xref: /titanic_51/usr/src/uts/common/os/mem_config.c (revision c16fc6609d9aa72229802524dc1d8c4ead6e9d2a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/cmn_err.h>
30 #include <sys/vmem.h>
31 #include <sys/kmem.h>
32 #include <sys/systm.h>
33 #include <sys/machsystm.h>	/* for page_freelist_coalesce() */
34 #include <sys/errno.h>
35 #include <sys/memnode.h>
36 #include <sys/memlist.h>
37 #include <sys/memlist_impl.h>
38 #include <sys/tuneable.h>
39 #include <sys/proc.h>
40 #include <sys/disp.h>
41 #include <sys/debug.h>
42 #include <sys/vm.h>
43 #include <sys/callb.h>
44 #include <sys/memlist_plat.h>	/* for installed_top_size() */
45 #include <sys/condvar_impl.h>	/* for CV_HAS_WAITERS() */
46 #include <sys/dumphdr.h>	/* for dump_resize() */
47 #include <sys/atomic.h>		/* for use in stats collection */
48 #include <sys/rwlock.h>
49 #include <sys/cpuvar.h>
50 #include <vm/seg_kmem.h>
51 #include <vm/seg_kpm.h>
52 #include <vm/page.h>
53 #include <vm/vm_dep.h>
54 #define	SUNDDI_IMPL		/* so sunddi.h will not redefine splx() et al */
55 #include <sys/sunddi.h>
56 #include <sys/mem_config.h>
57 #include <sys/mem_cage.h>
58 #include <sys/lgrp.h>
59 #include <sys/ddi.h>
60 #include <sys/modctl.h>
61 
62 extern void memlist_read_lock(void);
63 extern void memlist_read_unlock(void);
64 extern void memlist_write_lock(void);
65 extern void memlist_write_unlock(void);
66 
67 extern struct memlist *phys_avail;
68 
69 extern void mem_node_add(pfn_t, pfn_t);
70 extern void mem_node_del(pfn_t, pfn_t);
71 
72 extern uint_t page_ctrs_adjust(int);
73 static void kphysm_setup_post_add(pgcnt_t);
74 static int kphysm_setup_pre_del(pgcnt_t);
75 static void kphysm_setup_post_del(pgcnt_t, int);
76 
77 static int kphysm_split_memseg(pfn_t base, pgcnt_t npgs);
78 
79 static int delspan_reserve(pfn_t, pgcnt_t);
80 static void delspan_unreserve(pfn_t, pgcnt_t);
81 
82 static kmutex_t memseg_lists_lock;
83 static struct memseg *memseg_va_avail;
84 static struct memseg *memseg_delete_junk;
85 static struct memseg *memseg_edit_junk;
86 void memseg_remap_init(void);
87 static void memseg_remap_to_dummy(caddr_t, pgcnt_t);
88 static void kphysm_addmem_error_undospan(pfn_t, pgcnt_t);
89 static struct memseg *memseg_reuse(pgcnt_t);
90 
91 static struct kmem_cache *memseg_cache;
92 
93 /*
94  * Add a chunk of memory to the system.  page_t's for this memory
95  * are allocated in the first few pages of the chunk.
96  * base: starting PAGESIZE page of new memory.
97  * npgs: length in PAGESIZE pages.
98  *
99  * Adding mem this way doesn't increase the size of the hash tables;
100  * growing them would be too hard.  This should be OK, but adding memory
101  * dynamically most likely means more hash misses, since the tables will
102  * be smaller than they otherwise would be.
103  */
104 int
105 kphysm_add_memory_dynamic(pfn_t base, pgcnt_t npgs)
106 {
107 	page_t		*pp;
108 	page_t		*opp, *oepp;
109 	struct memseg	*seg;
110 	uint64_t	avmem;
111 	pfn_t		pfn;
112 	pfn_t		pt_base = base;
113 	pgcnt_t		tpgs = npgs;
114 	pgcnt_t		metapgs;
115 	int		exhausted;
116 	pfn_t		pnum;
117 	int		mnode;
118 	caddr_t		vaddr;
119 	int		reuse;
120 	int		mlret;
121 	void		*mapva;
122 	pgcnt_t		nkpmpgs = 0;
123 	offset_t	kpm_pages_off;
124 
125 	cmn_err(CE_CONT,
126 	    "?kphysm_add_memory_dynamic: adding %ldK at 0x%" PRIx64 "\n",
127 	    npgs << (PAGESHIFT - 10), (uint64_t)base << PAGESHIFT);
128 
129 	/*
130 	 * Add this span in the delete list to prevent interactions.
131 	 */
132 	if (!delspan_reserve(base, npgs)) {
133 		return (KPHYSM_ESPAN);
134 	}
135 	/*
136 	 * Check to see if any of the memory span has been added
137 	 * by trying an add to the installed memory list. This
138 	 * forms the interlocking process for add.
139 	 */
140 
141 	memlist_write_lock();
142 
143 	mlret = memlist_add_span((uint64_t)(pt_base) << PAGESHIFT,
144 	    (uint64_t)(tpgs) << PAGESHIFT, &phys_install);
145 
146 	if (mlret == MEML_SPANOP_OK)
147 		installed_top_size(phys_install, &physmax, &physinstalled);
148 
149 	memlist_write_unlock();
150 
151 	if (mlret != MEML_SPANOP_OK) {
152 		if (mlret == MEML_SPANOP_EALLOC) {
153 			delspan_unreserve(pt_base, tpgs);
154 			return (KPHYSM_ERESOURCE);
155 		} else
156 		if (mlret == MEML_SPANOP_ESPAN) {
157 			delspan_unreserve(pt_base, tpgs);
158 			return (KPHYSM_ESPAN);
159 		} else {
160 			delspan_unreserve(pt_base, tpgs);
161 			return (KPHYSM_ERESOURCE);
162 		}
163 	}
164 
165 	/*
166 	 * We store the page_t's for this new memory in the first
167 	 * few pages of the chunk. Here, we go and get'em ...
168 	 */
169 
170 	/*
171 	 * The expression after the '-' gives the number of pages
172 	 * that will fit in the new memory based on a requirement
173 	 * of (PAGESIZE + sizeof (page_t)) bytes per page.
174 	 */
175 	metapgs = npgs - (((uint64_t)(npgs) << PAGESHIFT) /
176 	    (PAGESIZE + sizeof (page_t)));
177 
178 	npgs -= metapgs;
179 	base += metapgs;
180 
181 	ASSERT(btopr(npgs * sizeof (page_t)) <= metapgs);
182 
183 	exhausted = (metapgs == 0 || npgs == 0);
184 
185 	if (kpm_enable && !exhausted) {
186 		pgcnt_t start, end, nkpmpgs_prelim;
187 		size_t	ptsz;
188 
189 		/*
190 		 * A viable kpm large page mapping must not overlap two
191 		 * dynamic memsegs. Therefore the total size is checked
192 		 * to be at least kpm_pgsz and also whether start and end
193 		 * points are at least kpm_pgsz aligned.
194 		 */
195 		if (ptokpmp(tpgs) < 1 || pmodkpmp(pt_base) ||
196 		    pmodkpmp(base + npgs)) {
197 
198 			kphysm_addmem_error_undospan(pt_base, tpgs);
199 
200 			/*
201 			 * There is no specific error code for violating
202 			 * kpm granularity constraints.
203 			 */
204 			return (KPHYSM_ENOTVIABLE);
205 		}
206 
207 		start = kpmptop(ptokpmp(base));
208 		end = kpmptop(ptokpmp(base + npgs));
209 		nkpmpgs_prelim = ptokpmp(end - start);
210 		ptsz = npgs * sizeof (page_t);
211 		metapgs = btopr(ptsz + nkpmpgs_prelim * KPMPAGE_T_SZ);
212 		exhausted = (tpgs <= metapgs);
213 		if (!exhausted) {
214 			npgs = tpgs - metapgs;
215 			base = pt_base + metapgs;
216 
217 			/* final nkpmpgs */
218 			start = kpmptop(ptokpmp(base));
219 			nkpmpgs = ptokpmp(end - start);
220 			kpm_pages_off = ptsz +
221 				(nkpmpgs_prelim - nkpmpgs) * KPMPAGE_T_SZ;
222 		}
223 	}
224 
225 	/*
226 	 * Is memory area supplied too small?
227 	 */
228 	if (exhausted) {
229 		kphysm_addmem_error_undospan(pt_base, tpgs);
230 
231 		/*
232 		 * There is no specific error code for 'too small'.
233 		 */
234 		return (KPHYSM_ERESOURCE);
235 	}
236 
237 	/*
238 	 * We may re-use a previously allocated VA space for the page_ts
239 	 * eventually, but we need to initialize and lock the pages first.
240 	 */
241 
242 	/*
243 	 * Get an address in the kernel address map, map
244 	 * the page_t pages and see if we can touch them.
245 	 */
246 
247 	mapva = vmem_alloc(heap_arena, ptob(metapgs), VM_NOSLEEP);
248 	if (mapva == NULL) {
249 		cmn_err(CE_WARN, "kphysm_add_memory_dynamic:"
250 		    " Can't allocate VA for page_ts");
251 
252 		kphysm_addmem_error_undospan(pt_base, tpgs);
253 
254 		return (KPHYSM_ERESOURCE);
255 	}
256 	pp = mapva;
257 
258 	if (physmax < (pt_base + tpgs))
259 		physmax = (pt_base + tpgs);
260 
261 	/*
262 	 * In the remapping code we map one page at a time so we must do
263 	 * the same here to match mapping sizes.
264 	 */
265 	pfn = pt_base;
266 	vaddr = (caddr_t)pp;
267 	for (pnum = 0; pnum < metapgs; pnum++) {
268 		hat_devload(kas.a_hat, vaddr, ptob(1), pfn,
269 		    PROT_READ | PROT_WRITE,
270 		    HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
271 		pfn++;
272 		vaddr += ptob(1);
273 	}
274 
275 	if (ddi_peek32((dev_info_t *)NULL,
276 	    (int32_t *)pp, (int32_t *)0) == DDI_FAILURE) {
277 
278 		cmn_err(CE_PANIC, "kphysm_add_memory_dynamic:"
279 		    " Can't access pp array at 0x%p [phys 0x%lx]",
280 		    (void *)pp, pt_base);
281 
282 		hat_unload(kas.a_hat, (caddr_t)pp, ptob(metapgs),
283 		    HAT_UNLOAD_UNMAP|HAT_UNLOAD_UNLOCK);
284 
285 		vmem_free(heap_arena, mapva, ptob(metapgs));
286 
287 		kphysm_addmem_error_undospan(pt_base, tpgs);
288 
289 		return (KPHYSM_EFAULT);
290 	}
291 
292 	/*
293 	 * Add this memory slice to its memory node translation.
294 	 *
295 	 * Note that right now, each node may have only one slice;
296 	 * this may change with COD or in larger SSM systems with
297 	 * nested latency groups, so we must not assume that the
298 	 * node does not yet exist.
299 	 */
300 	pnum = base + npgs - 1;
301 	mem_node_add_slice(base, pnum);
302 
303 	/*
304 	 * Allocate or resize page counters as necessary to accomodate
305 	 * the increase in memory pages.
306 	 */
307 	mnode = PFN_2_MEM_NODE(pnum);
308 	if (page_ctrs_adjust(mnode) != 0) {
309 
310 		mem_node_pre_del_slice(base, pnum);
311 		mem_node_post_del_slice(base, pnum, 0);
312 
313 		hat_unload(kas.a_hat, (caddr_t)pp, ptob(metapgs),
314 		    HAT_UNLOAD_UNMAP|HAT_UNLOAD_UNLOCK);
315 
316 		vmem_free(heap_arena, mapva, ptob(metapgs));
317 
318 		kphysm_addmem_error_undospan(pt_base, tpgs);
319 
320 		return (KPHYSM_ERESOURCE);
321 	}
322 
323 	/*
324 	 * Update the phys_avail memory list.
325 	 * The phys_install list was done at the start.
326 	 */
327 
328 	memlist_write_lock();
329 
330 	mlret = memlist_add_span((uint64_t)(base) << PAGESHIFT,
331 	    (uint64_t)(npgs) << PAGESHIFT, &phys_avail);
332 	ASSERT(mlret == MEML_SPANOP_OK);
333 
334 	memlist_write_unlock();
335 
336 	/* See if we can find a memseg to re-use. */
337 	seg = memseg_reuse(metapgs);
338 
339 	reuse = (seg != NULL);
340 
341 	/*
342 	 * Initialize the memseg structure representing this memory
343 	 * and add it to the existing list of memsegs. Do some basic
344 	 * initialization and add the memory to the system.
345 	 * In order to prevent lock deadlocks, the add_physmem()
346 	 * code is repeated here, but split into several stages.
347 	 */
348 	if (seg == NULL) {
349 		seg = kmem_cache_alloc(memseg_cache, KM_SLEEP);
350 		bzero(seg, sizeof (struct memseg));
351 		seg->msegflags = MEMSEG_DYNAMIC;
352 		seg->pages = pp;
353 	} else {
354 		/*EMPTY*/
355 		ASSERT(seg->msegflags & MEMSEG_DYNAMIC);
356 	}
357 
358 	seg->epages = seg->pages + npgs;
359 	seg->pages_base = base;
360 	seg->pages_end = base + npgs;
361 
362 	/*
363 	 * Initialize metadata. The page_ts are set to locked state
364 	 * ready to be freed.
365 	 */
366 	bzero((caddr_t)pp, ptob(metapgs));
367 
368 	pfn = seg->pages_base;
369 	/* Save the original pp base in case we reuse a memseg. */
370 	opp = pp;
371 	oepp = opp + npgs;
372 	for (pp = opp; pp < oepp; pp++) {
373 		pp->p_pagenum = pfn;
374 		pfn++;
375 		page_iolock_init(pp);
376 		while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM))
377 			continue;
378 		pp->p_offset = (u_offset_t)-1;
379 	}
380 
381 	if (reuse) {
382 		/* Remap our page_ts to the re-used memseg VA space. */
383 		pfn = pt_base;
384 		vaddr = (caddr_t)seg->pages;
385 		for (pnum = 0; pnum < metapgs; pnum++) {
386 			hat_devload(kas.a_hat, vaddr, ptob(1), pfn,
387 			    PROT_READ | PROT_WRITE,
388 			    HAT_LOAD_REMAP | HAT_LOAD | HAT_LOAD_NOCONSIST);
389 			pfn++;
390 			vaddr += ptob(1);
391 		}
392 
393 		hat_unload(kas.a_hat, (caddr_t)opp, ptob(metapgs),
394 		    HAT_UNLOAD_UNMAP|HAT_UNLOAD_UNLOCK);
395 
396 		vmem_free(heap_arena, mapva, ptob(metapgs));
397 	}
398 
399 	hat_kpm_addmem_mseg_update(seg, nkpmpgs, kpm_pages_off);
400 
401 	memsegs_lock(1);
402 
403 	/*
404 	 * The new memseg is inserted at the beginning of the list.
405 	 * Not only does this save searching for the tail, but in the
406 	 * case of a re-used memseg, it solves the problem of what
407 	 * happens of some process has still got a pointer to the
408 	 * memseg and follows the next pointer to continue traversing
409 	 * the memsegs list.
410 	 */
411 
412 	hat_kpm_addmem_mseg_insert(seg);
413 
414 	seg->next = memsegs;
415 	membar_producer();
416 
417 	hat_kpm_addmem_memsegs_update(seg);
418 
419 	memsegs = seg;
420 
421 	build_pfn_hash();
422 
423 	total_pages += npgs;
424 
425 	/*
426 	 * Recalculate the paging parameters now total_pages has changed.
