q_next));
723 					break;
724 				}
725 				stp->sd_flag |= WSLEEP;
726 
727 				/* ensure strwsrv gets enabled */
728 				qp->q_next->q_flag |= QWANTW;
729 				mutex_exit(QLOCK(qp->q_next));
730 				/* get out if we timed out or recv'd a signal */
731 				if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
732 				    stp->sd_closetime, 0) <= 0) {
733 					break;
734 				}
735 			}
736 			stp->sd_flag &= ~WSLEEP;
737 		}
738 		mutex_exit(&stp->sd_lock);
739 
740 		rmq = qp->q_next;
741 		if (rmq->q_flag & QISDRV) {
742 			ASSERT(!_SAMESTR(rmq));
743 			wait_sq_svc(_RD(qp)->q_syncq);
744 		}
745 
746 		qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
747 	}
748 
749 	/*
750 	 * Since we call pollwakeup in close() now, the poll list should
751 	 * be empty in most cases. The only exception is the layered devices
752 	 * (e.g. the console drivers with redirection modules pushed on top
753 	 * of it).  We have to do this after calling qdetach() because
754 	 * the redirection module won't have torn down the console
755 	 * redirection until after qdetach() has been invoked.
756 	 */
757 	if (stp->sd_pollist.ph_list != NULL) {
758 		pollwakeup(&stp->sd_pollist, POLLERR);
759 		pollhead_clean(&stp->sd_pollist);
760 	}
761 	ASSERT(stp->sd_pollist.ph_list == NULL);
762 	ASSERT(stp->sd_sidp == NULL);
763 	ASSERT(stp->sd_pgidp == NULL);
764 
765 	/* Prevent qenable from re-enabling the stream head queue */
766 	disable_svc(_RD(qp));
767 
768 	/*
769 	 * Wait until service procedure of each queue is
770 	 * run, if QINSERVICE is set.
771 	 */
772 	wait_svc(_RD(qp));
773 
774 	/*
775 	 * Now, flush both queues.
776 	 */
777 	flushq(_RD(qp), FLUSHALL);
778 	flushq(qp, FLUSHALL);
779 
780 	/*
781 	 * If the write queue of the stream head is pointing to a
782 	 * read queue, we have a twisted stream.  If the read queue
783 	 * is alive, convert the stream head queues into a dead end.
784 	 * If the read queue is dead, free the dead pair.
785 	 */
786 	if (qp->q_next && !_SAMESTR(qp)) {
787 		if (qp->q_next->q_qinfo == &deadrend) {	/* half-closed pipe */
788 			flushq(qp->q_next, FLUSHALL); /* ensure no message */
789 			shfree(qp->q_next->q_stream);
790 			freeq(qp->q_next);
791 			freeq(_RD(qp));
792 		} else if (qp->q_next == _RD(qp)) {	/* fifo */
793 			freeq(_RD(qp));
794 		} else {				/* pipe */
795 			freestp = 0;
796 			/*
797 			 * The q_info pointers are never accessed when
798 			 * SQLOCK is held.
799 			 */
800 			ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
801 			mutex_enter(SQLOCK(qp->q_syncq));
802 			qp->q_qinfo = &deadwend;
803 			_RD(qp)->q_qinfo = &deadrend;
804 			mutex_exit(SQLOCK(qp->q_syncq));
805 		}
806 	} else {
807 		freeq(_RD(qp)); /* free stream head queue pair */
808 	}
809 
810 	mutex_enter(&vp->v_lock);
811 	if (stp->sd_iocblk) {
812 		if (stp->sd_iocblk != (mblk_t *)-1) {
813 			freemsg(stp->sd_iocblk);
814 		}
815 		stp->sd_iocblk = NULL;
816 	}
817 	stp->sd_vnode = NULL;
818 	vp->v_stream = NULL;
819 	mutex_exit(&vp->v_lock);
820 	mutex_enter(&stp->sd_lock);
821 	stp->sd_flag &= ~STRCLOSE;
822 	cv_broadcast(&stp->sd_monitor);
823 	mutex_exit(&stp->sd_lock);
824 
825 	if (freestp)
826 		shfree(stp);
827 	return (0);
828 }
829 
830 static int
831 strsink(queue_t *q, mblk_t *bp)
832 {
833 	struct copyresp *resp;
834 
835 	switch (bp->b_datap->db_type) {
836 	case M_FLUSH:
837 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
838 			*bp->b_rptr &= ~FLUSHR;
839 			bp->b_flag |= MSGNOLOOP;
840 			/*
841 			 * Protect against the driver passing up
842 			 * messages after it has done a qprocsoff.
843 			 */
844 			if (_OTHERQ(q)->q_next == NULL)
845 				freemsg(bp);
846 			else
847 				qreply(q, bp);
848 		} else {
849 			freemsg(bp);
850 		}
851 		break;
852 
853 	case M_COPYIN:
854 	case M_COPYOUT:
855 		if (bp->b_cont) {
856 			freemsg(bp->b_cont);
857 			bp->b_cont = NULL;
858 		}
859 		bp->b_datap->db_type = M_IOCDATA;
860 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
861 		resp = (struct copyresp *)bp->b_rptr;
862 		resp->cp_rval = (caddr_t)1;	/* failure */
863 		/*
864 		 * Protect against the driver passing up
865 		 * messages after it has done a qprocsoff.
866 		 */
867 		if (_OTHERQ(q)->q_next == NULL)
868 			freemsg(bp);
869 		else
870 			qreply(q, bp);
871 		break;
872 
873 	case M_IOCTL:
874 		if (bp->b_cont) {
875 			freemsg(bp->b_cont);
876 			bp->b_cont = NULL;
877 		}
878 		bp->b_datap->db_type = M_IOCNAK;
879 		/*
880 		 * Protect against the driver passing up
881 		 * messages after it has done a qprocsoff.
882 		 */
883 		if (_OTHERQ(q)->q_next == NULL)
884 			freemsg(bp);
885 		else
886 			qreply(q, bp);
887 		break;
888 
889 	default:
890 		freemsg(bp);
891 		break;
892 	}
893 
894 	return (0);
895 }
896 
897 /*
898  * Clean up after a process when it closes a stream.  This is called
899  * from closef for all closes, whereas strclose is called only for the
900  * last close on a stream.  The siglist is scanned for entries for the
901  * current process, and these are removed.
902  */
903 void
904 strclean(struct vnode *vp)
905 {
906 	strsig_t *ssp, *pssp, *tssp;
907 	stdata_t *stp;
908 	int update = 0;
909 
910 	TRACE_1(TR_FAC_STREAMS_FR,
911 	    TR_STRCLEAN, "strclean:%p", vp);
912 	stp = vp->v_stream;
913 	pssp = NULL;
914 	mutex_enter(&stp->sd_lock);
915 	ssp = stp->sd_siglist;
916 	while (ssp) {
917 		if (ssp->ss_pidp == curproc->p_pidp) {
918 			tssp = ssp->ss_next;
919 			if (pssp)
920 				pssp->ss_next = tssp;
921 			else
922 				stp->sd_siglist = tssp;
923 			mutex_enter(&pidlock);
924 			PID_RELE(ssp->ss_pidp);
925 			mutex_exit(&pidlock);
926 			kmem_free(ssp, sizeof (strsig_t));
927 			update = 1;
928 			ssp = tssp;
929 		} else {
930 			pssp = ssp;
931 			ssp = ssp->ss_next;
932 		}
933 	}
934 	if (update) {
935 		stp->sd_sigflags = 0;
936 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
937 			stp->sd_sigflags |= ssp->ss_events;
938 	}
939 	mutex_exit(&stp->sd_lock);
940 }
941 
942 /*
943  * Used on the last close to remove any remaining items on the siglist.
944  * These could be present on the siglist due to I_ESETSIG calls that
945  * use process groups or processed that do not have an open file descriptor
946  * for this stream (Such entries would not be removed by strclean).
947  */
948 static void
949 strcleanall(struct vnode *vp)
950 {
951 	strsig_t *ssp, *nssp;
952 	stdata_t *stp;
953 
954 	stp = vp->v_stream;
955 	mutex_enter(&stp->sd_lock);
956 	ssp = stp->sd_siglist;
957 	stp->sd_siglist = NULL;
958 	while (ssp) {
959 		nssp = ssp->ss_next;
960 		mutex_enter(&pidlock);
961 		PID_RELE(ssp->ss_pidp);
962 		mutex_exit(&pidlock);
963 		kmem_free(ssp, sizeof (strsig_t));
964 		ssp = nssp;
965 	}
966 	stp->sd_sigflags = 0;
967 	mutex_exit(&stp->sd_lock);
968 }
969 
970 /*
971  * Retrieve the next message from the logical stream head read queue
972  * using either rwnext (if sync stream) or getq_noenab.
973  * It is the callers responsibility to call qbackenable after
974  * it is finished with the message. The caller should not call
975  * qbackenable until after any putback calls to avoid spurious backenabling.
976  *
977  * Also, handle uioa initialization and process any DBLK_UIOA flaged messages.
978  */
979 mblk_t *
980 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
981     int *errorp)
982 {
983 	sodirect_t *sodp = stp->sd_sodirect;
984 	mblk_t *bp;
985 	int error;
986 
987 	ASSERT(MUTEX_HELD(&stp->sd_lock));
988 	/* Holding sd_lock prevents the read queue from changing  */
989 
990 	if (uiop != NULL && stp->sd_struiordq != NULL &&
991 	    q->q_first == NULL &&
992 	    (!first || (stp->sd_wakeq & RSLEEP))) {
993 		/*
994 		 * Stream supports rwnext() for the read side.
995 		 * If this is the first time we're called by e.g. strread
996 		 * only do the downcall if there is a deferred wakeup
997 		 * (registered in sd_wakeq).
998 		 */
999 		struiod_t uiod;
1000 
1001 		if (first)
1002 			stp->sd_wakeq &= ~RSLEEP;
1003 
1004 		(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
1005 		    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
1006 		uiod.d_mp = 0;
1007 		/*
1008 		 * Mark that a thread is in rwnext on the read side
1009 		 * to prevent strrput from nacking ioctls immediately.
1010 		 * When the last concurrent rwnext returns
1011 		 * the ioctls are nack'ed.
1012 		 */
1013 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1014 		stp->sd_struiodnak++;
1015 		/*
1016 		 * Note: rwnext will drop sd_lock.
1017 		 */
1018 		error = rwnext(q, &uiod);
1019 		ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1020 		mutex_enter(&stp->sd_lock);
1021 		stp->sd_struiodnak--;
1022 		while (stp->sd_struiodnak == 0 &&
1023 		    ((bp = stp->sd_struionak) != NULL)) {
1024 			stp->sd_struionak = bp->b_next;
1025 			bp->b_next = NULL;
1026 			bp->b_datap->db_type = M_IOCNAK;
1027 			/*
1028 			 * Protect against the driver passing up
1029 			 * messages after it has done a qprocsoff.
1030 			 */
1031 			if (_OTHERQ(q)->q_next == NULL)
1032 				freemsg(bp);
1033 			else {
1034 				mutex_exit(&stp->sd_lock);
1035 				qreply(q, bp);
1036 				mutex_enter(&stp->sd_lock);
1037 			}
1038 		}
1039 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1040 		if (error == 0 || error == EWOULDBLOCK) {
1041 			if ((bp = uiod.d_mp) != NULL) {
1042 				*errorp = 0;
1043 				ASSERT(MUTEX_HELD(&stp->sd_lock));
1044 				return (bp);
1045 			}
1046 			error = 0;
1047 		} else if (error == EINVAL) {
1048 			/*
1049 			 * The stream plumbing must have
1050 			 * changed while we were away, so
1051 			 * just turn off rwnext()s.
1052 			 */
1053 			error = 0;
1054 		} else if (error == EBUSY) {
1055 			/*
1056 			 * The module might have data in transit using putnext
1057 			 * Fall back on waiting + getq.
1058 			 */
1059 			error = 0;
1060 		} else {
1061 			*errorp = error;
1062 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1063 			return (NULL);
1064 		}
1065 		/*
1066 		 * Try a getq in case a rwnext() generated mblk
1067 		 * has bubbled up via strrput().
1068 		 */
1069 	}
1070 	*errorp = 0;
1071 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1072 	if (sodp != NULL && (sodp->sod_state & SOD_ENABLED) &&
1073 	    (sodp->sod_uioa.uioa_state & UIOA_INIT)) {
1074 		/*
1075 		 * First kstrgetmsg() call for an uioa_t so if any
1076 		 * queued mblk_t's need to consume them before uioa
1077 		 * from below can occur.
1078 		 */
1079 		sodp->sod_uioa.uioa_state &= UIOA_CLR;
1080 		sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
1081 		if (q->q_first != NULL) {
1082 			struioainit(q, sodp, uiop);
1083 		}
1084 	}
1085 
1086 	bp = getq_noenab(q);
1087 
1088 	if (bp != NULL && (bp->b_datap->db_flags & DBLK_UIOA)) {
1089 		/*
1090 		 * A uioa flaged mblk_t chain, already uio processed,
1091 		 * add it to the sodirect uioa pending free list.
1092 		 *
1093 		 * Note, a b_cont chain headed by a DBLK_UIOA enable
1094 		 * mblk_t must have all mblk_t(s) DBLK_UIOA enabled.
1095 		 */
1096 		mblk_t	*bpt = sodp->sod_uioaft;
1097 
1098 		ASSERT(sodp != NULL);
1099 
1100 		/*
1101 		 * Add first mblk_t of "bp" chain to current sodirect uioa
1102 		 * free list tail mblk_t, if any, else empty list so new head.
1103 		 */
1104 		if (bpt == NULL)
1105 			sodp->sod_uioafh = bp;
1106 		else
1107 			bpt->b_cont = bp;
1108 
1109 		/*
1110 		 * Walk mblk_t "bp" chain to find tail and adjust rptr of
1111 		 * each to reflect that uioamove() has consumed all data.
1112 		 */
1113 		bpt = bp;
1114 		for (;;) {
1115 			bpt->b_rptr = bpt->b_wptr;
1116 			if (bpt->b_cont == NULL)
1117 				break;
1118 			bpt = bpt->b_cont;
1119 
1120 			ASSERT(bpt->b_datap->db_flags & DBLK_UIOA);
1121 		}
1122 		/* New sodirect uioa free list tail */
1123 		sodp->sod_uioaft = bpt;
1124 
1125 		/* Only 1 strget() with data returned per uioa_t */
1126 		if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
1127 			sodp->sod_uioa.uioa_state &= UIOA_CLR;
1128 			sodp->sod_uioa.uioa_state |= UIOA_FINI;
1129 		}
1130 	}
1131 
1132 	return (bp);
1133 }
1134 
1135 /*
1136  * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1137  * If the message does not fit in the uio the remainder of it is returned;
1138  * otherwise NULL is returned.  Any embedded zero-length mblk_t's are
1139  * consumed, even if uio_resid reaches zero.  On error, `*errorp' is set to
1140  * the error code, the message is consumed, and NULL is returned.
1141  */
1142 static mblk_t *
1143 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1144 {
1145 	int error;
1146 	ptrdiff_t n;
1147 	mblk_t *nbp;
1148 
1149 	ASSERT(bp->b_wptr >= bp->b_rptr);
1150 
1151 	do {
1152 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
1153 
1154 		if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1155 			ASSERT(n > 0);
1156 
1157 			error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1158 			if (error != 0) {
1159 				freemsg(bp);
1160 				*errorp = error;
1161 				return (NULL);
1162 			}
1163 		}
1164 
1165 		bp->b_rptr += n;
1166 		while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1167 			nbp = bp;
1168 			bp = bp->b_cont;
1169 			freeb(nbp);
1170 		}
1171 	} while (bp != NULL && uiop->uio_resid > 0);
1172 
1173 	*errorp = 0;
1174 	return (bp);
1175 }
1176 
1177 /*
1178  * Read a stream according to the mode flags in sd_flag:
1179  *
1180  * (default mode)		- Byte stream, msg boundaries are ignored
1181  * RD_MSGDIS (msg discard)	- Read on msg boundaries and throw away
1182  *				any data remaining in msg
1183  * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1184  *				any remaining data on head of read queue
1185  *
1186  * Consume readable messages on the front of the queue until
1187  * ttolwp(curthread)->lwp_count
1188  * is satisfied, the readable messages are exhausted, or a message
1189  * boundary is reached in a message mode.  If no data was read and
1190  * the stream was not opened with the NDELAY flag, block until data arrives.
1191  * Otherwise return the data read and update the count.
1192  *
1193  * In default mode a 0 length message signifies end-of-file and terminates
1194  * a read in progress.  The 0 length message is removed from the queue
1195  * only if it is the only message read (no data is read).
1196  *
1197  * An attempt to read an M_PROTO or M_PCPROTO message results in an
1198  * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1199  * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1200  * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1201  * are unlinked from and M_DATA blocks in the message, the protos are
1202  * thrown away, and the data is read.
1203  */
1204 /* ARGSUSED */
1205 int
1206 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1207 {
1208 	struct stdata *stp;
1209 	mblk_t *bp, *nbp;
1210 	queue_t *q;
1211 	int error = 0;
1212 	uint_t old_sd_flag;
1213 	int first;
1214 	char rflg;
1215 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
1216 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
1217 	short delim;
1218 	unsigned char pri = 0;
1219 	char waitflag;
1220 	unsigned char type;
1221 
1222 	TRACE_1(TR_FAC_STREAMS_FR,
1223 	    TR_STRREAD_ENTER, "strread:%p", vp);
1224 	ASSERT(vp->v_stream);
1225 	stp = vp->v_stream;
1226 
1227 	mutex_enter(&stp->sd_lock);
1228 
1229 	if ((error = i_straccess(stp, JCREAD)) != 0) {
1230 		mutex_exit(&stp->sd_lock);
1231 		return (error);
1232 	}
1233 
1234 	if (stp->sd_flag & (STRDERR|STPLEX)) {
1235 		error = strgeterr(stp, STRDERR|STPLEX, 0);
1236 		if (error != 0) {
1237 			mutex_exit(&stp->sd_lock);
1238 			return (error);
1239 		}
1240 	}
1241 
1242 	/*
1243 	 * Loop terminates when uiop->uio_resid == 0.
1244 	 */
1245 	rflg = 0;
1246 	waitflag = READWAIT;
1247 	q = _RD(stp->sd_wrq);
1248 	for (;;) {
1249 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1250 		old_sd_flag = stp->sd_flag;
1251 		mark = 0;
1252 		delim = 0;
1253 		first = 1;
1254 		while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1255 			int done = 0;
1256 
1257 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1258 
1259 			if (error != 0)
1260 				goto oops;
1261 
1262 			if (stp->sd_flag & (STRHUP|STREOF)) {
1263 				goto oops;
1264 			}
1265 			if (rflg && !(stp->sd_flag & STRDELIM)) {
1266 				goto oops;
1267 			}
1268 			/*
1269 			 * If a read(fd,buf,0) has been done, there is no
1270 			 * need to sleep. We always have zero bytes to
1271 			 * return.
1272 			 */
1273 			if (uiop->uio_resid == 0) {
1274 				goto oops;
1275 			}
1276 
1277 			qbackenable(q, 0);
1278 
1279 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1280 			    "strread calls strwaitq:%p, %p, %p",
1281 			    vp, uiop, crp);
1282 			if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1283 			    uiop->uio_fmode, -1, &done)) != 0 || done) {
1284 				TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1285 				    "strread error or done:%p, %p, %p",
1286 				    vp, uiop, crp);
1287 				if ((uiop->uio_fmode & FNDELAY) &&
1288 				    (stp->sd_flag & OLDNDELAY) &&
1289 				    (error == EAGAIN))
1290 					error = 0;
1291 				goto oops;
1292 			}
1293 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1294 			    "strread awakes:%p, %p, %p", vp, uiop, crp);
1295 			if ((error = i_straccess(stp, JCREAD)) != 0) {
1296 				goto oops;
1297 			}
1298 			first = 0;
1299 		}
1300 
1301 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1302 		ASSERT(bp);
1303 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
1304 		pri = bp->b_band;
1305 		/*
1306 		 * Extract any mark information. If the message is not
1307 		 * completely consumed this information will be put in the mblk
1308 		 * that is putback.
1309 		 * If MSGMARKNEXT is set and the message is completely consumed
1310 		 * the STRATMARK flag will be set below. Likewise, if
1311 		 * MSGNOTMARKNEXT is set and the message is
1312 		 * completely consumed STRNOTATMARK will be set.
1313 		 *
1314 		 * For some unknown reason strread only breaks the read at the
1315 		 * last mark.
1316 		 */
1317 		mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1318 		ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1319 		    (MSGMARKNEXT|MSGNOTMARKNEXT));
1320 		if (mark != 0 && bp == stp->sd_mark) {
1321 			if (rflg) {
1322 				putback(stp, q, bp, pri);
1323 				goto oops;
1324 			}
1325 			mark |= _LASTMARK;
1326 			stp->sd_mark = NULL;
1327 		}
1328 		if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1329 			delim = 1;
1330 		mutex_exit(&stp->sd_lock);
1331 
1332 		if (STREAM_NEEDSERVICE(stp))
1333 			stream_runservice(stp);
1334 
1335 		type = bp->b_datap->db_type;
1336 
1337 		switch (type) {
1338 
1339 		case M_DATA:
1340 ismdata:
1341 			if (msgnodata(bp)) {
1342 				if (mark || delim) {
1343 					freemsg(bp);
1344 				} else if (rflg) {
1345 
1346 					/*
1347 					 * If already read data put zero
1348 					 * length message back on queue else
1349 					 * free msg and return 0.
1350 					 */
1351 					bp->b_band = pri;
1352 					mutex_enter(&stp->sd_lock);
1353 					putback(stp, q, bp, pri);
1354 					mutex_exit(&stp->sd_lock);
1355 				} else {
1356 					freemsg(bp);
1357 				}
1358 				error =  0;
1359 				goto oops1;
1360 			}
1361 
1362 			rflg = 1;
1363 			waitflag |= NOINTR;
1364 			bp = struiocopyout(bp, uiop, &error);
1365 			if (error != 0)
1366 				goto oops1;
1367 
1368 			mutex_enter(&stp->sd_lock);
1369 			if (bp) {
1370 				/*
1371 				 * Have remaining data in message.
1372 				 * Free msg if in discard mode.
1373 				 */
1374 				if (stp->sd_read_opt & RD_MSGDIS) {
1375 					freemsg(bp);
1376 				} else {
1377 					bp->b_band = pri;
1378 					if ((mark & _LASTMARK) &&
1379 					    (stp->sd_mark == NULL))
1380 						stp->sd_mark = bp;
1381 					bp->b_flag |= mark & ~_LASTMARK;
1382 					if (delim)
1383 						bp->b_flag |= MSGDELIM;
1384 					if (msgnodata(bp))
1385 						freemsg(bp);
1386 					else
1387 						putback(stp, q, bp, pri);
1388 				}
1389 			} else {
1390 				/*
1391 				 * Consumed the complete message.
1392 				 * Move the MSG*MARKNEXT information
1393 				 * to the stream head just in case
1394 				 * the read queue becomes empty.
1395 				 *
1396 				 * If the stream head was at the mark
1397 				 * (STRATMARK) before we dropped sd_lock above
1398 				 * and some data was consumed then we have
1399 				 * moved past the mark thus STRATMARK is
1400 				 * cleared. However, if a message arrived in
1401 				 * strrput during the copyout above causing
1402 				 * STRATMARK to be set we can not clear that
1403 				 * flag.
1404 				 */
1405 				if (mark &
1406 				    (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1407 					if (mark & MSGMARKNEXT) {
1408 						stp->sd_flag &= ~STRNOTATMARK;
1409 						stp->sd_flag |= STRATMARK;
1410 					} else if (mark & MSGNOTMARKNEXT) {
1411 						stp->sd_flag &= ~STRATMARK;
1412 						stp->sd_flag |= STRNOTATMARK;
1413 					} else {
1414 						stp->sd_flag &=
1415 						    ~(STRATMARK|STRNOTATMARK);
1416 					}
1417 				} else if (rflg && (old_sd_flag & STRATMARK)) {
1418 					stp->sd_flag &= ~STRATMARK;
1419 				}
1420 			}
1421 
1422 			/*
1423 			 * Check for signal messages at the front of the read
1424 			 * queue and generate the signal(s) if appropriate.
1425 			 * The only signal that can be on queue is M_SIG at
1426 			 * this point.
1427 			 */
1428 			while ((((bp = q->q_first)) != NULL) &&
1429 			    (bp->b_datap->db_type == M_SIG)) {
1430 				bp = getq_noenab(q);
1431 				/*
1432 				 * sd_lock is held so the content of the
1433 				 * read queue can not change.
1434 				 */
1435 				ASSERT(bp != NULL &&
1436 				    bp->b_datap->db_type == M_SIG);
1437 				strsignal_nolock(stp, *bp->b_rptr,
1438 				    (int32_t)bp->b_band);
1439 				mutex_exit(&stp->sd_lock);
1440 				freemsg(bp);
1441 				if (STREAM_NEEDSERVICE(stp))
1442 					stream_runservice(stp);
1443 				mutex_enter(&stp->sd_lock);
1444 			}
1445 
1446 			if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1447 			    delim ||
1448 			    (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1449 				goto oops;
1450 			}
1451 			continue;
1452 
1453 		case M_SIG:
1454 			strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1455 			freemsg(bp);
1456 			mutex_enter(&stp->sd_lock);
1457 			continue;
1458 
1459 		case M_PROTO:
1460 		case M_PCPROTO:
1461 			/*
1462 			 * Only data messages are readable.
1463 			 * Any others generate an error, unless
1464 			 * RD_PROTDIS or RD_PROTDAT is set.
1465 			 */
1466 			if (stp->sd_read_opt & RD_PROTDAT) {
1467 				for (nbp = bp; nbp; nbp = nbp->b_next) {
1468 					if ((nbp->b_datap->db_type ==
1469 					    M_PROTO) ||
1470 					    (nbp->b_datap->db_type ==
1471 					    M_PCPROTO)) {
1472 						nbp->b_datap->db_type = M_DATA;
1473 					} else {
1474 						break;
1475 					}
1476 				}
1477 				/*
1478 				 * clear stream head hi pri flag based on
1479 				 * first message
1480 				 */
1481 				if (type == M_PCPROTO) {
1482 					mutex_enter(&stp->sd_lock);
1483 					stp->sd_flag &= ~STRPRI;
1484 					mutex_exit(&stp->sd_lock);
1485 				}
1486 				goto ismdata;
1487 			} else if (stp->sd_read_opt & RD_PROTDIS) {
1488 				/*
1489 				 * discard non-data messages
1490 				 */
1491 				while (bp &&
1492 				    ((bp->b_datap->db_type == M_PROTO) ||
1493 				    (bp->b_datap->db_type == M_PCPROTO))) {
1494 					nbp = unlinkb(bp);
1495 					freeb(bp);
1496 					bp = nbp;
1497 				}
1498 				/*
1499 				 * clear stream head hi pri flag based on
1500 				 * first message
1501 				 */
1502 				if (type == M_PCPROTO) {
1503 					mutex_enter(&stp->sd_lock);
1504 					stp->sd_flag &= ~STRPRI;
1505 					mutex_exit(&stp->sd_lock);
1506 				}
1507 				if (bp) {
1508 					bp->b_band = pri;
1509 					goto ismdata;
1510 				} else {
1511 					break;
1512 				}
1513 			}
1514 			/* FALLTHRU */
1515 		case M_PASSFP:
1516 			if ((bp->b_datap->db_type == M_PASSFP) &&
1517 			    (stp->sd_read_opt & RD_PROTDIS)) {
1518 				freemsg(bp);
1519 				break;
1520 			}
1521 			mutex_enter(&stp->sd_lock);
1522 			putback(stp, q, bp, pri);
1523 			mutex_exit(&stp->sd_lock);
1524 			if (rflg == 0)
1525 				error = EBADMSG;
1526 			goto oops1;
1527 
1528 		default:
1529 			/*
1530 			 * Garbage on stream head read queue.
1531 			 */
1532 			cmn_err(CE_WARN, "bad %x found at stream head\n",
1533 			    bp->b_datap->db_type);
1534 			freemsg(bp);
1535 			goto oops1;
1536 		}
1537 		mutex_enter(&stp->sd_lock);
1538 	}
1539 oops:
1540 	mutex_exit(&stp->sd_lock);
1541 oops1:
1542 	qbackenable(q, pri);
1543 	return (error);
1544 #undef	_LASTMARK
1545 }
1546 
1547 /*
1548  * Default processing of M_PROTO/M_PCPROTO messages.
1549  * Determine which wakeups and signals are needed.
1550  * This can be replaced by a user-specified procedure for kernel users
1551  * of STREAMS.
1552  */
1553 /* ARGSUSED */
1554 mblk_t *
1555 strrput_proto(vnode_t *vp, mblk_t *mp,
1556     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1557     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1558 {
1559 	*wakeups = RSLEEP;
1560 	*allmsgsigs = 0;
1561 
1562 	switch (mp->b_datap->db_type) {
1563 	case M_PROTO:
1564 		if (mp->b_band == 0) {
1565 			*firstmsgsigs = S_INPUT | S_RDNORM;
1566 			*pollwakeups = POLLIN | POLLRDNORM;
1567 		} else {
1568 			*firstmsgsigs = S_INPUT | S_RDBAND;
1569 			*pollwakeups = POLLIN | POLLRDBAND;
1570 		}
1571 		break;
1572 	case M_PCPROTO:
1573 		*firstmsgsigs = S_HIPRI;
1574 		*pollwakeups = POLLPRI;
1575 		break;
1576 	}
1577 	return (mp);
1578 }
1579 
1580 /*
1581  * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1582  * M_PASSFP messages.
1583  * Determine which wakeups and signals are needed.
1584  * This can be replaced by a user-specified procedure for kernel users
1585  * of STREAMS.
1586  */
1587 /* ARGSUSED */
1588 mblk_t *
1589 strrput_misc(vnode_t *vp, mblk_t *mp,
1590     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1591     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1592 {
1593 	*wakeups = 0;
1594 	*firstmsgsigs = 0;
1595 	*allmsgsigs = 0;
1596 	*pollwakeups = 0;
1597 	return (mp);
1598 }
1599 
1600 /*
1601  * Stream read put procedure.  Called from downstream driver/module
1602  * with messages for the stream head.  Data, protocol, and in-stream
1603  * signal messages are placed on the queue, others are handled directly.
1604  */
1605 int
1606 strrput(queue_t *q, mblk_t *bp)
1607 {
1608 	struct stdata	*stp;
1609 	ulong_t		rput_opt;
1610 	strwakeup_t	wakeups;
1611 	strsigset_t	firstmsgsigs;	/* Signals if first message on queue */
1612 	strsigset_t	allmsgsigs;	/* Signals for all messages */
1613 	strsigset_t	signals;	/* Signals events to generate */
1614 	strpollset_t	pollwakeups;
1615 	mblk_t		*nextbp;
1616 	uchar_t		band = 0;
1617 	int		hipri_sig;
1618 
1619 	stp = (struct stdata *)q->q_ptr;
1620 	/*
1621 	 * Use rput_opt for optimized access to the SR_ flags except
1622 	 * SR_POLLIN. That flag has to be checked under sd_lock since it
1623 	 * is modified by strpoll().
1624 	 */
1625 	rput_opt = stp->sd_rput_opt;
1626 
1627 	ASSERT(qclaimed(q));
1628 	TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1629 	    "strrput called with message type:q %p bp %p", q, bp);
1630 
1631 	/*
1632 	 * Perform initial processing and pass to the parameterized functions.
1633 	 */
1634 	ASSERT(bp->b_next == NULL);
1635 
1636 	switch (bp->b_datap->db_type) {
1637 	case M_DATA:
1638 		/*
1639 		 * sockfs is the only consumer of STREOF and when it is set,
1640 		 * it implies that the receiver is not interested in receiving
1641 		 * any more data, hence the mblk is freed to prevent unnecessary
1642 		 * message queueing at the stream head.
1643 		 */
1644 		if (stp->sd_flag == STREOF) {
1645 			freemsg(bp);
1646 			return (0);
1647 		}
1648 		if ((rput_opt & SR_IGN_ZEROLEN) &&
1649 		    bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1650 			/*
1651 			 * Ignore zero-length M_DATA messages. These might be
1652 			 * generated by some transports.
1653 			 * The zero-length M_DATA messages, even if they
1654 			 * are ignored, should effect the atmark tracking and
1655 			 * should wake up a thread sleeping in strwaitmark.
1656 			 */
1657 			mutex_enter(&stp->sd_lock);
1658 			if (bp->b_flag & MSGMARKNEXT) {
1659 				/*
1660 				 * Record the position of the mark either
1661 				 * in q_last or in STRATMARK.
1662 				 */
1663 				if (q->q_last != NULL) {
1664 					q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1665 					q->q_last->b_flag |= MSGMARKNEXT;
1666 				} else {
1667 					stp->sd_flag &= ~STRNOTATMARK;
1668 					stp->sd_flag |= STRATMARK;
1669 				}
1670 			} else if (bp->b_flag & MSGNOTMARKNEXT) {
1671 				/*
1672 				 * Record that this is not the position of
1673 				 * the mark either in q_last or in
1674 				 * STRNOTATMARK.
1675 				 */
1676 				if (q->q_last != NULL) {
1677 					q->q_last->b_flag &= ~MSGMARKNEXT;
1678 					q->q_last->b_flag |= MSGNOTMARKNEXT;
1679 				} else {
1680 					stp->sd_flag &= ~STRATMARK;
1681 					stp->sd_flag |= STRNOTATMARK;
1682 				}
1683 			}
1684 			if (stp->sd_flag & RSLEEP) {
1685 				stp->sd_flag &= ~RSLEEP;
1686 				cv_broadcast(&q->q_wait);
1687 			}
1688 			mutex_exit(&stp->sd_lock);
1689 			freemsg(bp);
1690 			return (0);
1691 		}
1692 		wakeups = RSLEEP;
1693 		if (bp->b_band == 0) {
1694 			firstmsgsigs = S_INPUT | S_RDNORM;
1695 			pollwakeups = POLLIN | POLLRDNORM;
1696 		} else {
1697 			firstmsgsigs = S_INPUT | S_RDBAND;
1698 			pollwakeups = POLLIN | POLLRDBAND;
1699 		}
1700 		if (rput_opt & SR_SIGALLDATA)
1701 			allmsgsigs = firstmsgsigs;
1702 		else
1703 			allmsgsigs = 0;
1704 
1705 		mutex_enter(&stp->sd_lock);
1706 		if ((rput_opt & SR_CONSOL_DATA) &&
1707 		    (q->q_last != NULL) &&
1708 		    (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1709 			/*
1710 			 * Consolidate an M_DATA message onto an M_DATA,
1711 			 * M_PROTO, or M_PCPROTO by merging it with q_last.
