1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/systm.h> 33 #include <sys/thread.h> 34 #include <sys/proc.h> 35 #include <sys/task.h> 36 #include <sys/project.h> 37 #include <sys/signal.h> 38 #include <sys/errno.h> 39 #include <sys/vmparam.h> 40 #include <sys/stack.h> 41 #include <sys/procfs.h> 42 #include <sys/prsystm.h> 43 #include <sys/cpuvar.h> 44 #include <sys/kmem.h> 45 #include <sys/vtrace.h> 46 #include <sys/door.h> 47 #include <vm/seg_kp.h> 48 #include <sys/debug.h> 49 #include <sys/tnf.h> 50 #include <sys/schedctl.h> 51 #include <sys/poll.h> 52 #include <sys/copyops.h> 53 #include <sys/lwp_upimutex_impl.h> 54 #include <sys/cpupart.h> 55 #include <sys/lgrp.h> 56 #include <sys/rctl.h> 57 #include <sys/contract_impl.h> 58 #include <sys/cpc_impl.h> 59 #include <sys/sdt.h> 60 #include <sys/cmn_err.h> 61 #include <sys/brand.h> 62 63 void *segkp_lwp; /* cookie for pool of segkp resources */ 64 extern void reapq_move_lq_to_tq(kthread_t *); 65 extern void freectx_ctx(struct ctxop *); 66 67 /* 68 * Create a thread that appears to be stopped at sys_rtt. 69 */ 70 klwp_t * 71 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 72 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 73 { 74 klwp_t *lwp = NULL; 75 kthread_t *t; 76 kthread_t *tx; 77 cpupart_t *oldpart = NULL; 78 size_t stksize; 79 caddr_t lwpdata = NULL; 80 processorid_t binding; 81 int err = 0; 82 kproject_t *oldkpj, *newkpj; 83 void *bufp = NULL; 84 klwp_t *curlwp = ttolwp(curthread); 85 lwpent_t *lep; 86 lwpdir_t *old_dir = NULL; 87 uint_t old_dirsz = 0; 88 lwpdir_t **old_hash = NULL; 89 uint_t old_hashsz = 0; 90 int i; 91 int rctlfail = 0; 92 boolean_t branded = 0; 93 struct ctxop *ctx = NULL; 94 95 mutex_enter(&p->p_lock); 96 mutex_enter(&p->p_zone->zone_nlwps_lock); 97 /* 98 * don't enforce rctl limits on system processes 99 */ 100 if (cid != syscid) { 101 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 102 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 103 1, 0) & RCT_DENY) 104 rctlfail = 1; 105 if (p->p_task->tk_proj->kpj_nlwps >= 106 p->p_task->tk_proj->kpj_nlwps_ctl) 107 if (rctl_test(rc_project_nlwps, 108 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 109 & RCT_DENY) 110 rctlfail = 1; 111 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 112 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 113 1, 0) & RCT_DENY) 114 rctlfail = 1; 115 } 116 if (rctlfail) { 117 mutex_exit(&p->p_zone->zone_nlwps_lock); 118 mutex_exit(&p->p_lock); 119 return (NULL); 120 } 121 p->p_task->tk_nlwps++; 122 p->p_task->tk_proj->kpj_nlwps++; 123 p->p_zone->zone_nlwps++; 124 mutex_exit(&p->p_zone->zone_nlwps_lock); 125 mutex_exit(&p->p_lock); 126 127 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 128 stksize = lwp_default_stksize; 129 130 /* 131 * Try to reclaim a <lwp,stack> from 'deathrow' 132 */ 133 if (stksize == lwp_default_stksize) { 134 if (lwp_reapcnt > 0) { 135 mutex_enter(&reaplock); 136 if ((t = lwp_deathrow) != NULL) { 137 ASSERT(t->t_swap); 138 lwp_deathrow = t->t_forw; 139 lwp_reapcnt--; 140 lwpdata = t->t_swap; 141 lwp = t->t_lwp; 142 ctx = t->t_ctx; 143 t->t_swap = NULL; 144 t->t_lwp = NULL; 145 t->t_ctx = NULL; 146 reapq_move_lq_to_tq(t); 147 } 148 mutex_exit(&reaplock); 149 if (lwp != NULL) { 150 lwp_stk_fini(lwp); 151 } 152 if (ctx != NULL) { 153 freectx_ctx(ctx); 154 } 155 } 156 if (lwpdata == NULL && 157 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 158 mutex_enter(&p->p_lock); 159 mutex_enter(&p->p_zone->zone_nlwps_lock); 160 p->p_task->tk_nlwps--; 161 p->p_task->tk_proj->kpj_nlwps--; 162 p->p_zone->zone_nlwps--; 163 mutex_exit(&p->p_zone->zone_nlwps_lock); 164 mutex_exit(&p->p_lock); 165 return (NULL); 166 } 167 } else { 168 stksize = roundup(stksize, PAGESIZE); 169 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 170 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 171 mutex_enter(&p->p_lock); 172 mutex_enter(&p->p_zone->zone_nlwps_lock); 173 p->p_task->tk_nlwps--; 174 p->p_task->tk_proj->kpj_nlwps--; 175 p->p_zone->zone_nlwps--; 176 mutex_exit(&p->p_zone->zone_nlwps_lock); 177 mutex_exit(&p->p_lock); 178 return (NULL); 179 } 180 } 181 182 /* 183 * Create a thread, initializing the stack pointer 184 */ 185 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 186 187 t->t_swap = lwpdata; /* Start of page-able data */ 188 if (lwp == NULL) 189 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 190 bzero(lwp, sizeof (*lwp)); 191 t->t_lwp = lwp; 192 193 t->t_hold = *smask; 194 lwp->lwp_thread = t; 195 lwp->lwp_procp = p; 196 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 197 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 198 lwp->lwp_childstksz = curlwp->lwp_childstksz; 199 200 t->t_stk = lwp_stk_init(lwp, t->t_stk); 201 thread_load(t, proc, arg, len); 202 203 /* 204 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 205 */ 206 if (timerisset(&p->p_rprof_timer.it_value)) 207 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 208 209 if (cid != NOCLASS) 210 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 211 212 /* 213 * Allocate an lwp directory entry for the new lwp. 214 */ 215 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 216 217 mutex_enter(&p->p_lock); 218 grow: 219 /* 220 * Grow the lwp (thread) directory and lwpid hash table if necessary. 221 * A note on the growth algorithm: 222 * The new lwp directory size is computed as: 223 * new = 2 * old + 2 224 * Starting with an initial size of 2 (see exec_common()), 225 * this yields numbers that are a power of two minus 2: 226 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 227 * The size of the lwpid hash table must be a power of two 228 * and must be commensurate in size with the lwp directory 229 * so that hash bucket chains remain short. Therefore, 230 * the lwpid hash table size is computed as: 231 * hashsz = (dirsz + 2) / 2 232 * which leads to these hash table sizes corresponding to 233 * the above directory sizes: 234 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 235 */ 236 while (p->p_lwpfree == NULL) { 237 uint_t dirsz = p->p_lwpdir_sz; 238 uint_t new_dirsz; 239 uint_t new_hashsz; 240 lwpdir_t *new_dir; 241 lwpdir_t *ldp; 242 lwpdir_t **new_hash; 243 244 mutex_exit(&p->p_lock); 245 246 if (old_dir != NULL) { 247 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 248 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 249 old_dir = NULL; 250 old_dirsz = 0; 251 old_hash = NULL; 252 old_hashsz = 0; 253 } 254 new_dirsz = 2 * dirsz + 2; 255 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 256 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 257 ldp->ld_next = ldp + 1; 258 new_hashsz = (new_dirsz + 2) / 2; 259 new_hash = kmem_zalloc(new_hashsz * sizeof (lwpdir_t *), 260 KM_SLEEP); 261 262 mutex_enter(&p->p_lock); 263 if (p == curproc) 264 prbarrier(p); 265 266 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 267 /* 268 * Someone else beat us to it or some lwp exited. 