427 	 * This will also cause the clock hands to be reset before next use.
428 	 */
429 	setupclock(1);
430 
431 	memsegs_unlock(1);
432 
433 	PLCNT_MODIFY_MAX(seg->pages_base, (long)npgs);
434 
435 	/*
436 	 * Free the pages outside the lock to avoid locking loops.
437 	 */
438 	for (pp = seg->pages; pp < seg->epages; pp++) {
439 		page_free(pp, 1);
440 	}
441 
442 	/*
443 	 * Now that we've updated the appropriate memory lists we
444 	 * need to reset a number of globals, since we've increased memory.
445 	 * Several have already been updated for us as noted above. The
446 	 * globals we're interested in at this point are:
447 	 *   physmax - highest page frame number.
448 	 *   physinstalled - number of pages currently installed (done earlier)
449 	 *   maxmem - max free pages in the system
450 	 *   physmem - physical memory pages available
451 	 *   availrmem - real memory available
452 	 */
453 
454 	mutex_enter(&freemem_lock);
455 	maxmem += npgs;
456 	physmem += npgs;
457 	availrmem += npgs;
458 	availrmem_initial += npgs;
459 
460 	mutex_exit(&freemem_lock);
461 
462 	dump_resize();
463 
464 	page_freelist_coalesce_all(mnode);
465 
466 	kphysm_setup_post_add(npgs);
467 
468 	cmn_err(CE_CONT, "?kphysm_add_memory_dynamic: mem = %ldK "
469 	    "(0x%" PRIx64 ")\n",
470 	    physinstalled << (PAGESHIFT - 10),
471 	    (uint64_t)physinstalled << PAGESHIFT);
472 
473 	avmem = (uint64_t)freemem << PAGESHIFT;
474 	cmn_err(CE_CONT, "?kphysm_add_memory_dynamic: "
475 	    "avail mem = %" PRId64 "\n", avmem);
476 
477 	/*
478 	 * Update lgroup generation number on single lgroup systems
479 	 */
480 	if (nlgrps == 1)
481 		lgrp_config(LGRP_CONFIG_GEN_UPDATE, 0, 0);
482 
483 	delspan_unreserve(pt_base, tpgs);
484 	return (KPHYSM_OK);		/* Successfully added system memory */
485 
486 }
487 
488 /*
489  * There are various error conditions in kphysm_add_memory_dynamic()
490  * which require a rollback of already changed global state.
491  */
492 static void
493 kphysm_addmem_error_undospan(pfn_t pt_base, pgcnt_t tpgs)
494 {
495 	int mlret;
496 
497 	/* Unreserve memory span. */
498 	memlist_write_lock();
499 
500 	mlret = memlist_delete_span(
501 	    (uint64_t)(pt_base) << PAGESHIFT,
502 	    (uint64_t)(tpgs) << PAGESHIFT, &phys_install);
503 
504 	ASSERT(mlret == MEML_SPANOP_OK);
505 	phys_install_has_changed();
506 	installed_top_size(phys_install, &physmax, &physinstalled);
507 
508 	memlist_write_unlock();
509 	delspan_unreserve(pt_base, tpgs);
510 }
511 
512 /*
513  * Only return an available memseg of exactly the right size.
514  * When the meta data area has it's own virtual address space
515  * we will need to manage this more carefully and do best fit
516  * allocations, possibly splitting an availble area.
517  */
518 static struct memseg *
519 memseg_reuse(pgcnt_t metapgs)
520 {
521 	struct memseg **segpp, *seg;
522 
523 	mutex_enter(&memseg_lists_lock);
524 
525 	segpp = &memseg_va_avail;
526 	for (; (seg = *segpp) != NULL; segpp = &seg->lnext) {
527 		caddr_t end;
528 
529 		if (kpm_enable)
530 			end = hat_kpm_mseg_reuse(seg);
531 		else
532 			end = (caddr_t)seg->epages;
533 
534 		if (btopr(end - (caddr_t)seg->pages) == metapgs) {
535 			*segpp = seg->lnext;
536 			seg->lnext = NULL;
537 			break;
538 		}
539 	}
540 	mutex_exit(&memseg_lists_lock);
541 
542 	return (seg);
543 }
544 
545 static uint_t handle_gen;
546 
547 struct memdelspan {
548 	struct memdelspan *mds_next;
549 	pfn_t		mds_base;
550 	pgcnt_t		mds_npgs;
551 	uint_t		*mds_bitmap;
552 	uint_t		*mds_bitmap_retired;
553 };
554 
555 #define	NBPBMW		(sizeof (uint_t) * NBBY)
556 #define	MDS_BITMAPBYTES(MDSP) \
557 	((((MDSP)->mds_npgs + NBPBMW - 1) / NBPBMW) * sizeof (uint_t))
558 
559 struct transit_list {
560 	struct transit_list	*trl_next;
561 	struct memdelspan	*trl_spans;
562 	int			trl_collect;
563 };
564 
565 struct transit_list_head {
566 	kmutex_t		trh_lock;
567 	struct transit_list	*trh_head;
568 };
569 
570 static struct transit_list_head transit_list_head;
571 
572 struct mem_handle;
573 static void transit_list_collect(struct mem_handle *, int);
574 static void transit_list_insert(struct transit_list *);
575 static void transit_list_remove(struct transit_list *);
576 
577 #ifdef DEBUG
578 #define	MEM_DEL_STATS
579 #endif /* DEBUG */
580 
581 #ifdef MEM_DEL_STATS
582 static int mem_del_stat_print = 0;
583 struct mem_del_stat {
584 	uint_t	nloop;
585 	uint_t	need_free;
586 	uint_t	free_loop;
587 	uint_t	free_low;
588 	uint_t	free_failed;
589 	uint_t	ncheck;
590 	uint_t	nopaget;
591 	uint_t	lockfail;
592 	uint_t	nfree;
593 	uint_t	nreloc;
594 	uint_t	nrelocfail;
595 	uint_t	already_done;
596 	uint_t	first_notfree;
597 	uint_t	npplocked;
598 	uint_t	nlockreloc;
599 	uint_t	nnorepl;
600 	uint_t	nmodreloc;
601 	uint_t	ndestroy;
602 	uint_t	nputpage;
603 	uint_t	nnoreclaim;
604 	uint_t	ndelay;
605 	uint_t	demotefail;
606 	uint64_t nticks_total;
607 	uint64_t nticks_pgrp;
608 	uint_t	retired;
609 	uint_t	toxic;
610 	uint_t	failing;
611 	uint_t	modtoxic;
612 	uint_t	npplkdtoxic;
613 	uint_t	gptlmodfail;
614 	uint_t	gptllckfail;
615 };
616 /*
617  * The stat values are only incremented in the delete thread
618  * so no locking or atomic required.
619  */
620 #define	MDSTAT_INCR(MHP, FLD)	(MHP)->mh_delstat.FLD++
621 #define	MDSTAT_TOTAL(MHP, ntck)	((MHP)->mh_delstat.nticks_total += (ntck))
622 #define	MDSTAT_PGRP(MHP, ntck)	((MHP)->mh_delstat.nticks_pgrp += (ntck))
623 static void mem_del_stat_print_func(struct mem_handle *);
624 #define	MDSTAT_PRINT(MHP)	mem_del_stat_print_func((MHP))
625 #else /* MEM_DEL_STATS */
626 #define	MDSTAT_INCR(MHP, FLD)
627 #define	MDSTAT_TOTAL(MHP, ntck)
628 #define	MDSTAT_PGRP(MHP, ntck)
629 #define	MDSTAT_PRINT(MHP)
630 #endif /* MEM_DEL_STATS */
631 
632 typedef enum mhnd_state {MHND_FREE = 0, MHND_INIT, MHND_STARTING,
633 	MHND_RUNNING, MHND_DONE, MHND_RELEASE} mhnd_state_t;
634 
635 /*
636  * mh_mutex must be taken to examine or change mh_exthandle and mh_state.
637  * The mutex may not be required for other fields, dependent on mh_state.
638  */
639 struct mem_handle {
640 	kmutex_t	mh_mutex;
641 	struct mem_handle *mh_next;
642 	memhandle_t	mh_exthandle;
643 	mhnd_state_t	mh_state;
644 	struct transit_list mh_transit;
645 	pgcnt_t		mh_phys_pages;
646 	pgcnt_t		mh_vm_pages;
647 	pgcnt_t		mh_hold_todo;
648 	void		(*mh_delete_complete)(void *, int error);
649 	void		*mh_delete_complete_arg;
650 	volatile uint_t mh_cancel;
651 	volatile uint_t mh_dr_aio_cleanup_cancel;
652 	volatile uint_t mh_aio_cleanup_done;
653 	kcondvar_t	mh_cv;
654 	kthread_id_t	mh_thread_id;
655 	page_t		*mh_deleted;	/* link through p_next */
656 #ifdef MEM_DEL_STATS
657 	struct mem_del_stat mh_delstat;
658 #endif /* MEM_DEL_STATS */
659 };
660 
661 static struct mem_handle *mem_handle_head;
662 static kmutex_t mem_handle_list_mutex;
663 
664 static struct mem_handle *
665 kphysm_allocate_mem_handle()
666 {
667 	struct mem_handle *mhp;
668 
669 	mhp = kmem_zalloc(sizeof (struct mem_handle), KM_SLEEP);
670 	mutex_init(&mhp->mh_mutex, NULL, MUTEX_DEFAULT, NULL);
671 	mutex_enter(&mem_handle_list_mutex);
672 	mutex_enter(&mhp->mh_mutex);
673 	/* handle_gen is protected by list mutex. */
674 	mhp->mh_exthandle = (memhandle_t)(uintptr_t)(++handle_gen);
675 	mhp->mh_next = mem_handle_head;
676 	mem_handle_head = mhp;
677 	mutex_exit(&mem_handle_list_mutex);
678 
679 	return (mhp);
680 }
681 
682 static void
683 kphysm_free_mem_handle(struct mem_handle *mhp)
684 {
685 	struct mem_handle **mhpp;
686 
687 	ASSERT(mutex_owned(&mhp->mh_mutex));
688 	ASSERT(mhp->mh_state == MHND_FREE);
689 	/*
690 	 * Exit the mutex to preserve locking order. This is OK
691 	 * here as once in the FREE state, the handle cannot
692 	 * be found by a lookup.
693 	 */
694 	mutex_exit(&mhp->mh_mutex);
695 
696 	mutex_enter(&mem_handle_list_mutex);
697 	mhpp = &mem_handle_head;
698 	while (*mhpp != NULL && *mhpp != mhp)
699 		mhpp = &(*mhpp)->mh_next;
700 	ASSERT(*mhpp == mhp);
701 	/*
702 	 * No need to lock the handle (mh_mutex) as only
703 	 * mh_next changing and this is the only thread that
704 	 * can be referncing mhp.
705 	 */
706 	*mhpp = mhp->mh_next;
707 	mutex_exit(&mem_handle_list_mutex);
708 
709 	mutex_destroy(&mhp->mh_mutex);
710 	kmem_free(mhp, sizeof (struct mem_handle));
711 }
712 
713 /*
714  * This function finds the internal mem_handle corresponding to an
715  * external handle and returns it with the mh_mutex held.
716  */
717 static struct mem_handle *
718 kphysm_lookup_mem_handle(memhandle_t handle)
719 {
720 	struct mem_handle *mhp;
721 
722 	mutex_enter(&mem_handle_list_mutex);
723 	for (mhp = mem_handle_head; mhp != NULL; mhp = mhp->mh_next) {
724 		if (mhp->mh_exthandle == handle) {
725 			mutex_enter(&mhp->mh_mutex);
726 			/*
727 			 * The state of the handle could have been changed
728 			 * by kphysm_del_release() while waiting for mh_mutex.
729 			 */
730 			if (mhp->mh_state == MHND_FREE) {
731 				mutex_exit(&mhp->mh_mutex);
732 				continue;
733 			}
734 			break;
735 		}
736 	}
737 	mutex_exit(&mem_handle_list_mutex);
738 	return (mhp);
739 }
740 
741 int
742 kphysm_del_gethandle(memhandle_t *xmhp)
743 {
744 	struct mem_handle *mhp;
745 
746 	mhp = kphysm_allocate_mem_handle();
747 	/*
748 	 * The handle is allocated using KM_SLEEP, so cannot fail.
749 	 * If the implementation is changed, the correct error to return
750 	 * here would be KPHYSM_ENOHANDLES.
751 	 */
752 	ASSERT(mhp->mh_state == MHND_FREE);
753 	mhp->mh_state = MHND_INIT;
754 	*xmhp = mhp->mh_exthandle;
755 	mutex_exit(&mhp->mh_mutex);
756 	return (KPHYSM_OK);
757 }
758 
759 static int
760 overlapping(pfn_t b1, pgcnt_t l1, pfn_t b2, pgcnt_t l2)
761 {
762 	pfn_t e1, e2;
763 
764 	e1 = b1 + l1;
765 	e2 = b2 + l2;
766 
767 	return (!(b2 >= e1 || b1 >= e2));
768 }
769 
770 static int can_remove_pgs(pgcnt_t);
771 
772 static struct memdelspan *
773 span_to_install(pfn_t base, pgcnt_t npgs)
774 {
775 	struct memdelspan *mdsp;
776 	struct memdelspan *mdsp_new;
777 	uint64_t address, size, thislen;
778 	struct memlist *mlp;
779 
780 	mdsp_new = NULL;
781 
782 	address = (uint64_t)base << PAGESHIFT;
783 	size = (uint64_t)npgs << PAGESHIFT;
784 	while (size != 0) {
785 		memlist_read_lock();
786 		for (mlp = phys_install; mlp != NULL; mlp = mlp->next) {
787 			if (address >= (mlp->address + mlp->size))
788 				continue;
789 			if ((address + size) > mlp->address)
790 				break;
791 		}
792 		if (mlp == NULL) {
793 			address += size;
794 			size = 0;
795 			thislen = 0;
796 		} else {
797 			if (address < mlp->address) {
798 				size -= (mlp->address - address);
799 				address = mlp->address;
800 			}
801 			ASSERT(address >= mlp->address);
802 			if ((address + size) > (mlp->address + mlp->size)) {
803 				thislen = mlp->size - (address - mlp->address);
804 			} else {
805 				thislen = size;
806 			}
807 		}
808 		memlist_read_unlock();
809 		/* TODO: phys_install could change now */
810 		if (thislen == 0)
811 			continue;
812 		mdsp = kmem_zalloc(sizeof (struct memdelspan), KM_SLEEP);
813 		mdsp->mds_base = btop(address);
814 		mdsp->mds_npgs = btop(thislen);
815 		mdsp->mds_next = mdsp_new;
816 		mdsp_new = mdsp;
817 		address += thislen;
818 		size -= thislen;
819 	}
820 	return (mdsp_new);
821 }
822 
823 static void
824 free_delspans(struct memdelspan *mdsp)
825 {
826 	struct memdelspan *amdsp;
827 
828 	while ((amdsp = mdsp) != NULL) {
829 		mdsp = amdsp->mds_next;
830 		kmem_free(amdsp, sizeof (struct memdelspan));
831 	}
832 }
833 
834 /*
835  * Concatenate lists. No list ordering is required.
836  */
837 
838 static void
839 delspan_concat(struct memdelspan **mdspp, struct memdelspan *mdsp)
840 {
841 	while (*mdspp != NULL)
842 		mdspp = &(*mdspp)->mds_next;
843 
844 	*mdspp = mdsp;
845 }
846 
847 /*
848  * Given a new list of delspans, check there is no overlap with
849  * all existing span activity (add or delete) and then concatenate
850  * the new spans to the given list.
