xref: /titanic_51/usr/src/uts/common/os/msacct.c (revision 3c9168fa8e9c30d55b3aa2fde74bd7da46df53f5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/user.h>
30 #include <sys/proc.h>
31 #include <sys/cpuvar.h>
32 #include <sys/thread.h>
33 #include <sys/debug.h>
34 #include <sys/msacct.h>
35 #include <sys/time.h>
36 #include <sys/zone.h>
37 
38 /*
39  * Mega-theory block comment:
40  *
41  * Microstate accounting uses finite states and the transitions between these
42  * states to measure timing and accounting information.  The state information
43  * is presently tracked for threads (via microstate accounting) and cpus (via
44  * cpu microstate accounting).  In each case, these accounting mechanisms use
45  * states and transitions to measure time spent in each state instead of
46  * clock-based sampling methodologies.
47  *
48  * For microstate accounting:
49  * state transitions are accomplished by calling new_mstate() to switch between
50  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
51  * by calling restore_mstate() which restores a thread to its previously running
52  * state.  This code is primarialy executed by the dispatcher in disp() before
53  * running a process that was put to sleep.  If the thread was not in a sleeping
54  * state, this call has little effect other than to update the count of time the
55  * thread has spent waiting on run-queues in its lifetime.
56  *
57  * For cpu microstate accounting:
58  * Cpu microstate accounting is similar to the microstate accounting for threads
59  * but it tracks user, system, and idle time for cpus.  Cpu microstate
60  * accounting does not track interrupt times as there is a pre-existing
61  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
62  * tracks time that user threads have spent active, idle, or in the system on a
63  * given cpu.  Cpu microstate accounting has fewer states which allows it to
64  * have better defined transitions.  The states transition in the following
65  * order:
66  *
67  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
68  *
69  * In order to get to the idle state, the cpu microstate must first go through
70  * the system state, and vice-versa for the user state from idle.  The switching
71  * of the microstates from user to system is done as part of the regular thread
72  * microstate accounting code, except for the idle state which is switched by
73  * the dispatcher before it runs the idle loop.
74  *
75  * Cpu percentages:
76  * Cpu percentages are now handled by and based upon microstate accounting
77  * information (the same is true for load averages).  The routines which handle
78  * the growing/shrinking and exponentiation of cpu percentages have been moved
79  * here as it now makes more sense for them to be generated from the microstate
80  * code.  Cpu percentages are generated similarly to the way they were before;
81  * however, now they are based upon high-resolution timestamps and the
82  * timestamps are modified at various state changes instead of during a clock()
83  * interrupt.  This allows us to generate more accurate cpu percentages which
84  * are also in-sync with microstate data.
85  */
86 
87 /*
88  * Initialize the microstate level and the
89  * associated accounting information for an LWP.
90  */
91 void
92 init_mstate(
93 	kthread_t	*t,
94 	int		init_state)
95 {
96 	struct mstate *ms;
97 	klwp_t *lwp;
98 	hrtime_t curtime;
99 
100 	ASSERT(init_state != LMS_WAIT_CPU);
101 	ASSERT((unsigned)init_state < NMSTATES);
102 
103 	if ((lwp = ttolwp(t)) != NULL) {
104 		ms = &lwp->lwp_mstate;
105 		curtime = gethrtime_unscaled();
106 		ms->ms_prev = LMS_SYSTEM;
107 		ms->ms_start = curtime;
108 		ms->ms_term = 0;
109 		ms->ms_state_start = curtime;
110 		t->t_mstate = init_state;
111 		t->t_waitrq = 0;
112 		t->t_hrtime = curtime;
113 		if ((t->t_proc_flag & TP_MSACCT) == 0)
114 			t->t_proc_flag |= TP_MSACCT;
115 		bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
116 	}
117 }
118 
119 /*
120  * Initialize the microstate level and associated accounting information
121  * for the specified cpu
122  */
123 
124 void
125 init_cpu_mstate(
126 	cpu_t *cpu,
127 	int init_state)
128 {
129 	ASSERT(init_state != CMS_DISABLED);
130 
131 	cpu->cpu_mstate = init_state;
132 	cpu->cpu_mstate_start = gethrtime_unscaled();
133 	cpu->cpu_waitrq = 0;
134 	bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
135 }
136 
137 /*
138  * sets cpu state to OFFLINE.  We don't actually track this time,
139  * but it serves as a useful placeholder state for when we're not
140  * doing anything.