1712 			 * The consolidation does not take place if
1713 			 * the old message is marked with either of the
1714 			 * marks or the delim flag or if the new
1715 			 * message is marked with MSGMARK. The MSGMARK
1716 			 * check is needed to handle the odd semantics of
1717 			 * MSGMARK where essentially the whole message
1718 			 * is to be treated as marked.
1719 			 * Carry any MSGMARKNEXT  and MSGNOTMARKNEXT from the
1720 			 * new message to the front of the b_cont chain.
1721 			 */
1722 			mblk_t *lbp = q->q_last;
1723 			unsigned char db_type = lbp->b_datap->db_type;
1724 
1725 			if ((db_type == M_DATA || db_type == M_PROTO ||
1726 			    db_type == M_PCPROTO) &&
1727 			    !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1728 				rmvq_noenab(q, lbp);
1729 				/*
1730 				 * The first message in the b_cont list
1731 				 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1732 				 * We need to handle the case where we
1733 				 * are appending:
1734 				 *
1735 				 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1736 				 * 2) a MSGMARKNEXT to a plain message.
1737 				 * 3) a MSGNOTMARKNEXT to a plain message
1738 				 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1739 				 *    message.
1740 				 *
1741 				 * Thus we never append a MSGMARKNEXT or
1742 				 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1743 				 */
1744 				if (bp->b_flag & MSGMARKNEXT) {
1745 					lbp->b_flag |= MSGMARKNEXT;
1746 					lbp->b_flag &= ~MSGNOTMARKNEXT;
1747 					bp->b_flag &= ~MSGMARKNEXT;
1748 				} else if (bp->b_flag & MSGNOTMARKNEXT) {
1749 					lbp->b_flag |= MSGNOTMARKNEXT;
1750 					bp->b_flag &= ~MSGNOTMARKNEXT;
1751 				}
1752 
1753 				linkb(lbp, bp);
1754 				bp = lbp;
1755 				/*
1756 				 * The new message logically isn't the first
1757 				 * even though the q_first check below thinks
1758 				 * it is. Clear the firstmsgsigs to make it
1759 				 * not appear to be first.
1760 				 */
1761 				firstmsgsigs = 0;
1762 			}
1763 		}
1764 		break;
1765 
1766 	case M_PASSFP:
1767 		wakeups = RSLEEP;
1768 		allmsgsigs = 0;
1769 		if (bp->b_band == 0) {
1770 			firstmsgsigs = S_INPUT | S_RDNORM;
1771 			pollwakeups = POLLIN | POLLRDNORM;
1772 		} else {
1773 			firstmsgsigs = S_INPUT | S_RDBAND;
1774 			pollwakeups = POLLIN | POLLRDBAND;
1775 		}
1776 		mutex_enter(&stp->sd_lock);
1777 		break;
1778 
1779 	case M_PROTO:
1780 	case M_PCPROTO:
1781 		ASSERT(stp->sd_rprotofunc != NULL);
1782 		bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1783 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1784 #define	ALLSIG	(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1785 		S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1786 #define	ALLPOLL	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1787 		POLLWRBAND)
1788 
1789 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1790 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1791 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1792 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1793 
1794 		mutex_enter(&stp->sd_lock);
1795 		break;
1796 
1797 	default:
1798 		ASSERT(stp->sd_rmiscfunc != NULL);
1799 		bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1800 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1801 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1802 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1803 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1804 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1805 #undef	ALLSIG
1806 #undef	ALLPOLL
1807 		mutex_enter(&stp->sd_lock);
1808 		break;
1809 	}
1810 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1811 
1812 	/* By default generate superset of signals */
1813 	signals = (firstmsgsigs | allmsgsigs);
1814 
1815 	/*
1816 	 * The  proto and misc functions can return multiple messages
1817 	 * as a b_next chain. Such messages are processed separately.
1818 	 */
1819 one_more:
1820 	hipri_sig = 0;
1821 	if (bp == NULL) {
1822 		nextbp = NULL;
1823 	} else {
1824 		nextbp = bp->b_next;
1825 		bp->b_next = NULL;
1826 
1827 		switch (bp->b_datap->db_type) {
1828 		case M_PCPROTO:
1829 			/*
1830 			 * Only one priority protocol message is allowed at the
1831 			 * stream head at a time.
1832 			 */
1833 			if (stp->sd_flag & STRPRI) {
1834 				TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1835 				    "M_PCPROTO already at head");
1836 				freemsg(bp);
1837 				mutex_exit(&stp->sd_lock);
1838 				goto done;
1839 			}
1840 			stp->sd_flag |= STRPRI;
1841 			hipri_sig = 1;
1842 			/* FALLTHRU */
1843 		case M_DATA:
1844 		case M_PROTO:
1845 		case M_PASSFP:
1846 			band = bp->b_band;
1847 			/*
1848 			 * Marking doesn't work well when messages
1849 			 * are marked in more than one band.  We only
1850 			 * remember the last message received, even if
1851 			 * it is placed on the queue ahead of other
1852 			 * marked messages.
1853 			 */
1854 			if (bp->b_flag & MSGMARK)
1855 				stp->sd_mark = bp;
1856 			(void) putq(q, bp);
1857 
1858 			/*
1859 			 * If message is a PCPROTO message, always use
1860 			 * firstmsgsigs to determine if a signal should be
1861 			 * sent as strrput is the only place to send
1862 			 * signals for PCPROTO. Other messages are based on
1863 			 * the STRGETINPROG flag. The flag determines if
1864 			 * strrput or (k)strgetmsg will be responsible for
1865 			 * sending the signals, in the firstmsgsigs case.
1866 			 */
1867 			if ((hipri_sig == 1) ||
1868 			    (((stp->sd_flag & STRGETINPROG) == 0) &&
1869 			    (q->q_first == bp)))
1870 				signals = (firstmsgsigs | allmsgsigs);
1871 			else
1872 				signals = allmsgsigs;
1873 			break;
1874 
1875 		default:
1876 			mutex_exit(&stp->sd_lock);
1877 			(void) strrput_nondata(q, bp);
1878 			mutex_enter(&stp->sd_lock);
1879 			break;
1880 		}
1881 	}
1882 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1883 	/*
1884 	 * Wake sleeping read/getmsg and cancel deferred wakeup
1885 	 */
1886 	if (wakeups & RSLEEP)
1887 		stp->sd_wakeq &= ~RSLEEP;
1888 
1889 	wakeups &= stp->sd_flag;
1890 	if (wakeups & RSLEEP) {
1891 		stp->sd_flag &= ~RSLEEP;
1892 		cv_broadcast(&q->q_wait);
1893 	}
1894 	if (wakeups & WSLEEP) {
1895 		stp->sd_flag &= ~WSLEEP;
1896 		cv_broadcast(&_WR(q)->q_wait);
1897 	}
1898 
1899 	if (pollwakeups != 0) {
1900 		if (pollwakeups == (POLLIN | POLLRDNORM)) {
1901 			/*
1902 			 * Can't use rput_opt since it was not
1903 			 * read when sd_lock was held and SR_POLLIN is changed
1904 			 * by strpoll() under sd_lock.
1905 			 */
1906 			if (!(stp->sd_rput_opt & SR_POLLIN))
1907 				goto no_pollwake;
1908 			stp->sd_rput_opt &= ~SR_POLLIN;
1909 		}
1910 		mutex_exit(&stp->sd_lock);
1911 		pollwakeup(&stp->sd_pollist, pollwakeups);
1912 		mutex_enter(&stp->sd_lock);
1913 	}
1914 no_pollwake:
1915 
1916 	/*
1917 	 * strsendsig can handle multiple signals with a
1918 	 * single call.
1919 	 */
1920 	if (stp->sd_sigflags & signals)
1921 		strsendsig(stp->sd_siglist, signals, band, 0);
1922 	mutex_exit(&stp->sd_lock);
1923 
1924 
1925 done:
1926 	if (nextbp == NULL)
1927 		return (0);
1928 
1929 	/*
1930 	 * Any signals were handled the first time.
1931 	 * Wakeups and pollwakeups are redone to avoid any race
1932 	 * conditions - all the messages are not queued until the
1933 	 * last message has been processed by strrput.
1934 	 */
1935 	bp = nextbp;
1936 	signals = firstmsgsigs = allmsgsigs = 0;
1937 	mutex_enter(&stp->sd_lock);
1938 	goto one_more;
1939 }
1940 
1941 static void
1942 log_dupioc(queue_t *rq, mblk_t *bp)
1943 {
1944 	queue_t *wq, *qp;
1945 	char *modnames, *mnp, *dname;
1946 	size_t maxmodstr;
1947 	boolean_t islast;
1948 
1949 	/*
1950 	 * Allocate a buffer large enough to hold the names of nstrpush modules
1951 	 * and one driver, with spaces between and NUL terminator.  If we can't
1952 	 * get memory, then we'll just log the driver name.
1953 	 */
1954 	maxmodstr = nstrpush * (FMNAMESZ + 1);
1955 	mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1956 
1957 	/* march down write side to print log message down to the driver */
1958 	wq = WR(rq);
1959 
1960 	/* make sure q_next doesn't shift around while we're grabbing data */
1961 	claimstr(wq);
1962 	qp = wq->q_next;
1963 	do {
1964 		if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL)
1965 			dname = "?";
1966 		islast = !SAMESTR(qp) || qp->q_next == NULL;
1967 		if (modnames == NULL) {
1968 			/*
1969 			 * If we don't have memory, then get the driver name in
1970 			 * the log where we can see it.  Note that memory
1971 			 * pressure is a possible cause of these sorts of bugs.
1972 			 */
1973 			if (islast) {
1974 				modnames = dname;
1975 				maxmodstr = 0;
1976 			}
1977 		} else {
1978 			mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1979 			if (!islast)
1980 				*mnp++ = ' ';
1981 		}
1982 		qp = qp->q_next;
1983 	} while (!islast);
1984 	releasestr(wq);
1985 	/* Cannot happen unless stream head is corrupt. */
1986 	ASSERT(modnames != NULL);
1987 	(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1988 	    SL_CONSOLE|SL_TRACE|SL_ERROR,
1989 	    "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1990 	    rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1991 	    (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1992 	if (maxmodstr != 0)
1993 		kmem_free(modnames, maxmodstr);
1994 }
1995 
1996 int
1997 strrput_nondata(queue_t *q, mblk_t *bp)
1998 {
1999 	struct stdata *stp;
2000 	struct iocblk *iocbp;
2001 	struct stroptions *sop;
2002 	struct copyreq *reqp;
2003 	struct copyresp *resp;
2004 	unsigned char bpri;
2005 	unsigned char  flushed_already = 0;
2006 
2007 	stp = (struct stdata *)q->q_ptr;
2008 
2009 	ASSERT(!(stp->sd_flag & STPLEX));
2010 	ASSERT(qclaimed(q));
2011 
2012 	switch (bp->b_datap->db_type) {
2013 	case M_ERROR:
2014 		/*
2015 		 * An error has occurred downstream, the errno is in the first
2016 		 * bytes of the message.
2017 		 */
2018 		if ((bp->b_wptr - bp->b_rptr) == 2) {	/* New flavor */
2019 			unsigned char rw = 0;
2020 
2021 			mutex_enter(&stp->sd_lock);
2022 			if (*bp->b_rptr != NOERROR) {	/* read error */
2023 				if (*bp->b_rptr != 0) {
2024 					if (stp->sd_flag & STRDERR)
2025 						flushed_already |= FLUSHR;
2026 					stp->sd_flag |= STRDERR;
2027 					rw |= FLUSHR;
2028 				} else {
2029 					stp->sd_flag &= ~STRDERR;
2030 				}
2031 				stp->sd_rerror = *bp->b_rptr;
2032 			}
2033 			bp->b_rptr++;
2034 			if (*bp->b_rptr != NOERROR) {	/* write error */
2035 				if (*bp->b_rptr != 0) {
2036 					if (stp->sd_flag & STWRERR)
2037 						flushed_already |= FLUSHW;
2038 					stp->sd_flag |= STWRERR;
2039 					rw |= FLUSHW;
2040 				} else {
2041 					stp->sd_flag &= ~STWRERR;
2042 				}
2043 				stp->sd_werror = *bp->b_rptr;
2044 			}
2045 			if (rw) {
2046 				TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
2047 				    "strrput cv_broadcast:q %p, bp %p",
2048 				    q, bp);
2049 				cv_broadcast(&q->q_wait); /* readers */
2050 				cv_broadcast(&_WR(q)->q_wait); /* writers */
2051 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2052 
2053 				mutex_exit(&stp->sd_lock);
2054 				pollwakeup(&stp->sd_pollist, POLLERR);
2055 				mutex_enter(&stp->sd_lock);
2056 
2057 				if (stp->sd_sigflags & S_ERROR)
2058 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2059 					    ((rw & FLUSHR) ? stp->sd_rerror :
2060 					    stp->sd_werror));
2061 				mutex_exit(&stp->sd_lock);
2062 				/*
2063 				 * Send the M_FLUSH only
2064 				 * for the first M_ERROR
2065 				 * message on the stream
2066 				 */
2067 				if (flushed_already == rw) {
2068 					freemsg(bp);
2069 					return (0);
2070 				}
2071 
2072 				bp->b_datap->db_type = M_FLUSH;
2073 				*bp->b_rptr = rw;
2074 				bp->b_wptr = bp->b_rptr + 1;
2075 				/*
2076 				 * Protect against the driver
2077 				 * passing up messages after
2078 				 * it has done a qprocsoff
2079 				 */
2080 				if (_OTHERQ(q)->q_next == NULL)
2081 					freemsg(bp);
2082 				else
2083 					qreply(q, bp);
2084 				return (0);
2085 			} else
2086 				mutex_exit(&stp->sd_lock);
2087 		} else if (*bp->b_rptr != 0) {		/* Old flavor */
2088 				if (stp->sd_flag & (STRDERR|STWRERR))
2089 					flushed_already = FLUSHRW;
2090 				mutex_enter(&stp->sd_lock);
2091 				stp->sd_flag |= (STRDERR|STWRERR);
2092 				stp->sd_rerror = *bp->b_rptr;
2093 				stp->sd_werror = *bp->b_rptr;
2094 				TRACE_2(TR_FAC_STREAMS_FR,
2095 				    TR_STRRPUT_WAKE2,
2096 				    "strrput wakeup #2:q %p, bp %p", q, bp);
2097 				cv_broadcast(&q->q_wait); /* the readers */
2098 				cv_broadcast(&_WR(q)->q_wait); /* the writers */
2099 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2100 
2101 				mutex_exit(&stp->sd_lock);
2102 				pollwakeup(&stp->sd_pollist, POLLERR);
2103 				mutex_enter(&stp->sd_lock);
2104 
2105 				if (stp->sd_sigflags & S_ERROR)
2106 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2107 					    (stp->sd_werror ? stp->sd_werror :
2108 					    stp->sd_rerror));
2109 				mutex_exit(&stp->sd_lock);
2110 
2111 				/*
2112 				 * Send the M_FLUSH only
2113 				 * for the first M_ERROR
2114 				 * message on the stream
2115 				 */
2116 				if (flushed_already != FLUSHRW) {
2117 					bp->b_datap->db_type = M_FLUSH;
2118 					*bp->b_rptr = FLUSHRW;
2119 					/*
2120 					 * Protect against the driver passing up
2121 					 * messages after it has done a
2122 					 * qprocsoff.
2123 					 */
2124 				if (_OTHERQ(q)->q_next == NULL)
2125 					freemsg(bp);
2126 				else
2127 					qreply(q, bp);
2128 				return (0);
2129 				}
2130 		}
2131 		freemsg(bp);
2132 		return (0);
2133 
2134 	case M_HANGUP:
2135 
2136 		freemsg(bp);
2137 		mutex_enter(&stp->sd_lock);
2138 		stp->sd_werror = ENXIO;
2139 		stp->sd_flag |= STRHUP;
2140 		stp->sd_flag &= ~(WSLEEP|RSLEEP);
2141 
2142 		/*
2143 		 * send signal if controlling tty
2144 		 */
2145 
2146 		if (stp->sd_sidp) {
2147 			prsignal(stp->sd_sidp, SIGHUP);
2148 			if (stp->sd_sidp != stp->sd_pgidp)
2149 				pgsignal(stp->sd_pgidp, SIGTSTP);
2150 		}
2151 
2152 		/*
2153 		 * wake up read, write, and exception pollers and
2154 		 * reset wakeup mechanism.
2155 		 */
2156 		cv_broadcast(&q->q_wait);	/* the readers */
2157 		cv_broadcast(&_WR(q)->q_wait);	/* the writers */
2158 		cv_broadcast(&stp->sd_monitor);	/* the ioctllers */
2159 		strhup(stp);
2160 		mutex_exit(&stp->sd_lock);
2161 		return (0);
2162 
2163 	case M_UNHANGUP:
2164 		freemsg(bp);
2165 		mutex_enter(&stp->sd_lock);
2166 		stp->sd_werror = 0;
2167 		stp->sd_flag &= ~STRHUP;
2168 		mutex_exit(&stp->sd_lock);
2169 		return (0);
2170 
2171 	case M_SIG:
2172 		/*
2173 		 * Someone downstream wants to post a signal.  The
2174 		 * signal to post is contained in the first byte of the
2175 		 * message.  If the message would go on the front of
2176 		 * the queue, send a signal to the process group
2177 		 * (if not SIGPOLL) or to the siglist processes
2178 		 * (SIGPOLL).  If something is already on the queue,
2179 		 * OR if we are delivering a delayed suspend (*sigh*
2180 		 * another "tty" hack) and there's no one sleeping already,
2181 		 * just enqueue the message.
2182 		 */
2183 		mutex_enter(&stp->sd_lock);
2184 		if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2185 		    !(stp->sd_flag & RSLEEP))) {
2186 			(void) putq(q, bp);
2187 			mutex_exit(&stp->sd_lock);
2188 			return (0);
2189 		}
2190 		mutex_exit(&stp->sd_lock);
2191 		/* FALLTHRU */
2192 
2193 	case M_PCSIG:
2194 		/*
2195 		 * Don't enqueue, just post the signal.
2196 		 */
2197 		strsignal(stp, *bp->b_rptr, 0L);
2198 		freemsg(bp);
2199 		return (0);
2200 
2201 	case M_FLUSH:
2202 		/*
2203 		 * Flush queues.  The indication of which queues to flush
2204 		 * is in the first byte of the message.  If the read queue
2205 		 * is specified, then flush it.  If FLUSHBAND is set, just
2206 		 * flush the band specified by the second byte of the message.
2207 		 *
2208 		 * If a module has issued a M_SETOPT to not flush hi
2209 		 * priority messages off of the stream head, then pass this
2210 		 * flag into the flushq code to preserve such messages.
2211 		 */
2212 
2213 		if (*bp->b_rptr & FLUSHR) {
2214 			mutex_enter(&stp->sd_lock);
2215 			if (*bp->b_rptr & FLUSHBAND) {
2216 				ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2217 				flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2218 			} else
2219 				flushq_common(q, FLUSHALL,
2220 				    stp->sd_read_opt & RFLUSHPCPROT);
2221 			if ((q->q_first == NULL) ||
2222 			    (q->q_first->b_datap->db_type < QPCTL))
2223 				stp->sd_flag &= ~STRPRI;
2224 			else {
2225 				ASSERT(stp->sd_flag & STRPRI);
2226 			}
2227 			mutex_exit(&stp->sd_lock);
2228 		}
2229 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2230 			*bp->b_rptr &= ~FLUSHR;
2231 			bp->b_flag |= MSGNOLOOP;
2232 			/*
2233 			 * Protect against the driver passing up
2234 			 * messages after it has done a qprocsoff.
2235 			 */
2236 			if (_OTHERQ(q)->q_next == NULL)
2237 				freemsg(bp);
2238 			else
2239 				qreply(q, bp);
2240 			return (0);
2241 		}
2242 		freemsg(bp);
2243 		return (0);
2244 
2245 	case M_IOCACK:
2246 	case M_IOCNAK:
2247 		iocbp = (struct iocblk *)bp->b_rptr;
2248 		/*
2249 		 * If not waiting for ACK or NAK then just free msg.
2250 		 * If incorrect id sequence number then just free msg.
2251 		 * If already have ACK or NAK for user then this is a
2252 		 *    duplicate, display a warning and free the msg.
2253 		 */
2254 		mutex_enter(&stp->sd_lock);
2255 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2256 		    (stp->sd_iocid != iocbp->ioc_id)) {
2257 			/*
2258 			 * If the ACK/NAK is a dup, display a message
2259 			 * Dup is when sd_iocid == ioc_id, and
2260 			 * sd_iocblk == <valid ptr> or -1 (the former
2261 			 * is when an ioctl has been put on the stream
2262 			 * head, but has not yet been consumed, the
2263 			 * later is when it has been consumed).
2264 			 */
2265 			if ((stp->sd_iocid == iocbp->ioc_id) &&
2266 			    (stp->sd_iocblk != NULL)) {
2267 				log_dupioc(q, bp);
2268 			}
2269 			freemsg(bp);
2270 			mutex_exit(&stp->sd_lock);
2271 			return (0);
2272 		}
2273 
2274 		/*
2275 		 * Assign ACK or NAK to user and wake up.
2276 		 */
2277 		stp->sd_iocblk = bp;
2278 		cv_broadcast(&stp->sd_monitor);
2279 		mutex_exit(&stp->sd_lock);
2280 		return (0);
2281 
2282 	case M_COPYIN:
2283 	case M_COPYOUT:
2284 		reqp = (struct copyreq *)bp->b_rptr;
2285 
2286 		/*
2287 		 * If not waiting for ACK or NAK then just fail request.
2288 		 * If already have ACK, NAK, or copy request, then just
2289 		 * fail request.
2290 		 * If incorrect id sequence number then just fail request.
2291 		 */
2292 		mutex_enter(&stp->sd_lock);
2293 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2294 		    (stp->sd_iocid != reqp->cq_id)) {
2295 			if (bp->b_cont) {
2296 				freemsg(bp->b_cont);
2297 				bp->b_cont = NULL;
2298 			}
2299 			bp->b_datap->db_type = M_IOCDATA;
2300 			bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2301 			resp = (struct copyresp *)bp->b_rptr;
2302 			resp->cp_rval = (caddr_t)1;	/* failure */
2303 			mutex_exit(&stp->sd_lock);
2304 			putnext(stp->sd_wrq, bp);
2305 			return (0);
2306 		}
2307 
2308 		/*
2309 		 * Assign copy request to user and wake up.
2310 		 */
2311 		stp->sd_iocblk = bp;
2312 		cv_broadcast(&stp->sd_monitor);
2313 		mutex_exit(&stp->sd_lock);
2314 		return (0);
2315 
2316 	case M_SETOPTS:
2317 		/*
2318 		 * Set stream head options (read option, write offset,
2319 		 * min/max packet size, and/or high/low water marks for
2320 		 * the read side only).
2321 		 */
2322 
2323 		bpri = 0;
2324 		sop = (struct stroptions *)bp->b_rptr;
2325 		mutex_enter(&stp->sd_lock);
2326 		if (sop->so_flags & SO_READOPT) {
2327 			switch (sop->so_readopt & RMODEMASK) {
2328 			case RNORM:
2329 				stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2330 				break;
2331 
2332 			case RMSGD:
2333 				stp->sd_read_opt =
2334 				    ((stp->sd_read_opt & ~RD_MSGNODIS) |
2335 				    RD_MSGDIS);
2336 				break;
2337 
2338 			case RMSGN:
2339 				stp->sd_read_opt =
2340 				    ((stp->sd_read_opt & ~RD_MSGDIS) |
2341 				    RD_MSGNODIS);
2342 				break;
2343 			}
2344 			switch (sop->so_readopt & RPROTMASK) {
2345 			case RPROTNORM:
2346 				stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2347 				break;
2348 
2349 			case RPROTDAT:
2350 				stp->sd_read_opt =
2351 				    ((stp->sd_read_opt & ~RD_PROTDIS) |
2352 				    RD_PROTDAT);
2353 				break;
2354 
2355 			case RPROTDIS:
2356 				stp->sd_read_opt =
2357 				    ((stp->sd_read_opt & ~RD_PROTDAT) |
2358 				    RD_PROTDIS);
2359 				break;
2360 			}
2361 			switch (sop->so_readopt & RFLUSHMASK) {
2362 			case RFLUSHPCPROT:
2363 				/*
2364 				 * This sets the stream head to NOT flush
2365 				 * M_PCPROTO messages.
2366 				 */
2367 				stp->sd_read_opt |= RFLUSHPCPROT;
2368 				break;
2369 			}
2370 		}
2371 		if (sop->so_flags & SO_ERROPT) {
2372 			switch (sop->so_erropt & RERRMASK) {
2373 			case RERRNORM:
2374 				stp->sd_flag &= ~STRDERRNONPERSIST;
2375 				break;
2376 			case RERRNONPERSIST:
2377 				stp->sd_flag |= STRDERRNONPERSIST;
2378 				break;
2379 			}
2380 			switch (sop->so_erropt & WERRMASK) {
2381 			case WERRNORM:
2382 				stp->sd_flag &= ~STWRERRNONPERSIST;
2383 				break;
2384 			case WERRNONPERSIST:
2385 				stp->sd_flag |= STWRERRNONPERSIST;
2386 				break;
2387 			}
2388 		}
2389 		if (sop->so_flags & SO_COPYOPT) {
2390 			if (sop->so_copyopt & ZCVMSAFE) {
2391 				stp->sd_copyflag |= STZCVMSAFE;
2392 				stp->sd_copyflag &= ~STZCVMUNSAFE;
2393 			} else if (sop->so_copyopt & ZCVMUNSAFE) {
2394 				stp->sd_copyflag |= STZCVMUNSAFE;
2395 				stp->sd_copyflag &= ~STZCVMSAFE;
2396 			}
2397 
2398 			if (sop->so_copyopt & COPYCACHED) {
2399 				stp->sd_copyflag |= STRCOPYCACHED;
2400 			}
2401 		}
2402 		if (sop->so_flags & SO_WROFF)
2403 			stp->sd_wroff = sop->so_wroff;
2404 		if (sop->so_flags & SO_TAIL)
2405 			stp->sd_tail = sop->so_tail;
2406 		if (sop->so_flags & SO_MINPSZ)
2407 			q->q_minpsz = sop->so_minpsz;
2408 		if (sop->so_flags & SO_MAXPSZ)
2409 			q->q_maxpsz = sop->so_maxpsz;
2410 		if (sop->so_flags & SO_MAXBLK)
2411 			stp->sd_maxblk = sop->so_maxblk;
2412 		if (sop->so_flags & SO_HIWAT) {
2413 			if (sop->so_flags & SO_BAND) {
2414 				if (strqset(q, QHIWAT,
2415 				    sop->so_band, sop->so_hiwat)) {
2416 					cmn_err(CE_WARN, "strrput: could not "
2417 					    "allocate qband\n");
2418 				} else {
2419 					bpri = sop->so_band;
2420 				}
2421 			} else {
2422 				q->q_hiwat = sop->so_hiwat;
2423 			}
2424 		}
2425 		if (sop->so_flags & SO_LOWAT) {
2426 			if (sop->so_flags & SO_BAND) {
2427 				if (strqset(q, QLOWAT,
2428 				    sop->so_band, sop->so_lowat)) {
2429 					cmn_err(CE_WARN, "strrput: could not "
2430 					    "allocate qband\n");
2431 				} else {
2432 					bpri = sop->so_band;
2433 				}
2434 			} else {
2435 				q->q_lowat = sop->so_lowat;
2436 			}
2437 		}
2438 		if (sop->so_flags & SO_MREADON)
2439 			stp->sd_flag |= SNDMREAD;
2440 		if (sop->so_flags & SO_MREADOFF)
2441 			stp->sd_flag &= ~SNDMREAD;
2442 		if (sop->so_flags & SO_NDELON)
2443 			stp->sd_flag |= OLDNDELAY;
2444 		if (sop->so_flags & SO_NDELOFF)
2445 			stp->sd_flag &= ~OLDNDELAY;
2446 		if (sop->so_flags & SO_ISTTY)
2447 			stp->sd_flag |= STRISTTY;
2448 		if (sop->so_flags & SO_ISNTTY)
2449 			stp->sd_flag &= ~STRISTTY;
2450 		if (sop->so_flags & SO_TOSTOP)
2451 			stp->sd_flag |= STRTOSTOP;
2452 		if (sop->so_flags & SO_TONSTOP)
2453 			stp->sd_flag &= ~STRTOSTOP;
2454 		if (sop->so_flags & SO_DELIM)
2455 			stp->sd_flag |= STRDELIM;
2456 		if (sop->so_flags & SO_NODELIM)
2457 			stp->sd_flag &= ~STRDELIM;
2458 
2459 		mutex_exit(&stp->sd_lock);
2460 		freemsg(bp);
2461 
2462 		/* Check backenable in case the water marks changed */
2463 		qbackenable(q, bpri);
2464 		return (0);
2465 
2466 	/*
2467 	 * The following set of cases deal with situations where two stream
2468 	 * heads are connected to each other (twisted streams).  These messages
2469 	 * have no meaning at the stream head.
2470 	 */
2471 	case M_BREAK:
2472 	case M_CTL:
2473 	case M_DELAY:
2474 	case M_START:
2475 	case M_STOP:
2476 	case M_IOCDATA:
2477 	case M_STARTI:
2478 	case M_STOPI:
2479 		freemsg(bp);
2480 		return (0);
2481 
2482 	case M_IOCTL:
2483 		/*
2484 		 * Always NAK this condition
2485 		 * (makes no sense)
2486 		 * If there is one or more threads in the read side
2487 		 * rwnext we have to defer the nacking until that thread
2488 		 * returns (in strget).
2489 		 */
2490 		mutex_enter(&stp->sd_lock);
2491 		if (stp->sd_struiodnak != 0) {
2492 			/*
2493 			 * Defer NAK to the streamhead. Queue at the end
2494 			 * the list.
2495 			 */
2496 			mblk_t *mp = stp->sd_struionak;
2497 
2498 			while (mp && mp->b_next)
2499 				mp = mp->b_next;
2500 			if (mp)
2501 				mp->b_next = bp;
2502 			else
2503 				stp->sd_struionak = bp;
2504 			bp->b_next = NULL;
2505 			mutex_exit(&stp->sd_lock);
2506 			return (0);
2507 		}
2508 		mutex_exit(&stp->sd_lock);
2509 
2510 		bp->b_datap->db_type = M_IOCNAK;
2511 		/*
2512 		 * Protect against the driver passing up
2513 		 * messages after it has done a qprocsoff.
2514 		 */
2515 		if (_OTHERQ(q)->q_next == NULL)
2516 			freemsg(bp);
2517 		else
2518 			qreply(q, bp);
2519 		return (0);
2520 
2521 	default:
2522 #ifdef DEBUG
2523 		cmn_err(CE_WARN,
2524 		    "bad message type %x received at stream head\n",
2525 		    bp->b_datap->db_type);
2526 #endif
2527 		freemsg(bp);
2528 		return (0);
2529 	}
2530 
2531 	/* NOTREACHED */
2532 }
2533 
2534 /*
2535  * Check if the stream pointed to by `stp' can be written to, and return an
2536  * error code if not.  If `eiohup' is set, then return EIO if STRHUP is set.
2537  * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2538  * then always return EPIPE and send a SIGPIPE to the invoking thread.
2539  */
2540 static int
2541 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2542 {
2543 	int error;
2544 
2545 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2546 
2547 	/*
2548 	 * For modem support, POSIX states that on writes, EIO should
2549 	 * be returned if the stream has been hung up.
2550 	 */
2551 	if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2552 		error = EIO;
2553 	else
2554 		error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2555 
2556 	if (error != 0) {
2557 		if (!(stp->sd_flag & STPLEX) &&
2558 		    (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2559 			tsignal(curthread, SIGPIPE);
2560 			error = EPIPE;
2561 		}
2562 	}
2563 
2564 	return (error);
2565 }
2566 
2567 /*
2568  * Copyin and send data down a stream.
2569  * The caller will allocate and copyin any control part that precedes the
2570  * message and pass than in as mctl.
2571  *
2572  * Caller should *not* hold sd_lock.
2573  * When EWOULDBLOCK is returned the caller has to redo the canputnext
2574  * under sd_lock in order to avoid missing a backenabling wakeup.
2575  *
2576  * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2577  *
2578  * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2579  * For sync streams we can only ignore flow control by reverting to using
2580  * putnext.
2581  *
2582  * If sd_maxblk is less than *iosize this routine might return without
2583  * transferring all of *iosize. In all cases, on return *iosize will contain
2584  * the amount of data that was transferred.
2585  */
2586 static int
2587 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2588     int b_flag, int pri, int flags)
2589 {
2590 	struiod_t uiod;
2591 	mblk_t *mp;
2592 	queue_t *wqp = stp->sd_wrq;
2593 	int error = 0;
2594 	ssize_t count = *iosize;
2595 	cred_t *cr;
2596 
2597 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2598 
2599 	if (uiop != NULL && count >= 0)
2600 		flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2601 
2602 	if (!(flags & STRUIO_POSTPONE)) {
2603 		/*
2604 		 * Use regular canputnext, strmakedata, putnext sequence.
2605 		 */
2606 		if (pri == 0) {
2607 			if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2608 				freemsg(mctl);
2609 				return (EWOULDBLOCK);
2610 			}
2611 		} else {
2612 			if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2613 				freemsg(mctl);
2614 				return (EWOULDBLOCK);
2615 			}
2616 		}
2617 
2618 		if ((error = strmakedata(iosize, uiop, stp, flags,
2619 		    &mp)) != 0) {
2620 			freemsg(mctl);
2621 			/*
2622 			 * need to change return code to ENOMEM
2623 			 * so that this is not confused with
2624 			 * flow control, EAGAIN.
2625 			 */
2626 
2627 			if (error == EAGAIN)
2628 				return (ENOMEM);
2629 			else
2630 				return (error);
2631 		}
2632 		if (mctl != NULL) {
2633 			if (mctl->b_cont == NULL)
2634 				mctl->b_cont = mp;
2635 			else if (mp != NULL)
2636 				linkb(mctl, mp);
2637 			mp = mctl;
2638 			/*
2639 			 * Note that for interrupt thread, the CRED() is
2640 			 * NULL. Don't bother with the pid either.
