xref: /titanic_51/usr/src/uts/common/os/mutex.c (revision 31e37bb439502e3f7c4c0a9a77d655ea5d56887a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Big Theory Statement for mutual exclusion locking primitives.
31  *
32  * A mutex serializes multiple threads so that only one thread
33  * (the "owner" of the mutex) is active at a time.  See mutex(9F)
34  * for a full description of the interfaces and programming model.
35  * The rest of this comment describes the implementation.
36  *
37  * Mutexes come in two flavors: adaptive and spin.  mutex_init(9F)
38  * determines the type based solely on the iblock cookie (PIL) argument.
39  * PIL > LOCK_LEVEL implies a spin lock; everything else is adaptive.
40  *
41  * Spin mutexes block interrupts and spin until the lock becomes available.
42  * A thread may not sleep, or call any function that might sleep, while
43  * holding a spin mutex.  With few exceptions, spin mutexes should only
44  * be used to synchronize with interrupt handlers.
45  *
46  * Adaptive mutexes (the default type) spin if the owner is running on
47  * another CPU and block otherwise.  This policy is based on the assumption
48  * that mutex hold times are typically short enough that the time spent
49  * spinning is less than the time it takes to block.  If you need mutual
50  * exclusion semantics with long hold times, consider an rwlock(9F) as
51  * RW_WRITER.  Better still, reconsider the algorithm: if it requires
52  * mutual exclusion for long periods of time, it's probably not scalable.
53  *
54  * Adaptive mutexes are overwhelmingly more common than spin mutexes,
55  * so mutex_enter() assumes that the lock is adaptive.  We get away
56  * with this by structuring mutexes so that an attempt to acquire a
57  * spin mutex as adaptive always fails.  When mutex_enter() fails
58  * it punts to mutex_vector_enter(), which does all the hard stuff.
59  *
60  * mutex_vector_enter() first checks the type.  If it's spin mutex,
61  * we just call lock_set_spl() and return.  If it's an adaptive mutex,
62  * we check to see what the owner is doing.  If the owner is running,
63  * we spin until the lock becomes available; if not, we mark the lock
64  * as having waiters and block.
65  *
66  * Blocking on a mutex is surprisingly delicate dance because, for speed,
67  * mutex_exit() doesn't use an atomic instruction.  Thus we have to work
68  * a little harder in the (rarely-executed) blocking path to make sure
69  * we don't block on a mutex that's just been released -- otherwise we
70  * might never be woken up.
71  *
72  * The logic for synchronizing mutex_vector_enter() with mutex_exit()
73  * in the face of preemption and relaxed memory ordering is as follows:
74  *
75  * (1) Preemption in the middle of mutex_exit() must cause mutex_exit()
76  *     to restart.  Each platform must enforce this by checking the
77  *     interrupted PC in the interrupt handler (or on return from trap --
78  *     whichever is more convenient for the platform).  If the PC
79  *     lies within the critical region of mutex_exit(), the interrupt
80  *     handler must reset the PC back to the beginning of mutex_exit().
81  *     The critical region consists of all instructions up to, but not
82  *     including, the store that clears the lock (which, of course,
83  *     must never be executed twice.)
84  *
85  *     This ensures that the owner will always check for waiters after
86  *     resuming from a previous preemption.
87  *
88  * (2) A thread resuming in mutex_exit() does (at least) the following:
89  *
90  *	when resuming:	set CPU_THREAD = owner
91  *			membar #StoreLoad
92  *
93  *	in mutex_exit:	check waiters bit; do wakeup if set
94  *			membar #LoadStore|#StoreStore
95  *			clear owner
96  *			(at this point, other threads may or may not grab
97  *			the lock, and we may or may not reacquire it)
98  *
99  *	when blocking:	membar #StoreStore (due to disp_lock_enter())
100  *			set CPU_THREAD = (possibly) someone else
101  *
102  * (3) A thread blocking in mutex_vector_enter() does the following:
103  *
104  *			set waiters bit
105  *			membar #StoreLoad (via membar_enter())
106  *			check CPU_THREAD for each CPU; abort if owner running
107  *			membar #LoadLoad (via membar_consumer())
108  *			check owner and waiters bit; abort if either changed
109  *			block
110  *
111  * Thus the global memory orderings for (2) and (3) are as follows:
112  *
113  * (2M) mutex_exit() memory order:
114  *
115  *			STORE	CPU_THREAD = owner
116  *			LOAD	waiters bit
117  *			STORE	owner = NULL
118  *			STORE	CPU_THREAD = (possibly) someone else
119  *
120  * (3M) mutex_vector_enter() memory order:
121  *
122  *			STORE	waiters bit = 1
123  *			LOAD	CPU_THREAD for each CPU
124  *			LOAD	owner and waiters bit
125  *
126  * It has been verified by exhaustive simulation that all possible global
127  * memory orderings of (2M) interleaved with (3M) result in correct
128  * behavior.  Moreover, these ordering constraints are minimal: changing
129  * the ordering of anything in (2M) or (3M) breaks the algorithm, creating
130  * windows for missed wakeups.  Note: the possibility that other threads
131  * may grab the lock after the owner drops it can be factored out of the
132  * memory ordering analysis because mutex_vector_enter() won't block
133  * if the lock isn't still owned by the same thread.
