1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/systm.h> 31 #include <sys/thread.h> 32 #include <sys/proc.h> 33 #include <sys/task.h> 34 #include <sys/project.h> 35 #include <sys/signal.h> 36 #include <sys/errno.h> 37 #include <sys/vmparam.h> 38 #include <sys/stack.h> 39 #include <sys/procfs.h> 40 #include <sys/prsystm.h> 41 #include <sys/cpuvar.h> 42 #include <sys/kmem.h> 43 #include <sys/vtrace.h> 44 #include <sys/door.h> 45 #include <vm/seg_kp.h> 46 #include <sys/debug.h> 47 #include <sys/tnf.h> 48 #include <sys/schedctl.h> 49 #include <sys/poll.h> 50 #include <sys/copyops.h> 51 #include <sys/lwp_upimutex_impl.h> 52 #include <sys/cpupart.h> 53 #include <sys/lgrp.h> 54 #include <sys/rctl.h> 55 #include <sys/contract_impl.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/sdt.h> 58 #include <sys/cmn_err.h> 59 #include <sys/brand.h> 60 #include <sys/cyclic.h> 61 #include <sys/pool.h> 62 63 /* hash function for the lwpid hash table, p->p_tidhash[] */ 64 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1)) 65 66 void *segkp_lwp; /* cookie for pool of segkp resources */ 67 extern void reapq_move_lq_to_tq(kthread_t *); 68 extern void freectx_ctx(struct ctxop *); 69 70 /* 71 * Create a kernel thread associated with a particular system process. Give 72 * it an LWP so that microstate accounting will be available for it. 73 */ 74 kthread_t * 75 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri) 76 { 77 klwp_t *lwp; 78 79 VERIFY((p->p_flag & SSYS) != 0); 80 81 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0); 82 83 VERIFY(lwp != NULL); 84 85 return (lwptot(lwp)); 86 } 87 88 /* 89 * Create a thread that appears to be stopped at sys_rtt. 90 */ 91 klwp_t * 92 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 93 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 94 { 95 klwp_t *lwp = NULL; 96 kthread_t *t; 97 kthread_t *tx; 98 cpupart_t *oldpart = NULL; 99 size_t stksize; 100 caddr_t lwpdata = NULL; 101 processorid_t binding; 102 int err = 0; 103 kproject_t *oldkpj, *newkpj; 104 void *bufp = NULL; 105 klwp_t *curlwp; 106 lwpent_t *lep; 107 lwpdir_t *old_dir = NULL; 108 uint_t old_dirsz = 0; 109 tidhash_t *old_hash = NULL; 110 uint_t old_hashsz = 0; 111 ret_tidhash_t *ret_tidhash = NULL; 112 int i; 113 int rctlfail = 0; 114 boolean_t branded = 0; 115 struct ctxop *ctx = NULL; 116 117 ASSERT(cid != sysdccid); /* system threads must start in SYS */ 118 119 ASSERT(p != &p0); /* No new LWPs in p0. */ 120 121 mutex_enter(&p->p_lock); 122 mutex_enter(&p->p_zone->zone_nlwps_lock); 123 /* 124 * don't enforce rctl limits on system processes 125 */ 126 if (!CLASS_KERNEL(cid)) { 127 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 128 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 129 1, 0) & RCT_DENY) 130 rctlfail = 1; 131 if (p->p_task->tk_proj->kpj_nlwps >= 132 p->p_task->tk_proj->kpj_nlwps_ctl) 133 if (rctl_test(rc_project_nlwps, 134 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 135 & RCT_DENY) 136 rctlfail = 1; 137 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 138 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 139 1, 0) & RCT_DENY) 140 rctlfail = 1; 141 } 142 if (rctlfail) { 143 mutex_exit(&p->p_zone->zone_nlwps_lock); 144 mutex_exit(&p->p_lock); 145 return (NULL); 146 } 147 p->p_task->tk_nlwps++; 148 p->p_task->tk_proj->kpj_nlwps++; 149 p->p_zone->zone_nlwps++; 150 mutex_exit(&p->p_zone->zone_nlwps_lock); 151 mutex_exit(&p->p_lock); 152 153 curlwp = ttolwp(curthread); 154 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 155 stksize = lwp_default_stksize; 156 157 if (CLASS_KERNEL(cid)) { 158 /* 159 * Since we are creating an LWP in an SSYS process, we do not 160 * inherit anything from the current thread's LWP. We set 161 * stksize and lwpdata to 0 in order to let thread_create() 162 * allocate a regular kernel thread stack for this thread. 163 */ 164 curlwp = NULL; 165 stksize = 0; 166 lwpdata = NULL; 167 168 } else if (stksize == lwp_default_stksize) { 169 /* 170 * Try to reuse an <lwp,stack> from the LWP deathrow. 171 */ 172 if (lwp_reapcnt > 0) { 173 mutex_enter(&reaplock); 174 if ((t = lwp_deathrow) != NULL) { 175 ASSERT(t->t_swap); 176 lwp_deathrow = t->t_forw; 177 lwp_reapcnt--; 178 lwpdata = t->t_swap; 179 lwp = t->t_lwp; 180 ctx = t->t_ctx; 181 t->t_swap = NULL; 182 t->t_lwp = NULL; 183 t->t_ctx = NULL; 184 reapq_move_lq_to_tq(t); 185 } 186 mutex_exit(&reaplock); 187 if (lwp != NULL) { 188 lwp_stk_fini(lwp); 189 } 190 if (ctx != NULL) { 191 freectx_ctx(ctx); 192 } 193 } 194 if (lwpdata == NULL && 195 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 196 mutex_enter(&p->p_lock); 197 mutex_enter(&p->p_zone->zone_nlwps_lock); 198 p->p_task->tk_nlwps--; 199 p->p_task->tk_proj->kpj_nlwps--; 200 p->p_zone->zone_nlwps--; 201 mutex_exit(&p->p_zone->zone_nlwps_lock); 202 mutex_exit(&p->p_lock); 203 return (NULL); 204 } 205 } else { 206 stksize = roundup(stksize, PAGESIZE); 207 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 208 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 209 mutex_enter(&p->p_lock); 210 mutex_enter(&p->p_zone->zone_nlwps_lock); 211 p->p_task->tk_nlwps--; 212 p->p_task->tk_proj->kpj_nlwps--; 213 p->p_zone->zone_nlwps--; 214 mutex_exit(&p->p_zone->zone_nlwps_lock); 215 mutex_exit(&p->p_lock); 216 return (NULL); 217 } 218 } 219 220 /* 221 * Create a thread, initializing the stack pointer 222 */ 223 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 224 225 /* 226 * If a non-NULL stack base is passed in, thread_create() assumes 227 * that the stack might be statically allocated (as opposed to being 228 * allocated from segkp), and so it does not set t_swap. Since 229 * the lwpdata was allocated from segkp, we must set t_swap to point 230 * to it ourselves. 231 * 232 * This would be less confusing if t_swap had a better name; it really 233 * indicates that the stack is allocated from segkp, regardless of 234 * whether or not it is swappable. 235 */ 236 if (lwpdata != NULL) { 237 ASSERT(!CLASS_KERNEL(cid)); 238 ASSERT(t->t_swap == NULL); 239 t->t_swap = lwpdata; /* Start of page-able data */ 240 } 241 242 /* 243 * If the stack and lwp can be reused, mark the thread as such. 244 * When we get to reapq_add() from resume_from_zombie(), these 245 * threads will go onto lwp_deathrow instead of thread_deathrow. 246 */ 247 if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize) 248 t->t_flag |= T_LWPREUSE; 249 250 if (lwp == NULL) 251 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 252 bzero(lwp, sizeof (*lwp)); 253 t->t_lwp = lwp; 254 255 t->t_hold = *smask; 256 lwp->lwp_thread = t; 257 lwp->lwp_procp = p; 258 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 259 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 260 lwp->lwp_childstksz = curlwp->lwp_childstksz; 261 262 t->t_stk = lwp_stk_init(lwp, t->t_stk); 263 thread_load(t, proc, arg, len); 264 265 /* 266 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 267 */ 268 if (p->p_rprof_cyclic != CYCLIC_NONE) 269 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 270 271 if (cid != NOCLASS) 272 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 273 274 /* 275 * Allocate an lwp directory entry for the new lwp. 276 */ 277 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 278 279 mutex_enter(&p->p_lock); 280 grow: 281 /* 282 * Grow the lwp (thread) directory and lwpid hash table if necessary. 