851  * Return 1 for OK, 0 if overlapping.
852  */
853 static int
854 delspan_insert(
855 	struct transit_list *my_tlp,
856 	struct memdelspan *mdsp_new)
857 {
858 	struct transit_list_head *trh;
859 	struct transit_list *tlp;
860 	int ret;
861 
862 	trh = &transit_list_head;
863 
864 	ASSERT(my_tlp != NULL);
865 	ASSERT(mdsp_new != NULL);
866 
867 	ret = 1;
868 	mutex_enter(&trh->trh_lock);
869 	/* ASSERT(my_tlp->trl_spans == NULL || tlp_in_list(trh, my_tlp)); */
870 	for (tlp = trh->trh_head; tlp != NULL; tlp = tlp->trl_next) {
871 		struct memdelspan *mdsp;
872 
873 		for (mdsp = tlp->trl_spans; mdsp != NULL;
874 		    mdsp = mdsp->mds_next) {
875 			struct memdelspan *nmdsp;
876 
877 			for (nmdsp = mdsp_new; nmdsp != NULL;
878 			    nmdsp = nmdsp->mds_next) {
879 				if (overlapping(mdsp->mds_base, mdsp->mds_npgs,
880 				    nmdsp->mds_base, nmdsp->mds_npgs)) {
881 					ret = 0;
882 					goto done;
883 				}
884 			}
885 		}
886 	}
887 done:
888 	if (ret != 0) {
889 		if (my_tlp->trl_spans == NULL)
890 			transit_list_insert(my_tlp);
891 		delspan_concat(&my_tlp->trl_spans, mdsp_new);
892 	}
893 	mutex_exit(&trh->trh_lock);
894 	return (ret);
895 }
896 
897 static void
898 delspan_remove(
899 	struct transit_list *my_tlp,
900 	pfn_t base,
901 	pgcnt_t npgs)
902 {
903 	struct transit_list_head *trh;
904 	struct memdelspan *mdsp;
905 
906 	trh = &transit_list_head;
907 
908 	ASSERT(my_tlp != NULL);
909 
910 	mutex_enter(&trh->trh_lock);
911 	if ((mdsp = my_tlp->trl_spans) != NULL) {
912 		if (npgs == 0) {
913 			my_tlp->trl_spans = NULL;
914 			free_delspans(mdsp);
915 			transit_list_remove(my_tlp);
916 		} else {
917 			struct memdelspan **prv;
918 
919 			prv = &my_tlp->trl_spans;
920 			while (mdsp != NULL) {
921 				pfn_t p_end;
922 
923 				p_end = mdsp->mds_base + mdsp->mds_npgs;
924 				if (mdsp->mds_base >= base &&
925 				    p_end <= (base + npgs)) {
926 					*prv = mdsp->mds_next;
927 					mdsp->mds_next = NULL;
928 					free_delspans(mdsp);
929 				} else {
930 					prv = &mdsp->mds_next;
931 				}
932 				mdsp = *prv;
933 			}
934 			if (my_tlp->trl_spans == NULL)
935 				transit_list_remove(my_tlp);
936 		}
937 	}
938 	mutex_exit(&trh->trh_lock);
939 }
940 
941 /*
942  * Reserve interface for add to stop delete before add finished.
943  * This list is only accessed through the delspan_insert/remove
944  * functions and so is fully protected by the mutex in struct transit_list.
945  */
946 
947 static struct transit_list reserve_transit;
948 
949 static int
950 delspan_reserve(pfn_t base, pgcnt_t npgs)
951 {
952 	struct memdelspan *mdsp;
953 	int ret;
954 
955 	mdsp = kmem_zalloc(sizeof (struct memdelspan), KM_SLEEP);
956 	mdsp->mds_base = base;
957 	mdsp->mds_npgs = npgs;
958 	if ((ret = delspan_insert(&reserve_transit, mdsp)) == 0) {
959 		free_delspans(mdsp);
960 	}
961 	return (ret);
962 }
963 
964 static void
965 delspan_unreserve(pfn_t base, pgcnt_t npgs)
966 {
967 	delspan_remove(&reserve_transit, base, npgs);
968 }
969 
970 /*
971  * Return whether memseg was created by kphysm_add_memory_dynamic().
972  * If this is the case and startp non zero, return also the start pfn
973  * of the meta data via startp.
974  */
975 static int
976 memseg_is_dynamic(struct memseg *seg, pfn_t *startp)
977 {
978 	pfn_t		pt_start;
979 
980 	if ((seg->msegflags & MEMSEG_DYNAMIC) == 0)
981 		return (0);
982 
983 	/* Meta data is required to be at the beginning */
984 	ASSERT(hat_getpfnum(kas.a_hat, (caddr_t)seg->epages) < seg->pages_base);
985 
986 	pt_start = hat_getpfnum(kas.a_hat, (caddr_t)seg->pages);
987 	if (startp != NULL)
988 		*startp = pt_start;
989 
990 	return (1);
991 }
992 
993 int
994 kphysm_del_span(
995 	memhandle_t handle,
996 	pfn_t base,
997 	pgcnt_t npgs)
998 {
999 	struct mem_handle *mhp;
1000 	struct memseg *seg;
1001 	struct memdelspan *mdsp;
1002 	struct memdelspan *mdsp_new;
1003 	pgcnt_t phys_pages, vm_pages;
1004 	pfn_t p_end;
1005 	page_t *pp;
1006 	int ret;
1007 
1008 	mhp = kphysm_lookup_mem_handle(handle);
1009 	if (mhp == NULL) {
1010 		return (KPHYSM_EHANDLE);
1011 	}
1012 	if (mhp->mh_state != MHND_INIT) {
1013 		mutex_exit(&mhp->mh_mutex);
1014 		return (KPHYSM_ESEQUENCE);
1015 	}
1016 
1017 	/*
1018 	 * Intersect the span with the installed memory list (phys_install).
1019 	 */
1020 	mdsp_new = span_to_install(base, npgs);
1021 	if (mdsp_new == NULL) {
1022 		/*
1023 		 * No physical memory in this range. Is this an
1024 		 * error? If an attempt to start the delete is made
1025 		 * for OK returns from del_span such as this, start will
1026 		 * return an error.
1027 		 * Could return KPHYSM_ENOWORK.
1028 		 */
1029 		/*
1030 		 * It is assumed that there are no error returns
1031 		 * from span_to_install() due to kmem_alloc failure.
1032 		 */
1033 		mutex_exit(&mhp->mh_mutex);
1034 		return (KPHYSM_OK);
1035 	}
1036 	/*
1037 	 * Does this span overlap an existing span?
1038 	 */
1039 	if (delspan_insert(&mhp->mh_transit, mdsp_new) == 0) {
1040 		/*
1041 		 * Differentiate between already on list for this handle
1042 		 * (KPHYSM_EDUP) and busy elsewhere (KPHYSM_EBUSY).
1043 		 */
1044 		ret = KPHYSM_EBUSY;
1045 		for (mdsp = mhp->mh_transit.trl_spans; mdsp != NULL;
1046 		    mdsp = mdsp->mds_next) {
1047 			if (overlapping(mdsp->mds_base, mdsp->mds_npgs,
1048 			    base, npgs)) {
1049 				ret = KPHYSM_EDUP;
1050 				break;
1051 			}
1052 		}
1053 		mutex_exit(&mhp->mh_mutex);
1054 		free_delspans(mdsp_new);
1055 		return (ret);
1056 	}
1057 	/*
1058 	 * At this point the spans in mdsp_new have been inserted into the
1059 	 * list of spans for this handle and thereby to the global list of
1060 	 * spans being processed. Each of these spans must now be checked
1061 	 * for relocatability. As a side-effect segments in the memseg list
1062 	 * may be split.
1063 	 *
1064 	 * Note that mdsp_new can no longer be used as it is now part of
1065 	 * a larger list. Select elements of this larger list based
1066 	 * on base and npgs.
1067 	 */
1068 restart:
1069 	phys_pages = 0;
1070 	vm_pages = 0;
1071 	ret = KPHYSM_OK;
1072 	for (mdsp = mhp->mh_transit.trl_spans; mdsp != NULL;
1073 	    mdsp = mdsp->mds_next) {
1074 		pgcnt_t pages_checked;
1075 
1076 		if (!overlapping(mdsp->mds_base, mdsp->mds_npgs, base, npgs)) {
1077 			continue;
1078 		}
1079 		p_end = mdsp->mds_base + mdsp->mds_npgs;
1080 		/*
1081 		 * The pages_checked count is a hack. All pages should be
1082 		 * checked for relocatability. Those not covered by memsegs
1083 		 * should be tested with arch_kphysm_del_span_ok().
1084 		 */
1085 		pages_checked = 0;
1086 		for (seg = memsegs; seg; seg = seg->next) {
1087 			pfn_t mseg_start;
1088 
1089 			if (seg->pages_base >= p_end ||
1090 			    seg->pages_end <= mdsp->mds_base) {
1091 				/* Span and memseg don't overlap. */
1092 				continue;
1093 			}
1094 			/* Check that segment is suitable for delete. */
1095 			if (memseg_is_dynamic(seg, &mseg_start)) {
1096 				/*
1097 				 * Can only delete whole added segments
1098 				 * for the moment.
1099 				 * Check that this is completely within the
1100 				 * span.
1101 				 */
1102 				if (mseg_start < mdsp->mds_base ||
1103 				    seg->pages_end > p_end) {
1104 					ret = KPHYSM_EBUSY;
1105 					break;
1106 				}
1107 				pages_checked += seg->pages_end - mseg_start;
1108 			} else {
1109 				/*
1110 				 * Set mseg_start for accounting below.
1111 				 */
1112 				mseg_start = seg->pages_base;
1113 				/*
1114 				 * If this segment is larger than the span,
1115 				 * try to split it. After the split, it
1116 				 * is necessary to restart.
1117 				 */
1118 				if (seg->pages_base < mdsp->mds_base ||
1119 				    seg->pages_end > p_end) {
1120 					pfn_t abase;
1121 					pgcnt_t anpgs;
1122 					int s_ret;
1123 
1124 					/* Split required.  */
1125 					if (mdsp->mds_base < seg->pages_base)
1126 						abase = seg->pages_base;
1127 					else
1128 						abase = mdsp->mds_base;
1129 					if (p_end > seg->pages_end)
1130 						anpgs = seg->pages_end - abase;
1131 					else
1132 						anpgs = p_end - abase;
1133 					s_ret = kphysm_split_memseg(abase,
1134 					    anpgs);
1135 					if (s_ret == 0) {
1136 						/* Split failed. */
1137 						ret = KPHYSM_ERESOURCE;
1138 						break;
1139 					}
1140 					goto restart;
1141 				}
1142 				pages_checked +=
1143 				    seg->pages_end - seg->pages_base;
1144 			}
1145 			/*
1146 			 * The memseg is wholly within the delete span.
1147 			 * The individual pages can now be checked.
1148 			 */
1149 			/* Cage test. */
1150 			for (pp = seg->pages; pp < seg->epages; pp++) {
1151 				if (PP_ISNORELOC(pp)) {
1152 					ret = KPHYSM_ENONRELOC;
1153 					break;
1154 				}
1155 			}
1156 			if (ret != KPHYSM_OK) {
1157 				break;
1158 			}
1159 			phys_pages += (seg->pages_end - mseg_start);
1160 			vm_pages += MSEG_NPAGES(seg);
1161 		}
1162 		if (ret != KPHYSM_OK)
1163 			break;
1164 		if (pages_checked != mdsp->mds_npgs) {
1165 			ret = KPHYSM_ENONRELOC;
1166 			break;
1167 		}
1168 	}
1169 
1170 	if (ret == KPHYSM_OK) {
1171 		mhp->mh_phys_pages += phys_pages;
1172 		mhp->mh_vm_pages += vm_pages;
1173 	} else {
1174 		/*
1175 		 * Keep holding the mh_mutex to prevent it going away.
1176 		 */
1177 		delspan_remove(&mhp->mh_transit, base, npgs);
1178 	}
1179 	mutex_exit(&mhp->mh_mutex);
1180 	return (ret);
1181 }
1182 
1183 int
1184 kphysm_del_span_query(
1185 	pfn_t base,
1186 	pgcnt_t npgs,
1187 	memquery_t *mqp)
1188 {
1189 	struct memdelspan *mdsp;
1190 	struct memdelspan *mdsp_new;
1191 	int done_first_nonreloc;
1192 
1193 	mqp->phys_pages = 0;
1194 	mqp->managed = 0;
1195 	mqp->nonrelocatable = 0;
1196 	mqp->first_nonrelocatable = 0;
1197 	mqp->last_nonrelocatable = 0;
1198 
1199 	mdsp_new = span_to_install(base, npgs);
1200 	/*
1201 	 * It is OK to proceed here if mdsp_new == NULL.
1202 	 */
1203 	done_first_nonreloc = 0;
1204 	for (mdsp = mdsp_new; mdsp != NULL; mdsp = mdsp->mds_next) {
1205 		pfn_t sbase;
1206 		pgcnt_t snpgs;
1207 
1208 		mqp->phys_pages += mdsp->mds_npgs;
1209 		sbase = mdsp->mds_base;
1210 		snpgs = mdsp->mds_npgs;
1211 		while (snpgs != 0) {
1212 			struct memseg *lseg, *seg;
1213 			pfn_t p_end;
1214 			page_t *pp;
1215 			pfn_t mseg_start;
1216 
1217 			p_end = sbase + snpgs;
1218 			/*
1219 			 * Find the lowest addressed memseg that starts
1220 			 * after sbase and account for it.
1221 			 * This is to catch dynamic memsegs whose start
1222 			 * is hidden.
1223 			 */
1224 			seg = NULL;
1225 			for (lseg = memsegs; lseg != NULL; lseg = lseg->next) {
1226 				if ((lseg->pages_base >= sbase) ||
1227 				    (lseg->pages_base < p_end &&
1228 				    lseg->pages_end > sbase)) {
1229 					if (seg == NULL ||
1230 					    seg->pages_base > lseg->pages_base)
1231 						seg = lseg;
1232 				}
1233 			}
1234 			if (seg != NULL) {
1235 				if (!memseg_is_dynamic(seg, &mseg_start)) {
1236 					mseg_start = seg->pages_base;
1237 				}
1238 				/*
1239 				 * Now have the full extent of the memseg so
1240 				 * do the range check.
1241 				 */
1242 				if (mseg_start >= p_end ||
1243 				    seg->pages_end <= sbase) {
1244 					/* Span does not overlap memseg. */
1245 					seg = NULL;
1246 				}
1247 			}
1248 			/*
1249 			 * Account for gap either before the segment if
1250 			 * there is one or to the end of the span.
1251 			 */
1252 			if (seg == NULL || mseg_start > sbase) {
1253 				pfn_t a_end;
1254 
1255 				a_end = (seg == NULL) ? p_end : mseg_start;
1256 				/*
1257 				 * Check with arch layer for relocatability.
1258 				 */
1259 				if (arch_kphysm_del_span_ok(sbase,
1260 				    (a_end - sbase))) {
1261 					/*
1262 					 * No non-relocatble pages in this
1263 					 * area, avoid the fine-grained
1264 					 * test.
