xref: /titanic_51/usr/src/uts/common/os/ndifm.c (revision 99ebb4ca412cb0a19d77a3899a87c055b9c30fa8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Fault Management for Nexus Device Drivers
30  *
31  * In addition to implementing and supporting Fault Management for Device
32  * Drivers (ddifm.c), nexus drivers must support their children by
33  * reporting FM capabilities, intializing interrupt block cookies
34  * for error handling callbacks and caching mapped resources for lookup
35  * during the detection of an IO transaction error.
36  *
37  * It is typically the nexus driver that receives an error indication
38  * for a fault that may have occurred in the data path of an IO transaction.
39  * Errors may be detected or received via an interrupt, a callback from
40  * another subsystem (e.g. a cpu trap) or examination of control data.
41  *
42  * Upon detection of an error, the nexus has a responsibility to alert
43  * its children of the error and the transaction associated with that
44  * error.  The actual implementation may vary depending upon the capabilities
45  * of the nexus, its underlying hardware and its children.  In this file,
46  * we provide support for typical nexus driver fault management tasks.
47  *
48  * Fault Management Initialization
49  *
50  *      Nexus drivers must implement two new busops, bus_fm_init() and
51  *      bus_fm_fini().  bus_fm_init() is called from a child nexus or device
52  *      driver and is expected to initialize any per-child state and return
53  *      the FM and error interrupt priority levels of the nexus driver.
54  *      Similarly, bus_fm_fini() is called by child drivers and should
55  *      clean-up any resources allocated during bus_fm_init().
56  *      These functions are called from passive kernel context, typically from
57  *      driver attach(9F) and detach(9F) entry points.
58  *
59  * Error Handler Dispatching
60  *
61  *      Nexus drivers implemented to support error handler capabilities
62  *	should invoke registered error handler callbacks for child drivers
63  *	thought to be involved in the error.
64  *	ndi_fm_handler_dispatch() is used to invoke
65  *      all error handlers and returns one of the following status
66  *      indications:
67  *
68  *      DDI_FM_OK - No errors found by any child
69  *      DDI_FM_FATAL - one or more children have detected a fatal error
70  *      DDI_FM_NONFATAL - no fatal errors, but one or more children have
71  *                            detected a non-fatal error
72  *
73  *      ndi_fm_handler_dispatch() may be called in any context
74  *      subject to the constraints specified by the interrupt iblock cookie
75  *      returned during initialization.
76  *
77  * Protected Accesses
78  *
79  *      When an access handle is mapped or a DMA handle is bound via the
80  *      standard busops, bus_map() or bus_dma_bindhdl(), a child driver
81  *      implemented to support DDI_FM_ACCCHK_CAPABLE or
82  *	DDI_FM_DMACHK_CAPABLE capabilites
83  *	expects the nexus to flag any errors detected for transactions
84  *	associated with the mapped or bound handles.
85  *
86  *      Children nexus or device drivers will set the following flags
87  *      in their ddi_device_access or dma_attr_flags when requesting
88  *      the an access or DMA handle mapping:
89  *
90  *      DDI_DMA_FLAGERR - nexus should set error status for any errors
91  *                              detected for a failed DMA transaction.
92  *      DDI_ACC_FLAGERR - nexus should set error status for any errors
93  *                              detected for a failed PIO transaction.
94  *
95  *      A nexus is expected to provide additional error detection and
96  *      handling for handles with these flags set.
97  *
98  * Exclusive Bus Access
99  *
100  *      In cases where a driver requires a high level of fault tolerance
101  *      for a programmed IO transaction, it is neccessary to grant exclusive
102  *      access to the bus resource.  Exclusivity guarantees that a fault
103  *      resulting from a transaction on the bus can be easily traced and
104  *      reported to the driver requesting the transaction.
105  *
106  *      Nexus drivers must implement two new busops to support exclusive
107  *      access, bus_fm_access_enter() and bus_fm_access_exit().  The IO
108  *      framework will use these functions when it must set-up access
109  *      handles that set devacc_attr_access to DDI_ACC_CAUTIOUS in
110  *      their ddi_device_acc_attr_t request.