283 * A note on the growth algorithm: 284 * The new lwp directory size is computed as: 285 * new = 2 * old + 2 286 * Starting with an initial size of 2 (see exec_common()), 287 * this yields numbers that are a power of two minus 2: 288 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 289 * The size of the lwpid hash table must be a power of two 290 * and must be commensurate in size with the lwp directory 291 * so that hash bucket chains remain short. Therefore, 292 * the lwpid hash table size is computed as: 293 * hashsz = (dirsz + 2) / 2 294 * which leads to these hash table sizes corresponding to 295 * the above directory sizes: 296 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 297 * A note on growing the hash table: 298 * For performance reasons, code in lwp_unpark() does not 299 * acquire curproc->p_lock when searching the hash table. 300 * Rather, it calls lwp_hash_lookup_and_lock() which 301 * acquires only the individual hash bucket lock, taking 302 * care to deal with reallocation of the hash table 303 * during the time it takes to acquire the lock. 304 * 305 * This is sufficient to protect the integrity of the 306 * hash table, but it requires us to acquire all of the 307 * old hash bucket locks before growing the hash table 308 * and to release them afterwards. It also requires us 309 * not to free the old hash table because some thread 310 * in lwp_hash_lookup_and_lock() might still be trying 311 * to acquire the old bucket lock. 312 * 313 * So we adopt the tactic of keeping all of the retired 314 * hash tables on a linked list, so they can be safely 315 * freed when the process exits or execs. 316 * 317 * Because the hash table grows in powers of two, the 318 * total size of all of the hash tables will be slightly 319 * less than twice the size of the largest hash table. 320 */ 321 while (p->p_lwpfree == NULL) { 322 uint_t dirsz = p->p_lwpdir_sz; 323 lwpdir_t *new_dir; 324 uint_t new_dirsz; 325 lwpdir_t *ldp; 326 tidhash_t *new_hash; 327 uint_t new_hashsz; 328 329 mutex_exit(&p->p_lock); 330 331 /* 332 * Prepare to remember the old p_tidhash for later 333 * kmem_free()ing when the process exits or execs. 334 */ 335 if (ret_tidhash == NULL) 336 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t), 337 KM_SLEEP); 338 if (old_dir != NULL) 339 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 340 if (old_hash != NULL) 341 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 342 343 new_dirsz = 2 * dirsz + 2; 344 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 345 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 346 ldp->ld_next = ldp + 1; 347 new_hashsz = (new_dirsz + 2) / 2; 348 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t), 349 KM_SLEEP); 350 351 mutex_enter(&p->p_lock); 352 if (p == curproc) 353 prbarrier(p); 354 355 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 356 /* 357 * Someone else beat us to it or some lwp exited. 358 * Set up to free our memory and take a lap. 359 */ 360 old_dir = new_dir; 361 old_dirsz = new_dirsz; 362 old_hash = new_hash; 363 old_hashsz = new_hashsz; 364 } else { 365 /* 366 * For the benefit of lwp_hash_lookup_and_lock(), 367 * called from lwp_unpark(), which searches the 368 * tid hash table without acquiring p->p_lock, 369 * we must acquire all of the tid hash table 370 * locks before replacing p->p_tidhash. 371 */ 372 old_hash = p->p_tidhash; 373 old_hashsz = p->p_tidhash_sz; 374 for (i = 0; i < old_hashsz; i++) { 375 mutex_enter(&old_hash[i].th_lock); 376 mutex_enter(&new_hash[i].th_lock); 377 } 378 379 /* 380 * We simply hash in all of the old directory entries. 381 * This works because the old directory has no empty 382 * slots and the new hash table starts out empty. 383 * This reproduces the original directory ordering 384 * (required for /proc directory semantics). 385 */ 386 old_dir = p->p_lwpdir; 387 old_dirsz = p->p_lwpdir_sz; 388 p->p_lwpdir = new_dir; 389 p->p_lwpfree = new_dir; 390 p->p_lwpdir_sz = new_dirsz; 391 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++) 392 lwp_hash_in(p, ldp->ld_entry, 393 new_hash, new_hashsz, 0); 394 395 /* 396 * Remember the old hash table along with all 397 * of the previously-remembered hash tables. 398 * We will free them at process exit or exec. 399 */ 400 ret_tidhash->rth_tidhash = old_hash; 401 ret_tidhash->rth_tidhash_sz = old_hashsz; 402 ret_tidhash->rth_next = p->p_ret_tidhash; 403 p->p_ret_tidhash = ret_tidhash; 404 405 /* 406 * Now establish the new tid hash table. 407 * As soon as we assign p->p_tidhash, 408 * code in lwp_unpark() can start using it. 409 */ 410 membar_producer(); 411 p->p_tidhash = new_hash; 412 413 /* 414 * It is necessary that p_tidhash reach global 415 * visibility before p_tidhash_sz. Otherwise, 416 * code in lwp_hash_lookup_and_lock() could 417 * index into the old p_tidhash using the new 418 * p_tidhash_sz and thereby access invalid data. 419 */ 420 membar_producer(); 421 p->p_tidhash_sz = new_hashsz; 422 423 /* 424 * Release the locks; allow lwp_unpark() to carry on. 425 */ 426 for (i = 0; i < old_hashsz; i++) { 427 mutex_exit(&old_hash[i].th_lock); 428 mutex_exit(&new_hash[i].th_lock); 429 } 430 431 /* 432 * Avoid freeing these objects below. 433 */ 434 ret_tidhash = NULL; 435 old_hash = NULL; 436 old_hashsz = 0; 437 } 438 } 439 440 /* 441 * Block the process against /proc while we manipulate p->p_tlist, 442 * unless lwp_create() was called by /proc for the PCAGENT operation. 443 * We want to do this early enough so that we don't drop p->p_lock 444 * until the thread is put on the p->p_tlist. 445 */ 446 if (p == curproc) { 447 prbarrier(p); 448 /* 449 * If the current lwp has been requested to stop, do so now. 450 * Otherwise we have a race condition between /proc attempting 451 * to stop the process and this thread creating a new lwp 452 * that was not seen when the /proc PCSTOP request was issued. 453 * We rely on stop() to call prbarrier(p) before returning. 454 */ 455 while ((curthread->t_proc_flag & TP_PRSTOP) && 456 !ttolwp(curthread)->lwp_nostop) { 457 /* 458 * We called pool_barrier_enter() before calling 459 * here to lwp_create(). We have to call 460 * pool_barrier_exit() before stopping. 461 */ 462 pool_barrier_exit(); 463 prbarrier(p); 464 stop(PR_REQUESTED, 0); 465 /* 466 * And we have to repeat the call to 467 * pool_barrier_enter after stopping. 468 */ 469 pool_barrier_enter(); 470 prbarrier(p); 471 } 472 473 /* 474 * If process is exiting, there could be a race between 475 * the agent lwp creation and the new lwp currently being 476 * created. So to prevent this race lwp creation is failed 477 * if the process is exiting. 478 */ 479 if (p->p_flag & (SEXITLWPS|SKILLED)) { 480 err = 1; 481 goto error; 482 } 483 484 /* 485 * Since we might have dropped p->p_lock, the 486 * lwp directory free list might have changed. 487 */ 488 if (p->p_lwpfree == NULL) 489 goto grow; 490 } 491 492 kpreempt_disable(); /* can't grab cpu_lock here */ 493 494 /* 495 * Inherit processor and processor set bindings from curthread. 