269 * Set up to free our memory and take a lap. 270 */ 271 old_dir = new_dir; 272 old_dirsz = new_dirsz; 273 old_hash = new_hash; 274 old_hashsz = new_hashsz; 275 } else { 276 old_dir = p->p_lwpdir; 277 old_dirsz = p->p_lwpdir_sz; 278 old_hash = p->p_tidhash; 279 old_hashsz = p->p_tidhash_sz; 280 p->p_lwpdir = new_dir; 281 p->p_lwpfree = new_dir; 282 p->p_lwpdir_sz = new_dirsz; 283 p->p_tidhash = new_hash; 284 p->p_tidhash_sz = new_hashsz; 285 /* 286 * We simply hash in all of the old directory entries. 287 * This works because the old directory has no empty 288 * slots and the new hash table starts out empty. 289 * This reproduces the original directory ordering 290 * (required for /proc directory semantics). 291 */ 292 for (ldp = old_dir, i = 0; i < dirsz; i++, ldp++) 293 lwp_hash_in(p, ldp->ld_entry); 294 /* 295 * Defer freeing memory until we drop p->p_lock, 296 */ 297 } 298 } 299 300 /* 301 * Block the process against /proc while we manipulate p->p_tlist, 302 * unless lwp_create() was called by /proc for the PCAGENT operation. 303 * We want to do this early enough so that we don't drop p->p_lock 304 * until the thread is put on the p->p_tlist. 305 */ 306 if (p == curproc) { 307 prbarrier(p); 308 /* 309 * If the current lwp has been requested to stop, do so now. 310 * Otherwise we have a race condition between /proc attempting 311 * to stop the process and this thread creating a new lwp 312 * that was not seen when the /proc PCSTOP request was issued. 313 * We rely on stop() to call prbarrier(p) before returning. 314 */ 315 while ((curthread->t_proc_flag & TP_PRSTOP) && 316 !ttolwp(curthread)->lwp_nostop) 317 stop(PR_REQUESTED, 0); 318 319 /* 320 * If process is exiting, there could be a race between 321 * the agent lwp creation and the new lwp currently being 322 * created. So to prevent this race lwp creation is failed 323 * if the process is exiting. 324 */ 325 if (p->p_flag & (SEXITLWPS|SKILLED)) { 326 err = 1; 327 goto error; 328 } 329 330 /* 331 * Since we might have dropped p->p_lock, the 332 * lwp directory free list might have changed. 333 */ 334 if (p->p_lwpfree == NULL) 335 goto grow; 336 } 337 338 kpreempt_disable(); /* can't grab cpu_lock here */ 339 340 /* 341 * Inherit processor and processor set bindings from curthread, 342 * unless we're creating a new kernel process, in which case 343 * clear all bindings. 344 */ 345 if (cid == syscid) { 346 t->t_bind_cpu = binding = PBIND_NONE; 347 t->t_cpupart = oldpart = &cp_default; 348 t->t_bind_pset = PS_NONE; 349 } else { 350 binding = curthread->t_bind_cpu; 351 t->t_bind_cpu = binding; 352 oldpart = t->t_cpupart; 353 t->t_cpupart = curthread->t_cpupart; 354 t->t_bind_pset = curthread->t_bind_pset; 355 } 356 357 /* 358 * thread_create() initializes this thread's home lgroup to the root. 359 * Choose a more suitable lgroup, since this thread is associated 360 * with an lwp. 361 */ 362 ASSERT(oldpart != NULL); 363 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 364 t->t_bound_cpu = cpu[binding]; 365 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 366 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 367 } else { 368 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 369 } 370 371 kpreempt_enable(); 372 373 /* 374 * make sure lpl points to our own partition 375 */ 376 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 377 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 378 t->t_cpupart->cp_nlgrploads); 379 380 /* 381 * If we're creating a new process, then inherit the project from our 382 * parent. If we're only creating an additional lwp then use the 383 * project pointer of the target process. 384 */ 385 if (p->p_task == NULL) 386 newkpj = ttoproj(curthread); 387 else 388 newkpj = p->p_task->tk_proj; 389 390 /* 391 * It is safe to point the thread to the new project without holding it 392 * since we're holding the target process' p_lock here and therefore 393 * we're guaranteed that it will not move to another project. 394 */ 395 oldkpj = ttoproj(t); 396 if (newkpj != oldkpj) { 397 t->t_proj = newkpj; 398 (void) project_hold(newkpj); 399 project_rele(oldkpj); 400 } 401 402 if (cid != NOCLASS) { 403 /* 404 * If the lwp is being created in the current process 405 * and matches the current thread's scheduling class, 406 * we should propagate the current thread's scheduling 407 * parameters by calling CL_FORK. Otherwise just use 408 * the defaults by calling CL_ENTERCLASS. 409 */ 410 if (p != curproc || curthread->t_cid != cid) { 411 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 412 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 413 } else { 414 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 415 err = CL_FORK(curthread, t, bufp); 416 t->t_cid = cid; 417 } 418 if (err) 419 goto error; 420 else 421 bufp = NULL; 422 } 423 424 /* 425 * If we were given an lwpid then use it, else allocate one. 426 */ 427 if (lwpid != 0) 428 t->t_tid = lwpid; 429 else { 430 /* 431 * lwp/thread id 0 is never valid; reserved for special checks. 432 * lwp/thread id 1 is reserved for the main thread. 433 * Start again at 2 when INT_MAX has been reached 434 * (id_t is a signed 32-bit integer). 435 */ 436 id_t prev_id = p->p_lwpid; /* last allocated tid */ 437 438 do { /* avoid lwpid duplication */ 439 if (p->p_lwpid == INT_MAX) { 440 p->p_flag |= SLWPWRAP; 441 p->p_lwpid = 1; 442 } 443 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 444 /* 445 * All lwpids are allocated; fail the request. 