111  *
112  *      Upon receipt of a bus_fm_access_enter() request, the nexus must prevent
113  *      all other access requests until it receives bus_fm_access_exit()
114  *      for the requested bus instance. bus_fm_access_enter() and
115  *	bus_fm_access_exit() may be called from user, kernel or kernel
116  *	interrupt context.
117  *
118  * Access and DMA Handle Caching
119  *
120  *      To aid a nexus driver in associating access or DMA handles with
121  *      a detected error, the nexus should cache all handles that are
122  *      associated with DDI_ACC_FLAGERR, DDI_ACC_CAUTIOUS_ACC or
123  *	DDI_DMA_FLAGERR requests from its children.  ndi_fmc_insert() is
124  *	called by a nexus to cache handles with the above protection flags
125  *	and ndi_fmc_remove() is called when that handle is unmapped or
126  *	unbound by the requesting child.  ndi_fmc_insert() and
127  *	ndi_fmc_remove() may be called from any user or kernel context.
128  *
129  *	FM caches are allocated during ddi_fm_init() and maintained
130  *	as an array of elements that may be on one of two lists:
131  *	free or active.  The free list is a singly-linked list of
132  *	elements available for activity.  ndi_fm_insert() moves the
133  *	element at the head of the free to the active list.  The active
134  *	list is a doubly-linked searchable list.
135  *	When a handle is unmapped or unbound, its associated cache
136  *	entry is removed from the active list back to the free list.
137  *
138  *      Upon detection of an error, the nexus may invoke ndi_fmc_error() to
139  *      iterate over the handle cache of one or more of its FM compliant
140  *      children.  A comparison callback function is provided upon each
141  *      invocation of ndi_fmc_error() to tell the IO framework if a
142  *      handle is associated with an error.  If so, the framework will
143  *      set the error status for that handle before returning from
144  *      ndi_fmc_error().
145  *
146  *      ndi_fmc_error() may be called in any context
147  *      subject to the constraints specified by the interrupt iblock cookie
148  *      returned during initialization of the nexus and its children.
149  *
150  */
151 
152 #include <sys/types.h>
153 #include <sys/param.h>
154 #include <sys/debug.h>
155 #include <sys/sunddi.h>
156 #include <sys/sunndi.h>
157 #include <sys/ddi.h>
158 #include <sys/ndi_impldefs.h>
159 #include <sys/devctl.h>
160 #include <sys/nvpair.h>
161 #include <sys/ddifm.h>
162 #include <sys/ndifm.h>
163 #include <sys/spl.h>
164 #include <sys/sysmacros.h>
165 #include <sys/devops.h>
166 #include <sys/atomic.h>
167 #include <sys/fm/io/ddi.h>
168 
169 /*
170  * Allocate and initialize a fault management resource cache
171  * A fault management cache consists of a set of cache elements that
172  * may be on one of two lists: free or active.
173  *
174  * At creation time, every element but one is placed on the free list
175  * except for the first element.  This element is reserved as the first
176  * element of the active list and serves as an anchor for the active
177  * list in ndi_fmc_insert() and ndi_fmc_remove().  In these functions,
178  * it is not neccessary to check for the existence or validity of
179  * the active list.
180  */
181 void
182 i_ndi_fmc_create(ndi_fmc_t **fcpp, int qlen, ddi_iblock_cookie_t ibc)
183 {
184 	ndi_fmc_t *fcp;
185 	ndi_fmcentry_t *fep;
186 
187 	ASSERT(qlen > 1);
188 
189 	fcp = kmem_zalloc(sizeof (ndi_fmc_t), KM_SLEEP);
190 	mutex_init(&fcp->fc_lock, NULL, MUTEX_DRIVER, ibc);
191 
192 	/* Preallocate and initialize entries for this fm cache */
193 	fcp->fc_elems = kmem_zalloc(qlen * sizeof (ndi_fmcentry_t), KM_SLEEP);
194 
195 	fcp->fc_len = qlen;
196 
197 	/* Intialize the active and free lists */
198 	fcp->fc_active = fcp->fc_tail = fcp->fc_elems;
199 	fcp->fc_free = fcp->fc_elems + 1;
200 	qlen--;
201 	for (fep = fcp->fc_free; qlen > 1; qlen--) {
202 		fep->fce_prev = fep + 1;
203 		fep++;
204 	}
205 
206 	*fcpp = fcp;
207 }
208 
209 /*
210  * Destroy and resources associated with the given fault management cache.
