1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/systm.h> 33 #include <sys/thread.h> 34 #include <sys/proc.h> 35 #include <sys/task.h> 36 #include <sys/project.h> 37 #include <sys/signal.h> 38 #include <sys/errno.h> 39 #include <sys/vmparam.h> 40 #include <sys/stack.h> 41 #include <sys/procfs.h> 42 #include <sys/prsystm.h> 43 #include <sys/cpuvar.h> 44 #include <sys/kmem.h> 45 #include <sys/vtrace.h> 46 #include <sys/door.h> 47 #include <vm/seg_kp.h> 48 #include <sys/debug.h> 49 #include <sys/tnf.h> 50 #include <sys/schedctl.h> 51 #include <sys/poll.h> 52 #include <sys/copyops.h> 53 #include <sys/lwp_upimutex_impl.h> 54 #include <sys/cpupart.h> 55 #include <sys/lgrp.h> 56 #include <sys/rctl.h> 57 #include <sys/contract_impl.h> 58 #include <sys/cpc_impl.h> 59 #include <sys/sdt.h> 60 #include <sys/cmn_err.h> 61 #include <sys/brand.h> 62 63 void *segkp_lwp; /* cookie for pool of segkp resources */ 64 extern void reapq_move_lq_to_tq(kthread_t *); 65 extern void freectx_ctx(struct ctxop *); 66 67 /* 68 * Create a thread that appears to be stopped at sys_rtt. 69 */ 70 klwp_t * 71 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 72 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 73 { 74 klwp_t *lwp = NULL; 75 kthread_t *t; 76 kthread_t *tx; 77 cpupart_t *oldpart = NULL; 78 size_t stksize; 79 caddr_t lwpdata = NULL; 80 processorid_t binding; 81 int err = 0; 82 kproject_t *oldkpj, *newkpj; 83 void *bufp = NULL; 84 klwp_t *curlwp = ttolwp(curthread); 85 lwpent_t *lep; 86 lwpdir_t *old_dir = NULL; 87 uint_t old_dirsz = 0; 88 lwpdir_t **old_hash = NULL; 89 uint_t old_hashsz = 0; 90 int i; 91 int rctlfail = 0; 92 boolean_t branded = 0; 93 struct ctxop *ctx = NULL; 94 95 mutex_enter(&p->p_lock); 96 mutex_enter(&p->p_zone->zone_nlwps_lock); 97 /* 98 * don't enforce rctl limits on system processes 99 */ 100 if (cid != syscid) { 101 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 102 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 103 1, 0) & RCT_DENY) 104 rctlfail = 1; 105 if (p->p_task->tk_proj->kpj_nlwps >= 106 p->p_task->tk_proj->kpj_nlwps_ctl) 107 if (rctl_test(rc_project_nlwps, 108 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 109 & RCT_DENY) 110 rctlfail = 1; 111 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 112 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 113 1, 0) & RCT_DENY) 114 rctlfail = 1; 115 } 116 if (rctlfail) { 117 mutex_exit(&p->p_zone->zone_nlwps_lock); 118 mutex_exit(&p->p_lock); 119 return (NULL); 120 } 121 p->p_task->tk_nlwps++; 122 p->p_task->tk_proj->kpj_nlwps++; 123 p->p_zone->zone_nlwps++; 124 mutex_exit(&p->p_zone->zone_nlwps_lock); 125 mutex_exit(&p->p_lock); 126 127 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 128 stksize = lwp_default_stksize; 129 130 /* 131 * Try to reclaim a <lwp,stack> from 'deathrow' 132 */ 133 if (stksize == lwp_default_stksize) { 134 if (lwp_reapcnt > 0) { 135 mutex_enter(&reaplock); 136 if ((t = lwp_deathrow) != NULL) { 137 ASSERT(t->t_swap); 138 lwp_deathrow = t->t_forw; 139 lwp_reapcnt--; 140 lwpdata = t->t_swap; 141 lwp = t->t_lwp; 142 ctx = t->t_ctx; 143 t->t_swap = NULL; 144 t->t_lwp = NULL; 145 t->t_ctx = NULL; 146 reapq_move_lq_to_tq(t); 147 } 148 mutex_exit(&reaplock); 149 if (lwp != NULL) { 150 lwp_stk_fini(lwp); 151 } 152 if (ctx != NULL) { 153 freectx_ctx(ctx); 154 } 155 } 156 if (lwpdata == NULL && 157 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 158 mutex_enter(&p->p_lock); 159 mutex_enter(&p->p_zone->zone_nlwps_lock); 160 p->p_task->tk_nlwps--; 161 p->p_task->tk_proj->kpj_nlwps--; 162 p->p_zone->zone_nlwps--; 163 mutex_exit(&p->p_zone->zone_nlwps_lock); 164 mutex_exit(&p->p_lock); 165 return (NULL); 166 } 167 } else { 168 stksize = roundup(stksize, PAGESIZE); 169 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 170 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 171 mutex_enter(&p->p_lock); 172 mutex_enter(&p->p_zone->zone_nlwps_lock); 173 p->p_task->tk_nlwps--; 174 p->p_task->tk_proj->kpj_nlwps--; 175 p->p_zone->zone_nlwps--; 176 mutex_exit(&p->p_zone->zone_nlwps_lock); 177 mutex_exit(&p->p_lock); 178 return (NULL); 179 } 180 } 181 182 /* 183 * Create a thread, initializing the stack pointer 184 */ 185 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 186 187 t->t_swap = lwpdata; /* Start of page-able data */ 188 if (lwp == NULL) 189 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 190 bzero(lwp, sizeof (*lwp)); 191 t->t_lwp = lwp; 192 193 t->t_hold = *smask; 194 lwp->lwp_thread = t; 195 lwp->lwp_procp = p; 196 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 197 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 198 lwp->lwp_childstksz = curlwp->lwp_childstksz; 199 200 t->t_stk = lwp_stk_init(lwp, t->t_stk); 201 thread_load(t, proc, arg, len); 202 203 /* 204 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 205 */ 206 if (timerisset(&p->p_rprof_timer.it_value)) 207 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 208 209 if (cid != NOCLASS) 210 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 211 212 /* 213 * Allocate an lwp directory entry for the new lwp. 214 */ 215 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 216 217 mutex_enter(&p->p_lock); 218 grow: 219 /* 220 * Grow the lwp (thread) directory and lwpid hash table if necessary. 221 * A note on the growth algorithm: 222 * The new lwp directory size is computed as: 223 * new = 2 * old + 2 224 * Starting with an initial size of 2 (see exec_common()), 225 * this yields numbers that are a power of two minus 2: 226 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 227 * The size of the lwpid hash table must be a power of two 228 * and must be commensurate in size with the lwp directory 229 * so that hash bucket chains remain short. Therefore, 230 * the lwpid hash table size is computed as: 231 * hashsz = (dirsz + 2) / 2 232 * which leads to these hash table sizes corresponding to 233 * the above directory sizes: 234 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 235 */ 236 while (p->p_lwpfree == NULL) { 237 uint_t dirsz = p->p_lwpdir_sz; 238 uint_t new_dirsz; 239 uint_t new_hashsz; 240 lwpdir_t *new_dir; 241 lwpdir_t *ldp; 242 lwpdir_t **new_hash; 243 244 mutex_exit(&p->p_lock); 245 246 if (old_dir != NULL) { 247 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 248 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 249 old_dir = NULL; 250 old_dirsz = 0; 251 old_hash = NULL; 252 old_hashsz = 0; 253 } 254 new_dirsz = 2 * dirsz + 2; 255 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 256 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 257 ldp->ld_next = ldp + 1; 258 new_hashsz = (new_dirsz + 2) / 2; 259 new_hash = kmem_zalloc(new_hashsz * sizeof (lwpdir_t *), 260 KM_SLEEP); 261 262 mutex_enter(&p->p_lock); 263 if (p == curproc) 264 prbarrier(p); 265 266 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 267 /* 268 * Someone else beat us to it or some lwp exited. 