xref: /titanic_51/usr/src/uts/common/os/pg.c (revision 8134ee03588a08f05c327533a618d35625381520)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/systm.h>
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/thread.h>
32 #include <sys/cpuvar.h>
33 #include <sys/cpupart.h>
34 #include <sys/kmem.h>
35 #include <sys/cmn_err.h>
36 #include <sys/kstat.h>
37 #include <sys/processor.h>
38 #include <sys/disp.h>
39 #include <sys/group.h>
40 #include <sys/pg.h>
41 
42 /*
43  * Processor groups
44  *
45  * With the introduction of Chip Multi-Threaded (CMT) processor architectures,
46  * it is no longer necessarily true that a given physical processor module
47  * will present itself as a single schedulable entity (cpu_t). Rather, each
48  * chip and/or processor core may present itself as one or more "logical" CPUs.
49  *
50  * The logical CPUs presented may share physical components such as caches,
51  * data pipes, execution pipelines, FPUs, etc. It is advantageous to have the
52  * kernel be aware of the relationships existing between logical CPUs so that
53  * the appropriate optmizations may be employed.
54  *
55  * The processor group abstraction represents a set of logical CPUs that
56  * generally share some sort of physical or characteristic relationship.
57  *
58  * In the case of a physical sharing relationship, the CPUs in the group may
59  * share a pipeline, cache or floating point unit. In the case of a logical
60  * relationship, a PG may represent the set of CPUs in a processor set, or the
61  * set of CPUs running at a particular clock speed.
62  *
63  * The generic processor group structure, pg_t, contains the elements generic
64  * to a group of CPUs. Depending on the nature of the CPU relationship
65  * (LOGICAL or PHYSICAL), a pointer to a pg may be recast to a "view" of that
66  * PG where more specific data is represented.
67  *
68  * As an example, a PG representing a PHYSICAL relationship, may be recast to
69  * a pghw_t, where data further describing the hardware sharing relationship
70  * is maintained. See pghw.c and pghw.h for details on physical PGs.
71  *
72  * At this time a more specialized casting of a PG representing a LOGICAL
73  * relationship has not been implemented, but the architecture allows for this
74  * in the future.
75  *
76  * Processor Group Classes
77  *
78  * Processor group consumers may wish to maintain and associate specific
79  * data with the PGs they create. For this reason, a mechanism for creating
80  * class specific PGs exists. Classes may overload the default functions for
81  * creating, destroying, and associating CPUs with PGs, and may also register
82  * class specific callbacks to be invoked when the CPU related system
83  * configuration changes. Class specific data is stored/associated with
84  * PGs by incorporating the pg_t (or pghw_t, as appropriate), as the first
85  * element of a class specific PG object. In memory, such a structure may look
86  * like:
87  *
88  * ----------------------- - - -
89  * | common              | | | |  <--(pg_t *)
90  * ----------------------- | | -
91  * | HW specific         | | | <-----(pghw_t *)
92  * ----------------------- | -
93  * | class specific      | | <-------(pg_cmt_t *)
94  * ----------------------- -
95  *
96  * Access to the PG class specific data can be had by casting a pointer to
97  * it's class specific view.
98  */
99 
100 static pg_t		*pg_alloc_default(pg_class_t);
101 static void		pg_free_default(pg_t *);
102 
103 /*
104  * Bootstrap CPU specific PG data
105  * See pg_cpu_bootstrap()
106  */
107 static cpu_pg_t		bootstrap_pg_data;
108 
109 /*
110  * Bitset of allocated PG ids (they are sequential)
111  * and the next free id in the set.