211  */
212 void
213 i_ndi_fmc_destroy(ndi_fmc_t *fcp)
214 {
215 	if (fcp == NULL)
216 		return;
217 
218 	kmem_free(fcp->fc_elems, fcp->fc_len * sizeof (ndi_fmcentry_t));
219 	kmem_free(fcp, sizeof (ndi_fmc_t));
220 }
221 
222 /*
223  * Grow an existing fault management cache by grow_sz number of entries
224  */
225 static int
226 fmc_grow(ndi_fmc_t *fcp, int flag, int grow_sz)
227 {
228 	int olen, nlen;
229 	void *resource;
230 	ndi_fmcentry_t *ncp, *oep, *nep, *nnep;
231 
232 	ASSERT(grow_sz);
233 	ASSERT(MUTEX_HELD(&fcp->fc_lock));
234 
235 	/* Allocate a new cache */
236 	nlen = grow_sz + fcp->fc_len;
237 	if ((ncp = kmem_zalloc(nlen * sizeof (ndi_fmcentry_t),
238 	    KM_NOSLEEP)) == NULL)
239 		return (1);
240 
241 	/* Migrate old cache to new cache */
242 	oep = fcp->fc_elems;
243 	olen = fcp->fc_len;
244 	for (nep = ncp; ; olen--) {
245 		resource = nep->fce_resource = oep->fce_resource;
246 		nep->fce_bus_specific = oep->fce_bus_specific;
247 		if (resource) {
248 			if (flag == DMA_HANDLE) {
249 				((ddi_dma_impl_t *)resource)->
250 				    dmai_error.err_fep = nep;
251 			} else if (flag == ACC_HANDLE) {
252 				((ddi_acc_impl_t *)resource)->
253 				    ahi_err->err_fep = nep;
254 			}
255 		}
256 
257 		/*
258 		 * This is the last entry.  Set the tail pointer and
259 		 * terminate processing of the old cache.
260 		 */
261 		if (olen == 1) {
262 			fcp->fc_tail = nep;
263 			++nep;
264 			break;
265 		}
266 
267 		/*
268 		 * Set the next and previous pointer for the new cache
269 		 * entry.
270 		 */
271 		nnep = nep + 1;
272 		nep->fce_next = nnep;
273 		nnep->fce_prev = nep;
274 
275 		/* Advance to the next entry */
276 		++oep;
277 		nep = nnep;
278 	}
279 
280 	kmem_free(fcp->fc_elems, fcp->fc_len * sizeof (ndi_fmcentry_t));
281 
282 	/* Initialize and add remaining new cache entries to the free list */
283 	olen = fcp->fc_len + 1;
284 	fcp->fc_len = nlen;
285 	for (fcp->fc_free = nep; nlen > olen; nlen--) {
286 		nep->fce_prev = nep + 1;
287 		nep++;
288 	}
289 
290 	fcp->fc_active = ncp;
291 	fcp->fc_elems = ncp;
292 
293 	return (0);
294 }
295 
296 /*
297  * ndi_fmc_insert -
298  * 	Add a new entry to the specified cache.