446 */ 447 err = 1; 448 goto error; 449 } 450 /* 451 * We only need to worry about colliding with an id 452 * that's already in use if this process has 453 * cycled through all available lwp ids. 454 */ 455 if ((p->p_flag & SLWPWRAP) == 0) 456 break; 457 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 458 } 459 460 /* 461 * If this is a branded process, let the brand do any necessary lwp 462 * initialization. 463 */ 464 if (PROC_IS_BRANDED(p)) { 465 if (BROP(p)->b_initlwp(lwp)) { 466 err = 1; 467 goto error; 468 } 469 branded = 1; 470 } 471 472 if (t->t_tid == 1) { 473 kpreempt_disable(); 474 ASSERT(t->t_lpl != NULL); 475 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 476 kpreempt_enable(); 477 if (p->p_tr_lgrpid != LGRP_NONE && 478 p->p_tr_lgrpid != p->p_t1_lgrpid) { 479 lgrp_update_trthr_migrations(1); 480 } 481 } 482 483 p->p_lwpcnt++; 484 t->t_waitfor = -1; 485 486 /* 487 * Turn microstate accounting on for thread if on for process. 488 */ 489 if (p->p_flag & SMSACCT) 490 t->t_proc_flag |= TP_MSACCT; 491 492 /* 493 * If the process has watchpoints, mark the new thread as such. 494 */ 495 if (pr_watch_active(p)) 496 watch_enable(t); 497 498 /* 499 * The lwp is being created in the stopped state. 500 * We set all the necessary flags to indicate that fact here. 501 * We omit the TS_CREATE flag from t_schedflag so that the lwp 502 * cannot be set running until the caller is finished with it, 503 * even if lwp_continue() is called on it after we drop p->p_lock. 504 * When the caller is finished with the newly-created lwp, 505 * the caller must call lwp_create_done() to allow the lwp 506 * to be set running. If the TP_HOLDLWP is left set, the 507 * lwp will suspend itself after reaching system call exit. 508 */ 509 init_mstate(t, LMS_STOPPED); 510 t->t_proc_flag |= TP_HOLDLWP; 511 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 512 t->t_whystop = PR_SUSPENDED; 513 t->t_whatstop = SUSPEND_NORMAL; 514 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 515 516 /* 517 * Set system call processing flags in case tracing or profiling 518 * is set. The first system call will evaluate these and turn 519 * them off if they aren't needed. 520 */ 521 t->t_pre_sys = 1; 522 t->t_post_sys = 1; 523 524 /* 525 * Insert the new thread into the list of all threads. 526 */ 527 if ((tx = p->p_tlist) == NULL) { 528 t->t_back = t; 529 t->t_forw = t; 530 p->p_tlist = t; 531 } else { 532 t->t_forw = tx; 533 t->t_back = tx->t_back; 534 tx->t_back->t_forw = t; 535 tx->t_back = t; 536 } 537 538 /* 539 * Insert the new lwp into an lwp directory slot position 540 * and into the lwpid hash table. 541 */ 542 lep->le_thread = t; 543 lep->le_lwpid = t->t_tid; 544 lep->le_start = t->t_start; 545 lwp_hash_in(p, lep); 546 547 if (state == TS_RUN) { 548 /* 549 * We set the new lwp running immediately. 550 */ 551 t->t_proc_flag &= ~TP_HOLDLWP; 552 lwp_create_done(t); 553 } 554 555 error: 556 if (err) { 557 /* 558 * We have failed to create an lwp, so decrement the number 559 * of lwps in the task and let the lgroup load averages know 560 * that this thread isn't going to show up. 561 */ 562 kpreempt_disable(); 563 lgrp_move_thread(t, NULL, 1); 564 kpreempt_enable(); 565 566 ASSERT(MUTEX_HELD(&p->p_lock)); 567 mutex_enter(&p->p_zone->zone_nlwps_lock); 568 p->p_task->tk_nlwps--; 569 p->p_task->tk_proj->kpj_nlwps--; 570 p->p_zone->zone_nlwps--; 571 mutex_exit(&p->p_zone->zone_nlwps_lock); 572 if (cid != NOCLASS && bufp != NULL) 573 CL_FREE(cid, bufp); 574 575 if (branded) 576 BROP(p)->b_freelwp(lwp); 577 578 mutex_exit(&p->p_lock); 579 t->t_state = TS_FREE; 580 thread_rele(t); 581 582 /* 583 * We need to remove t from the list of all threads 584 * because thread_exit()/lwp_exit() isn't called on t. 585 */ 586 mutex_enter(&pidlock); 587 ASSERT(t != t->t_next); /* t0 never exits */ 588 t->t_next->t_prev = t->t_prev; 589 t->t_prev->t_next = t->t_next; 590 mutex_exit(&pidlock); 591 592 thread_free(t); 593 kmem_free(lep, sizeof (*lep)); 594 lwp = NULL; 595 } else { 596 mutex_exit(&p->p_lock); 597 } 598 599 if (old_dir != NULL) { 600 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 601 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 602 } 603 604 DTRACE_PROC1(lwp__create, kthread_t *, t); 605 return (lwp); 606 } 607 608 /* 609 * lwp_create_done() is called by the caller of lwp_create() to set the 610 * newly-created lwp running after the caller has finished manipulating it. 611 */ 612 void 613 lwp_create_done(kthread_t *t) 614 { 615 proc_t *p = ttoproc(t); 616 617 ASSERT(MUTEX_HELD(&p->p_lock)); 618 619 /* 620 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 621 * (The absence of the TS_CREATE flag prevents the lwp from running 622 * until we are finished with it, even if lwp_continue() is called on 623 * it by some other lwp in the process or elsewhere in the kernel.) 624 */ 625 thread_lock(t); 626 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 627 /* 628 * If TS_CSTART is set, lwp_continue(t) has been called and 629 * has already incremented p_lwprcnt; avoid doing this twice. 630 */ 631 if (!(t->t_schedflag & TS_CSTART)) 632 p->p_lwprcnt++; 633 t->t_schedflag |= (TS_CSTART | TS_CREATE); 634 setrun_locked(t); 635 thread_unlock(t); 636 } 637 638 /* 639 * Copy an LWP's active templates, and clear the latest contracts. 640 */ 641 void 642 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 643 { 644 int i; 645 646 for (i = 0; i < ct_ntypes; i++) { 647 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 648 dst->lwp_ct_latest[i] = NULL; 649 } 650 } 651 652 /* 653 * Clear an LWP's contract template state. 654 */ 655 void 656 lwp_ctmpl_clear(klwp_t *lwp) 657 { 658 ct_template_t *tmpl; 659 int i; 660 661 for (i = 0; i < ct_ntypes; i++) { 662 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 663 ctmpl_free(tmpl); 664 lwp->lwp_ct_active[i] = NULL; 665 } 666 667 if (lwp->lwp_ct_latest[i] != NULL) { 668 contract_rele(lwp->lwp_ct_latest[i]); 669 lwp->lwp_ct_latest[i] = NULL; 670 } 671 } 672 } 673 674 /* 675 * Individual lwp exit. 676 * If this is the last lwp, exit the whole process. 677 */ 678 void 679 lwp_exit(void) 680 { 681 kthread_t *t = curthread; 682 klwp_t *lwp = ttolwp(t); 683 proc_t *p = ttoproc(t); 684 685 ASSERT(MUTEX_HELD(&p->p_lock)); 686 687 mutex_exit(&p->p_lock); 688 689 #if defined(__sparc) 690 /* 691 * Ensure that the user stack is fully abandoned.. 