2641 			 */
2642 			if ((cr = CRED()) != NULL) {
2643 				mblk_setcred(mp, cr);
2644 				DB_CPID(mp) = curproc->p_pid;
2645 			}
2646 		} else if (mp == NULL)
2647 			return (0);
2648 
2649 		mp->b_flag |= b_flag;
2650 		mp->b_band = (uchar_t)pri;
2651 
2652 		if (flags & MSG_IGNFLOW) {
2653 			/*
2654 			 * XXX Hack: Don't get stuck running service
2655 			 * procedures. This is needed for sockfs when
2656 			 * sending the unbind message out of the rput
2657 			 * procedure - we don't want a put procedure
2658 			 * to run service procedures.
2659 			 */
2660 			putnext(wqp, mp);
2661 		} else {
2662 			stream_willservice(stp);
2663 			putnext(wqp, mp);
2664 			stream_runservice(stp);
2665 		}
2666 		return (0);
2667 	}
2668 	/*
2669 	 * Stream supports rwnext() for the write side.
2670 	 */
2671 	if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2672 		freemsg(mctl);
2673 		/*
2674 		 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2675 		 */
2676 		return (error == EAGAIN ? ENOMEM : error);
2677 	}
2678 	if (mctl != NULL) {
2679 		if (mctl->b_cont == NULL)
2680 			mctl->b_cont = mp;
2681 		else if (mp != NULL)
2682 			linkb(mctl, mp);
2683 		mp = mctl;
2684 		/*
2685 		 * Note that for interrupt thread, the CRED() is
2686 		 * NULL.  Don't bother with the pid either.
2687 		 */
2688 		if ((cr = CRED()) != NULL) {
2689 			mblk_setcred(mp, cr);
2690 			DB_CPID(mp) = curproc->p_pid;
2691 		}
2692 	} else if (mp == NULL) {
2693 		return (0);
2694 	}
2695 
2696 	mp->b_flag |= b_flag;
2697 	mp->b_band = (uchar_t)pri;
2698 
2699 	(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2700 	    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2701 	uiod.d_uio.uio_offset = 0;
2702 	uiod.d_mp = mp;
2703 	error = rwnext(wqp, &uiod);
2704 	if (! uiod.d_mp) {
2705 		uioskip(uiop, *iosize);
2706 		return (error);
2707 	}
2708 	ASSERT(mp == uiod.d_mp);
2709 	if (error == EINVAL) {
2710 		/*
2711 		 * The stream plumbing must have changed while
2712 		 * we were away, so just turn off rwnext()s.
2713 		 */
2714 		error = 0;
2715 	} else if (error == EBUSY || error == EWOULDBLOCK) {
2716 		/*
2717 		 * Couldn't enter a perimeter or took a page fault,
2718 		 * so fall-back to putnext().
2719 		 */
2720 		error = 0;
2721 	} else {
2722 		freemsg(mp);
2723 		return (error);
2724 	}
2725 	/* Have to check canput before consuming data from the uio */
2726 	if (pri == 0) {
2727 		if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2728 			freemsg(mp);
2729 			return (EWOULDBLOCK);
2730 		}
2731 	} else {
2732 		if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2733 			freemsg(mp);
2734 			return (EWOULDBLOCK);
2735 		}
2736 	}
2737 	ASSERT(mp == uiod.d_mp);
2738 	/* Copyin data from the uio */
2739 	if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2740 		freemsg(mp);
2741 		return (error);
2742 	}
2743 	uioskip(uiop, *iosize);
2744 	if (flags & MSG_IGNFLOW) {
2745 		/*
2746 		 * XXX Hack: Don't get stuck running service procedures.
2747 		 * This is needed for sockfs when sending the unbind message
2748 		 * out of the rput procedure - we don't want a put procedure
2749 		 * to run service procedures.
2750 		 */
2751 		putnext(wqp, mp);
2752 	} else {
2753 		stream_willservice(stp);
2754 		putnext(wqp, mp);
2755 		stream_runservice(stp);
2756 	}
2757 	return (0);
2758 }
2759 
2760 /*
2761  * Write attempts to break the write request into messages conforming
2762  * with the minimum and maximum packet sizes set downstream.
2763  *
2764  * Write will not block if downstream queue is full and
2765  * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2766  *
2767  * A write of zero bytes gets packaged into a zero length message and sent
2768  * downstream like any other message.
2769  *
2770  * If buffers of the requested sizes are not available, the write will
2771  * sleep until the buffers become available.
2772  *
2773  * Write (if specified) will supply a write offset in a message if it
2774  * makes sense. This can be specified by downstream modules as part of
2775  * a M_SETOPTS message.  Write will not supply the write offset if it
2776  * cannot supply any data in a buffer.  In other words, write will never
2777  * send down an empty packet due to a write offset.
2778  */
2779 /* ARGSUSED2 */
2780 int
2781 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2782 {
2783 	return (strwrite_common(vp, uiop, crp, 0));
2784 }
2785 
2786 /* ARGSUSED2 */
2787 int
2788 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2789 {
2790 	struct stdata *stp;
2791 	struct queue *wqp;
2792 	ssize_t rmin, rmax;
2793 	ssize_t iosize;
2794 	int waitflag;
2795 	int tempmode;
2796 	int error = 0;
2797 	int b_flag;
2798 
2799 	ASSERT(vp->v_stream);
2800 	stp = vp->v_stream;
2801 
2802 	mutex_enter(&stp->sd_lock);
2803 
2804 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
2805 		mutex_exit(&stp->sd_lock);
2806 		return (error);
2807 	}
2808 
2809 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2810 		error = strwriteable(stp, B_TRUE, B_TRUE);
2811 		if (error != 0) {
2812 			mutex_exit(&stp->sd_lock);
2813 			return (error);
2814 		}
2815 	}
2816 
2817 	mutex_exit(&stp->sd_lock);
2818 
2819 	wqp = stp->sd_wrq;
2820 
2821 	/* get these values from them cached in the stream head */
2822 	rmin = stp->sd_qn_minpsz;
2823 	rmax = stp->sd_qn_maxpsz;
2824 
2825 	/*
2826 	 * Check the min/max packet size constraints.  If min packet size
2827 	 * is non-zero, the write cannot be split into multiple messages
2828 	 * and still guarantee the size constraints.
2829 	 */
2830 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2831 
2832 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
2833 	if (rmax == 0) {
2834 		return (0);
2835 	}
2836 	if (rmin > 0) {
2837 		if (uiop->uio_resid < rmin) {
2838 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2839 			    "strwrite out:q %p out %d error %d",
2840 			    wqp, 0, ERANGE);
2841 			return (ERANGE);
2842 		}
2843 		if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2844 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2845 			    "strwrite out:q %p out %d error %d",
2846 			    wqp, 1, ERANGE);
2847 			return (ERANGE);
2848 		}
2849 	}
2850 
2851 	/*
2852 	 * Do until count satisfied or error.
2853 	 */
2854 	waitflag = WRITEWAIT | wflag;
2855 	if (stp->sd_flag & OLDNDELAY)
2856 		tempmode = uiop->uio_fmode & ~FNDELAY;
2857 	else
2858 		tempmode = uiop->uio_fmode;
2859 
2860 	if (rmax == INFPSZ)
2861 		rmax = uiop->uio_resid;
2862 
2863 	/*
2864 	 * Note that tempmode does not get used in strput/strmakedata
2865 	 * but only in strwaitq. The other routines use uio_fmode
2866 	 * unmodified.
2867 	 */
2868 
2869 	/* LINTED: constant in conditional context */
2870 	while (1) {	/* breaks when uio_resid reaches zero */
2871 		/*
2872 		 * Determine the size of the next message to be
2873 		 * packaged.  May have to break write into several
2874 		 * messages based on max packet size.
2875 		 */
2876 		iosize = MIN(uiop->uio_resid, rmax);
2877 
2878 		/*
2879 		 * Put block downstream when flow control allows it.
2880 		 */
2881 		if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2882 			b_flag = MSGDELIM;
2883 		else
2884 			b_flag = 0;
2885 
2886 		for (;;) {
2887 			int done = 0;
2888 
2889 			error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2890 			if (error == 0)
2891 				break;
2892 			if (error != EWOULDBLOCK)
2893 				goto out;
2894 
2895 			mutex_enter(&stp->sd_lock);
2896 			/*
2897 			 * Check for a missed wakeup.
2898 			 * Needed since strput did not hold sd_lock across
2899 			 * the canputnext.
2900 			 */
2901 			if (canputnext(wqp)) {
2902 				/* Try again */
2903 				mutex_exit(&stp->sd_lock);
2904 				continue;
2905 			}
2906 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2907 			    "strwrite wait:q %p wait", wqp);
2908 			if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2909 			    tempmode, -1, &done)) != 0 || done) {
2910 				mutex_exit(&stp->sd_lock);
2911 				if ((vp->v_type == VFIFO) &&
2912 				    (uiop->uio_fmode & FNDELAY) &&
2913 				    (error == EAGAIN))
2914 					error = 0;
2915 				goto out;
2916 			}
2917 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2918 			    "strwrite wake:q %p awakes", wqp);
2919 			if ((error = i_straccess(stp, JCWRITE)) != 0) {
2920 				mutex_exit(&stp->sd_lock);
2921 				goto out;
2922 			}
2923 			mutex_exit(&stp->sd_lock);
2924 		}
2925 		waitflag |= NOINTR;
2926 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2927 		    "strwrite resid:q %p uiop %p", wqp, uiop);
2928 		if (uiop->uio_resid) {
2929 			/* Recheck for errors - needed for sockets */
2930 			if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2931 			    (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2932 				mutex_enter(&stp->sd_lock);
2933 				error = strwriteable(stp, B_FALSE, B_TRUE);
2934 				mutex_exit(&stp->sd_lock);
2935 				if (error != 0)
2936 					return (error);
2937 			}
2938 			continue;
2939 		}
2940 		break;
2941 	}
2942 out:
2943 	/*
2944 	 * For historical reasons, applications expect EAGAIN when a data
2945 	 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2946 	 */
2947 	if (error == ENOMEM)
2948 		error = EAGAIN;
2949 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2950 	    "strwrite out:q %p out %d error %d", wqp, 2, error);
2951 	return (error);
2952 }
2953 
2954 /*
2955  * Stream head write service routine.
2956  * Its job is to wake up any sleeping writers when a queue
2957  * downstream needs data (part of the flow control in putq and getq).
2958  * It also must wake anyone sleeping on a poll().
2959  * For stream head right below mux module, it must also invoke put procedure
2960  * of next downstream module.
2961  */
2962 int
2963 strwsrv(queue_t *q)
2964 {
2965 	struct stdata *stp;
2966 	queue_t *tq;
2967 	qband_t *qbp;
2968 	int i;
2969 	qband_t *myqbp;
2970 	int isevent;
2971 	unsigned char	qbf[NBAND];	/* band flushing backenable flags */
2972 
2973 	TRACE_1(TR_FAC_STREAMS_FR,
2974 	    TR_STRWSRV, "strwsrv:q %p", q);
2975 	stp = (struct stdata *)q->q_ptr;
2976 	ASSERT(qclaimed(q));
2977 	mutex_enter(&stp->sd_lock);
2978 	ASSERT(!(stp->sd_flag & STPLEX));
2979 
2980 	if (stp->sd_flag & WSLEEP) {
2981 		stp->sd_flag &= ~WSLEEP;
2982 		cv_broadcast(&q->q_wait);
2983 	}
2984 	mutex_exit(&stp->sd_lock);
2985 
2986 	/* The other end of a stream pipe went away. */
2987 	if ((tq = q->q_next) == NULL) {
2988 		return (0);
2989 	}
2990 
2991 	/* Find the next module forward that has a service procedure */
2992 	claimstr(q);
2993 	tq = q->q_nfsrv;
2994 	ASSERT(tq != NULL);
2995 
2996 	if ((q->q_flag & QBACK)) {
2997 		if ((tq->q_flag & QFULL)) {
2998 			mutex_enter(QLOCK(tq));
2999 			if (!(tq->q_flag & QFULL)) {
3000 				mutex_exit(QLOCK(tq));
3001 				goto wakeup;
3002 			}
3003 			/*
3004 			 * The queue must have become full again. Set QWANTW
3005 			 * again so strwsrv will be back enabled when
3006 			 * the queue becomes non-full next time.
3007 			 */
3008 			tq->q_flag |= QWANTW;
3009 			mutex_exit(QLOCK(tq));
3010 		} else {
3011 		wakeup:
3012 			pollwakeup(&stp->sd_pollist, POLLWRNORM);
3013 			mutex_enter(&stp->sd_lock);
3014 			if (stp->sd_sigflags & S_WRNORM)
3015 				strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
3016 			mutex_exit(&stp->sd_lock);
3017 		}
3018 	}
3019 
3020 	isevent = 0;
3021 	i = 1;
3022 	bzero((caddr_t)qbf, NBAND);
3023 	mutex_enter(QLOCK(tq));
3024 	if ((myqbp = q->q_bandp) != NULL)
3025 		for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
3026 			ASSERT(myqbp);
3027 			if ((myqbp->qb_flag & QB_BACK)) {
3028 				if (qbp->qb_flag & QB_FULL) {
3029 					/*
3030 					 * The band must have become full again.
3031 					 * Set QB_WANTW again so strwsrv will
3032 					 * be back enabled when the band becomes
3033 					 * non-full next time.
3034 					 */
3035 					qbp->qb_flag |= QB_WANTW;
3036 				} else {
3037 					isevent = 1;
3038 					qbf[i] = 1;
3039 				}
3040 			}
3041 			myqbp = myqbp->qb_next;
3042 			i++;
3043 		}
3044 	mutex_exit(QLOCK(tq));
3045 
3046 	if (isevent) {
3047 		for (i = tq->q_nband; i; i--) {
3048 			if (qbf[i]) {
3049 				pollwakeup(&stp->sd_pollist, POLLWRBAND);
3050 				mutex_enter(&stp->sd_lock);
3051 				if (stp->sd_sigflags & S_WRBAND)
3052 					strsendsig(stp->sd_siglist, S_WRBAND,
3053 					    (uchar_t)i, 0);
3054 				mutex_exit(&stp->sd_lock);
3055 			}
3056 		}
3057 	}
3058 
3059 	releasestr(q);
3060 	return (0);
3061 }
3062 
3063 /*
3064  * Special case of strcopyin/strcopyout for copying
3065  * struct strioctl that can deal with both data
3066  * models.
3067  */
3068 
3069 #ifdef	_LP64
3070 
3071 static int
3072 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3073 {
3074 	struct	strioctl32 strioc32;
3075 	struct	strioctl *striocp;
3076 
3077 	if (copyflag & U_TO_K) {
3078 		ASSERT((copyflag & K_TO_K) == 0);
3079 
3080 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3081 			if (copyin(from, &strioc32, sizeof (strioc32)))
3082 				return (EFAULT);
3083 
3084 			striocp = (struct strioctl *)to;
3085 			striocp->ic_cmd	= strioc32.ic_cmd;
3086 			striocp->ic_timout = strioc32.ic_timout;
3087 			striocp->ic_len	= strioc32.ic_len;
3088 			striocp->ic_dp	= (char *)(uintptr_t)strioc32.ic_dp;
3089 
3090 		} else { /* NATIVE data model */
3091 			if (copyin(from, to, sizeof (struct strioctl))) {
3092 				return (EFAULT);
3093 			} else {
3094 				return (0);
3095 			}
3096 		}
3097 	} else {
3098 		ASSERT(copyflag & K_TO_K);
3099 		bcopy(from, to, sizeof (struct strioctl));
3100 	}
3101 	return (0);
3102 }
3103 
3104 static int
3105 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3106 {
3107 	struct	strioctl32 strioc32;
3108 	struct	strioctl *striocp;
3109 
3110 	if (copyflag & U_TO_K) {
3111 		ASSERT((copyflag & K_TO_K) == 0);
3112 
3113 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3114 			striocp = (struct strioctl *)from;
3115 			strioc32.ic_cmd	= striocp->ic_cmd;
3116 			strioc32.ic_timout = striocp->ic_timout;
3117 			strioc32.ic_len	= striocp->ic_len;
3118 			strioc32.ic_dp	= (caddr32_t)(uintptr_t)striocp->ic_dp;
3119 			ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3120 			    striocp->ic_dp);
3121 
3122 			if (copyout(&strioc32, to, sizeof (strioc32)))
3123 				return (EFAULT);
3124 
3125 		} else { /* NATIVE data model */
3126 			if (copyout(from, to, sizeof (struct strioctl))) {
3127 				return (EFAULT);
3128 			} else {
3129 				return (0);
3130 			}
3131 		}
3132 	} else {
3133 		ASSERT(copyflag & K_TO_K);
3134 		bcopy(from, to, sizeof (struct strioctl));
3135 	}
3136 	return (0);
3137 }
3138 
3139 #else	/* ! _LP64 */
3140 
3141 /* ARGSUSED2 */
3142 static int
3143 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3144 {
3145 	return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3146 }
3147 
3148 /* ARGSUSED2 */
3149 static int
3150 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3151 {
3152 	return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3153 }
3154 
3155 #endif	/* _LP64 */
3156 
3157 /*
3158  * Determine type of job control semantics expected by user.  The
3159  * possibilities are:
3160  *	JCREAD	- Behaves like read() on fd; send SIGTTIN
3161  *	JCWRITE	- Behaves like write() on fd; send SIGTTOU if TOSTOP set
3162  *	JCSETP	- Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3163  *	JCGETP	- Gets a value in the stream; no signals.
3164  * See straccess in strsubr.c for usage of these values.
3165  *
3166  * This routine also returns -1 for I_STR as a special case; the
3167  * caller must call again with the real ioctl number for
3168  * classification.
3169  */
3170 static int
3171 job_control_type(int cmd)
3172 {
3173 	switch (cmd) {
3174 	case I_STR:
3175 		return (-1);
3176 
3177 	case I_RECVFD:
3178 	case I_E_RECVFD:
3179 		return (JCREAD);
3180 
3181 	case I_FDINSERT:
3182 	case I_SENDFD:
3183 		return (JCWRITE);
3184 
3185 	case TCSETA:
3186 	case TCSETAW:
3187 	case TCSETAF:
3188 	case TCSBRK:
3189 	case TCXONC:
3190 	case TCFLSH:
3191 	case TCDSET:	/* Obsolete */
3192 	case TIOCSWINSZ:
3193 	case TCSETS:
3194 	case TCSETSW:
3195 	case TCSETSF:
3196 	case TIOCSETD:
3197 	case TIOCHPCL:
3198 	case TIOCSETP:
3199 	case TIOCSETN:
3200 	case TIOCEXCL:
3201 	case TIOCNXCL:
3202 	case TIOCFLUSH:
3203 	case TIOCSETC:
3204 	case TIOCLBIS:
3205 	case TIOCLBIC:
3206 	case TIOCLSET:
3207 	case TIOCSBRK:
3208 	case TIOCCBRK:
3209 	case TIOCSDTR:
3210 	case TIOCCDTR:
3211 	case TIOCSLTC:
3212 	case TIOCSTOP:
3213 	case TIOCSTART:
3214 	case TIOCSTI:
3215 	case TIOCSPGRP:
3216 	case TIOCMSET:
3217 	case TIOCMBIS:
3218 	case TIOCMBIC:
3219 	case TIOCREMOTE:
3220 	case TIOCSIGNAL:
3221 	case LDSETT:
3222 	case LDSMAP:	/* Obsolete */
3223 	case DIOCSETP:
3224 	case I_FLUSH:
3225 	case I_SRDOPT:
3226 	case I_SETSIG:
3227 	case I_SWROPT:
3228 	case I_FLUSHBAND:
3229 	case I_SETCLTIME:
3230 	case I_SERROPT:
3231 	case I_ESETSIG:
3232 	case FIONBIO:
3233 	case FIOASYNC:
3234 	case FIOSETOWN:
3235 	case JBOOT:	/* Obsolete */
3236 	case JTERM:	/* Obsolete */
3237 	case JTIMOM:	/* Obsolete */
3238 	case JZOMBOOT:	/* Obsolete */
3239 	case JAGENT:	/* Obsolete */
3240 	case JTRUN:	/* Obsolete */
3241 	case JXTPROTO:	/* Obsolete */
3242 	case TIOCSETLD:
3243 		return (JCSETP);
3244 	}
3245 
3246 	return (JCGETP);
3247 }
3248 
3249 /*
3250  * ioctl for streams
3251  */
3252 int
3253 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3254     cred_t *crp, int *rvalp)
3255 {
3256 	struct stdata *stp;
3257 	struct strioctl strioc;
3258 	struct uio uio;
3259 	struct iovec iov;
3260 	int access;
3261 	mblk_t *mp;
3262 	int error = 0;
3263 	int done = 0;
3264 	ssize_t	rmin, rmax;
3265 	queue_t *wrq;
3266 	queue_t *rdq;
3267 	boolean_t kioctl = B_FALSE;
3268 
3269 	if (flag & FKIOCTL) {
3270 		copyflag = K_TO_K;
3271 		kioctl = B_TRUE;
3272 	}
3273 	ASSERT(vp->v_stream);
3274 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3275 	stp = vp->v_stream;
3276 
3277 	TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3278 	    "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3279 
3280 	if (audit_active)
3281 		audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp);
3282 
3283 	/*
3284 	 * If the copy is kernel to kernel, make sure that the FNATIVE
3285 	 * flag is set.  After this it would be a serious error to have
3286 	 * no model flag.
3287 	 */
3288 	if (copyflag == K_TO_K)
3289 		flag = (flag & ~FMODELS) | FNATIVE;
3290 
3291 	ASSERT((flag & FMODELS) != 0);
3292 
3293 	wrq = stp->sd_wrq;
3294 	rdq = _RD(wrq);
3295 
3296 	access = job_control_type(cmd);
3297 
3298 	/* We should never see these here, should be handled by iwscn */
3299 	if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3300 		return (EINVAL);
3301 
3302 	mutex_enter(&stp->sd_lock);
3303 	if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3304 		mutex_exit(&stp->sd_lock);
3305 		return (error);
3306 	}
3307 	mutex_exit(&stp->sd_lock);
3308 
3309 	/*
3310 	 * Check for sgttyb-related ioctls first, and complain as
3311 	 * necessary.
3312 	 */
3313 	switch (cmd) {
3314 	case TIOCGETP:
3315 	case TIOCSETP:
3316 	case TIOCSETN:
3317 		if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3318 			sgttyb_complaint = B_TRUE;
3319 			cmn_err(CE_NOTE,
3320 			    "application used obsolete TIOC[GS]ET");
3321 		}
3322 		if (sgttyb_handling >= 3) {
3323 			tsignal(curthread, SIGSYS);
3324 			return (EIO);
3325 		}
3326 		break;
3327 	}
3328 
3329 	mutex_enter(&stp->sd_lock);
3330 
3331 	switch (cmd) {
3332 	case I_RECVFD:
3333 	case I_E_RECVFD:
3334 	case I_PEEK:
3335 	case I_NREAD:
3336 	case FIONREAD:
3337 	case FIORDCHK:
3338 	case I_ATMARK:
3339 	case FIONBIO:
3340 	case FIOASYNC:
3341 		if (stp->sd_flag & (STRDERR|STPLEX)) {
3342 			error = strgeterr(stp, STRDERR|STPLEX, 0);
3343 			if (error != 0) {
3344 				mutex_exit(&stp->sd_lock);
3345 				return (error);
3346 			}
3347 		}
3348 		break;
3349 
3350 	default:
3351 		if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3352 			error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3353 			if (error != 0) {
3354 				mutex_exit(&stp->sd_lock);
3355 				return (error);
3356 			}
3357 		}
3358 	}
3359 
3360 	mutex_exit(&stp->sd_lock);
3361 
3362 	switch (cmd) {
3363 	default:
3364 		/*
3365 		 * The stream head has hardcoded knowledge of a
3366 		 * miscellaneous collection of terminal-, keyboard- and
3367 		 * mouse-related ioctls, enumerated below.  This hardcoded
3368 		 * knowledge allows the stream head to automatically
3369 		 * convert transparent ioctl requests made by userland
3370 		 * programs into I_STR ioctls which many old STREAMS
3371 		 * modules and drivers require.
3372 		 *
3373 		 * No new ioctls should ever be added to this list.
3374 		 * Instead, the STREAMS module or driver should be written
3375 		 * to either handle transparent ioctls or require any
3376 		 * userland programs to use I_STR ioctls (by returning
3377 		 * EINVAL to any transparent ioctl requests).
3378 		 *
3379 		 * More importantly, removing ioctls from this list should
3380 		 * be done with the utmost care, since our STREAMS modules
3381 		 * and drivers *count* on the stream head performing this
3382 		 * conversion, and thus may panic while processing
3383 		 * transparent ioctl request for one of these ioctls (keep
3384 		 * in mind that third party modules and drivers may have
3385 		 * similar problems).
3386 		 */
3387 		if (((cmd & IOCTYPE) == LDIOC) ||
3388 		    ((cmd & IOCTYPE) == tIOC) ||
3389 		    ((cmd & IOCTYPE) == TIOC) ||
3390 		    ((cmd & IOCTYPE) == KIOC) ||
3391 		    ((cmd & IOCTYPE) == MSIOC) ||
3392 		    ((cmd & IOCTYPE) == VUIOC)) {
3393 			/*
3394 			 * The ioctl is a tty ioctl - set up strioc buffer
3395 			 * and call strdoioctl() to do the work.
3396 			 */
3397 			if (stp->sd_flag & STRHUP)
3398 				return (ENXIO);
3399 			strioc.ic_cmd = cmd;
3400 			strioc.ic_timout = INFTIM;
3401 
3402 			switch (cmd) {
3403 
3404 			case TCXONC:
3405 			case TCSBRK:
3406 			case TCFLSH:
3407 			case TCDSET:
3408 				{
3409 				int native_arg = (int)arg;
3410 				strioc.ic_len = sizeof (int);
3411 				strioc.ic_dp = (char *)&native_arg;
3412 				return (strdoioctl(stp, &strioc, flag,
3413 				    K_TO_K, crp, rvalp));
3414 				}
3415 
3416 			case TCSETA:
3417 			case TCSETAW:
3418 			case TCSETAF:
3419 				strioc.ic_len = sizeof (struct termio);
3420 				strioc.ic_dp = (char *)arg;
3421 				return (strdoioctl(stp, &strioc, flag,
3422 				    copyflag, crp, rvalp));
3423 
3424 			case TCSETS:
3425 			case TCSETSW:
3426 			case TCSETSF:
3427 				strioc.ic_len = sizeof (struct termios);
3428 				strioc.ic_dp = (char *)arg;
3429 				return (strdoioctl(stp, &strioc, flag,
3430 				    copyflag, crp, rvalp));
3431 
3432 			case LDSETT:
3433 				strioc.ic_len = sizeof (struct termcb);
3434 				strioc.ic_dp = (char *)arg;
3435 				return (strdoioctl(stp, &strioc, flag,
3436 				    copyflag, crp, rvalp));
3437 
3438 			case TIOCSETP:
3439 				strioc.ic_len = sizeof (struct sgttyb);
3440 				strioc.ic_dp = (char *)arg;
3441 				return (strdoioctl(stp, &strioc, flag,
3442 				    copyflag, crp, rvalp));
3443 
3444 			case TIOCSTI:
3445 				if ((flag & FREAD) == 0 &&
3446 				    secpolicy_sti(crp) != 0) {
3447 					return (EPERM);
3448 				}
3449 				mutex_enter(&stp->sd_lock);
3450 				mutex_enter(&curproc->p_splock);
3451 				if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3452 				    secpolicy_sti(crp) != 0) {
3453 					mutex_exit(&curproc->p_splock);
3454 					mutex_exit(&stp->sd_lock);
3455 					return (EACCES);
3456 				}
3457 				mutex_exit(&curproc->p_splock);
3458 				mutex_exit(&stp->sd_lock);
3459 
3460 				strioc.ic_len = sizeof (char);
3461 				strioc.ic_dp = (char *)arg;
3462 				return (strdoioctl(stp, &strioc, flag,
3463 				    copyflag, crp, rvalp));
3464 
3465 			case TIOCSWINSZ:
3466 				strioc.ic_len = sizeof (struct winsize);
3467 				strioc.ic_dp = (char *)arg;
3468 				return (strdoioctl(stp, &strioc, flag,
3469 				    copyflag, crp, rvalp));
3470 
3471 			case TIOCSSIZE:
3472 				strioc.ic_len = sizeof (struct ttysize);
3473 				strioc.ic_dp = (char *)arg;
3474 				return (strdoioctl(stp, &strioc, flag,
3475 				    copyflag, crp, rvalp));
3476 
3477 			case TIOCSSOFTCAR:
3478 			case KIOCTRANS:
3479 			case KIOCTRANSABLE:
3480 			case KIOCCMD:
3481 			case KIOCSDIRECT:
3482 			case KIOCSCOMPAT:
3483 			case KIOCSKABORTEN:
3484 			case KIOCSRPTDELAY:
3485 			case KIOCSRPTRATE:
3486 			case VUIDSFORMAT:
3487 			case TIOCSPPS:
3488 				strioc.ic_len = sizeof (int);
3489 				strioc.ic_dp = (char *)arg;
3490 				return (strdoioctl(stp, &strioc, flag,
3491 				    copyflag, crp, rvalp));
3492 
3493 			case KIOCSETKEY:
3494 			case KIOCGETKEY:
3495 				strioc.ic_len = sizeof (struct kiockey);
3496 				strioc.ic_dp = (char *)arg;
3497 				return (strdoioctl(stp, &strioc, flag,
3498 				    copyflag, crp, rvalp));
3499 
3500 			case KIOCSKEY:
3501 			case KIOCGKEY:
3502 				strioc.ic_len = sizeof (struct kiockeymap);
3503 				strioc.ic_dp = (char *)arg;
3504 				return (strdoioctl(stp, &strioc, flag,
3505 				    copyflag, crp, rvalp));
3506 
3507 			case KIOCSLED:
3508 				/* arg is a pointer to char */
3509 				strioc.ic_len = sizeof (char);
3510 				strioc.ic_dp = (char *)arg;
3511 				return (strdoioctl(stp, &strioc, flag,
3512 				    copyflag, crp, rvalp));
3513 
3514 			case MSIOSETPARMS:
3515 				strioc.ic_len = sizeof (Ms_parms);
3516 				strioc.ic_dp = (char *)arg;
3517 				return (strdoioctl(stp, &strioc, flag,
3518 				    copyflag, crp, rvalp));
3519 
3520 			case VUIDSADDR:
3521 			case VUIDGADDR:
3522 				strioc.ic_len = sizeof (struct vuid_addr_probe);
3523 				strioc.ic_dp = (char *)arg;
3524 				return (strdoioctl(stp, &strioc, flag,
3525 				    copyflag, crp, rvalp));
3526 
3527 			/*
3528 			 * These M_IOCTL's don't require any data to be sent
3529 			 * downstream, and the driver will allocate and link
3530 			 * on its own mblk_t upon M_IOCACK -- thus we set
3531 			 * ic_len to zero and set ic_dp to arg so we know
3532 			 * where to copyout to later.
3533 			 */
3534 			case TIOCGSOFTCAR:
3535 			case TIOCGWINSZ:
3536 			case TIOCGSIZE:
3537 			case KIOCGTRANS:
3538 			case KIOCGTRANSABLE:
3539 			case KIOCTYPE:
3540 			case KIOCGDIRECT:
3541 			case KIOCGCOMPAT:
3542 			case KIOCLAYOUT:
3543 			case KIOCGLED:
3544 			case MSIOGETPARMS:
3545 			case MSIOBUTTONS:
3546 			case VUIDGFORMAT:
3547 			case TIOCGPPS:
3548 			case TIOCGPPSEV:
3549 			case TCGETA:
3550 			case TCGETS:
3551 			case LDGETT:
3552 			case TIOCGETP:
3553 			case KIOCGRPTDELAY:
3554 			case KIOCGRPTRATE:
3555 				strioc.ic_len = 0;
3556 				strioc.ic_dp = (char *)arg;
3557 				return (strdoioctl(stp, &strioc, flag,
3558 				    copyflag, crp, rvalp));
3559 			}
3560 		}
3561 
3562 		/*
3563 		 * Unknown cmd - send it down as a transparent ioctl.
3564 		 */
3565 		strioc.ic_cmd = cmd;
3566 		strioc.ic_timout = INFTIM;
3567 		strioc.ic_len = TRANSPARENT;
3568 		strioc.ic_dp = (char *)&arg;
3569 
3570 		return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3571 
3572 	case I_STR:
3573 		/*
3574 		 * Stream ioctl.  Read in an strioctl buffer from the user
3575 		 * along with any data specified and send it downstream.
3576 		 * Strdoioctl will wait allow only one ioctl message at
3577 		 * a time, and waits for the acknowledgement.
3578 		 */
3579 
3580 		if (stp->sd_flag & STRHUP)
3581 			return (ENXIO);
3582 
3583 		error = strcopyin_strioctl((void *)arg, &strioc, flag,
3584 		    copyflag);
3585 		if (error != 0)
3586 			return (error);
3587 
3588 		if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3589 			return (EINVAL);
3590 
3591 		access = job_control_type(strioc.ic_cmd);
3592 		mutex_enter(&stp->sd_lock);
3593 		if ((access != -1) &&
3594 		    ((error = i_straccess(stp, access)) != 0)) {
3595 			mutex_exit(&stp->sd_lock);
3596 			return (error);
3597 		}
3598 		mutex_exit(&stp->sd_lock);
3599 
3600 		/*
3601 		 * The I_STR facility provides a trap door for malicious
3602 		 * code to send down bogus streamio(7I) ioctl commands to
3603 		 * unsuspecting STREAMS modules and drivers which expect to
3604 		 * only get these messages from the stream head.
3605 		 * Explicitly prohibit any streamio ioctls which can be
3606 		 * passed downstream by the stream head.  Note that we do
3607 		 * not block all streamio ioctls because the ioctl
3608 		 * numberspace is not well managed and thus it's possible
3609 		 * that a module or driver's ioctl numbers may accidentally
3610 		 * collide with them.
3611 		 */
3612 		switch (strioc.ic_cmd) {
3613 		case I_LINK:
3614 		case I_PLINK:
3615 		case I_UNLINK:
3616 		case I_PUNLINK:
3617 		case _I_GETPEERCRED:
3618 		case _I_PLINK_LH:
3619 			return (EINVAL);
3620 		}
3621 
3622 		error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3623 		if (error == 0) {
3624 			error = strcopyout_strioctl(&strioc, (void *)arg,
3625 			    flag, copyflag);
3626 		}
3627 		return (error);
3628 
3629 	case I_NREAD:
3630 		/*
3631 		 * Return number of bytes of data in first message
3632 		 * in queue in "arg" and return the number of messages
3633 		 * in queue in return value.