299  *
300  * 	This function must be called at or below LOCK_LEVEL
301  */
302 void
303 ndi_fmc_insert(dev_info_t *dip, int flag, void *resource, void *bus_specific)
304 {
305 	struct dev_info *devi = DEVI(dip);
306 	ndi_fmc_t *fcp;
307 	ndi_fmcentry_t *fep, **fpp;
308 	struct i_ddi_fmhdl *fmhdl;
309 
310 	ASSERT(devi);
311 	ASSERT(flag == DMA_HANDLE || flag == ACC_HANDLE);
312 
313 	fmhdl = devi->devi_fmhdl;
314 	if (fmhdl == NULL) {
315 		i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP);
316 		return;
317 	}
318 
319 	if (flag == DMA_HANDLE) {
320 		if (!DDI_FM_DMA_ERR_CAP(fmhdl->fh_cap)) {
321 			i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL,
322 			    DDI_NOSLEEP);
323 			return;
324 		}
325 		fcp = fmhdl->fh_dma_cache;
326 		fpp = &((ddi_dma_impl_t *)resource)->dmai_error.err_fep;
327 	} else if (flag == ACC_HANDLE) {
328 		if (!DDI_FM_ACC_ERR_CAP(fmhdl->fh_cap)) {
329 			i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL,
330 			    DDI_NOSLEEP);
331 			return;
332 		}
333 		fcp = fmhdl->fh_acc_cache;
334 		fpp = &((ddi_acc_impl_t *)resource)->ahi_err->err_fep;
335 	}
336 	ASSERT(*fpp == NULL);
337 
338 	mutex_enter(&fcp->fc_lock);
339 
340 	/* Get an entry from the free list */
341 	fep = fcp->fc_free;
342 	if (fep == NULL) {
343 		if (fmc_grow(fcp, flag,
344 		    (flag == ACC_HANDLE ? default_acccache_sz :
345 		    default_dmacache_sz)) != 0) {
346 
347 			/* Unable to get an entry or grow this cache */
348 			atomic_add_64(
349 			    &fmhdl->fh_kstat.fek_fmc_full.value.ui64, 1);
350 			mutex_exit(&fcp->fc_lock);
351 			return;
352 		}
353 		atomic_add_64(&fmhdl->fh_kstat.fek_fmc_grew.value.ui64, 1);
354 		fep = fcp->fc_free;
355 	}
356 	fcp->fc_free = fep->fce_prev;
357 
358 	/*
359 	 * Set-up the handle resource and bus_specific information.
360 	 * Also remember the pointer back to the cache for quick removal.
361 	 */
362 	fep->fce_bus_specific = bus_specific;
363 	fep->fce_resource = resource;
364 	fep->fce_next = NULL;
365 	*fpp = fep;
366 
367 	/* Add entry to the end of the active list */
368 	fep->fce_prev = fcp->fc_tail;
369 	fcp->fc_tail->fce_next = fep;
370 	fcp->fc_tail = fep;
371 	mutex_exit(&fcp->fc_lock);
372 }
373 
374 /*
375  * 	Remove an entry from the specified cache of access or dma mappings
376  *
377  * 	This function must be called at or below LOCK_LEVEL.
378  */
379 void
380 ndi_fmc_remove(dev_info_t *dip, int flag, const void *resource)
381 {
382 	ndi_fmc_t *fcp;
383 	ndi_fmcentry_t *fep;
384 	struct dev_info *devi = DEVI(dip);
385 	struct i_ddi_fmhdl *fmhdl;
386 
387 	ASSERT(devi);
388 	ASSERT(flag == DMA_HANDLE || flag == ACC_HANDLE);
389 
390 	fmhdl = devi->devi_fmhdl;
391 	if (fmhdl == NULL) {
392 		i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP);
393 		return;
394 	}
395 
396 	/* Find cache entry pointer for this resource */
397 	if (flag == DMA_HANDLE) {
398 		if (!DDI_FM_DMA_ERR_CAP(fmhdl->fh_cap)) {
399 			i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL,
400 			    DDI_NOSLEEP);
401 			return;
402 		}
403 		fcp = fmhdl->fh_dma_cache;
404 
405 		ASSERT(fcp);
406 
407 		mutex_enter(&fcp->fc_lock);
408 		fep = ((ddi_dma_impl_t *)resource)->dmai_error.err_fep;
409 		((ddi_dma_impl_t *)resource)->dmai_error.err_fep = NULL;
410 	} else if (flag == ACC_HANDLE) {
411 		if (!DDI_FM_ACC_ERR_CAP(fmhdl->fh_cap)) {