141  */
142 
143 void
144 term_cpu_mstate(struct cpu *cpu)
145 {
146 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
147 	cpu->cpu_mstate = CMS_DISABLED;
148 	cpu->cpu_mstate_start = 0;
149 }
150 
151 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
152 
153 #define	NEW_CPU_MSTATE(state)						\
154 	gen = cpu->cpu_mstate_gen;					\
155 	cpu->cpu_mstate_gen = 0;					\
156 	/* Need membar_producer() here if stores not ordered / TSO */	\
157 	cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
158 	cpu->cpu_mstate = state;					\
159 	cpu->cpu_mstate_start = curtime;				\
160 	/* Need membar_producer() here if stores not ordered / TSO */	\
161 	cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
162 
163 void
164 new_cpu_mstate(int cmstate, hrtime_t curtime)
165 {
166 	cpu_t *cpu = CPU;
167 	uint16_t gen;
168 
169 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
170 	ASSERT(cmstate < NCMSTATES);
171 	ASSERT(cmstate != CMS_DISABLED);
172 
173 	/*
174 	 * This function cannot be re-entrant on a given CPU. As such,
175 	 * we ASSERT and panic if we are called on behalf of an interrupt.
176 	 * The one exception is for an interrupt which has previously
177 	 * blocked. Such an interrupt is being scheduled by the dispatcher
178 	 * just like a normal thread, and as such cannot arrive here
179 	 * in a re-entrant manner.
180 	 */
181 
182 	ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
183 	ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
184 
185 	/*
186 	 * LOCKING, or lack thereof:
187 	 *
188 	 * Updates to CPU mstate can only be made by the CPU
189 	 * itself, and the above check to ignore interrupts
190 	 * should prevent recursion into this function on a given
191 	 * processor. i.e. no possible write contention.
192 	 *
193 	 * However, reads of CPU mstate can occur at any time
194 	 * from any CPU. Any locking added to this code path
195 	 * would seriously impact syscall performance. So,
196 	 * instead we have a best-effort protection for readers.
197 	 * The reader will want to account for any time between
198 	 * cpu_mstate_start and the present time. This requires
199 	 * some guarantees that the reader is getting coherent
200 	 * information.
201 	 *
202 	 * We use a generation counter, which is set to 0 before
203 	 * we start making changes, and is set to a new value
204 	 * after we're done. Someone reading the CPU mstate
205 	 * should check for the same non-zero value of this
206 	 * counter both before and after reading all state. The
207 	 * important point is that the reader is not a
208 	 * performance-critical path, but this function is.
209 	 *
210 	 * The ordering of writes is critical. cpu_mstate_gen must
211 	 * be visibly zero on all CPUs before we change cpu_mstate
212 	 * and cpu_mstate_start. Additionally, cpu_mstate_gen must
213 	 * not be restored to oldgen+1 until after all of the other
214 	 * writes have become visible.
215 	 *
216 	 * Normally one puts membar_producer() calls to accomplish
217 	 * this. Unfortunately this routine is extremely performance
218 	 * critical (esp. in syscall_mstate below) and we cannot
219 	 * afford the additional time, particularly on some x86
220 	 * architectures with extremely slow sfence calls. On a
221 	 * CPU which guarantees write ordering (including sparc, x86,
222 	 * and amd64) this is not a problem. The compiler could still
223 	 * reorder the writes, so we make the four cpu fields
224 	 * volatile to prevent this.
225 	 *
226 	 * TSO warning: should we port to a non-TSO (or equivalent)
227 	 * CPU, this will break.
228 	 *
229 	 * The reader stills needs the membar_consumer() calls because,
230 	 * although the volatiles prevent the compiler from reordering
231 	 * loads, the CPU can still do so.
232 	 */
233 
234 	NEW_CPU_MSTATE(cmstate);
235 }
236 
237 /*
238  * Return an aggregation of user and system CPU time consumed by
239  * the specified thread in scaled nanoseconds.