134  *
135  * The only requirements of code outside the mutex implementation are
136  * (1) mutex_exit() preemption fixup in interrupt handlers or trap return,
137  * and (2) a membar #StoreLoad after setting CPU_THREAD in resume().
138  * Note: idle threads cannot grab adaptive locks (since they cannot block),
139  * so the membar may be safely omitted when resuming an idle thread.
140  *
141  * When a mutex has waiters, mutex_vector_exit() has several options:
142  *
143  * (1) Choose a waiter and make that thread the owner before waking it;
144  *     this is known as "direct handoff" of ownership.
145  *
146  * (2) Drop the lock and wake one waiter.
147  *
148  * (3) Drop the lock, clear the waiters bit, and wake all waiters.
149  *
150  * In many ways (1) is the cleanest solution, but if a lock is moderately
151  * contended it defeats the adaptive spin logic.  If we make some other
152  * thread the owner, but he's not ONPROC yet, then all other threads on
153  * other cpus that try to get the lock will conclude that the owner is
154  * blocked, so they'll block too.  And so on -- it escalates quickly,
155  * with every thread taking the blocking path rather than the spin path.
156  * Thus, direct handoff is *not* a good idea for adaptive mutexes.
157  *
158  * Option (2) is the next most natural-seeming option, but it has several
159  * annoying properties.  If there's more than one waiter, we must preserve
160  * the waiters bit on an unheld lock.  On cas-capable platforms, where
161  * the waiters bit is part of the lock word, this means that both 0x0
162  * and 0x1 represent unheld locks, so we have to cas against *both*.
163  * Priority inheritance also gets more complicated, because a lock can
164  * have waiters but no owner to whom priority can be willed.  So while
165  * it is possible to make option (2) work, it's surprisingly vile.
166  *
167  * Option (3), the least-intuitive at first glance, is what we actually do.
168  * It has the advantage that because you always wake all waiters, you
169  * never have to preserve the waiters bit.  Waking all waiters seems like
170  * begging for a thundering herd problem, but consider: under option (2),
171  * every thread that grabs and drops the lock will wake one waiter -- so
172  * if the lock is fairly active, all waiters will be awakened very quickly
173  * anyway.  Moreover, this is how adaptive locks are *supposed* to work.
174  * The blocking case is rare; the more common case (by 3-4 orders of
175  * magnitude) is that one or more threads spin waiting to get the lock.
176  * Only direct handoff can prevent the thundering herd problem, but as
177  * mentioned earlier, that would tend to defeat the adaptive spin logic.
178  * In practice, option (3) works well because the blocking case is rare.
179  */
180 
181 /*
182  * delayed lock retry with exponential delay for spin locks
183  *
184  * It is noted above that for both the spin locks and the adaptive locks,
185  * spinning is the dominate mode of operation.  So long as there is only
186  * one thread waiting on a lock, the naive spin loop works very well in
187  * cache based architectures.  The lock data structure is pulled into the
188  * cache of the processor with the waiting/spinning thread and no further
189  * memory traffic is generated until the lock is released.  Unfortunately,
190  * once two or more threads are waiting on a lock, the naive spin has
191  * the property of generating maximum memory traffic from each spinning
192  * thread as the spinning threads contend for the lock data structure.
193  *
194  * By executing a delay loop before retrying a lock, a waiting thread
195  * can reduce its memory traffic by a large factor, depending on the
196  * size of the delay loop.  A large delay loop greatly reduced the memory
197  * traffic, but has the drawback of having a period of time when
198  * no thread is attempting to gain the lock even though several threads
199  * might be waiting.  A small delay loop has the drawback of not
200  * much reduction in memory traffic, but reduces the potential idle time.
