xref: /titanic_51/usr/src/uts/common/os/pg.c (revision 25ccf31477c2a409aed8d0cf2027cd1073b0fe00)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/thread.h>
30 #include <sys/cpuvar.h>
31 #include <sys/cpupart.h>
32 #include <sys/kmem.h>
33 #include <sys/cmn_err.h>
34 #include <sys/kstat.h>
35 #include <sys/processor.h>
36 #include <sys/disp.h>
37 #include <sys/group.h>
38 #include <sys/pg.h>
39 
40 /*
41  * Processor groups
42  *
43  * With the introduction of Chip Multi-Threaded (CMT) processor architectures,
44  * it is no longer necessarily true that a given physical processor module
45  * will present itself as a single schedulable entity (cpu_t). Rather, each
46  * chip and/or processor core may present itself as one or more "logical" CPUs.
47  *
48  * The logical CPUs presented may share physical components such as caches,
49  * data pipes, execution pipelines, FPUs, etc. It is advantageous to have the
50  * kernel be aware of the relationships existing between logical CPUs so that
51  * the appropriate optmizations may be employed.
52  *
53  * The processor group abstraction represents a set of logical CPUs that
54  * generally share some sort of physical or characteristic relationship.
55  *
56  * In the case of a physical sharing relationship, the CPUs in the group may
57  * share a pipeline, cache or floating point unit. In the case of a logical
58  * relationship, a PG may represent the set of CPUs in a processor set, or the
59  * set of CPUs running at a particular clock speed.
60  *
61  * The generic processor group structure, pg_t, contains the elements generic
62  * to a group of CPUs. Depending on the nature of the CPU relationship
63  * (LOGICAL or PHYSICAL), a pointer to a pg may be recast to a "view" of that
64  * PG where more specific data is represented.
65  *
66  * As an example, a PG representing a PHYSICAL relationship, may be recast to
67  * a pghw_t, where data further describing the hardware sharing relationship
68  * is maintained. See pghw.c and pghw.h for details on physical PGs.
69  *
70  * At this time a more specialized casting of a PG representing a LOGICAL
71  * relationship has not been implemented, but the architecture allows for this
72  * in the future.
73  *
74  * Processor Group Classes
75  *
76  * Processor group consumers may wish to maintain and associate specific
77  * data with the PGs they create. For this reason, a mechanism for creating
78  * class specific PGs exists. Classes may overload the default functions for
79  * creating, destroying, and associating CPUs with PGs, and may also register
80  * class specific callbacks to be invoked when the CPU related system
81  * configuration changes. Class specific data is stored/associated with
82  * PGs by incorporating the pg_t (or pghw_t, as appropriate), as the first
83  * element of a class specific PG object. In memory, such a structure may look
84  * like:
85  *
86  * ----------------------- - - -
87  * | common              | | | |  <--(pg_t *)
88  * ----------------------- | | -
89  * | HW specific         | | | <-----(pghw_t *)
90  * ----------------------- | -
91  * | class specific      | | <-------(pg_cmt_t *)
92  * ----------------------- -
93  *
94  * Access to the PG class specific data can be had by casting a pointer to
95  * it's class specific view.
96  */
97 
98 static pg_t		*pg_alloc_default(pg_class_t);
99 static void		pg_free_default(pg_t *);
100 static void		pg_null_op();
101 
102 /*
103  * Bootstrap CPU specific PG data
104  * See pg_cpu_bootstrap()
105  */
106 static cpu_pg_t		bootstrap_pg_data;
107 
108 /*
109  * Bitset of allocated PG ids (they are sequential)
110  * and the next free id in the set.