240  */
241 hrtime_t
242 mstate_thread_onproc_time(kthread_t *t)
243 {
244 	hrtime_t aggr_time;
245 	hrtime_t now;
246 	hrtime_t waitrq;
247 	hrtime_t state_start;
248 	struct mstate *ms;
249 	klwp_t *lwp;
250 	int	mstate;
251 
252 	ASSERT(THREAD_LOCK_HELD(t));
253 
254 	if ((lwp = ttolwp(t)) == NULL)
255 		return (0);
256 
257 	mstate = t->t_mstate;
258 	waitrq = t->t_waitrq;
259 	ms = &lwp->lwp_mstate;
260 	state_start = ms->ms_state_start;
261 
262 	aggr_time = ms->ms_acct[LMS_USER] +
263 	    ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
264 
265 	now = gethrtime_unscaled();
266 
267 	/*
268 	 * NOTE: gethrtime_unscaled on X86 taken on different CPUs is
269 	 * inconsistent, so it is possible that now < state_start.
270 	 */
271 	if (mstate == LMS_USER || mstate == LMS_SYSTEM || mstate == LMS_TRAP) {
272 		/* if waitrq is zero, count all of the time. */
273 		if (waitrq == 0) {
274 			waitrq = now;
275 		}
276 
277 		if (waitrq > state_start) {
278 			aggr_time += waitrq - state_start;
279 		}
280 	}
281 
282 	scalehrtime(&aggr_time);
283 	return (aggr_time);
284 }
285 
286 /*
287  * Return the amount of onproc and runnable time this thread has experienced.
288  *
289  * Because the fields we read are not protected by locks when updated
290  * by the thread itself, this is an inherently racey interface.  In
291  * particular, the ASSERT(THREAD_LOCK_HELD(t)) doesn't guarantee as much
292  * as it might appear to.
293  *
294  * The implication for users of this interface is that onproc and runnable
295  * are *NOT* monotonically increasing; they may temporarily be larger than
296  * they should be.
297  */
298 void
299 mstate_systhread_times(kthread_t *t, hrtime_t *onproc, hrtime_t *runnable)
300 {
301 	struct mstate	*const	ms = &ttolwp(t)->lwp_mstate;
302 
303 	int		mstate;
304 	hrtime_t	now;
305 	hrtime_t	state_start;
306 	hrtime_t	waitrq;
307 	hrtime_t	aggr_onp;
308 	hrtime_t	aggr_run;
309 
310 	ASSERT(THREAD_LOCK_HELD(t));
311 	ASSERT(t->t_procp->p_flag & SSYS);
312 	ASSERT(ttolwp(t) != NULL);
313 
314 	/* shouldn't be any non-SYSTEM on-CPU time */
315 	ASSERT(ms->ms_acct[LMS_USER] == 0);
316 	ASSERT(ms->ms_acct[LMS_TRAP] == 0);
317 
318 	mstate = t->t_mstate;
319 	waitrq = t->t_waitrq;
320 	state_start = ms->ms_state_start;
321 
322 	aggr_onp = ms->ms_acct[LMS_SYSTEM];
323 	aggr_run = ms->ms_acct[LMS_WAIT_CPU];
324 
325 	now = gethrtime_unscaled();
326 
327 	/* if waitrq == 0, then there is no time to account to TS_RUN */
328 	if (waitrq == 0)
329 		waitrq = now;
330 
331 	/* If there is system time to accumulate, do so */
332 	if (mstate == LMS_SYSTEM && state_start < waitrq)
333 		aggr_onp += waitrq - state_start;
334 
335 	if (waitrq < now)
336 		aggr_run += now - waitrq;
337 
338 	scalehrtime(&aggr_onp);
339 	scalehrtime(&aggr_run);
340 
341 	*onproc = aggr_onp;
342 	*runnable = aggr_run;
343 }
344 
345 /*
346  * Return an aggregation of microstate times in scaled nanoseconds (high-res
347  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
348  * not.