112  */
113 static bitset_t		pg_id_set;
114 static pgid_t		pg_id_next = 0;
115 
116 /*
117  * Default and externed PG ops vectors
118  */
119 static struct pg_ops pg_ops_default = {
120 	pg_alloc_default,	/* alloc */
121 	pg_free_default,	/* free */
122 	NULL,			/* cpu_init */
123 	NULL,			/* cpu_fini */
124 	NULL,			/* cpu_active */
125 	NULL,			/* cpu_inactive */
126 	NULL,			/* cpupart_in */
127 	NULL,			/* cpupart_out */
128 	NULL,			/* cpupart_move */
129 	NULL,			/* cpu_belongs */
130 };
131 
132 /*
133  * Class specific PG allocation callbacks
134  */
135 #define	PG_ALLOC(class)							\
136 	(pg_classes[class].pgc_ops->alloc ?				\
137 	    pg_classes[class].pgc_ops->alloc() :			\
138 	    pg_classes[pg_default_cid].pgc_ops->alloc())
139 
140 #define	PG_FREE(pg)							\
141 	((pg)->pg_class->pgc_ops->free ?				\
142 	    (pg)->pg_class->pgc_ops->free(pg) :				\
143 	    pg_classes[pg_default_cid].pgc_ops->free(pg))		\
144 
145 
146 /*
147  * Class specific membership test callback
148  */
149 #define	PG_CPU_BELONGS(pg, cp)						\
150 	((pg)->pg_class->pgc_ops->cpu_belongs ?				\
151 	    (pg)->pg_class->pgc_ops->cpu_belongs(pg, cp) : 0)		\
152 
153 /*
154  * CPU configuration callbacks
155  */
156 #define	PG_CPU_INIT(class, cp)						\
157 {									\
158 	if (pg_classes[class].pgc_ops->cpu_init)			\
159 		pg_classes[class].pgc_ops->cpu_init(cp);		\
160 }
161 
162 #define	PG_CPU_FINI(class, cp)						\
163 {									\
164 	if (pg_classes[class].pgc_ops->cpu_fini)			\
165 		pg_classes[class].pgc_ops->cpu_fini(cp);		\
166 }
167 
168 #define	PG_CPU_ACTIVE(class, cp)					\
169 {									\
170 	if (pg_classes[class].pgc_ops->cpu_active)			\
171 		pg_classes[class].pgc_ops->cpu_active(cp);		\
172 }
173 
174 #define	PG_CPU_INACTIVE(class, cp)					\
175 {									\
176 	if (pg_classes[class].pgc_ops->cpu_inactive)			\
177 		pg_classes[class].pgc_ops->cpu_inactive(cp);		\
178 }
179 
180 /*
181  * CPU / cpupart configuration callbacks
182  */
183 #define	PG_CPUPART_IN(class, cp, pp)					\
184 {									\
185 	if (pg_classes[class].pgc_ops->cpupart_in)			\
186 		pg_classes[class].pgc_ops->cpupart_in(cp, pp);		\
187 }
188 
189 #define	PG_CPUPART_OUT(class, cp, pp)					\
190 {									\
191 	if (pg_classes[class].pgc_ops->cpupart_out)			\
192 		pg_classes[class].pgc_ops->cpupart_out(cp, pp);		\
193 }
194 
195 #define	PG_CPUPART_MOVE(class, cp, old, new)				\
196 {									\
197 	if (pg_classes[class].pgc_ops->cpupart_move)			\
198 		pg_classes[class].pgc_ops->cpupart_move(cp, old, new);	\
199 }
200 
201 
202 
203 static pg_class_t	*pg_classes;
204 static int		pg_nclasses;
205 
206 static pg_cid_t		pg_default_cid;
207 
208 /*
209  * Initialze common PG subsystem. Perform CPU 0 initialization
210  */
211 void
212 pg_init(void)
213 {
214 	pg_default_cid =
215 	    pg_class_register("default", &pg_ops_default, PGR_LOGICAL);
216 }
217 
218 /*
219  * Perform CPU 0 initialization
220  */
221 void
222 pg_cpu0_init(void)
223 {
224 	extern void pghw_physid_create();
225 
226 	/*
227 	 * Create the physical ID cache for the boot CPU
228 	 */