3634 		 */
3635 	{
3636 		size_t	size;
3637 		int	retval;
3638 		int	count = 0;
3639 
3640 		mutex_enter(QLOCK(rdq));
3641 
3642 		size = msgdsize(rdq->q_first);
3643 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3644 			count++;
3645 
3646 		mutex_exit(QLOCK(rdq));
3647 		if (stp->sd_struiordq) {
3648 			infod_t infod;
3649 
3650 			infod.d_cmd = INFOD_COUNT;
3651 			infod.d_count = 0;
3652 			if (count == 0) {
3653 				infod.d_cmd |= INFOD_FIRSTBYTES;
3654 				infod.d_bytes = 0;
3655 			}
3656 			infod.d_res = 0;
3657 			(void) infonext(rdq, &infod);
3658 			count += infod.d_count;
3659 			if (infod.d_res & INFOD_FIRSTBYTES)
3660 				size = infod.d_bytes;
3661 		}
3662 
3663 		/*
3664 		 * Drop down from size_t to the "int" required by the
3665 		 * interface.  Cap at INT_MAX.
3666 		 */
3667 		retval = MIN(size, INT_MAX);
3668 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3669 		    copyflag);
3670 		if (!error)
3671 			*rvalp = count;
3672 		return (error);
3673 	}
3674 
3675 	case FIONREAD:
3676 		/*
3677 		 * Return number of bytes of data in all data messages
3678 		 * in queue in "arg".
3679 		 */
3680 	{
3681 		size_t	size = 0;
3682 		int	retval;
3683 
3684 		mutex_enter(QLOCK(rdq));
3685 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3686 			size += msgdsize(mp);
3687 		mutex_exit(QLOCK(rdq));
3688 
3689 		if (stp->sd_struiordq) {
3690 			infod_t infod;
3691 
3692 			infod.d_cmd = INFOD_BYTES;
3693 			infod.d_res = 0;
3694 			infod.d_bytes = 0;
3695 			(void) infonext(rdq, &infod);
3696 			size += infod.d_bytes;
3697 		}
3698 
3699 		/*
3700 		 * Drop down from size_t to the "int" required by the
3701 		 * interface.  Cap at INT_MAX.
3702 		 */
3703 		retval = MIN(size, INT_MAX);
3704 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3705 		    copyflag);
3706 
3707 		*rvalp = 0;
3708 		return (error);
3709 	}
3710 	case FIORDCHK:
3711 		/*
3712 		 * FIORDCHK does not use arg value (like FIONREAD),
3713 		 * instead a count is returned. I_NREAD value may
3714 		 * not be accurate but safe. The real thing to do is
3715 		 * to add the msgdsizes of all data  messages until
3716 		 * a non-data message.
3717 		 */
3718 	{
3719 		size_t size = 0;
3720 
3721 		mutex_enter(QLOCK(rdq));
3722 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3723 			size += msgdsize(mp);
3724 		mutex_exit(QLOCK(rdq));
3725 
3726 		if (stp->sd_struiordq) {
3727 			infod_t infod;
3728 
3729 			infod.d_cmd = INFOD_BYTES;
3730 			infod.d_res = 0;
3731 			infod.d_bytes = 0;
3732 			(void) infonext(rdq, &infod);
3733 			size += infod.d_bytes;
3734 		}
3735 
3736 		/*
3737 		 * Since ioctl returns an int, and memory sizes under
3738 		 * LP64 may not fit, we return INT_MAX if the count was
3739 		 * actually greater.
3740 		 */
3741 		*rvalp = MIN(size, INT_MAX);
3742 		return (0);
3743 	}
3744 
3745 	case I_FIND:
3746 		/*
3747 		 * Get module name.
3748 		 */
3749 	{
3750 		char mname[FMNAMESZ + 1];
3751 		queue_t *q;
3752 
3753 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3754 		    mname, FMNAMESZ + 1, NULL);
3755 		if (error)
3756 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3757 
3758 		/*
3759 		 * Return EINVAL if we're handed a bogus module name.
3760 		 */
3761 		if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3762 			TRACE_0(TR_FAC_STREAMS_FR,
3763 			    TR_I_CANT_FIND, "couldn't I_FIND");
3764 			return (EINVAL);
3765 		}
3766 
3767 		*rvalp = 0;
3768 
3769 		/* Look downstream to see if module is there. */
3770 		claimstr(stp->sd_wrq);
3771 		for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3772 			if (q->q_flag&QREADR) {
3773 				q = NULL;
3774 				break;
3775 			}
3776 			if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0)
3777 				break;
3778 		}
3779 		releasestr(stp->sd_wrq);
3780 
3781 		*rvalp = (q ? 1 : 0);
3782 		return (error);
3783 	}
3784 
3785 	case I_PUSH:
3786 	case __I_PUSH_NOCTTY:
3787 		/*
3788 		 * Push a module.
3789 		 * For the case __I_PUSH_NOCTTY push a module but
3790 		 * do not allocate controlling tty. See bugid 4025044
3791 		 */
3792 
3793 	{
3794 		char mname[FMNAMESZ + 1];
3795 		fmodsw_impl_t *fp;
3796 		dev_t dummydev;
3797 
3798 		if (stp->sd_flag & STRHUP)
3799 			return (ENXIO);
3800 
3801 		/*
3802 		 * Get module name and look up in fmodsw.
3803 		 */
3804 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3805 		    mname, FMNAMESZ + 1, NULL);
3806 		if (error)
3807 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3808 
3809 		if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3810 		    NULL)
3811 			return (EINVAL);
3812 
3813 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3814 		    "I_PUSH:fp %p stp %p", fp, stp);
3815 
3816 		if (error = strstartplumb(stp, flag, cmd)) {
3817 			fmodsw_rele(fp);
3818 			return (error);
3819 		}
3820 
3821 		/*
3822 		 * See if any more modules can be pushed on this stream.
3823 		 * Note that this check must be done after strstartplumb()
3824 		 * since otherwise multiple threads issuing I_PUSHes on
3825 		 * the same stream will be able to exceed nstrpush.
3826 		 */
3827 		mutex_enter(&stp->sd_lock);
3828 		if (stp->sd_pushcnt >= nstrpush) {
3829 			fmodsw_rele(fp);
3830 			strendplumb(stp);
3831 			mutex_exit(&stp->sd_lock);
3832 			return (EINVAL);
3833 		}
3834 		mutex_exit(&stp->sd_lock);
3835 
3836 		/*
3837 		 * Push new module and call its open routine
3838 		 * via qattach().  Modules don't change device
3839 		 * numbers, so just ignore dummydev here.
3840 		 */
3841 		dummydev = vp->v_rdev;
3842 		if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3843 		    B_FALSE)) == 0) {
3844 			if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3845 			    (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3846 				/*
3847 				 * try to allocate it as a controlling terminal
3848 				 */
3849 				(void) strctty(stp);
3850 			}
3851 		}
3852 
3853 		mutex_enter(&stp->sd_lock);
3854 
3855 		/*
3856 		 * As a performance concern we are caching the values of
3857 		 * q_minpsz and q_maxpsz of the module below the stream
3858 		 * head in the stream head.
3859 		 */
3860 		mutex_enter(QLOCK(stp->sd_wrq->q_next));
3861 		rmin = stp->sd_wrq->q_next->q_minpsz;
3862 		rmax = stp->sd_wrq->q_next->q_maxpsz;
3863 		mutex_exit(QLOCK(stp->sd_wrq->q_next));
3864 
3865 		/* Do this processing here as a performance concern */
3866 		if (strmsgsz != 0) {
3867 			if (rmax == INFPSZ)
3868 				rmax = strmsgsz;
3869 			else  {
3870 				if (vp->v_type == VFIFO)
3871 					rmax = MIN(PIPE_BUF, rmax);
3872 				else	rmax = MIN(strmsgsz, rmax);
3873 			}
3874 		}
3875 
3876 		mutex_enter(QLOCK(wrq));
3877 		stp->sd_qn_minpsz = rmin;
3878 		stp->sd_qn_maxpsz = rmax;
3879 		mutex_exit(QLOCK(wrq));
3880 
3881 		strendplumb(stp);
3882 		mutex_exit(&stp->sd_lock);
3883 		return (error);
3884 	}
3885 
3886 	case I_POP:
3887 	{
3888 		queue_t	*q;
3889 
3890 		if (stp->sd_flag & STRHUP)
3891 			return (ENXIO);
3892 		if (!wrq->q_next)	/* for broken pipes */
3893 			return (EINVAL);
3894 
3895 		if (error = strstartplumb(stp, flag, cmd))
3896 			return (error);
3897 
3898 		/*
3899 		 * If there is an anchor on this stream and popping
3900 		 * the current module would attempt to pop through the
3901 		 * anchor, then disallow the pop unless we have sufficient
3902 		 * privileges; take the cheapest (non-locking) check
3903 		 * first.
3904 		 */
3905 		if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3906 		    (stp->sd_anchorzone != crgetzoneid(crp))) {
3907 			mutex_enter(&stp->sd_lock);
3908 			/*
3909 			 * Anchors only apply if there's at least one
3910 			 * module on the stream (sd_pushcnt > 0).
3911 			 */
3912 			if (stp->sd_pushcnt > 0 &&
3913 			    stp->sd_pushcnt == stp->sd_anchor &&
3914 			    stp->sd_vnode->v_type != VFIFO) {
3915 				strendplumb(stp);
3916 				mutex_exit(&stp->sd_lock);
3917 				if (stp->sd_anchorzone != crgetzoneid(crp))
3918 					return (EINVAL);
3919 				/* Audit and report error */
3920 				return (secpolicy_ip_config(crp, B_FALSE));
3921 			}
3922 			mutex_exit(&stp->sd_lock);
3923 		}
3924 
3925 		q = wrq->q_next;
3926 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3927 		    "I_POP:%p from %p", q, stp);
3928 		if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3929 			error = EINVAL;
3930 		} else {
3931 			qdetach(_RD(q), 1, flag, crp, B_FALSE);
3932 			error = 0;
3933 		}
3934 		mutex_enter(&stp->sd_lock);
3935 
3936 		/*
3937 		 * As a performance concern we are caching the values of
3938 		 * q_minpsz and q_maxpsz of the module below the stream
3939 		 * head in the stream head.
3940 		 */
3941 		mutex_enter(QLOCK(wrq->q_next));
3942 		rmin = wrq->q_next->q_minpsz;
3943 		rmax = wrq->q_next->q_maxpsz;
3944 		mutex_exit(QLOCK(wrq->q_next));
3945 
3946 		/* Do this processing here as a performance concern */
3947 		if (strmsgsz != 0) {
3948 			if (rmax == INFPSZ)
3949 				rmax = strmsgsz;
3950 			else  {
3951 				if (vp->v_type == VFIFO)
3952 					rmax = MIN(PIPE_BUF, rmax);
3953 				else	rmax = MIN(strmsgsz, rmax);
3954 			}
3955 		}
3956 
3957 		mutex_enter(QLOCK(wrq));
3958 		stp->sd_qn_minpsz = rmin;
3959 		stp->sd_qn_maxpsz = rmax;
3960 		mutex_exit(QLOCK(wrq));
3961 
3962 		/* If we popped through the anchor, then reset the anchor. */
3963 		if (stp->sd_pushcnt < stp->sd_anchor) {
3964 			stp->sd_anchor = 0;
3965 			stp->sd_anchorzone = 0;
3966 		}
3967 		strendplumb(stp);
3968 		mutex_exit(&stp->sd_lock);
3969 		return (error);
3970 	}
3971 
3972 	case _I_MUXID2FD:
3973 	{
3974 		/*
3975 		 * Create a fd for a I_PLINK'ed lower stream with a given
3976 		 * muxid.  With the fd, application can send down ioctls,
3977 		 * like I_LIST, to the previously I_PLINK'ed stream.  Note
3978 		 * that after getting the fd, the application has to do an
3979 		 * I_PUNLINK on the muxid before it can do any operation
3980 		 * on the lower stream.  This is required by spec1170.
3981 		 *
3982 		 * The fd used to do this ioctl should point to the same
3983 		 * controlling device used to do the I_PLINK.  If it uses
3984 		 * a different stream or an invalid muxid, I_MUXID2FD will
3985 		 * fail.  The error code is set to EINVAL.
3986 		 *
3987 		 * The intended use of this interface is the following.
3988 		 * An application I_PLINK'ed a stream and exits.  The fd
3989 		 * to the lower stream is gone.  Another application
3990 		 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
3991 		 */
3992 		int muxid = (int)arg;
3993 		int fd;
3994 		linkinfo_t *linkp;
3995 		struct file *fp;
3996 		netstack_t *ns;
3997 		str_stack_t *ss;
3998 
3999 		/*
4000 		 * Do not allow the wildcard muxid.  This ioctl is not
4001 		 * intended to find arbitrary link.
4002 		 */
4003 		if (muxid == 0) {
4004 			return (EINVAL);
4005 		}
4006 
4007 		ns = netstack_find_by_cred(crp);
4008 		ASSERT(ns != NULL);
4009 		ss = ns->netstack_str;
4010 		ASSERT(ss != NULL);
4011 
4012 		mutex_enter(&muxifier);
4013 		linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
4014 		if (linkp == NULL) {
4015 			mutex_exit(&muxifier);
4016 			netstack_rele(ss->ss_netstack);
4017 			return (EINVAL);
4018 		}
4019 
4020 		if ((fd = ufalloc(0)) == -1) {
4021 			mutex_exit(&muxifier);
4022 			netstack_rele(ss->ss_netstack);
4023 			return (EMFILE);
4024 		}
4025 		fp = linkp->li_fpdown;
4026 		mutex_enter(&fp->f_tlock);
4027 		fp->f_count++;
4028 		mutex_exit(&fp->f_tlock);
4029 		mutex_exit(&muxifier);
4030 		setf(fd, fp);
4031 		*rvalp = fd;
4032 		netstack_rele(ss->ss_netstack);
4033 		return (0);
4034 	}
4035 
4036 	case _I_INSERT:
4037 	{
4038 		/*
4039 		 * To insert a module to a given position in a stream.
4040 		 * In the first release, only allow privileged user
4041 		 * to use this ioctl. Furthermore, the insert is only allowed
4042 		 * below an anchor if the zoneid is the same as the zoneid
4043 		 * which created the anchor.
4044 		 *
4045 		 * Note that we do not plan to support this ioctl
4046 		 * on pipes in the first release.  We want to learn more
4047 		 * about the implications of these ioctls before extending
4048 		 * their support.  And we do not think these features are
4049 		 * valuable for pipes.
4050 		 *
4051 		 * Neither do we support O/C hot stream.  Note that only
4052 		 * the upper streams of TCP/IP stack are O/C hot streams.
4053 		 * The lower IP stream is not.
4054 		 * When there is a O/C cold barrier, we only allow inserts
4055 		 * above the barrier.
4056 		 */
4057 		STRUCT_DECL(strmodconf, strmodinsert);
4058 		char mod_name[FMNAMESZ + 1];
4059 		fmodsw_impl_t *fp;
4060 		dev_t dummydev;
4061 		queue_t *tmp_wrq;
4062 		int pos;
4063 		boolean_t is_insert;
4064 
4065 		STRUCT_INIT(strmodinsert, flag);
4066 		if (stp->sd_flag & STRHUP)
4067 			return (ENXIO);
4068 		if (STRMATED(stp))
4069 			return (EINVAL);
4070 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4071 			return (error);
4072 		if (stp->sd_anchor != 0 &&
4073 		    stp->sd_anchorzone != crgetzoneid(crp))
4074 			return (EINVAL);
4075 
4076 		error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4077 		    STRUCT_SIZE(strmodinsert), copyflag);
4078 		if (error)
4079 			return (error);
4080 
4081 		/*
4082 		 * Get module name and look up in fmodsw.
4083 		 */
4084 		error = (copyflag & U_TO_K ? copyinstr :
4085 		    copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4086 		    mod_name, FMNAMESZ + 1, NULL);
4087 		if (error)
4088 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4089 
4090 		if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4091 		    NULL)
4092 			return (EINVAL);
4093 
4094 		if (error = strstartplumb(stp, flag, cmd)) {
4095 			fmodsw_rele(fp);
4096 			return (error);
4097 		}
4098 
4099 		/*
4100 		 * Is this _I_INSERT just like an I_PUSH?  We need to know
4101 		 * this because we do some optimizations if this is a
4102 		 * module being pushed.
4103 		 */
4104 		pos = STRUCT_FGET(strmodinsert, pos);
4105 		is_insert = (pos != 0);
4106 
4107 		/*
4108 		 * Make sure pos is valid.  Even though it is not an I_PUSH,
4109 		 * we impose the same limit on the number of modules in a
4110 		 * stream.
4111 		 */
4112 		mutex_enter(&stp->sd_lock);
4113 		if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4114 		    pos > stp->sd_pushcnt) {
4115 			fmodsw_rele(fp);
4116 			strendplumb(stp);
4117 			mutex_exit(&stp->sd_lock);
4118 			return (EINVAL);
4119 		}
4120 		if (stp->sd_anchor != 0) {
4121 			/*
4122 			 * Is this insert below the anchor?
4123 			 * Pushcnt hasn't been increased yet hence
4124 			 * we test for greater than here, and greater or
4125 			 * equal after qattach.
4126 			 */
4127 			if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4128 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4129 				fmodsw_rele(fp);
4130 				strendplumb(stp);
4131 				mutex_exit(&stp->sd_lock);
4132 				return (EPERM);
4133 			}
4134 		}
4135 
4136 		mutex_exit(&stp->sd_lock);
4137 
4138 		/*
4139 		 * First find the correct position this module to
4140 		 * be inserted.  We don't need to call claimstr()
4141 		 * as the stream should not be changing at this point.
4142 		 *
4143 		 * Insert new module and call its open routine
4144 		 * via qattach().  Modules don't change device
4145 		 * numbers, so just ignore dummydev here.
4146 		 */
4147 		for (tmp_wrq = stp->sd_wrq; pos > 0;
4148 		    tmp_wrq = tmp_wrq->q_next, pos--) {
4149 			ASSERT(SAMESTR(tmp_wrq));
4150 		}
4151 		dummydev = vp->v_rdev;
4152 		if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4153 		    fp, is_insert)) != 0) {
4154 			mutex_enter(&stp->sd_lock);
4155 			strendplumb(stp);
4156 			mutex_exit(&stp->sd_lock);
4157 			return (error);
4158 		}
4159 
4160 		mutex_enter(&stp->sd_lock);
4161 
4162 		/*
4163 		 * As a performance concern we are caching the values of
4164 		 * q_minpsz and q_maxpsz of the module below the stream
4165 		 * head in the stream head.
4166 		 */
4167 		if (!is_insert) {
4168 			mutex_enter(QLOCK(stp->sd_wrq->q_next));
4169 			rmin = stp->sd_wrq->q_next->q_minpsz;
4170 			rmax = stp->sd_wrq->q_next->q_maxpsz;
4171 			mutex_exit(QLOCK(stp->sd_wrq->q_next));
4172 
4173 			/* Do this processing here as a performance concern */
4174 			if (strmsgsz != 0) {
4175 				if (rmax == INFPSZ) {
4176 					rmax = strmsgsz;
4177 				} else  {
4178 					rmax = MIN(strmsgsz, rmax);
4179 				}
4180 			}
4181 
4182 			mutex_enter(QLOCK(wrq));
4183 			stp->sd_qn_minpsz = rmin;
4184 			stp->sd_qn_maxpsz = rmax;
4185 			mutex_exit(QLOCK(wrq));
4186 		}
4187 
4188 		/*
4189 		 * Need to update the anchor value if this module is
4190 		 * inserted below the anchor point.
4191 		 */
4192 		if (stp->sd_anchor != 0) {
4193 			pos = STRUCT_FGET(strmodinsert, pos);
4194 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4195 				stp->sd_anchor++;
4196 		}
4197 
4198 		strendplumb(stp);
4199 		mutex_exit(&stp->sd_lock);
4200 		return (0);
4201 	}
4202 
4203 	case _I_REMOVE:
4204 	{
4205 		/*
4206 		 * To remove a module with a given name in a stream.  The
4207 		 * caller of this ioctl needs to provide both the name and
4208 		 * the position of the module to be removed.  This eliminates
4209 		 * the ambiguity of removal if a module is inserted/pushed
4210 		 * multiple times in a stream.  In the first release, only
4211 		 * allow privileged user to use this ioctl.
4212 		 * Furthermore, the remove is only allowed
4213 		 * below an anchor if the zoneid is the same as the zoneid
4214 		 * which created the anchor.
4215 		 *
4216 		 * Note that we do not plan to support this ioctl
4217 		 * on pipes in the first release.  We want to learn more
4218 		 * about the implications of these ioctls before extending
4219 		 * their support.  And we do not think these features are
4220 		 * valuable for pipes.
4221 		 *
4222 		 * Neither do we support O/C hot stream.  Note that only
4223 		 * the upper streams of TCP/IP stack are O/C hot streams.
4224 		 * The lower IP stream is not.
4225 		 * When there is a O/C cold barrier we do not allow removal
4226 		 * below the barrier.
4227 		 *
4228 		 * Also note that _I_REMOVE cannot be used to remove a
4229 		 * driver or the stream head.
4230 		 */
4231 		STRUCT_DECL(strmodconf, strmodremove);
4232 		queue_t	*q;
4233 		int pos;
4234 		char mod_name[FMNAMESZ + 1];
4235 		boolean_t is_remove;
4236 
4237 		STRUCT_INIT(strmodremove, flag);
4238 		if (stp->sd_flag & STRHUP)
4239 			return (ENXIO);
4240 		if (STRMATED(stp))
4241 			return (EINVAL);
4242 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4243 			return (error);
4244 		if (stp->sd_anchor != 0 &&
4245 		    stp->sd_anchorzone != crgetzoneid(crp))
4246 			return (EINVAL);
4247 
4248 		error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4249 		    STRUCT_SIZE(strmodremove), copyflag);
4250 		if (error)
4251 			return (error);
4252 
4253 		error = (copyflag & U_TO_K ? copyinstr :
4254 		    copystr)(STRUCT_FGETP(strmodremove, mod_name),
4255 		    mod_name, FMNAMESZ + 1, NULL);
4256 		if (error)
4257 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4258 
4259 		if ((error = strstartplumb(stp, flag, cmd)) != 0)
4260 			return (error);
4261 
4262 		/*
4263 		 * Match the name of given module to the name of module at
4264 		 * the given position.
4265 		 */
4266 		pos = STRUCT_FGET(strmodremove, pos);
4267 
4268 		is_remove = (pos != 0);
4269 		for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4270 		    q = q->q_next, pos--)
4271 			;
4272 		if (pos > 0 || ! SAMESTR(q) ||
4273 		    strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name,
4274 		    strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) {
4275 			mutex_enter(&stp->sd_lock);
4276 			strendplumb(stp);
4277 			mutex_exit(&stp->sd_lock);
4278 			return (EINVAL);
4279 		}
4280 
4281 		/*
4282 		 * If the position is at or below an anchor, then the zoneid
4283 		 * must match the zoneid that created the anchor.
4284 		 */
4285 		if (stp->sd_anchor != 0) {
4286 			pos = STRUCT_FGET(strmodremove, pos);
4287 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4288 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4289 				mutex_enter(&stp->sd_lock);
4290 				strendplumb(stp);
4291 				mutex_exit(&stp->sd_lock);
4292 				return (EPERM);
4293 			}
4294 		}
4295 
4296 
4297 		ASSERT(!(q->q_flag & QREADR));
4298 		qdetach(_RD(q), 1, flag, crp, is_remove);
4299 
4300 		mutex_enter(&stp->sd_lock);
4301 
4302 		/*
4303 		 * As a performance concern we are caching the values of
4304 		 * q_minpsz and q_maxpsz of the module below the stream
4305 		 * head in the stream head.
4306 		 */
4307 		if (!is_remove) {
4308 			mutex_enter(QLOCK(wrq->q_next));
4309 			rmin = wrq->q_next->q_minpsz;
4310 			rmax = wrq->q_next->q_maxpsz;
4311 			mutex_exit(QLOCK(wrq->q_next));
4312 
4313 			/* Do this processing here as a performance concern */
4314 			if (strmsgsz != 0) {
4315 				if (rmax == INFPSZ)
4316 					rmax = strmsgsz;
4317 				else  {
4318 					if (vp->v_type == VFIFO)
4319 						rmax = MIN(PIPE_BUF, rmax);
4320 					else	rmax = MIN(strmsgsz, rmax);
4321 				}
4322 			}
4323 
4324 			mutex_enter(QLOCK(wrq));
4325 			stp->sd_qn_minpsz = rmin;
4326 			stp->sd_qn_maxpsz = rmax;
4327 			mutex_exit(QLOCK(wrq));
4328 		}
4329 
4330 		/*
4331 		 * Need to update the anchor value if this module is removed
4332 		 * at or below the anchor point.  If the removed module is at
4333 		 * the anchor point, remove the anchor for this stream if
4334 		 * there is no module above the anchor point.  Otherwise, if
4335 		 * the removed module is below the anchor point, decrement the
4336 		 * anchor point by 1.
4337 		 */
4338 		if (stp->sd_anchor != 0) {
4339 			pos = STRUCT_FGET(strmodremove, pos);
4340 			if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4341 				stp->sd_anchor = 0;
4342 			else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4343 				stp->sd_anchor--;
4344 		}
4345 
4346 		strendplumb(stp);
4347 		mutex_exit(&stp->sd_lock);
4348 		return (0);
4349 	}
4350 
4351 	case I_ANCHOR:
4352 		/*
4353 		 * Set the anchor position on the stream to reside at
4354 		 * the top module (in other words, the top module
4355 		 * cannot be popped).  Anchors with a FIFO make no
4356 		 * obvious sense, so they're not allowed.
4357 		 */
4358 		mutex_enter(&stp->sd_lock);
4359 
4360 		if (stp->sd_vnode->v_type == VFIFO) {
4361 			mutex_exit(&stp->sd_lock);
4362 			return (EINVAL);
4363 		}
4364 		/* Only allow the same zoneid to update the anchor */
4365 		if (stp->sd_anchor != 0 &&
4366 		    stp->sd_anchorzone != crgetzoneid(crp)) {
4367 			mutex_exit(&stp->sd_lock);
4368 			return (EINVAL);
4369 		}
4370 		stp->sd_anchor = stp->sd_pushcnt;
4371 		stp->sd_anchorzone = crgetzoneid(crp);
4372 		mutex_exit(&stp->sd_lock);
4373 		return (0);
4374 
4375 	case I_LOOK:
4376 		/*
4377 		 * Get name of first module downstream.
4378 		 * If no module, return an error.
4379 		 */
4380 	{
4381 		claimstr(wrq);
4382 		if (_SAMESTR(wrq) && wrq->q_next->q_next) {
4383 			char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname;
4384 			error = strcopyout(name, (void *)arg, strlen(name) + 1,
4385 			    copyflag);
4386 			releasestr(wrq);
4387 			return (error);
4388 		}
4389 		releasestr(wrq);
4390 		return (EINVAL);
4391 	}
4392 
4393 	case I_LINK:
4394 	case I_PLINK:
4395 		/*
4396 		 * Link a multiplexor.
4397 		 */
4398 		error = mlink(vp, cmd, (int)arg, crp, rvalp, 0);
4399 		return (error);
4400 
4401 	case _I_PLINK_LH:
4402 		/*
4403 		 * Link a multiplexor: Call must originate from kernel.
4404 		 */
4405 		if (kioctl)
4406 			return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4407 
4408 		return (EINVAL);
4409 	case I_UNLINK:
4410 	case I_PUNLINK:
4411 		/*
4412 		 * Unlink a multiplexor.
4413 		 * If arg is -1, unlink all links for which this is the
4414 		 * controlling stream.  Otherwise, arg is an index number
4415 		 * for a link to be removed.
4416 		 */
4417 	{
4418 		struct linkinfo *linkp;
4419 		int native_arg = (int)arg;
4420 		int type;
4421 		netstack_t *ns;
4422 		str_stack_t *ss;
4423 
4424 		TRACE_1(TR_FAC_STREAMS_FR,
4425 		    TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4426 		if (vp->v_type == VFIFO) {
4427 			return (EINVAL);
4428 		}
4429 		if (cmd == I_UNLINK)
4430 			type = LINKNORMAL;
4431 		else	/* I_PUNLINK */
4432 			type = LINKPERSIST;
4433 		if (native_arg == 0) {
4434 			return (EINVAL);
4435 		}
4436 		ns = netstack_find_by_cred(crp);
4437 		ASSERT(ns != NULL);
4438 		ss = ns->netstack_str;
4439 		ASSERT(ss != NULL);
4440 
4441 		if (native_arg == MUXID_ALL)
4442 			error = munlinkall(stp, type, crp, rvalp, ss);
4443 		else {
4444 			mutex_enter(&muxifier);
4445 			if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4446 				/* invalid user supplied index number */
4447 				mutex_exit(&muxifier);
4448 				netstack_rele(ss->ss_netstack);
4449 				return (EINVAL);
4450 			}
4451 			/* munlink drops the muxifier lock */
4452 			error = munlink(stp, linkp, type, crp, rvalp, ss);
4453 		}
4454 		netstack_rele(ss->ss_netstack);
4455 		return (error);
4456 	}
4457 
4458 	case I_FLUSH:
4459 		/*
4460 		 * send a flush message downstream
4461 		 * flush message can indicate
4462 		 * FLUSHR - flush read queue
4463 		 * FLUSHW - flush write queue
4464 		 * FLUSHRW - flush read/write queue
4465 		 */
4466 		if (stp->sd_flag & STRHUP)
4467 			return (ENXIO);
4468 		if (arg & ~FLUSHRW)
4469 			return (EINVAL);
4470 
4471 		for (;;) {
4472 			if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4473 				break;
4474 			}
4475 			if (error = strwaitbuf(1, BPRI_HI)) {
4476 				return (error);
4477 			}
4478 		}
4479 
4480 		/*
4481 		 * Send down an unsupported ioctl and wait for the nack
4482 		 * in order to allow the M_FLUSH to propagate back
4483 		 * up to the stream head.
4484 		 * Replaces if (qready()) runqueues();
4485 		 */
4486 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4487 		strioc.ic_timout = 0;
4488 		strioc.ic_len = 0;
4489 		strioc.ic_dp = NULL;
4490 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4491 		*rvalp = 0;
4492 		return (0);
4493 
4494 	case I_FLUSHBAND:
4495 	{
4496 		struct bandinfo binfo;
4497 
4498 		error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4499 		    copyflag);
4500 		if (error)
4501 			return (error);
4502 		if (stp->sd_flag & STRHUP)
4503 			return (ENXIO);
4504 		if (binfo.bi_flag & ~FLUSHRW)
4505 			return (EINVAL);
4506 		while (!(mp = allocb(2, BPRI_HI))) {
4507 			if (error = strwaitbuf(2, BPRI_HI))
4508 				return (error);
4509 		}
4510 		mp->b_datap->db_type = M_FLUSH;
4511 		*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4512 		*mp->b_wptr++ = binfo.bi_pri;
4513 		putnext(stp->sd_wrq, mp);
4514 		/*
4515 		 * Send down an unsupported ioctl and wait for the nack
4516 		 * in order to allow the M_FLUSH to propagate back
4517 		 * up to the stream head.
4518 		 * Replaces if (qready()) runqueues();
4519 		 */
4520 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4521 		strioc.ic_timout = 0;
4522 		strioc.ic_len = 0;
4523 		strioc.ic_dp = NULL;
4524 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4525 		*rvalp = 0;
4526 		return (0);
4527 	}
4528 
4529 	case I_SRDOPT:
4530 		/*
4531 		 * Set read options
4532 		 *
4533 		 * RNORM - default stream mode
4534 		 * RMSGN - message no discard
4535 		 * RMSGD - message discard
4536 		 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4537 		 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4538 		 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4539 		 */
4540 		if (arg & ~(RMODEMASK | RPROTMASK))
4541 			return (EINVAL);
4542 
4543 		if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4544 			return (EINVAL);
4545 
4546 		mutex_enter(&stp->sd_lock);
4547 		switch (arg & RMODEMASK) {
4548 		case RNORM:
4549 			stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4550 			break;
4551 		case RMSGD:
4552 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4553 			    RD_MSGDIS;
4554 			break;
4555 		case RMSGN:
4556 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4557 			    RD_MSGNODIS;
4558 			break;
4559 		}
4560 
4561 		switch (arg & RPROTMASK) {
4562 		case RPROTNORM:
4563 			stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4564 			break;
4565 
4566 		case RPROTDAT:
4567 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4568 			    RD_PROTDAT);
4569 			break;
4570 
4571 		case RPROTDIS:
4572 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4573 			    RD_PROTDIS);
4574 			break;
4575 		}
4576 		mutex_exit(&stp->sd_lock);
4577 		return (0);
4578 
4579 	case I_GRDOPT:
4580 		/*
4581 		 * Get read option and return the value
4582 		 * to spot pointed to by arg
4583 		 */
4584 	{
4585 		int rdopt;
4586 
4587 		rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4588 		    ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4589 		rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4590 		    ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4591 
4592 		return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4593 		    copyflag));
4594 	}
4595 
4596 	case I_SERROPT:
4597 		/*
4598 		 * Set error options
4599 		 *
4600 		 * RERRNORM - persistent read errors
4601 		 * RERRNONPERSIST - non-persistent read errors
4602 		 * WERRNORM - persistent write errors
4603 		 * WERRNONPERSIST - non-persistent write errors
4604 		 */
4605 		if (arg & ~(RERRMASK | WERRMASK))
4606 			return (EINVAL);
4607 
4608 		mutex_enter(&stp->sd_lock);
4609 		switch (arg & RERRMASK) {
4610 		case RERRNORM:
4611 			stp->sd_flag &= ~STRDERRNONPERSIST;
4612 			break;
4613 		case RERRNONPERSIST:
4614 			stp->sd_flag |= STRDERRNONPERSIST;
4615 			break;
4616 		}
4617 		switch (arg & WERRMASK) {
4618 		case WERRNORM:
4619 			stp->sd_flag &= ~STWRERRNONPERSIST;
4620 			break;
4621 		case WERRNONPERSIST:
4622 			stp->sd_flag |= STWRERRNONPERSIST;
4623 			break;
4624 		}
4625 		mutex_exit(&stp->sd_lock);
4626 		return (0);
4627 
4628 	case I_GERROPT:
4629 		/*
4630 		 * Get error option and return the value
4631 		 * to spot pointed to by arg
4632 		 */
4633 	{
4634 		int erropt = 0;
4635 
4636 		erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4637 		    RERRNORM;
4638 		erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4639 		    WERRNORM;
4640 		return (strcopyout(&erropt, (void *)arg, sizeof (int),
4641 		    copyflag));
4642 	}
4643 
4644 	case I_SETSIG:
4645 		/*
4646 		 * Register the calling proc to receive the SIGPOLL
4647 		 * signal based on the events given in arg.  If
4648 		 * arg is zero, remove the proc from register list.