201  * The theory of the exponential delay code is to start with a short
202  * delay loop and double the waiting time on each iteration, up to
203  * a preselected maximum.  The BACKOFF_BASE provides the equivalent
204  * of 2 to 3 memory references delay for US-III+ and US-IV architectures.
205  * The BACKOFF_CAP is the equivalent of 50 to 100 memory references of
206  * time (less than 12 microseconds for a 1000 MHz system).
207  *
208  * To determine appropriate BACKOFF_BASE and BACKOFF_CAP values,
209  * studies on US-III+ and US-IV systems using 1 to 66 threads were
210  * done.  A range of possible values were studied.
211  * Performance differences below 10 threads were not large.  For
212  * systems with more threads, substantial increases in total lock
213  * throughput was observed with the given values.  For cases where
214  * more than 20 threads were waiting on the same lock, lock throughput
215  * increased by a factor of 5 or more using the backoff algorithm.
216  */
217 
218 #include <sys/param.h>
219 #include <sys/time.h>
220 #include <sys/cpuvar.h>
221 #include <sys/thread.h>
222 #include <sys/debug.h>
223 #include <sys/cmn_err.h>
224 #include <sys/sobject.h>
225 #include <sys/turnstile.h>
226 #include <sys/systm.h>
227 #include <sys/mutex_impl.h>
228 #include <sys/spl.h>
229 #include <sys/lockstat.h>
230 #include <sys/atomic.h>
231 #include <sys/cpu.h>
232 #include <sys/stack.h>
233 
234 #define	BACKOFF_BASE	50
235 #define	BACKOFF_CAP 	1600
236 
237 /*
238  * The sobj_ops vector exports a set of functions needed when a thread
239  * is asleep on a synchronization object of this type.
240  */
241 static sobj_ops_t mutex_sobj_ops = {
242 	SOBJ_MUTEX, mutex_owner, turnstile_stay_asleep, turnstile_change_pri
243 };
244 
245 /*
246  * If the system panics on a mutex, save the address of the offending
247  * mutex in panic_mutex_addr, and save the contents in panic_mutex.
248  */
249 static mutex_impl_t panic_mutex;
250 static mutex_impl_t *panic_mutex_addr;
251 
252 static void
253 mutex_panic(char *msg, mutex_impl_t *lp)
254 {
255 	if (panicstr)
256 		return;
257 
258 	if (casptr(&panic_mutex_addr, NULL, lp) == NULL)
259 		panic_mutex = *lp;
260 
261 	panic("%s, lp=%p owner=%p thread=%p",
262 	    msg, lp, MUTEX_OWNER(&panic_mutex), curthread);
263 }
264 
265 /*
266  * mutex_vector_enter() is called from the assembly mutex_enter() routine
267  * if the lock is held or is not of type MUTEX_ADAPTIVE.
268  */
269 void
270 mutex_vector_enter(mutex_impl_t *lp)
271 {
272 	kthread_id_t	owner;
273 	hrtime_t	sleep_time = 0;	/* how long we slept */
274 	uint_t		spin_count = 0;	/* how many times we spun */
275 	cpu_t 		*cpup, *last_cpu;
276 	extern cpu_t	*cpu_list;
277 	turnstile_t	*ts;
278 	volatile mutex_impl_t *vlp = (volatile mutex_impl_t *)lp;
279 	int		backoff;	/* current backoff */
280 	int		backctr;	/* ctr for backoff */
281 
282 	ASSERT_STACK_ALIGNED();
283 
284 	if (MUTEX_TYPE_SPIN(lp)) {
285 		lock_set_spl(&lp->m_spin.m_spinlock, lp->m_spin.m_minspl,
286 		    &lp->m_spin.m_oldspl);
287 		return;
288 	}
289 
290 	if (!MUTEX_TYPE_ADAPTIVE(lp)) {
291 		mutex_panic("mutex_enter: bad mutex", lp);
292 		return;
293 	}
294 
295 	/*
296 	 * Adaptive mutexes must not be acquired from above LOCK_LEVEL.
297 	 * We can migrate after loading CPU but before checking CPU_ON_INTR,
298 	 * so we must verify by disabling preemption and loading CPU again.