692 */ 693 trash_user_windows(); 694 #endif 695 696 tsd_exit(); /* free thread specific data */ 697 698 kcpc_passivate(); /* Clean up performance counter state */ 699 700 pollcleanup(); 701 702 if (t->t_door) 703 door_slam(); 704 705 if (t->t_schedctl != NULL) 706 schedctl_lwp_cleanup(t); 707 708 if (t->t_upimutex != NULL) 709 upimutex_cleanup(); 710 711 /* 712 * Perform any brand specific exit processing, then release any 713 * brand data associated with the lwp 714 */ 715 if (PROC_IS_BRANDED(p)) 716 BROP(p)->b_lwpexit(lwp); 717 718 mutex_enter(&p->p_lock); 719 lwp_cleanup(); 720 721 /* 722 * When this process is dumping core, its lwps are held here 723 * until the core dump is finished. Then exitlwps() is called 724 * again to release these lwps so that they can finish exiting. 725 */ 726 if (p->p_flag & SCOREDUMP) 727 stop(PR_SUSPENDED, SUSPEND_NORMAL); 728 729 /* 730 * Block the process against /proc now that we have really acquired 731 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 732 */ 733 prbarrier(p); 734 735 /* 736 * Call proc_exit() if this is the last non-daemon lwp in the process. 737 */ 738 if (!(t->t_proc_flag & TP_DAEMON) && 739 p->p_lwpcnt == p->p_lwpdaemon + 1) { 740 mutex_exit(&p->p_lock); 741 if (proc_exit(CLD_EXITED, 0) == 0) { 742 /* Restarting init. */ 743 return; 744 } 745 746 /* 747 * proc_exit() returns a non-zero value when some other 748 * lwp got there first. We just have to continue in 749 * lwp_exit(). 750 */ 751 mutex_enter(&p->p_lock); 752 ASSERT(curproc->p_flag & SEXITLWPS); 753 prbarrier(p); 754 } 755 756 DTRACE_PROC(lwp__exit); 757 758 /* 759 * If the lwp is a detached lwp or if the process is exiting, 760 * remove (lwp_hash_out()) the lwp from the lwp directory. 761 * Otherwise null out the lwp's le_thread pointer in the lwp 762 * directory so that other threads will see it as a zombie lwp. 763 */ 764 prlwpexit(t); /* notify /proc */ 765 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 766 lwp_hash_out(p, t->t_tid); 767 else { 768 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 769 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 770 p->p_zombcnt++; 771 cv_broadcast(&p->p_lwpexit); 772 } 773 if (t->t_proc_flag & TP_DAEMON) { 774 p->p_lwpdaemon--; 775 t->t_proc_flag &= ~TP_DAEMON; 776 } 777 t->t_proc_flag &= ~TP_TWAIT; 778 779 /* 780 * Maintain accurate lwp count for task.max-lwps resource control. 781 */ 782 mutex_enter(&p->p_zone->zone_nlwps_lock); 783 p->p_task->tk_nlwps--; 784 p->p_task->tk_proj->kpj_nlwps--; 785 p->p_zone->zone_nlwps--; 786 mutex_exit(&p->p_zone->zone_nlwps_lock); 787 788 CL_EXIT(t); /* tell the scheduler that t is exiting */ 789 ASSERT(p->p_lwpcnt != 0); 790 p->p_lwpcnt--; 791 792 /* 793 * If all remaining non-daemon lwps are waiting in lwp_wait(), 794 * wake them up so someone can return EDEADLK. 795 * (See the block comment preceeding lwp_wait().) 796 */ 797 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 798 cv_broadcast(&p->p_lwpexit); 799 800 t->t_proc_flag |= TP_LWPEXIT; 801 term_mstate(t); 802 803 #ifndef NPROBE 804 /* Kernel probe */ 805 if (t->t_tnf_tpdp) 806 tnf_thread_exit(); 807 #endif /* NPROBE */ 808 809 t->t_forw->t_back = t->t_back; 810 t->t_back->t_forw = t->t_forw; 811 if (t == p->p_tlist) 812 p->p_tlist = t->t_forw; 813 814 /* 815 * Clean up the signal state. 816 */ 817 if (t->t_sigqueue != NULL) 818 sigdelq(p, t, 0); 819 if (lwp->lwp_curinfo != NULL) { 820 siginfofree(lwp->lwp_curinfo); 821 lwp->lwp_curinfo = NULL; 822 } 823 824 thread_rele(t); 825 826 /* 827 * Terminated lwps are associated with process zero and are put onto 828 * death-row by resume(). Avoid preemption after resetting t->t_procp. 829 */ 830 t->t_preempt++; 831 832 if (t->t_ctx != NULL) 833 exitctx(t); 834 if (p->p_pctx != NULL) 835 exitpctx(p); 836 837 t->t_procp = &p0; 838 839 /* 840 * Notify the HAT about the change of address space 841 */ 842 hat_thread_exit(t); 843 /* 844 * When this is the last running lwp in this process and some lwp is 845 * waiting for this condition to become true, or this thread was being 846 * suspended, then the waiting lwp is awakened. 847 * 848 * Also, if the process is exiting, we may have a thread waiting in 849 * exitlwps() that needs to be notified. 850 */ 851 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 852 (p->p_flag & SEXITLWPS)) 853 cv_broadcast(&p->p_holdlwps); 854 855 /* 856 * Need to drop p_lock so we can reacquire pidlock. 857 */ 858 mutex_exit(&p->p_lock); 859 mutex_enter(&pidlock); 860 861 ASSERT(t != t->t_next); /* t0 never exits */ 862 t->t_next->t_prev = t->t_prev; 863 t->t_prev->t_next = t->t_next; 864 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 865 mutex_exit(&pidlock); 866 867 lwp_pcb_exit(); 868 869 t->t_state = TS_ZOMB; 870 swtch_from_zombie(); 871 /* never returns */ 872 } 873 874 875 /* 876 * Cleanup function for an exiting lwp. 877 * Called both from lwp_exit() and from proc_exit(). 878 * p->p_lock is repeatedly released and grabbed in this function. 879 */ 880 void 881 lwp_cleanup(void) 882 { 883 kthread_t *t = curthread; 884 proc_t *p = ttoproc(t); 885 886 ASSERT(MUTEX_HELD(&p->p_lock)); 887 888 /* untimeout any lwp-bound realtime timers */ 889 if (p->p_itimer != NULL) 890 timer_lwpexit(); 891 892 /* 893 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 894 * so it appears that the agent never existed, and clear p_agenttp. 895 */ 896 if (t == p->p_agenttp) { 897 ASSERT(t->t_tid == p->p_lwpid); 898 p->p_lwpid--; 899 p->p_agenttp = NULL; 900 } 901 902 /* 903 * Do lgroup bookkeeping to account for thread exiting. 904 */ 905 kpreempt_disable(); 906 lgrp_move_thread(t, NULL, 1); 907 if (t->t_tid == 1) { 908 p->p_t1_lgrpid = LGRP_NONE; 909 } 910 kpreempt_enable(); 911 912 lwp_ctmpl_clear(ttolwp(t)); 913 } 914 915 int 916 lwp_suspend(kthread_t *t) 917 { 918 int tid; 919 proc_t *p = ttoproc(t); 920 921 ASSERT(MUTEX_HELD(&p->p_lock)); 922 923 /* 924 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 925 * If an lwp is stopping itself, there is no need to wait. 926 */ 927 top: 928 t->t_proc_flag |= TP_HOLDLWP; 929 if (t == curthread) { 930 t->t_sig_check = 1; 931 } else { 932 /* 933 * Make sure the lwp stops promptly. 