4649 		 */
4650 	{
4651 		strsig_t *ssp, *pssp;
4652 		struct pid *pidp;
4653 
4654 		pssp = NULL;
4655 		pidp = curproc->p_pidp;
4656 		/*
4657 		 * Hold sd_lock to prevent traversal of sd_siglist while
4658 		 * it is modified.
4659 		 */
4660 		mutex_enter(&stp->sd_lock);
4661 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4662 		    pssp = ssp, ssp = ssp->ss_next)
4663 			;
4664 
4665 		if (arg) {
4666 			if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4667 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4668 				mutex_exit(&stp->sd_lock);
4669 				return (EINVAL);
4670 			}
4671 			if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4672 				mutex_exit(&stp->sd_lock);
4673 				return (EINVAL);
4674 			}
4675 
4676 			/*
4677 			 * If proc not already registered, add it
4678 			 * to list.
4679 			 */
4680 			if (!ssp) {
4681 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4682 				ssp->ss_pidp = pidp;
4683 				ssp->ss_pid = pidp->pid_id;
4684 				ssp->ss_next = NULL;
4685 				if (pssp)
4686 					pssp->ss_next = ssp;
4687 				else
4688 					stp->sd_siglist = ssp;
4689 				mutex_enter(&pidlock);
4690 				PID_HOLD(pidp);
4691 				mutex_exit(&pidlock);
4692 			}
4693 
4694 			/*
4695 			 * Set events.
4696 			 */
4697 			ssp->ss_events = (int)arg;
4698 		} else {
4699 			/*
4700 			 * Remove proc from register list.
4701 			 */
4702 			if (ssp) {
4703 				mutex_enter(&pidlock);
4704 				PID_RELE(pidp);
4705 				mutex_exit(&pidlock);
4706 				if (pssp)
4707 					pssp->ss_next = ssp->ss_next;
4708 				else
4709 					stp->sd_siglist = ssp->ss_next;
4710 				kmem_free(ssp, sizeof (strsig_t));
4711 			} else {
4712 				mutex_exit(&stp->sd_lock);
4713 				return (EINVAL);
4714 			}
4715 		}
4716 
4717 		/*
4718 		 * Recalculate OR of sig events.
4719 		 */
4720 		stp->sd_sigflags = 0;
4721 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4722 			stp->sd_sigflags |= ssp->ss_events;
4723 		mutex_exit(&stp->sd_lock);
4724 		return (0);
4725 	}
4726 
4727 	case I_GETSIG:
4728 		/*
4729 		 * Return (in arg) the current registration of events
4730 		 * for which the calling proc is to be signaled.
4731 		 */
4732 	{
4733 		struct strsig *ssp;
4734 		struct pid  *pidp;
4735 
4736 		pidp = curproc->p_pidp;
4737 		mutex_enter(&stp->sd_lock);
4738 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4739 			if (ssp->ss_pidp == pidp) {
4740 				error = strcopyout(&ssp->ss_events, (void *)arg,
4741 				    sizeof (int), copyflag);
4742 				mutex_exit(&stp->sd_lock);
4743 				return (error);
4744 			}
4745 		mutex_exit(&stp->sd_lock);
4746 		return (EINVAL);
4747 	}
4748 
4749 	case I_ESETSIG:
4750 		/*
4751 		 * Register the ss_pid to receive the SIGPOLL
4752 		 * signal based on the events is ss_events arg.  If
4753 		 * ss_events is zero, remove the proc from register list.
4754 		 */
4755 	{
4756 		struct strsig *ssp, *pssp;
4757 		struct proc *proc;
4758 		struct pid  *pidp;
4759 		pid_t pid;
4760 		struct strsigset ss;
4761 
4762 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4763 		if (error)
4764 			return (error);
4765 
4766 		pid = ss.ss_pid;
4767 
4768 		if (ss.ss_events != 0) {
4769 			/*
4770 			 * Permissions check by sending signal 0.
4771 			 * Note that when kill fails it does a set_errno
4772 			 * causing the system call to fail.
4773 			 */
4774 			error = kill(pid, 0);
4775 			if (error) {
4776 				return (error);
4777 			}
4778 		}
4779 		mutex_enter(&pidlock);
4780 		if (pid == 0)
4781 			proc = curproc;
4782 		else if (pid < 0)
4783 			proc = pgfind(-pid);
4784 		else
4785 			proc = prfind(pid);
4786 		if (proc == NULL) {
4787 			mutex_exit(&pidlock);
4788 			return (ESRCH);
4789 		}
4790 		if (pid < 0)
4791 			pidp = proc->p_pgidp;
4792 		else
4793 			pidp = proc->p_pidp;
4794 		ASSERT(pidp);
4795 		/*
4796 		 * Get a hold on the pid structure while referencing it.
4797 		 * There is a separate PID_HOLD should it be inserted
4798 		 * in the list below.
4799 		 */
4800 		PID_HOLD(pidp);
4801 		mutex_exit(&pidlock);
4802 
4803 		pssp = NULL;
4804 		/*
4805 		 * Hold sd_lock to prevent traversal of sd_siglist while
4806 		 * it is modified.
4807 		 */
4808 		mutex_enter(&stp->sd_lock);
4809 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4810 		    pssp = ssp, ssp = ssp->ss_next)
4811 			;
4812 
4813 		if (ss.ss_events) {
4814 			if (ss.ss_events &
4815 			    ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4816 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4817 				mutex_exit(&stp->sd_lock);
4818 				mutex_enter(&pidlock);
4819 				PID_RELE(pidp);
4820 				mutex_exit(&pidlock);
4821 				return (EINVAL);
4822 			}
4823 			if ((ss.ss_events & S_BANDURG) &&
4824 			    !(ss.ss_events & S_RDBAND)) {
4825 				mutex_exit(&stp->sd_lock);
4826 				mutex_enter(&pidlock);
4827 				PID_RELE(pidp);
4828 				mutex_exit(&pidlock);
4829 				return (EINVAL);
4830 			}
4831 
4832 			/*
4833 			 * If proc not already registered, add it
4834 			 * to list.
4835 			 */
4836 			if (!ssp) {
4837 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4838 				ssp->ss_pidp = pidp;
4839 				ssp->ss_pid = pid;
4840 				ssp->ss_next = NULL;
4841 				if (pssp)
4842 					pssp->ss_next = ssp;
4843 				else
4844 					stp->sd_siglist = ssp;
4845 				mutex_enter(&pidlock);
4846 				PID_HOLD(pidp);
4847 				mutex_exit(&pidlock);
4848 			}
4849 
4850 			/*
4851 			 * Set events.
4852 			 */
4853 			ssp->ss_events = ss.ss_events;
4854 		} else {
4855 			/*
4856 			 * Remove proc from register list.
4857 			 */
4858 			if (ssp) {
4859 				mutex_enter(&pidlock);
4860 				PID_RELE(pidp);
4861 				mutex_exit(&pidlock);
4862 				if (pssp)
4863 					pssp->ss_next = ssp->ss_next;
4864 				else
4865 					stp->sd_siglist = ssp->ss_next;
4866 				kmem_free(ssp, sizeof (strsig_t));
4867 			} else {
4868 				mutex_exit(&stp->sd_lock);
4869 				mutex_enter(&pidlock);
4870 				PID_RELE(pidp);
4871 				mutex_exit(&pidlock);
4872 				return (EINVAL);
4873 			}
4874 		}
4875 
4876 		/*
4877 		 * Recalculate OR of sig events.
4878 		 */
4879 		stp->sd_sigflags = 0;
4880 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4881 			stp->sd_sigflags |= ssp->ss_events;
4882 		mutex_exit(&stp->sd_lock);
4883 		mutex_enter(&pidlock);
4884 		PID_RELE(pidp);
4885 		mutex_exit(&pidlock);
4886 		return (0);
4887 	}
4888 
4889 	case I_EGETSIG:
4890 		/*
4891 		 * Return (in arg) the current registration of events
4892 		 * for which the calling proc is to be signaled.
4893 		 */
4894 	{
4895 		struct strsig *ssp;
4896 		struct proc *proc;
4897 		pid_t pid;
4898 		struct pid  *pidp;
4899 		struct strsigset ss;
4900 
4901 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4902 		if (error)
4903 			return (error);
4904 
4905 		pid = ss.ss_pid;
4906 		mutex_enter(&pidlock);
4907 		if (pid == 0)
4908 			proc = curproc;
4909 		else if (pid < 0)
4910 			proc = pgfind(-pid);
4911 		else
4912 			proc = prfind(pid);
4913 		if (proc == NULL) {
4914 			mutex_exit(&pidlock);
4915 			return (ESRCH);
4916 		}
4917 		if (pid < 0)
4918 			pidp = proc->p_pgidp;
4919 		else
4920 			pidp = proc->p_pidp;
4921 
4922 		/* Prevent the pidp from being reassigned */
4923 		PID_HOLD(pidp);
4924 		mutex_exit(&pidlock);
4925 
4926 		mutex_enter(&stp->sd_lock);
4927 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4928 			if (ssp->ss_pid == pid) {
4929 				ss.ss_pid = ssp->ss_pid;
4930 				ss.ss_events = ssp->ss_events;
4931 				error = strcopyout(&ss, (void *)arg,
4932 				    sizeof (struct strsigset), copyflag);
4933 				mutex_exit(&stp->sd_lock);
4934 				mutex_enter(&pidlock);
4935 				PID_RELE(pidp);
4936 				mutex_exit(&pidlock);
4937 				return (error);
4938 			}
4939 		mutex_exit(&stp->sd_lock);
4940 		mutex_enter(&pidlock);
4941 		PID_RELE(pidp);
4942 		mutex_exit(&pidlock);
4943 		return (EINVAL);
4944 	}
4945 
4946 	case I_PEEK:
4947 	{
4948 		STRUCT_DECL(strpeek, strpeek);
4949 		size_t n;
4950 		mblk_t *fmp, *tmp_mp = NULL;
4951 
4952 		STRUCT_INIT(strpeek, flag);
4953 
4954 		error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4955 		    STRUCT_SIZE(strpeek), copyflag);
4956 		if (error)
4957 			return (error);
4958 
4959 		mutex_enter(QLOCK(rdq));
4960 		/*
4961 		 * Skip the invalid messages
4962 		 */
4963 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
4964 			if (mp->b_datap->db_type != M_SIG)
4965 				break;
4966 
4967 		/*
4968 		 * If user has requested to peek at a high priority message
4969 		 * and first message is not, return 0
4970 		 */
4971 		if (mp != NULL) {
4972 			if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
4973 			    queclass(mp) == QNORM) {
4974 				*rvalp = 0;
4975 				mutex_exit(QLOCK(rdq));
4976 				return (0);
4977 			}
4978 		} else if (stp->sd_struiordq == NULL ||
4979 		    (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
4980 			/*
4981 			 * No mblks to look at at the streamhead and
4982 			 * 1). This isn't a synch stream or
4983 			 * 2). This is a synch stream but caller wants high
4984 			 *	priority messages which is not supported by
4985 			 *	the synch stream. (it only supports QNORM)
4986 			 */
4987 			*rvalp = 0;
4988 			mutex_exit(QLOCK(rdq));
4989 			return (0);
4990 		}
4991 
4992 		fmp = mp;
4993 
4994 		if (mp && mp->b_datap->db_type == M_PASSFP) {
4995 			mutex_exit(QLOCK(rdq));
4996 			return (EBADMSG);
4997 		}
4998 
4999 		ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
5000 		    mp->b_datap->db_type == M_PROTO ||
5001 		    mp->b_datap->db_type == M_DATA);
5002 
5003 		if (mp && mp->b_datap->db_type == M_PCPROTO) {
5004 			STRUCT_FSET(strpeek, flags, RS_HIPRI);
5005 		} else {
5006 			STRUCT_FSET(strpeek, flags, 0);
5007 		}
5008 
5009 
5010 		if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
5011 			mutex_exit(QLOCK(rdq));
5012 			return (ENOSR);
5013 		}
5014 		mutex_exit(QLOCK(rdq));
5015 
5016 		/*
5017 		 * set mp = tmp_mp, so that I_PEEK processing can continue.
5018 		 * tmp_mp is used to free the dup'd message.
5019 		 */
5020 		mp = tmp_mp;
5021 
5022 		uio.uio_fmode = 0;
5023 		uio.uio_extflg = UIO_COPY_CACHED;
5024 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5025 		    UIO_SYSSPACE;
5026 		uio.uio_limit = 0;
5027 		/*
5028 		 * First process PROTO blocks, if any.
5029 		 * If user doesn't want to get ctl info by setting maxlen <= 0,
5030 		 * then set len to -1/0 and skip control blocks part.
5031 		 */
5032 		if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
5033 			STRUCT_FSET(strpeek, ctlbuf.len, -1);
5034 		else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
5035 			STRUCT_FSET(strpeek, ctlbuf.len, 0);
5036 		else {
5037 			int	ctl_part = 0;
5038 
5039 			iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
5040 			iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
5041 			uio.uio_iov = &iov;
5042 			uio.uio_resid = iov.iov_len;
5043 			uio.uio_loffset = 0;
5044 			uio.uio_iovcnt = 1;
5045 			while (mp && mp->b_datap->db_type != M_DATA &&
5046 			    uio.uio_resid >= 0) {
5047 				ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5048 				    mp->b_datap->db_type == M_PROTO :
5049 				    mp->b_datap->db_type == M_PCPROTO);
5050 
5051 				if ((n = MIN(uio.uio_resid,
5052 				    mp->b_wptr - mp->b_rptr)) != 0 &&
5053 				    (error = uiomove((char *)mp->b_rptr, n,
5054 				    UIO_READ, &uio)) != 0) {
5055 					freemsg(tmp_mp);
5056 					return (error);
5057 				}
5058 				ctl_part = 1;
5059 				mp = mp->b_cont;
5060 			}
5061 			/* No ctl message */
5062 			if (ctl_part == 0)
5063 				STRUCT_FSET(strpeek, ctlbuf.len, -1);
5064 			else
5065 				STRUCT_FSET(strpeek, ctlbuf.len,
5066 				    STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5067 				    uio.uio_resid);
5068 		}
5069 
5070 		/*
5071 		 * Now process DATA blocks, if any.
5072 		 * If user doesn't want to get data info by setting maxlen <= 0,
5073 		 * then set len to -1/0 and skip data blocks part.
5074 		 */
5075 		if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5076 			STRUCT_FSET(strpeek, databuf.len, -1);
5077 		else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5078 			STRUCT_FSET(strpeek, databuf.len, 0);
5079 		else {
5080 			int	data_part = 0;
5081 
5082 			iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5083 			iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5084 			uio.uio_iov = &iov;
5085 			uio.uio_resid = iov.iov_len;
5086 			uio.uio_loffset = 0;
5087 			uio.uio_iovcnt = 1;
5088 			while (mp && uio.uio_resid) {
5089 				if (mp->b_datap->db_type == M_DATA) {
5090 					if ((n = MIN(uio.uio_resid,
5091 					    mp->b_wptr - mp->b_rptr)) != 0 &&
5092 					    (error = uiomove((char *)mp->b_rptr,
5093 					    n, UIO_READ, &uio)) != 0) {
5094 						freemsg(tmp_mp);
5095 						return (error);
5096 					}
5097 					data_part = 1;
5098 				}
5099 				ASSERT(data_part == 0 ||
5100 				    mp->b_datap->db_type == M_DATA);
5101 				mp = mp->b_cont;
5102 			}
5103 			/* No data message */
5104 			if (data_part == 0)
5105 				STRUCT_FSET(strpeek, databuf.len, -1);
5106 			else
5107 				STRUCT_FSET(strpeek, databuf.len,
5108 				    STRUCT_FGET(strpeek, databuf.maxlen) -
5109 				    uio.uio_resid);
5110 		}
5111 		freemsg(tmp_mp);
5112 
5113 		/*
5114 		 * It is a synch stream and user wants to get
5115 		 * data (maxlen > 0).
5116 		 * uio setup is done by the codes that process DATA
5117 		 * blocks above.
5118 		 */
5119 		if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5120 			infod_t infod;
5121 
5122 			infod.d_cmd = INFOD_COPYOUT;
5123 			infod.d_res = 0;
5124 			infod.d_uiop = &uio;
5125 			error = infonext(rdq, &infod);
5126 			if (error == EINVAL || error == EBUSY)
5127 				error = 0;
5128 			if (error)
5129 				return (error);
5130 			STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5131 			    databuf.maxlen) - uio.uio_resid);
5132 			if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5133 				/*
5134 				 * No data found by the infonext().
5135 				 */
5136 				STRUCT_FSET(strpeek, databuf.len, -1);
5137 			}
5138 		}
5139 		error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5140 		    STRUCT_SIZE(strpeek), copyflag);
5141 		if (error) {
5142 			return (error);
5143 		}
5144 		/*
5145 		 * If there is no message retrieved, set return code to 0
5146 		 * otherwise, set it to 1.
5147 		 */
5148 		if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5149 		    STRUCT_FGET(strpeek, databuf.len) == -1)
5150 			*rvalp = 0;
5151 		else
5152 			*rvalp = 1;
5153 		return (0);
5154 	}
5155 
5156 	case I_FDINSERT:
5157 	{
5158 		STRUCT_DECL(strfdinsert, strfdinsert);
5159 		struct file *resftp;
5160 		struct stdata *resstp;
5161 		t_uscalar_t	ival;
5162 		ssize_t msgsize;
5163 		struct strbuf mctl;
5164 
5165 		STRUCT_INIT(strfdinsert, flag);
5166 		if (stp->sd_flag & STRHUP)
5167 			return (ENXIO);
5168 		/*
5169 		 * STRDERR, STWRERR and STPLEX tested above.
5170 		 */
5171 		error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5172 		    STRUCT_SIZE(strfdinsert), copyflag);
5173 		if (error)
5174 			return (error);
5175 
5176 		if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5177 		    (STRUCT_FGET(strfdinsert, offset) %
5178 		    sizeof (t_uscalar_t)) != 0)
5179 			return (EINVAL);
5180 		if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5181 			if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5182 				releasef(STRUCT_FGET(strfdinsert, fildes));
5183 				return (EINVAL);
5184 			}
5185 		} else
5186 			return (EINVAL);
5187 
5188 		mutex_enter(&resstp->sd_lock);
5189 		if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5190 			error = strgeterr(resstp,
5191 			    STRDERR|STWRERR|STRHUP|STPLEX, 0);
5192 			if (error != 0) {
5193 				mutex_exit(&resstp->sd_lock);
5194 				releasef(STRUCT_FGET(strfdinsert, fildes));
5195 				return (error);
5196 			}
5197 		}
5198 		mutex_exit(&resstp->sd_lock);
5199 
5200 #ifdef	_ILP32
5201 		{
5202 			queue_t	*q;
5203 			queue_t	*mate = NULL;
5204 
5205 			/* get read queue of stream terminus */
5206 			claimstr(resstp->sd_wrq);
5207 			for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5208 			    q = q->q_next)
5209 				if (!STRMATED(resstp) && STREAM(q) != resstp &&
5210 				    mate == NULL) {
5211 					ASSERT(q->q_qinfo->qi_srvp);
5212 					ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5213 					claimstr(q);
5214 					mate = q;
5215 				}
5216 			q = _RD(q);
5217 			if (mate)
5218 				releasestr(mate);
5219 			releasestr(resstp->sd_wrq);
5220 			ival = (t_uscalar_t)q;
5221 		}
5222 #else
5223 		ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5224 #endif	/* _ILP32 */
5225 
5226 		if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5227 		    STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5228 			releasef(STRUCT_FGET(strfdinsert, fildes));
5229 			return (EINVAL);
5230 		}
5231 
5232 		/*
5233 		 * Check for legal flag value.
5234 		 */
5235 		if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5236 			releasef(STRUCT_FGET(strfdinsert, fildes));
5237 			return (EINVAL);
5238 		}
5239 
5240 		/* get these values from those cached in the stream head */
5241 		mutex_enter(QLOCK(stp->sd_wrq));
5242 		rmin = stp->sd_qn_minpsz;
5243 		rmax = stp->sd_qn_maxpsz;
5244 		mutex_exit(QLOCK(stp->sd_wrq));
5245 
5246 		/*
5247 		 * Make sure ctl and data sizes together fall within
5248 		 * the limits of the max and min receive packet sizes
5249 		 * and do not exceed system limit.  A negative data
5250 		 * length means that no data part is to be sent.
5251 		 */
5252 		ASSERT((rmax >= 0) || (rmax == INFPSZ));
5253 		if (rmax == 0) {
5254 			releasef(STRUCT_FGET(strfdinsert, fildes));
5255 			return (ERANGE);
5256 		}
5257 		if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5258 			msgsize = 0;
5259 		if ((msgsize < rmin) ||
5260 		    ((msgsize > rmax) && (rmax != INFPSZ)) ||
5261 		    (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5262 			releasef(STRUCT_FGET(strfdinsert, fildes));
5263 			return (ERANGE);
5264 		}
5265 
5266 		mutex_enter(&stp->sd_lock);
5267 		while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5268 		    !canputnext(stp->sd_wrq)) {
5269 			if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5270 			    flag, -1, &done)) != 0 || done) {
5271 				mutex_exit(&stp->sd_lock);
5272 				releasef(STRUCT_FGET(strfdinsert, fildes));
5273 				return (error);
5274 			}
5275 			if ((error = i_straccess(stp, access)) != 0) {
5276 				mutex_exit(&stp->sd_lock);
5277 				releasef(
5278 				    STRUCT_FGET(strfdinsert, fildes));
5279 				return (error);
5280 			}
5281 		}
5282 		mutex_exit(&stp->sd_lock);
5283 
5284 		/*
5285 		 * Copy strfdinsert.ctlbuf into native form of
5286 		 * ctlbuf to pass down into strmakemsg().
5287 		 */
5288 		mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5289 		mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5290 		mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5291 
5292 		iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5293 		iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5294 		uio.uio_iov = &iov;
5295 		uio.uio_iovcnt = 1;
5296 		uio.uio_loffset = 0;
5297 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5298 		    UIO_SYSSPACE;
5299 		uio.uio_fmode = 0;
5300 		uio.uio_extflg = UIO_COPY_CACHED;
5301 		uio.uio_resid = iov.iov_len;
5302 		if ((error = strmakemsg(&mctl,
5303 		    &msgsize, &uio, stp,
5304 		    STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5305 			STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5306 			releasef(STRUCT_FGET(strfdinsert, fildes));
5307 			return (error);
5308 		}
5309 
5310 		STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5311 
5312 		/*
5313 		 * Place the possibly reencoded queue pointer 'offset' bytes
5314 		 * from the start of the control portion of the message.
5315 		 */
5316 		*((t_uscalar_t *)(mp->b_rptr +
5317 		    STRUCT_FGET(strfdinsert, offset))) = ival;
5318 
5319 		/*
5320 		 * Put message downstream.
5321 		 */
5322 		stream_willservice(stp);
5323 		putnext(stp->sd_wrq, mp);
5324 		stream_runservice(stp);
5325 		releasef(STRUCT_FGET(strfdinsert, fildes));
5326 		return (error);
5327 	}
5328 
5329 	case I_SENDFD:
5330 	{
5331 		struct file *fp;
5332 
5333 		if ((fp = getf((int)arg)) == NULL)
5334 			return (EBADF);
5335 		error = do_sendfp(stp, fp, crp);
5336 		if (audit_active) {
5337 			audit_fdsend((int)arg, fp, error);
5338 		}
5339 		releasef((int)arg);
5340 		return (error);
5341 	}
5342 
5343 	case I_RECVFD:
5344 	case I_E_RECVFD:
5345 	{
5346 		struct k_strrecvfd *srf;
5347 		int i, fd;
5348 
5349 		mutex_enter(&stp->sd_lock);
5350 		while (!(mp = getq(rdq))) {
5351 			if (stp->sd_flag & (STRHUP|STREOF)) {
5352 				mutex_exit(&stp->sd_lock);
5353 				return (ENXIO);
5354 			}
5355 			if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5356 			    flag, -1, &done)) != 0 || done) {
5357 				mutex_exit(&stp->sd_lock);
5358 				return (error);
5359 			}
5360 			if ((error = i_straccess(stp, access)) != 0) {
5361 				mutex_exit(&stp->sd_lock);
5362 				return (error);
5363 			}
5364 		}
5365 		if (mp->b_datap->db_type != M_PASSFP) {
5366 			putback(stp, rdq, mp, mp->b_band);
5367 			mutex_exit(&stp->sd_lock);
5368 			return (EBADMSG);
5369 		}
5370 		mutex_exit(&stp->sd_lock);
5371 
5372 		srf = (struct k_strrecvfd *)mp->b_rptr;
5373 		if ((fd = ufalloc(0)) == -1) {
5374 			mutex_enter(&stp->sd_lock);
5375 			putback(stp, rdq, mp, mp->b_band);
5376 			mutex_exit(&stp->sd_lock);
5377 			return (EMFILE);
5378 		}
5379 		if (cmd == I_RECVFD) {
5380 			struct o_strrecvfd	ostrfd;
5381 
5382 			/* check to see if uid/gid values are too large. */
5383 
5384 			if (srf->uid > (o_uid_t)USHRT_MAX ||
5385 			    srf->gid > (o_gid_t)USHRT_MAX) {
5386 				mutex_enter(&stp->sd_lock);
5387 				putback(stp, rdq, mp, mp->b_band);
5388 				mutex_exit(&stp->sd_lock);
5389 				setf(fd, NULL);	/* release fd entry */
5390 				return (EOVERFLOW);
5391 			}
5392 
5393 			ostrfd.fd = fd;
5394 			ostrfd.uid = (o_uid_t)srf->uid;
5395 			ostrfd.gid = (o_gid_t)srf->gid;
5396 
5397 			/* Null the filler bits */
5398 			for (i = 0; i < 8; i++)
5399 				ostrfd.fill[i] = 0;
5400 
5401 			error = strcopyout(&ostrfd, (void *)arg,
5402 			    sizeof (struct o_strrecvfd), copyflag);
5403 		} else {		/* I_E_RECVFD */
5404 			struct strrecvfd	strfd;
5405 
5406 			strfd.fd = fd;
5407 			strfd.uid = srf->uid;
5408 			strfd.gid = srf->gid;
5409 
5410 			/* null the filler bits */
5411 			for (i = 0; i < 8; i++)
5412 				strfd.fill[i] = 0;
5413 
5414 			error = strcopyout(&strfd, (void *)arg,
5415 			    sizeof (struct strrecvfd), copyflag);
5416 		}
5417 
5418 		if (error) {
5419 			setf(fd, NULL);	/* release fd entry */
5420 			mutex_enter(&stp->sd_lock);
5421 			putback(stp, rdq, mp, mp->b_band);
5422 			mutex_exit(&stp->sd_lock);
5423 			return (error);
5424 		}
5425 		if (audit_active) {
5426 			audit_fdrecv(fd, srf->fp);
5427 		}
5428 
5429 		/*
5430 		 * Always increment f_count since the freemsg() below will
5431 		 * always call free_passfp() which performs a closef().
5432 		 */
5433 		mutex_enter(&srf->fp->f_tlock);
5434 		srf->fp->f_count++;
5435 		mutex_exit(&srf->fp->f_tlock);
5436 		setf(fd, srf->fp);
5437 		freemsg(mp);
5438 		return (0);
5439 	}
5440 
5441 	case I_SWROPT:
5442 		/*
5443 		 * Set/clear the write options. arg is a bit
5444 		 * mask with any of the following bits set...
5445 		 * 	SNDZERO - send zero length message
5446 		 *	SNDPIPE - send sigpipe to process if
5447 		 *		sd_werror is set and process is
5448 		 *		doing a write or putmsg.
5449 		 * The new stream head write options should reflect
5450 		 * what is in arg.
5451 		 */
5452 		if (arg & ~(SNDZERO|SNDPIPE))
5453 			return (EINVAL);
5454 
5455 		mutex_enter(&stp->sd_lock);
5456 		stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5457 		if (arg & SNDZERO)
5458 			stp->sd_wput_opt |= SW_SNDZERO;
5459 		if (arg & SNDPIPE)
5460 			stp->sd_wput_opt |= SW_SIGPIPE;
5461 		mutex_exit(&stp->sd_lock);
5462 		return (0);
5463 
5464 	case I_GWROPT:
5465 	{
5466 		int wropt = 0;
5467 
5468 		if (stp->sd_wput_opt & SW_SNDZERO)
5469 			wropt |= SNDZERO;
5470 		if (stp->sd_wput_opt & SW_SIGPIPE)
5471 			wropt |= SNDPIPE;
5472 		return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5473 		    copyflag));
5474 	}
5475 
5476 	case I_LIST:
5477 		/*
5478 		 * Returns all the modules found on this stream,
5479 		 * upto the driver. If argument is NULL, return the
5480 		 * number of modules (including driver). If argument
5481 		 * is not NULL, copy the names into the structure
5482 		 * provided.
5483 		 */
5484 
5485 	{
5486 		queue_t *q;
5487 		int num_modules, space_allocated;
5488 		STRUCT_DECL(str_list, strlist);
5489 		struct str_mlist *mlist_ptr;
5490 
5491 		if (arg == NULL) { /* Return number of modules plus driver */
5492 			q = stp->sd_wrq;
5493 			if (stp->sd_vnode->v_type == VFIFO) {
5494 				*rvalp = stp->sd_pushcnt;
5495 			} else {
5496 				*rvalp = stp->sd_pushcnt + 1;
5497 			}
5498 		} else {
5499 			STRUCT_INIT(strlist, flag);
5500 
5501 			error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5502 			    STRUCT_SIZE(strlist), copyflag);
5503 			if (error)
5504 				return (error);
5505 
5506 			space_allocated = STRUCT_FGET(strlist, sl_nmods);
5507 			if ((space_allocated) <= 0)
5508 				return (EINVAL);
5509 			claimstr(stp->sd_wrq);
5510 			q = stp->sd_wrq;
5511 			num_modules = 0;
5512 			while (_SAMESTR(q) && (space_allocated != 0)) {
5513 				char *name =
5514 				    q->q_next->q_qinfo->qi_minfo->mi_idname;
5515 
5516 				mlist_ptr = STRUCT_FGETP(strlist, sl_modlist);
5517 
5518 				error = strcopyout(name, mlist_ptr,
5519 				    strlen(name) + 1, copyflag);
5520 
5521 				if (error) {
5522 					releasestr(stp->sd_wrq);
5523 					return (error);
5524 				}
5525 				q = q->q_next;
5526 				space_allocated--;
5527 				num_modules++;
5528 				mlist_ptr =
5529 				    (struct str_mlist *)((uintptr_t)mlist_ptr +
5530 				    sizeof (struct str_mlist));
5531 				STRUCT_FSETP(strlist, sl_modlist, mlist_ptr);
5532 			}
5533 			releasestr(stp->sd_wrq);
5534 			error = strcopyout(&num_modules, (void *)arg,
5535 			    sizeof (int), copyflag);
5536 		}
5537 		return (error);
5538 	}
5539 
5540 	case I_CKBAND:
5541 	{
5542 		queue_t *q;
5543 		qband_t *qbp;
5544 
5545 		if ((arg < 0) || (arg >= NBAND))
5546 			return (EINVAL);
5547 		q = _RD(stp->sd_wrq);
5548 		mutex_enter(QLOCK(q));
5549 		if (arg > (int)q->q_nband) {
5550 			*rvalp = 0;
5551 		} else {
5552 			if (arg == 0) {
5553 				if (q->q_first)
5554 					*rvalp = 1;
5555 				else
5556 					*rvalp = 0;
5557 			} else {
5558 				qbp = q->q_bandp;
5559 				while (--arg > 0)
5560 					qbp = qbp->qb_next;
5561 				if (qbp->qb_first)
5562 					*rvalp = 1;
5563 				else
5564 					*rvalp = 0;
5565 			}
5566 		}
5567 		mutex_exit(QLOCK(q));
5568 		return (0);
5569 	}
5570 
5571 	case I_GETBAND:
5572 	{
5573 		int intpri;
5574 		queue_t *q;
5575 
5576 		q = _RD(stp->sd_wrq);
5577 		mutex_enter(QLOCK(q));
5578 		mp = q->q_first;
5579 		if (!mp) {
5580 			mutex_exit(QLOCK(q));
5581 			return (ENODATA);
5582 		}
5583 		intpri = (int)mp->b_band;
5584 		error = strcopyout(&intpri, (void *)arg, sizeof (int),
5585 		    copyflag);
5586 		mutex_exit(QLOCK(q));
5587 		return (error);
5588 	}
5589 
5590 	case I_ATMARK:
5591 	{
5592 		queue_t *q;
5593 
5594 		if (arg & ~(ANYMARK|LASTMARK))
5595 			return (EINVAL);
5596 		q = _RD(stp->sd_wrq);
5597 		mutex_enter(&stp->sd_lock);
5598 		if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5599 			*rvalp = 1;
5600 		} else {
5601 			mutex_enter(QLOCK(q));
5602 			mp = q->q_first;
5603 
5604 			if (mp == NULL)
5605 				*rvalp = 0;
5606 			else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5607 				*rvalp = 1;
5608 			else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5609 				*rvalp = 1;
5610 			else
5611 				*rvalp = 0;
5612 			mutex_exit(QLOCK(q));
5613 		}
5614 		mutex_exit(&stp->sd_lock);
5615 		return (0);
5616 	}
5617 
5618 	case I_CANPUT:
5619 	{
5620 		char band;
5621 
5622 		if ((arg < 0) || (arg >= NBAND))
5623 			return (EINVAL);
5624 		band = (char)arg;
5625 		*rvalp = bcanputnext(stp->sd_wrq, band);
5626 		return (0);
5627 	}
5628 
5629 	case I_SETCLTIME:
5630 	{
5631 		int closetime;
5632 
5633 		error = strcopyin((void *)arg, &closetime, sizeof (int),
5634 		    copyflag);
5635 		if (error)
5636 			return (error);
5637 		if (closetime < 0)
5638 			return (EINVAL);
5639 
5640 		stp->sd_closetime = closetime;
5641 		return (0);
5642 	}
5643 
5644 	case I_GETCLTIME:
5645 	{
5646 		int closetime;
5647 
5648 		closetime = stp->sd_closetime;
5649 		return (strcopyout(&closetime, (void *)arg, sizeof (int),
5650 		    copyflag));
5651 	}
5652 
5653 	case TIOCGSID:
5654 	{
5655 		pid_t sid;
5656 
5657 		mutex_enter(&stp->sd_lock);
5658 		if (stp->sd_sidp == NULL) {
5659 			mutex_exit(&stp->sd_lock);
5660 			return (ENOTTY);
5661 		}
5662 		sid = stp->sd_sidp->pid_id;
5663 		mutex_exit(&stp->sd_lock);
5664 		return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5665 		    copyflag));
5666 	}
5667 
5668 	case TIOCSPGRP:
5669 	{
5670 		pid_t pgrp;
5671 		proc_t *q;
5672 		pid_t	sid, fg_pgid, bg_pgid;
5673 
5674 		if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5675 		    copyflag))
5676 			return (error);
5677 		mutex_enter(&stp->sd_lock);
5678 		mutex_enter(&pidlock);
5679 		if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5680 			mutex_exit(&pidlock);
5681 			mutex_exit(&stp->sd_lock);
5682 			return (ENOTTY);
5683 		}
5684 		if (pgrp == stp->sd_pgidp->pid_id) {
5685 			mutex_exit(&pidlock);
5686 			mutex_exit(&stp->sd_lock);
5687 			return (0);
5688 		}
5689 		if (pgrp <= 0 || pgrp >= maxpid) {
5690 			mutex_exit(&pidlock);
5691 			mutex_exit(&stp->sd_lock);
5692 			return (EINVAL);
5693 		}
5694 		if ((q = pgfind(pgrp)) == NULL ||
5695 		    q->p_sessp != ttoproc(curthread)->p_sessp) {
5696 			mutex_exit(&pidlock);
5697 			mutex_exit(&stp->sd_lock);
5698 			return (EPERM);
5699 		}
5700 		sid = stp->sd_sidp->pid_id;
5701 		fg_pgid = q->p_pgrp;
5702 		bg_pgid = stp->sd_pgidp->pid_id;
5703 		CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5704 		PID_RELE(stp->sd_pgidp);
5705 		ctty_clear_sighuped();
5706 		stp->sd_pgidp = q->p_pgidp;
5707 		PID_HOLD(stp->sd_pgidp);
5708 		mutex_exit(&pidlock);
5709 		mutex_exit(&stp->sd_lock);
5710 		return (0);
5711 	}
5712 
5713 	case TIOCGPGRP:
5714 	{
5715 		pid_t pgrp;
5716 
5717 		mutex_enter(&stp->sd_lock);
5718 		if (stp->sd_sidp == NULL) {
5719 			mutex_exit(&stp->sd_lock);
5720 			return (ENOTTY);
5721 		}
5722 		pgrp = stp->sd_pgidp->pid_id;
5723 		mutex_exit(&stp->sd_lock);
5724 		return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5725 		    copyflag));
5726 	}
5727 
5728 	case TIOCSCTTY:
5729 	{
5730 		return (strctty(stp));
5731 	}
5732 
5733 	case TIOCNOTTY:
5734 	{
5735 		/* freectty() always assumes curproc. */
5736 		if (freectty(B_FALSE) != 0)
5737 			return (0);
5738 		return (ENOTTY);
5739 	}
5740 
5741 	case FIONBIO:
5742 	case FIOASYNC:
5743 		return (0);	/* handled by the upper layer */
5744 	}
5745 }
5746 
5747 /*
5748  * Custom free routine used for M_PASSFP messages.