299 	 */
300 	cpup = CPU;
301 	if (CPU_ON_INTR(cpup) && !panicstr) {
302 		kpreempt_disable();
303 		if (CPU_ON_INTR(CPU))
304 			mutex_panic("mutex_enter: adaptive at high PIL", lp);
305 		kpreempt_enable();
306 	}
307 
308 	CPU_STATS_ADDQ(cpup, sys, mutex_adenters, 1);
309 
310 	backoff = BACKOFF_BASE;
311 
312 	for (;;) {
313 spin:
314 		spin_count++;
315 		/*
316 		 * Add an exponential backoff delay before trying again
317 		 * to touch the mutex data structure.
318 		 * the spin_count test and call to nulldev are to prevent
319 		 * the compiler optimizer from eliminating the delay loop.
320 		 */
321 		for (backctr = backoff; backctr; backctr--) {
322 			if (!spin_count) (void) nulldev();
323 		};    /* delay */
324 		backoff = backoff << 1;			/* double it */
325 		if (backoff > BACKOFF_CAP) {
326 			backoff = BACKOFF_CAP;
327 		}
328 
329 		SMT_PAUSE();
330 
331 		if (panicstr)
332 			return;
333 
334 		if ((owner = MUTEX_OWNER(vlp)) == NULL) {
335 			if (mutex_adaptive_tryenter(lp))
336 				break;
337 			continue;
338 		}
339 
340 		if (owner == curthread)
341 			mutex_panic("recursive mutex_enter", lp);
342 
343 		/*
344 		 * If lock is held but owner is not yet set, spin.
345 		 * (Only relevant for platforms that don't have cas.)
346 		 */
347 		if (owner == MUTEX_NO_OWNER)
348 			continue;
349 
350 		/*
351 		 * When searching the other CPUs, start with the one where
352 		 * we last saw the owner thread.  If owner is running, spin.
353 		 *
354 		 * We must disable preemption at this point to guarantee
355 		 * that the list doesn't change while we traverse it
356 		 * without the cpu_lock mutex.  While preemption is
357 		 * disabled, we must revalidate our cached cpu pointer.
358 		 */
359 		kpreempt_disable();
360 		if (cpup->cpu_next == NULL)
361 			cpup = cpu_list;
362 		last_cpu = cpup;	/* mark end of search */
363 		do {
364 			if (cpup->cpu_thread == owner) {
365 				kpreempt_enable();
366 				goto spin;
367 			}
368 		} while ((cpup = cpup->cpu_next) != last_cpu);
369 		kpreempt_enable();
370 
371 		/*
372 		 * The owner appears not to be running, so block.
373 		 * See the Big Theory Statement for memory ordering issues.
374 		 */
375 		ts = turnstile_lookup(lp);
376 		MUTEX_SET_WAITERS(lp);
377 		membar_enter();
378 
379 		/*
380 		 * Recheck whether owner is running after waiters bit hits
381 		 * global visibility (above).  If owner is running, spin.
382 		 *
383 		 * Since we are at ipl DISP_LEVEL, kernel preemption is
384 		 * disabled, however we still need to revalidate our cached
385 		 * cpu pointer to make sure the cpu hasn't been deleted.
386 		 */
387 		if (cpup->cpu_next == NULL)
388 			last_cpu = cpup = cpu_list;
389 		do {
390 			if (cpup->cpu_thread == owner) {
391 				turnstile_exit(lp);
392 				goto spin;
393 			}
394 		} while ((cpup = cpup->cpu_next) != last_cpu);
395 		membar_consumer();
396 
397 		/*
398 		 * If owner and waiters bit are unchanged, block.
399 		 */
400 		if (MUTEX_OWNER(vlp) == owner && MUTEX_HAS_WAITERS(vlp)) {
401 			sleep_time -= gethrtime();
402 			(void) turnstile_block(ts, TS_WRITER_Q, lp,
403 			    &mutex_sobj_ops, NULL, NULL);
404 			sleep_time += gethrtime();
405 		} else {
406 			turnstile_exit(lp);
407 		}
408 	}
409 
410 	ASSERT(MUTEX_OWNER(lp) == curthread);
411 
412 	if (sleep_time == 0) {
413 		LOCKSTAT_RECORD(LS_MUTEX_ENTER_SPIN, lp, spin_count);
414 	} else {
415 		LOCKSTAT_RECORD(LS_MUTEX_ENTER_BLOCK, lp, sleep_time);
416 	}
417 
418 	LOCKSTAT_RECORD0(LS_MUTEX_ENTER_ACQUIRE, lp);
419 }
420 
421 /*
422  * mutex_vector_tryenter() is called from the assembly mutex_tryenter()
423  * routine if the lock is held or is not of type MUTEX_ADAPTIVE.