1265 					 */
1266 					snpgs -= (a_end - sbase);
1267 					sbase = a_end;
1268 				}
1269 				while (sbase < a_end) {
1270 					if (!arch_kphysm_del_span_ok(sbase,
1271 					    1)) {
1272 						mqp->nonrelocatable++;
1273 						if (!done_first_nonreloc) {
1274 							mqp->
1275 							    first_nonrelocatable
1276 							    = sbase;
1277 							done_first_nonreloc = 1;
1278 						}
1279 						mqp->last_nonrelocatable =
1280 						    sbase;
1281 					}
1282 					sbase++;
1283 					snpgs--;
1284 				}
1285 			}
1286 			if (seg != NULL) {
1287 				ASSERT(mseg_start <= sbase);
1288 				if (seg->pages_base != mseg_start &&
1289 				    seg->pages_base > sbase) {
1290 					pgcnt_t skip_pgs;
1291 
1292 					/*
1293 					 * Skip the page_t area of a
1294 					 * dynamic memseg.
1295 					 */
1296 					skip_pgs = seg->pages_base - sbase;
1297 					if (snpgs <= skip_pgs) {
1298 						sbase += snpgs;
1299 						snpgs = 0;
1300 						continue;
1301 					}
1302 					snpgs -= skip_pgs;
1303 					sbase += skip_pgs;
1304 				}
1305 				ASSERT(snpgs != 0);
1306 				ASSERT(seg->pages_base <= sbase);
1307 				/*
1308 				 * The individual pages can now be checked.
1309 				 */
1310 				for (pp = seg->pages +
1311 				    (sbase - seg->pages_base);
1312 				    snpgs != 0 && pp < seg->epages; pp++) {
1313 					mqp->managed++;
1314 					if (PP_ISNORELOC(pp)) {
1315 						mqp->nonrelocatable++;
1316 						if (!done_first_nonreloc) {
1317 							mqp->
1318 							    first_nonrelocatable
1319 							    = sbase;
1320 							done_first_nonreloc = 1;
1321 						}
1322 						mqp->last_nonrelocatable =
1323 						    sbase;
1324 					}
1325 					sbase++;
1326 					snpgs--;
1327 				}
1328 			}
1329 		}
1330 	}
1331 
1332 	free_delspans(mdsp_new);
1333 
1334 	return (KPHYSM_OK);
1335 }
1336 
1337 /*
1338  * This release function can be called at any stage as follows:
1339  *	_gethandle only called
1340  *	_span(s) only called
1341  *	_start called but failed
1342  *	delete thread exited
1343  */
1344 int
1345 kphysm_del_release(memhandle_t handle)
1346 {
1347 	struct mem_handle *mhp;
1348 
1349 	mhp = kphysm_lookup_mem_handle(handle);
1350 	if (mhp == NULL) {
1351 		return (KPHYSM_EHANDLE);
1352 	}
1353 	switch (mhp->mh_state) {
1354 	case MHND_STARTING:
1355 	case MHND_RUNNING:
1356 		mutex_exit(&mhp->mh_mutex);
1357 		return (KPHYSM_ENOTFINISHED);
1358 	case MHND_FREE:
1359 		ASSERT(mhp->mh_state != MHND_FREE);
1360 		mutex_exit(&mhp->mh_mutex);
1361 		return (KPHYSM_EHANDLE);
1362 	case MHND_INIT:
1363 		break;
1364 	case MHND_DONE:
1365 		break;
1366 	case MHND_RELEASE:
1367 		mutex_exit(&mhp->mh_mutex);
1368 		return (KPHYSM_ESEQUENCE);
1369 	default:
1370 #ifdef DEBUG
1371 		cmn_err(CE_WARN, "kphysm_del_release(0x%p) state corrupt %d",
1372 		    (void *)mhp, mhp->mh_state);
1373 #endif /* DEBUG */
1374 		mutex_exit(&mhp->mh_mutex);
1375 		return (KPHYSM_EHANDLE);
1376 	}
1377 	/*
1378 	 * Set state so that we can wait if necessary.
1379 	 * Also this means that we have read/write access to all
1380 	 * fields except mh_exthandle and mh_state.
1381 	 */
1382 	mhp->mh_state = MHND_RELEASE;
1383 	/*
1384 	 * The mem_handle cannot be de-allocated by any other operation
1385 	 * now, so no need to hold mh_mutex.
1386 	 */
1387 	mutex_exit(&mhp->mh_mutex);
1388 
1389 	delspan_remove(&mhp->mh_transit, 0, 0);
1390 	mhp->mh_phys_pages = 0;
1391 	mhp->mh_vm_pages = 0;
1392 	mhp->mh_hold_todo = 0;
1393 	mhp->mh_delete_complete = NULL;
1394 	mhp->mh_delete_complete_arg = NULL;
1395 	mhp->mh_cancel = 0;
1396 
1397 	mutex_enter(&mhp->mh_mutex);
1398 	ASSERT(mhp->mh_state == MHND_RELEASE);
1399 	mhp->mh_state = MHND_FREE;
1400 
1401 	kphysm_free_mem_handle(mhp);
1402 
1403 	return (KPHYSM_OK);
1404 }
1405 
1406 /*
1407  * This cancel function can only be called with the thread running.
1408  */
1409 int
1410 kphysm_del_cancel(memhandle_t handle)
1411 {
1412 	struct mem_handle *mhp;
1413 
1414 	mhp = kphysm_lookup_mem_handle(handle);
1415 	if (mhp == NULL) {
1416 		return (KPHYSM_EHANDLE);
1417 	}
1418 	if (mhp->mh_state != MHND_STARTING && mhp->mh_state != MHND_RUNNING) {
1419 		mutex_exit(&mhp->mh_mutex);
1420 		return (KPHYSM_ENOTRUNNING);
1421 	}
1422 	/*
1423 	 * Set the cancel flag and wake the delete thread up.
1424 	 * The thread may be waiting on I/O, so the effect of the cancel
1425 	 * may be delayed.
1426 	 */
1427 	if (mhp->mh_cancel == 0) {
1428 		mhp->mh_cancel = KPHYSM_ECANCELLED;
1429 		cv_signal(&mhp->mh_cv);
1430 	}
1431 	mutex_exit(&mhp->mh_mutex);
1432 	return (KPHYSM_OK);
1433 }
1434 
1435 int
1436 kphysm_del_status(
1437 	memhandle_t handle,
1438 	memdelstat_t *mdstp)
1439 {
1440 	struct mem_handle *mhp;
1441 
1442 	mhp = kphysm_lookup_mem_handle(handle);
1443 	if (mhp == NULL) {
1444 		return (KPHYSM_EHANDLE);
1445 	}
1446 	/*
1447 	 * Calling kphysm_del_status() is allowed before the delete
1448 	 * is started to allow for status display.
1449 	 */
1450 	if (mhp->mh_state != MHND_INIT && mhp->mh_state != MHND_STARTING &&
1451 	    mhp->mh_state != MHND_RUNNING) {
1452 		mutex_exit(&mhp->mh_mutex);
1453 		return (KPHYSM_ENOTRUNNING);
1454 	}
1455 	mdstp->phys_pages = mhp->mh_phys_pages;
1456 	mdstp->managed = mhp->mh_vm_pages;
1457 	mdstp->collected = mhp->mh_vm_pages - mhp->mh_hold_todo;
1458 	mutex_exit(&mhp->mh_mutex);
1459 	return (KPHYSM_OK);
1460 }
1461 
1462 static int mem_delete_additional_pages = 100;
1463 
1464 static int
1465 can_remove_pgs(pgcnt_t npgs)
1466 {
1467 	/*
1468 	 * If all pageable pages were paged out, freemem would
1469 	 * equal availrmem.  There is a minimum requirement for
1470 	 * availrmem.
1471 	 */
1472 	if ((availrmem - (tune.t_minarmem + mem_delete_additional_pages))
1473 	    < npgs)
1474 		return (0);
1475 	/* TODO: check swap space, etc. */
1476 	return (1);
1477 }
1478 
1479 static int
1480 get_availrmem(pgcnt_t npgs)
1481 {
1482 	int ret;
1483 
1484 	mutex_enter(&freemem_lock);
1485 	ret = can_remove_pgs(npgs);
1486 	if (ret != 0)
1487 		availrmem -= npgs;
1488 	mutex_exit(&freemem_lock);
1489 	return (ret);
1490 }
1491 
1492 static void
1493 put_availrmem(pgcnt_t npgs)
1494 {
1495 	mutex_enter(&freemem_lock);
1496 	availrmem += npgs;
1497 	mutex_exit(&freemem_lock);
1498 }
1499 
1500 #define	FREEMEM_INCR	100
1501 static pgcnt_t freemem_incr = FREEMEM_INCR;
1502 #define	DEL_FREE_WAIT_FRAC	4
1503 #define	DEL_FREE_WAIT_TICKS	((hz+DEL_FREE_WAIT_FRAC-1)/DEL_FREE_WAIT_FRAC)
1504 
1505 #define	DEL_BUSY_WAIT_FRAC	20
1506 #define	DEL_BUSY_WAIT_TICKS	((hz+DEL_BUSY_WAIT_FRAC-1)/DEL_BUSY_WAIT_FRAC)
1507 
1508 static void kphysm_del_cleanup(struct mem_handle *);
1509 
1510 static void page_delete_collect(page_t *, struct mem_handle *);
1511 
1512 static pgcnt_t
1513 delthr_get_freemem(struct mem_handle *mhp)
1514 {
1515 	pgcnt_t free_get;
1516 	int ret;
1517 
1518 	ASSERT(MUTEX_HELD(&mhp->mh_mutex));
1519 
1520 	MDSTAT_INCR(mhp, need_free);
1521 	/*
1522 	 * Get up to freemem_incr pages.
1523 	 */
1524 	free_get = freemem_incr;
1525 	if (free_get > mhp->mh_hold_todo)
1526 		free_get = mhp->mh_hold_todo;
1527 	/*
1528 	 * Take free_get pages away from freemem,
1529 	 * waiting if necessary.
1530 	 */
1531 
1532 	while (!mhp->mh_cancel) {
1533 		mutex_exit(&mhp->mh_mutex);
1534 		MDSTAT_INCR(mhp, free_loop);
1535 		/*
1536 		 * Duplicate test from page_create_throttle()
1537 		 * but don't override with !PG_WAIT.
1538 		 */
1539 		if (freemem < (free_get + throttlefree)) {
1540 			MDSTAT_INCR(mhp, free_low);
1541 			ret = 0;
1542 		} else {
1543 			ret = page_create_wait(free_get, 0);
1544 			if (ret == 0) {
1545 				/* EMPTY */
1546 				MDSTAT_INCR(mhp, free_failed);
1547 			}
1548 		}
1549 		if (ret != 0) {
1550 			mutex_enter(&mhp->mh_mutex);
1551 			return (free_get);
1552 		}
1553 
1554 		/*
1555 		 * Put pressure on pageout.
1556 		 */
1557 		page_needfree(free_get);
1558 		cv_signal(&proc_pageout->p_cv);
1559 
1560 		mutex_enter(&mhp->mh_mutex);
1561 		(void) cv_timedwait(&mhp->mh_cv, &mhp->mh_mutex,
1562 		    (lbolt + DEL_FREE_WAIT_TICKS));
1563 		mutex_exit(&mhp->mh_mutex);
1564 		page_needfree(-(spgcnt_t)free_get);
1565 
1566 		mutex_enter(&mhp->mh_mutex);
1567 	}
1568 	return (0);
1569 }
1570 
1571 #define	DR_AIO_CLEANUP_DELAY	25000	/* 0.025secs, in usec */
1572 #define	DR_AIO_CLEANUP_MAXLOOPS_NODELAY	100
1573 /*
1574  * This function is run as a helper thread for delete_memory_thread.
1575  * It is needed in order to force kaio cleanup, so that pages used in kaio
1576  * will be unlocked and subsequently relocated by delete_memory_thread.
1577  * The address of the delete_memory_threads's mem_handle is passed in to
1578  * this thread function, and is used to set the mh_aio_cleanup_done member
1579  * prior to calling thread_exit().
1580  */
1581 static void
1582 dr_aio_cleanup_thread(caddr_t amhp)
1583 {
1584 	proc_t *procp;
1585 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
1586 	int cleaned;
1587 	int n = 0;
1588 	struct mem_handle *mhp;
1589 	volatile uint_t *pcancel;
1590 
1591 	mhp = (struct mem_handle *)amhp;
1592 	ASSERT(mhp != NULL);
1593 	pcancel = &mhp->mh_dr_aio_cleanup_cancel;
1594 	if (modload("sys", "kaio") == -1) {
1595 		mhp->mh_aio_cleanup_done = 1;
1596 		cmn_err(CE_WARN, "dr_aio_cleanup_thread: cannot load kaio");
1597 		thread_exit();
1598 	}
1599 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
1600 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
1601 	if (aio_cleanup_dr_delete_memory == NULL) {
1602 		mhp->mh_aio_cleanup_done = 1;
1603 		cmn_err(CE_WARN,
1604 	    "aio_cleanup_dr_delete_memory not found in kaio");
1605 		thread_exit();
1606 	}
1607 	do {
1608 		cleaned = 0;
1609 		mutex_enter(&pidlock);
1610 		for (procp = practive; (*pcancel == 0) && (procp != NULL);
1611 		    procp = procp->p_next) {
1612 			mutex_enter(&procp->p_lock);
1613 			if (procp->p_aio != NULL) {
1614 				/* cleanup proc's outstanding kaio */
1615 				cleaned +=
1616 				    (*aio_cleanup_dr_delete_memory)(procp);
1617 			}
1618 			mutex_exit(&procp->p_lock);
1619 		}
1620 		mutex_exit(&pidlock);
1621 		if ((*pcancel == 0) &&
1622 		    (!cleaned || (++n == DR_AIO_CLEANUP_MAXLOOPS_NODELAY))) {
1623 			/* delay a bit before retrying all procs again */
1624 			delay(drv_usectohz(DR_AIO_CLEANUP_DELAY));
1625 			n = 0;
1626 		}
1627 	} while (*pcancel == 0);
1628 	mhp->mh_aio_cleanup_done = 1;
1629 	thread_exit();
1630 }
1631 
1632 static void
1633 delete_memory_thread(caddr_t amhp)
1634 {
1635 	struct mem_handle *mhp;
1636 	struct memdelspan *mdsp;
1637 	callb_cpr_t cprinfo;
1638 	page_t *pp_targ;
1639 	spgcnt_t freemem_left;
1640 	void (*del_complete_funcp)(void *, int error);
1641 	void *del_complete_arg;
1642 	int comp_code;
1643 	int ret;
1644 	int first_scan;
1645 	uint_t szc;
1646 #ifdef MEM_DEL_STATS
1647 	uint64_t start_total, ntick_total;
1648 	uint64_t start_pgrp, ntick_pgrp;
1649 #endif /* MEM_DEL_STATS */
1650 
1651 	mhp = (struct mem_handle *)amhp;
1652 
1653 #ifdef MEM_DEL_STATS
1654 	start_total = ddi_get_lbolt();
1655 #endif /* MEM_DEL_STATS */
1656 
1657 	CALLB_CPR_INIT(&cprinfo, &mhp->mh_mutex,
1658 	    callb_generic_cpr, "memdel");
1659 
1660 	mutex_enter(&mhp->mh_mutex);
1661 	ASSERT(mhp->mh_state == MHND_STARTING);
1662 
1663 	mhp->mh_state = MHND_RUNNING;
1664 	mhp->mh_thread_id = curthread;
1665 
1666 	mhp->mh_hold_todo = mhp->mh_vm_pages;
1667 	mutex_exit(&mhp->mh_mutex);
1668 
1669 	/* Allocate the remap pages now, if necessary. */
1670 	memseg_remap_init();
1671 
1672 	/*
1673 	 * Subtract from availrmem now if possible as availrmem
1674 	 * may not be available by the end of the delete.