349  */
350 hrtime_t
351 mstate_aggr_state(proc_t *p, int a_state)
352 {
353 	struct mstate *ms;
354 	kthread_t *t;
355 	klwp_t *lwp;
356 	hrtime_t aggr_time;
357 	hrtime_t scaledtime;
358 
359 	ASSERT(MUTEX_HELD(&p->p_lock));
360 	ASSERT((unsigned)a_state < NMSTATES);
361 
362 	aggr_time = p->p_acct[a_state];
363 	if (a_state == LMS_SYSTEM)
364 		aggr_time += p->p_acct[LMS_TRAP];
365 
366 	t = p->p_tlist;
367 	if (t == NULL)
368 		return (aggr_time);
369 
370 	do {
371 		if (t->t_proc_flag & TP_LWPEXIT)
372 			continue;
373 
374 		lwp = ttolwp(t);
375 		ms = &lwp->lwp_mstate;
376 		scaledtime = ms->ms_acct[a_state];
377 		scalehrtime(&scaledtime);
378 		aggr_time += scaledtime;
379 		if (a_state == LMS_SYSTEM) {
380 			scaledtime = ms->ms_acct[LMS_TRAP];
381 			scalehrtime(&scaledtime);
382 			aggr_time += scaledtime;
383 		}
384 	} while ((t = t->t_forw) != p->p_tlist);
385 
386 	return (aggr_time);
387 }
388 
389 
390 void
391 syscall_mstate(int fromms, int toms)
392 {
393 	kthread_t *t = curthread;
394 	zone_t *z = ttozone(t);
395 	struct mstate *ms;
396 	hrtime_t *mstimep;
397 	hrtime_t curtime;
398 	klwp_t *lwp;
399 	hrtime_t newtime;
400 	cpu_t *cpu;
401 	uint16_t gen;
402 
403 	if ((lwp = ttolwp(t)) == NULL)
404 		return;
405 
406 	ASSERT(fromms < NMSTATES);
407 	ASSERT(toms < NMSTATES);
408 
409 	ms = &lwp->lwp_mstate;
410 	mstimep = &ms->ms_acct[fromms];
411 	curtime = gethrtime_unscaled();
412 	newtime = curtime - ms->ms_state_start;
413 	while (newtime < 0) {
414 		curtime = gethrtime_unscaled();
415 		newtime = curtime - ms->ms_state_start;
416 	}
417 	*mstimep += newtime;
418 	if (fromms == LMS_USER)
419 		atomic_add_64(&z->zone_utime, newtime);
420 	else if (fromms == LMS_SYSTEM)
421 		atomic_add_64(&z->zone_stime, newtime);
422 	t->t_mstate = toms;
423 	ms->ms_state_start = curtime;
424 	ms->ms_prev = fromms;
425 	kpreempt_disable(); /* don't change CPU while changing CPU's state */
426 	cpu = CPU;
427 	ASSERT(cpu == t->t_cpu);
428 	if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
429 		NEW_CPU_MSTATE(CMS_SYSTEM);
430 	} else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
431 		NEW_CPU_MSTATE(CMS_USER);
432 	}
433 	kpreempt_enable();
434 }
435 
436 #undef NEW_CPU_MSTATE
437 
438 /*
439  * The following is for computing the percentage of cpu time used recently
440  * by an lwp.  The function cpu_decay() is also called from /proc code.
441  *
442  * exp_x(x):
443  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
444  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
445  *
446  * Scaling for 64-bit scaled integer:
447  * The binary point is to the right of the high-order bit
448  * of the low-order 32-bit word.
449  */
450 
451 #define	LSHIFT	31
452 #define	LSI_ONE	((uint32_t)1 << LSHIFT)	/* 32-bit scaled integer 1 */
453 
454 #ifdef DEBUG
455 uint_t expx_cnt = 0;	/* number of calls to exp_x() */
456 uint_t expx_mul = 0;	/* number of long multiplies in exp_x() */
457 #endif
458 
459 static uint64_t
460 exp_x(uint64_t x)
461 {
462 	int i;
463 	uint64_t ull;
464 	uint32_t ui;
465 
466 #ifdef DEBUG
467 	expx_cnt++;
468 #endif
469 	/*
470 	 * By the formula:
471 	 *	exp(-x) = exp(-x/2) * exp(-x/2)
472 	 * we keep halving x until it becomes small enough for
473 	 * the following approximation to be accurate enough:
474 	 *	exp(-x) = 1 - x
475 	 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
476 	 * Our final error will be smaller than 4% .
477 	 */
478 
479 	/*
480 	 * Use a uint64_t for the initial shift calculation.
481 	 */
482 	ull = x >> (LSHIFT-2);
483 
484 	/*
485 	 * Short circuit:
486 	 * A number this large produces effectively 0 (actually .005).