5749  */
5750 static void
5751 free_passfp(struct k_strrecvfd *srf)
5752 {
5753 	(void) closef(srf->fp);
5754 	kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5755 }
5756 
5757 /* ARGSUSED */
5758 int
5759 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5760 {
5761 	queue_t *qp, *nextqp;
5762 	struct k_strrecvfd *srf;
5763 	mblk_t *mp;
5764 	frtn_t *frtnp;
5765 	size_t bufsize;
5766 	queue_t	*mate = NULL;
5767 	syncq_t	*sq = NULL;
5768 	int retval = 0;
5769 
5770 	if (stp->sd_flag & STRHUP)
5771 		return (ENXIO);
5772 
5773 	claimstr(stp->sd_wrq);
5774 
5775 	/* Fastpath, we have a pipe, and we are already mated, use it. */
5776 	if (STRMATED(stp)) {
5777 		qp = _RD(stp->sd_mate->sd_wrq);
5778 		claimstr(qp);
5779 		mate = qp;
5780 	} else { /* Not already mated. */
5781 
5782 		/*
5783 		 * Walk the stream to the end of this one.
5784 		 * assumes that the claimstr() will prevent
5785 		 * plumbing between the stream head and the
5786 		 * driver from changing
5787 		 */
5788 		qp = stp->sd_wrq;
5789 
5790 		/*
5791 		 * Loop until we reach the end of this stream.
5792 		 * On completion, qp points to the write queue
5793 		 * at the end of the stream, or the read queue
5794 		 * at the stream head if this is a fifo.
5795 		 */
5796 		while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5797 			;
5798 
5799 		/*
5800 		 * Just in case we get a q_next which is NULL, but
5801 		 * not at the end of the stream.  This is actually
5802 		 * broken, so we set an assert to catch it in
5803 		 * debug, and set an error and return if not debug.
5804 		 */
5805 		ASSERT(qp);
5806 		if (qp == NULL) {
5807 			releasestr(stp->sd_wrq);
5808 			return (EINVAL);
5809 		}
5810 
5811 		/*
5812 		 * Enter the syncq for the driver, so (hopefully)
5813 		 * the queue values will not change on us.
5814 		 * XXXX - This will only prevent the race IFF only
5815 		 *   the write side modifies the q_next member, and
5816 		 *   the put procedure is protected by at least
5817 		 *   MT_PERQ.
5818 		 */
5819 		if ((sq = qp->q_syncq) != NULL)
5820 			entersq(sq, SQ_PUT);
5821 
5822 		/* Now get the q_next value from this qp. */
5823 		nextqp = qp->q_next;
5824 
5825 		/*
5826 		 * If nextqp exists and the other stream is different
5827 		 * from this one claim the stream, set the mate, and
5828 		 * get the read queue at the stream head of the other
5829 		 * stream.  Assumes that nextqp was at least valid when
5830 		 * we got it.  Hopefully the entersq of the driver
5831 		 * will prevent it from changing on us.
5832 		 */
5833 		if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5834 			ASSERT(qp->q_qinfo->qi_srvp);
5835 			ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5836 			ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5837 			claimstr(nextqp);
5838 
5839 			/* Make sure we still have a q_next */
5840 			if (nextqp != qp->q_next) {
5841 				releasestr(stp->sd_wrq);
5842 				releasestr(nextqp);
5843 				return (EINVAL);
5844 			}
5845 
5846 			qp = _RD(STREAM(nextqp)->sd_wrq);
5847 			mate = qp;
5848 		}
5849 		/* If we entered the synq above, leave it. */
5850 		if (sq != NULL)
5851 			leavesq(sq, SQ_PUT);
5852 	} /*  STRMATED(STP)  */
5853 
5854 	/* XXX prevents substitution of the ops vector */
5855 	if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5856 		retval = EINVAL;
5857 		goto out;
5858 	}
5859 
5860 	if (qp->q_flag & QFULL) {
5861 		retval = EAGAIN;
5862 		goto out;
5863 	}
5864 
5865 	/*
5866 	 * Since M_PASSFP messages include a file descriptor, we use
5867 	 * esballoc() and specify a custom free routine (free_passfp()) that
5868 	 * will close the descriptor as part of freeing the message.  For
5869 	 * convenience, we stash the frtn_t right after the data block.
5870 	 */
5871 	bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5872 	srf = kmem_alloc(bufsize, KM_NOSLEEP);
5873 	if (srf == NULL) {
5874 		retval = EAGAIN;
5875 		goto out;
5876 	}
5877 
5878 	frtnp = (frtn_t *)(srf + 1);
5879 	frtnp->free_arg = (caddr_t)srf;
5880 	frtnp->free_func = free_passfp;
5881 
5882 	mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5883 	if (mp == NULL) {
5884 		kmem_free(srf, bufsize);
5885 		retval = EAGAIN;
5886 		goto out;
5887 	}
5888 	mp->b_wptr += sizeof (struct k_strrecvfd);
5889 	mp->b_datap->db_type = M_PASSFP;
5890 
5891 	srf->fp = fp;
5892 	srf->uid = crgetuid(curthread->t_cred);
5893 	srf->gid = crgetgid(curthread->t_cred);
5894 	mutex_enter(&fp->f_tlock);
5895 	fp->f_count++;
5896 	mutex_exit(&fp->f_tlock);
5897 
5898 	put(qp, mp);
5899 out:
5900 	releasestr(stp->sd_wrq);
5901 	if (mate)
5902 		releasestr(mate);
5903 	return (retval);
5904 }
5905 
5906 /*
5907  * Send an ioctl message downstream and wait for acknowledgement.
5908  * flags may be set to either U_TO_K or K_TO_K and a combination
5909  * of STR_NOERROR or STR_NOSIG
5910  * STR_NOSIG: Signals are essentially ignored or held and have
5911  *	no effect for the duration of the call.
5912  * STR_NOERROR: Ignores stream head read, write and hup errors.
5913  *	Additionally, if an existing ioctl times out, it is assumed
5914  *	lost and and this ioctl will continue as if the previous ioctl had
5915  *	finished.  ETIME may be returned if this ioctl times out (i.e.
5916  *	ic_timout is not INFTIM).  Non-stream head errors may be returned if
5917  *	the ioc_error indicates that the driver/module had problems,
5918  *	an EFAULT was found when accessing user data, a lack of
5919  * 	resources, etc.
5920  */
5921 int
5922 strdoioctl(
5923 	struct stdata *stp,
5924 	struct strioctl *strioc,
5925 	int fflags,		/* file flags with model info */
5926 	int flag,
5927 	cred_t *crp,
5928 	int *rvalp)
5929 {
5930 	mblk_t *bp;
5931 	struct iocblk *iocbp;
5932 	struct copyreq *reqp;
5933 	struct copyresp *resp;
5934 	int id;
5935 	int transparent = 0;
5936 	int error = 0;
5937 	int len = 0;
5938 	caddr_t taddr;
5939 	int copyflag = (flag & (U_TO_K | K_TO_K));
5940 	int sigflag = (flag & STR_NOSIG);
5941 	int errs;
5942 	uint_t waitflags;
5943 
5944 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5945 	ASSERT((fflags & FMODELS) != 0);
5946 
5947 	TRACE_2(TR_FAC_STREAMS_FR,
5948 	    TR_STRDOIOCTL,
5949 	    "strdoioctl:stp %p strioc %p", stp, strioc);
5950 	if (strioc->ic_len == TRANSPARENT) {	/* send arg in M_DATA block */
5951 		transparent = 1;
5952 		strioc->ic_len = sizeof (intptr_t);
5953 	}
5954 
5955 	if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5956 		return (EINVAL);
5957 
5958 	if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5959 	    crp)) == NULL)
5960 			return (error);
5961 
5962 	bzero(bp->b_wptr, sizeof (union ioctypes));
5963 
5964 	iocbp = (struct iocblk *)bp->b_wptr;
5965 	iocbp->ioc_count = strioc->ic_len;
5966 	iocbp->ioc_cmd = strioc->ic_cmd;
5967 	iocbp->ioc_flag = (fflags & FMODELS);
5968 
5969 	crhold(crp);
5970 	iocbp->ioc_cr = crp;
5971 	DB_TYPE(bp) = M_IOCTL;
5972 	DB_CPID(bp) = curproc->p_pid;
5973 	bp->b_wptr += sizeof (struct iocblk);
5974 
5975 	if (flag & STR_NOERROR)
5976 		errs = STPLEX;
5977 	else
5978 		errs = STRHUP|STRDERR|STWRERR|STPLEX;
5979 
5980 	/*
5981 	 * If there is data to copy into ioctl block, do so.
5982 	 */
5983 	if (iocbp->ioc_count > 0) {
5984 		if (transparent)
5985 			/*
5986 			 * Note: STR_NOERROR does not have an effect
5987 			 * in putiocd()
5988 			 */
5989 			id = K_TO_K | sigflag;
5990 		else
5991 			id = flag;
5992 		if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
5993 			freemsg(bp);
5994 			crfree(crp);
5995 			return (error);
5996 		}
5997 
5998 		/*
5999 		 * We could have slept copying in user pages.
6000 		 * Recheck the stream head state (the other end
6001 		 * of a pipe could have gone away).
6002 		 */
6003 		if (stp->sd_flag & errs) {
6004 			mutex_enter(&stp->sd_lock);
6005 			error = strgeterr(stp, errs, 0);
6006 			mutex_exit(&stp->sd_lock);
6007 			if (error != 0) {
6008 				freemsg(bp);
6009 				crfree(crp);
6010 				return (error);
6011 			}
6012 		}
6013 	}
6014 	if (transparent)
6015 		iocbp->ioc_count = TRANSPARENT;
6016 
6017 	/*
6018 	 * Block for up to STRTIMOUT milliseconds if there is an outstanding
6019 	 * ioctl for this stream already running.  All processes
6020 	 * sleeping here will be awakened as a result of an ACK
6021 	 * or NAK being received for the outstanding ioctl, or
6022 	 * as a result of the timer expiring on the outstanding
6023 	 * ioctl (a failure), or as a result of any waiting
6024 	 * process's timer expiring (also a failure).
6025 	 */
6026 
6027 	error = 0;
6028 	mutex_enter(&stp->sd_lock);
6029 	while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) {
6030 		clock_t cv_rval;
6031 
6032 		TRACE_0(TR_FAC_STREAMS_FR,
6033 		    TR_STRDOIOCTL_WAIT,
6034 		    "strdoioctl sleeps - IOCWAIT");
6035 		cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
6036 		    STRTIMOUT, sigflag);
6037 		if (cv_rval <= 0) {
6038 			if (cv_rval == 0) {
6039 				error = EINTR;
6040 			} else {
6041 				if (flag & STR_NOERROR) {
6042 					/*
6043 					 * Terminating current ioctl in
6044 					 * progress -- assume it got lost and
6045 					 * wake up the other thread so that the
6046 					 * operation completes.
6047 					 */
6048 					if (!(stp->sd_flag & IOCWAITNE)) {
6049 						stp->sd_flag |= IOCWAITNE;
6050 						cv_broadcast(&stp->sd_monitor);
6051 					}
6052 					/*
6053 					 * Otherwise, there's a running
6054 					 * STR_NOERROR -- we have no choice
6055 					 * here but to wait forever (or until
6056 					 * interrupted).
6057 					 */
6058 				} else {
6059 					/*
6060 					 * pending ioctl has caused
6061 					 * us to time out
6062 					 */
6063 					error = ETIME;
6064 				}
6065 			}
6066 		} else if ((stp->sd_flag & errs)) {
6067 			error = strgeterr(stp, errs, 0);
6068 		}
6069 		if (error) {
6070 			mutex_exit(&stp->sd_lock);
6071 			freemsg(bp);
6072 			crfree(crp);
6073 			return (error);
6074 		}
6075 	}
6076 
6077 	/*
6078 	 * Have control of ioctl mechanism.
6079 	 * Send down ioctl packet and wait for response.
6080 	 */
6081 	if (stp->sd_iocblk != (mblk_t *)-1) {
6082 		freemsg(stp->sd_iocblk);
6083 	}
6084 	stp->sd_iocblk = NULL;
6085 
6086 	/*
6087 	 * If this is marked with 'noerror' (internal; mostly
6088 	 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6089 	 * in here by setting IOCWAITNE.
6090 	 */
6091 	waitflags = IOCWAIT;
6092 	if (flag & STR_NOERROR)
6093 		waitflags |= IOCWAITNE;
6094 
6095 	stp->sd_flag |= waitflags;
6096 
6097 	/*
6098 	 * Assign sequence number.
6099 	 */
6100 	iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6101 
6102 	mutex_exit(&stp->sd_lock);
6103 
6104 	TRACE_1(TR_FAC_STREAMS_FR,
6105 	    TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6106 	stream_willservice(stp);
6107 	putnext(stp->sd_wrq, bp);
6108 	stream_runservice(stp);
6109 
6110 	/*
6111 	 * Timed wait for acknowledgment.  The wait time is limited by the
6112 	 * timeout value, which must be a positive integer (number of
6113 	 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6114 	 * milliseconds), or -1 (wait forever).  This will be awakened
6115 	 * either by an ACK/NAK message arriving, the timer expiring, or
6116 	 * the timer expiring on another ioctl waiting for control of the
6117 	 * mechanism.
6118 	 */
6119 waitioc:
6120 	mutex_enter(&stp->sd_lock);
6121 
6122 
6123 	/*
6124 	 * If the reply has already arrived, don't sleep.  If awakened from
6125 	 * the sleep, fail only if the reply has not arrived by then.
6126 	 * Otherwise, process the reply.
6127 	 */
6128 	while (!stp->sd_iocblk) {
6129 		clock_t cv_rval;
6130 
6131 		if (stp->sd_flag & errs) {
6132 			error = strgeterr(stp, errs, 0);
6133 			if (error != 0) {
6134 				stp->sd_flag &= ~waitflags;
6135 				cv_broadcast(&stp->sd_iocmonitor);
6136 				mutex_exit(&stp->sd_lock);
6137 				crfree(crp);
6138 				return (error);
6139 			}
6140 		}
6141 
6142 		TRACE_0(TR_FAC_STREAMS_FR,
6143 		    TR_STRDOIOCTL_WAIT2,
6144 		    "strdoioctl sleeps awaiting reply");
6145 		ASSERT(error == 0);
6146 
6147 		cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6148 		    (strioc->ic_timout ?
6149 		    strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6150 
6151 		/*
6152 		 * There are four possible cases here: interrupt, timeout,
6153 		 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6154 		 * valid M_IOCTL reply).
6155 		 *
6156 		 * If we've been awakened by a STR_NOERROR ioctl on some other
6157 		 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6158 		 * will be set.  Pretend as if we just timed out.  Note that
6159 		 * this other thread waited at least STRTIMOUT before trying to
6160 		 * awaken our thread, so this is indistinguishable (even for
6161 		 * INFTIM) from the case where we failed with ETIME waiting on
6162 		 * IOCWAIT in the prior loop.
6163 		 */
6164 		if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6165 		    stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6166 			cv_rval = -1;
6167 		}
6168 
6169 		/*
6170 		 * note: STR_NOERROR does not protect
6171 		 * us here.. use ic_timout < 0
6172 		 */
6173 		if (cv_rval <= 0) {
6174 			if (cv_rval == 0) {
6175 				error = EINTR;
6176 			} else {
6177 				error =  ETIME;
6178 			}
6179 			/*
6180 			 * A message could have come in after we were scheduled
6181 			 * but before we were actually run.
6182 			 */
6183 			bp = stp->sd_iocblk;
6184 			stp->sd_iocblk = NULL;
6185 			if (bp != NULL) {
6186 				if ((bp->b_datap->db_type == M_COPYIN) ||
6187 				    (bp->b_datap->db_type == M_COPYOUT)) {
6188 					mutex_exit(&stp->sd_lock);
6189 					if (bp->b_cont) {
6190 						freemsg(bp->b_cont);
6191 						bp->b_cont = NULL;
6192 					}
6193 					bp->b_datap->db_type = M_IOCDATA;
6194 					bp->b_wptr = bp->b_rptr +
6195 					    sizeof (struct copyresp);
6196 					resp = (struct copyresp *)bp->b_rptr;
6197 					resp->cp_rval =
6198 					    (caddr_t)1; /* failure */
6199 					stream_willservice(stp);
6200 					putnext(stp->sd_wrq, bp);
6201 					stream_runservice(stp);
6202 					mutex_enter(&stp->sd_lock);
6203 				} else {
6204 					freemsg(bp);
6205 				}
6206 			}
6207 			stp->sd_flag &= ~waitflags;
6208 			cv_broadcast(&stp->sd_iocmonitor);
6209 			mutex_exit(&stp->sd_lock);
6210 			crfree(crp);
6211 			return (error);
6212 		}
6213 	}
6214 	bp = stp->sd_iocblk;
6215 	/*
6216 	 * Note: it is strictly impossible to get here with sd_iocblk set to
6217 	 * -1.  This is because the initial loop above doesn't allow any new
6218 	 * ioctls into the fray until all others have passed this point.
6219 	 */
6220 	ASSERT(bp != NULL && bp != (mblk_t *)-1);
6221 	TRACE_1(TR_FAC_STREAMS_FR,
6222 	    TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6223 	if ((bp->b_datap->db_type == M_IOCACK) ||
6224 	    (bp->b_datap->db_type == M_IOCNAK)) {
6225 		/* for detection of duplicate ioctl replies */
6226 		stp->sd_iocblk = (mblk_t *)-1;
6227 		stp->sd_flag &= ~waitflags;
6228 		cv_broadcast(&stp->sd_iocmonitor);
6229 		mutex_exit(&stp->sd_lock);
6230 	} else {
6231 		/*
6232 		 * flags not cleared here because we're still doing
6233 		 * copy in/out for ioctl.
6234 		 */
6235 		stp->sd_iocblk = NULL;
6236 		mutex_exit(&stp->sd_lock);
6237 	}
6238 
6239 
6240 	/*
6241 	 * Have received acknowledgment.
6242 	 */
6243 
6244 	switch (bp->b_datap->db_type) {
6245 	case M_IOCACK:
6246 		/*
6247 		 * Positive ack.
6248 		 */
6249 		iocbp = (struct iocblk *)bp->b_rptr;
6250 
6251 		/*
6252 		 * Set error if indicated.
6253 		 */
6254 		if (iocbp->ioc_error) {
6255 			error = iocbp->ioc_error;
6256 			break;
6257 		}
6258 
6259 		/*
6260 		 * Set return value.
6261 		 */
6262 		*rvalp = iocbp->ioc_rval;
6263 
6264 		/*
6265 		 * Data may have been returned in ACK message (ioc_count > 0).
6266 		 * If so, copy it out to the user's buffer.
6267 		 */
6268 		if (iocbp->ioc_count && !transparent) {
6269 			if (error = getiocd(bp, strioc->ic_dp, copyflag))
6270 				break;
6271 		}
6272 		if (!transparent) {
6273 			if (len)	/* an M_COPYOUT was used with I_STR */
6274 				strioc->ic_len = len;
6275 			else
6276 				strioc->ic_len = (int)iocbp->ioc_count;
6277 		}
6278 		break;
6279 
6280 	case M_IOCNAK:
6281 		/*
6282 		 * Negative ack.
6283 		 *
6284 		 * The only thing to do is set error as specified
6285 		 * in neg ack packet.
6286 		 */
6287 		iocbp = (struct iocblk *)bp->b_rptr;
6288 
6289 		error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6290 		break;
6291 
6292 	case M_COPYIN:
6293 		/*
6294 		 * Driver or module has requested user ioctl data.
6295 		 */
6296 		reqp = (struct copyreq *)bp->b_rptr;
6297 
6298 		/*
6299 		 * M_COPYIN should *never* have a message attached, though
6300 		 * it's harmless if it does -- thus, panic on a DEBUG
6301 		 * kernel and just free it on a non-DEBUG build.
6302 		 */
6303 		ASSERT(bp->b_cont == NULL);
6304 		if (bp->b_cont != NULL) {
6305 			freemsg(bp->b_cont);
6306 			bp->b_cont = NULL;
6307 		}
6308 
6309 		error = putiocd(bp, reqp->cq_addr, flag, crp);
6310 		if (error && bp->b_cont) {
6311 			freemsg(bp->b_cont);
6312 			bp->b_cont = NULL;
6313 		}
6314 
6315 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6316 		bp->b_datap->db_type = M_IOCDATA;
6317 
6318 		mblk_setcred(bp, crp);
6319 		DB_CPID(bp) = curproc->p_pid;
6320 		resp = (struct copyresp *)bp->b_rptr;
6321 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6322 		resp->cp_flag = (fflags & FMODELS);
6323 
6324 		stream_willservice(stp);
6325 		putnext(stp->sd_wrq, bp);
6326 		stream_runservice(stp);
6327 
6328 		if (error) {
6329 			mutex_enter(&stp->sd_lock);
6330 			stp->sd_flag &= ~waitflags;
6331 			cv_broadcast(&stp->sd_iocmonitor);
6332 			mutex_exit(&stp->sd_lock);
6333 			crfree(crp);
6334 			return (error);
6335 		}
6336 
6337 		goto waitioc;
6338 
6339 	case M_COPYOUT:
6340 		/*
6341 		 * Driver or module has ioctl data for a user.
6342 		 */
6343 		reqp = (struct copyreq *)bp->b_rptr;
6344 		ASSERT(bp->b_cont != NULL);
6345 
6346 		/*
6347 		 * Always (transparent or non-transparent )
6348 		 * use the address specified in the request
6349 		 */
6350 		taddr = reqp->cq_addr;
6351 		if (!transparent)
6352 			len = (int)reqp->cq_size;
6353 
6354 		/* copyout data to the provided address */
6355 		error = getiocd(bp, taddr, copyflag);
6356 
6357 		freemsg(bp->b_cont);
6358 		bp->b_cont = NULL;
6359 
6360 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6361 		bp->b_datap->db_type = M_IOCDATA;
6362 
6363 		mblk_setcred(bp, crp);
6364 		DB_CPID(bp) = curproc->p_pid;
6365 		resp = (struct copyresp *)bp->b_rptr;
6366 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6367 		resp->cp_flag = (fflags & FMODELS);
6368 
6369 		stream_willservice(stp);
6370 		putnext(stp->sd_wrq, bp);
6371 		stream_runservice(stp);
6372 
6373 		if (error) {
6374 			mutex_enter(&stp->sd_lock);
6375 			stp->sd_flag &= ~waitflags;
6376 			cv_broadcast(&stp->sd_iocmonitor);
6377 			mutex_exit(&stp->sd_lock);
6378 			crfree(crp);
6379 			return (error);
6380 		}
6381 		goto waitioc;
6382 
6383 	default:
6384 		ASSERT(0);
6385 		mutex_enter(&stp->sd_lock);
6386 		stp->sd_flag &= ~waitflags;
6387 		cv_broadcast(&stp->sd_iocmonitor);
6388 		mutex_exit(&stp->sd_lock);
6389 		break;
6390 	}
6391 
6392 	freemsg(bp);
6393 	crfree(crp);
6394 	return (error);
6395 }
6396 
6397 /*
6398  * For the SunOS keyboard driver.
6399  * Return the next available "ioctl" sequence number.
6400  * Exported, so that streams modules can send "ioctl" messages
6401  * downstream from their open routine.
6402  */
6403 int
6404 getiocseqno(void)
6405 {
6406 	int	i;
6407 
6408 	mutex_enter(&strresources);
6409 	i = ++ioc_id;
6410 	mutex_exit(&strresources);
6411 	return (i);
6412 }
6413 
6414 /*
6415  * Get the next message from the read queue.  If the message is
6416  * priority, STRPRI will have been set by strrput().  This flag
6417  * should be reset only when the entire message at the front of the
6418  * queue as been consumed.
6419  *
6420  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6421  */
6422 int
6423 strgetmsg(
6424 	struct vnode *vp,
6425 	struct strbuf *mctl,
6426 	struct strbuf *mdata,
6427 	unsigned char *prip,
6428 	int *flagsp,
6429 	int fmode,
6430 	rval_t *rvp)
6431 {
6432 	struct stdata *stp;
6433 	mblk_t *bp, *nbp;
6434 	mblk_t *savemp = NULL;
6435 	mblk_t *savemptail = NULL;
6436 	uint_t old_sd_flag;
6437 	int flg;
6438 	int more = 0;
6439 	int error = 0;
6440 	char first = 1;
6441 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6442 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6443 	unsigned char pri = 0;
6444 	queue_t *q;
6445 	int	pr = 0;			/* Partial read successful */
6446 	struct uio uios;
6447 	struct uio *uiop = &uios;
6448 	struct iovec iovs;
6449 	unsigned char type;
6450 
6451 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6452 	    "strgetmsg:%p", vp);
6453 
6454 	ASSERT(vp->v_stream);
6455 	stp = vp->v_stream;
6456 	rvp->r_val1 = 0;
6457 
6458 	mutex_enter(&stp->sd_lock);
6459 
6460 	if ((error = i_straccess(stp, JCREAD)) != 0) {
6461 		mutex_exit(&stp->sd_lock);
6462 		return (error);
6463 	}
6464 
6465 	if (stp->sd_flag & (STRDERR|STPLEX)) {
6466 		error = strgeterr(stp, STRDERR|STPLEX, 0);
6467 		if (error != 0) {
6468 			mutex_exit(&stp->sd_lock);
6469 			return (error);
6470 		}
6471 	}
6472 	mutex_exit(&stp->sd_lock);
6473 
6474 	switch (*flagsp) {
6475 	case MSG_HIPRI:
6476 		if (*prip != 0)
6477 			return (EINVAL);
6478 		break;
6479 
6480 	case MSG_ANY:
6481 	case MSG_BAND:
6482 		break;
6483 
6484 	default:
6485 		return (EINVAL);
6486 	}
6487 	/*
6488 	 * Setup uio and iov for data part
6489 	 */
6490 	iovs.iov_base = mdata->buf;
6491 	iovs.iov_len = mdata->maxlen;
6492 	uios.uio_iov = &iovs;
6493 	uios.uio_iovcnt = 1;
6494 	uios.uio_loffset = 0;
6495 	uios.uio_segflg = UIO_USERSPACE;
6496 	uios.uio_fmode = 0;
6497 	uios.uio_extflg = UIO_COPY_CACHED;
6498 	uios.uio_resid = mdata->maxlen;
6499 	uios.uio_offset = 0;
6500 
6501 	q = _RD(stp->sd_wrq);
6502 	mutex_enter(&stp->sd_lock);
6503 	old_sd_flag = stp->sd_flag;
6504 	mark = 0;
6505 	for (;;) {
6506 		int done = 0;
6507 		mblk_t *q_first = q->q_first;
6508 
6509 		/*
6510 		 * Get the next message of appropriate priority
6511 		 * from the stream head.  If the caller is interested
6512 		 * in band or hipri messages, then they should already
6513 		 * be enqueued at the stream head.  On the other hand
6514 		 * if the caller wants normal (band 0) messages, they
6515 		 * might be deferred in a synchronous stream and they
6516 		 * will need to be pulled up.
6517 		 *
6518 		 * After we have dequeued a message, we might find that
6519 		 * it was a deferred M_SIG that was enqueued at the
6520 		 * stream head.  It must now be posted as part of the
6521 		 * read by calling strsignal_nolock().
6522 		 *
6523 		 * Also note that strrput does not enqueue an M_PCSIG,
6524 		 * and there cannot be more than one hipri message,
6525 		 * so there was no need to have the M_PCSIG case.
6526 		 *
6527 		 * At some time it might be nice to try and wrap the
6528 		 * functionality of kstrgetmsg() and strgetmsg() into
6529 		 * a common routine so to reduce the amount of replicated
6530 		 * code (since they are extremely similar).
6531 		 */
6532 		if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6533 			/* Asking for normal, band0 data */
6534 			bp = strget(stp, q, uiop, first, &error);
6535 			ASSERT(MUTEX_HELD(&stp->sd_lock));
6536 			if (bp != NULL) {
6537 				ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
6538 				if (bp->b_datap->db_type == M_SIG) {
6539 					strsignal_nolock(stp, *bp->b_rptr,
6540 					    (int32_t)bp->b_band);
6541 					continue;
6542 				} else {
6543 					break;
6544 				}
6545 			}
6546 			if (error != 0) {
6547 				goto getmout;
6548 			}
6549 
6550 		/*
6551 		 * We can't depend on the value of STRPRI here because
6552 		 * the stream head may be in transit. Therefore, we
6553 		 * must look at the type of the first message to
6554 		 * determine if a high priority messages is waiting
6555 		 */
6556 		} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6557 		    q_first->b_datap->db_type >= QPCTL &&
6558 		    (bp = getq_noenab(q)) != NULL) {
6559 			/* Asked for HIPRI and got one */
6560 			ASSERT(bp->b_datap->db_type >= QPCTL);
6561 			break;
6562 		} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6563 		    ((q_first->b_band >= *prip) ||
6564 		    q_first->b_datap->db_type >= QPCTL) &&
6565 		    (bp = getq_noenab(q)) != NULL) {
6566 			/*
6567 			 * Asked for at least band "prip" and got either at
6568 			 * least that band or a hipri message.
6569 			 */
6570 			ASSERT(bp->b_band >= *prip ||
6571 			    bp->b_datap->db_type >= QPCTL);
6572 			if (bp->b_datap->db_type == M_SIG) {
6573 				strsignal_nolock(stp, *bp->b_rptr,
6574 				    (int32_t)bp->b_band);
6575 				continue;
6576 			} else {
6577 				break;
6578 			}
6579 		}
6580 
6581 		/* No data. Time to sleep? */
6582 		qbackenable(q, 0);
6583 
6584 		/*
6585 		 * If STRHUP or STREOF, return 0 length control and data.
6586 		 * If resid is 0, then a read(fd,buf,0) was done. Do not
6587 		 * sleep to satisfy this request because by default we have
6588 		 * zero bytes to return.
6589 		 */
6590 		if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6591 		    mdata->maxlen == 0)) {
6592 			mctl->len = mdata->len = 0;
6593 			*flagsp = 0;
6594 			mutex_exit(&stp->sd_lock);
6595 			return (0);
6596 		}
6597 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6598 		    "strgetmsg calls strwaitq:%p, %p",
6599 		    vp, uiop);
6600 		if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6601 		    &done)) != 0) || done) {
6602 			TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6603 			    "strgetmsg error or done:%p, %p",
6604 			    vp, uiop);
6605 			mutex_exit(&stp->sd_lock);
6606 			return (error);
6607 		}
6608 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6609 		    "strgetmsg awakes:%p, %p", vp, uiop);
6610 		if ((error = i_straccess(stp, JCREAD)) != 0) {
6611 			mutex_exit(&stp->sd_lock);
6612 			return (error);
6613 		}
6614 		first = 0;
6615 	}
6616 	ASSERT(bp != NULL);
6617 	/*
6618 	 * Extract any mark information. If the message is not completely
6619 	 * consumed this information will be put in the mblk
6620 	 * that is putback.
6621 	 * If MSGMARKNEXT is set and the message is completely consumed
6622 	 * the STRATMARK flag will be set below. Likewise, if
6623 	 * MSGNOTMARKNEXT is set and the message is
6624 	 * completely consumed STRNOTATMARK will be set.
6625 	 */
6626 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6627 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6628 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
6629 	if (mark != 0 && bp == stp->sd_mark) {
6630 		mark |= _LASTMARK;
6631 		stp->sd_mark = NULL;
6632 	}
6633 	/*
6634 	 * keep track of the original message type and priority
6635 	 */
6636 	pri = bp->b_band;
6637 	type = bp->b_datap->db_type;
6638 	if (type == M_PASSFP) {
6639 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6640 			stp->sd_mark = bp;
6641 		bp->b_flag |= mark & ~_LASTMARK;
6642 		putback(stp, q, bp, pri);
6643 		qbackenable(q, pri);
6644 		mutex_exit(&stp->sd_lock);
6645 		return (EBADMSG);
6646 	}
6647 	ASSERT(type != M_SIG);
6648 
6649 	/*
6650 	 * Set this flag so strrput will not generate signals. Need to
6651 	 * make sure this flag is cleared before leaving this routine
6652 	 * else signals will stop being sent.