412 			i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL,
413 			    DDI_NOSLEEP);
414 			return;
415 		}
416 		fcp = fmhdl->fh_acc_cache;
417 
418 		ASSERT(fcp);
419 
420 		mutex_enter(&fcp->fc_lock);
421 		fep = ((ddi_acc_impl_t *)resource)->ahi_err->err_fep;
422 		((ddi_acc_impl_t *)resource)->ahi_err->err_fep = NULL;
423 	}
424 
425 	/*
426 	 * Resource not in cache, return
427 	 */
428 	if (fep == NULL) {
429 		mutex_exit(&fcp->fc_lock);
430 		return;
431 	}
432 
433 	fep->fce_prev->fce_next = fep->fce_next;
434 	if (fep == fcp->fc_tail)
435 		fcp->fc_tail = fep->fce_prev;
436 	else
437 		fep->fce_next->fce_prev = fep->fce_prev;
438 
439 	/* Add entry back to the free list */
440 	fep->fce_prev = fcp->fc_free;
441 	fcp->fc_free = fep;
442 	mutex_exit(&fcp->fc_lock);
443 }
444 
445 int
446 ndi_fmc_entry_error(dev_info_t *dip, int flag, ddi_fm_error_t *derr,
447     const void *bus_err_state)
448 {
449 	int status, fatal = 0, nonfatal = 0;
450 	ndi_fmc_t *fcp = NULL;
451 	ndi_fmcentry_t *fep;
452 	struct i_ddi_fmhdl *fmhdl;
453 
454 	ASSERT(flag == DMA_HANDLE || flag == ACC_HANDLE);
455 
456 	fmhdl = DEVI(dip)->devi_fmhdl;
457 	ASSERT(fmhdl);
458 	status = DDI_FM_UNKNOWN;
459 
460 	if (flag == DMA_HANDLE && DDI_FM_DMA_ERR_CAP(fmhdl->fh_cap)) {
461 		fcp = fmhdl->fh_dma_cache;
462 		ASSERT(fcp);
463 	} else if (flag == ACC_HANDLE && DDI_FM_ACC_ERR_CAP(fmhdl->fh_cap)) {
464 		fcp = fmhdl->fh_acc_cache;
465 		ASSERT(fcp);
466 	}
467 
468 	if (fcp != NULL) {
469 
470 		/*
471 		 * Check active resource entries
472 		 */
473 		mutex_enter(&fcp->fc_lock);
474 		for (fep = fcp->fc_active->fce_next; fep != NULL;
475 		    fep = fep->fce_next) {
476 			ddi_fmcompare_t compare_func;
477 
478 			/*
479 			 * Compare captured error state with handle
480 			 * resources.  During the comparison and
481 			 * subsequent error handling, we block
482 			 * attempts to free the cache entry.
483 			 */
484 			compare_func = (flag == ACC_HANDLE) ?
485 			    i_ddi_fm_acc_err_cf_get((ddi_acc_handle_t)
486 				fep->fce_resource) :
487 			    i_ddi_fm_dma_err_cf_get((ddi_dma_handle_t)
488 				fep->fce_resource);
489 
490 			status = compare_func(dip, fep->fce_resource,
491 			    bus_err_state, fep->fce_bus_specific);
492 			if (status == DDI_FM_UNKNOWN || status == DDI_FM_OK)
493 				continue;
494 
495 			if (status == DDI_FM_FATAL)
496 				++fatal;
497 			else if (status == DDI_FM_NONFATAL)
498 				++nonfatal;
499 
500 			/* Set the error for this resource handle */
501 			if (flag == ACC_HANDLE) {
502 				ddi_acc_handle_t ap = fep->fce_resource;
503 
504 				i_ddi_fm_acc_err_set(ap, derr->fme_ena, status,
505 				    DDI_FM_ERR_UNEXPECTED);
506 				ddi_fm_acc_err_get(ap, derr, DDI_FME_VERSION);
507 				derr->fme_acc_handle = ap;
508 			} else {
509 				ddi_dma_handle_t dp = fep->fce_resource;
510 
511 				i_ddi_fm_dma_err_set(dp, derr->fme_ena, status,
512 				    DDI_FM_ERR_UNEXPECTED);
513 				ddi_fm_dma_err_get(dp, derr, DDI_FME_VERSION);
514 				derr->fme_dma_handle = dp;
515 			}
516 			break;
517 		}
518 		mutex_exit(&fcp->fc_lock);
519 	}
520 	return (fatal ? DDI_FM_FATAL : nonfatal ? DDI_FM_NONFATAL :
521 	    DDI_FM_UNKNOWN);
522 }
523 
524 /*
525  * Check error state against the handle resource stored in the specified
526  * FM cache.  If tdip != NULL, we check only the cache entries for tdip.