496 * 497 * For kernel LWPs, we do not inherit processor set bindings at 498 * process creation time (i.e. when p != curproc). After the 499 * kernel process is created, any subsequent LWPs must be created 500 * by threads in the kernel process, at which point we *will* 501 * inherit processor set bindings. 502 */ 503 if (CLASS_KERNEL(cid) && p != curproc) { 504 t->t_bind_cpu = binding = PBIND_NONE; 505 t->t_cpupart = oldpart = &cp_default; 506 t->t_bind_pset = PS_NONE; 507 t->t_bindflag = (uchar_t)default_binding_mode; 508 } else { 509 binding = curthread->t_bind_cpu; 510 t->t_bind_cpu = binding; 511 oldpart = t->t_cpupart; 512 t->t_cpupart = curthread->t_cpupart; 513 t->t_bind_pset = curthread->t_bind_pset; 514 t->t_bindflag = curthread->t_bindflag | 515 (uchar_t)default_binding_mode; 516 } 517 518 /* 519 * thread_create() initializes this thread's home lgroup to the root. 520 * Choose a more suitable lgroup, since this thread is associated 521 * with an lwp. 522 */ 523 ASSERT(oldpart != NULL); 524 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 525 t->t_bound_cpu = cpu[binding]; 526 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 527 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 528 } else if (CLASS_KERNEL(cid)) { 529 /* 530 * For kernel threads, assign ourselves to the root lgrp. 531 */ 532 lgrp_move_thread(t, 533 &curthread->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1); 534 } else { 535 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 536 } 537 538 kpreempt_enable(); 539 540 /* 541 * make sure lpl points to our own partition 542 */ 543 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 544 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 545 t->t_cpupart->cp_nlgrploads); 546 547 /* 548 * If we're creating a new process, then inherit the project from our 549 * parent. If we're only creating an additional lwp then use the 550 * project pointer of the target process. 551 */ 552 if (p->p_task == NULL) 553 newkpj = ttoproj(curthread); 554 else 555 newkpj = p->p_task->tk_proj; 556 557 /* 558 * It is safe to point the thread to the new project without holding it 559 * since we're holding the target process' p_lock here and therefore 560 * we're guaranteed that it will not move to another project. 561 */ 562 oldkpj = ttoproj(t); 563 if (newkpj != oldkpj) { 564 t->t_proj = newkpj; 565 (void) project_hold(newkpj); 566 project_rele(oldkpj); 567 } 568 569 if (cid != NOCLASS) { 570 /* 571 * If the lwp is being created in the current process 572 * and matches the current thread's scheduling class, 573 * we should propagate the current thread's scheduling 574 * parameters by calling CL_FORK. Otherwise just use 575 * the defaults by calling CL_ENTERCLASS. 576 */ 577 if (p != curproc || curthread->t_cid != cid) { 578 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 579 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 580 /* 581 * We don't call schedctl_set_cidpri(t) here 582 * because the schedctl data is not yet set 583 * up for the newly-created lwp. 584 */ 585 } else { 586 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 587 err = CL_FORK(curthread, t, bufp); 588 t->t_cid = cid; 589 } 590 if (err) 591 goto error; 592 else 593 bufp = NULL; 594 } 595 596 /* 597 * If we were given an lwpid then use it, else allocate one. 598 */ 599 if (lwpid != 0) 600 t->t_tid = lwpid; 601 else { 602 /* 603 * lwp/thread id 0 is never valid; reserved for special checks. 604 * lwp/thread id 1 is reserved for the main thread. 605 * Start again at 2 when INT_MAX has been reached 606 * (id_t is a signed 32-bit integer). 607 */ 608 id_t prev_id = p->p_lwpid; /* last allocated tid */ 609 610 do { /* avoid lwpid duplication */ 611 if (p->p_lwpid == INT_MAX) { 612 p->p_flag |= SLWPWRAP; 613 p->p_lwpid = 1; 614 } 615 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 616 /* 617 * All lwpids are allocated; fail the request. 618 */ 619 err = 1; 620 goto error; 621 } 622 /* 623 * We only need to worry about colliding with an id 624 * that's already in use if this process has 625 * cycled through all available lwp ids. 626 */ 627 if ((p->p_flag & SLWPWRAP) == 0) 628 break; 629 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 630 } 631 632 /* 633 * If this is a branded process, let the brand do any necessary lwp 634 * initialization. 635 */ 636 if (PROC_IS_BRANDED(p)) { 637 if (BROP(p)->b_initlwp(lwp)) { 638 err = 1; 639 goto error; 640 } 641 branded = 1; 642 } 643 644 if (t->t_tid == 1) { 645 kpreempt_disable(); 646 ASSERT(t->t_lpl != NULL); 647 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 648 kpreempt_enable(); 649 if (p->p_tr_lgrpid != LGRP_NONE && 650 p->p_tr_lgrpid != p->p_t1_lgrpid) { 651 lgrp_update_trthr_migrations(1); 652 } 653 } 654 655 p->p_lwpcnt++; 656 t->t_waitfor = -1; 657 658 /* 659 * Turn microstate accounting on for thread if on for process. 660 */ 661 if (p->p_flag & SMSACCT) 662 t->t_proc_flag |= TP_MSACCT; 663 664 /* 665 * If the process has watchpoints, mark the new thread as such. 666 */ 667 if (pr_watch_active(p)) 668 watch_enable(t); 669 670 /* 671 * The lwp is being created in the stopped state. 672 * We set all the necessary flags to indicate that fact here. 673 * We omit the TS_CREATE flag from t_schedflag so that the lwp 674 * cannot be set running until the caller is finished with it, 675 * even if lwp_continue() is called on it after we drop p->p_lock. 676 * When the caller is finished with the newly-created lwp, 677 * the caller must call lwp_create_done() to allow the lwp 678 * to be set running. If the TP_HOLDLWP is left set, the 679 * lwp will suspend itself after reaching system call exit. 680 */ 681 init_mstate(t, LMS_STOPPED); 682 t->t_proc_flag |= TP_HOLDLWP; 683 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 684 t->t_whystop = PR_SUSPENDED; 685 t->t_whatstop = SUSPEND_NORMAL; 686 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 687 688 /* 689 * Set system call processing flags in case tracing or profiling 690 * is set. The first system call will evaluate these and turn 691 * them off if they aren't needed. 692 */ 693 t->t_pre_sys = 1; 694 t->t_post_sys = 1; 695 696 /* 697 * Insert the new thread into the list of all threads. 698 */ 699 if ((tx = p->p_tlist) == NULL) { 700 t->t_back = t; 701 t->t_forw = t; 702 p->p_tlist = t; 703 } else { 704 t->t_forw = tx; 705 t->t_back = tx->t_back; 706 tx->t_back->t_forw = t; 707 tx->t_back = t; 708 } 709 710 /* 711 * Insert the new lwp into an lwp directory slot position 712 * and into the lwpid hash table. 713 */ 714 lep->le_thread = t; 715 lep->le_lwpid = t->t_tid; 716 lep->le_start = t->t_start; 717 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1); 718 719 if (state == TS_RUN) { 720 /* 721 * We set the new lwp running immediately. 722 */ 723 t->t_proc_flag &= ~TP_HOLDLWP; 724 lwp_create_done(t); 725 } 726 727 error: 728 if (err) { 729 if (CLASS_KERNEL(cid)) { 730 /* 731 * This should only happen if a system process runs 732 * out of lwpids, which shouldn't occur. 