1675 	 */
1676 	if (!get_availrmem(mhp->mh_vm_pages)) {
1677 		comp_code = KPHYSM_ENOTVIABLE;
1678 		mutex_enter(&mhp->mh_mutex);
1679 		goto early_exit;
1680 	}
1681 
1682 	ret = kphysm_setup_pre_del(mhp->mh_vm_pages);
1683 
1684 	mutex_enter(&mhp->mh_mutex);
1685 
1686 	if (ret != 0) {
1687 		mhp->mh_cancel = KPHYSM_EREFUSED;
1688 		goto refused;
1689 	}
1690 
1691 	transit_list_collect(mhp, 1);
1692 
1693 	for (mdsp = mhp->mh_transit.trl_spans; mdsp != NULL;
1694 	    mdsp = mdsp->mds_next) {
1695 		ASSERT(mdsp->mds_bitmap == NULL);
1696 		mdsp->mds_bitmap = kmem_zalloc(MDS_BITMAPBYTES(mdsp), KM_SLEEP);
1697 		mdsp->mds_bitmap_retired = kmem_zalloc(MDS_BITMAPBYTES(mdsp),
1698 							KM_SLEEP);
1699 	}
1700 
1701 	first_scan = 1;
1702 	freemem_left = 0;
1703 	/*
1704 	 * Start dr_aio_cleanup_thread, which periodically iterates
1705 	 * through the process list and invokes aio cleanup.  This
1706 	 * is needed in order to avoid a deadly embrace between the
1707 	 * delete_memory_thread (waiting on writer lock for page, with the
1708 	 * exclusive-wanted bit set), kaio read request threads (waiting for a
1709 	 * reader lock on the same page that is wanted by the
1710 	 * delete_memory_thread), and threads waiting for kaio completion
1711 	 * (blocked on spt_amp->lock).
1712 	 */
1713 	mhp->mh_dr_aio_cleanup_cancel = 0;
1714 	mhp->mh_aio_cleanup_done = 0;
1715 	(void) thread_create(NULL, 0, dr_aio_cleanup_thread,
1716 	    (caddr_t)mhp, 0, &p0, TS_RUN, maxclsyspri - 1);
1717 	while ((mhp->mh_hold_todo != 0) && (mhp->mh_cancel == 0)) {
1718 		pgcnt_t collected;
1719 
1720 		MDSTAT_INCR(mhp, nloop);
1721 		collected = 0;
1722 		for (mdsp = mhp->mh_transit.trl_spans; (mdsp != NULL) &&
1723 		    (mhp->mh_cancel == 0); mdsp = mdsp->mds_next) {
1724 			pfn_t pfn, p_end;
1725 
1726 			if (first_scan) {
1727 				mem_node_pre_del_slice(mdsp->mds_base,
1728 					mdsp->mds_base + mdsp->mds_npgs - 1);
1729 			}
1730 
1731 			p_end = mdsp->mds_base + mdsp->mds_npgs;
1732 			for (pfn = mdsp->mds_base; (pfn < p_end) &&
1733 			    (mhp->mh_cancel == 0); pfn++) {
1734 				page_t *pp, *tpp, *tpp_targ;
1735 				pgcnt_t bit;
1736 				struct vnode *vp;
1737 				u_offset_t offset;
1738 				int mod, result;
1739 				spgcnt_t pgcnt;
1740 
1741 				bit = pfn - mdsp->mds_base;
1742 				if ((mdsp->mds_bitmap[bit / NBPBMW] &
1743 				    (1 << (bit % NBPBMW))) != 0) {
1744 					MDSTAT_INCR(mhp, already_done);
1745 					continue;
1746 				}
1747 				if (freemem_left == 0) {
1748 					freemem_left += delthr_get_freemem(mhp);
1749 					if (freemem_left == 0)
1750 						break;
1751 				}
1752 
1753 				/*
1754 				 * Release mh_mutex - some of this
1755 				 * stuff takes some time (eg PUTPAGE).
1756 				 */
1757 
1758 				mutex_exit(&mhp->mh_mutex);
1759 				MDSTAT_INCR(mhp, ncheck);
1760 
1761 				pp = page_numtopp_nolock(pfn);
1762 				if (pp == NULL) {
1763 					/*
1764 					 * Not covered by a page_t - will
1765 					 * be dealt with elsewhere.
1766 					 */
1767 					MDSTAT_INCR(mhp, nopaget);
1768 					mutex_enter(&mhp->mh_mutex);
1769 					mdsp->mds_bitmap[bit / NBPBMW] |=
1770 					    (1 << (bit % NBPBMW));
1771 					continue;
1772 				}
1773 
1774 				if (!page_try_reclaim_lock(pp, SE_EXCL,
1775 				    SE_EXCL_WANTED | SE_RETIRED)) {
1776 					/*
1777 					 * Page in use elsewhere.  Skip it.
1778 					 */
1779 					MDSTAT_INCR(mhp, lockfail);
1780 					mutex_enter(&mhp->mh_mutex);
1781 					continue;
1782 				}
1783 				/*
1784 				 * See if the cage expanded into the delete.
1785 				 * This can happen as we have to allow the
1786 				 * cage to expand.
1787 				 */
1788 				if (PP_ISNORELOC(pp)) {
1789 					page_unlock(pp);
1790 					mutex_enter(&mhp->mh_mutex);
1791 					mhp->mh_cancel = KPHYSM_ENONRELOC;
1792 					break;
1793 				}
1794 				if (PP_RETIRED(pp)) {
1795 					/*
1796 					 * Page has been retired and is
1797 					 * not part of the cage so we
1798 					 * can now do the accounting for
1799 					 * it.
1800 					 */
1801 					MDSTAT_INCR(mhp, retired);
1802 					mutex_enter(&mhp->mh_mutex);
1803 					mdsp->mds_bitmap[bit / NBPBMW]
1804 					    |= (1 << (bit % NBPBMW));
1805 					mdsp->mds_bitmap_retired[bit /
1806 					    NBPBMW] |=
1807 					    (1 << (bit % NBPBMW));
1808 					mhp->mh_hold_todo--;
1809 					continue;
1810 				}
1811 				ASSERT(freemem_left != 0);
1812 				if (PP_ISFREE(pp)) {
1813 					/*
1814 					 * Like page_reclaim() only 'freemem'
1815 					 * processing is already done.
1816 					 */
1817 					MDSTAT_INCR(mhp, nfree);
1818 				free_page_collect:
1819 					if (PP_ISAGED(pp)) {
1820 						page_list_sub(pp,
1821 						    PG_FREE_LIST);
1822 					} else {
1823 						page_list_sub(pp,
1824 						    PG_CACHE_LIST);
1825 					}
1826 					PP_CLRFREE(pp);
1827 					PP_CLRAGED(pp);
1828 					collected++;
1829 					mutex_enter(&mhp->mh_mutex);
1830 					page_delete_collect(pp, mhp);
1831 					mdsp->mds_bitmap[bit / NBPBMW] |=
1832 					    (1 << (bit % NBPBMW));
1833 					freemem_left--;
1834 					continue;
1835 				}
1836 				ASSERT(pp->p_vnode != NULL);
1837 				if (first_scan) {
1838 					MDSTAT_INCR(mhp, first_notfree);
1839 					page_unlock(pp);
1840 					mutex_enter(&mhp->mh_mutex);
1841 					continue;
1842 				}
1843 				/*
1844 				 * Keep stats on pages encountered that
1845 				 * are marked for retirement.
1846 				 */
1847 				if (PP_TOXIC(pp)) {
1848 					MDSTAT_INCR(mhp, toxic);
1849 				} else if (PP_PR_REQ(pp)) {
1850 					MDSTAT_INCR(mhp, failing);
1851 				}
1852 				/*
1853 				 * In certain cases below, special exceptions
1854 				 * are made for pages that are toxic.  This
1855 				 * is because the current meaning of toxic
1856 				 * is that an uncorrectable error has been
1857 				 * previously associated with the page.
1858 				 */
1859 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1860 					if (!PP_TOXIC(pp)) {
1861 						/*
1862 						 * Must relocate locked in
1863 						 * memory pages.
1864 						 */
1865 #ifdef MEM_DEL_STATS
1866 						start_pgrp = ddi_get_lbolt();
1867 #endif /* MEM_DEL_STATS */
1868 						/*
1869 						 * Lock all constituent pages
1870 						 * of a large page to ensure
1871 						 * that p_szc won't change.
1872 						 */
1873 						if (!group_page_trylock(pp,
1874 						    SE_EXCL)) {
1875 							MDSTAT_INCR(mhp,
1876 							    gptllckfail);
1877 							page_unlock(pp);
1878 							mutex_enter(
1879 							    &mhp->mh_mutex);
1880 							continue;
1881 						}
1882 						MDSTAT_INCR(mhp, npplocked);
1883 						pp_targ =
1884 						    page_get_replacement_page(
1885 							pp, NULL, 0);
1886 						if (pp_targ != NULL) {
1887 #ifdef MEM_DEL_STATS
1888 							ntick_pgrp =
1889 							    (uint64_t)
1890 							    ddi_get_lbolt() -
1891 							    start_pgrp;
1892 #endif /* MEM_DEL_STATS */
1893 							MDSTAT_PGRP(mhp,
1894 							    ntick_pgrp);
1895 							MDSTAT_INCR(mhp,
1896 							    nlockreloc);
1897 							goto reloc;
1898 						}
1899 						group_page_unlock(pp);
1900 						page_unlock(pp);
1901 #ifdef MEM_DEL_STATS
1902 						ntick_pgrp =
1903 						    (uint64_t)ddi_get_lbolt() -
1904 						    start_pgrp;
1905 #endif /* MEM_DEL_STATS */
1906 						MDSTAT_PGRP(mhp, ntick_pgrp);
1907 						MDSTAT_INCR(mhp, nnorepl);
1908 						mutex_enter(&mhp->mh_mutex);
1909 						continue;
1910 					} else {
1911 						/*
1912 						 * Cannot do anything about
1913 						 * this page because it is
1914 						 * toxic.
1915 						 */
1916 						MDSTAT_INCR(mhp, npplkdtoxic);
1917 						page_unlock(pp);
1918 						mutex_enter(&mhp->mh_mutex);
1919 						continue;
1920 					}
1921 				}
1922 				/*
1923 				 * Unload the mappings and check if mod bit
1924 				 * is set.
1925 				 */
1926 				ASSERT(!PP_ISKAS(pp));
1927 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1928 				mod = hat_ismod(pp);
1929 
1930 #ifdef MEM_DEL_STATS
1931 				start_pgrp = ddi_get_lbolt();
1932 #endif /* MEM_DEL_STATS */
1933 				if (mod && !PP_TOXIC(pp)) {
1934 					/*
1935 					 * Lock all constituent pages
1936 					 * of a large page to ensure
1937 					 * that p_szc won't change.
1938 					 */
1939 					if (!group_page_trylock(pp, SE_EXCL)) {
1940 						MDSTAT_INCR(mhp, gptlmodfail);
1941 						page_unlock(pp);
1942 						mutex_enter(&mhp->mh_mutex);
1943 						continue;
1944 					}
1945 					pp_targ = page_get_replacement_page(pp,
1946 					    NULL, 0);
1947 					if (pp_targ != NULL) {
1948 						MDSTAT_INCR(mhp, nmodreloc);
1949 #ifdef MEM_DEL_STATS
1950 						ntick_pgrp =
1951 						    (uint64_t)ddi_get_lbolt() -
1952 							start_pgrp;
1953 #endif /* MEM_DEL_STATS */
1954 						MDSTAT_PGRP(mhp, ntick_pgrp);
1955 						goto reloc;
1956 					}
1957 					group_page_unlock(pp);
1958 				}
1959 
1960 				if (!page_try_demote_pages(pp)) {
1961 					MDSTAT_INCR(mhp, demotefail);
1962 					page_unlock(pp);
1963 #ifdef MEM_DEL_STATS
1964 					ntick_pgrp = (uint64_t)ddi_get_lbolt() -
1965 					    start_pgrp;
1966 #endif /* MEM_DEL_STATS */
1967 					MDSTAT_PGRP(mhp, ntick_pgrp);
1968 					mutex_enter(&mhp->mh_mutex);
1969 					continue;
1970 				}
1971 
1972 				/*
1973 				 * Regular 'page-out'.
1974 				 */
1975 				if (!mod) {
1976 					MDSTAT_INCR(mhp, ndestroy);
1977 					page_destroy(pp, 1);
1978 					/*
1979 					 * page_destroy was called with
1980 					 * dontfree. As long as p_lckcnt
1981 					 * and p_cowcnt are both zero, the
1982 					 * only additional action of
1983 					 * page_destroy with !dontfree is to
1984 					 * call page_free, so we can collect
1985 					 * the page here.
1986 					 */
1987 					collected++;
1988 #ifdef MEM_DEL_STATS
1989 					ntick_pgrp = (uint64_t)ddi_get_lbolt() -
1990 					    start_pgrp;
1991 #endif /* MEM_DEL_STATS */
1992 					MDSTAT_PGRP(mhp, ntick_pgrp);
1993 					mutex_enter(&mhp->mh_mutex);
1994 					page_delete_collect(pp, mhp);
1995 					mdsp->mds_bitmap[bit / NBPBMW] |=
1996 					    (1 << (bit % NBPBMW));
1997 					continue;
1998 				}
1999 				/*
2000 				 * The page is toxic and the mod bit is
2001 				 * set, we cannot do anything here to deal
2002 				 * with it.
2003 				 */
2004 				if (PP_TOXIC(pp)) {
2005 					page_unlock(pp);
2006 #ifdef MEM_DEL_STATS
2007 					ntick_pgrp = (uint64_t)ddi_get_lbolt() -
2008 					    start_pgrp;
2009 #endif /* MEM_DEL_STATS */
2010 					MDSTAT_PGRP(mhp, ntick_pgrp);
2011 					MDSTAT_INCR(mhp, modtoxic);
2012 					mutex_enter(&mhp->mh_mutex);
2013 					continue;
2014 				}
2015 				MDSTAT_INCR(mhp, nputpage);
2016 				vp = pp->p_vnode;
2017 				offset = pp->p_offset;
2018 				VN_HOLD(vp);
2019 				page_unlock(pp);
2020 				(void) VOP_PUTPAGE(vp, offset, PAGESIZE,
2021 				    B_INVAL|B_FORCE, kcred);
2022 				VN_RELE(vp);
2023 #ifdef MEM_DEL_STATS
2024 				ntick_pgrp = (uint64_t)ddi_get_lbolt() -
2025 				    start_pgrp;
2026 #endif /* MEM_DEL_STATS */
2027 				MDSTAT_PGRP(mhp, ntick_pgrp);
2028 				/*
2029 				 * Try to get the page back immediately
2030 				 * so that it can be collected.
2031 				 */
2032 				pp = page_numtopp_nolock(pfn);
2033 				if (pp == NULL) {
2034 					MDSTAT_INCR(mhp, nnoreclaim);
2035 					/*
2036 					 * This should not happen as this
2037 					 * thread is deleting the page.
2038 					 * If this code is generalized, this
2039 					 * becomes a reality.