111  */
112 static bitset_t		pg_id_set;
113 static pgid_t		pg_id_next = 0;
114 
115 /*
116  * Default and externed PG ops vectors
117  */
118 static struct pg_ops pg_ops_default = {
119 	pg_alloc_default,	/* alloc */
120 	pg_free_default,	/* free */
121 	NULL,			/* cpu_init */
122 	NULL,			/* cpu_fini */
123 	NULL,			/* cpu_active */
124 	NULL,			/* cpu_inactive */
125 	NULL,			/* cpupart_in */
126 	NULL,			/* cpupart_out */
127 	NULL,			/* cpupart_move */
128 	NULL,			/* cpu_belongs */
129 	NULL,			/* policy_name */
130 };
131 
132 static struct pg_cb_ops pg_cb_ops_default = {
133 	pg_null_op,		/* thread_swtch */
134 	pg_null_op,		/* thread_remain */
135 };
136 
137 /*
138  * Class specific PG allocation callbacks
139  */
140 #define	PG_ALLOC(class)							\
141 	(pg_classes[class].pgc_ops->alloc ?				\
142 	    pg_classes[class].pgc_ops->alloc() :			\
143 	    pg_classes[pg_default_cid].pgc_ops->alloc())
144 
145 #define	PG_FREE(pg)							\
146 	((pg)->pg_class->pgc_ops->free ?				\
147 	    (pg)->pg_class->pgc_ops->free(pg) :				\
148 	    pg_classes[pg_default_cid].pgc_ops->free(pg))		\
149 
150 
151 /*
152  * Class specific PG policy name
153  */
154 #define	PG_POLICY_NAME(pg)						\
155 	((pg)->pg_class->pgc_ops->policy_name ?				\
156 	    (pg)->pg_class->pgc_ops->policy_name(pg) : NULL)		\
157 
158 /*
159  * Class specific membership test callback
160  */
161 #define	PG_CPU_BELONGS(pg, cp)						\
162 	((pg)->pg_class->pgc_ops->cpu_belongs ?				\
163 	    (pg)->pg_class->pgc_ops->cpu_belongs(pg, cp) : 0)		\
164 
165 /*
166  * CPU configuration callbacks
167  */
168 #define	PG_CPU_INIT(class, cp)						\
169 {									\
170 	if (pg_classes[class].pgc_ops->cpu_init)			\
171 		pg_classes[class].pgc_ops->cpu_init(cp);		\
172 }
173 
174 #define	PG_CPU_FINI(class, cp)						\
175 {									\
176 	if (pg_classes[class].pgc_ops->cpu_fini)			\
177 		pg_classes[class].pgc_ops->cpu_fini(cp);		\
178 }
179 
180 #define	PG_CPU_ACTIVE(class, cp)					\
181 {									\
182 	if (pg_classes[class].pgc_ops->cpu_active)			\
183 		pg_classes[class].pgc_ops->cpu_active(cp);		\
184 }
185 
186 #define	PG_CPU_INACTIVE(class, cp)					\
187 {									\
188 	if (pg_classes[class].pgc_ops->cpu_inactive)			\
189 		pg_classes[class].pgc_ops->cpu_inactive(cp);		\
190 }
191 
192 /*
193  * CPU / cpupart configuration callbacks
194  */
195 #define	PG_CPUPART_IN(class, cp, pp)					\
196 {									\
197 	if (pg_classes[class].pgc_ops->cpupart_in)			\
198 		pg_classes[class].pgc_ops->cpupart_in(cp, pp);		\
199 }
200 
201 #define	PG_CPUPART_OUT(class, cp, pp)					\
202 {									\
203 	if (pg_classes[class].pgc_ops->cpupart_out)			\
204 		pg_classes[class].pgc_ops->cpupart_out(cp, pp);		\
205 }
206 
207 #define	PG_CPUPART_MOVE(class, cp, old, new)				\
208 {									\
209 	if (pg_classes[class].pgc_ops->cpupart_move)			\
210 		pg_classes[class].pgc_ops->cpupart_move(cp, old, new);	\
211 }
212 
213 
214 
215 static pg_class_t	*pg_classes;
216 static int		pg_nclasses;
217 
218 static pg_cid_t		pg_default_cid;
219 
220 /*
221  * Initialze common PG subsystem.