934 */ 935 thread_lock(t); 936 t->t_sig_check = 1; 937 /* 938 * XXX Should use virtual stop like /proc does instead of 939 * XXX waking the thread to get it to stop. 940 */ 941 if (ISWAKEABLE(t) || ISWAITING(t)) { 942 setrun_locked(t); 943 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 944 poke_cpu(t->t_cpu->cpu_id); 945 } 946 947 tid = t->t_tid; /* remember thread ID */ 948 /* 949 * Wait for lwp to stop 950 */ 951 while (!SUSPENDED(t)) { 952 /* 953 * Drop the thread lock before waiting and reacquire it 954 * afterwards, so the thread can change its t_state 955 * field. 956 */ 957 thread_unlock(t); 958 959 /* 960 * Check if aborted by exitlwps(). 961 */ 962 if (p->p_flag & SEXITLWPS) 963 lwp_exit(); 964 965 /* 966 * Cooperate with jobcontrol signals and /proc stopping 967 * by calling cv_wait_sig() to wait for the target 968 * lwp to stop. Just using cv_wait() can lead to 969 * deadlock because, if some other lwp has stopped 970 * by either of these mechanisms, then p_lwprcnt will 971 * never become zero if we do a cv_wait(). 972 */ 973 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 974 return (EINTR); 975 976 /* 977 * Check to see if thread died while we were 978 * waiting for it to suspend. 979 */ 980 if (idtot(p, tid) == NULL) 981 return (ESRCH); 982 983 thread_lock(t); 984 /* 985 * If the TP_HOLDLWP flag went away, lwp_continue() 986 * or vfork() must have been called while we were 987 * waiting, so start over again. 988 */ 989 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 990 thread_unlock(t); 991 goto top; 992 } 993 } 994 thread_unlock(t); 995 } 996 return (0); 997 } 998 999 /* 1000 * continue a lwp that's been stopped by lwp_suspend(). 1001 */ 1002 void 1003 lwp_continue(kthread_t *t) 1004 { 1005 proc_t *p = ttoproc(t); 1006 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1007 1008 ASSERT(MUTEX_HELD(&p->p_lock)); 1009 1010 t->t_proc_flag &= ~TP_HOLDLWP; 1011 thread_lock(t); 1012 if (SUSPENDED(t) && 1013 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1014 p->p_lwprcnt++; 1015 t->t_schedflag |= TS_CSTART; 1016 setrun_locked(t); 1017 } 1018 thread_unlock(t); 1019 /* 1020 * Wakeup anyone waiting for this thread to be suspended 1021 */ 1022 if (was_suspended) 1023 cv_broadcast(&p->p_holdlwps); 1024 } 1025 1026 /* 1027 * ******************************** 1028 * Miscellaneous lwp routines * 1029 * ******************************** 1030 */ 1031 /* 1032 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1033 * This will cause the process's lwps to stop at a hold point. A hold 1034 * point is where a kernel thread has a flat stack. This is at the 1035 * return from a system call and at the return from a user level trap. 1036 * 1037 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1038 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1039 * hold point. The lwps in the process are not being cloned, so they 1040 * are held at the usual hold points and also within issig_forreal(). 1041 * This has the side-effect that their system calls do not return 1042 * showing EINTR. 1043 * 1044 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1045 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1046 * lwp is waiting for the target lwp to be stopped. 1047 */ 1048 void 1049 holdlwp(void) 1050 { 1051 proc_t *p = curproc; 1052 kthread_t *t = curthread; 1053 1054 mutex_enter(&p->p_lock); 1055 /* 1056 * Don't terminate immediately if the process is dumping core. 1057 * Once the process has dumped core, all lwps are terminated. 1058 */ 1059 if (!(p->p_flag & SCOREDUMP)) { 1060 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1061 lwp_exit(); 1062 } 1063 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1064 mutex_exit(&p->p_lock); 1065 return; 1066 } 1067 /* 1068 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1069 * when p->p_lwprcnt becomes zero. 1070 */ 1071 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1072 if (p->p_flag & SEXITLWPS) 1073 lwp_exit(); 1074 mutex_exit(&p->p_lock); 1075 } 1076 1077 /* 1078 * Have all lwps within the process hold at a point where they are 1079 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1080 */ 1081 int 1082 holdlwps(int holdflag) 1083 { 1084 proc_t *p = curproc; 1085 1086 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1087 mutex_enter(&p->p_lock); 1088 schedctl_finish_sigblock(curthread); 1089 again: 1090 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1091 /* 1092 * If another lwp is doing a forkall() or proc_exit(), bail out. 1093 */ 1094 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1095 mutex_exit(&p->p_lock); 1096 return (0); 1097 } 1098 /* 1099 * Another lwp is doing a fork1() or is undergoing 1100 * watchpoint activity. We hold here for it to complete. 1101 */ 1102 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1103 } 1104 p->p_flag |= holdflag; 1105 pokelwps(p); 1106 --p->p_lwprcnt; 1107 /* 1108 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1109 */ 1110 while (p->p_lwprcnt > 0) { 1111 /* 1112 * Check if aborted by exitlwps(). 1113 * Also check if SHOLDWATCH is set; it takes precedence. 1114 */ 1115 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1116 p->p_lwprcnt++; 1117 p->p_flag &= ~holdflag; 1118 cv_broadcast(&p->p_holdlwps); 1119 goto again; 1120 } 1121 /* 1122 * Cooperate with jobcontrol signals and /proc stopping. 1123 * If some other lwp has stopped by either of these 1124 * mechanisms, then p_lwprcnt will never become zero 1125 * and the process will appear deadlocked unless we 1126 * stop here in sympathy with the other lwp before 1127 * doing the cv_wait() below. 1128 * 1129 * If the other lwp stops after we do the cv_wait(), it 1130 * will wake us up to loop around and do the sympathy stop. 1131 * 1132 * Since stop() drops p->p_lock, we must start from 1133 * the top again on returning from stop(). 1134 */ 1135 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1136 int whystop = p->p_stopsig? PR_JOBCONTROL : 1137 PR_REQUESTED; 1138 p->p_lwprcnt++; 1139 p->p_flag &= ~holdflag; 1140 stop(whystop, p->p_stopsig); 1141 goto again; 1142 } 1143 cv_wait(&p->p_holdlwps, &p->p_lock); 1144 } 1145 p->p_lwprcnt++; 1146 p->p_flag &= ~holdflag; 1147 mutex_exit(&p->p_lock); 1148 return (1); 1149 } 1150 1151 /* 1152 * See comments for holdwatch(), below. 1153 */ 1154 static int 1155 holdcheck(int clearflags) 1156 { 1157 proc_t *p = curproc; 1158 1159 /* 1160 * If we are trying to exit, that takes precedence over anything else. 1161 */ 1162 if (p->p_flag & SEXITLWPS) { 1163 p->p_lwprcnt++; 1164 p->p_flag &= ~clearflags; 1165 lwp_exit(); 1166 } 1167 1168 /* 1169 * If another thread is calling fork1(), stop the current thread so the 1170 * other can complete. 