424  */
425 int
426 mutex_vector_tryenter(mutex_impl_t *lp)
427 {
428 	int s;
429 
430 	if (MUTEX_TYPE_ADAPTIVE(lp))
431 		return (0);		/* we already tried in assembly */
432 
433 	if (!MUTEX_TYPE_SPIN(lp)) {
434 		mutex_panic("mutex_tryenter: bad mutex", lp);
435 		return (0);
436 	}
437 
438 	s = splr(lp->m_spin.m_minspl);
439 	if (lock_try(&lp->m_spin.m_spinlock)) {
440 		lp->m_spin.m_oldspl = (ushort_t)s;
441 		return (1);
442 	}
443 	splx(s);
444 	return (0);
445 }
446 
447 /*
448  * mutex_vector_exit() is called from mutex_exit() if the lock is not
449  * adaptive, has waiters, or is not owned by the current thread (panic).
450  */
451 void
452 mutex_vector_exit(mutex_impl_t *lp)
453 {
454 	turnstile_t *ts;
455 
456 	if (MUTEX_TYPE_SPIN(lp)) {
457 		lock_clear_splx(&lp->m_spin.m_spinlock, lp->m_spin.m_oldspl);
458 		return;
459 	}
460 
461 	if (MUTEX_OWNER(lp) != curthread) {
462 		mutex_panic("mutex_exit: not owner", lp);
463 		return;
464 	}
465 
466 	ts = turnstile_lookup(lp);
467 	MUTEX_CLEAR_LOCK_AND_WAITERS(lp);
468 	if (ts == NULL)
469 		turnstile_exit(lp);
470 	else
471 		turnstile_wakeup(ts, TS_WRITER_Q, ts->ts_waiters, NULL);
472 	LOCKSTAT_RECORD0(LS_MUTEX_EXIT_RELEASE, lp);
473 }
474 
475 int
476 mutex_owned(kmutex_t *mp)
477 {
478 	mutex_impl_t *lp = (mutex_impl_t *)mp;
479 
480 	if (panicstr)
481 		return (1);
482 
483 	if (MUTEX_TYPE_ADAPTIVE(lp))
484 		return (MUTEX_OWNER(lp) == curthread);
485 	return (LOCK_HELD(&lp->m_spin.m_spinlock));
486 }
487 
488 kthread_t *
489 mutex_owner(kmutex_t *mp)
490 {
491 	mutex_impl_t *lp = (mutex_impl_t *)mp;
492 	kthread_id_t t;
493 
494 	if (MUTEX_TYPE_ADAPTIVE(lp) && (t = MUTEX_OWNER(lp)) != MUTEX_NO_OWNER)
495 		return (t);
496 	return (NULL);
497 }
498 
499 /*
500  * The iblock cookie 'ibc' is the spl level associated with the lock;
501  * this alone determines whether the lock will be ADAPTIVE or SPIN.
502  *
503  * Adaptive mutexes created in zeroed memory do not need to call
504  * mutex_init() as their allocation in this fashion guarantees
505  * their initialization.
506  *   eg adaptive mutexes created as static within the BSS or allocated
507  *      by kmem_zalloc().
508  */
509 /* ARGSUSED */
510 void
511 mutex_init(kmutex_t *mp, char *name, kmutex_type_t type, void *ibc)
512 {
513 	mutex_impl_t *lp = (mutex_impl_t *)mp;
514 
515 	ASSERT(ibc < (void *)KERNELBASE);	/* see 1215173 */
516 
517 	if ((intptr_t)ibc > ipltospl(LOCK_LEVEL) && ibc < (void *)KERNELBASE) {
518 		ASSERT(type != MUTEX_ADAPTIVE && type != MUTEX_DEFAULT);
519 		MUTEX_SET_TYPE(lp, MUTEX_SPIN);
520 		LOCK_INIT_CLEAR(&lp->m_spin.m_spinlock);
521 		LOCK_INIT_HELD(&lp->m_spin.m_dummylock);
522 		lp->m_spin.m_minspl = (int)(intptr_t)ibc;
523 	} else {
524 		ASSERT(type != MUTEX_SPIN);
525 		MUTEX_SET_TYPE(lp, MUTEX_ADAPTIVE);
526 		MUTEX_CLEAR_LOCK_AND_WAITERS(lp);
527 	}
528 }
529 
530 void
531 mutex_destroy(kmutex_t *mp)
532 {
533 	mutex_impl_t *lp = (mutex_impl_t *)mp;
534 
535 	if (lp->m_owner == 0 && !MUTEX_HAS_WAITERS(lp)) {
536 		MUTEX_DESTROY(lp);
537 	} else if (MUTEX_TYPE_SPIN(lp)) {
538 		LOCKSTAT_RECORD0(LS_MUTEX_DESTROY_RELEASE, lp);
539 		MUTEX_DESTROY(lp);
540 	} else if (MUTEX_TYPE_ADAPTIVE(lp)) {
541 		LOCKSTAT_RECORD0(LS_MUTEX_DESTROY_RELEASE, lp);
542 		if (MUTEX_OWNER(lp) != curthread)
543 			mutex_panic("mutex_destroy: not owner", lp);
544 		if (MUTEX_HAS_WAITERS(lp)) {
545 			turnstile_t *ts = turnstile_lookup(lp);
546 			turnstile_exit(lp);
547 			if (ts != NULL)
548 				mutex_panic("mutex_destroy: has waiters", lp);
549 		}
550 		MUTEX_DESTROY(lp);
551 	} else {
552 		mutex_panic("mutex_destroy: bad mutex", lp);
553 	}
554 }
555 
556 /*
557  * Simple C support for the cases where spin locks miss on the first try.