2040 					 */
2041 #ifdef DEBUG
2042 					cmn_err(CE_WARN,
2043 					    "delete_memory_thread(0x%p) "
2044 					    "pfn 0x%lx has no page_t",
2045 					    (void *)mhp, pfn);
2046 #endif /* DEBUG */
2047 					mutex_enter(&mhp->mh_mutex);
2048 					continue;
2049 				}
2050 				if (page_try_reclaim_lock(pp, SE_EXCL,
2051 				    SE_EXCL_WANTED | SE_RETIRED)) {
2052 					if (PP_ISFREE(pp)) {
2053 						goto free_page_collect;
2054 					}
2055 					page_unlock(pp);
2056 				}
2057 				MDSTAT_INCR(mhp, nnoreclaim);
2058 				mutex_enter(&mhp->mh_mutex);
2059 				continue;
2060 
2061 			reloc:
2062 				/*
2063 				 * Got some freemem and a target
2064 				 * page, so move the data to avoid
2065 				 * I/O and lock problems.
2066 				 */
2067 				ASSERT(!page_iolock_assert(pp));
2068 				MDSTAT_INCR(mhp, nreloc);
2069 				/*
2070 				 * page_relocate() will return pgcnt: the
2071 				 * number of consecutive pages relocated.
2072 				 * If it is successful, pp will be a
2073 				 * linked list of the page structs that
2074 				 * were relocated. If page_relocate() is
2075 				 * unsuccessful, pp will be unmodified.
2076 				 */
2077 #ifdef MEM_DEL_STATS
2078 				start_pgrp = ddi_get_lbolt();
2079 #endif /* MEM_DEL_STATS */
2080 				result = page_relocate(&pp, &pp_targ, 0, 0,
2081 				    &pgcnt, NULL);
2082 #ifdef MEM_DEL_STATS
2083 				ntick_pgrp = (uint64_t)ddi_get_lbolt() -
2084 				    start_pgrp;
2085 #endif /* MEM_DEL_STATS */
2086 				MDSTAT_PGRP(mhp, ntick_pgrp);
2087 				if (result != 0) {
2088 					MDSTAT_INCR(mhp, nrelocfail);
2089 					/*
2090 					 * We did not succeed. We need
2091 					 * to give the pp_targ pages back.
2092 					 * page_free(pp_targ, 1) without
2093 					 * the freemem accounting.
2094 					 */
2095 					group_page_unlock(pp);
2096 					page_free_replacement_page(pp_targ);
2097 					page_unlock(pp);
2098 					mutex_enter(&mhp->mh_mutex);
2099 					continue;
2100 				}
2101 
2102 				/*
2103 				 * We will then collect pgcnt pages.
2104 				 */
2105 				ASSERT(pgcnt > 0);
2106 				mutex_enter(&mhp->mh_mutex);
2107 				/*
2108 				 * We need to make sure freemem_left is
2109 				 * large enough.
2110 				 */
2111 				while ((freemem_left < pgcnt) &&
2112 					(!mhp->mh_cancel)) {
2113 					freemem_left +=
2114 						delthr_get_freemem(mhp);
2115 				}
2116 
2117 				/*
2118 				 * Do not proceed if mh_cancel is set.
2119 				 */
2120 				if (mhp->mh_cancel) {
2121 					while (pp_targ != NULL) {
2122 						/*
2123 						 * Unlink and unlock each page.
2124 						 */
2125 						tpp_targ = pp_targ;
2126 						page_sub(&pp_targ, tpp_targ);
2127 						page_unlock(tpp_targ);
2128 					}
2129 					/*
2130 					 * We need to give the pp pages back.
2131 					 * page_free(pp, 1) without the
2132 					 * freemem accounting.
2133 					 */
2134 					page_free_replacement_page(pp);
2135 					break;
2136 				}
2137 
2138 				/* Now remove pgcnt from freemem_left */
2139 				freemem_left -= pgcnt;
2140 				ASSERT(freemem_left >= 0);
2141 				szc = pp->p_szc;
2142 				while (pp != NULL) {
2143 					/*
2144 					 * pp and pp_targ were passed back as
2145 					 * a linked list of pages.
2146 					 * Unlink and unlock each page.
2147 					 */
2148 					tpp_targ = pp_targ;
2149 					page_sub(&pp_targ, tpp_targ);
2150 					page_unlock(tpp_targ);
2151 					/*
2152 					 * The original page is now free
2153 					 * so remove it from the linked
2154 					 * list and collect it.
2155 					 */
2156 					tpp = pp;
2157 					page_sub(&pp, tpp);
2158 					pfn = page_pptonum(tpp);
2159 					collected++;
2160 					ASSERT(PAGE_EXCL(tpp));
2161 					ASSERT(tpp->p_vnode == NULL);
2162 					ASSERT(!hat_page_is_mapped(tpp));
2163 					ASSERT(tpp->p_szc == szc);
2164 					tpp->p_szc = 0;
2165 					page_delete_collect(tpp, mhp);
2166 					bit = pfn - mdsp->mds_base;
2167 					mdsp->mds_bitmap[bit / NBPBMW] |=
2168 					(1 << (bit % NBPBMW));
2169 				}
2170 				ASSERT(pp_targ == NULL);
2171 			}
2172 		}
2173 		first_scan = 0;
2174 		if ((mhp->mh_cancel == 0) && (mhp->mh_hold_todo != 0) &&
2175 			(collected == 0)) {
2176 			/*
2177 			 * This code is needed as we cannot wait
2178 			 * for a page to be locked OR the delete to
2179 			 * be cancelled.  Also, we must delay so
2180 			 * that other threads get a chance to run
2181 			 * on our cpu, otherwise page locks may be
2182 			 * held indefinitely by those threads.
2183 			 */
2184 			MDSTAT_INCR(mhp, ndelay);
2185 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2186 			(void) cv_timedwait(&mhp->mh_cv, &mhp->mh_mutex,
2187 			    (lbolt + DEL_BUSY_WAIT_TICKS));
2188 			CALLB_CPR_SAFE_END(&cprinfo, &mhp->mh_mutex);
2189 		}
2190 	}
2191 	/* stop the dr aio cleanup thread */
2192 	mhp->mh_dr_aio_cleanup_cancel = 1;
2193 	transit_list_collect(mhp, 0);
2194 	if (freemem_left != 0) {
2195 		/* Return any surplus. */
2196 		page_create_putback(freemem_left);
2197 		freemem_left = 0;
2198 	}
2199 	for (mdsp = mhp->mh_transit.trl_spans; mdsp != NULL;
2200 	    mdsp = mdsp->mds_next) {
2201 		mem_node_post_del_slice(mdsp->mds_base,
2202 				mdsp->mds_base + mdsp->mds_npgs - 1,
2203 				(mhp->mh_cancel != 0));
2204 	}
2205 #ifdef MEM_DEL_STATS
2206 	ntick_total = (uint64_t)ddi_get_lbolt() - start_total;
2207 #endif /* MEM_DEL_STATS */
2208 	MDSTAT_TOTAL(mhp, ntick_total);
2209 	MDSTAT_PRINT(mhp);
2210 
2211 	/*
2212 	 * If the memory delete was cancelled, exclusive-wanted bits must
2213 	 * be cleared. If there are retired pages being deleted, they need
2214 	 * to be unretired.
2215 	 */
2216 	for (mdsp = mhp->mh_transit.trl_spans; mdsp != NULL;
2217 	    mdsp = mdsp->mds_next) {
2218 		pfn_t pfn, p_end;
2219 
2220 		p_end = mdsp->mds_base + mdsp->mds_npgs;
2221 		for (pfn = mdsp->mds_base; pfn < p_end; pfn++) {
2222 			page_t *pp;
2223 			pgcnt_t bit;
2224 
2225 			bit = pfn - mdsp->mds_base;
2226 			if (mhp->mh_cancel) {
2227 				pp = page_numtopp_nolock(pfn);
2228 				if (pp != NULL) {
2229 					if ((mdsp->mds_bitmap[bit / NBPBMW] &
2230 					    (1 << (bit % NBPBMW))) == 0) {
2231 						page_lock_clr_exclwanted(pp);
2232 					}
2233 				}
2234 			} else {
2235 				pp = NULL;
2236 			}
2237 			if ((mdsp->mds_bitmap_retired[bit / NBPBMW] &
2238 			    (1 << (bit % NBPBMW))) != 0) {
2239 				/* do we already have pp? */
2240 				if (pp == NULL) {
2241 					pp = page_numtopp_nolock(pfn);
2242 				}
2243 				ASSERT(pp != NULL);
2244 				ASSERT(PP_RETIRED(pp));
2245 				if (mhp->mh_cancel != 0) {
2246 					page_unlock(pp);
2247 					/*
2248 					 * To satisfy ASSERT below in
2249 					 * cancel code.
2250 					 */
2251 					mhp->mh_hold_todo++;
2252 				} else {
2253 					(void) page_unretire_pp(pp,
2254 					    PR_UNR_CLEAN);
2255 				}
2256 			}
2257 		}
2258 	}
2259 	/*
2260 	 * Free retired page bitmap and collected page bitmap
2261 	 */
2262 	for (mdsp = mhp->mh_transit.trl_spans; mdsp != NULL;
2263 	    mdsp = mdsp->mds_next) {
2264 		ASSERT(mdsp->mds_bitmap_retired != NULL);
2265 		kmem_free(mdsp->mds_bitmap_retired, MDS_BITMAPBYTES(mdsp));
2266 		mdsp->mds_bitmap_retired = NULL;	/* Paranoia. */
2267 		ASSERT(mdsp->mds_bitmap != NULL);
2268 		kmem_free(mdsp->mds_bitmap, MDS_BITMAPBYTES(mdsp));
2269 		mdsp->mds_bitmap = NULL;	/* Paranoia. */
2270 	}
2271 
2272 	/* wait for our dr aio cancel thread to exit */
2273 	while (!(mhp->mh_aio_cleanup_done)) {
2274 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2275 		delay(drv_usectohz(DR_AIO_CLEANUP_DELAY));
2276 		CALLB_CPR_SAFE_END(&cprinfo, &mhp->mh_mutex);
2277 	}
2278 refused:
2279 	if (mhp->mh_cancel != 0) {
2280 		page_t *pp;
2281 
2282 		comp_code = mhp->mh_cancel;
2283 		/*
2284 		 * Go through list of deleted pages (mh_deleted) freeing
2285 		 * them.
2286 		 */
2287 		while ((pp = mhp->mh_deleted) != NULL) {
2288 			mhp->mh_deleted = pp->p_next;
2289 			mhp->mh_hold_todo++;
2290 			mutex_exit(&mhp->mh_mutex);
2291 			/* Restore p_next. */
2292 			pp->p_next = pp->p_prev;
2293 			if (PP_ISFREE(pp)) {
2294 				cmn_err(CE_PANIC,
2295 				    "page %p is free",
2296 				    (void *)pp);
2297 			}
2298 			page_free(pp, 1);
2299 			mutex_enter(&mhp->mh_mutex);
2300 		}
2301 		ASSERT(mhp->mh_hold_todo == mhp->mh_vm_pages);
2302 
2303 		mutex_exit(&mhp->mh_mutex);
2304 		put_availrmem(mhp->mh_vm_pages);
2305 		mutex_enter(&mhp->mh_mutex);
2306 
2307 		goto t_exit;
2308 	}
2309 
2310 	/*
2311 	 * All the pages are no longer in use and are exclusively locked.
2312 	 */
2313 
2314 	mhp->mh_deleted = NULL;
2315 
2316 	kphysm_del_cleanup(mhp);
2317 
2318 	comp_code = KPHYSM_OK;
2319 
2320 t_exit:
2321 	mutex_exit(&mhp->mh_mutex);
2322 	kphysm_setup_post_del(mhp->mh_vm_pages,
2323 	    (comp_code == KPHYSM_OK) ? 0 : 1);
2324 	mutex_enter(&mhp->mh_mutex);
2325 
2326 early_exit:
2327 	/* mhp->mh_mutex exited by CALLB_CPR_EXIT() */
2328 	mhp->mh_state = MHND_DONE;
2329 	del_complete_funcp = mhp->mh_delete_complete;
2330 	del_complete_arg = mhp->mh_delete_complete_arg;
2331 	CALLB_CPR_EXIT(&cprinfo);
2332 	(*del_complete_funcp)(del_complete_arg, comp_code);
2333 	thread_exit();
2334 	/*NOTREACHED*/
2335 }
2336 
2337 /*
2338  * Start the delete of the memory from the system.
2339  */
2340 int
2341 kphysm_del_start(
2342 	memhandle_t handle,
2343 	void (*complete)(void *, int),
2344 	void *complete_arg)
2345 {
2346 	struct mem_handle *mhp;
2347 
2348 	mhp = kphysm_lookup_mem_handle(handle);
2349 	if (mhp == NULL) {
2350 		return (KPHYSM_EHANDLE);
2351 	}
2352 	switch (mhp->mh_state) {
2353 	case MHND_FREE:
2354 		ASSERT(mhp->mh_state != MHND_FREE);
2355 		mutex_exit(&mhp->mh_mutex);
2356 		return (KPHYSM_EHANDLE);
2357 	case MHND_INIT:
2358 		break;
2359 	case MHND_STARTING:
2360 	case MHND_RUNNING:
2361 		mutex_exit(&mhp->mh_mutex);
2362 		return (KPHYSM_ESEQUENCE);
2363 	case MHND_DONE:
2364 		mutex_exit(&mhp->mh_mutex);
2365 		return (KPHYSM_ESEQUENCE);
2366 	case MHND_RELEASE:
2367 		mutex_exit(&mhp->mh_mutex);
2368 		return (KPHYSM_ESEQUENCE);
2369 	default:
2370 #ifdef DEBUG
2371 		cmn_err(CE_WARN, "kphysm_del_start(0x%p) state corrupt %d",
2372 		    (void *)mhp, mhp->mh_state);
2373 #endif /* DEBUG */
2374 		mutex_exit(&mhp->mh_mutex);
2375 		return (KPHYSM_EHANDLE);
2376 	}
2377 
2378 	if (mhp->mh_transit.trl_spans == NULL) {
2379 		mutex_exit(&mhp->mh_mutex);
2380 		return (KPHYSM_ENOWORK);
2381 	}
2382 
2383 	ASSERT(complete != NULL);
2384 	mhp->mh_delete_complete = complete;
2385 	mhp->mh_delete_complete_arg = complete_arg;
2386 	mhp->mh_state = MHND_STARTING;
2387 	/*
2388 	 * Release the mutex in case thread_create sleeps.
2389 	 */
2390 	mutex_exit(&mhp->mh_mutex);
2391 
2392 	/*
2393 	 * The "obvious" process for this thread is pageout (proc_pageout)
2394 	 * but this gives the thread too much power over freemem
2395 	 * which results in freemem starvation.
2396 	 */
2397 	(void) thread_create(NULL, 0, delete_memory_thread, mhp, 0, &p0,
2398 	    TS_RUN, maxclsyspri - 1);
2399 
2400 	return (KPHYSM_OK);
2401 }
2402 
2403 static kmutex_t pp_dummy_lock;		/* Protects init. of pp_dummy. */
2404 static caddr_t pp_dummy;
2405 static pgcnt_t pp_dummy_npages;
2406 static pfn_t *pp_dummy_pfn;	/* Array of dummy pfns. */
2407 
2408 static void
2409 memseg_remap_init_pages(page_t *pages, page_t *epages)
2410 {
2411 	page_t *pp;
2412 
2413 	for (pp = pages; pp < epages; pp++) {
2414 		pp->p_pagenum = PFN_INVALID;	/* XXXX */
2415 		pp->p_offset = (u_offset_t)-1;
2416 		page_iolock_init(pp);
2417 		while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM))
2418 			continue;
2419 		page_lock_delete(pp);
2420 	}
2421 }
2422 
2423 void
2424 memseg_remap_init()
2425 {
2426 	mutex_enter(&pp_dummy_lock);
2427 	if (pp_dummy == NULL) {
2428 		uint_t dpages;
2429 		int i;
2430 
2431 		/*
2432 		 * dpages starts off as the size of the structure and
2433 		 * ends up as the minimum number of pages that will
2434 		 * hold a whole number of page_t structures.