733 */ 734 panic("Failed to create a system LWP"); 735 } 736 /* 737 * We have failed to create an lwp, so decrement the number 738 * of lwps in the task and let the lgroup load averages know 739 * that this thread isn't going to show up. 740 */ 741 kpreempt_disable(); 742 lgrp_move_thread(t, NULL, 1); 743 kpreempt_enable(); 744 745 ASSERT(MUTEX_HELD(&p->p_lock)); 746 mutex_enter(&p->p_zone->zone_nlwps_lock); 747 p->p_task->tk_nlwps--; 748 p->p_task->tk_proj->kpj_nlwps--; 749 p->p_zone->zone_nlwps--; 750 mutex_exit(&p->p_zone->zone_nlwps_lock); 751 if (cid != NOCLASS && bufp != NULL) 752 CL_FREE(cid, bufp); 753 754 if (branded) 755 BROP(p)->b_freelwp(lwp); 756 757 mutex_exit(&p->p_lock); 758 t->t_state = TS_FREE; 759 thread_rele(t); 760 761 /* 762 * We need to remove t from the list of all threads 763 * because thread_exit()/lwp_exit() isn't called on t. 764 */ 765 mutex_enter(&pidlock); 766 ASSERT(t != t->t_next); /* t0 never exits */ 767 t->t_next->t_prev = t->t_prev; 768 t->t_prev->t_next = t->t_next; 769 mutex_exit(&pidlock); 770 771 thread_free(t); 772 kmem_free(lep, sizeof (*lep)); 773 lwp = NULL; 774 } else { 775 mutex_exit(&p->p_lock); 776 } 777 778 if (old_dir != NULL) 779 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 780 if (old_hash != NULL) 781 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 782 if (ret_tidhash != NULL) 783 kmem_free(ret_tidhash, sizeof (ret_tidhash_t)); 784 785 DTRACE_PROC1(lwp__create, kthread_t *, t); 786 return (lwp); 787 } 788 789 /* 790 * lwp_create_done() is called by the caller of lwp_create() to set the 791 * newly-created lwp running after the caller has finished manipulating it. 792 */ 793 void 794 lwp_create_done(kthread_t *t) 795 { 796 proc_t *p = ttoproc(t); 797 798 ASSERT(MUTEX_HELD(&p->p_lock)); 799 800 /* 801 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 802 * (The absence of the TS_CREATE flag prevents the lwp from running 803 * until we are finished with it, even if lwp_continue() is called on 804 * it by some other lwp in the process or elsewhere in the kernel.) 805 */ 806 thread_lock(t); 807 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 808 /* 809 * If TS_CSTART is set, lwp_continue(t) has been called and 810 * has already incremented p_lwprcnt; avoid doing this twice. 811 */ 812 if (!(t->t_schedflag & TS_CSTART)) 813 p->p_lwprcnt++; 814 t->t_schedflag |= (TS_CSTART | TS_CREATE); 815 setrun_locked(t); 816 thread_unlock(t); 817 } 818 819 /* 820 * Copy an LWP's active templates, and clear the latest contracts. 821 */ 822 void 823 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 824 { 825 int i; 826 827 for (i = 0; i < ct_ntypes; i++) { 828 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 829 dst->lwp_ct_latest[i] = NULL; 830 } 831 } 832 833 /* 834 * Clear an LWP's contract template state. 835 */ 836 void 837 lwp_ctmpl_clear(klwp_t *lwp) 838 { 839 ct_template_t *tmpl; 840 int i; 841 842 for (i = 0; i < ct_ntypes; i++) { 843 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 844 ctmpl_free(tmpl); 845 lwp->lwp_ct_active[i] = NULL; 846 } 847 848 if (lwp->lwp_ct_latest[i] != NULL) { 849 contract_rele(lwp->lwp_ct_latest[i]); 850 lwp->lwp_ct_latest[i] = NULL; 851 } 852 } 853 } 854 855 /* 856 * Individual lwp exit. 857 * If this is the last lwp, exit the whole process. 858 */ 859 void 860 lwp_exit(void) 861 { 862 kthread_t *t = curthread; 863 klwp_t *lwp = ttolwp(t); 864 proc_t *p = ttoproc(t); 865 866 ASSERT(MUTEX_HELD(&p->p_lock)); 867 868 mutex_exit(&p->p_lock); 869 870 #if defined(__sparc) 871 /* 872 * Ensure that the user stack is fully abandoned.. 873 */ 874 trash_user_windows(); 875 #endif 876 877 tsd_exit(); /* free thread specific data */ 878 879 kcpc_passivate(); /* Clean up performance counter state */ 880 881 pollcleanup(); 882 883 if (t->t_door) 884 door_slam(); 885 886 if (t->t_schedctl != NULL) 887 schedctl_lwp_cleanup(t); 888 889 if (t->t_upimutex != NULL) 890 upimutex_cleanup(); 891 892 /* 893 * Perform any brand specific exit processing, then release any 894 * brand data associated with the lwp 895 */ 896 if (PROC_IS_BRANDED(p)) 897 BROP(p)->b_lwpexit(lwp); 898 899 mutex_enter(&p->p_lock); 900 lwp_cleanup(); 901 902 /* 903 * When this process is dumping core, its lwps are held here 904 * until the core dump is finished. Then exitlwps() is called 905 * again to release these lwps so that they can finish exiting. 906 */ 907 if (p->p_flag & SCOREDUMP) 908 stop(PR_SUSPENDED, SUSPEND_NORMAL); 909 910 /* 911 * Block the process against /proc now that we have really acquired 912 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 913 */ 914 prbarrier(p); 915 916 /* 917 * Call proc_exit() if this is the last non-daemon lwp in the process. 918 */ 919 if (!(t->t_proc_flag & TP_DAEMON) && 920 p->p_lwpcnt == p->p_lwpdaemon + 1) { 921 mutex_exit(&p->p_lock); 922 if (proc_exit(CLD_EXITED, 0) == 0) { 923 /* Restarting init. */ 924 return; 925 } 926 927 /* 928 * proc_exit() returns a non-zero value when some other 929 * lwp got there first. We just have to continue in 930 * lwp_exit(). 931 */ 932 mutex_enter(&p->p_lock); 933 ASSERT(curproc->p_flag & SEXITLWPS); 934 prbarrier(p); 935 } 936 937 DTRACE_PROC(lwp__exit); 938 939 /* 940 * If the lwp is a detached lwp or if the process is exiting, 941 * remove (lwp_hash_out()) the lwp from the lwp directory. 942 * Otherwise null out the lwp's le_thread pointer in the lwp 943 * directory so that other threads will see it as a zombie lwp. 944 */ 945 prlwpexit(t); /* notify /proc */ 946 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 947 lwp_hash_out(p, t->t_tid); 948 else { 949 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 950 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 951 p->p_zombcnt++; 952 cv_broadcast(&p->p_lwpexit); 953 } 954 if (t->t_proc_flag & TP_DAEMON) { 955 p->p_lwpdaemon--; 956 t->t_proc_flag &= ~TP_DAEMON; 957 } 958 t->t_proc_flag &= ~TP_TWAIT; 959 960 /* 961 * Maintain accurate lwp count for task.max-lwps resource control. 962 */ 963 mutex_enter(&p->p_zone->zone_nlwps_lock); 964 p->p_task->tk_nlwps--; 965 p->p_task->tk_proj->kpj_nlwps--; 966 p->p_zone->zone_nlwps--; 967 mutex_exit(&p->p_zone->zone_nlwps_lock); 968 969 CL_EXIT(t); /* tell the scheduler that t is exiting */ 970 ASSERT(p->p_lwpcnt != 0); 971 p->p_lwpcnt--; 972 973 /* 974 * If all remaining non-daemon lwps are waiting in lwp_wait(), 975 * wake them up so someone can return EDEADLK. 976 * (See the block comment preceeding lwp_wait().) 977 */ 978 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 979 cv_broadcast(&p->p_lwpexit); 980 981 t->t_proc_flag |= TP_LWPEXIT; 982 term_mstate(t); 983 984 #ifndef NPROBE 985 /* Kernel probe */ 986 if (t->t_tnf_tpdp) 987 tnf_thread_exit(); 988 #endif /* NPROBE */ 989 990 t->t_forw->t_back = t->t_back; 991 t->t_back->t_forw = t->t_forw; 992 if (t == p->p_tlist) 993 p->p_tlist = t->t_forw; 994 995 /* 996 * Clean up the signal state. 997 */ 998 if (t->t_sigqueue != NULL) 999 sigdelq(p, t, 0); 1000 if (lwp->lwp_curinfo != NULL) { 1001 siginfofree(lwp->lwp_curinfo); 1002 lwp->lwp_curinfo = NULL; 1003 } 1004 1005 thread_rele(t); 1006 1007 /* 1008 * Terminated lwps are associated with process zero and are put onto 1009 * death-row by resume(). Avoid preemption after resetting t->t_procp. 1010 */ 1011 t->t_preempt++; 1012 1013 if (t->t_ctx != NULL) 1014 exitctx(t); 1015 if (p->p_pctx != NULL) 1016 exitpctx(p); 1017 1018 t->t_procp = &p0; 1019 1020 /* 1021 * Notify the HAT about the change of address space 1022 */ 1023 hat_thread_exit(t); 1024 /* 1025 * When this is the last running lwp in this process and some lwp is 1026 * waiting for this condition to become true, or this thread was being 1027 * suspended, then the waiting lwp is awakened. 