487 	 * This way, we will never do more than 5 multiplies.
488 	 */
489 	if (ull >= (1 << 5))
490 		return (0);
491 
492 	ui = ull;	/* OK.  Now we can use a uint_t. */
493 	for (i = 0; ui != 0; i++)
494 		ui >>= 1;
495 
496 	if (i != 0) {
497 #ifdef DEBUG
498 		expx_mul += i;	/* seldom happens */
499 #endif
500 		x >>= i;
501 	}
502 
503 	/*
504 	 * Now we compute 1 - x and square it the number of times
505 	 * that we halved x above to produce the final result:
506 	 */
507 	x = LSI_ONE - x;
508 	while (i--)
509 		x = (x * x) >> LSHIFT;
510 
511 	return (x);
512 }
513 
514 /*
515  * Given the old percent cpu and a time delta in nanoseconds,
516  * return the new decayed percent cpu:  pct * exp(-tau),
517  * where 'tau' is the time delta multiplied by a decay factor.
518  * We have chosen the decay factor (cpu_decay_factor in param.c)
519  * to make the decay over five seconds be approximately 20%.
520  *
521  * 'pct' is a 32-bit scaled integer <= 1
522  * The binary point is to the right of the high-order bit
523  * of the 32-bit word.
524  */
525 static uint32_t
526 cpu_decay(uint32_t pct, hrtime_t nsec)
527 {
528 	uint64_t delta = (uint64_t)nsec;
529 
530 	delta /= cpu_decay_factor;
531 	return ((pct * exp_x(delta)) >> LSHIFT);
532 }
533 
534 /*
535  * Given the old percent cpu and a time delta in nanoseconds,
536  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
537  */
538 static uint32_t
539 cpu_grow(uint32_t pct, hrtime_t nsec)
540 {
541 	return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
542 }
543 
544 
545 /*
546  * Defined to determine whether a lwp is still on a processor.
547  */
548 
549 #define	T_ONPROC(kt)	\
550 	((kt)->t_mstate < LMS_SLEEP)
551 #define	T_OFFPROC(kt)	\
552 	((kt)->t_mstate >= LMS_SLEEP)
553 
554 uint_t
555 cpu_update_pct(kthread_t *t, hrtime_t newtime)
556 {
557 	hrtime_t delta;
558 	hrtime_t hrlb;
559 	uint_t pctcpu;
560 	uint_t npctcpu;
561 
562 	/*
563 	 * This routine can get called at PIL > 0, this *has* to be
564 	 * done atomically. Holding locks here causes bad things to happen.
565 	 * (read: deadlock).
566 	 */
567 
568 	do {
569 		if (T_ONPROC(t) && t->t_waitrq == 0) {
570 			hrlb = t->t_hrtime;
571 			delta = newtime - hrlb;
572 			if (delta < 0) {
573 				newtime = gethrtime_unscaled();
574 				delta = newtime - hrlb;
575 			}
576 			t->t_hrtime = newtime;
577 			scalehrtime(&delta);
578 			pctcpu = t->t_pctcpu;
579 			npctcpu = cpu_grow(pctcpu, delta);
580 		} else {
581 			hrlb = t->t_hrtime;
582 			delta = newtime - hrlb;
583 			if (delta < 0) {
584 				newtime = gethrtime_unscaled();
585 				delta = newtime - hrlb;
586 			}
587 			t->t_hrtime = newtime;
588 			scalehrtime(&delta);
589 			pctcpu = t->t_pctcpu;
590 			npctcpu = cpu_decay(pctcpu, delta);
591 		}
592 	} while (atomic_cas_32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
593 
594 	return (npctcpu);
595 }
596 
597 /*
598  * Change the microstate level for the LWP and update the
599  * associated accounting information.  Return the previous
600  * LWP state.