229 	pghw_physid_create(CPU);
230 
231 	/*
232 	 * pg_cpu_* require that cpu_lock be held
233 	 */
234 	mutex_enter(&cpu_lock);
235 
236 	pg_cpu_init(CPU);
237 	pg_cpupart_in(CPU, &cp_default);
238 	pg_cpu_active(CPU);
239 
240 	mutex_exit(&cpu_lock);
241 }
242 
243 /*
244  * Register a new PG class
245  */
246 pg_cid_t
247 pg_class_register(char *name, struct pg_ops *ops, pg_relation_t relation)
248 {
249 	pg_class_t	*newclass;
250 	pg_class_t	*classes_old;
251 	id_t		cid;
252 
253 	mutex_enter(&cpu_lock);
254 
255 	/*
256 	 * Allocate a new pg_class_t in the pg_classes array
257 	 */
258 	if (pg_nclasses == 0) {
259 		pg_classes = kmem_zalloc(sizeof (pg_class_t), KM_SLEEP);
260 	} else {
261 		classes_old = pg_classes;
262 		pg_classes =
263 		    kmem_zalloc(sizeof (pg_class_t) * (pg_nclasses + 1),
264 			KM_SLEEP);
265 		(void) kcopy(classes_old, pg_classes,
266 		    sizeof (pg_class_t) * pg_nclasses);
267 		kmem_free(classes_old, sizeof (pg_class_t) * pg_nclasses);
268 	}
269 
270 	cid = pg_nclasses++;
271 	newclass = &pg_classes[cid];
272 
273 	(void) strncpy(newclass->pgc_name, name, PG_CLASS_NAME_MAX);
274 	newclass->pgc_id = cid;
275 	newclass->pgc_ops = ops;
276 	newclass->pgc_relation = relation;
277 
278 	mutex_exit(&cpu_lock);
279 
280 	return (cid);
281 }
282 
283 /*
284  * Try to find an existing pg in set in which to place cp.
285  * Returns the pg if found, and NULL otherwise.
286  * In the event that the CPU could belong to multiple
287  * PGs in the set, the first matching PG will be returned.
288  */
289 pg_t *
290 pg_cpu_find_pg(cpu_t *cp, group_t *set)
291 {
292 	pg_t		*pg;
293 	group_iter_t	i;
294 
295 	group_iter_init(&i);
296 	while ((pg = group_iterate(set, &i)) != NULL) {
297 		/*
298 		 * Ask the class if the CPU belongs here
299 		 */
300 		if (PG_CPU_BELONGS(pg, cp))
301 			return (pg);
302 	}
303 	return (NULL);
304 }
305 
306 /*
307  * Iterate over the CPUs in a PG after initializing
308  * the iterator with PG_CPU_ITR_INIT()
309  */
310 cpu_t *
311 pg_cpu_next(pg_cpu_itr_t *itr)
312 {
313 	cpu_t		*cpu;
314 	pg_t		*pg = itr->pg;
315 
316 	cpu = group_iterate(&pg->pg_cpus, &itr->position);
317 	return (cpu);
318 }
319 
320 /*
321  * Create a PG of a given class.
322  * This routine may block.
323  */
324 pg_t *
325 pg_create(pg_cid_t cid)
326 {
327 	pg_t	*pg;
328 	pgid_t	id;
329 
330 	ASSERT(MUTEX_HELD(&cpu_lock));
331 
332 	/*
333 	 * Call the class specific PG allocation routine
334 	 */
335 	pg = PG_ALLOC(cid);
336 	pg->pg_class = &pg_classes[cid];
337 	pg->pg_relation = pg->pg_class->pgc_relation;
338 
339 	/*
340 	 * Find the next free sequential pg id
341 	 */
342 	do {
343 		if (pg_id_next >= bitset_capacity(&pg_id_set))
344 			bitset_resize(&pg_id_set, pg_id_next + 1);
345 		id = pg_id_next++;
346 	} while (bitset_in_set(&pg_id_set, id));
347 
348 	pg->pg_id = id;
349 	bitset_add(&pg_id_set, pg->pg_id);
350 
351 	/*
352 	 * Create the PG's CPU group
353 	 */
354 	group_create(&pg->pg_cpus);
355 
356 	return (pg);
357 }
358 
359 /*
360  * Destroy a PG.
361  * This routine may block.