269 * Set up to free our memory and take a lap. 270 */ 271 old_dir = new_dir; 272 old_dirsz = new_dirsz; 273 old_hash = new_hash; 274 old_hashsz = new_hashsz; 275 } else { 276 old_dir = p->p_lwpdir; 277 old_dirsz = p->p_lwpdir_sz; 278 old_hash = p->p_tidhash; 279 old_hashsz = p->p_tidhash_sz; 280 p->p_lwpdir = new_dir; 281 p->p_lwpfree = new_dir; 282 p->p_lwpdir_sz = new_dirsz; 283 p->p_tidhash = new_hash; 284 p->p_tidhash_sz = new_hashsz; 285 /* 286 * We simply hash in all of the old directory entries. 287 * This works because the old directory has no empty 288 * slots and the new hash table starts out empty. 289 * This reproduces the original directory ordering 290 * (required for /proc directory semantics). 291 */ 292 for (ldp = old_dir, i = 0; i < dirsz; i++, ldp++) 293 lwp_hash_in(p, ldp->ld_entry); 294 /* 295 * Defer freeing memory until we drop p->p_lock, 296 */ 297 } 298 } 299 300 /* 301 * Block the process against /proc while we manipulate p->p_tlist, 302 * unless lwp_create() was called by /proc for the PCAGENT operation. 303 * We want to do this early enough so that we don't drop p->p_lock 304 * until the thread is put on the p->p_tlist. 305 */ 306 if (p == curproc) { 307 prbarrier(p); 308 /* 309 * If the current lwp has been requested to stop, do so now. 310 * Otherwise we have a race condition between /proc attempting 311 * to stop the process and this thread creating a new lwp 312 * that was not seen when the /proc PCSTOP request was issued. 313 * We rely on stop() to call prbarrier(p) before returning. 314 */ 315 while ((curthread->t_proc_flag & TP_PRSTOP) && 316 !ttolwp(curthread)->lwp_nostop) 317 stop(PR_REQUESTED, 0); 318 319 /* 320 * If process is exiting, there could be a race between 321 * the agent lwp creation and the new lwp currently being 322 * created. So to prevent this race lwp creation is failed 323 * if the process is exiting. 324 */ 325 if (p->p_flag & (SEXITLWPS|SKILLED)) { 326 err = 1; 327 goto error; 328 } 329 330 /* 331 * Since we might have dropped p->p_lock, the 332 * lwp directory free list might have changed. 333 */ 334 if (p->p_lwpfree == NULL) 335 goto grow; 336 } 337 338 kpreempt_disable(); /* can't grab cpu_lock here */ 339 340 /* 341 * Inherit processor and processor set bindings from curthread, 342 * unless we're creating a new kernel process, in which case 343 * clear all bindings. 344 */ 345 if (cid == syscid) { 346 t->t_bind_cpu = binding = PBIND_NONE; 347 t->t_cpupart = oldpart = &cp_default; 348 t->t_bind_pset = PS_NONE; 349 } else { 350 binding = curthread->t_bind_cpu; 351 t->t_bind_cpu = binding; 352 oldpart = t->t_cpupart; 353 t->t_cpupart = curthread->t_cpupart; 354 t->t_bind_pset = curthread->t_bind_pset; 355 } 356 357 /* 358 * thread_create() initializes this thread's home lgroup to the root. 359 * Choose a more suitable lgroup, since this thread is associated 360 * with an lwp. 361 */ 362 ASSERT(oldpart != NULL); 363 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 364 t->t_bound_cpu = cpu[binding]; 365 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 366 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 367 } else { 368 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 369 } 370 371 kpreempt_enable(); 372 373 /* 374 * make sure lpl points to our own partition 375 */ 376 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 377 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 378 t->t_cpupart->cp_nlgrploads); 379 380 /* 381 * If we're creating a new process, then inherit the project from our 382 * parent. If we're only creating an additional lwp then use the 383 * project pointer of the target process. 384 */ 385 if (p->p_task == NULL) 386 newkpj = ttoproj(curthread); 387 else 388 newkpj = p->p_task->tk_proj; 389 390 /* 391 * It is safe to point the thread to the new project without holding it 392 * since we're holding the target process' p_lock here and therefore 393 * we're guaranteed that it will not move to another project. 394 */ 395 oldkpj = ttoproj(t); 396 if (newkpj != oldkpj) { 397 t->t_proj = newkpj; 398 (void) project_hold(newkpj); 399 project_rele(oldkpj); 400 } 401 402 if (cid != NOCLASS) { 403 /* 404 * If the lwp is being created in the current process 405 * and matches the current thread's scheduling class, 406 * we should propagate the current thread's scheduling 407 * parameters by calling CL_FORK. Otherwise just use 408 * the defaults by calling CL_ENTERCLASS. 409 */ 410 if (p != curproc || curthread->t_cid != cid) { 411 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 412 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 413 /* 414 * We don't call schedctl_set_cidpri(t) here 415 * because the schedctl data is not yet set 416 * up for the newly-created lwp. 417 */ 418 } else { 419 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 420 err = CL_FORK(curthread, t, bufp); 421 t->t_cid = cid; 422 } 423 if (err) 424 goto error; 425 else 426 bufp = NULL; 427 } 428 429 /* 430 * If we were given an lwpid then use it, else allocate one. 431 */ 432 if (lwpid != 0) 433 t->t_tid = lwpid; 434 else { 435 /* 436 * lwp/thread id 0 is never valid; reserved for special checks. 437 * lwp/thread id 1 is reserved for the main thread. 438 * Start again at 2 when INT_MAX has been reached 439 * (id_t is a signed 32-bit integer). 