6653 	 */
6654 	stp->sd_flag |= STRGETINPROG;
6655 	mutex_exit(&stp->sd_lock);
6656 
6657 	if (STREAM_NEEDSERVICE(stp))
6658 		stream_runservice(stp);
6659 
6660 	/*
6661 	 * Set HIPRI flag if message is priority.
6662 	 */
6663 	if (type >= QPCTL)
6664 		flg = MSG_HIPRI;
6665 	else
6666 		flg = MSG_BAND;
6667 
6668 	/*
6669 	 * First process PROTO or PCPROTO blocks, if any.
6670 	 */
6671 	if (mctl->maxlen >= 0 && type != M_DATA) {
6672 		size_t	n, bcnt;
6673 		char	*ubuf;
6674 
6675 		bcnt = mctl->maxlen;
6676 		ubuf = mctl->buf;
6677 		while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6678 			if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6679 			    copyout(bp->b_rptr, ubuf, n)) {
6680 				error = EFAULT;
6681 				mutex_enter(&stp->sd_lock);
6682 				/*
6683 				 * clear stream head pri flag based on
6684 				 * first message type
6685 				 */
6686 				if (type >= QPCTL) {
6687 					ASSERT(type == M_PCPROTO);
6688 					stp->sd_flag &= ~STRPRI;
6689 				}
6690 				more = 0;
6691 				freemsg(bp);
6692 				goto getmout;
6693 			}
6694 			ubuf += n;
6695 			bp->b_rptr += n;
6696 			if (bp->b_rptr >= bp->b_wptr) {
6697 				nbp = bp;
6698 				bp = bp->b_cont;
6699 				freeb(nbp);
6700 			}
6701 			ASSERT(n <= bcnt);
6702 			bcnt -= n;
6703 			if (bcnt == 0)
6704 				break;
6705 		}
6706 		mctl->len = mctl->maxlen - bcnt;
6707 	} else
6708 		mctl->len = -1;
6709 
6710 	if (bp && bp->b_datap->db_type != M_DATA) {
6711 		/*
6712 		 * More PROTO blocks in msg.
6713 		 */
6714 		more |= MORECTL;
6715 		savemp = bp;
6716 		while (bp && bp->b_datap->db_type != M_DATA) {
6717 			savemptail = bp;
6718 			bp = bp->b_cont;
6719 		}
6720 		savemptail->b_cont = NULL;
6721 	}
6722 
6723 	/*
6724 	 * Now process DATA blocks, if any.
6725 	 */
6726 	if (mdata->maxlen >= 0 && bp) {
6727 		/*
6728 		 * struiocopyout will consume a potential zero-length
6729 		 * M_DATA even if uio_resid is zero.
6730 		 */
6731 		size_t oldresid = uiop->uio_resid;
6732 
6733 		bp = struiocopyout(bp, uiop, &error);
6734 		if (error != 0) {
6735 			mutex_enter(&stp->sd_lock);
6736 			/*
6737 			 * clear stream head hi pri flag based on
6738 			 * first message
6739 			 */
6740 			if (type >= QPCTL) {
6741 				ASSERT(type == M_PCPROTO);
6742 				stp->sd_flag &= ~STRPRI;
6743 			}
6744 			more = 0;
6745 			freemsg(savemp);
6746 			goto getmout;
6747 		}
6748 		/*
6749 		 * (pr == 1) indicates a partial read.
6750 		 */
6751 		if (oldresid > uiop->uio_resid)
6752 			pr = 1;
6753 		mdata->len = mdata->maxlen - uiop->uio_resid;
6754 	} else
6755 		mdata->len = -1;
6756 
6757 	if (bp) {			/* more data blocks in msg */
6758 		more |= MOREDATA;
6759 		if (savemp)
6760 			savemptail->b_cont = bp;
6761 		else
6762 			savemp = bp;
6763 	}
6764 
6765 	mutex_enter(&stp->sd_lock);
6766 	if (savemp) {
6767 		if (pr && (savemp->b_datap->db_type == M_DATA) &&
6768 		    msgnodata(savemp)) {
6769 			/*
6770 			 * Avoid queuing a zero-length tail part of
6771 			 * a message. pr=1 indicates that we read some of
6772 			 * the message.
6773 			 */
6774 			freemsg(savemp);
6775 			more &= ~MOREDATA;
6776 			/*
6777 			 * clear stream head hi pri flag based on
6778 			 * first message
6779 			 */
6780 			if (type >= QPCTL) {
6781 				ASSERT(type == M_PCPROTO);
6782 				stp->sd_flag &= ~STRPRI;
6783 			}
6784 		} else {
6785 			savemp->b_band = pri;
6786 			/*
6787 			 * If the first message was HIPRI and the one we're
6788 			 * putting back isn't, then clear STRPRI, otherwise
6789 			 * set STRPRI again.  Note that we must set STRPRI
6790 			 * again since the flush logic in strrput_nondata()
6791 			 * may have cleared it while we had sd_lock dropped.
6792 			 */
6793 			if (type >= QPCTL) {
6794 				ASSERT(type == M_PCPROTO);
6795 				if (queclass(savemp) < QPCTL)
6796 					stp->sd_flag &= ~STRPRI;
6797 				else
6798 					stp->sd_flag |= STRPRI;
6799 			} else if (queclass(savemp) >= QPCTL) {
6800 				/*
6801 				 * The first message was not a HIPRI message,
6802 				 * but the one we are about to putback is.
6803 				 * For simplicitly, we do not allow for HIPRI
6804 				 * messages to be embedded in the message
6805 				 * body, so just force it to same type as
6806 				 * first message.
6807 				 */
6808 				ASSERT(type == M_DATA || type == M_PROTO);
6809 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6810 				savemp->b_datap->db_type = type;
6811 			}
6812 			if (mark != 0) {
6813 				savemp->b_flag |= mark & ~_LASTMARK;
6814 				if ((mark & _LASTMARK) &&
6815 				    (stp->sd_mark == NULL)) {
6816 					/*
6817 					 * If another marked message arrived
6818 					 * while sd_lock was not held sd_mark
6819 					 * would be non-NULL.
6820 					 */
6821 					stp->sd_mark = savemp;
6822 				}
6823 			}
6824 			putback(stp, q, savemp, pri);
6825 		}
6826 	} else {
6827 		/*
6828 		 * The complete message was consumed.
6829 		 *
6830 		 * If another M_PCPROTO arrived while sd_lock was not held
6831 		 * it would have been discarded since STRPRI was still set.
6832 		 *
6833 		 * Move the MSG*MARKNEXT information
6834 		 * to the stream head just in case
6835 		 * the read queue becomes empty.
6836 		 * clear stream head hi pri flag based on
6837 		 * first message
6838 		 *
6839 		 * If the stream head was at the mark
6840 		 * (STRATMARK) before we dropped sd_lock above
6841 		 * and some data was consumed then we have
6842 		 * moved past the mark thus STRATMARK is
6843 		 * cleared. However, if a message arrived in
6844 		 * strrput during the copyout above causing
6845 		 * STRATMARK to be set we can not clear that
6846 		 * flag.
6847 		 */
6848 		if (type >= QPCTL) {
6849 			ASSERT(type == M_PCPROTO);
6850 			stp->sd_flag &= ~STRPRI;
6851 		}
6852 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
6853 			if (mark & MSGMARKNEXT) {
6854 				stp->sd_flag &= ~STRNOTATMARK;
6855 				stp->sd_flag |= STRATMARK;
6856 			} else if (mark & MSGNOTMARKNEXT) {
6857 				stp->sd_flag &= ~STRATMARK;
6858 				stp->sd_flag |= STRNOTATMARK;
6859 			} else {
6860 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
6861 			}
6862 		} else if (pr && (old_sd_flag & STRATMARK)) {
6863 			stp->sd_flag &= ~STRATMARK;
6864 		}
6865 	}
6866 
6867 	*flagsp = flg;
6868 	*prip = pri;
6869 
6870 	/*
6871 	 * Getmsg cleanup processing - if the state of the queue has changed
6872 	 * some signals may need to be sent and/or poll awakened.
6873 	 */
6874 getmout:
6875 	qbackenable(q, pri);
6876 
6877 	/*
6878 	 * We dropped the stream head lock above. Send all M_SIG messages
6879 	 * before processing stream head for SIGPOLL messages.
6880 	 */
6881 	ASSERT(MUTEX_HELD(&stp->sd_lock));
6882 	while ((bp = q->q_first) != NULL &&
6883 	    (bp->b_datap->db_type == M_SIG)) {
6884 		/*
6885 		 * sd_lock is held so the content of the read queue can not
6886 		 * change.
6887 		 */
6888 		bp = getq(q);
6889 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
6890 
6891 		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
6892 		mutex_exit(&stp->sd_lock);
6893 		freemsg(bp);
6894 		if (STREAM_NEEDSERVICE(stp))
6895 			stream_runservice(stp);
6896 		mutex_enter(&stp->sd_lock);
6897 	}
6898 
6899 	/*
6900 	 * stream head cannot change while we make the determination
6901 	 * whether or not to send a signal. Drop the flag to allow strrput
6902 	 * to send firstmsgsigs again.
6903 	 */
6904 	stp->sd_flag &= ~STRGETINPROG;
6905 
6906 	/*
6907 	 * If the type of message at the front of the queue changed
6908 	 * due to the receive the appropriate signals and pollwakeup events
6909 	 * are generated. The type of changes are:
6910 	 *	Processed a hipri message, q_first is not hipri.
6911 	 *	Processed a band X message, and q_first is band Y.
6912 	 * The generated signals and pollwakeups are identical to what
6913 	 * strrput() generates should the message that is now on q_first
6914 	 * arrive to an empty read queue.
6915 	 *
6916 	 * Note: only strrput will send a signal for a hipri message.
6917 	 */
6918 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
6919 		strsigset_t signals = 0;
6920 		strpollset_t pollwakeups = 0;
6921 
6922 		if (flg & MSG_HIPRI) {
6923 			/*
6924 			 * Removed a hipri message. Regular data at
6925 			 * the front of  the queue.
6926 			 */
6927 			if (bp->b_band == 0) {
6928 				signals = S_INPUT | S_RDNORM;
6929 				pollwakeups = POLLIN | POLLRDNORM;
6930 			} else {
6931 				signals = S_INPUT | S_RDBAND;
6932 				pollwakeups = POLLIN | POLLRDBAND;
6933 			}
6934 		} else if (pri != bp->b_band) {
6935 			/*
6936 			 * The band is different for the new q_first.
6937 			 */
6938 			if (bp->b_band == 0) {
6939 				signals = S_RDNORM;
6940 				pollwakeups = POLLIN | POLLRDNORM;
6941 			} else {
6942 				signals = S_RDBAND;
6943 				pollwakeups = POLLIN | POLLRDBAND;
6944 			}
6945 		}
6946 
6947 		if (pollwakeups != 0) {
6948 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
6949 				if (!(stp->sd_rput_opt & SR_POLLIN))
6950 					goto no_pollwake;
6951 				stp->sd_rput_opt &= ~SR_POLLIN;
6952 			}
6953 			mutex_exit(&stp->sd_lock);
6954 			pollwakeup(&stp->sd_pollist, pollwakeups);
6955 			mutex_enter(&stp->sd_lock);
6956 		}
6957 no_pollwake:
6958 
6959 		if (stp->sd_sigflags & signals)
6960 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
6961 	}
6962 	mutex_exit(&stp->sd_lock);
6963 
6964 	rvp->r_val1 = more;
6965 	return (error);
6966 #undef	_LASTMARK
6967 }
6968 
6969 /*
6970  * Get the next message from the read queue.  If the message is
6971  * priority, STRPRI will have been set by strrput().  This flag
6972  * should be reset only when the entire message at the front of the
6973  * queue as been consumed.
6974  *
6975  * If uiop is NULL all data is returned in mctlp.
6976  * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
6977  * not enabled.
6978  * The timeout parameter is in milliseconds; -1 for infinity.
6979  * This routine handles the consolidation private flags:
6980  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
6981  *	MSG_DELAYERROR	Defer the error check until the queue is empty.
6982  *	MSG_HOLDSIG	Hold signals while waiting for data.
6983  *	MSG_IPEEK	Only peek at messages.
6984  *	MSG_DISCARDTAIL	Discard the tail M_DATA part of the message
6985  *			that doesn't fit.
6986  *	MSG_NOMARK	If the message is marked leave it on the queue.
6987  *
6988  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6989  */
6990 int
6991 kstrgetmsg(
6992 	struct vnode *vp,
6993 	mblk_t **mctlp,
6994 	struct uio *uiop,
6995 	unsigned char *prip,
6996 	int *flagsp,
6997 	clock_t timout,
6998 	rval_t *rvp)
6999 {
7000 	struct stdata *stp;
7001 	mblk_t *bp, *nbp;
7002 	mblk_t *savemp = NULL;
7003 	mblk_t *savemptail = NULL;
7004 	int flags;
7005 	uint_t old_sd_flag;
7006 	int flg;
7007 	int more = 0;
7008 	int error = 0;
7009 	char first = 1;
7010 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
7011 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
7012 	unsigned char pri = 0;
7013 	queue_t *q;
7014 	int	pr = 0;			/* Partial read successful */
7015 	unsigned char type;
7016 
7017 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7018 	    "kstrgetmsg:%p", vp);
7019 
7020 	ASSERT(vp->v_stream);
7021 	stp = vp->v_stream;
7022 	rvp->r_val1 = 0;
7023 
7024 	mutex_enter(&stp->sd_lock);
7025 
7026 	if ((error = i_straccess(stp, JCREAD)) != 0) {
7027 		mutex_exit(&stp->sd_lock);
7028 		return (error);
7029 	}
7030 
7031 	flags = *flagsp;
7032 	if (stp->sd_flag & (STRDERR|STPLEX)) {
7033 		if ((stp->sd_flag & STPLEX) ||
7034 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7035 			error = strgeterr(stp, STRDERR|STPLEX,
7036 			    (flags & MSG_IPEEK));
7037 			if (error != 0) {
7038 				mutex_exit(&stp->sd_lock);
7039 				return (error);
7040 			}
7041 		}
7042 	}
7043 	mutex_exit(&stp->sd_lock);
7044 
7045 	switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7046 	case MSG_HIPRI:
7047 		if (*prip != 0)
7048 			return (EINVAL);
7049 		break;
7050 
7051 	case MSG_ANY:
7052 	case MSG_BAND:
7053 		break;
7054 
7055 	default:
7056 		return (EINVAL);
7057 	}
7058 
7059 retry:
7060 	q = _RD(stp->sd_wrq);
7061 	mutex_enter(&stp->sd_lock);
7062 	old_sd_flag = stp->sd_flag;
7063 	mark = 0;
7064 	for (;;) {
7065 		int done = 0;
7066 		int waitflag;
7067 		int fmode;
7068 		mblk_t *q_first = q->q_first;
7069 
7070 		/*
7071 		 * This section of the code operates just like the code
7072 		 * in strgetmsg().  There is a comment there about what
7073 		 * is going on here.
7074 		 */
7075 		if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7076 			/* Asking for normal, band0 data */
7077 			bp = strget(stp, q, uiop, first, &error);
7078 			ASSERT(MUTEX_HELD(&stp->sd_lock));
7079 			if (bp != NULL) {
7080 				if (bp->b_datap->db_type == M_SIG) {
7081 					strsignal_nolock(stp, *bp->b_rptr,
7082 					    (int32_t)bp->b_band);
7083 					continue;
7084 				} else {
7085 					break;
7086 				}
7087 			}
7088 			if (error != 0) {
7089 				goto getmout;
7090 			}
7091 		/*
7092 		 * We can't depend on the value of STRPRI here because
7093 		 * the stream head may be in transit. Therefore, we
7094 		 * must look at the type of the first message to
7095 		 * determine if a high priority messages is waiting
7096 		 */
7097 		} else if ((flags & MSG_HIPRI) && q_first != NULL &&
7098 		    q_first->b_datap->db_type >= QPCTL &&
7099 		    (bp = getq_noenab(q)) != NULL) {
7100 			ASSERT(bp->b_datap->db_type >= QPCTL);
7101 			break;
7102 		} else if ((flags & MSG_BAND) && q_first != NULL &&
7103 		    ((q_first->b_band >= *prip) ||
7104 		    q_first->b_datap->db_type >= QPCTL) &&
7105 		    (bp = getq_noenab(q)) != NULL) {
7106 			/*
7107 			 * Asked for at least band "prip" and got either at
7108 			 * least that band or a hipri message.
7109 			 */
7110 			ASSERT(bp->b_band >= *prip ||
7111 			    bp->b_datap->db_type >= QPCTL);
7112 			if (bp->b_datap->db_type == M_SIG) {
7113 				strsignal_nolock(stp, *bp->b_rptr,
7114 				    (int32_t)bp->b_band);
7115 				continue;
7116 			} else {
7117 				break;
7118 			}
7119 		}
7120 
7121 		/* No data. Time to sleep? */
7122 		qbackenable(q, 0);
7123 
7124 		/*
7125 		 * Delayed error notification?
7126 		 */
7127 		if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7128 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7129 			error = strgeterr(stp, STRDERR|STPLEX,
7130 			    (flags & MSG_IPEEK));
7131 			if (error != 0) {
7132 				mutex_exit(&stp->sd_lock);
7133 				return (error);
7134 			}
7135 		}
7136 
7137 		/*
7138 		 * If STRHUP or STREOF, return 0 length control and data.
7139 		 * If a read(fd,buf,0) has been done, do not sleep, just
7140 		 * return.
7141 		 *
7142 		 * If mctlp == NULL and uiop == NULL, then the code will
7143 		 * do the strwaitq. This is an understood way of saying
7144 		 * sleep "polling" until a message is received.
7145 		 */
7146 		if ((stp->sd_flag & (STRHUP|STREOF)) ||
7147 		    (uiop != NULL && uiop->uio_resid == 0)) {
7148 			if (mctlp != NULL)
7149 				*mctlp = NULL;
7150 			*flagsp = 0;
7151 			mutex_exit(&stp->sd_lock);
7152 			return (0);
7153 		}
7154 
7155 		waitflag = GETWAIT;
7156 		if (flags &
7157 		    (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7158 			if (flags & MSG_HOLDSIG)
7159 				waitflag |= STR_NOSIG;
7160 			if (flags & MSG_IGNERROR)
7161 				waitflag |= STR_NOERROR;
7162 			if (flags & MSG_IPEEK)
7163 				waitflag |= STR_PEEK;
7164 			if (flags & MSG_DELAYERROR)
7165 				waitflag |= STR_DELAYERR;
7166 		}
7167 		if (uiop != NULL)
7168 			fmode = uiop->uio_fmode;
7169 		else
7170 			fmode = 0;
7171 
7172 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7173 		    "kstrgetmsg calls strwaitq:%p, %p",
7174 		    vp, uiop);
7175 		if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7176 		    fmode, timout, &done))) != 0 || done) {
7177 			TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7178 			    "kstrgetmsg error or done:%p, %p",
7179 			    vp, uiop);
7180 			mutex_exit(&stp->sd_lock);
7181 			return (error);
7182 		}
7183 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7184 		    "kstrgetmsg awakes:%p, %p", vp, uiop);
7185 		if ((error = i_straccess(stp, JCREAD)) != 0) {
7186 			mutex_exit(&stp->sd_lock);
7187 			return (error);
7188 		}
7189 		first = 0;
7190 	}
7191 	ASSERT(bp != NULL);
7192 	/*
7193 	 * Extract any mark information. If the message is not completely
7194 	 * consumed this information will be put in the mblk
7195 	 * that is putback.
7196 	 * If MSGMARKNEXT is set and the message is completely consumed
7197 	 * the STRATMARK flag will be set below. Likewise, if
7198 	 * MSGNOTMARKNEXT is set and the message is
7199 	 * completely consumed STRNOTATMARK will be set.
7200 	 */
7201 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7202 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7203 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
7204 	pri = bp->b_band;
7205 	if (mark != 0) {
7206 		/*
7207 		 * If the caller doesn't want the mark return.
7208 		 * Used to implement MSG_WAITALL in sockets.
7209 		 */
7210 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
7211 		if (flags & MSG_NOMARK) {
7212 			putback(stp, q, bp, pri);
7213 			qbackenable(q, pri);
7214 			mutex_exit(&stp->sd_lock);
7215 			return (EWOULDBLOCK);
7216 		}
7217 		if (bp == stp->sd_mark) {
7218 			mark |= _LASTMARK;
7219 			stp->sd_mark = NULL;
7220 		}
7221 	}
7222 
7223 	/*
7224 	 * keep track of the first message type
7225 	 */
7226 	type = bp->b_datap->db_type;
7227 
7228 	if (bp->b_datap->db_type == M_PASSFP) {
7229 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7230 			stp->sd_mark = bp;
7231 		bp->b_flag |= mark & ~_LASTMARK;
7232 		putback(stp, q, bp, pri);
7233 		qbackenable(q, pri);
7234 		mutex_exit(&stp->sd_lock);
7235 		return (EBADMSG);
7236 	}
7237 	ASSERT(type != M_SIG);
7238 
7239 	if (flags & MSG_IPEEK) {
7240 		/*
7241 		 * Clear any struioflag - we do the uiomove over again
7242 		 * when peeking since it simplifies the code.
7243 		 *
7244 		 * Dup the message and put the original back on the queue.
7245 		 * If dupmsg() fails, try again with copymsg() to see if
7246 		 * there is indeed a shortage of memory.  dupmsg() may fail
7247 		 * if db_ref in any of the messages reaches its limit.
7248 		 */
7249 
7250 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
7251 		if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7252 			/*
7253 			 * Restore the state of the stream head since we
7254 			 * need to drop sd_lock (strwaitbuf is sleeping).
7255 			 */
7256 			size_t size = msgdsize(bp);
7257 
7258 			if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7259 				stp->sd_mark = bp;
7260 			bp->b_flag |= mark & ~_LASTMARK;
7261 			putback(stp, q, bp, pri);
7262 			mutex_exit(&stp->sd_lock);
7263 			error = strwaitbuf(size, BPRI_HI);
7264 			if (error) {
7265 				/*
7266 				 * There is no net change to the queue thus
7267 				 * no need to qbackenable.
7268 				 */
7269 				return (error);
7270 			}
7271 			goto retry;
7272 		}
7273 
7274 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7275 			stp->sd_mark = bp;
7276 		bp->b_flag |= mark & ~_LASTMARK;
7277 		putback(stp, q, bp, pri);
7278 		bp = nbp;
7279 	}
7280 
7281 	/*
7282 	 * Set this flag so strrput will not generate signals. Need to
7283 	 * make sure this flag is cleared before leaving this routine
7284 	 * else signals will stop being sent.
7285 	 */
7286 	stp->sd_flag |= STRGETINPROG;
7287 	mutex_exit(&stp->sd_lock);
7288 
7289 	if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7290 		mblk_t *tmp, *prevmp;
7291 
7292 		/*
7293 		 * Put first non-data mblk back to stream head and
7294 		 * cut the mblk chain so sd_rputdatafunc only sees
7295 		 * M_DATA mblks. We can skip the first mblk since it
7296 		 * is M_DATA according to the condition above.
7297 		 */
7298 		for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7299 		    prevmp = tmp, tmp = tmp->b_cont) {
7300 			if (DB_TYPE(tmp) != M_DATA) {
7301 				prevmp->b_cont = NULL;
7302 				mutex_enter(&stp->sd_lock);
7303 				putback(stp, q, tmp, tmp->b_band);
7304 				mutex_exit(&stp->sd_lock);
7305 				break;
7306 			}
7307 		}
7308 
7309 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
7310 		bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7311 		    NULL, NULL, NULL, NULL);
7312 
7313 		if (bp == NULL)
7314 			goto retry;
7315 	}
7316 
7317 	if (STREAM_NEEDSERVICE(stp))
7318 		stream_runservice(stp);
7319 
7320 	/*
7321 	 * Set HIPRI flag if message is priority.
7322 	 */
7323 	if (type >= QPCTL)
7324 		flg = MSG_HIPRI;
7325 	else
7326 		flg = MSG_BAND;
7327 
7328 	/*
7329 	 * First process PROTO or PCPROTO blocks, if any.
7330 	 */
7331 	if (mctlp != NULL && type != M_DATA) {
7332 		mblk_t *nbp;
7333 
7334 		*mctlp = bp;
7335 		while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7336 			bp = bp->b_cont;
7337 		nbp = bp->b_cont;
7338 		bp->b_cont = NULL;
7339 		bp = nbp;
7340 	}
7341 
7342 	if (bp && bp->b_datap->db_type != M_DATA) {
7343 		/*
7344 		 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7345 		 */
7346 		more |= MORECTL;
7347 		savemp = bp;
7348 		while (bp && bp->b_datap->db_type != M_DATA) {
7349 			savemptail = bp;
7350 			bp = bp->b_cont;
7351 		}
7352 		savemptail->b_cont = NULL;
7353 	}
7354 
7355 	/*
7356 	 * Now process DATA blocks, if any.
7357 	 */
7358 	if (uiop == NULL) {
7359 		/* Append data to tail of mctlp */
7360 
7361 		ASSERT(bp == NULL || !(bp->b_datap->db_flags & DBLK_UIOA));
7362 		if (mctlp != NULL) {
7363 			mblk_t **mpp = mctlp;
7364 
7365 			while (*mpp != NULL)
7366 				mpp = &((*mpp)->b_cont);
7367 			*mpp = bp;
7368 			bp = NULL;
7369 		}
7370 	} else if (bp && (bp->b_datap->db_flags & DBLK_UIOA)) {
7371 		/*
7372 		 * A uioa mblk_t chain, as uio processing has already
7373 		 * been done we simple skip over processing.
7374 		 */
7375 		bp = NULL;
7376 		pr = 0;
7377 
7378 	} else if (uiop->uio_resid >= 0 && bp) {
7379 		size_t oldresid = uiop->uio_resid;
7380 
7381 		/*
7382 		 * If a streams message is likely to consist
7383 		 * of many small mblks, it is pulled up into
7384 		 * one continuous chunk of memory.
7385 		 * see longer comment at top of page
7386 		 * by mblk_pull_len declaration.
7387 		 */
7388 
7389 		if (MBLKL(bp) < mblk_pull_len) {
7390 			(void) pullupmsg(bp, -1);
7391 		}
7392 
7393 		bp = struiocopyout(bp, uiop, &error);
7394 		if (error != 0) {
7395 			if (mctlp != NULL) {
7396 				freemsg(*mctlp);
7397 				*mctlp = NULL;
7398 			} else
7399 				freemsg(savemp);
7400 			mutex_enter(&stp->sd_lock);
7401 			/*
7402 			 * clear stream head hi pri flag based on
7403 			 * first message
7404 			 */
7405 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7406 				ASSERT(type == M_PCPROTO);
7407 				stp->sd_flag &= ~STRPRI;
7408 			}
7409 			more = 0;
7410 			goto getmout;
7411 		}
7412 		/*
7413 		 * (pr == 1) indicates a partial read.
7414 		 */
7415 		if (oldresid > uiop->uio_resid)
7416 			pr = 1;
7417 	}
7418 
7419 	if (bp) {			/* more data blocks in msg */
7420 		more |= MOREDATA;
7421 		if (savemp)
7422 			savemptail->b_cont = bp;
7423 		else
7424 			savemp = bp;
7425 	}
7426 
7427 	mutex_enter(&stp->sd_lock);
7428 	if (savemp) {
7429 		if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7430 			/*
7431 			 * When MSG_DISCARDTAIL is set or
7432 			 * when peeking discard any tail. When peeking this
7433 			 * is the tail of the dup that was copied out - the
7434 			 * message has already been putback on the queue.
7435 			 * Return MOREDATA to the caller even though the data
7436 			 * is discarded. This is used by sockets (to
7437 			 * set MSG_TRUNC).
7438 			 */
7439 			freemsg(savemp);
7440 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7441 				ASSERT(type == M_PCPROTO);
7442 				stp->sd_flag &= ~STRPRI;
7443 			}
7444 		} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7445 		    msgnodata(savemp)) {
7446 			/*
7447 			 * Avoid queuing a zero-length tail part of
7448 			 * a message. pr=1 indicates that we read some of
7449 			 * the message.
7450 			 */
7451 			freemsg(savemp);
7452 			more &= ~MOREDATA;
7453 			if (type >= QPCTL) {
7454 				ASSERT(type == M_PCPROTO);
7455 				stp->sd_flag &= ~STRPRI;
7456 			}
7457 		} else {
7458 			savemp->b_band = pri;
7459 			/*
7460 			 * If the first message was HIPRI and the one we're
7461 			 * putting back isn't, then clear STRPRI, otherwise
7462 			 * set STRPRI again.  Note that we must set STRPRI
7463 			 * again since the flush logic in strrput_nondata()
7464 			 * may have cleared it while we had sd_lock dropped.
7465 			 */
7466 
7467 			ASSERT(!(savemp->b_datap->db_flags & DBLK_UIOA));
7468 			if (type >= QPCTL) {
7469 				ASSERT(type == M_PCPROTO);
7470 				if (queclass(savemp) < QPCTL)
7471 					stp->sd_flag &= ~STRPRI;
7472 				else
7473 					stp->sd_flag |= STRPRI;
7474 			} else if (queclass(savemp) >= QPCTL) {
7475 				/*
7476 				 * The first message was not a HIPRI message,
7477 				 * but the one we are about to putback is.
7478 				 * For simplicitly, we do not allow for HIPRI
7479 				 * messages to be embedded in the message
7480 				 * body, so just force it to same type as
7481 				 * first message.
7482 				 */
7483 				ASSERT(type == M_DATA || type == M_PROTO);
7484 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7485 				savemp->b_datap->db_type = type;
7486 			}
7487 			if (mark != 0) {
7488 				if ((mark & _LASTMARK) &&
7489 				    (stp->sd_mark == NULL)) {
7490 					/*
7491 					 * If another marked message arrived
7492 					 * while sd_lock was not held sd_mark
7493 					 * would be non-NULL.
7494 					 */
7495 					stp->sd_mark = savemp;
7496 				}
7497 				savemp->b_flag |= mark & ~_LASTMARK;
7498 			}
7499 			putback(stp, q, savemp, pri);
7500 		}
7501 	} else if (!(flags & MSG_IPEEK)) {
7502 		/*
7503 		 * The complete message was consumed.
7504 		 *
7505 		 * If another M_PCPROTO arrived while sd_lock was not held
7506 		 * it would have been discarded since STRPRI was still set.
7507 		 *
7508 		 * Move the MSG*MARKNEXT information
7509 		 * to the stream head just in case
7510 		 * the read queue becomes empty.
7511 		 * clear stream head hi pri flag based on
7512 		 * first message
7513 		 *
7514 		 * If the stream head was at the mark
7515 		 * (STRATMARK) before we dropped sd_lock above
7516 		 * and some data was consumed then we have
7517 		 * moved past the mark thus STRATMARK is
7518 		 * cleared. However, if a message arrived in
7519 		 * strrput during the copyout above causing
7520 		 * STRATMARK to be set we can not clear that
7521 		 * flag.
7522 		 * XXX A "perimeter" would help by single-threading strrput,
7523 		 * strread, strgetmsg and kstrgetmsg.
7524 		 */
7525 		if (type >= QPCTL) {
7526 			ASSERT(type == M_PCPROTO);
7527 			stp->sd_flag &= ~STRPRI;
7528 		}
7529 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7530 			if (mark & MSGMARKNEXT) {
7531 				stp->sd_flag &= ~STRNOTATMARK;
7532 				stp->sd_flag |= STRATMARK;
7533 			} else if (mark & MSGNOTMARKNEXT) {
7534 				stp->sd_flag &= ~STRATMARK;
7535 				stp->sd_flag |= STRNOTATMARK;
7536 			} else {
7537 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7538 			}
7539 		} else if (pr && (old_sd_flag & STRATMARK)) {
7540 			stp->sd_flag &= ~STRATMARK;
7541 		}
7542 	}
7543 
7544 	*flagsp = flg;
7545 	*prip = pri;
7546 
7547 	/*
7548 	 * Getmsg cleanup processing - if the state of the queue has changed
7549 	 * some signals may need to be sent and/or poll awakened.
7550 	 */
7551 getmout:
7552 	qbackenable(q, pri);
7553 
7554 	/*
7555 	 * We dropped the stream head lock above. Send all M_SIG messages
7556 	 * before processing stream head for SIGPOLL messages.
7557 	 */
7558 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7559 	while ((bp = q->q_first) != NULL &&
7560 	    (bp->b_datap->db_type == M_SIG)) {
7561 		/*
7562 		 * sd_lock is held so the content of the read queue can not
7563 		 * change.
7564 		 */
7565 		bp = getq(q);
7566 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7567 
7568 		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
7569 		mutex_exit(&stp->sd_lock);
7570 		freemsg(bp);
7571 		if (STREAM_NEEDSERVICE(stp))
7572 			stream_runservice(stp);
7573 		mutex_enter(&stp->sd_lock);
7574 	}
7575 
7576 	/*
7577 	 * stream head cannot change while we make the determination
7578 	 * whether or not to send a signal. Drop the flag to allow strrput
7579 	 * to send firstmsgsigs again.
7580 	 */
7581 	stp->sd_flag &= ~STRGETINPROG;
7582 
7583 	/*
7584 	 * If the type of message at the front of the queue changed
7585 	 * due to the receive the appropriate signals and pollwakeup events
7586 	 * are generated. The type of changes are:
7587 	 *	Processed a hipri message, q_first is not hipri.
7588 	 *	Processed a band X message, and q_first is band Y.
7589 	 * The generated signals and pollwakeups are identical to what
7590 	 * strrput() generates should the message that is now on q_first
7591 	 * arrive to an empty read queue.
7592 	 *
7593 	 * Note: only strrput will send a signal for a hipri message.
7594 	 */
7595 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7596 		strsigset_t signals = 0;
7597 		strpollset_t pollwakeups = 0;
7598 
7599 		if (flg & MSG_HIPRI) {
7600 			/*
7601 			 * Removed a hipri message. Regular data at
7602 			 * the front of  the queue.
7603 			 */
7604 			if (bp->b_band == 0) {
7605 				signals = S_INPUT | S_RDNORM;
7606 				pollwakeups = POLLIN | POLLRDNORM;
7607 			} else {
7608 				signals = S_INPUT | S_RDBAND;
7609 				pollwakeups = POLLIN | POLLRDBAND;
7610 			}
7611 		} else if (pri != bp->b_band) {
7612 			/*
7613 			 * The band is different for the new q_first.