2435 		 */
2436 		dpages = sizeof (page_t);
2437 		ASSERT(dpages != 0);
2438 		ASSERT(dpages <= MMU_PAGESIZE);
2439 
2440 		while ((dpages & 1) == 0)
2441 			dpages >>= 1;
2442 
2443 		pp_dummy_npages = dpages;
2444 		/*
2445 		 * Allocate pp_dummy pages directly from static_arena,
2446 		 * since these are whole page allocations and are
2447 		 * referenced by physical address.  This also has the
2448 		 * nice fringe benefit of hiding the memory from
2449 		 * ::findleaks since it doesn't deal well with allocated
2450 		 * kernel heap memory that doesn't have any mappings.
2451 		 */
2452 		pp_dummy = vmem_xalloc(static_arena, ptob(pp_dummy_npages),
2453 		    PAGESIZE, 0, 0, NULL, NULL, VM_SLEEP);
2454 		bzero(pp_dummy, ptob(pp_dummy_npages));
2455 		ASSERT(((uintptr_t)pp_dummy & MMU_PAGEOFFSET) == 0);
2456 		pp_dummy_pfn = kmem_alloc(sizeof (*pp_dummy_pfn) *
2457 		    pp_dummy_npages, KM_SLEEP);
2458 		for (i = 0; i < pp_dummy_npages; i++) {
2459 			pp_dummy_pfn[i] = hat_getpfnum(kas.a_hat,
2460 			    &pp_dummy[MMU_PAGESIZE * i]);
2461 			ASSERT(pp_dummy_pfn[i] != PFN_INVALID);
2462 		}
2463 		/*
2464 		 * Initialize the page_t's to a known 'deleted' state
2465 		 * that matches the state of deleted pages.
2466 		 */
2467 		memseg_remap_init_pages((page_t *)pp_dummy,
2468 					(page_t *)(pp_dummy +
2469 					    ptob(pp_dummy_npages)));
2470 		/* Remove kmem mappings for the pages for safety. */
2471 		hat_unload(kas.a_hat, pp_dummy, ptob(pp_dummy_npages),
2472 		    HAT_UNLOAD_UNLOCK);
2473 		/* Leave pp_dummy pointer set as flag that init is done. */
2474 	}
2475 	mutex_exit(&pp_dummy_lock);
2476 }
2477 
2478 static void
2479 memseg_remap_to_dummy(caddr_t pp, pgcnt_t metapgs)
2480 {
2481 	ASSERT(pp_dummy != NULL);
2482 
2483 	while (metapgs != 0) {
2484 		pgcnt_t n;
2485 		int i;
2486 
2487 		n = pp_dummy_npages;
2488 		if (n > metapgs)
2489 			n = metapgs;
2490 		for (i = 0; i < n; i++) {
2491 			hat_devload(kas.a_hat, pp, ptob(1), pp_dummy_pfn[i],
2492 			    PROT_READ,
2493 			    HAT_LOAD | HAT_LOAD_NOCONSIST |
2494 			    HAT_LOAD_REMAP);
2495 			pp += ptob(1);
2496 		}
2497 		metapgs -= n;
2498 	}
2499 }
2500 
2501 /*
2502  * Transition all the deleted pages to the deleted state so that
2503  * page_lock will not wait. The page_lock_delete call will
2504  * also wake up any waiters.
2505  */
2506 static void
2507 memseg_lock_delete_all(struct memseg *seg)
2508 {
2509 	page_t *pp;
2510 
2511 	for (pp = seg->pages; pp < seg->epages; pp++) {
2512 		pp->p_pagenum = PFN_INVALID;	/* XXXX */
2513 		page_lock_delete(pp);
2514 	}
2515 }
2516 
2517 static void
2518 kphysm_del_cleanup(struct mem_handle *mhp)
2519 {
2520 	struct memdelspan	*mdsp;
2521 	struct memseg		*seg;
2522 	struct memseg   	**segpp;
2523 	struct memseg		*seglist;
2524 	pfn_t			p_end;
2525 	uint64_t		avmem;
2526 	pgcnt_t			avpgs;
2527 	pgcnt_t			npgs;
2528 
2529 	avpgs = mhp->mh_vm_pages;
2530 
2531 	memsegs_lock(1);
2532 
2533 	/*
2534 	 * remove from main segment list.
2535 	 */
2536 	npgs = 0;
2537 	seglist = NULL;
2538 	for (mdsp = mhp->mh_transit.trl_spans; mdsp != NULL;
2539 	    mdsp = mdsp->mds_next) {
2540 		p_end = mdsp->mds_base + mdsp->mds_npgs;
2541 		for (segpp = &memsegs; (seg = *segpp) != NULL; ) {
2542 			if (seg->pages_base >= p_end ||
2543 			    seg->pages_end <= mdsp->mds_base) {
2544 				/* Span and memseg don't overlap. */
2545 				segpp = &((*segpp)->next);
2546 				continue;
2547 			}
2548 			ASSERT(seg->pages_base >= mdsp->mds_base);
2549 			ASSERT(seg->pages_end <= p_end);
2550 
2551 			PLCNT_MODIFY_MAX(seg->pages_base,
2552 			    seg->pages_base - seg->pages_end);
2553 
2554 			/* Hide the memseg from future scans. */
2555 			hat_kpm_delmem_mseg_update(seg, segpp);
2556 			*segpp = seg->next;
2557 			membar_producer();	/* TODO: Needed? */
2558 			npgs += MSEG_NPAGES(seg);
2559 
2560 			/*
2561 			 * Leave the deleted segment's next pointer intact
2562 			 * in case a memsegs scanning loop is walking this
2563 			 * segment concurrently.
2564 			 */
2565 			seg->lnext = seglist;
2566 			seglist = seg;
2567 		}
2568 	}
2569 
2570 	build_pfn_hash();
2571 
2572 	ASSERT(npgs < total_pages);
2573 	total_pages -= npgs;
2574 
2575 	/*
2576 	 * Recalculate the paging parameters now total_pages has changed.
2577 	 * This will also cause the clock hands to be reset before next use.
2578 	 */
2579 	setupclock(1);
2580 
2581 	memsegs_unlock(1);
2582 
2583 	mutex_exit(&mhp->mh_mutex);
2584 
2585 	while ((seg = seglist) != NULL) {
2586 		pfn_t mseg_start;
2587 		pfn_t mseg_base, mseg_end;
2588 		pgcnt_t mseg_npgs;
2589 		page_t *pp;
2590 		pgcnt_t metapgs;
2591 		int dynamic;
2592 		int mlret;
2593 
2594 		seglist = seg->lnext;
2595 
2596 		/*
2597 		 * Put the page_t's into the deleted state to stop
2598 		 * cv_wait()s on the pages. When we remap, the dummy
2599 		 * page_t's will be in the same state.
2600 		 */
2601 		memseg_lock_delete_all(seg);
2602 		/*
2603 		 * Collect up information based on pages_base and pages_end
2604 		 * early so that we can flag early that the memseg has been
2605 		 * deleted by setting pages_end == pages_base.
2606 		 */
2607 		mseg_base = seg->pages_base;
2608 		mseg_end = seg->pages_end;
2609 		mseg_npgs = MSEG_NPAGES(seg);
2610 		dynamic = memseg_is_dynamic(seg, &mseg_start);
2611 
2612 		seg->pages_end = seg->pages_base;
2613 
2614 		if (dynamic) {
2615 			pp = seg->pages;
2616 			metapgs = mseg_base - mseg_start;
2617 			ASSERT(metapgs != 0);
2618 
2619 			/* Remap the meta data to our special dummy area. */
2620 			memseg_remap_to_dummy((caddr_t)pp, metapgs);
2621 
2622 			mutex_enter(&memseg_lists_lock);
2623 			seg->lnext = memseg_va_avail;
2624 			memseg_va_avail = seg;
2625 			mutex_exit(&memseg_lists_lock);
2626 		} else {
2627 			/*
2628 			 * Set for clean-up below.
2629 			 */
2630 			mseg_start = seg->pages_base;
2631 			/*
2632 			 * For memory whose page_ts were allocated
2633 			 * at boot, we need to find a new use for
2634 			 * the page_t memory.
2635 			 * For the moment, just leak it.
2636 			 * (It is held in the memseg_delete_junk list.)
2637 			 */
2638 
2639 			mutex_enter(&memseg_lists_lock);
2640 			seg->lnext = memseg_delete_junk;
2641 			memseg_delete_junk = seg;
2642 			mutex_exit(&memseg_lists_lock);
2643 		}
2644 
2645 		/* Must not use seg now as it could be re-used. */
2646 
2647 		memlist_write_lock();
2648 
2649 		mlret = memlist_delete_span(
2650 		    (uint64_t)(mseg_base) << PAGESHIFT,
2651 		    (uint64_t)(mseg_npgs) << PAGESHIFT,
2652 		    &phys_avail);
2653 		ASSERT(mlret == MEML_SPANOP_OK);
2654 
2655 		mlret = memlist_delete_span(
2656 		    (uint64_t)(mseg_start) << PAGESHIFT,
2657 		    (uint64_t)(mseg_end - mseg_start) <<
2658 		    PAGESHIFT,
2659 		    &phys_install);
2660 		ASSERT(mlret == MEML_SPANOP_OK);
2661 		phys_install_has_changed();
2662 
2663 		memlist_write_unlock();
2664 	}
2665 
2666 	memlist_read_lock();
2667 	installed_top_size(phys_install, &physmax, &physinstalled);
2668 	memlist_read_unlock();
2669 
2670 	mutex_enter(&freemem_lock);
2671 	maxmem -= avpgs;
2672 	physmem -= avpgs;
2673 	/* availrmem is adjusted during the delete. */
2674 	availrmem_initial -= avpgs;
2675 
2676 	mutex_exit(&freemem_lock);
2677 
2678 	dump_resize();
2679 
2680 	cmn_err(CE_CONT, "?kphysm_delete: mem = %ldK "
2681 	    "(0x%" PRIx64 ")\n",
2682 	    physinstalled << (PAGESHIFT - 10),
2683 	    (uint64_t)physinstalled << PAGESHIFT);
2684 
2685 	avmem = (uint64_t)freemem << PAGESHIFT;
2686 	cmn_err(CE_CONT, "?kphysm_delete: "
2687 	    "avail mem = %" PRId64 "\n", avmem);
2688 
2689 	/*
2690 	 * Update lgroup generation number on single lgroup systems
2691 	 */
2692 	if (nlgrps == 1)
2693 		lgrp_config(LGRP_CONFIG_GEN_UPDATE, 0, 0);
2694 
2695 	/* Successfully deleted system memory */
2696 	mutex_enter(&mhp->mh_mutex);
2697 }
2698 
2699 static uint_t mdel_nullvp_waiter;
2700 
2701 static void
2702 page_delete_collect(
2703 	page_t *pp,
2704 	struct mem_handle *mhp)
2705 {
2706 	if (pp->p_vnode) {
2707 		page_hashout(pp, (kmutex_t *)NULL);
2708 		/* do not do PP_SETAGED(pp); */
2709 	} else {
2710 		kmutex_t *sep;
2711 
2712 		sep = page_se_mutex(pp);
2713 		mutex_enter(sep);
2714 		if (CV_HAS_WAITERS(&pp->p_cv)) {
2715 			mdel_nullvp_waiter++;
2716 			cv_broadcast(&pp->p_cv);
2717 		}
2718 		mutex_exit(sep);
2719 	}
2720 	ASSERT(pp->p_next == pp->p_prev);
2721 	ASSERT(pp->p_next == NULL || pp->p_next == pp);
2722 	pp->p_next = mhp->mh_deleted;
2723 	mhp->mh_deleted = pp;
2724 	ASSERT(mhp->mh_hold_todo != 0);
2725 	mhp->mh_hold_todo--;
2726 }
2727 
2728 static void
2729 transit_list_collect(struct mem_handle *mhp, int v)
2730 {
2731 	struct transit_list_head *trh;
2732 
2733 	trh = &transit_list_head;
2734 	mutex_enter(&trh->trh_lock);
2735 	mhp->mh_transit.trl_collect = v;
2736 	mutex_exit(&trh->trh_lock);
2737 }
2738 
2739 static void
2740 transit_list_insert(struct transit_list *tlp)
2741 {
2742 	struct transit_list_head *trh;
2743 
2744 	trh = &transit_list_head;
2745 	ASSERT(MUTEX_HELD(&trh->trh_lock));
2746 	tlp->trl_next = trh->trh_head;
2747 	trh->trh_head = tlp;
2748 }
2749 
2750 static void
2751 transit_list_remove(struct transit_list *tlp)
2752 {
2753 	struct transit_list_head *trh;
2754 	struct transit_list **tlpp;
2755 
2756 	trh = &transit_list_head;
2757 	tlpp = &trh->trh_head;
2758 	ASSERT(MUTEX_HELD(&trh->trh_lock));
2759 	while (*tlpp != NULL && *tlpp != tlp)
2760 		tlpp = &(*tlpp)->trl_next;
2761 	ASSERT(*tlpp != NULL);
2762 	if (*tlpp == tlp)
2763 		*tlpp = tlp->trl_next;
2764 	tlp->trl_next = NULL;
2765 }
2766 
2767 static struct transit_list *
2768 pfnum_to_transit_list(struct transit_list_head *trh, pfn_t pfnum)
2769 {
2770 	struct transit_list *tlp;
2771 
2772 	for (tlp = trh->trh_head; tlp != NULL; tlp = tlp->trl_next) {
2773 		struct memdelspan *mdsp;
2774 
2775 		for (mdsp = tlp->trl_spans; mdsp != NULL;
2776 		    mdsp = mdsp->mds_next) {
2777 			if (pfnum >= mdsp->mds_base &&
2778 			    pfnum < (mdsp->mds_base + mdsp->mds_npgs)) {
2779 				return (tlp);
2780 			}
2781 		}
2782 	}
2783 	return (NULL);
2784 }
2785 
2786 int
2787 pfn_is_being_deleted(pfn_t pfnum)
2788 {
2789 	struct transit_list_head *trh;
2790 	struct transit_list *tlp;
2791 	int ret;
2792 
2793 	trh = &transit_list_head;
2794 	if (trh->trh_head == NULL)
2795 		return (0);
2796 
2797 	mutex_enter(&trh->trh_lock);
2798 	tlp = pfnum_to_transit_list(trh, pfnum);
2799 	ret = (tlp != NULL && tlp->trl_collect);
2800 	mutex_exit(&trh->trh_lock);
2801 
2802 	return (ret);
2803 }
2804 
2805 #ifdef MEM_DEL_STATS
2806 extern int hz;
2807 static void
2808 mem_del_stat_print_func(struct mem_handle *mhp)
2809 {
2810 	uint64_t tmp;
2811 
2812 	if (mem_del_stat_print) {
2813 		printf("memory delete loop %x/%x, statistics%s\n",
2814 		    (uint_t)mhp->mh_transit.trl_spans->mds_base,
2815 		    (uint_t)mhp->mh_transit.trl_spans->mds_npgs,
2816 		    (mhp->mh_cancel ? " (cancelled)" : ""));
2817 		printf("\t%8u nloop\n", mhp->mh_delstat.nloop);
2818 		printf("\t%8u need_free\n", mhp->mh_delstat.need_free);
2819 		printf("\t%8u free_loop\n", mhp->mh_delstat.free_loop);
2820 		printf("\t%8u free_low\n", mhp->mh_delstat.free_low);
2821 		printf("\t%8u free_failed\n", mhp->mh_delstat.free_failed);
2822 		printf("\t%8u ncheck\n", mhp->mh_delstat.ncheck);
2823 		printf("\t%8u nopaget\n", mhp->mh_delstat.nopaget);
2824 		printf("\t%8u lockfail\n", mhp->mh_delstat.lockfail);
2825 		printf("\t%8u nfree\n", mhp->mh_delstat.nfree);
2826 		printf("\t%8u nreloc\n", mhp->mh_delstat.nreloc);
2827 		printf("\t%8u nrelocfail\n", mhp->mh_delstat.nrelocfail);
2828 		printf("\t%8u already_done\n", mhp->mh_delstat.already_done);
2829 		printf("\t%8u first_notfree\n", mhp->mh_delstat.first_notfree);
2830 		printf("\t%8u npplocked\n", mhp->mh_delstat.npplocked);
2831 		printf("\t%8u nlockreloc\n", mhp->mh_delstat.nlockreloc);
2832 		printf("\t%8u nnorepl\n", mhp->mh_delstat.nnorepl);
2833 		printf("\t%8u nmodreloc\n", mhp->mh_delstat.nmodreloc);
2834 		printf("\t%8u ndestroy\n", mhp->mh_delstat.ndestroy);
2835 		printf("\t%8u nputpage\n", mhp->mh_delstat.nputpage);
2836 		printf("\t%8u nnoreclaim\n", mhp->mh_delstat.nnoreclaim);
2837 		printf("\t%8u ndelay\n", mhp->mh_delstat.ndelay);
2838 		printf("\t%8u demotefail\n", mhp->mh_delstat.demotefail);
2839 		printf("\t%8u retired\n", mhp->mh_delstat.retired);
2840 		printf("\t%8u toxic\n", mhp->mh_delstat.toxic);
2841 		printf("\t%8u failing\n", mhp->mh_delstat.failing);
2842 		printf("\t%8u modtoxic\n", mhp->mh_delstat.modtoxic);
2843 		printf("\t%8u npplkdtoxic\n", mhp->mh_delstat.npplkdtoxic);
2844 		printf("\t%8u gptlmodfail\n", mhp->mh_delstat.gptlmodfail);
2845 		printf("\t%8u gptllckfail\n", mhp->mh_delstat.gptllckfail);
2846 		tmp = mhp->mh_delstat.nticks_total / hz;  /* seconds */
2847 		printf(
2848 		    "\t%"PRIu64" nticks_total - %"PRIu64" min %"PRIu64" sec\n",
2849 		    mhp->mh_delstat.nticks_total, tmp / 60, tmp % 60);
2850 
2851 		tmp = mhp->mh_delstat.nticks_pgrp / hz;  /* seconds */
2852 		printf(
2853 		    "\t%"PRIu64" nticks_pgrp - %"PRIu64" min %"PRIu64" sec\n",
2854 		    mhp->mh_delstat.nticks_pgrp, tmp / 60, tmp % 60);
2855 	}
2856 }
2857 #endif /* MEM_DEL_STATS */
2858 
2859 struct mem_callback {
2860 	kphysm_setup_vector_t	*vec;
2861 	void			*arg;
2862 };
2863 
2864 #define	NMEMCALLBACKS		100
2865 
2866 static struct mem_callback mem_callbacks[NMEMCALLBACKS];
2867 static uint_t nmemcallbacks;
2868 static krwlock_t mem_callback_rwlock;
2869 
2870 int
2871 kphysm_setup_func_register(kphysm_setup_vector_t *vec, void *arg)
2872 {
2873 	uint_t i, found;
2874 
2875 	/*
2876 	 * This test will become more complicated when the version must
2877 	 * change.