440 */ 441 id_t prev_id = p->p_lwpid; /* last allocated tid */ 442 443 do { /* avoid lwpid duplication */ 444 if (p->p_lwpid == INT_MAX) { 445 p->p_flag |= SLWPWRAP; 446 p->p_lwpid = 1; 447 } 448 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 449 /* 450 * All lwpids are allocated; fail the request. 451 */ 452 err = 1; 453 goto error; 454 } 455 /* 456 * We only need to worry about colliding with an id 457 * that's already in use if this process has 458 * cycled through all available lwp ids. 459 */ 460 if ((p->p_flag & SLWPWRAP) == 0) 461 break; 462 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 463 } 464 465 /* 466 * If this is a branded process, let the brand do any necessary lwp 467 * initialization. 468 */ 469 if (PROC_IS_BRANDED(p)) { 470 if (BROP(p)->b_initlwp(lwp)) { 471 err = 1; 472 goto error; 473 } 474 branded = 1; 475 } 476 477 if (t->t_tid == 1) { 478 kpreempt_disable(); 479 ASSERT(t->t_lpl != NULL); 480 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 481 kpreempt_enable(); 482 if (p->p_tr_lgrpid != LGRP_NONE && 483 p->p_tr_lgrpid != p->p_t1_lgrpid) { 484 lgrp_update_trthr_migrations(1); 485 } 486 } 487 488 p->p_lwpcnt++; 489 t->t_waitfor = -1; 490 491 /* 492 * Turn microstate accounting on for thread if on for process. 493 */ 494 if (p->p_flag & SMSACCT) 495 t->t_proc_flag |= TP_MSACCT; 496 497 /* 498 * If the process has watchpoints, mark the new thread as such. 499 */ 500 if (pr_watch_active(p)) 501 watch_enable(t); 502 503 /* 504 * The lwp is being created in the stopped state. 505 * We set all the necessary flags to indicate that fact here. 506 * We omit the TS_CREATE flag from t_schedflag so that the lwp 507 * cannot be set running until the caller is finished with it, 508 * even if lwp_continue() is called on it after we drop p->p_lock. 509 * When the caller is finished with the newly-created lwp, 510 * the caller must call lwp_create_done() to allow the lwp 511 * to be set running. If the TP_HOLDLWP is left set, the 512 * lwp will suspend itself after reaching system call exit. 513 */ 514 init_mstate(t, LMS_STOPPED); 515 t->t_proc_flag |= TP_HOLDLWP; 516 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 517 t->t_whystop = PR_SUSPENDED; 518 t->t_whatstop = SUSPEND_NORMAL; 519 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 520 521 /* 522 * Set system call processing flags in case tracing or profiling 523 * is set. The first system call will evaluate these and turn 524 * them off if they aren't needed. 525 */ 526 t->t_pre_sys = 1; 527 t->t_post_sys = 1; 528 529 /* 530 * Insert the new thread into the list of all threads. 531 */ 532 if ((tx = p->p_tlist) == NULL) { 533 t->t_back = t; 534 t->t_forw = t; 535 p->p_tlist = t; 536 } else { 537 t->t_forw = tx; 538 t->t_back = tx->t_back; 539 tx->t_back->t_forw = t; 540 tx->t_back = t; 541 } 542 543 /* 544 * Insert the new lwp into an lwp directory slot position 545 * and into the lwpid hash table. 546 */ 547 lep->le_thread = t; 548 lep->le_lwpid = t->t_tid; 549 lep->le_start = t->t_start; 550 lwp_hash_in(p, lep); 551 552 if (state == TS_RUN) { 553 /* 554 * We set the new lwp running immediately. 555 */ 556 t->t_proc_flag &= ~TP_HOLDLWP; 557 lwp_create_done(t); 558 } 559 560 error: 561 if (err) { 562 /* 563 * We have failed to create an lwp, so decrement the number 564 * of lwps in the task and let the lgroup load averages know 565 * that this thread isn't going to show up. 566 */ 567 kpreempt_disable(); 568 lgrp_move_thread(t, NULL, 1); 569 kpreempt_enable(); 570 571 ASSERT(MUTEX_HELD(&p->p_lock)); 572 mutex_enter(&p->p_zone->zone_nlwps_lock); 573 p->p_task->tk_nlwps--; 574 p->p_task->tk_proj->kpj_nlwps--; 575 p->p_zone->zone_nlwps--; 576 mutex_exit(&p->p_zone->zone_nlwps_lock); 577 if (cid != NOCLASS && bufp != NULL) 578 CL_FREE(cid, bufp); 579 580 if (branded) 581 BROP(p)->b_freelwp(lwp); 582 583 mutex_exit(&p->p_lock); 584 t->t_state = TS_FREE; 585 thread_rele(t); 586 587 /* 588 * We need to remove t from the list of all threads 589 * because thread_exit()/lwp_exit() isn't called on t. 590 */ 591 mutex_enter(&pidlock); 592 ASSERT(t != t->t_next); /* t0 never exits */ 593 t->t_next->t_prev = t->t_prev; 594 t->t_prev->t_next = t->t_next; 595 mutex_exit(&pidlock); 596 597 thread_free(t); 598 kmem_free(lep, sizeof (*lep)); 599 lwp = NULL; 600 } else { 601 mutex_exit(&p->p_lock); 602 } 603 604 if (old_dir != NULL) { 605 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 606 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 607 } 608 609 DTRACE_PROC1(lwp__create, kthread_t *, t); 610 return (lwp); 611 } 612 613 /* 614 * lwp_create_done() is called by the caller of lwp_create() to set the 615 * newly-created lwp running after the caller has finished manipulating it. 616 */ 617 void 618 lwp_create_done(kthread_t *t) 619 { 620 proc_t *p = ttoproc(t); 621 622 ASSERT(MUTEX_HELD(&p->p_lock)); 623 624 /* 625 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 626 * (The absence of the TS_CREATE flag prevents the lwp from running 627 * until we are finished with it, even if lwp_continue() is called on 628 * it by some other lwp in the process or elsewhere in the kernel.) 629 */ 630 thread_lock(t); 631 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 632 /* 633 * If TS_CSTART is set, lwp_continue(t) has been called and 634 * has already incremented p_lwprcnt; avoid doing this twice. 635 */ 636 if (!(t->t_schedflag & TS_CSTART)) 637 p->p_lwprcnt++; 638 t->t_schedflag |= (TS_CSTART | TS_CREATE); 639 setrun_locked(t); 640 thread_unlock(t); 641 } 642 643 /* 644 * Copy an LWP's active templates, and clear the latest contracts. 645 */ 646 void 647 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 648 { 649 int i; 650 651 for (i = 0; i < ct_ntypes; i++) { 652 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 653 dst->lwp_ct_latest[i] = NULL; 654 } 655 } 656 657 /* 658 * Clear an LWP's contract template state. 