362  */
363 void
364 pg_destroy(pg_t *pg)
365 {
366 	ASSERT(MUTEX_HELD(&cpu_lock));
367 
368 	group_destroy(&pg->pg_cpus);
369 
370 	/*
371 	 * Unassign the pg_id
372 	 */
373 	if (pg_id_next > pg->pg_id)
374 		pg_id_next = pg->pg_id;
375 	bitset_del(&pg_id_set, pg->pg_id);
376 
377 	/*
378 	 * Invoke the class specific de-allocation routine
379 	 */
380 	PG_FREE(pg);
381 }
382 
383 /*
384  * Add the CPU "cp" to processor group "pg"
385  * This routine may block.
386  */
387 void
388 pg_cpu_add(pg_t *pg, cpu_t *cp)
389 {
390 	int	err;
391 
392 	ASSERT(MUTEX_HELD(&cpu_lock));
393 
394 	/* This adds the CPU to the PG's CPU group */
395 	err = group_add(&pg->pg_cpus, cp, GRP_RESIZE);
396 	ASSERT(err == 0);
397 
398 	/* This adds the PG to the CPUs PG group */
399 	ASSERT(cp->cpu_pg != &bootstrap_pg_data);
400 	err = group_add(&cp->cpu_pg->pgs, pg, GRP_RESIZE);
401 	ASSERT(err == 0);
402 }
403 
404 /*
405  * Remove "cp" from "pg".
406  * This routine may block.
407  */
408 void
409 pg_cpu_delete(pg_t *pg, cpu_t *cp)
410 {
411 	int	err;
412 
413 	ASSERT(MUTEX_HELD(&cpu_lock));
414 
415 	/* Remove the CPU from the PG */
416 	err = group_remove(&pg->pg_cpus, cp, GRP_RESIZE);
417 	ASSERT(err == 0);
418 
419 	/* Remove the PG from the CPU's PG group */
420 	ASSERT(cp->cpu_pg != &bootstrap_pg_data);
421 	err = group_remove(&cp->cpu_pg->pgs, pg, GRP_RESIZE);
422 	ASSERT(err == 0);
423 }
424 
425 /*
426  * Allocate a CPU's PG data. This hangs off struct cpu at cpu_pg
427  */
428 static cpu_pg_t *
429 pg_cpu_data_alloc(void)
430 {
431 	cpu_pg_t	*pgd;
432 
433 	pgd = kmem_zalloc(sizeof (cpu_pg_t), KM_SLEEP);
434 	group_create(&pgd->pgs);
435 	group_create(&pgd->cmt_pgs);
436 
437 	return (pgd);
438 }
439 
440 /*
441  * Free the CPU's PG data.
442  */
443 static void
444 pg_cpu_data_free(cpu_pg_t *pgd)
445 {
446 	group_destroy(&pgd->pgs);
447 	group_destroy(&pgd->cmt_pgs);
448 	kmem_free(pgd, sizeof (cpu_pg_t));
449 }
450 
451 /*
452  * A new CPU is coming into the system, either via booting or DR.
453  * Allocate it's PG data, and notify all registered classes about
454  * the new CPU.
455  *
456  * This routine may block.
457  */
458 void
459 pg_cpu_init(cpu_t *cp)
460 {
461 	pg_cid_t	i;
462 
463 	ASSERT(MUTEX_HELD(&cpu_lock));
464 
465 	/*
466 	 * Allocate and size the per CPU pg data
467 	 */
468 	cp->cpu_pg = pg_cpu_data_alloc();
469 
470 	/*
471 	 * Notify all registered classes about the new CPU
472 	 */
473 	for (i = 0; i < pg_nclasses; i++)
474 		PG_CPU_INIT(i, cp);
475 }
476 
477 /*
478  * This CPU is being deleted from the system. Notify the classes
479  * and free up the CPU's PG data.
480  */
481 void
482 pg_cpu_fini(cpu_t *cp)
483 {
484 	pg_cid_t	i;
485 
486 	ASSERT(MUTEX_HELD(&cpu_lock));
487 
488 	/*
489 	 * This can happen if the CPU coming into the system
490 	 * failed to power on.