527  * The caller must ensure that tdip is valid throughout the call and
528  * all FM data structures can be safely accesses.
529  *
530  * If tdip == NULL, we check all children that have registered their
531  * FM_DMA_CHK or FM_ACC_CHK capabilities.
532  *
533  * The following status values may be returned:
534  *
535  *	DDI_FM_FATAL - if at least one cache entry comparison yields a
536  *			fatal error.
537  *
538  *	DDI_FM_NONFATAL - if at least one cache entry comparison yields a
539  *			non-fatal error and no comparison yields a fatal error.
540  *
541  *	DDI_FM_UNKNOWN - cache entry comparisons did not yield fatal or
542  *			non-fatal errors.
543  *
544  */
545 int
546 ndi_fmc_error(dev_info_t *dip, dev_info_t *tdip, int flag, uint64_t ena,
547     const void *bus_err_state)
548 {
549 	int status, fatal = 0, nonfatal = 0;
550 	ddi_fm_error_t derr;
551 	struct i_ddi_fmhdl *fmhdl;
552 	struct i_ddi_fmtgt *tgt;
553 
554 	ASSERT(flag == DMA_HANDLE || flag == ACC_HANDLE);
555 
556 	i_ddi_fm_handler_enter(dip);
557 	fmhdl = DEVI(dip)->devi_fmhdl;
558 	ASSERT(fmhdl);
559 
560 	bzero(&derr, sizeof (ddi_fm_error_t));
561 	derr.fme_version = DDI_FME_VERSION;
562 	derr.fme_flag = DDI_FM_ERR_UNEXPECTED;
563 	derr.fme_ena = ena;
564 
565 	for (tgt = fmhdl->fh_tgts; tgt != NULL; tgt = tgt->ft_next) {
566 
567 		if (tdip != NULL && tdip != tgt->ft_dip)
568 			continue;
569 
570 		/*
571 		 * Attempt to find the entry in this childs handle cache
572 		 */
573 		status = ndi_fmc_entry_error(tgt->ft_dip, flag, &derr,
574 		    bus_err_state);
575 
576 		if (status == DDI_FM_FATAL)
577 			++fatal;
578 		else if (status == DDI_FM_NONFATAL)
579 			++nonfatal;
580 		else
581 			continue;
582 
583 		/*
584 		 * Call our child to process this error.
585 		 */
586 		status = tgt->ft_errhdl->eh_func(tgt->ft_dip, &derr,
587 		    tgt->ft_errhdl->eh_impl);
588 
589 		if (status == DDI_FM_FATAL)
590 			++fatal;
591 		else if (status == DDI_FM_NONFATAL)
592 			++nonfatal;
593 	}
594 
595 	i_ddi_fm_handler_exit(dip);
596 
597 	if (fatal)
598 		return (DDI_FM_FATAL);
599 	else if (nonfatal)
600 		return (DDI_FM_NONFATAL);
601 
602 	return (DDI_FM_UNKNOWN);
603 }
604 
605 /*
606  * Dispatch registered error handlers for dip.  If tdip != NULL, only
607  * the error handler (if available) for tdip is invoked.  Otherwise,
608  * all registered error handlers are invoked.
609  *
610  * The following status values may be returned:
611  *
612  *	DDI_FM_FATAL - if at least one error handler returns a
613  *			fatal error.
614  *
615  *	DDI_FM_NONFATAL - if at least one error handler returns a
616  *			non-fatal error and none returned a fatal error.
617  *
618  *	DDI_FM_UNKNOWN - if at least one error handler returns
619  *			unknown status and none return fatal or non-fatal.