222  */
223 void
224 pg_init(void)
225 {
226 	extern void pg_cmt_class_init();
227 
228 	pg_default_cid =
229 	    pg_class_register("default", &pg_ops_default, PGR_LOGICAL);
230 
231 	/*
232 	 * Initialize classes to allow them to register with the framework
233 	 */
234 	pg_cmt_class_init();
235 
236 	pg_cpu0_init();
237 }
238 
239 /*
240  * Perform CPU 0 initialization
241  */
242 void
243 pg_cpu0_init(void)
244 {
245 	extern void pghw_physid_create();
246 
247 	/*
248 	 * Create the physical ID cache for the boot CPU
249 	 */
250 	pghw_physid_create(CPU);
251 
252 	/*
253 	 * pg_cpu_* require that cpu_lock be held
254 	 */
255 	mutex_enter(&cpu_lock);
256 
257 	pg_cpu_init(CPU);
258 	pg_cpupart_in(CPU, &cp_default);
259 	pg_cpu_active(CPU);
260 
261 	mutex_exit(&cpu_lock);
262 }
263 
264 /*
265  * Invoked when topology for CPU0 changes
266  * post pg_cpu0_init().
267  *
268  * Currently happens as a result of null_proc_lpa
269  * on Starcat.
270  */
271 void
272 pg_cpu0_reinit(void)
273 {
274 	mutex_enter(&cpu_lock);
275 	pg_cpu_inactive(CPU);
276 	pg_cpupart_out(CPU, &cp_default);
277 	pg_cpu_fini(CPU);
278 
279 	pg_cpu_init(CPU);
280 	pg_cpupart_in(CPU, &cp_default);
281 	pg_cpu_active(CPU);
282 	mutex_exit(&cpu_lock);
283 }
284 
285 /*
286  * Register a new PG class
287  */
288 pg_cid_t
289 pg_class_register(char *name, struct pg_ops *ops, pg_relation_t relation)
290 {
291 	pg_class_t	*newclass;
292 	pg_class_t	*classes_old;
293 	id_t		cid;
294 
295 	mutex_enter(&cpu_lock);
296 
297 	/*
298 	 * Allocate a new pg_class_t in the pg_classes array
299 	 */
300 	if (pg_nclasses == 0) {
301 		pg_classes = kmem_zalloc(sizeof (pg_class_t), KM_SLEEP);
302 	} else {
303 		classes_old = pg_classes;
304 		pg_classes =
305 		    kmem_zalloc(sizeof (pg_class_t) * (pg_nclasses + 1),
306 		    KM_SLEEP);
307 		(void) kcopy(classes_old, pg_classes,
308 		    sizeof (pg_class_t) * pg_nclasses);
309 		kmem_free(classes_old, sizeof (pg_class_t) * pg_nclasses);
310 	}
311 
312 	cid = pg_nclasses++;
313 	newclass = &pg_classes[cid];
314 
315 	(void) strncpy(newclass->pgc_name, name, PG_CLASS_NAME_MAX);
316 	newclass->pgc_id = cid;
317 	newclass->pgc_ops = ops;
318 	newclass->pgc_relation = relation;
319 
320 	mutex_exit(&cpu_lock);
321 
322 	return (cid);
323 }
324 
325 /*
326  * Try to find an existing pg in set in which to place cp.
327  * Returns the pg if found, and NULL otherwise.
328  * In the event that the CPU could belong to multiple
329  * PGs in the set, the first matching PG will be returned.
330  */
331 pg_t *
332 pg_cpu_find_pg(cpu_t *cp, group_t *set)
333 {
334 	pg_t		*pg;
335 	group_iter_t	i;
336 
337 	group_iter_init(&i);
338 	while ((pg = group_iterate(set, &i)) != NULL) {
339 		/*
340 		 * Ask the class if the CPU belongs here
341 		 */
342 		if (PG_CPU_BELONGS(pg, cp))
343 			return (pg);
344 	}
345 	return (NULL);
346 }
347 
348 /*
349  * Iterate over the CPUs in a PG after initializing
350  * the iterator with PG_CPU_ITR_INIT()
351  */
352 cpu_t *
353 pg_cpu_next(pg_cpu_itr_t *itr)
354 {
355 	cpu_t		*cpu;
356 	pg_t		*pg = itr->pg;
357 
358 	cpu = group_iterate(&pg->pg_cpus, &itr->position);
359 	return (cpu);
360 }
361 
362 /*
363  * Test if a given PG contains a given CPU
364  */
365 boolean_t
366 pg_cpu_find(pg_t *pg, cpu_t *cp)
367 {
368 	if (group_find(&pg->pg_cpus, cp) == (uint_t)-1)
369 		return (B_FALSE);
370 
371 	return (B_TRUE);
372 }
373 
374 /*
375  * Set the PGs callbacks to the default
376  */
377 void
378 pg_callback_set_defaults(pg_t *pg)
379 {
380 	bcopy(&pg_cb_ops_default, &pg->pg_cb, sizeof (struct pg_cb_ops));
381 }
382 
383 /*
384  * Create a PG of a given class.