1028 * 1029 * Also, if the process is exiting, we may have a thread waiting in 1030 * exitlwps() that needs to be notified. 1031 */ 1032 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 1033 (p->p_flag & SEXITLWPS)) 1034 cv_broadcast(&p->p_holdlwps); 1035 1036 /* 1037 * Need to drop p_lock so we can reacquire pidlock. 1038 */ 1039 mutex_exit(&p->p_lock); 1040 mutex_enter(&pidlock); 1041 1042 ASSERT(t != t->t_next); /* t0 never exits */ 1043 t->t_next->t_prev = t->t_prev; 1044 t->t_prev->t_next = t->t_next; 1045 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 1046 mutex_exit(&pidlock); 1047 1048 lwp_pcb_exit(); 1049 1050 t->t_state = TS_ZOMB; 1051 swtch_from_zombie(); 1052 /* never returns */ 1053 } 1054 1055 1056 /* 1057 * Cleanup function for an exiting lwp. 1058 * Called both from lwp_exit() and from proc_exit(). 1059 * p->p_lock is repeatedly released and grabbed in this function. 1060 */ 1061 void 1062 lwp_cleanup(void) 1063 { 1064 kthread_t *t = curthread; 1065 proc_t *p = ttoproc(t); 1066 1067 ASSERT(MUTEX_HELD(&p->p_lock)); 1068 1069 /* untimeout any lwp-bound realtime timers */ 1070 if (p->p_itimer != NULL) 1071 timer_lwpexit(); 1072 1073 /* 1074 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 1075 * so it appears that the agent never existed, and clear p_agenttp. 1076 */ 1077 if (t == p->p_agenttp) { 1078 ASSERT(t->t_tid == p->p_lwpid); 1079 p->p_lwpid--; 1080 p->p_agenttp = NULL; 1081 } 1082 1083 /* 1084 * Do lgroup bookkeeping to account for thread exiting. 1085 */ 1086 kpreempt_disable(); 1087 lgrp_move_thread(t, NULL, 1); 1088 if (t->t_tid == 1) { 1089 p->p_t1_lgrpid = LGRP_NONE; 1090 } 1091 kpreempt_enable(); 1092 1093 lwp_ctmpl_clear(ttolwp(t)); 1094 } 1095 1096 int 1097 lwp_suspend(kthread_t *t) 1098 { 1099 int tid; 1100 proc_t *p = ttoproc(t); 1101 1102 ASSERT(MUTEX_HELD(&p->p_lock)); 1103 1104 /* 1105 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 1106 * If an lwp is stopping itself, there is no need to wait. 1107 */ 1108 top: 1109 t->t_proc_flag |= TP_HOLDLWP; 1110 if (t == curthread) { 1111 t->t_sig_check = 1; 1112 } else { 1113 /* 1114 * Make sure the lwp stops promptly. 1115 */ 1116 thread_lock(t); 1117 t->t_sig_check = 1; 1118 /* 1119 * XXX Should use virtual stop like /proc does instead of 1120 * XXX waking the thread to get it to stop. 1121 */ 1122 if (ISWAKEABLE(t) || ISWAITING(t)) { 1123 setrun_locked(t); 1124 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 1125 poke_cpu(t->t_cpu->cpu_id); 1126 } 1127 1128 tid = t->t_tid; /* remember thread ID */ 1129 /* 1130 * Wait for lwp to stop 1131 */ 1132 while (!SUSPENDED(t)) { 1133 /* 1134 * Drop the thread lock before waiting and reacquire it 1135 * afterwards, so the thread can change its t_state 1136 * field. 1137 */ 1138 thread_unlock(t); 1139 1140 /* 1141 * Check if aborted by exitlwps(). 1142 */ 1143 if (p->p_flag & SEXITLWPS) 1144 lwp_exit(); 1145 1146 /* 1147 * Cooperate with jobcontrol signals and /proc stopping 1148 * by calling cv_wait_sig() to wait for the target 1149 * lwp to stop. Just using cv_wait() can lead to 1150 * deadlock because, if some other lwp has stopped 1151 * by either of these mechanisms, then p_lwprcnt will 1152 * never become zero if we do a cv_wait(). 1153 */ 1154 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 1155 return (EINTR); 1156 1157 /* 1158 * Check to see if thread died while we were 1159 * waiting for it to suspend. 1160 */ 1161 if (idtot(p, tid) == NULL) 1162 return (ESRCH); 1163 1164 thread_lock(t); 1165 /* 1166 * If the TP_HOLDLWP flag went away, lwp_continue() 1167 * or vfork() must have been called while we were 1168 * waiting, so start over again. 1169 */ 1170 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 1171 thread_unlock(t); 1172 goto top; 1173 } 1174 } 1175 thread_unlock(t); 1176 } 1177 return (0); 1178 } 1179 1180 /* 1181 * continue a lwp that's been stopped by lwp_suspend(). 1182 */ 1183 void 1184 lwp_continue(kthread_t *t) 1185 { 1186 proc_t *p = ttoproc(t); 1187 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1188 1189 ASSERT(MUTEX_HELD(&p->p_lock)); 1190 1191 t->t_proc_flag &= ~TP_HOLDLWP; 1192 thread_lock(t); 1193 if (SUSPENDED(t) && 1194 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1195 p->p_lwprcnt++; 1196 t->t_schedflag |= TS_CSTART; 1197 setrun_locked(t); 1198 } 1199 thread_unlock(t); 1200 /* 1201 * Wakeup anyone waiting for this thread to be suspended 1202 */ 1203 if (was_suspended) 1204 cv_broadcast(&p->p_holdlwps); 1205 } 1206 1207 /* 1208 * ******************************** 1209 * Miscellaneous lwp routines * 1210 * ******************************** 1211 */ 1212 /* 1213 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1214 * This will cause the process's lwps to stop at a hold point. A hold 1215 * point is where a kernel thread has a flat stack. This is at the 1216 * return from a system call and at the return from a user level trap. 1217 * 1218 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1219 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1220 * hold point. The lwps in the process are not being cloned, so they 1221 * are held at the usual hold points and also within issig_forreal(). 1222 * This has the side-effect that their system calls do not return 1223 * showing EINTR. 1224 * 1225 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1226 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1227 * lwp is waiting for the target lwp to be stopped. 1228 */ 1229 void 1230 holdlwp(void) 1231 { 1232 proc_t *p = curproc; 1233 kthread_t *t = curthread; 1234 1235 mutex_enter(&p->p_lock); 1236 /* 1237 * Don't terminate immediately if the process is dumping core. 1238 * Once the process has dumped core, all lwps are terminated. 1239 */ 1240 if (!(p->p_flag & SCOREDUMP)) { 1241 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1242 lwp_exit(); 1243 } 1244 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1245 mutex_exit(&p->p_lock); 1246 return; 1247 } 1248 /* 1249 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1250 * when p->p_lwprcnt becomes zero. 1251 */ 1252 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1253 if (p->p_flag & SEXITLWPS) 1254 lwp_exit(); 1255 mutex_exit(&p->p_lock); 1256 } 1257 1258 /* 1259 * Have all lwps within the process hold at a point where they are 1260 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1261 */ 1262 int 1263 holdlwps(int holdflag) 1264 { 1265 proc_t *p = curproc; 1266 1267 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1268 mutex_enter(&p->p_lock); 1269 schedctl_finish_sigblock(curthread); 1270 again: 1271 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1272 /* 1273 * If another lwp is doing a forkall() or proc_exit(), bail out. 1274 */ 1275 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1276 mutex_exit(&p->p_lock); 1277 return (0); 1278 } 1279 /* 1280 * Another lwp is doing a fork1() or is undergoing 1281 * watchpoint activity. We hold here for it to complete. 1282 */ 1283 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1284 } 1285 p->p_flag |= holdflag; 1286 pokelwps(p); 1287 --p->p_lwprcnt; 1288 /* 1289 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1290 */ 1291 while (p->p_lwprcnt > 0) { 1292 /* 1293 * Check if aborted by exitlwps(). 