601  */
602 int
603 new_mstate(kthread_t *t, int new_state)
604 {
605 	struct mstate *ms;
606 	unsigned state;
607 	hrtime_t *mstimep;
608 	hrtime_t curtime;
609 	hrtime_t newtime;
610 	hrtime_t oldtime;
611 	hrtime_t ztime;
612 	hrtime_t origstart;
613 	klwp_t *lwp;
614 	zone_t *z;
615 
616 	ASSERT(new_state != LMS_WAIT_CPU);
617 	ASSERT((unsigned)new_state < NMSTATES);
618 	ASSERT(t == curthread || THREAD_LOCK_HELD(t));
619 
620 	/*
621 	 * Don't do microstate processing for threads without a lwp (kernel
622 	 * threads).  Also, if we're an interrupt thread that is pinning another
623 	 * thread, our t_mstate hasn't been initialized.  We'd be modifying the
624 	 * microstate of the underlying lwp which doesn't realize that it's
625 	 * pinned.  In this case, also don't change the microstate.
626 	 */
627 	if (((lwp = ttolwp(t)) == NULL) || t->t_intr)
628 		return (LMS_SYSTEM);
629 
630 	curtime = gethrtime_unscaled();
631 
632 	/* adjust cpu percentages before we go any further */
633 	(void) cpu_update_pct(t, curtime);
634 
635 	ms = &lwp->lwp_mstate;
636 	state = t->t_mstate;
637 	origstart = ms->ms_state_start;
638 	do {
639 		switch (state) {
640 		case LMS_TFAULT:
641 		case LMS_DFAULT:
642 		case LMS_KFAULT:
643 		case LMS_USER_LOCK:
644 			mstimep = &ms->ms_acct[LMS_SYSTEM];
645 			break;
646 		default:
647 			mstimep = &ms->ms_acct[state];
648 			break;
649 		}
650 		ztime = newtime = curtime - ms->ms_state_start;
651 		if (newtime < 0) {
652 			curtime = gethrtime_unscaled();
653 			oldtime = *mstimep - 1; /* force CAS to fail */
654 			continue;
655 		}
656 		oldtime = *mstimep;
657 		newtime += oldtime;
658 		t->t_mstate = new_state;
659 		ms->ms_state_start = curtime;
660 	} while (atomic_cas_64((uint64_t *)mstimep, oldtime, newtime) !=
661 	    oldtime);
662 
663 	/*
664 	 * When the system boots the initial startup thread will have a
665 	 * ms_state_start of 0 which would add a huge system time to the global
666 	 * zone.  We want to skip aggregating that initial bit of work.
667 	 */
668 	if (origstart != 0) {
669 		z = ttozone(t);
670 		if (state == LMS_USER)
671 			atomic_add_64(&z->zone_utime, ztime);
672 		else if (state == LMS_SYSTEM)
673 			atomic_add_64(&z->zone_stime, ztime);
674 	}
675 
676 	/*
677 	 * Remember the previous running microstate.
678 	 */
679 	if (state != LMS_SLEEP && state != LMS_STOPPED)
680 		ms->ms_prev = state;
681 
682 	/*
683 	 * Switch CPU microstate if appropriate
684 	 */
685 
686 	kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
687 	ASSERT(t->t_cpu == CPU);
688 	if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
689 		if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
690 			new_cpu_mstate(CMS_USER, curtime);
691 		else if (new_state != LMS_USER &&
692 		    t->t_cpu->cpu_mstate != CMS_SYSTEM)
693 			new_cpu_mstate(CMS_SYSTEM, curtime);
694 	}
695 	kpreempt_enable();
696 
697 	return (ms->ms_prev);
698 }
699 
700 /*
701  * Restore the LWP microstate to the previous runnable state.
702  * Called from disp() with the newly selected lwp.
703  */
704 void
705 restore_mstate(kthread_t *t)
706 {
707 	struct mstate *ms;
708 	hrtime_t *mstimep;
709 	klwp_t *lwp;
710 	hrtime_t curtime;
711 	hrtime_t waitrq;
712 	hrtime_t newtime;
713 	hrtime_t oldtime;
714 	hrtime_t waittime;
715 	zone_t *z;
716 
717 	/*
718 	 * Don't call restore mstate of threads without lwps.  (Kernel threads)
719 	 *
720 	 * threads with t_intr set shouldn't be in the dispatcher, so assert
721 	 * that nobody here has t_intr.
722 	 */
723 	ASSERT(t->t_intr == NULL);
724 
725 	if ((lwp = ttolwp(t)) == NULL)
726 		return;
727 
728 	curtime = gethrtime_unscaled();
729 	(void) cpu_update_pct(t, curtime);
730 	ms = &lwp->lwp_mstate;
731 	ASSERT((unsigned)t->t_mstate < NMSTATES);
732 	do {
733 		switch (t->t_mstate) {
734 		case LMS_SLEEP:
735 			/*
736 			 * Update the timer for the current sleep state.