385  * This routine may block.
386  */
387 pg_t *
388 pg_create(pg_cid_t cid)
389 {
390 	pg_t	*pg;
391 	pgid_t	id;
392 
393 	ASSERT(MUTEX_HELD(&cpu_lock));
394 
395 	/*
396 	 * Call the class specific PG allocation routine
397 	 */
398 	pg = PG_ALLOC(cid);
399 	pg->pg_class = &pg_classes[cid];
400 	pg->pg_relation = pg->pg_class->pgc_relation;
401 
402 	/*
403 	 * Find the next free sequential pg id
404 	 */
405 	do {
406 		if (pg_id_next >= bitset_capacity(&pg_id_set))
407 			bitset_resize(&pg_id_set, pg_id_next + 1);
408 		id = pg_id_next++;
409 	} while (bitset_in_set(&pg_id_set, id));
410 
411 	pg->pg_id = id;
412 	bitset_add(&pg_id_set, pg->pg_id);
413 
414 	/*
415 	 * Create the PG's CPU group
416 	 */
417 	group_create(&pg->pg_cpus);
418 
419 	/*
420 	 * Initialize the events ops vector
421 	 */
422 	pg_callback_set_defaults(pg);
423 
424 	return (pg);
425 }
426 
427 /*
428  * Destroy a PG.
429  * This routine may block.
430  */
431 void
432 pg_destroy(pg_t *pg)
433 {
434 	ASSERT(MUTEX_HELD(&cpu_lock));
435 
436 	group_destroy(&pg->pg_cpus);
437 
438 	/*
439 	 * Unassign the pg_id
440 	 */
441 	if (pg_id_next > pg->pg_id)
442 		pg_id_next = pg->pg_id;
443 	bitset_del(&pg_id_set, pg->pg_id);
444 
445 	/*
446 	 * Invoke the class specific de-allocation routine
447 	 */
448 	PG_FREE(pg);
449 }
450 
451 /*
452  * Add the CPU "cp" to processor group "pg"
453  * This routine may block.
454  */
455 void
456 pg_cpu_add(pg_t *pg, cpu_t *cp)
457 {
458 	int	err;
459 
460 	ASSERT(MUTEX_HELD(&cpu_lock));
461 
462 	/* This adds the CPU to the PG's CPU group */
463 	err = group_add(&pg->pg_cpus, cp, GRP_RESIZE);
464 	ASSERT(err == 0);
465 
466 	/* This adds the PG to the CPUs PG group */
467 	ASSERT(cp->cpu_pg != &bootstrap_pg_data);
468 	err = group_add(&cp->cpu_pg->pgs, pg, GRP_RESIZE);
469 	ASSERT(err == 0);
470 }
471 
472 /*
473  * Remove "cp" from "pg".
474  * This routine may block.
475  */
476 void
477 pg_cpu_delete(pg_t *pg, cpu_t *cp)
478 {
479 	int	err;
480 
481 	ASSERT(MUTEX_HELD(&cpu_lock));
482 
483 	/* Remove the CPU from the PG */
484 	err = group_remove(&pg->pg_cpus, cp, GRP_RESIZE);
485 	ASSERT(err == 0);
486 
487 	/* Remove the PG from the CPU's PG group */
488 	ASSERT(cp->cpu_pg != &bootstrap_pg_data);
489 	err = group_remove(&cp->cpu_pg->pgs, pg, GRP_RESIZE);
490 	ASSERT(err == 0);
491 }
492 
493 /*
494  * Allocate a CPU's PG data. This hangs off struct cpu at cpu_pg
495  */
496 static cpu_pg_t *
497 pg_cpu_data_alloc(void)
498 {
499 	cpu_pg_t	*pgd;
500 
501 	pgd = kmem_zalloc(sizeof (cpu_pg_t), KM_SLEEP);
502 	group_create(&pgd->pgs);
503 	group_create(&pgd->cmt_pgs);
504 
505 	return (pgd);
506 }
507 
508 /*
509  * Free the CPU's PG data.