1171 */ 1172 if (p->p_flag & SHOLDFORK1) { 1173 p->p_lwprcnt++; 1174 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1175 if (p->p_flag & SEXITLWPS) { 1176 p->p_flag &= ~clearflags; 1177 lwp_exit(); 1178 } 1179 return (-1); 1180 } 1181 1182 /* 1183 * If another thread is calling fork(), then indicate we are doing 1184 * watchpoint activity. This will cause holdlwps() above to stop the 1185 * forking thread, at which point we can continue with watchpoint 1186 * activity. 1187 */ 1188 if (p->p_flag & SHOLDFORK) { 1189 p->p_lwprcnt++; 1190 while (p->p_flag & SHOLDFORK) { 1191 p->p_flag |= SHOLDWATCH; 1192 cv_broadcast(&p->p_holdlwps); 1193 cv_wait(&p->p_holdlwps, &p->p_lock); 1194 p->p_flag &= ~SHOLDWATCH; 1195 } 1196 return (-1); 1197 } 1198 1199 return (0); 1200 } 1201 1202 /* 1203 * Stop all lwps within the process, holding themselves in the kernel while the 1204 * active lwp undergoes watchpoint activity. This is more complicated than 1205 * expected because stop() relies on calling holdwatch() in order to copyin data 1206 * from the user's address space. A double barrier is used to prevent an 1207 * infinite loop. 1208 * 1209 * o The first thread into holdwatch() is the 'master' thread and does 1210 * the following: 1211 * 1212 * - Sets SHOLDWATCH on the current process 1213 * - Sets TP_WATCHSTOP on the current thread 1214 * - Waits for all threads to be either stopped or have 1215 * TP_WATCHSTOP set. 1216 * - Sets the SWATCHOK flag on the process 1217 * - Unsets TP_WATCHSTOP 1218 * - Waits for the other threads to completely stop 1219 * - Unsets SWATCHOK 1220 * 1221 * o If SHOLDWATCH is already set when we enter this function, then another 1222 * thread is already trying to stop this thread. This 'slave' thread 1223 * does the following: 1224 * 1225 * - Sets TP_WATCHSTOP on the current thread 1226 * - Waits for SWATCHOK flag to be set 1227 * - Calls stop() 1228 * 1229 * o If SWATCHOK is set on the process, then this function immediately 1230 * returns, as we must have been called via stop(). 1231 * 1232 * In addition, there are other flags that take precedence over SHOLDWATCH: 1233 * 1234 * o If SEXITLWPS is set, exit immediately. 1235 * 1236 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1237 * 1238 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1239 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1240 * 1241 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1242 * stop the current thread. 1243 * 1244 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1245 * threads were stopped, or the list of watched pages has changed. 1246 */ 1247 int 1248 holdwatch(void) 1249 { 1250 proc_t *p = curproc; 1251 kthread_t *t = curthread; 1252 int ret = 0; 1253 1254 mutex_enter(&p->p_lock); 1255 1256 p->p_lwprcnt--; 1257 1258 /* 1259 * Check for bail-out conditions as outlined above. 1260 */ 1261 if (holdcheck(0) != 0) { 1262 mutex_exit(&p->p_lock); 1263 return (-1); 1264 } 1265 1266 if (!(p->p_flag & SHOLDWATCH)) { 1267 /* 1268 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1269 * the other threads. 1270 */ 1271 p->p_flag |= SHOLDWATCH; 1272 pokelwps(p); 1273 1274 /* 1275 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1276 */ 1277 while (pr_allstopped(p, 1) > 0) { 1278 if (holdcheck(SHOLDWATCH) != 0) { 1279 p->p_flag &= ~SHOLDWATCH; 1280 mutex_exit(&p->p_lock); 1281 return (-1); 1282 } 1283 1284 cv_wait(&p->p_holdlwps, &p->p_lock); 1285 } 1286 1287 /* 1288 * All threads are now stopped or in the process of stopping. 1289 * Set SWATCHOK and let them stop completely. 1290 */ 1291 p->p_flag |= SWATCHOK; 1292 t->t_proc_flag &= ~TP_WATCHSTOP; 1293 cv_broadcast(&p->p_holdlwps); 1294 1295 while (pr_allstopped(p, 0) > 0) { 1296 /* 1297 * At first glance, it may appear that we don't need a 1298 * call to holdcheck() here. But if the process gets a 1299 * SIGKILL signal, one of our stopped threads may have 1300 * been awakened and is waiting in exitlwps(), which 1301 * takes precedence over watchpoints. 1302 */ 1303 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1304 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1305 mutex_exit(&p->p_lock); 1306 return (-1); 1307 } 1308 1309 cv_wait(&p->p_holdlwps, &p->p_lock); 1310 } 1311 1312 /* 1313 * All threads are now completely stopped. 1314 */ 1315 p->p_flag &= ~SWATCHOK; 1316 p->p_flag &= ~SHOLDWATCH; 1317 p->p_lwprcnt++; 1318 1319 } else if (!(p->p_flag & SWATCHOK)) { 1320 1321 /* 1322 * SHOLDWATCH is set, so another thread is trying to do 1323 * watchpoint activity. Indicate this thread is stopping, and 1324 * wait for the OK from the master thread. 1325 */ 1326 t->t_proc_flag |= TP_WATCHSTOP; 1327 cv_broadcast(&p->p_holdlwps); 1328 1329 while (!(p->p_flag & SWATCHOK)) { 1330 if (holdcheck(0) != 0) { 1331 t->t_proc_flag &= ~TP_WATCHSTOP; 1332 mutex_exit(&p->p_lock); 1333 return (-1); 1334 } 1335 1336 cv_wait(&p->p_holdlwps, &p->p_lock); 1337 } 1338 1339 /* 1340 * Once the master thread has given the OK, this thread can 1341 * actually call stop(). 1342 */ 1343 t->t_proc_flag &= ~TP_WATCHSTOP; 1344 p->p_lwprcnt++; 1345 1346 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1347 1348 /* 1349 * It's not OK to do watchpoint activity, notify caller to 1350 * retry. 1351 */ 1352 ret = -1; 1353 1354 } else { 1355 1356 /* 1357 * The only way we can hit the case where SHOLDWATCH is set and 1358 * SWATCHOK is set is if we are triggering this from within a 1359 * stop() call. Assert that this is the case. 1360 */ 1361 1362 ASSERT(t->t_proc_flag & TP_STOPPING); 1363 p->p_lwprcnt++; 1364 } 1365 1366 mutex_exit(&p->p_lock); 1367 1368 return (ret); 1369 } 1370 1371 /* 1372 * force all interruptible lwps to trap into the kernel. 