659 */ 660 void 661 lwp_ctmpl_clear(klwp_t *lwp) 662 { 663 ct_template_t *tmpl; 664 int i; 665 666 for (i = 0; i < ct_ntypes; i++) { 667 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 668 ctmpl_free(tmpl); 669 lwp->lwp_ct_active[i] = NULL; 670 } 671 672 if (lwp->lwp_ct_latest[i] != NULL) { 673 contract_rele(lwp->lwp_ct_latest[i]); 674 lwp->lwp_ct_latest[i] = NULL; 675 } 676 } 677 } 678 679 /* 680 * Individual lwp exit. 681 * If this is the last lwp, exit the whole process. 682 */ 683 void 684 lwp_exit(void) 685 { 686 kthread_t *t = curthread; 687 klwp_t *lwp = ttolwp(t); 688 proc_t *p = ttoproc(t); 689 690 ASSERT(MUTEX_HELD(&p->p_lock)); 691 692 mutex_exit(&p->p_lock); 693 694 #if defined(__sparc) 695 /* 696 * Ensure that the user stack is fully abandoned.. 697 */ 698 trash_user_windows(); 699 #endif 700 701 tsd_exit(); /* free thread specific data */ 702 703 kcpc_passivate(); /* Clean up performance counter state */ 704 705 pollcleanup(); 706 707 if (t->t_door) 708 door_slam(); 709 710 if (t->t_schedctl != NULL) 711 schedctl_lwp_cleanup(t); 712 713 if (t->t_upimutex != NULL) 714 upimutex_cleanup(); 715 716 /* 717 * Perform any brand specific exit processing, then release any 718 * brand data associated with the lwp 719 */ 720 if (PROC_IS_BRANDED(p)) 721 BROP(p)->b_lwpexit(lwp); 722 723 mutex_enter(&p->p_lock); 724 lwp_cleanup(); 725 726 /* 727 * When this process is dumping core, its lwps are held here 728 * until the core dump is finished. Then exitlwps() is called 729 * again to release these lwps so that they can finish exiting. 730 */ 731 if (p->p_flag & SCOREDUMP) 732 stop(PR_SUSPENDED, SUSPEND_NORMAL); 733 734 /* 735 * Block the process against /proc now that we have really acquired 736 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 737 */ 738 prbarrier(p); 739 740 /* 741 * Call proc_exit() if this is the last non-daemon lwp in the process. 742 */ 743 if (!(t->t_proc_flag & TP_DAEMON) && 744 p->p_lwpcnt == p->p_lwpdaemon + 1) { 745 mutex_exit(&p->p_lock); 746 if (proc_exit(CLD_EXITED, 0) == 0) { 747 /* Restarting init. */ 748 return; 749 } 750 751 /* 752 * proc_exit() returns a non-zero value when some other 753 * lwp got there first. We just have to continue in 754 * lwp_exit(). 755 */ 756 mutex_enter(&p->p_lock); 757 ASSERT(curproc->p_flag & SEXITLWPS); 758 prbarrier(p); 759 } 760 761 DTRACE_PROC(lwp__exit); 762 763 /* 764 * If the lwp is a detached lwp or if the process is exiting, 765 * remove (lwp_hash_out()) the lwp from the lwp directory. 766 * Otherwise null out the lwp's le_thread pointer in the lwp 767 * directory so that other threads will see it as a zombie lwp. 768 */ 769 prlwpexit(t); /* notify /proc */ 770 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 771 lwp_hash_out(p, t->t_tid); 772 else { 773 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 774 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 775 p->p_zombcnt++; 776 cv_broadcast(&p->p_lwpexit); 777 } 778 if (t->t_proc_flag & TP_DAEMON) { 779 p->p_lwpdaemon--; 780 t->t_proc_flag &= ~TP_DAEMON; 781 } 782 t->t_proc_flag &= ~TP_TWAIT; 783 784 /* 785 * Maintain accurate lwp count for task.max-lwps resource control. 786 */ 787 mutex_enter(&p->p_zone->zone_nlwps_lock); 788 p->p_task->tk_nlwps--; 789 p->p_task->tk_proj->kpj_nlwps--; 790 p->p_zone->zone_nlwps--; 791 mutex_exit(&p->p_zone->zone_nlwps_lock); 792 793 CL_EXIT(t); /* tell the scheduler that t is exiting */ 794 ASSERT(p->p_lwpcnt != 0); 795 p->p_lwpcnt--; 796 797 /* 798 * If all remaining non-daemon lwps are waiting in lwp_wait(), 799 * wake them up so someone can return EDEADLK. 800 * (See the block comment preceeding lwp_wait().) 801 */ 802 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 803 cv_broadcast(&p->p_lwpexit); 804 805 t->t_proc_flag |= TP_LWPEXIT; 806 term_mstate(t); 807 808 #ifndef NPROBE 809 /* Kernel probe */ 810 if (t->t_tnf_tpdp) 811 tnf_thread_exit(); 812 #endif /* NPROBE */ 813 814 t->t_forw->t_back = t->t_back; 815 t->t_back->t_forw = t->t_forw; 816 if (t == p->p_tlist) 817 p->p_tlist = t->t_forw; 818 819 /* 820 * Clean up the signal state. 821 */ 822 if (t->t_sigqueue != NULL) 823 sigdelq(p, t, 0); 824 if (lwp->lwp_curinfo != NULL) { 825 siginfofree(lwp->lwp_curinfo); 826 lwp->lwp_curinfo = NULL; 827 } 828 829 thread_rele(t); 830 831 /* 832 * Terminated lwps are associated with process zero and are put onto 833 * death-row by resume(). Avoid preemption after resetting t->t_procp. 834 */ 835 t->t_preempt++; 836 837 if (t->t_ctx != NULL) 838 exitctx(t); 839 if (p->p_pctx != NULL) 840 exitpctx(p); 841 842 t->t_procp = &p0; 843 844 /* 845 * Notify the HAT about the change of address space 846 */ 847 hat_thread_exit(t); 848 /* 849 * When this is the last running lwp in this process and some lwp is 850 * waiting for this condition to become true, or this thread was being 851 * suspended, then the waiting lwp is awakened. 852 * 853 * Also, if the process is exiting, we may have a thread waiting in 854 * exitlwps() that needs to be notified. 855 */ 856 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 857 (p->p_flag & SEXITLWPS)) 858 cv_broadcast(&p->p_holdlwps); 859 860 /* 861 * Need to drop p_lock so we can reacquire pidlock. 862 */ 863 mutex_exit(&p->p_lock); 864 mutex_enter(&pidlock); 865 866 ASSERT(t != t->t_next); /* t0 never exits */ 867 t->t_next->t_prev = t->t_prev; 868 t->t_prev->t_next = t->t_next; 869 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 870 mutex_exit(&pidlock); 871 872 lwp_pcb_exit(); 873 874 t->t_state = TS_ZOMB; 875 swtch_from_zombie(); 876 /* never returns */ 877 } 878 879 880 /* 881 * Cleanup function for an exiting lwp. 882 * Called both from lwp_exit() and from proc_exit(). 883 * p->p_lock is repeatedly released and grabbed in this function. 884 */ 885 void 886 lwp_cleanup(void) 887 { 888 kthread_t *t = curthread; 889 proc_t *p = ttoproc(t); 890 891 ASSERT(MUTEX_HELD(&p->p_lock)); 892 893 /* untimeout any lwp-bound realtime timers */ 894 if (p->p_itimer != NULL) 895 timer_lwpexit(); 896 897 /* 898 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 899 * so it appears that the agent never existed, and clear p_agenttp. 900 */ 901 if (t == p->p_agenttp) { 902 ASSERT(t->t_tid == p->p_lwpid); 903 p->p_lwpid--; 904 p->p_agenttp = NULL; 905 } 906 907 /* 908 * Do lgroup bookkeeping to account for thread exiting. 