510  */
511 static void
512 pg_cpu_data_free(cpu_pg_t *pgd)
513 {
514 	group_destroy(&pgd->pgs);
515 	group_destroy(&pgd->cmt_pgs);
516 	kmem_free(pgd, sizeof (cpu_pg_t));
517 }
518 
519 /*
520  * A new CPU is coming into the system, either via booting or DR.
521  * Allocate it's PG data, and notify all registered classes about
522  * the new CPU.
523  *
524  * This routine may block.
525  */
526 void
527 pg_cpu_init(cpu_t *cp)
528 {
529 	pg_cid_t	i;
530 
531 	ASSERT(MUTEX_HELD(&cpu_lock));
532 
533 	/*
534 	 * Allocate and size the per CPU pg data
535 	 */
536 	cp->cpu_pg = pg_cpu_data_alloc();
537 
538 	/*
539 	 * Notify all registered classes about the new CPU
540 	 */
541 	for (i = 0; i < pg_nclasses; i++)
542 		PG_CPU_INIT(i, cp);
543 }
544 
545 /*
546  * This CPU is being deleted from the system. Notify the classes
547  * and free up the CPU's PG data.
548  */
549 void
550 pg_cpu_fini(cpu_t *cp)
551 {
552 	pg_cid_t	i;
553 
554 	ASSERT(MUTEX_HELD(&cpu_lock));
555 
556 	/*
557 	 * This can happen if the CPU coming into the system
558 	 * failed to power on.
559 	 */
560 	if (cp->cpu_pg == NULL ||
561 	    cp->cpu_pg == &bootstrap_pg_data)
562 		return;
563 
564 	for (i = 0; i < pg_nclasses; i++)
565 		PG_CPU_FINI(i, cp);
566 
567 	pg_cpu_data_free(cp->cpu_pg);
568 	cp->cpu_pg = NULL;
569 }
570 
571 /*
572  * This CPU is becoming active (online)
573  * This routine may not block as it is called from paused CPUs
574  * context.
575  */
576 void
577 pg_cpu_active(cpu_t *cp)
578 {
579 	pg_cid_t	i;
580 
581 	ASSERT(MUTEX_HELD(&cpu_lock));
582 
583 	/*
584 	 * Notify all registered classes about the new CPU
585 	 */
586 	for (i = 0; i < pg_nclasses; i++)
587 		PG_CPU_ACTIVE(i, cp);
588 }
589 
590 /*
591  * This CPU is going inactive (offline)
592  * This routine may not block, as it is called from paused
593  * CPUs context.
594  */
595 void
596 pg_cpu_inactive(cpu_t *cp)
597 {
598 	pg_cid_t	i;
599 
600 	ASSERT(MUTEX_HELD(&cpu_lock));
601 
602 	/*
603 	 * Notify all registered classes about the new CPU
604 	 */
605 	for (i = 0; i < pg_nclasses; i++)
606 		PG_CPU_INACTIVE(i, cp);
607 }
608 
609 /*
610  * Invoked when the CPU is about to move into the partition
611  * This routine may block.
612  */
613 void
614 pg_cpupart_in(cpu_t *cp, cpupart_t *pp)
615 {
616 	int	i;
617 
618 	ASSERT(MUTEX_HELD(&cpu_lock));
619 
620 	/*
621 	 * Notify all registered classes that the
622 	 * CPU is about to enter the CPU partition
623 	 */
624 	for (i = 0; i < pg_nclasses; i++)
625 		PG_CPUPART_IN(i, cp, pp);
626 }
627 
628 /*
629  * Invoked when the CPU is about to move out of the partition
630  * This routine may block.