737 			 */
738 			ASSERT((unsigned)ms->ms_prev < NMSTATES);
739 			switch (ms->ms_prev) {
740 			case LMS_TFAULT:
741 			case LMS_DFAULT:
742 			case LMS_KFAULT:
743 			case LMS_USER_LOCK:
744 				mstimep = &ms->ms_acct[ms->ms_prev];
745 				break;
746 			default:
747 				mstimep = &ms->ms_acct[LMS_SLEEP];
748 				break;
749 			}
750 			/*
751 			 * Return to the previous run state.
752 			 */
753 			t->t_mstate = ms->ms_prev;
754 			break;
755 		case LMS_STOPPED:
756 			mstimep = &ms->ms_acct[LMS_STOPPED];
757 			/*
758 			 * Return to the previous run state.
759 			 */
760 			t->t_mstate = ms->ms_prev;
761 			break;
762 		case LMS_TFAULT:
763 		case LMS_DFAULT:
764 		case LMS_KFAULT:
765 		case LMS_USER_LOCK:
766 			mstimep = &ms->ms_acct[LMS_SYSTEM];
767 			break;
768 		default:
769 			mstimep = &ms->ms_acct[t->t_mstate];
770 			break;
771 		}
772 		waitrq = t->t_waitrq;	/* hopefully atomic */
773 		if (waitrq == 0) {
774 			waitrq = curtime;
775 		}
776 		t->t_waitrq = 0;
777 		newtime = waitrq - ms->ms_state_start;
778 		if (newtime < 0) {
779 			curtime = gethrtime_unscaled();
780 			oldtime = *mstimep - 1; /* force CAS to fail */
781 			continue;
782 		}
783 		oldtime = *mstimep;
784 		newtime += oldtime;
785 	} while (atomic_cas_64((uint64_t *)mstimep, oldtime, newtime) !=
786 	    oldtime);
787 
788 	/*
789 	 * Update the WAIT_CPU timer and per-cpu waitrq total.
790 	 */
791 	z = ttozone(t);
792 	waittime = curtime - waitrq;
793 	ms->ms_acct[LMS_WAIT_CPU] += waittime;
794 	atomic_add_64(&z->zone_wtime, waittime);
795 	CPU->cpu_waitrq += waittime;
796 	ms->ms_state_start = curtime;
797 }
798 
799 /*
800  * Copy lwp microstate accounting and resource usage information
801  * to the process.  (lwp is terminating)
802  */
803 void
804 term_mstate(kthread_t *t)
805 {
806 	struct mstate *ms;
807 	proc_t *p = ttoproc(t);
808 	klwp_t *lwp = ttolwp(t);
809 	int i;
810 	hrtime_t tmp;
811 
812 	ASSERT(MUTEX_HELD(&p->p_lock));
813 
814 	ms = &lwp->lwp_mstate;
815 	(void) new_mstate(t, LMS_STOPPED);
816 	ms->ms_term = ms->ms_state_start;
817 	tmp = ms->ms_term - ms->ms_start;
818 	scalehrtime(&tmp);
819 	p->p_mlreal += tmp;
820 	for (i = 0; i < NMSTATES; i++) {
821 		tmp = ms->ms_acct[i];
822 		scalehrtime(&tmp);
823 		p->p_acct[i] += tmp;
824 	}
825 	p->p_ru.minflt   += lwp->lwp_ru.minflt;
826 	p->p_ru.majflt   += lwp->lwp_ru.majflt;
827 	p->p_ru.nswap    += lwp->lwp_ru.nswap;
828 	p->p_ru.inblock  += lwp->lwp_ru.inblock;
829 	p->p_ru.oublock  += lwp->lwp_ru.oublock;
830 	p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
831 	p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
832 	p->p_ru.nsignals += lwp->lwp_ru.nsignals;
833 	p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
834 	p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
835 	p->p_ru.sysc	 += lwp->lwp_ru.sysc;
836 	p->p_ru.ioch	 += lwp->lwp_ru.ioch;
837 	p->p_defunct++;
838 }
839