1373 */ 1374 void 1375 pokelwps(proc_t *p) 1376 { 1377 kthread_t *t; 1378 1379 ASSERT(MUTEX_HELD(&p->p_lock)); 1380 1381 t = p->p_tlist; 1382 do { 1383 if (t == curthread) 1384 continue; 1385 thread_lock(t); 1386 aston(t); /* make thread trap or do post_syscall */ 1387 if (ISWAKEABLE(t) || ISWAITING(t)) { 1388 setrun_locked(t); 1389 } else if (t->t_state == TS_STOPPED) { 1390 /* 1391 * Ensure that proc_exit() is not blocked by lwps 1392 * that were stopped via jobcontrol or /proc. 1393 */ 1394 if (p->p_flag & SEXITLWPS) { 1395 p->p_stopsig = 0; 1396 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1397 setrun_locked(t); 1398 } 1399 /* 1400 * If we are holding lwps for a forkall(), 1401 * force lwps that have been suspended via 1402 * lwp_suspend() and are suspended inside 1403 * of a system call to proceed to their 1404 * holdlwp() points where they are clonable. 1405 */ 1406 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1407 if ((t->t_schedflag & TS_CSTART) == 0) { 1408 p->p_lwprcnt++; 1409 t->t_schedflag |= TS_CSTART; 1410 setrun_locked(t); 1411 } 1412 } 1413 } else if (t->t_state == TS_ONPROC) { 1414 if (t->t_cpu != CPU) 1415 poke_cpu(t->t_cpu->cpu_id); 1416 } 1417 thread_unlock(t); 1418 } while ((t = t->t_forw) != p->p_tlist); 1419 } 1420 1421 /* 1422 * undo the effects of holdlwps() or holdwatch(). 1423 */ 1424 void 1425 continuelwps(proc_t *p) 1426 { 1427 kthread_t *t; 1428 1429 /* 1430 * If this flag is set, then the original holdwatch() didn't actually 1431 * stop the process. See comments for holdwatch(). 1432 */ 1433 if (p->p_flag & SWATCHOK) { 1434 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1435 return; 1436 } 1437 1438 ASSERT(MUTEX_HELD(&p->p_lock)); 1439 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1440 1441 t = p->p_tlist; 1442 do { 1443 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1444 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1445 p->p_lwprcnt++; 1446 t->t_schedflag |= TS_CSTART; 1447 setrun_locked(t); 1448 } 1449 thread_unlock(t); 1450 } while ((t = t->t_forw) != p->p_tlist); 1451 } 1452 1453 /* 1454 * Force all other LWPs in the current process other than the caller to exit, 1455 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1456 * is typically used in these situations: 1457 * 1458 * (a) prior to an exec() system call 1459 * (b) prior to dumping a core file 1460 * (c) prior to a uadmin() shutdown 1461 * 1462 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1463 * Multiple threads in the process can call this function at one time by 1464 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1465 * to declare one particular thread the winner who gets to kill the others. 1466 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1467 * appropriate errno value is returned to caller for its system call to return. 1468 */ 1469 int 1470 exitlwps(int coredump) 1471 { 1472 proc_t *p = curproc; 1473 int heldcnt; 1474 1475 if (curthread->t_door) 1476 door_slam(); 1477 if (p->p_door_list) 1478 door_revoke_all(); 1479 if (curthread->t_schedctl != NULL) 1480 schedctl_lwp_cleanup(curthread); 1481 1482 /* 1483 * Ensure that before starting to wait for other lwps to exit, 1484 * cleanup all upimutexes held by curthread. Otherwise, some other 1485 * lwp could be waiting (uninterruptibly) for a upimutex held by 1486 * curthread, and the call to pokelwps() below would deadlock. 1487 * Even if a blocked upimutex_lock is made interruptible, 1488 * curthread's upimutexes need to be unlocked: do it here. 1489 */ 1490 if (curthread->t_upimutex != NULL) 1491 upimutex_cleanup(); 1492 1493 /* 1494 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1495 * We must also block any further /proc access from this point forward. 1496 */ 1497 mutex_enter(&p->p_lock); 1498 prbarrier(p); 1499 1500 if (p->p_flag & SEXITLWPS) { 1501 mutex_exit(&p->p_lock); 1502 aston(curthread); /* force a trip through post_syscall */ 1503 return (set_errno(EINTR)); 1504 } 1505 1506 p->p_flag |= SEXITLWPS; 1507 if (coredump) /* tell other lwps to stop, not exit */ 1508 p->p_flag |= SCOREDUMP; 1509 1510 /* 1511 * Give precedence to exitlwps() if a holdlwps() is 1512 * in progress. The lwp doing the holdlwps() operation 1513 * is aborted when it is awakened. 1514 */ 1515 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1516 cv_broadcast(&p->p_holdlwps); 1517 cv_wait(&p->p_holdlwps, &p->p_lock); 1518 prbarrier(p); 1519 } 1520 p->p_flag |= SHOLDFORK; 1521 pokelwps(p); 1522 1523 /* 1524 * Wait for process to become quiescent. 1525 */ 1526 --p->p_lwprcnt; 1527 while (p->p_lwprcnt > 0) { 1528 cv_wait(&p->p_holdlwps, &p->p_lock); 1529 prbarrier(p); 1530 } 1531 p->p_lwprcnt++; 1532 ASSERT(p->p_lwprcnt == 1); 1533 1534 /* 1535 * The SCOREDUMP flag puts the process into a quiescent 1536 * state. The process's lwps remain attached to this 1537 * process until exitlwps() is called again without the 1538 * 'coredump' flag set, then the lwps are terminated 1539 * and the process can exit. 1540 */ 1541 if (coredump) { 1542 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1543 goto out; 1544 } 1545 1546 /* 1547 * Determine if there are any lwps left dangling in 1548 * the stopped state. This happens when exitlwps() 1549 * aborts a holdlwps() operation. 1550 */ 1551 p->p_flag &= ~SHOLDFORK; 1552 if ((heldcnt = p->p_lwpcnt) > 1) { 1553 kthread_t *t; 1554 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1555 t->t_proc_flag &= ~TP_TWAIT; 1556 lwp_continue(t); 1557 } 1558 } 1559 1560 /* 1561 * Wait for all other lwps to exit. 1562 */ 1563 --p->p_lwprcnt; 1564 while (p->p_lwpcnt > 1) { 1565 cv_wait(&p->p_holdlwps, &p->p_lock); 1566 prbarrier(p); 1567 } 1568 ++p->p_lwprcnt; 1569 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1570 1571 p->p_flag &= ~SEXITLWPS; 1572 curthread->t_proc_flag &= ~TP_TWAIT; 1573 1574 out: 1575 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1576 lwpdir_t *ldp; 1577 lwpent_t *lep; 1578 int i; 1579 1580 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1581 lep = ldp->ld_entry; 1582 if (lep != NULL && lep->le_thread != curthread) { 1583 ASSERT(lep->le_thread == NULL); 1584 p->p_zombcnt--; 1585 lwp_hash_out(p, lep->le_lwpid); 1586 } 1587 } 1588 ASSERT(p->p_zombcnt == 0); 1589 } 1590 1591 /* 1592 * If some other LWP in the process wanted us to suspend ourself, 1593 * then we will not do it. The other LWP is now terminated and 1594 * no one will ever continue us again if we suspend ourself. 