2878 	 */
2879 	if (vec->version != KPHYSM_SETUP_VECTOR_VERSION)
2880 		return (EINVAL);
2881 
2882 	if (vec->post_add == NULL || vec->pre_del == NULL ||
2883 	    vec->post_del == NULL)
2884 		return (EINVAL);
2885 
2886 	rw_enter(&mem_callback_rwlock, RW_WRITER);
2887 	for (i = 0, found = 0; i < nmemcallbacks; i++) {
2888 		if (mem_callbacks[i].vec == NULL && found == 0)
2889 			found = i + 1;
2890 		if (mem_callbacks[i].vec == vec &&
2891 		    mem_callbacks[i].arg == arg) {
2892 #ifdef DEBUG
2893 			/* Catch this in DEBUG kernels. */
2894 			cmn_err(CE_WARN, "kphysm_setup_func_register"
2895 			    "(0x%p, 0x%p) duplicate registration from 0x%p",
2896 			    (void *)vec, arg, (void *)caller());
2897 #endif /* DEBUG */
2898 			rw_exit(&mem_callback_rwlock);
2899 			return (EEXIST);
2900 		}
2901 	}
2902 	if (found != 0) {
2903 		i = found - 1;
2904 	} else {
2905 		ASSERT(nmemcallbacks < NMEMCALLBACKS);
2906 		if (nmemcallbacks == NMEMCALLBACKS) {
2907 			rw_exit(&mem_callback_rwlock);
2908 			return (ENOMEM);
2909 		}
2910 		i = nmemcallbacks++;
2911 	}
2912 	mem_callbacks[i].vec = vec;
2913 	mem_callbacks[i].arg = arg;
2914 	rw_exit(&mem_callback_rwlock);
2915 	return (0);
2916 }
2917 
2918 void
2919 kphysm_setup_func_unregister(kphysm_setup_vector_t *vec, void *arg)
2920 {
2921 	uint_t i;
2922 
2923 	rw_enter(&mem_callback_rwlock, RW_WRITER);
2924 	for (i = 0; i < nmemcallbacks; i++) {
2925 		if (mem_callbacks[i].vec == vec &&
2926 		    mem_callbacks[i].arg == arg) {
2927 			mem_callbacks[i].vec = NULL;
2928 			mem_callbacks[i].arg = NULL;
2929 			if (i == (nmemcallbacks - 1))
2930 				nmemcallbacks--;
2931 			break;
2932 		}
2933 	}
2934 	rw_exit(&mem_callback_rwlock);
2935 }
2936 
2937 static void
2938 kphysm_setup_post_add(pgcnt_t delta_pages)
2939 {
2940 	uint_t i;
2941 
2942 	rw_enter(&mem_callback_rwlock, RW_READER);
2943 	for (i = 0; i < nmemcallbacks; i++) {
2944 		if (mem_callbacks[i].vec != NULL) {
2945 			(*mem_callbacks[i].vec->post_add)
2946 			    (mem_callbacks[i].arg, delta_pages);
2947 		}
2948 	}
2949 	rw_exit(&mem_callback_rwlock);
2950 }
2951 
2952 /*
2953  * Note the locking between pre_del and post_del: The reader lock is held
2954  * between the two calls to stop the set of functions from changing.
2955  */
2956 
2957 static int
2958 kphysm_setup_pre_del(pgcnt_t delta_pages)
2959 {
2960 	uint_t i;
2961 	int ret;
2962 	int aret;
2963 
2964 	ret = 0;
2965 	rw_enter(&mem_callback_rwlock, RW_READER);
2966 	for (i = 0; i < nmemcallbacks; i++) {
2967 		if (mem_callbacks[i].vec != NULL) {
2968 			aret = (*mem_callbacks[i].vec->pre_del)
2969 			    (mem_callbacks[i].arg, delta_pages);
2970 			ret |= aret;
2971 		}
2972 	}
2973 
2974 	return (ret);
2975 }
2976 
2977 static void
2978 kphysm_setup_post_del(pgcnt_t delta_pages, int cancelled)
2979 {
2980 	uint_t i;
2981 
2982 	for (i = 0; i < nmemcallbacks; i++) {
2983 		if (mem_callbacks[i].vec != NULL) {
2984 			(*mem_callbacks[i].vec->post_del)
2985 			    (mem_callbacks[i].arg, delta_pages, cancelled);
2986 		}
2987 	}
2988 	rw_exit(&mem_callback_rwlock);
2989 }
2990 
2991 static int
2992 kphysm_split_memseg(
2993 	pfn_t base,
2994 	pgcnt_t npgs)
2995 {
2996 	struct memseg *seg;
2997 	struct memseg **segpp;
2998 	pgcnt_t size_low, size_high;
2999 	struct memseg *seg_low, *seg_mid, *seg_high;
3000 
3001 	/*
3002 	 * Lock the memsegs list against other updates now
3003 	 */
3004 	memsegs_lock(1);
3005 
3006 	/*
3007 	 * Find boot time memseg that wholly covers this area.
3008 	 */
3009 
3010 	/* First find the memseg with page 'base' in it. */
3011 	for (segpp = &memsegs; (seg = *segpp) != NULL;
3012 	    segpp = &((*segpp)->next)) {
3013 		if (base >= seg->pages_base && base < seg->pages_end)
3014 			break;
3015 	}
3016 	if (seg == NULL) {
3017 		memsegs_unlock(1);
3018 		return (0);
3019 	}
3020 	if (memseg_is_dynamic(seg, (pfn_t *)NULL)) {
3021 		memsegs_unlock(1);
3022 		return (0);
3023 	}
3024 	if ((base + npgs) > seg->pages_end) {
3025 		memsegs_unlock(1);
3026 		return (0);
3027 	}
3028 
3029 	/*
3030 	 * Work out the size of the two segments that will
3031 	 * surround the new segment, one for low address
3032 	 * and one for high.
3033 	 */
3034 	ASSERT(base >= seg->pages_base);
3035 	size_low = base - seg->pages_base;
3036 	ASSERT(seg->pages_end >= (base + npgs));
3037 	size_high = seg->pages_end - (base + npgs);
3038 
3039 	/*
3040 	 * Sanity check.
3041 	 */
3042 	if ((size_low + size_high) == 0) {
3043 		memsegs_unlock(1);
3044 		return (0);
3045 	}
3046 
3047 	/*
3048 	 * Allocate the new structures. The old memseg will not be freed
3049 	 * as there may be a reference to it.
3050 	 */
3051 	seg_low = NULL;
3052 	seg_high = NULL;
3053 
3054 	if (size_low != 0) {
3055 		seg_low = kmem_cache_alloc(memseg_cache, KM_SLEEP);
3056 		bzero(seg_low, sizeof (struct memseg));
3057 	}
3058 
3059 	seg_mid = kmem_cache_alloc(memseg_cache, KM_SLEEP);
3060 	bzero(seg_mid, sizeof (struct memseg));
3061 
3062 	if (size_high != 0) {
3063 		seg_high = kmem_cache_alloc(memseg_cache, KM_SLEEP);
3064 		bzero(seg_high, sizeof (struct memseg));
3065 	}
3066 
3067 	/*
3068 	 * All allocation done now.
3069 	 */
3070 	if (size_low != 0) {
3071 		seg_low->pages = seg->pages;
3072 		seg_low->epages = seg_low->pages + size_low;
3073 		seg_low->pages_base = seg->pages_base;
3074 		seg_low->pages_end = seg_low->pages_base + size_low;
3075 		seg_low->next = seg_mid;
3076 	}
3077 	if (size_high != 0) {
3078 		seg_high->pages = seg->epages - size_high;
3079 		seg_high->epages = seg_high->pages + size_high;
3080 		seg_high->pages_base = seg->pages_end - size_high;
3081 		seg_high->pages_end = seg_high->pages_base + size_high;
3082 		seg_high->next = seg->next;
3083 	}
3084 
3085 	seg_mid->pages = seg->pages + size_low;
3086 	seg_mid->pages_base = seg->pages_base + size_low;
3087 	seg_mid->epages = seg->epages - size_high;
3088 	seg_mid->pages_end = seg->pages_end - size_high;
3089 	seg_mid->next = (seg_high != NULL) ? seg_high : seg->next;
3090 
3091 	/*
3092 	 * Update hat_kpm specific info of all involved memsegs and
3093 	 * allow hat_kpm specific global chain updates.
3094 	 */
3095 	hat_kpm_split_mseg_update(seg, segpp, seg_low, seg_mid, seg_high);
3096 
3097 	/*
3098 	 * At this point we have two equivalent memseg sub-chains,
3099 	 * seg and seg_low/seg_mid/seg_high, which both chain on to
3100 	 * the same place in the global chain. By re-writing the pointer
3101 	 * in the previous element we switch atomically from using the old
3102 	 * (seg) to the new.
3103 	 */
3104 	*segpp = (seg_low != NULL) ? seg_low : seg_mid;
3105 
3106 	membar_enter();
3107 
3108 	build_pfn_hash();
3109 	memsegs_unlock(1);
3110 
3111 	/*
3112 	 * We leave the old segment, 'seg', intact as there may be
3113 	 * references to it. Also, as the value of total_pages has not
3114 	 * changed and the memsegs list is effectively the same when
3115 	 * accessed via the old or the new pointer, we do not have to
3116 	 * cause pageout_scanner() to re-evaluate its hand pointers.
3117 	 *
3118 	 * We currently do not re-use or reclaim the page_t memory.
3119 	 * If we do, then this may have to change.
3120 	 */
3121 
3122 	mutex_enter(&memseg_lists_lock);
3123 	seg->lnext = memseg_edit_junk;
3124 	memseg_edit_junk = seg;
3125 	mutex_exit(&memseg_lists_lock);
3126 
3127 	return (1);
3128 }
3129 
3130 /*
3131  * The memsegs lock is only taken when modifying the memsegs list
3132  * and rebuilding the pfn hash table (after boot).
3133  * No lock is needed for read as memseg structure are never de-allocated
3134  * and the pointer linkage is never updated until the memseg is ready.
3135  */
3136 krwlock_t memsegslock;
3137 
3138 void
3139 memsegs_lock(int writer)
3140 {
3141 	rw_enter(&memsegslock, writer ? RW_WRITER : RW_READER);
3142 }
3143 
3144 /*ARGSUSED*/
3145 void
3146 memsegs_unlock(int writer)
3147 {
3148 	rw_exit(&memsegslock);
3149 }
3150 
3151 /*
3152  * memlist (phys_install, phys_avail) locking.
3153  */
3154 
3155 /*
3156  * A read/write lock might be better here.
3157  */
3158 static kmutex_t memlists_mutex;
3159 
3160 void
3161 memlist_read_lock()
3162 {
3163 	mutex_enter(&memlists_mutex);
3164 }
3165 
3166 void
3167 memlist_read_unlock()
3168 {
3169 	mutex_exit(&memlists_mutex);
3170 }
3171 
3172 void
3173 memlist_write_lock()
3174 {
3175 	mutex_enter(&memlists_mutex);
3176 }
3177 
3178 void
3179 memlist_write_unlock()
3180 {
3181 	mutex_exit(&memlists_mutex);
3182 }
3183 
3184 /*
3185  * The sfmmu hat layer (e.g.) accesses some parts of the memseg
3186  * structure using physical addresses. Therefore a kmem_cache is
3187  * used with KMC_NOHASH to avoid page crossings within a memseg
3188  * structure. KMC_NOHASH requires that no external (outside of
3189  * slab) information is allowed. This, in turn, implies that the
3190  * cache's slabsize must be exactly a single page, since per-slab
3191  * information (e.g. the freelist for the slab) is kept at the
3192  * end of the slab, where it is easy to locate. Should be changed
3193  * when a more obvious kmem_cache interface/flag will become
3194  * available.
3195  */
3196 void
3197 mem_config_init()
3198 {
3199 	memseg_cache = kmem_cache_create("memseg_cache", sizeof (struct memseg),
3200 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
3201 }
3202