909 */ 910 kpreempt_disable(); 911 lgrp_move_thread(t, NULL, 1); 912 if (t->t_tid == 1) { 913 p->p_t1_lgrpid = LGRP_NONE; 914 } 915 kpreempt_enable(); 916 917 lwp_ctmpl_clear(ttolwp(t)); 918 } 919 920 int 921 lwp_suspend(kthread_t *t) 922 { 923 int tid; 924 proc_t *p = ttoproc(t); 925 926 ASSERT(MUTEX_HELD(&p->p_lock)); 927 928 /* 929 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 930 * If an lwp is stopping itself, there is no need to wait. 931 */ 932 top: 933 t->t_proc_flag |= TP_HOLDLWP; 934 if (t == curthread) { 935 t->t_sig_check = 1; 936 } else { 937 /* 938 * Make sure the lwp stops promptly. 939 */ 940 thread_lock(t); 941 t->t_sig_check = 1; 942 /* 943 * XXX Should use virtual stop like /proc does instead of 944 * XXX waking the thread to get it to stop. 945 */ 946 if (ISWAKEABLE(t) || ISWAITING(t)) { 947 setrun_locked(t); 948 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 949 poke_cpu(t->t_cpu->cpu_id); 950 } 951 952 tid = t->t_tid; /* remember thread ID */ 953 /* 954 * Wait for lwp to stop 955 */ 956 while (!SUSPENDED(t)) { 957 /* 958 * Drop the thread lock before waiting and reacquire it 959 * afterwards, so the thread can change its t_state 960 * field. 961 */ 962 thread_unlock(t); 963 964 /* 965 * Check if aborted by exitlwps(). 966 */ 967 if (p->p_flag & SEXITLWPS) 968 lwp_exit(); 969 970 /* 971 * Cooperate with jobcontrol signals and /proc stopping 972 * by calling cv_wait_sig() to wait for the target 973 * lwp to stop. Just using cv_wait() can lead to 974 * deadlock because, if some other lwp has stopped 975 * by either of these mechanisms, then p_lwprcnt will 976 * never become zero if we do a cv_wait(). 977 */ 978 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 979 return (EINTR); 980 981 /* 982 * Check to see if thread died while we were 983 * waiting for it to suspend. 984 */ 985 if (idtot(p, tid) == NULL) 986 return (ESRCH); 987 988 thread_lock(t); 989 /* 990 * If the TP_HOLDLWP flag went away, lwp_continue() 991 * or vfork() must have been called while we were 992 * waiting, so start over again. 993 */ 994 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 995 thread_unlock(t); 996 goto top; 997 } 998 } 999 thread_unlock(t); 1000 } 1001 return (0); 1002 } 1003 1004 /* 1005 * continue a lwp that's been stopped by lwp_suspend(). 1006 */ 1007 void 1008 lwp_continue(kthread_t *t) 1009 { 1010 proc_t *p = ttoproc(t); 1011 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1012 1013 ASSERT(MUTEX_HELD(&p->p_lock)); 1014 1015 t->t_proc_flag &= ~TP_HOLDLWP; 1016 thread_lock(t); 1017 if (SUSPENDED(t) && 1018 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1019 p->p_lwprcnt++; 1020 t->t_schedflag |= TS_CSTART; 1021 setrun_locked(t); 1022 } 1023 thread_unlock(t); 1024 /* 1025 * Wakeup anyone waiting for this thread to be suspended 1026 */ 1027 if (was_suspended) 1028 cv_broadcast(&p->p_holdlwps); 1029 } 1030 1031 /* 1032 * ******************************** 1033 * Miscellaneous lwp routines * 1034 * ******************************** 1035 */ 1036 /* 1037 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1038 * This will cause the process's lwps to stop at a hold point. A hold 1039 * point is where a kernel thread has a flat stack. This is at the 1040 * return from a system call and at the return from a user level trap. 1041 * 1042 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1043 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1044 * hold point. The lwps in the process are not being cloned, so they 1045 * are held at the usual hold points and also within issig_forreal(). 1046 * This has the side-effect that their system calls do not return 1047 * showing EINTR. 1048 * 1049 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1050 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1051 * lwp is waiting for the target lwp to be stopped. 1052 */ 1053 void 1054 holdlwp(void) 1055 { 1056 proc_t *p = curproc; 1057 kthread_t *t = curthread; 1058 1059 mutex_enter(&p->p_lock); 1060 /* 1061 * Don't terminate immediately if the process is dumping core. 1062 * Once the process has dumped core, all lwps are terminated. 1063 */ 1064 if (!(p->p_flag & SCOREDUMP)) { 1065 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1066 lwp_exit(); 1067 } 1068 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1069 mutex_exit(&p->p_lock); 1070 return; 1071 } 1072 /* 1073 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1074 * when p->p_lwprcnt becomes zero. 1075 */ 1076 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1077 if (p->p_flag & SEXITLWPS) 1078 lwp_exit(); 1079 mutex_exit(&p->p_lock); 1080 } 1081 1082 /* 1083 * Have all lwps within the process hold at a point where they are 1084 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1085 */ 1086 int 1087 holdlwps(int holdflag) 1088 { 1089 proc_t *p = curproc; 1090 1091 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1092 mutex_enter(&p->p_lock); 1093 schedctl_finish_sigblock(curthread); 1094 again: 1095 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1096 /* 1097 * If another lwp is doing a forkall() or proc_exit(), bail out. 1098 */ 1099 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1100 mutex_exit(&p->p_lock); 1101 return (0); 1102 } 1103 /* 1104 * Another lwp is doing a fork1() or is undergoing 1105 * watchpoint activity. We hold here for it to complete. 1106 */ 1107 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1108 } 1109 p->p_flag |= holdflag; 1110 pokelwps(p); 1111 --p->p_lwprcnt; 1112 /* 1113 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1114 */ 1115 while (p->p_lwprcnt > 0) { 1116 /* 1117 * Check if aborted by exitlwps(). 1118 * Also check if SHOLDWATCH is set; it takes precedence. 1119 */ 1120 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1121 p->p_lwprcnt++; 1122 p->p_flag &= ~holdflag; 1123 cv_broadcast(&p->p_holdlwps); 1124 goto again; 1125 } 1126 /* 1127 * Cooperate with jobcontrol signals and /proc stopping. 1128 * If some other lwp has stopped by either of these 1129 * mechanisms, then p_lwprcnt will never become zero 1130 * and the process will appear deadlocked unless we 1131 * stop here in sympathy with the other lwp before 1132 * doing the cv_wait() below. 