1294 * Also check if SHOLDWATCH is set; it takes precedence. 1295 */ 1296 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1297 p->p_lwprcnt++; 1298 p->p_flag &= ~holdflag; 1299 cv_broadcast(&p->p_holdlwps); 1300 goto again; 1301 } 1302 /* 1303 * Cooperate with jobcontrol signals and /proc stopping. 1304 * If some other lwp has stopped by either of these 1305 * mechanisms, then p_lwprcnt will never become zero 1306 * and the process will appear deadlocked unless we 1307 * stop here in sympathy with the other lwp before 1308 * doing the cv_wait() below. 1309 * 1310 * If the other lwp stops after we do the cv_wait(), it 1311 * will wake us up to loop around and do the sympathy stop. 1312 * 1313 * Since stop() drops p->p_lock, we must start from 1314 * the top again on returning from stop(). 1315 */ 1316 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1317 int whystop = p->p_stopsig? PR_JOBCONTROL : 1318 PR_REQUESTED; 1319 p->p_lwprcnt++; 1320 p->p_flag &= ~holdflag; 1321 stop(whystop, p->p_stopsig); 1322 goto again; 1323 } 1324 cv_wait(&p->p_holdlwps, &p->p_lock); 1325 } 1326 p->p_lwprcnt++; 1327 p->p_flag &= ~holdflag; 1328 mutex_exit(&p->p_lock); 1329 return (1); 1330 } 1331 1332 /* 1333 * See comments for holdwatch(), below. 1334 */ 1335 static int 1336 holdcheck(int clearflags) 1337 { 1338 proc_t *p = curproc; 1339 1340 /* 1341 * If we are trying to exit, that takes precedence over anything else. 1342 */ 1343 if (p->p_flag & SEXITLWPS) { 1344 p->p_lwprcnt++; 1345 p->p_flag &= ~clearflags; 1346 lwp_exit(); 1347 } 1348 1349 /* 1350 * If another thread is calling fork1(), stop the current thread so the 1351 * other can complete. 1352 */ 1353 if (p->p_flag & SHOLDFORK1) { 1354 p->p_lwprcnt++; 1355 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1356 if (p->p_flag & SEXITLWPS) { 1357 p->p_flag &= ~clearflags; 1358 lwp_exit(); 1359 } 1360 return (-1); 1361 } 1362 1363 /* 1364 * If another thread is calling fork(), then indicate we are doing 1365 * watchpoint activity. This will cause holdlwps() above to stop the 1366 * forking thread, at which point we can continue with watchpoint 1367 * activity. 1368 */ 1369 if (p->p_flag & SHOLDFORK) { 1370 p->p_lwprcnt++; 1371 while (p->p_flag & SHOLDFORK) { 1372 p->p_flag |= SHOLDWATCH; 1373 cv_broadcast(&p->p_holdlwps); 1374 cv_wait(&p->p_holdlwps, &p->p_lock); 1375 p->p_flag &= ~SHOLDWATCH; 1376 } 1377 return (-1); 1378 } 1379 1380 return (0); 1381 } 1382 1383 /* 1384 * Stop all lwps within the process, holding themselves in the kernel while the 1385 * active lwp undergoes watchpoint activity. This is more complicated than 1386 * expected because stop() relies on calling holdwatch() in order to copyin data 1387 * from the user's address space. A double barrier is used to prevent an 1388 * infinite loop. 1389 * 1390 * o The first thread into holdwatch() is the 'master' thread and does 1391 * the following: 1392 * 1393 * - Sets SHOLDWATCH on the current process 1394 * - Sets TP_WATCHSTOP on the current thread 1395 * - Waits for all threads to be either stopped or have 1396 * TP_WATCHSTOP set. 1397 * - Sets the SWATCHOK flag on the process 1398 * - Unsets TP_WATCHSTOP 1399 * - Waits for the other threads to completely stop 1400 * - Unsets SWATCHOK 1401 * 1402 * o If SHOLDWATCH is already set when we enter this function, then another 1403 * thread is already trying to stop this thread. This 'slave' thread 1404 * does the following: 1405 * 1406 * - Sets TP_WATCHSTOP on the current thread 1407 * - Waits for SWATCHOK flag to be set 1408 * - Calls stop() 1409 * 1410 * o If SWATCHOK is set on the process, then this function immediately 1411 * returns, as we must have been called via stop(). 1412 * 1413 * In addition, there are other flags that take precedence over SHOLDWATCH: 1414 * 1415 * o If SEXITLWPS is set, exit immediately. 1416 * 1417 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1418 * 1419 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1420 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1421 * 1422 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1423 * stop the current thread. 1424 * 1425 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1426 * threads were stopped, or the list of watched pages has changed. 1427 */ 1428 int 1429 holdwatch(void) 1430 { 1431 proc_t *p = curproc; 1432 kthread_t *t = curthread; 1433 int ret = 0; 1434 1435 mutex_enter(&p->p_lock); 1436 1437 p->p_lwprcnt--; 1438 1439 /* 1440 * Check for bail-out conditions as outlined above. 1441 */ 1442 if (holdcheck(0) != 0) { 1443 mutex_exit(&p->p_lock); 1444 return (-1); 1445 } 1446 1447 if (!(p->p_flag & SHOLDWATCH)) { 1448 /* 1449 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1450 * the other threads. 1451 */ 1452 p->p_flag |= SHOLDWATCH; 1453 pokelwps(p); 1454 1455 /* 1456 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1457 */ 1458 while (pr_allstopped(p, 1) > 0) { 1459 if (holdcheck(SHOLDWATCH) != 0) { 1460 p->p_flag &= ~SHOLDWATCH; 1461 mutex_exit(&p->p_lock); 1462 return (-1); 1463 } 1464 1465 cv_wait(&p->p_holdlwps, &p->p_lock); 1466 } 1467 1468 /* 1469 * All threads are now stopped or in the process of stopping. 1470 * Set SWATCHOK and let them stop completely. 1471 */ 1472 p->p_flag |= SWATCHOK; 1473 t->t_proc_flag &= ~TP_WATCHSTOP; 1474 cv_broadcast(&p->p_holdlwps); 1475 1476 while (pr_allstopped(p, 0) > 0) { 1477 /* 1478 * At first glance, it may appear that we don't need a 1479 * call to holdcheck() here. But if the process gets a 1480 * SIGKILL signal, one of our stopped threads may have 1481 * been awakened and is waiting in exitlwps(), which 1482 * takes precedence over watchpoints. 1483 */ 1484 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1485 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1486 mutex_exit(&p->p_lock); 1487 return (-1); 1488 } 1489 1490 cv_wait(&p->p_holdlwps, &p->p_lock); 1491 } 1492 1493 /* 1494 * All threads are now completely stopped. 1495 */ 1496 p->p_flag &= ~SWATCHOK; 1497 p->p_flag &= ~SHOLDWATCH; 1498 p->p_lwprcnt++; 1499 1500 } else if (!(p->p_flag & SWATCHOK)) { 1501 1502 /* 1503 * SHOLDWATCH is set, so another thread is trying to do 1504 * watchpoint activity. Indicate this thread is stopping, and 1505 * wait for the OK from the master thread. 1506 */ 1507 t->t_proc_flag |= TP_WATCHSTOP; 1508 cv_broadcast(&p->p_holdlwps); 1509 1510 while (!(p->p_flag & SWATCHOK)) { 1511 if (holdcheck(0) != 0) { 1512 t->t_proc_flag &= ~TP_WATCHSTOP; 1513 mutex_exit(&p->p_lock); 1514 return (-1); 1515 } 1516 1517 cv_wait(&p->p_holdlwps, &p->p_lock); 1518 } 1519 1520 /* 1521 * Once the master thread has given the OK, this thread can 1522 * actually call stop(). 1523 */ 1524 t->t_proc_flag &= ~TP_WATCHSTOP; 1525 p->p_lwprcnt++; 1526 1527 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1528 1529 /* 1530 * It's not OK to do watchpoint activity, notify caller to 1531 * retry. 1532 */ 1533 ret = -1; 1534 1535 } else { 1536 1537 /* 1538 * The only way we can hit the case where SHOLDWATCH is set and 1539 * SWATCHOK is set is if we are triggering this from within a 1540 * stop() call. Assert that this is the case. 1541 */ 1542 1543 ASSERT(t->t_proc_flag & TP_STOPPING); 1544 p->p_lwprcnt++; 1545 } 1546 1547 mutex_exit(&p->p_lock); 1548 1549 return (ret); 1550 } 1551 1552 /* 1553 * force all interruptible lwps to trap into the kernel. 