491 	 */
492 	if (cp->cpu_pg == NULL ||
493 	    cp->cpu_pg == &bootstrap_pg_data)
494 		return;
495 
496 	for (i = 0; i < pg_nclasses; i++)
497 		PG_CPU_FINI(i, cp);
498 
499 	pg_cpu_data_free(cp->cpu_pg);
500 	cp->cpu_pg = NULL;
501 }
502 
503 /*
504  * This CPU is becoming active (online)
505  * This routine may not block as it is called from paused CPUs
506  * context.
507  */
508 void
509 pg_cpu_active(cpu_t *cp)
510 {
511 	pg_cid_t	i;
512 
513 	ASSERT(MUTEX_HELD(&cpu_lock));
514 
515 	/*
516 	 * Notify all registered classes about the new CPU
517 	 */
518 	for (i = 0; i < pg_nclasses; i++)
519 		PG_CPU_ACTIVE(i, cp);
520 }
521 
522 /*
523  * This CPU is going inactive (offline)
524  * This routine may not block, as it is called from paused
525  * CPUs context.
526  */
527 void
528 pg_cpu_inactive(cpu_t *cp)
529 {
530 	pg_cid_t	i;
531 
532 	ASSERT(MUTEX_HELD(&cpu_lock));
533 
534 	/*
535 	 * Notify all registered classes about the new CPU
536 	 */
537 	for (i = 0; i < pg_nclasses; i++)
538 		PG_CPU_INACTIVE(i, cp);
539 }
540 
541 /*
542  * Invoked when the CPU is about to move into the partition
543  * This routine may block.
544  */
545 void
546 pg_cpupart_in(cpu_t *cp, cpupart_t *pp)
547 {
548 	int	i;
549 
550 	ASSERT(MUTEX_HELD(&cpu_lock));
551 
552 	/*
553 	 * Notify all registered classes that the
554 	 * CPU is about to enter the CPU partition
555 	 */
556 	for (i = 0; i < pg_nclasses; i++)
557 		PG_CPUPART_IN(i, cp, pp);
558 }
559 
560 /*
561  * Invoked when the CPU is about to move out of the partition
562  * This routine may block.
563  */
564 /*ARGSUSED*/
565 void
566 pg_cpupart_out(cpu_t *cp, cpupart_t *pp)
567 {
568 	int	i;
569 
570 	ASSERT(MUTEX_HELD(&cpu_lock));
571 
572 	/*
573 	 * Notify all registered classes that the
574 	 * CPU is about to leave the CPU partition
575 	 */
576 	for (i = 0; i < pg_nclasses; i++)
577 		PG_CPUPART_OUT(i, cp, pp);
578 }
579 
580 /*
581  * Invoked when the CPU is *moving* partitions.
582  *
583  * This routine may not block, as it is called from paused CPUs
584  * context.
585  */
586 void
587 pg_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp)
588 {
589 	int	i;
590 
591 	ASSERT(MUTEX_HELD(&cpu_lock));
592 
593 	/*
594 	 * Notify all registered classes that the
595 	 * CPU is about to leave the CPU partition
596 	 */
597 	for (i = 0; i < pg_nclasses; i++)
598 		PG_CPUPART_MOVE(i, cp, oldpp, newpp);
599 }
600 
601 /*
602  * Provide the specified CPU a bootstrap pg
603  * This is needed to allow sane behaviour if any PG consuming
604  * code needs to deal with a partially initialized CPU
605  */
606 void
607 pg_cpu_bootstrap(cpu_t *cp)
608 {
609 	cp->cpu_pg = &bootstrap_pg_data;
610 }
611 
612 /*ARGSUSED*/
613 static pg_t *
614 pg_alloc_default(pg_class_t class)
615 {
616 	return (kmem_zalloc(sizeof (pg_t), KM_SLEEP));
617 }
618 
619 /*ARGSUSED*/
620 static void
621 pg_free_default(struct pg *pg)
622 {
623 	kmem_free(pg, sizeof (pg_t));
624 }
625