1133 * 1134 * If the other lwp stops after we do the cv_wait(), it 1135 * will wake us up to loop around and do the sympathy stop. 1136 * 1137 * Since stop() drops p->p_lock, we must start from 1138 * the top again on returning from stop(). 1139 */ 1140 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1141 int whystop = p->p_stopsig? PR_JOBCONTROL : 1142 PR_REQUESTED; 1143 p->p_lwprcnt++; 1144 p->p_flag &= ~holdflag; 1145 stop(whystop, p->p_stopsig); 1146 goto again; 1147 } 1148 cv_wait(&p->p_holdlwps, &p->p_lock); 1149 } 1150 p->p_lwprcnt++; 1151 p->p_flag &= ~holdflag; 1152 mutex_exit(&p->p_lock); 1153 return (1); 1154 } 1155 1156 /* 1157 * See comments for holdwatch(), below. 1158 */ 1159 static int 1160 holdcheck(int clearflags) 1161 { 1162 proc_t *p = curproc; 1163 1164 /* 1165 * If we are trying to exit, that takes precedence over anything else. 1166 */ 1167 if (p->p_flag & SEXITLWPS) { 1168 p->p_lwprcnt++; 1169 p->p_flag &= ~clearflags; 1170 lwp_exit(); 1171 } 1172 1173 /* 1174 * If another thread is calling fork1(), stop the current thread so the 1175 * other can complete. 1176 */ 1177 if (p->p_flag & SHOLDFORK1) { 1178 p->p_lwprcnt++; 1179 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1180 if (p->p_flag & SEXITLWPS) { 1181 p->p_flag &= ~clearflags; 1182 lwp_exit(); 1183 } 1184 return (-1); 1185 } 1186 1187 /* 1188 * If another thread is calling fork(), then indicate we are doing 1189 * watchpoint activity. This will cause holdlwps() above to stop the 1190 * forking thread, at which point we can continue with watchpoint 1191 * activity. 1192 */ 1193 if (p->p_flag & SHOLDFORK) { 1194 p->p_lwprcnt++; 1195 while (p->p_flag & SHOLDFORK) { 1196 p->p_flag |= SHOLDWATCH; 1197 cv_broadcast(&p->p_holdlwps); 1198 cv_wait(&p->p_holdlwps, &p->p_lock); 1199 p->p_flag &= ~SHOLDWATCH; 1200 } 1201 return (-1); 1202 } 1203 1204 return (0); 1205 } 1206 1207 /* 1208 * Stop all lwps within the process, holding themselves in the kernel while the 1209 * active lwp undergoes watchpoint activity. This is more complicated than 1210 * expected because stop() relies on calling holdwatch() in order to copyin data 1211 * from the user's address space. A double barrier is used to prevent an 1212 * infinite loop. 1213 * 1214 * o The first thread into holdwatch() is the 'master' thread and does 1215 * the following: 1216 * 1217 * - Sets SHOLDWATCH on the current process 1218 * - Sets TP_WATCHSTOP on the current thread 1219 * - Waits for all threads to be either stopped or have 1220 * TP_WATCHSTOP set. 1221 * - Sets the SWATCHOK flag on the process 1222 * - Unsets TP_WATCHSTOP 1223 * - Waits for the other threads to completely stop 1224 * - Unsets SWATCHOK 1225 * 1226 * o If SHOLDWATCH is already set when we enter this function, then another 1227 * thread is already trying to stop this thread. This 'slave' thread 1228 * does the following: 1229 * 1230 * - Sets TP_WATCHSTOP on the current thread 1231 * - Waits for SWATCHOK flag to be set 1232 * - Calls stop() 1233 * 1234 * o If SWATCHOK is set on the process, then this function immediately 1235 * returns, as we must have been called via stop(). 1236 * 1237 * In addition, there are other flags that take precedence over SHOLDWATCH: 1238 * 1239 * o If SEXITLWPS is set, exit immediately. 1240 * 1241 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1242 * 1243 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1244 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1245 * 1246 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1247 * stop the current thread. 1248 * 1249 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1250 * threads were stopped, or the list of watched pages has changed. 1251 */ 1252 int 1253 holdwatch(void) 1254 { 1255 proc_t *p = curproc; 1256 kthread_t *t = curthread; 1257 int ret = 0; 1258 1259 mutex_enter(&p->p_lock); 1260 1261 p->p_lwprcnt--; 1262 1263 /* 1264 * Check for bail-out conditions as outlined above. 1265 */ 1266 if (holdcheck(0) != 0) { 1267 mutex_exit(&p->p_lock); 1268 return (-1); 1269 } 1270 1271 if (!(p->p_flag & SHOLDWATCH)) { 1272 /* 1273 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1274 * the other threads. 1275 */ 1276 p->p_flag |= SHOLDWATCH; 1277 pokelwps(p); 1278 1279 /* 1280 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1281 */ 1282 while (pr_allstopped(p, 1) > 0) { 1283 if (holdcheck(SHOLDWATCH) != 0) { 1284 p->p_flag &= ~SHOLDWATCH; 1285 mutex_exit(&p->p_lock); 1286 return (-1); 1287 } 1288 1289 cv_wait(&p->p_holdlwps, &p->p_lock); 1290 } 1291 1292 /* 1293 * All threads are now stopped or in the process of stopping. 1294 * Set SWATCHOK and let them stop completely. 1295 */ 1296 p->p_flag |= SWATCHOK; 1297 t->t_proc_flag &= ~TP_WATCHSTOP; 1298 cv_broadcast(&p->p_holdlwps); 1299 1300 while (pr_allstopped(p, 0) > 0) { 1301 /* 1302 * At first glance, it may appear that we don't need a 1303 * call to holdcheck() here. But if the process gets a 1304 * SIGKILL signal, one of our stopped threads may have 1305 * been awakened and is waiting in exitlwps(), which 1306 * takes precedence over watchpoints. 1307 */ 1308 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1309 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1310 mutex_exit(&p->p_lock); 1311 return (-1); 1312 } 1313 1314 cv_wait(&p->p_holdlwps, &p->p_lock); 1315 } 1316 1317 /* 1318 * All threads are now completely stopped. 1319 */ 1320 p->p_flag &= ~SWATCHOK; 1321 p->p_flag &= ~SHOLDWATCH; 1322 p->p_lwprcnt++; 1323 1324 } else if (!(p->p_flag & SWATCHOK)) { 1325 1326 /* 1327 * SHOLDWATCH is set, so another thread is trying to do 1328 * watchpoint activity. Indicate this thread is stopping, and 1329 * wait for the OK from the master thread. 1330 */ 1331 t->t_proc_flag |= TP_WATCHSTOP; 1332 cv_broadcast(&p->p_holdlwps); 1333 1334 while (!(p->p_flag & SWATCHOK)) { 1335 if (holdcheck(0) != 0) { 1336 t->t_proc_flag &= ~TP_WATCHSTOP; 1337 mutex_exit(&p->p_lock); 1338 return (-1); 1339 } 1340 1341 cv_wait(&p->p_holdlwps, &p->p_lock); 1342 } 1343 1344 /* 1345 * Once the master thread has given the OK, this thread can 1346 * actually call stop(). 