1554 */ 1555 void 1556 pokelwps(proc_t *p) 1557 { 1558 kthread_t *t; 1559 1560 ASSERT(MUTEX_HELD(&p->p_lock)); 1561 1562 t = p->p_tlist; 1563 do { 1564 if (t == curthread) 1565 continue; 1566 thread_lock(t); 1567 aston(t); /* make thread trap or do post_syscall */ 1568 if (ISWAKEABLE(t) || ISWAITING(t)) { 1569 setrun_locked(t); 1570 } else if (t->t_state == TS_STOPPED) { 1571 /* 1572 * Ensure that proc_exit() is not blocked by lwps 1573 * that were stopped via jobcontrol or /proc. 1574 */ 1575 if (p->p_flag & SEXITLWPS) { 1576 p->p_stopsig = 0; 1577 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1578 setrun_locked(t); 1579 } 1580 /* 1581 * If we are holding lwps for a forkall(), 1582 * force lwps that have been suspended via 1583 * lwp_suspend() and are suspended inside 1584 * of a system call to proceed to their 1585 * holdlwp() points where they are clonable. 1586 */ 1587 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1588 if ((t->t_schedflag & TS_CSTART) == 0) { 1589 p->p_lwprcnt++; 1590 t->t_schedflag |= TS_CSTART; 1591 setrun_locked(t); 1592 } 1593 } 1594 } else if (t->t_state == TS_ONPROC) { 1595 if (t->t_cpu != CPU) 1596 poke_cpu(t->t_cpu->cpu_id); 1597 } 1598 thread_unlock(t); 1599 } while ((t = t->t_forw) != p->p_tlist); 1600 } 1601 1602 /* 1603 * undo the effects of holdlwps() or holdwatch(). 1604 */ 1605 void 1606 continuelwps(proc_t *p) 1607 { 1608 kthread_t *t; 1609 1610 /* 1611 * If this flag is set, then the original holdwatch() didn't actually 1612 * stop the process. See comments for holdwatch(). 1613 */ 1614 if (p->p_flag & SWATCHOK) { 1615 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1616 return; 1617 } 1618 1619 ASSERT(MUTEX_HELD(&p->p_lock)); 1620 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1621 1622 t = p->p_tlist; 1623 do { 1624 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1625 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1626 p->p_lwprcnt++; 1627 t->t_schedflag |= TS_CSTART; 1628 setrun_locked(t); 1629 } 1630 thread_unlock(t); 1631 } while ((t = t->t_forw) != p->p_tlist); 1632 } 1633 1634 /* 1635 * Force all other LWPs in the current process other than the caller to exit, 1636 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1637 * is typically used in these situations: 1638 * 1639 * (a) prior to an exec() system call 1640 * (b) prior to dumping a core file 1641 * (c) prior to a uadmin() shutdown 1642 * 1643 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1644 * Multiple threads in the process can call this function at one time by 1645 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1646 * to declare one particular thread the winner who gets to kill the others. 1647 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1648 * appropriate errno value is returned to caller for its system call to return. 1649 */ 1650 int 1651 exitlwps(int coredump) 1652 { 1653 proc_t *p = curproc; 1654 int heldcnt; 1655 1656 if (curthread->t_door) 1657 door_slam(); 1658 if (p->p_door_list) 1659 door_revoke_all(); 1660 if (curthread->t_schedctl != NULL) 1661 schedctl_lwp_cleanup(curthread); 1662 1663 /* 1664 * Ensure that before starting to wait for other lwps to exit, 1665 * cleanup all upimutexes held by curthread. Otherwise, some other 1666 * lwp could be waiting (uninterruptibly) for a upimutex held by 1667 * curthread, and the call to pokelwps() below would deadlock. 1668 * Even if a blocked upimutex_lock is made interruptible, 1669 * curthread's upimutexes need to be unlocked: do it here. 1670 */ 1671 if (curthread->t_upimutex != NULL) 1672 upimutex_cleanup(); 1673 1674 /* 1675 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1676 * We must also block any further /proc access from this point forward. 1677 */ 1678 mutex_enter(&p->p_lock); 1679 prbarrier(p); 1680 1681 if (p->p_flag & SEXITLWPS) { 1682 mutex_exit(&p->p_lock); 1683 aston(curthread); /* force a trip through post_syscall */ 1684 return (set_errno(EINTR)); 1685 } 1686 1687 p->p_flag |= SEXITLWPS; 1688 if (coredump) /* tell other lwps to stop, not exit */ 1689 p->p_flag |= SCOREDUMP; 1690 1691 /* 1692 * Give precedence to exitlwps() if a holdlwps() is 1693 * in progress. The lwp doing the holdlwps() operation 1694 * is aborted when it is awakened. 1695 */ 1696 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1697 cv_broadcast(&p->p_holdlwps); 1698 cv_wait(&p->p_holdlwps, &p->p_lock); 1699 prbarrier(p); 1700 } 1701 p->p_flag |= SHOLDFORK; 1702 pokelwps(p); 1703 1704 /* 1705 * Wait for process to become quiescent. 1706 */ 1707 --p->p_lwprcnt; 1708 while (p->p_lwprcnt > 0) { 1709 cv_wait(&p->p_holdlwps, &p->p_lock); 1710 prbarrier(p); 1711 } 1712 p->p_lwprcnt++; 1713 ASSERT(p->p_lwprcnt == 1); 1714 1715 /* 1716 * The SCOREDUMP flag puts the process into a quiescent 1717 * state. The process's lwps remain attached to this 1718 * process until exitlwps() is called again without the 1719 * 'coredump' flag set, then the lwps are terminated 1720 * and the process can exit. 1721 */ 1722 if (coredump) { 1723 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1724 goto out; 1725 } 1726 1727 /* 1728 * Determine if there are any lwps left dangling in 1729 * the stopped state. This happens when exitlwps() 1730 * aborts a holdlwps() operation. 1731 */ 1732 p->p_flag &= ~SHOLDFORK; 1733 if ((heldcnt = p->p_lwpcnt) > 1) { 1734 kthread_t *t; 1735 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1736 t->t_proc_flag &= ~TP_TWAIT; 1737 lwp_continue(t); 1738 } 1739 } 1740 1741 /* 1742 * Wait for all other lwps to exit. 1743 */ 1744 --p->p_lwprcnt; 1745 while (p->p_lwpcnt > 1) { 1746 cv_wait(&p->p_holdlwps, &p->p_lock); 1747 prbarrier(p); 1748 } 1749 ++p->p_lwprcnt; 1750 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1751 1752 p->p_flag &= ~SEXITLWPS; 1753 curthread->t_proc_flag &= ~TP_TWAIT; 1754 1755 out: 1756 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1757 lwpdir_t *ldp; 1758 lwpent_t *lep; 1759 int i; 1760 1761 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1762 lep = ldp->ld_entry; 1763 if (lep != NULL && lep->le_thread != curthread) { 1764 ASSERT(lep->le_thread == NULL); 1765 p->p_zombcnt--; 1766 lwp_hash_out(p, lep->le_lwpid); 1767 } 1768 } 1769 ASSERT(p->p_zombcnt == 0); 1770 } 1771 1772 /* 1773 * If some other LWP in the process wanted us to suspend ourself, 1774 * then we will not do it. The other LWP is now terminated and 1775 * no one will ever continue us again if we suspend ourself. 