558  */
559 void
560 lock_set_spin(lock_t *lp)
561 {
562 	int spin_count = 1;
563 	int backoff;	/* current backoff */
564 	int backctr;	/* ctr for backoff */
565 
566 	if (panicstr)
567 		return;
568 
569 	if (ncpus == 1)
570 		panic("lock_set: %p lock held and only one CPU", lp);
571 
572 	backoff = BACKOFF_BASE;
573 	while (LOCK_HELD(lp) || !lock_spin_try(lp)) {
574 		if (panicstr)
575 			return;
576 		spin_count++;
577 		/*
578 		 * Add an exponential backoff delay before trying again
579 		 * to touch the mutex data structure.
580 		 * the spin_count test and call to nulldev are to prevent
581 		 * the compiler optimizer from eliminating the delay loop.
582 		 */
583 		for (backctr = backoff; backctr; backctr--) {	/* delay */
584 			if (!spin_count) (void) nulldev();
585 		}
586 
587 		backoff = backoff << 1;		/* double it */
588 		if (backoff > BACKOFF_CAP) {
589 			backoff = BACKOFF_CAP;
590 		}
591 		SMT_PAUSE();
592 	}
593 
594 	if (spin_count) {
595 		LOCKSTAT_RECORD(LS_LOCK_SET_SPIN, lp, spin_count);
596 	}
597 
598 	LOCKSTAT_RECORD0(LS_LOCK_SET_ACQUIRE, lp);
599 }
600 
601 void
602 lock_set_spl_spin(lock_t *lp, int new_pil, ushort_t *old_pil_addr, int old_pil)
603 {
604 	int spin_count = 1;
605 	int backoff;	/* current backoff */
606 	int backctr;	/* ctr for backoff */
607 
608 	if (panicstr)
609 		return;
610 
611 	if (ncpus == 1)
612 		panic("lock_set_spl: %p lock held and only one CPU", lp);
613 
614 	ASSERT(new_pil > LOCK_LEVEL);
615 
616 	backoff = BACKOFF_BASE;
617 	do {
618 		splx(old_pil);
619 		while (LOCK_HELD(lp)) {
620 			if (panicstr) {
621 				*old_pil_addr = (ushort_t)splr(new_pil);
622 				return;
623 			}
624 			spin_count++;
625 			/*
626 			 * Add an exponential backoff delay before trying again
627 			 * to touch the mutex data structure.
628 			 * spin_count test and call to nulldev are to prevent
629 			 * compiler optimizer from eliminating the delay loop.
630 			 */
631 			for (backctr = backoff; backctr; backctr--) {
632 				if (!spin_count) (void) nulldev();
633 			}
634 			backoff = backoff << 1;		/* double it */
635 			if (backoff > BACKOFF_CAP) {
636 				backoff = BACKOFF_CAP;
637 			}
638 
639 			SMT_PAUSE();
640 		}
641 		old_pil = splr(new_pil);
642 	} while (!lock_spin_try(lp));
643 
644 	*old_pil_addr = (ushort_t)old_pil;
645 
646 	if (spin_count) {
647 		LOCKSTAT_RECORD(LS_LOCK_SET_SPL_SPIN, lp, spin_count);
648 	}
649 
650 	LOCKSTAT_RECORD(LS_LOCK_SET_SPL_ACQUIRE, lp, spin_count);
651 }
652