1347 */ 1348 t->t_proc_flag &= ~TP_WATCHSTOP; 1349 p->p_lwprcnt++; 1350 1351 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1352 1353 /* 1354 * It's not OK to do watchpoint activity, notify caller to 1355 * retry. 1356 */ 1357 ret = -1; 1358 1359 } else { 1360 1361 /* 1362 * The only way we can hit the case where SHOLDWATCH is set and 1363 * SWATCHOK is set is if we are triggering this from within a 1364 * stop() call. Assert that this is the case. 1365 */ 1366 1367 ASSERT(t->t_proc_flag & TP_STOPPING); 1368 p->p_lwprcnt++; 1369 } 1370 1371 mutex_exit(&p->p_lock); 1372 1373 return (ret); 1374 } 1375 1376 /* 1377 * force all interruptible lwps to trap into the kernel. 1378 */ 1379 void 1380 pokelwps(proc_t *p) 1381 { 1382 kthread_t *t; 1383 1384 ASSERT(MUTEX_HELD(&p->p_lock)); 1385 1386 t = p->p_tlist; 1387 do { 1388 if (t == curthread) 1389 continue; 1390 thread_lock(t); 1391 aston(t); /* make thread trap or do post_syscall */ 1392 if (ISWAKEABLE(t) || ISWAITING(t)) { 1393 setrun_locked(t); 1394 } else if (t->t_state == TS_STOPPED) { 1395 /* 1396 * Ensure that proc_exit() is not blocked by lwps 1397 * that were stopped via jobcontrol or /proc. 1398 */ 1399 if (p->p_flag & SEXITLWPS) { 1400 p->p_stopsig = 0; 1401 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1402 setrun_locked(t); 1403 } 1404 /* 1405 * If we are holding lwps for a forkall(), 1406 * force lwps that have been suspended via 1407 * lwp_suspend() and are suspended inside 1408 * of a system call to proceed to their 1409 * holdlwp() points where they are clonable. 1410 */ 1411 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1412 if ((t->t_schedflag & TS_CSTART) == 0) { 1413 p->p_lwprcnt++; 1414 t->t_schedflag |= TS_CSTART; 1415 setrun_locked(t); 1416 } 1417 } 1418 } else if (t->t_state == TS_ONPROC) { 1419 if (t->t_cpu != CPU) 1420 poke_cpu(t->t_cpu->cpu_id); 1421 } 1422 thread_unlock(t); 1423 } while ((t = t->t_forw) != p->p_tlist); 1424 } 1425 1426 /* 1427 * undo the effects of holdlwps() or holdwatch(). 1428 */ 1429 void 1430 continuelwps(proc_t *p) 1431 { 1432 kthread_t *t; 1433 1434 /* 1435 * If this flag is set, then the original holdwatch() didn't actually 1436 * stop the process. See comments for holdwatch(). 1437 */ 1438 if (p->p_flag & SWATCHOK) { 1439 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1440 return; 1441 } 1442 1443 ASSERT(MUTEX_HELD(&p->p_lock)); 1444 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1445 1446 t = p->p_tlist; 1447 do { 1448 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1449 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1450 p->p_lwprcnt++; 1451 t->t_schedflag |= TS_CSTART; 1452 setrun_locked(t); 1453 } 1454 thread_unlock(t); 1455 } while ((t = t->t_forw) != p->p_tlist); 1456 } 1457 1458 /* 1459 * Force all other LWPs in the current process other than the caller to exit, 1460 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1461 * is typically used in these situations: 1462 * 1463 * (a) prior to an exec() system call 1464 * (b) prior to dumping a core file 1465 * (c) prior to a uadmin() shutdown 1466 * 1467 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1468 * Multiple threads in the process can call this function at one time by 1469 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1470 * to declare one particular thread the winner who gets to kill the others. 1471 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1472 * appropriate errno value is returned to caller for its system call to return. 1473 */ 1474 int 1475 exitlwps(int coredump) 1476 { 1477 proc_t *p = curproc; 1478 int heldcnt; 1479 1480 if (curthread->t_door) 1481 door_slam(); 1482 if (p->p_door_list) 1483 door_revoke_all(); 1484 if (curthread->t_schedctl != NULL) 1485 schedctl_lwp_cleanup(curthread); 1486 1487 /* 1488 * Ensure that before starting to wait for other lwps to exit, 1489 * cleanup all upimutexes held by curthread. Otherwise, some other 1490 * lwp could be waiting (uninterruptibly) for a upimutex held by 1491 * curthread, and the call to pokelwps() below would deadlock. 1492 * Even if a blocked upimutex_lock is made interruptible, 1493 * curthread's upimutexes need to be unlocked: do it here. 1494 */ 1495 if (curthread->t_upimutex != NULL) 1496 upimutex_cleanup(); 1497 1498 /* 1499 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1500 * We must also block any further /proc access from this point forward. 1501 */ 1502 mutex_enter(&p->p_lock); 1503 prbarrier(p); 1504 1505 if (p->p_flag & SEXITLWPS) { 1506 mutex_exit(&p->p_lock); 1507 aston(curthread); /* force a trip through post_syscall */ 1508 return (set_errno(EINTR)); 1509 } 1510 1511 p->p_flag |= SEXITLWPS; 1512 if (coredump) /* tell other lwps to stop, not exit */ 1513 p->p_flag |= SCOREDUMP; 1514 1515 /* 1516 * Give precedence to exitlwps() if a holdlwps() is 1517 * in progress. The lwp doing the holdlwps() operation 1518 * is aborted when it is awakened. 1519 */ 1520 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1521 cv_broadcast(&p->p_holdlwps); 1522 cv_wait(&p->p_holdlwps, &p->p_lock); 1523 prbarrier(p); 1524 } 1525 p->p_flag |= SHOLDFORK; 1526 pokelwps(p); 1527 1528 /* 1529 * Wait for process to become quiescent. 1530 */ 1531 --p->p_lwprcnt; 1532 while (p->p_lwprcnt > 0) { 1533 cv_wait(&p->p_holdlwps, &p->p_lock); 1534 prbarrier(p); 1535 } 1536 p->p_lwprcnt++; 1537 ASSERT(p->p_lwprcnt == 1); 1538 1539 /* 1540 * The SCOREDUMP flag puts the process into a quiescent 1541 * state. The process's lwps remain attached to this 1542 * process until exitlwps() is called again without the 1543 * 'coredump' flag set, then the lwps are terminated 1544 * and the process can exit. 1545 */ 1546 if (coredump) { 1547 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1548 goto out; 1549 } 1550 1551 /* 1552 * Determine if there are any lwps left dangling in 1553 * the stopped state. This happens when exitlwps() 1554 * aborts a holdlwps() operation. 