1776 */ 1777 curthread->t_proc_flag &= ~TP_HOLDLWP; 1778 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1779 mutex_exit(&p->p_lock); 1780 return (0); 1781 } 1782 1783 /* 1784 * duplicate a lwp. 1785 */ 1786 klwp_t * 1787 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1788 { 1789 klwp_t *clwp; 1790 void *tregs, *tfpu; 1791 kthread_t *t = lwptot(lwp); 1792 kthread_t *ct; 1793 proc_t *p = lwptoproc(lwp); 1794 int cid; 1795 void *bufp; 1796 void *brand_data; 1797 int val; 1798 1799 ASSERT(p == curproc); 1800 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1801 1802 #if defined(__sparc) 1803 if (t == curthread) 1804 (void) flush_user_windows_to_stack(NULL); 1805 #endif 1806 1807 if (t == curthread) 1808 /* copy args out of registers first */ 1809 (void) save_syscall_args(); 1810 1811 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1812 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1813 if (clwp == NULL) 1814 return (NULL); 1815 1816 /* 1817 * most of the parent's lwp can be copied to its duplicate, 1818 * except for the fields that are unique to each lwp, like 1819 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1820 */ 1821 ct = clwp->lwp_thread; 1822 tregs = clwp->lwp_regs; 1823 tfpu = clwp->lwp_fpu; 1824 brand_data = clwp->lwp_brand; 1825 1826 /* 1827 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1828 * mstate_aggr_state() from reading stale mstate entries copied 1829 * from lwp to clwp. 1830 */ 1831 mutex_enter(&cp->p_lock); 1832 *clwp = *lwp; 1833 1834 /* clear microstate and resource usage data in new lwp */ 1835 init_mstate(ct, LMS_STOPPED); 1836 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1837 mutex_exit(&cp->p_lock); 1838 1839 /* fix up child's lwp */ 1840 1841 clwp->lwp_pcb.pcb_flags = 0; 1842 #if defined(__sparc) 1843 clwp->lwp_pcb.pcb_step = STEP_NONE; 1844 #endif 1845 clwp->lwp_cursig = 0; 1846 clwp->lwp_extsig = 0; 1847 clwp->lwp_curinfo = (struct sigqueue *)0; 1848 clwp->lwp_thread = ct; 1849 ct->t_sysnum = t->t_sysnum; 1850 clwp->lwp_regs = tregs; 1851 clwp->lwp_fpu = tfpu; 1852 clwp->lwp_brand = brand_data; 1853 clwp->lwp_ap = clwp->lwp_arg; 1854 clwp->lwp_procp = cp; 1855 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1856 clwp->lwp_lastfault = 0; 1857 clwp->lwp_lastfaddr = 0; 1858 1859 /* copy parent's struct regs to child. */ 1860 lwp_forkregs(lwp, clwp); 1861 1862 /* 1863 * Fork thread context ops, if any. 1864 */ 1865 if (t->t_ctx) 1866 forkctx(t, ct); 1867 1868 /* fix door state in the child */ 1869 if (t->t_door) 1870 door_fork(t, ct); 1871 1872 /* copy current contract templates, clear latest contracts */ 1873 lwp_ctmpl_copy(clwp, lwp); 1874 1875 mutex_enter(&cp->p_lock); 1876 /* lwp_create() set the TP_HOLDLWP flag */ 1877 if (!(t->t_proc_flag & TP_HOLDLWP)) 1878 ct->t_proc_flag &= ~TP_HOLDLWP; 1879 if (cp->p_flag & SMSACCT) 1880 ct->t_proc_flag |= TP_MSACCT; 1881 mutex_exit(&cp->p_lock); 1882 1883 /* Allow brand to propagate brand-specific state */ 1884 if (PROC_IS_BRANDED(p)) 1885 BROP(p)->b_forklwp(lwp, clwp); 1886 1887 retry: 1888 cid = t->t_cid; 1889 1890 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1891 ASSERT(val == 0); 1892 1893 mutex_enter(&p->p_lock); 1894 if (cid != t->t_cid) { 1895 /* 1896 * Someone just changed this thread's scheduling class, 1897 * so try pre-allocating the buffer again. Hopefully we 1898 * don't hit this often. 1899 */ 1900 mutex_exit(&p->p_lock); 1901 CL_FREE(cid, bufp); 1902 goto retry; 1903 } 1904 1905 ct->t_unpark = t->t_unpark; 1906 ct->t_clfuncs = t->t_clfuncs; 1907 CL_FORK(t, ct, bufp); 1908 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1909 mutex_exit(&p->p_lock); 1910 1911 return (clwp); 1912 } 1913 1914 /* 1915 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1916 */ 1917 void 1918 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz, 1919 int do_lock) 1920 { 1921 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)]; 1922 lwpdir_t **ldpp; 1923 lwpdir_t *ldp; 1924 kthread_t *t; 1925 1926 /* 1927 * Allocate a directory element from the free list. 1928 * Code elsewhere guarantees a free slot. 1929 */ 1930 ldp = p->p_lwpfree; 1931 p->p_lwpfree = ldp->ld_next; 1932 ASSERT(ldp->ld_entry == NULL); 1933 ldp->ld_entry = lep; 1934 1935 if (do_lock) 1936 mutex_enter(&thp->th_lock); 1937 1938 /* 1939 * Insert it into the lwpid hash table. 1940 */ 1941 ldpp = &thp->th_list; 1942 ldp->ld_next = *ldpp; 1943 *ldpp = ldp; 1944 1945 /* 1946 * Set the active thread's directory slot entry. 1947 */ 1948 if ((t = lep->le_thread) != NULL) { 1949 ASSERT(lep->le_lwpid == t->t_tid); 1950 t->t_dslot = (int)(ldp - p->p_lwpdir); 1951 } 1952 1953 if (do_lock) 1954 mutex_exit(&thp->th_lock); 1955 } 1956 1957 /* 1958 * Remove an lwp from the lwpid hash table and free its directory entry. 1959 * This is done when a detached lwp exits in lwp_exit() or 1960 * when a non-detached lwp is waited for in lwp_wait() or 1961 * when a zombie lwp is detached in lwp_detach(). 1962 */ 1963 void 1964 lwp_hash_out(proc_t *p, id_t lwpid) 1965 { 1966 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1967 lwpdir_t **ldpp; 1968 lwpdir_t *ldp; 1969 lwpent_t *lep; 1970 1971 mutex_enter(&thp->th_lock); 1972 for (ldpp = &thp->th_list; 1973 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1974 lep = ldp->ld_entry; 1975 if (lep->le_lwpid == lwpid) { 1976 prlwpfree(p, lep); /* /proc deals with le_trace */ 1977 *ldpp = ldp->ld_next; 1978 ldp->ld_entry = NULL; 1979 ldp->ld_next = p->p_lwpfree; 1980 p->p_lwpfree = ldp; 1981 kmem_free(lep, sizeof (*lep)); 1982 break; 1983 } 1984 } 1985 mutex_exit(&thp->th_lock); 1986 } 1987 1988 /* 1989 * Lookup an lwp in the lwpid hash table by lwpid. 1990 */ 1991 lwpdir_t * 1992 lwp_hash_lookup(proc_t *p, id_t lwpid) 1993 { 1994 tidhash_t *thp; 1995 lwpdir_t *ldp; 1996 1997 /* 1998 * The process may be exiting, after p_tidhash has been set to NULL in 1999 * proc_exit() but before prfee() has been called. Return failure in 2000 * this case. 2001 */ 2002 if (p->p_tidhash == NULL) 2003 return (NULL); 2004 2005 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 2006 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2007 if (ldp->ld_entry->le_lwpid == lwpid) 2008 return (ldp); 2009 } 2010 2011 return (NULL); 2012 } 2013 2014 /* 2015 * Same as lwp_hash_lookup(), but acquire and return 2016 * the tid hash table entry lock on success. 2017 */ 2018 lwpdir_t * 2019 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp) 2020 { 2021 tidhash_t *tidhash; 2022 uint_t tidhash_sz; 2023 tidhash_t *thp; 2024 lwpdir_t *ldp; 2025 2026 top: 2027 tidhash_sz = p->p_tidhash_sz; 2028 membar_consumer(); 2029 if ((tidhash = p->p_tidhash) == NULL) 2030 return (NULL); 2031 2032 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)]; 2033 mutex_enter(&thp->th_lock); 2034 2035 /* 2036 * Since we are not holding p->p_lock, the tid hash table 2037 * may have changed. If so, start over. If not, then 2038 * it cannot change until after we drop &thp->th_lock; 2039 */ 2040 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) { 2041 mutex_exit(&thp->th_lock); 2042 goto top; 2043 } 2044 2045 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2046 if (ldp->ld_entry->le_lwpid == lwpid) { 2047 *mpp = &thp->th_lock; 2048 return (ldp); 2049 } 2050 } 2051 2052 mutex_exit(&thp->th_lock); 2053 return (NULL); 2054 } 2055 2056 /* 2057 * Update the indicated LWP usage statistic for the current LWP. 2058 */ 2059 void 2060 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 2061 { 2062 klwp_t *lwp = ttolwp(curthread); 2063 2064 if (lwp == NULL) 2065 return; 2066 2067 switch (lwp_stat_id) { 2068 case LWP_STAT_INBLK: 2069 lwp->lwp_ru.inblock += inc; 2070 break; 2071 case LWP_STAT_OUBLK: 2072 lwp->lwp_ru.oublock += inc; 2073 break; 2074 case LWP_STAT_MSGRCV: 2075 lwp->lwp_ru.msgrcv += inc; 2076 break; 2077 case LWP_STAT_MSGSND: 2078 lwp->lwp_ru.msgsnd += inc; 2079 break; 2080 default: 2081 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 2082 } 2083 } 2084