7614 			 */
7615 			if (bp->b_band == 0) {
7616 				signals = S_RDNORM;
7617 				pollwakeups = POLLIN | POLLRDNORM;
7618 			} else {
7619 				signals = S_RDBAND;
7620 				pollwakeups = POLLIN | POLLRDBAND;
7621 			}
7622 		}
7623 
7624 		if (pollwakeups != 0) {
7625 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7626 				if (!(stp->sd_rput_opt & SR_POLLIN))
7627 					goto no_pollwake;
7628 				stp->sd_rput_opt &= ~SR_POLLIN;
7629 			}
7630 			mutex_exit(&stp->sd_lock);
7631 			pollwakeup(&stp->sd_pollist, pollwakeups);
7632 			mutex_enter(&stp->sd_lock);
7633 		}
7634 no_pollwake:
7635 
7636 		if (stp->sd_sigflags & signals)
7637 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7638 	}
7639 	mutex_exit(&stp->sd_lock);
7640 
7641 	rvp->r_val1 = more;
7642 	return (error);
7643 #undef	_LASTMARK
7644 }
7645 
7646 /*
7647  * Put a message downstream.
7648  *
7649  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7650  */
7651 int
7652 strputmsg(
7653 	struct vnode *vp,
7654 	struct strbuf *mctl,
7655 	struct strbuf *mdata,
7656 	unsigned char pri,
7657 	int flag,
7658 	int fmode)
7659 {
7660 	struct stdata *stp;
7661 	queue_t *wqp;
7662 	mblk_t *mp;
7663 	ssize_t msgsize;
7664 	ssize_t rmin, rmax;
7665 	int error;
7666 	struct uio uios;
7667 	struct uio *uiop = &uios;
7668 	struct iovec iovs;
7669 	int xpg4 = 0;
7670 
7671 	ASSERT(vp->v_stream);
7672 	stp = vp->v_stream;
7673 	wqp = stp->sd_wrq;
7674 
7675 	/*
7676 	 * If it is an XPG4 application, we need to send
7677 	 * SIGPIPE below
7678 	 */
7679 
7680 	xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7681 	flag &= ~MSG_XPG4;
7682 
7683 	if (audit_active)
7684 		audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7685 
7686 	mutex_enter(&stp->sd_lock);
7687 
7688 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7689 		mutex_exit(&stp->sd_lock);
7690 		return (error);
7691 	}
7692 
7693 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7694 		error = strwriteable(stp, B_FALSE, xpg4);
7695 		if (error != 0) {
7696 			mutex_exit(&stp->sd_lock);
7697 			return (error);
7698 		}
7699 	}
7700 
7701 	mutex_exit(&stp->sd_lock);
7702 
7703 	/*
7704 	 * Check for legal flag value.
7705 	 */
7706 	switch (flag) {
7707 	case MSG_HIPRI:
7708 		if ((mctl->len < 0) || (pri != 0))
7709 			return (EINVAL);
7710 		break;
7711 	case MSG_BAND:
7712 		break;
7713 
7714 	default:
7715 		return (EINVAL);
7716 	}
7717 
7718 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7719 	    "strputmsg in:stp %p", stp);
7720 
7721 	/* get these values from those cached in the stream head */
7722 	rmin = stp->sd_qn_minpsz;
7723 	rmax = stp->sd_qn_maxpsz;
7724 
7725 	/*
7726 	 * Make sure ctl and data sizes together fall within the
7727 	 * limits of the max and min receive packet sizes and do
7728 	 * not exceed system limit.
7729 	 */
7730 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7731 	if (rmax == 0) {
7732 		return (ERANGE);
7733 	}
7734 	/*
7735 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7736 	 * Needed to prevent partial failures in the strmakedata loop.
7737 	 */
7738 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7739 		rmax = stp->sd_maxblk;
7740 
7741 	if ((msgsize = mdata->len) < 0) {
7742 		msgsize = 0;
7743 		rmin = 0;	/* no range check for NULL data part */
7744 	}
7745 	if ((msgsize < rmin) ||
7746 	    ((msgsize > rmax) && (rmax != INFPSZ)) ||
7747 	    (mctl->len > strctlsz)) {
7748 		return (ERANGE);
7749 	}
7750 
7751 	/*
7752 	 * Setup uio and iov for data part
7753 	 */
7754 	iovs.iov_base = mdata->buf;
7755 	iovs.iov_len = msgsize;
7756 	uios.uio_iov = &iovs;
7757 	uios.uio_iovcnt = 1;
7758 	uios.uio_loffset = 0;
7759 	uios.uio_segflg = UIO_USERSPACE;
7760 	uios.uio_fmode = fmode;
7761 	uios.uio_extflg = UIO_COPY_DEFAULT;
7762 	uios.uio_resid = msgsize;
7763 	uios.uio_offset = 0;
7764 
7765 	/* Ignore flow control in strput for HIPRI */
7766 	if (flag & MSG_HIPRI)
7767 		flag |= MSG_IGNFLOW;
7768 
7769 	for (;;) {
7770 		int done = 0;
7771 
7772 		/*
7773 		 * strput will always free the ctl mblk - even when strput
7774 		 * fails.
7775 		 */
7776 		if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7777 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7778 			    "strputmsg out:stp %p out %d error %d",
7779 			    stp, 1, error);
7780 			return (error);
7781 		}
7782 		/*
7783 		 * Verify that the whole message can be transferred by
7784 		 * strput.
7785 		 */
7786 		ASSERT(stp->sd_maxblk == INFPSZ ||
7787 		    stp->sd_maxblk >= mdata->len);
7788 
7789 		msgsize = mdata->len;
7790 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7791 		mdata->len = msgsize;
7792 
7793 		if (error == 0)
7794 			break;
7795 
7796 		if (error != EWOULDBLOCK)
7797 			goto out;
7798 
7799 		mutex_enter(&stp->sd_lock);
7800 		/*
7801 		 * Check for a missed wakeup.
7802 		 * Needed since strput did not hold sd_lock across
7803 		 * the canputnext.
7804 		 */
7805 		if (bcanputnext(wqp, pri)) {
7806 			/* Try again */
7807 			mutex_exit(&stp->sd_lock);
7808 			continue;
7809 		}
7810 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7811 		    "strputmsg wait:stp %p waits pri %d", stp, pri);
7812 		if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7813 		    &done)) != 0) || done) {
7814 			mutex_exit(&stp->sd_lock);
7815 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7816 			    "strputmsg out:q %p out %d error %d",
7817 			    stp, 0, error);
7818 			return (error);
7819 		}
7820 		TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7821 		    "strputmsg wake:stp %p wakes", stp);
7822 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
7823 			mutex_exit(&stp->sd_lock);
7824 			return (error);
7825 		}
7826 		mutex_exit(&stp->sd_lock);
7827 	}
7828 out:
7829 	/*
7830 	 * For historic reasons, applications expect EAGAIN
7831 	 * when data mblk could not be allocated. so change
7832 	 * ENOMEM back to EAGAIN
7833 	 */
7834 	if (error == ENOMEM)
7835 		error = EAGAIN;
7836 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7837 	    "strputmsg out:stp %p out %d error %d", stp, 2, error);
7838 	return (error);
7839 }
7840 
7841 /*
7842  * Put a message downstream.
7843  * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
7844  * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
7845  * and the fmode parameter.
7846  *
7847  * This routine handles the consolidation private flags:
7848  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7849  *	MSG_HOLDSIG	Hold signals while waiting for data.
7850  *	MSG_IGNFLOW	Don't check streams flow control.
7851  *
7852  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7853  */
7854 int
7855 kstrputmsg(
7856 	struct vnode *vp,
7857 	mblk_t *mctl,
7858 	struct uio *uiop,
7859 	ssize_t msgsize,
7860 	unsigned char pri,
7861 	int flag,
7862 	int fmode)
7863 {
7864 	struct stdata *stp;
7865 	queue_t *wqp;
7866 	ssize_t rmin, rmax;
7867 	int error;
7868 
7869 	ASSERT(vp->v_stream);
7870 	stp = vp->v_stream;
7871 	wqp = stp->sd_wrq;
7872 	if (audit_active)
7873 		audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
7874 	if (mctl == NULL)
7875 		return (EINVAL);
7876 
7877 	mutex_enter(&stp->sd_lock);
7878 
7879 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7880 		mutex_exit(&stp->sd_lock);
7881 		freemsg(mctl);
7882 		return (error);
7883 	}
7884 
7885 	if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
7886 		if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7887 			error = strwriteable(stp, B_FALSE, B_TRUE);
7888 			if (error != 0) {
7889 				mutex_exit(&stp->sd_lock);
7890 				freemsg(mctl);
7891 				return (error);
7892 			}
7893 		}
7894 	}
7895 
7896 	mutex_exit(&stp->sd_lock);
7897 
7898 	/*
7899 	 * Check for legal flag value.
7900 	 */
7901 	switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
7902 	case MSG_HIPRI:
7903 		if (pri != 0) {
7904 			freemsg(mctl);
7905 			return (EINVAL);
7906 		}
7907 		break;
7908 	case MSG_BAND:
7909 		break;
7910 	default:
7911 		freemsg(mctl);
7912 		return (EINVAL);
7913 	}
7914 
7915 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
7916 	    "kstrputmsg in:stp %p", stp);
7917 
7918 	/* get these values from those cached in the stream head */
7919 	rmin = stp->sd_qn_minpsz;
7920 	rmax = stp->sd_qn_maxpsz;
7921 
7922 	/*
7923 	 * Make sure ctl and data sizes together fall within the
7924 	 * limits of the max and min receive packet sizes and do
7925 	 * not exceed system limit.
7926 	 */
7927 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7928 	if (rmax == 0) {
7929 		freemsg(mctl);
7930 		return (ERANGE);
7931 	}
7932 	/*
7933 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7934 	 * Needed to prevent partial failures in the strmakedata loop.
7935 	 */
7936 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7937 		rmax = stp->sd_maxblk;
7938 
7939 	if (uiop == NULL) {
7940 		msgsize = -1;
7941 		rmin = -1;	/* no range check for NULL data part */
7942 	} else {
7943 		/* Use uio flags as well as the fmode parameter flags */
7944 		fmode |= uiop->uio_fmode;
7945 
7946 		if ((msgsize < rmin) ||
7947 		    ((msgsize > rmax) && (rmax != INFPSZ))) {
7948 			freemsg(mctl);
7949 			return (ERANGE);
7950 		}
7951 	}
7952 
7953 	/* Ignore flow control in strput for HIPRI */
7954 	if (flag & MSG_HIPRI)
7955 		flag |= MSG_IGNFLOW;
7956 
7957 	for (;;) {
7958 		int done = 0;
7959 		int waitflag;
7960 		mblk_t *mp;
7961 
7962 		/*
7963 		 * strput will always free the ctl mblk - even when strput
7964 		 * fails. If MSG_IGNFLOW is set then any error returned
7965 		 * will cause us to break the loop, so we don't need a copy
7966 		 * of the message. If MSG_IGNFLOW is not set, then we can
7967 		 * get hit by flow control and be forced to try again. In
7968 		 * this case we need to have a copy of the message. We
7969 		 * do this using copymsg since the message may get modified
7970 		 * by something below us.
7971 		 *
7972 		 * We've observed that many TPI providers do not check db_ref
7973 		 * on the control messages but blindly reuse them for the
7974 		 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
7975 		 * friendly to such providers than using dupmsg. Also, note
7976 		 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
7977 		 * Only data messages are subject to flow control, hence
7978 		 * subject to this copymsg.
7979 		 */
7980 		if (flag & MSG_IGNFLOW) {
7981 			mp = mctl;
7982 			mctl = NULL;
7983 		} else {
7984 			do {
7985 				/*
7986 				 * If a message has a free pointer, the message
7987 				 * must be dupmsg to maintain this pointer.
7988 				 * Code using this facility must be sure
7989 				 * that modules below will not change the
7990 				 * contents of the dblk without checking db_ref
7991 				 * first. If db_ref is > 1, then the module
7992 				 * needs to do a copymsg first. Otherwise,
7993 				 * the contents of the dblk may become
7994 				 * inconsistent because the freesmg/freeb below
7995 				 * may end up calling atomic_add_32_nv.
7996 				 * The atomic_add_32_nv in freeb (accessing
7997 				 * all of db_ref, db_type, db_flags, and
7998 				 * db_struioflag) does not prevent other threads
7999 				 * from concurrently trying to modify e.g.
8000 				 * db_type.
8001 				 */
8002 				if (mctl->b_datap->db_frtnp != NULL)
8003 					mp = dupmsg(mctl);
8004 				else
8005 					mp = copymsg(mctl);
8006 
8007 				if (mp != NULL)
8008 					break;
8009 
8010 				error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8011 				if (error) {
8012 					freemsg(mctl);
8013 					return (error);
8014 				}
8015 			} while (mp == NULL);
8016 		}
8017 		/*
8018 		 * Verify that all of msgsize can be transferred by
8019 		 * strput.
8020 		 */
8021 		ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8022 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8023 		if (error == 0)
8024 			break;
8025 
8026 		if (error != EWOULDBLOCK)
8027 			goto out;
8028 
8029 		/*
8030 		 * IF MSG_IGNFLOW is set we should have broken out of loop
8031 		 * above.
8032 		 */
8033 		ASSERT(!(flag & MSG_IGNFLOW));
8034 		mutex_enter(&stp->sd_lock);
8035 		/*
8036 		 * Check for a missed wakeup.
8037 		 * Needed since strput did not hold sd_lock across
8038 		 * the canputnext.
8039 		 */
8040 		if (bcanputnext(wqp, pri)) {
8041 			/* Try again */
8042 			mutex_exit(&stp->sd_lock);
8043 			continue;
8044 		}
8045 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8046 		    "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8047 
8048 		waitflag = WRITEWAIT;
8049 		if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8050 			if (flag & MSG_HOLDSIG)
8051 				waitflag |= STR_NOSIG;
8052 			if (flag & MSG_IGNERROR)
8053 				waitflag |= STR_NOERROR;
8054 		}
8055 		if (((error = strwaitq(stp, waitflag,
8056 		    (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8057 			mutex_exit(&stp->sd_lock);
8058 			TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8059 			    "kstrputmsg out:stp %p out %d error %d",
8060 			    stp, 0, error);
8061 			freemsg(mctl);
8062 			return (error);
8063 		}
8064 		TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8065 		    "kstrputmsg wake:stp %p wakes", stp);
8066 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
8067 			mutex_exit(&stp->sd_lock);
8068 			freemsg(mctl);
8069 			return (error);
8070 		}
8071 		mutex_exit(&stp->sd_lock);
8072 	}
8073 out:
8074 	freemsg(mctl);
8075 	/*
8076 	 * For historic reasons, applications expect EAGAIN
8077 	 * when data mblk could not be allocated. so change
8078 	 * ENOMEM back to EAGAIN
8079 	 */
8080 	if (error == ENOMEM)
8081 		error = EAGAIN;
8082 	TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8083 	    "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8084 	return (error);
8085 }
8086 
8087 /*
8088  * Determines whether the necessary conditions are set on a stream
8089  * for it to be readable, writeable, or have exceptions.
8090  *
8091  * strpoll handles the consolidation private events:
8092  *	POLLNOERR	Do not return POLLERR even if there are stream
8093  *			head errors.
8094  *			Used by sockfs.
8095  *	POLLRDDATA	Do not return POLLIN unless at least one message on
8096  *			the queue contains one or more M_DATA mblks. Thus
8097  *			when this flag is set a queue with only
8098  *			M_PROTO/M_PCPROTO mblks does not return POLLIN.
8099  *			Used by sockfs to ignore T_EXDATA_IND messages.
8100  *
8101  * Note: POLLRDDATA assumes that synch streams only return messages with
8102  * an M_DATA attached (i.e. not messages consisting of only
8103  * an M_PROTO/M_PCPROTO part).
8104  */
8105 int
8106 strpoll(
8107 	struct stdata *stp,
8108 	short events_arg,
8109 	int anyyet,
8110 	short *reventsp,
8111 	struct pollhead **phpp)
8112 {
8113 	int events = (ushort_t)events_arg;
8114 	int retevents = 0;
8115 	mblk_t *mp;
8116 	qband_t *qbp;
8117 	long sd_flags = stp->sd_flag;
8118 	int headlocked = 0;
8119 
8120 	/*
8121 	 * For performance, a single 'if' tests for most possible edge
8122 	 * conditions in one shot
8123 	 */
8124 	if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8125 		if (sd_flags & STPLEX) {
8126 			*reventsp = POLLNVAL;
8127 			return (EINVAL);
8128 		}
8129 		if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8130 		    (sd_flags & STRDERR)) ||
8131 		    ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8132 		    (sd_flags & STWRERR))) {
8133 			if (!(events & POLLNOERR)) {
8134 				*reventsp = POLLERR;
8135 				return (0);
8136 			}
8137 		}
8138 	}
8139 	if (sd_flags & STRHUP) {
8140 		retevents |= POLLHUP;
8141 	} else if (events & (POLLWRNORM | POLLWRBAND)) {
8142 		queue_t *tq;
8143 		queue_t	*qp = stp->sd_wrq;
8144 
8145 		claimstr(qp);
8146 		/* Find next module forward that has a service procedure */
8147 		tq = qp->q_next->q_nfsrv;
8148 		ASSERT(tq != NULL);
8149 
8150 		polllock(&stp->sd_pollist, QLOCK(tq));
8151 		if (events & POLLWRNORM) {
8152 			queue_t *sqp;
8153 
8154 			if (tq->q_flag & QFULL)
8155 				/* ensure backq svc procedure runs */
8156 				tq->q_flag |= QWANTW;
8157 			else if ((sqp = stp->sd_struiowrq) != NULL) {
8158 				/* Check sync stream barrier write q */
8159 				mutex_exit(QLOCK(tq));
8160 				polllock(&stp->sd_pollist, QLOCK(sqp));
8161 				if (sqp->q_flag & QFULL)
8162 					/* ensure pollwakeup() is done */
8163 					sqp->q_flag |= QWANTWSYNC;
8164 				else
8165 					retevents |= POLLOUT;
8166 				/* More write events to process ??? */
8167 				if (! (events & POLLWRBAND)) {
8168 					mutex_exit(QLOCK(sqp));
8169 					releasestr(qp);
8170 					goto chkrd;
8171 				}
8172 				mutex_exit(QLOCK(sqp));
8173 				polllock(&stp->sd_pollist, QLOCK(tq));
8174 			} else
8175 				retevents |= POLLOUT;
8176 		}
8177 		if (events & POLLWRBAND) {
8178 			qbp = tq->q_bandp;
8179 			if (qbp) {
8180 				while (qbp) {
8181 					if (qbp->qb_flag & QB_FULL)
8182 						qbp->qb_flag |= QB_WANTW;
8183 					else
8184 						retevents |= POLLWRBAND;
8185 					qbp = qbp->qb_next;
8186 				}
8187 			} else {
8188 				retevents |= POLLWRBAND;
8189 			}
8190 		}
8191 		mutex_exit(QLOCK(tq));
8192 		releasestr(qp);
8193 	}
8194 chkrd:
8195 	if (sd_flags & STRPRI) {
8196 		retevents |= (events & POLLPRI);
8197 	} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8198 		queue_t	*qp = _RD(stp->sd_wrq);
8199 		int normevents = (events & (POLLIN | POLLRDNORM));
8200 
8201 		/*
8202 		 * Note: Need to do polllock() here since ps_lock may be
8203 		 * held. See bug 4191544.
8204 		 */
8205 		polllock(&stp->sd_pollist, &stp->sd_lock);
8206 		headlocked = 1;
8207 		mp = qp->q_first;
8208 		while (mp) {
8209 			/*
8210 			 * For POLLRDDATA we scan b_cont and b_next until we
8211 			 * find an M_DATA.
8212 			 */
8213 			if ((events & POLLRDDATA) &&
8214 			    mp->b_datap->db_type != M_DATA) {
8215 				mblk_t *nmp = mp->b_cont;
8216 
8217 				while (nmp != NULL &&
8218 				    nmp->b_datap->db_type != M_DATA)
8219 					nmp = nmp->b_cont;
8220 				if (nmp == NULL) {
8221 					mp = mp->b_next;
8222 					continue;
8223 				}
8224 			}
8225 			if (mp->b_band == 0)
8226 				retevents |= normevents;
8227 			else
8228 				retevents |= (events & (POLLIN | POLLRDBAND));
8229 			break;
8230 		}
8231 		if (! (retevents & normevents) &&
8232 		    (stp->sd_wakeq & RSLEEP)) {
8233 			/*
8234 			 * Sync stream barrier read queue has data.
8235 			 */
8236 			retevents |= normevents;
8237 		}
8238 		/* Treat eof as normal data */
8239 		if (sd_flags & STREOF)
8240 			retevents |= normevents;
8241 	}
8242 
8243 	*reventsp = (short)retevents;
8244 	if (retevents) {
8245 		if (headlocked)
8246 			mutex_exit(&stp->sd_lock);
8247 		return (0);
8248 	}
8249 
8250 	/*
8251 	 * If poll() has not found any events yet, set up event cell
8252 	 * to wake up the poll if a requested event occurs on this
8253 	 * stream.  Check for collisions with outstanding poll requests.
8254 	 */
8255 	if (!anyyet) {
8256 		*phpp = &stp->sd_pollist;
8257 		if (headlocked == 0) {
8258 			polllock(&stp->sd_pollist, &stp->sd_lock);
8259 			headlocked = 1;
8260 		}
8261 		stp->sd_rput_opt |= SR_POLLIN;
8262 	}
8263 	if (headlocked)
8264 		mutex_exit(&stp->sd_lock);
8265 	return (0);
8266 }
8267 
8268 /*
8269  * The purpose of putback() is to assure sleeping polls/reads
8270  * are awakened when there are no new messages arriving at the,
8271  * stream head, and a message is placed back on the read queue.
8272  *
8273  * sd_lock must be held when messages are placed back on stream
8274  * head.  (getq() holds sd_lock when it removes messages from
8275  * the queue)
8276  */
8277 
8278 static void
8279 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8280 {
8281 	mblk_t	*qfirst = q->q_first;
8282 	ASSERT(MUTEX_HELD(&stp->sd_lock));
8283 
8284 	if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8285 	    (qfirst != NULL) &&
8286 	    (qfirst->b_datap->db_type == M_DATA) &&
8287 	    ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0)) {
8288 		/*
8289 		 * We use the same logic as defined in strrput()
8290 		 * but in reverse as we are putting back onto the
8291 		 * queue and want to retain byte ordering.
8292 		 * Consolidate an M_DATA message onto an M_DATA,
8293 		 * M_PROTO, or M_PCPROTO by merging it with q_first.
8294 		 * The consolidation does not take place if the message
8295 		 * we are returning to the queue is marked with either
8296 		 * of the marks or the delim flag or if q_first
8297 		 * is marked with MSGMARK. The MSGMARK check is needed to
8298 		 * handle the odd semantics of MSGMARK where essentially
8299 		 * the whole message is to be treated as marked.
8300 		 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8301 		 * to the front of the b_cont chain.
8302 		 */
8303 		unsigned char db_type = bp->b_datap->db_type;
8304 
8305 		if ((db_type == M_DATA || db_type == M_PROTO ||
8306 		    db_type == M_PCPROTO) &&
8307 		    !(bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT))) {
8308 			rmvq_noenab(q, qfirst);
8309 			/*
8310 			 * The first message in the b_cont list
8311 			 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8312 			 * We need to handle the case where we
8313 			 * are appending:
8314 			 *
8315 			 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8316 			 * 2) a MSGMARKNEXT to a plain message.
8317 			 * 3) a MSGNOTMARKNEXT to a plain message
8318 			 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8319 			 *    message.
8320 			 *
8321 			 * Thus we never append a MSGMARKNEXT or
8322 			 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8323 			 */
8324 			if (qfirst->b_flag & MSGMARKNEXT) {
8325 				bp->b_flag |= MSGMARKNEXT;
8326 				bp->b_flag &= ~MSGNOTMARKNEXT;
8327 				qfirst->b_flag &= ~MSGMARKNEXT;
8328 			} else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8329 				bp->b_flag |= MSGNOTMARKNEXT;
8330 				qfirst->b_flag &= ~MSGNOTMARKNEXT;
8331 			}
8332 
8333 			linkb(bp, qfirst);
8334 		}
8335 	}
8336 	(void) putbq(q, bp);
8337 
8338 	/*
8339 	 * A message may have come in when the sd_lock was dropped in the
8340 	 * calling routine. If this is the case and STR*ATMARK info was
8341 	 * received, need to move that from the stream head to the q_last
8342 	 * so that SIOCATMARK can return the proper value.
8343 	 */
8344 	if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8345 		unsigned short *flagp = &q->q_last->b_flag;
8346 		uint_t b_flag = (uint_t)*flagp;
8347 
8348 		if (stp->sd_flag & STRATMARK) {
8349 			b_flag &= ~MSGNOTMARKNEXT;
8350 			b_flag |= MSGMARKNEXT;
8351 			stp->sd_flag &= ~STRATMARK;
8352 		} else {
8353 			b_flag &= ~MSGMARKNEXT;
8354 			b_flag |= MSGNOTMARKNEXT;
8355 			stp->sd_flag &= ~STRNOTATMARK;
8356 		}
8357 		*flagp = (unsigned short) b_flag;
8358 	}
8359 
8360 #ifdef	DEBUG
8361 	/*
8362 	 * Make sure that the flags are not messed up.
8363 	 */
8364 	{
8365 		mblk_t *mp;
8366 		mp = q->q_last;
8367 		while (mp != NULL) {
8368 			ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8369 			    (MSGMARKNEXT|MSGNOTMARKNEXT));
8370 			mp = mp->b_cont;
8371 		}
8372 	}
8373 #endif
8374 	if (q->q_first == bp) {
8375 		short pollevents;
8376 
8377 		if (stp->sd_flag & RSLEEP) {
8378 			stp->sd_flag &= ~RSLEEP;
8379 			cv_broadcast(&q->q_wait);
8380 		}
8381 		if (stp->sd_flag & STRPRI) {
8382 			pollevents = POLLPRI;
8383 		} else {
8384 			if (band == 0) {
8385 				if (!(stp->sd_rput_opt & SR_POLLIN))
8386 					return;
8387 				stp->sd_rput_opt &= ~SR_POLLIN;
8388 				pollevents = POLLIN | POLLRDNORM;
8389 			} else {
8390 				pollevents = POLLIN | POLLRDBAND;
8391 			}
8392 		}
8393 		mutex_exit(&stp->sd_lock);
8394 		pollwakeup(&stp->sd_pollist, pollevents);
8395 		mutex_enter(&stp->sd_lock);
8396 	}
8397 }
8398 
8399 /*
8400  * Return the held vnode attached to the stream head of a
8401  * given queue
8402  * It is the responsibility of the calling routine to ensure
8403  * that the queue does not go away (e.g. pop).
8404  */
8405 vnode_t *
8406 strq2vp(queue_t *qp)
8407 {
8408 	vnode_t *vp;
8409 	vp = STREAM(qp)->sd_vnode;
8410 	ASSERT(vp != NULL);
8411 	VN_HOLD(vp);
8412 	return (vp);
8413 }
8414 
8415 /*
8416  * return the stream head write queue for the given vp
8417  * It is the responsibility of the calling routine to ensure
8418  * that the stream or vnode do not close.
8419  */
8420 queue_t *
8421 strvp2wq(vnode_t *vp)
8422 {
8423 	ASSERT(vp->v_stream != NULL);
8424 	return (vp->v_stream->sd_wrq);
8425 }
8426 
8427 /*
8428  * pollwakeup stream head
8429  * It is the responsibility of the calling routine to ensure
8430  * that the stream or vnode do not close.
8431  */
8432 void
8433 strpollwakeup(vnode_t *vp, short event)
8434 {
8435 	ASSERT(vp->v_stream);
8436 	pollwakeup(&vp->v_stream->sd_pollist, event);
8437 }
8438 
8439 /*
8440  * Mate the stream heads of two vnodes together. If the two vnodes are the
8441  * same, we just make the write-side point at the read-side -- otherwise,
8442  * we do a full mate.  Only works on vnodes associated with streams that are
8443  * still being built and thus have only a stream head.
8444  */
8445 void
8446 strmate(vnode_t *vp1, vnode_t *vp2)
8447 {
8448 	queue_t *wrq1 = strvp2wq(vp1);
8449 	queue_t *wrq2 = strvp2wq(vp2);
8450 
8451 	/*
8452 	 * Verify that there are no modules on the stream yet.  We also
8453 	 * rely on the stream head always having a service procedure to
8454 	 * avoid tweaking q_nfsrv.
8455 	 */
8456 	ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8457 	ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8458 	ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8459 
8460 	/*
8461 	 * If the queues are the same, just twist; otherwise do a full mate.
8462 	 */
8463 	if (wrq1 == wrq2) {
8464 		wrq1->q_next = _RD(wrq1);
8465 	} else {
8466 		wrq1->q_next = _RD(wrq2);
8467 		wrq2->q_next = _RD(wrq1);
8468 		STREAM(wrq1)->sd_mate = STREAM(wrq2);
8469 		STREAM(wrq1)->sd_flag |= STRMATE;
8470 		STREAM(wrq2)->sd_mate = STREAM(wrq1);
8471 		STREAM(wrq2)->sd_flag |= STRMATE;
8472 	}
8473 }
8474 
8475 /*
8476  * XXX will go away when console is correctly fixed.
8477  * Clean up the console PIDS, from previous I_SETSIG,
8478  * called only for cnopen which never calls strclean().
8479  */
8480 void
8481 str_cn_clean(struct vnode *vp)
8482 {
8483 	strsig_t *ssp, *pssp, *tssp;
8484 	struct stdata *stp;
8485 	struct pid  *pidp;
8486 	int update = 0;
8487 
8488 	ASSERT(vp->v_stream);
8489 	stp = vp->v_stream;
8490 	pssp = NULL;
8491 	mutex_enter(&stp->sd_lock);
8492 	ssp = stp->sd_siglist;
8493 	while (ssp) {
8494 		mutex_enter(&pidlock);
8495 		pidp = ssp->ss_pidp;
8496 		/*
8497 		 * Get rid of PID if the proc is gone.
8498 		 */
8499 		if (pidp->pid_prinactive) {
8500 			tssp = ssp->ss_next;
8501 			if (pssp)
8502 				pssp->ss_next = tssp;
8503 			else
8504 				stp->sd_siglist = tssp;
8505 			ASSERT(pidp->pid_ref <= 1);
8506 			PID_RELE(ssp->ss_pidp);
8507 			mutex_exit(&pidlock);
8508 			kmem_free(ssp, sizeof (strsig_t));
8509 			update = 1;
8510 			ssp = tssp;
8511 			continue;
8512 		} else
8513 			mutex_exit(&pidlock);
8514 		pssp = ssp;
8515 		ssp = ssp->ss_next;
8516 	}
8517 	if (update) {
8518 		stp->sd_sigflags = 0;
8519 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8520 			stp->sd_sigflags |= ssp->ss_events;
8521 	}
8522 	mutex_exit(&stp->sd_lock);
8523 }
8524 
8525 /*
8526  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8527  */
8528 static boolean_t
8529 msghasdata(mblk_t *bp)
8530 {
8531 	for (; bp; bp = bp->b_cont)
8532 		if (bp->b_datap->db_type == M_DATA) {
8533 			ASSERT(bp->b_wptr >= bp->b_rptr);
8534 			if (bp->b_wptr > bp->b_rptr)
8535 				return (B_TRUE);
8536 		}
8537 	return (B_FALSE);
8538 }
8539 
8540 /*
8541  * Called on the first strget() of a sodirect/uioa enabled streamhead,
8542  * if any mblk_t(s) enqueued they must first be uioamove()d before uioa
8543  * can be enabled for the underlying transport's use.
8544  */
8545 void
8546 struioainit(queue_t *q, sodirect_t *sodp, uio_t *uiop)
8547 {
8548 	uioa_t	*uioap = (uioa_t *)uiop;
8549 	mblk_t	*bp = q->q_first;
8550 	mblk_t	*lbp = NULL;
8551 	mblk_t	*nbp, *wbp;
8552 	int	len;
8553 	int	error;
8554 
8555 	ASSERT(MUTEX_HELD(sodp->sod_lock));
8556 	ASSERT(&sodp->sod_uioa == uioap);
8557 
8558 	/*
8559 	 * Walk the b_next/b_prev doubly linked list of b_cont chain(s)
8560 	 * and schedule any M_DATA mblk_t's for uio asynchronous move.
8561 	 */
8562 	do {
8563 		/* Next mblk_t chain */
8564 		nbp = bp->b_next;
8565 		/* Walk the chain */
8566 		wbp = bp;
8567 		do {
8568 			if (wbp->b_datap->db_type == M_DATA &&
8569 			    (len = wbp->b_wptr - wbp->b_rptr) > 0) {
8570 				/* Have a M_DATA mblk_t with data */
8571 				if (len > uioap->uio_resid) {
8572 					/* Not enough uio sapce */
8573 					goto nospace;
8574 				}
8575 				error = uioamove(wbp->b_rptr, len,
8576 				    UIO_READ, uioap);
8577 				if (!error) {
8578 					/* Scheduled, mark dblk_t as such */
8579 					wbp->b_datap->db_flags |= DBLK_UIOA;
8580 				} else {
8581 					/* Error of some sort, no more uioa */
8582 					uioap->uioa_state &= UIOA_CLR;
8583 					uioap->uioa_state |= UIOA_FINI;
8584 					return;
8585 				}
8586 			}
8587 			/* Save last wbp processed */
8588 			lbp = wbp;
8589 		} while ((wbp = wbp->b_cont) != NULL);
8590 	} while ((bp = nbp) != NULL);
8591 
8592 	return;
8593 
8594 nospace:
8595 	/* Not enough uio space, no more uioa */
8596 	uioap->uioa_state &= UIOA_CLR;
8597 	uioap->uioa_state |= UIOA_FINI;
8598 
8599 	/*
8600 	 * If we processed 1 or more mblk_t(s) then we need to split the
8601 	 * current mblk_t chain in 2 so that all the uioamove()ed mblk_t(s)
8602 	 * are in the current chain and the rest are in the following new
8603 	 * chain.
8604 	 */
8605 	if (lbp != NULL) {
8606 		/* New end of current chain */
8607 		lbp->b_cont = NULL;
8608 
8609 		/* Insert new chain wbp after bp */
8610 		if ((wbp->b_next = nbp) != NULL)
8611 			nbp->b_prev = wbp;
8612 		else
8613 			q->q_last = wbp;
8614 		wbp->b_prev = bp;
8615 		bp->b_next = wbp;
8616 	}
8617 }
8618