620  *
621  *	DDI_FM_OK - if all error handlers return DDI_FM_OK
622  */
623 int
624 ndi_fm_handler_dispatch(dev_info_t *dip, dev_info_t *tdip,
625     const ddi_fm_error_t *nerr)
626 {
627 	int status;
628 	int unknown = 0, fatal = 0, nonfatal = 0;
629 	struct i_ddi_fmhdl *hdl;
630 	struct i_ddi_fmtgt *tgt;
631 
632 	status = DDI_FM_UNKNOWN;
633 
634 	i_ddi_fm_handler_enter(dip);
635 	hdl = DEVI(dip)->devi_fmhdl;
636 	tgt = hdl->fh_tgts;
637 	while (tgt != NULL) {
638 		if (tdip == NULL || tdip == tgt->ft_dip) {
639 			struct i_ddi_errhdl *errhdl;
640 
641 			errhdl = tgt->ft_errhdl;
642 			status = errhdl->eh_func(tgt->ft_dip, nerr,
643 			    errhdl->eh_impl);
644 
645 			if (status == DDI_FM_FATAL)
646 				++fatal;
647 			else if (status == DDI_FM_NONFATAL)
648 				++nonfatal;
649 			else if (status == DDI_FM_UNKNOWN)
650 				++unknown;
651 
652 			/* Only interested in one target */
653 			if (tdip != NULL)
654 				break;
655 		}
656 		tgt = tgt->ft_next;
657 	}
658 	i_ddi_fm_handler_exit(dip);
659 
660 	if (fatal)
661 		return (DDI_FM_FATAL);
662 	else if (nonfatal)
663 		return (DDI_FM_NONFATAL);
664 	else if (unknown)
665 		return (DDI_FM_UNKNOWN);
666 	else
667 		return (DDI_FM_OK);
668 }
669 
670 /*
671  * Set error status for specified access or DMA handle
672  *
673  * May be called in any context but caller must insure validity of
674  * handle.
675  */
676 void
677 ndi_fm_acc_err_set(ddi_acc_handle_t handle, ddi_fm_error_t *dfe)
678 {
679 	i_ddi_fm_acc_err_set(handle, dfe->fme_ena, dfe->fme_status,
680 	    dfe->fme_flag);
681 }
682 
683 void
684 ndi_fm_dma_err_set(ddi_dma_handle_t handle, ddi_fm_error_t *dfe)
685 {
686 	i_ddi_fm_dma_err_set(handle, dfe->fme_ena, dfe->fme_status,
687 	    dfe->fme_flag);
688 }
689 
690 /*
691  * Call parent busop fm initialization routine.
692  *
693  * Called during driver attach(1M)
694  */
695 int
696 i_ndi_busop_fm_init(dev_info_t *dip, int tcap, ddi_iblock_cookie_t *ibc)
697 {
698 	int pcap;
699 	dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
700 
701 	if (dip == ddi_root_node())
702 		return (ddi_system_fmcap | DDI_FM_EREPORT_CAPABLE);
703 
704 	/* Valid operation for BUSO_REV_6 and above */
705 	if (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_6)
706 		return (DDI_FM_NOT_CAPABLE);
707 
708 	if (DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_init == NULL)
709 		return (DDI_FM_NOT_CAPABLE);
710 
711 	pcap = (*DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_init)
712 	    (pdip, dip, tcap, ibc);
713 
714 	return (pcap);
715 }
716 
717 /*
718  * Call parent busop fm clean-up routine.
719  *
720  * Called during driver detach(1M)
721  */
722 void
723 i_ndi_busop_fm_fini(dev_info_t *dip)
724 {
725 	dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
726 
727 	if (dip == ddi_root_node())
728 		return;
729 
730 	/* Valid operation for BUSO_REV_6 and above */
731 	if (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_6)
732 		return;
733 
734 	if (DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_fini == NULL)
735 		return;
736 
737 	(*DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_fini)(pdip, dip);
738 }
739 
740 /*
741  * The following routines provide exclusive access to a nexus resource
742  *
743  * These busops may be called in user or kernel driver context.
744  */
745 void
746 i_ndi_busop_access_enter(dev_info_t *dip, ddi_acc_handle_t handle)
747 {
748 	dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
749 
750 	/* Valid operation for BUSO_REV_6 and above */
751 	if (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_6)
752 		return;
753 
754 	if (DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_access_enter == NULL)
755 		return;
756 
757 	(*DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_access_enter)
758 	    (pdip, handle);
759 }
760 
761 void
762 i_ndi_busop_access_exit(dev_info_t *dip, ddi_acc_handle_t handle)
763 {
764 	dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
765 
766 	/* Valid operation for BUSO_REV_6 and above */
767 	if (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_6)
768 		return;
769 
770 	if (DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_access_exit == NULL)
771 		return;
772 
773 	(*DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_access_exit)(pdip, handle);
774 }
775