631  */
632 /*ARGSUSED*/
633 void
634 pg_cpupart_out(cpu_t *cp, cpupart_t *pp)
635 {
636 	int	i;
637 
638 	ASSERT(MUTEX_HELD(&cpu_lock));
639 
640 	/*
641 	 * Notify all registered classes that the
642 	 * CPU is about to leave the CPU partition
643 	 */
644 	for (i = 0; i < pg_nclasses; i++)
645 		PG_CPUPART_OUT(i, cp, pp);
646 }
647 
648 /*
649  * Invoked when the CPU is *moving* partitions.
650  *
651  * This routine may not block, as it is called from paused CPUs
652  * context.
653  */
654 void
655 pg_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp)
656 {
657 	int	i;
658 
659 	ASSERT(MUTEX_HELD(&cpu_lock));
660 
661 	/*
662 	 * Notify all registered classes that the
663 	 * CPU is about to leave the CPU partition
664 	 */
665 	for (i = 0; i < pg_nclasses; i++)
666 		PG_CPUPART_MOVE(i, cp, oldpp, newpp);
667 }
668 
669 /*
670  * Return a class specific string describing a policy implemented
671  * across this PG
672  */
673 char *
674 pg_policy_name(pg_t *pg)
675 {
676 	char *str;
677 	if ((str = PG_POLICY_NAME(pg)) != NULL)
678 		return (str);
679 
680 	return ("N/A");
681 }
682 
683 /*
684  * Provide the specified CPU a bootstrap pg
685  * This is needed to allow sane behaviour if any PG consuming
686  * code needs to deal with a partially initialized CPU
687  */
688 void
689 pg_cpu_bootstrap(cpu_t *cp)
690 {
691 	cp->cpu_pg = &bootstrap_pg_data;
692 }
693 
694 /*ARGSUSED*/
695 static pg_t *
696 pg_alloc_default(pg_class_t class)
697 {
698 	return (kmem_zalloc(sizeof (pg_t), KM_SLEEP));
699 }
700 
701 /*ARGSUSED*/
702 static void
703 pg_free_default(struct pg *pg)
704 {
705 	kmem_free(pg, sizeof (pg_t));
706 }
707 
708 static void
709 pg_null_op()
710 {
711 }
712 
713 /*
714  * Invoke the "thread switch" callback for each of the CPU's PGs
715  * This is invoked from the dispatcher swtch() routine, which is called
716  * when a thread running an a CPU should switch to another thread.
717  * "cp" is the CPU on which the thread switch is happening
718  * "now" is an unscaled hrtime_t timestamp taken in swtch()
719  * "old" and "new" are the outgoing and incoming threads, respectively.
720  */
721 void
722 pg_ev_thread_swtch(struct cpu *cp, hrtime_t now, kthread_t *old, kthread_t *new)
723 {
724 	int	i, sz;
725 	group_t	*grp;
726 	pg_t	*pg;
727 
728 	grp = &cp->cpu_pg->pgs;
729 	sz = GROUP_SIZE(grp);
730 	for (i = 0; i < sz; i++) {
731 		pg = GROUP_ACCESS(grp, i);
732 		pg->pg_cb.thread_swtch(pg, cp, now, old, new);
733 	}
734 }
735 
736 /*
737  * Invoke the "thread remain" callback for each of the CPU's PGs.
738  * This is called from the dispatcher's swtch() routine when a thread
739  * running on the CPU "cp" is switching to itself, which can happen as an
740  * artifact of the thread's timeslice expiring.
741  */
742 void
743 pg_ev_thread_remain(struct cpu *cp, kthread_t *t)
744 {
745 	int	i, sz;
746 	group_t	*grp;
747 	pg_t	*pg;
748 
749 	grp = &cp->cpu_pg->pgs;
750 	sz = GROUP_SIZE(grp);
751 	for (i = 0; i < sz; i++) {
752 		pg = GROUP_ACCESS(grp, i);
753 		pg->pg_cb.thread_remain(pg, cp, t);
754 	}
755 }
756