1595 */ 1596 curthread->t_proc_flag &= ~TP_HOLDLWP; 1597 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1598 mutex_exit(&p->p_lock); 1599 return (0); 1600 } 1601 1602 /* 1603 * duplicate a lwp. 1604 */ 1605 klwp_t * 1606 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1607 { 1608 klwp_t *clwp; 1609 void *tregs, *tfpu; 1610 kthread_t *t = lwptot(lwp); 1611 kthread_t *ct; 1612 proc_t *p = lwptoproc(lwp); 1613 int cid; 1614 void *bufp; 1615 void *brand_data; 1616 int val; 1617 1618 ASSERT(p == curproc); 1619 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1620 1621 #if defined(__sparc) 1622 if (t == curthread) 1623 (void) flush_user_windows_to_stack(NULL); 1624 #endif 1625 1626 if (t == curthread) 1627 /* copy args out of registers first */ 1628 (void) save_syscall_args(); 1629 1630 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1631 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1632 if (clwp == NULL) 1633 return (NULL); 1634 1635 /* 1636 * most of the parent's lwp can be copied to its duplicate, 1637 * except for the fields that are unique to each lwp, like 1638 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1639 */ 1640 ct = clwp->lwp_thread; 1641 tregs = clwp->lwp_regs; 1642 tfpu = clwp->lwp_fpu; 1643 brand_data = clwp->lwp_brand; 1644 1645 /* 1646 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1647 * mstate_aggr_state() from reading stale mstate entries copied 1648 * from lwp to clwp. 1649 */ 1650 mutex_enter(&cp->p_lock); 1651 *clwp = *lwp; 1652 1653 /* clear microstate and resource usage data in new lwp */ 1654 init_mstate(ct, LMS_STOPPED); 1655 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1656 mutex_exit(&cp->p_lock); 1657 1658 /* fix up child's lwp */ 1659 1660 clwp->lwp_pcb.pcb_flags = 0; 1661 #if defined(__sparc) 1662 clwp->lwp_pcb.pcb_step = STEP_NONE; 1663 #endif 1664 clwp->lwp_cursig = 0; 1665 clwp->lwp_extsig = 0; 1666 clwp->lwp_curinfo = (struct sigqueue *)0; 1667 clwp->lwp_thread = ct; 1668 ct->t_sysnum = t->t_sysnum; 1669 clwp->lwp_regs = tregs; 1670 clwp->lwp_fpu = tfpu; 1671 clwp->lwp_brand = brand_data; 1672 clwp->lwp_ap = clwp->lwp_arg; 1673 clwp->lwp_procp = cp; 1674 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1675 clwp->lwp_lastfault = 0; 1676 clwp->lwp_lastfaddr = 0; 1677 1678 /* copy parent's struct regs to child. */ 1679 lwp_forkregs(lwp, clwp); 1680 1681 /* 1682 * Fork thread context ops, if any. 1683 */ 1684 if (t->t_ctx) 1685 forkctx(t, ct); 1686 1687 /* fix door state in the child */ 1688 if (t->t_door) 1689 door_fork(t, ct); 1690 1691 /* copy current contract templates, clear latest contracts */ 1692 lwp_ctmpl_copy(clwp, lwp); 1693 1694 mutex_enter(&cp->p_lock); 1695 /* lwp_create() set the TP_HOLDLWP flag */ 1696 if (!(t->t_proc_flag & TP_HOLDLWP)) 1697 ct->t_proc_flag &= ~TP_HOLDLWP; 1698 if (cp->p_flag & SMSACCT) 1699 ct->t_proc_flag |= TP_MSACCT; 1700 mutex_exit(&cp->p_lock); 1701 1702 /* Allow brand to propagate brand-specific state */ 1703 if (PROC_IS_BRANDED(p)) 1704 BROP(p)->b_forklwp(lwp, clwp); 1705 1706 retry: 1707 cid = t->t_cid; 1708 1709 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1710 ASSERT(val == 0); 1711 1712 mutex_enter(&p->p_lock); 1713 if (cid != t->t_cid) { 1714 /* 1715 * Someone just changed this thread's scheduling class, 1716 * so try pre-allocating the buffer again. Hopefully we 1717 * don't hit this often. 1718 */ 1719 mutex_exit(&p->p_lock); 1720 CL_FREE(cid, bufp); 1721 goto retry; 1722 } 1723 1724 ct->t_unpark = t->t_unpark; 1725 ct->t_clfuncs = t->t_clfuncs; 1726 CL_FORK(t, ct, bufp); 1727 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1728 mutex_exit(&p->p_lock); 1729 1730 return (clwp); 1731 } 1732 1733 /* 1734 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1735 */ 1736 void 1737 lwp_hash_in(proc_t *p, lwpent_t *lep) 1738 { 1739 lwpdir_t **ldpp; 1740 lwpdir_t *ldp; 1741 kthread_t *t; 1742 1743 /* 1744 * Allocate a directory element from the free list. 1745 * Code elsewhere guarantees a free slot. 1746 */ 1747 ldp = p->p_lwpfree; 1748 p->p_lwpfree = ldp->ld_next; 1749 ASSERT(ldp->ld_entry == NULL); 1750 ldp->ld_entry = lep; 1751 1752 /* 1753 * Insert it into the lwpid hash table. 1754 */ 1755 ldpp = &p->p_tidhash[TIDHASH(p, lep->le_lwpid)]; 1756 ldp->ld_next = *ldpp; 1757 *ldpp = ldp; 1758 1759 /* 1760 * Set the active thread's directory slot entry. 1761 */ 1762 if ((t = lep->le_thread) != NULL) { 1763 ASSERT(lep->le_lwpid == t->t_tid); 1764 t->t_dslot = (int)(ldp - p->p_lwpdir); 1765 } 1766 } 1767 1768 /* 1769 * Remove an lwp from the lwpid hash table and free its directory entry. 1770 * This is done when a detached lwp exits in lwp_exit() or 1771 * when a non-detached lwp is waited for in lwp_wait() or 1772 * when a zombie lwp is detached in lwp_detach(). 1773 */ 1774 void 1775 lwp_hash_out(proc_t *p, id_t lwpid) 1776 { 1777 lwpdir_t **ldpp; 1778 lwpdir_t *ldp; 1779 lwpent_t *lep; 1780 1781 for (ldpp = &p->p_tidhash[TIDHASH(p, lwpid)]; 1782 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1783 lep = ldp->ld_entry; 1784 if (lep->le_lwpid == lwpid) { 1785 prlwpfree(p, lep); /* /proc deals with le_trace */ 1786 *ldpp = ldp->ld_next; 1787 ldp->ld_entry = NULL; 1788 ldp->ld_next = p->p_lwpfree; 1789 p->p_lwpfree = ldp; 1790 kmem_free(lep, sizeof (*lep)); 1791 break; 1792 } 1793 } 1794 } 1795 1796 /* 1797 * Lookup an lwp in the lwpid hash table by lwpid. 1798 */ 1799 lwpdir_t * 1800 lwp_hash_lookup(proc_t *p, id_t lwpid) 1801 { 1802 lwpdir_t *ldp; 1803 1804 /* 1805 * The process may be exiting, after p_tidhash has been set to NULL in 1806 * proc_exit() but before prfee() has been called. Return failure in 1807 * this case. 1808 */ 1809 if (p->p_tidhash == NULL) 1810 return (NULL); 1811 1812 for (ldp = p->p_tidhash[TIDHASH(p, lwpid)]; 1813 ldp != NULL; ldp = ldp->ld_next) { 1814 if (ldp->ld_entry->le_lwpid == lwpid) 1815 return (ldp); 1816 } 1817 1818 return (NULL); 1819 } 1820 1821 /* 1822 * Update the indicated LWP usage statistic for the current LWP. 1823 */ 1824 void 1825 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 1826 { 1827 klwp_t *lwp = ttolwp(curthread); 1828 1829 if (lwp == NULL) 1830 return; 1831 1832 switch (lwp_stat_id) { 1833 case LWP_STAT_INBLK: 1834 lwp->lwp_ru.inblock += inc; 1835 break; 1836 case LWP_STAT_OUBLK: 1837 lwp->lwp_ru.oublock += inc; 1838 break; 1839 case LWP_STAT_MSGRCV: 1840 lwp->lwp_ru.msgrcv += inc; 1841 break; 1842 case LWP_STAT_MSGSND: 1843 lwp->lwp_ru.msgsnd += inc; 1844 break; 1845 default: 1846 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 1847 } 1848 } 1849