1555 */ 1556 p->p_flag &= ~SHOLDFORK; 1557 if ((heldcnt = p->p_lwpcnt) > 1) { 1558 kthread_t *t; 1559 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1560 t->t_proc_flag &= ~TP_TWAIT; 1561 lwp_continue(t); 1562 } 1563 } 1564 1565 /* 1566 * Wait for all other lwps to exit. 1567 */ 1568 --p->p_lwprcnt; 1569 while (p->p_lwpcnt > 1) { 1570 cv_wait(&p->p_holdlwps, &p->p_lock); 1571 prbarrier(p); 1572 } 1573 ++p->p_lwprcnt; 1574 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1575 1576 p->p_flag &= ~SEXITLWPS; 1577 curthread->t_proc_flag &= ~TP_TWAIT; 1578 1579 out: 1580 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1581 lwpdir_t *ldp; 1582 lwpent_t *lep; 1583 int i; 1584 1585 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1586 lep = ldp->ld_entry; 1587 if (lep != NULL && lep->le_thread != curthread) { 1588 ASSERT(lep->le_thread == NULL); 1589 p->p_zombcnt--; 1590 lwp_hash_out(p, lep->le_lwpid); 1591 } 1592 } 1593 ASSERT(p->p_zombcnt == 0); 1594 } 1595 1596 /* 1597 * If some other LWP in the process wanted us to suspend ourself, 1598 * then we will not do it. The other LWP is now terminated and 1599 * no one will ever continue us again if we suspend ourself. 1600 */ 1601 curthread->t_proc_flag &= ~TP_HOLDLWP; 1602 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1603 mutex_exit(&p->p_lock); 1604 return (0); 1605 } 1606 1607 /* 1608 * duplicate a lwp. 1609 */ 1610 klwp_t * 1611 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1612 { 1613 klwp_t *clwp; 1614 void *tregs, *tfpu; 1615 kthread_t *t = lwptot(lwp); 1616 kthread_t *ct; 1617 proc_t *p = lwptoproc(lwp); 1618 int cid; 1619 void *bufp; 1620 void *brand_data; 1621 int val; 1622 1623 ASSERT(p == curproc); 1624 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1625 1626 #if defined(__sparc) 1627 if (t == curthread) 1628 (void) flush_user_windows_to_stack(NULL); 1629 #endif 1630 1631 if (t == curthread) 1632 /* copy args out of registers first */ 1633 (void) save_syscall_args(); 1634 1635 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1636 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1637 if (clwp == NULL) 1638 return (NULL); 1639 1640 /* 1641 * most of the parent's lwp can be copied to its duplicate, 1642 * except for the fields that are unique to each lwp, like 1643 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1644 */ 1645 ct = clwp->lwp_thread; 1646 tregs = clwp->lwp_regs; 1647 tfpu = clwp->lwp_fpu; 1648 brand_data = clwp->lwp_brand; 1649 1650 /* 1651 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1652 * mstate_aggr_state() from reading stale mstate entries copied 1653 * from lwp to clwp. 1654 */ 1655 mutex_enter(&cp->p_lock); 1656 *clwp = *lwp; 1657 1658 /* clear microstate and resource usage data in new lwp */ 1659 init_mstate(ct, LMS_STOPPED); 1660 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1661 mutex_exit(&cp->p_lock); 1662 1663 /* fix up child's lwp */ 1664 1665 clwp->lwp_pcb.pcb_flags = 0; 1666 #if defined(__sparc) 1667 clwp->lwp_pcb.pcb_step = STEP_NONE; 1668 #endif 1669 clwp->lwp_cursig = 0; 1670 clwp->lwp_extsig = 0; 1671 clwp->lwp_curinfo = (struct sigqueue *)0; 1672 clwp->lwp_thread = ct; 1673 ct->t_sysnum = t->t_sysnum; 1674 clwp->lwp_regs = tregs; 1675 clwp->lwp_fpu = tfpu; 1676 clwp->lwp_brand = brand_data; 1677 clwp->lwp_ap = clwp->lwp_arg; 1678 clwp->lwp_procp = cp; 1679 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1680 clwp->lwp_lastfault = 0; 1681 clwp->lwp_lastfaddr = 0; 1682 1683 /* copy parent's struct regs to child. */ 1684 lwp_forkregs(lwp, clwp); 1685 1686 /* 1687 * Fork thread context ops, if any. 1688 */ 1689 if (t->t_ctx) 1690 forkctx(t, ct); 1691 1692 /* fix door state in the child */ 1693 if (t->t_door) 1694 door_fork(t, ct); 1695 1696 /* copy current contract templates, clear latest contracts */ 1697 lwp_ctmpl_copy(clwp, lwp); 1698 1699 mutex_enter(&cp->p_lock); 1700 /* lwp_create() set the TP_HOLDLWP flag */ 1701 if (!(t->t_proc_flag & TP_HOLDLWP)) 1702 ct->t_proc_flag &= ~TP_HOLDLWP; 1703 if (cp->p_flag & SMSACCT) 1704 ct->t_proc_flag |= TP_MSACCT; 1705 mutex_exit(&cp->p_lock); 1706 1707 /* Allow brand to propagate brand-specific state */ 1708 if (PROC_IS_BRANDED(p)) 1709 BROP(p)->b_forklwp(lwp, clwp); 1710 1711 retry: 1712 cid = t->t_cid; 1713 1714 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1715 ASSERT(val == 0); 1716 1717 mutex_enter(&p->p_lock); 1718 if (cid != t->t_cid) { 1719 /* 1720 * Someone just changed this thread's scheduling class, 1721 * so try pre-allocating the buffer again. Hopefully we 1722 * don't hit this often. 1723 */ 1724 mutex_exit(&p->p_lock); 1725 CL_FREE(cid, bufp); 1726 goto retry; 1727 } 1728 1729 ct->t_unpark = t->t_unpark; 1730 ct->t_clfuncs = t->t_clfuncs; 1731 CL_FORK(t, ct, bufp); 1732 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1733 mutex_exit(&p->p_lock); 1734 1735 return (clwp); 1736 } 1737 1738 /* 1739 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1740 */ 1741 void 1742 lwp_hash_in(proc_t *p, lwpent_t *lep) 1743 { 1744 lwpdir_t **ldpp; 1745 lwpdir_t *ldp; 1746 kthread_t *t; 1747 1748 /* 1749 * Allocate a directory element from the free list. 1750 * Code elsewhere guarantees a free slot. 1751 */ 1752 ldp = p->p_lwpfree; 1753 p->p_lwpfree = ldp->ld_next; 1754 ASSERT(ldp->ld_entry == NULL); 1755 ldp->ld_entry = lep; 1756 1757 /* 1758 * Insert it into the lwpid hash table. 1759 */ 1760 ldpp = &p->p_tidhash[TIDHASH(p, lep->le_lwpid)]; 1761 ldp->ld_next = *ldpp; 1762 *ldpp = ldp; 1763 1764 /* 1765 * Set the active thread's directory slot entry. 1766 */ 1767 if ((t = lep->le_thread) != NULL) { 1768 ASSERT(lep->le_lwpid == t->t_tid); 1769 t->t_dslot = (int)(ldp - p->p_lwpdir); 1770 } 1771 } 1772 1773 /* 1774 * Remove an lwp from the lwpid hash table and free its directory entry. 1775 * This is done when a detached lwp exits in lwp_exit() or 1776 * when a non-detached lwp is waited for in lwp_wait() or 1777 * when a zombie lwp is detached in lwp_detach(). 1778 */ 1779 void 1780 lwp_hash_out(proc_t *p, id_t lwpid) 1781 { 1782 lwpdir_t **ldpp; 1783 lwpdir_t *ldp; 1784 lwpent_t *lep; 1785 1786 for (ldpp = &p->p_tidhash[TIDHASH(p, lwpid)]; 1787 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1788 lep = ldp->ld_entry; 1789 if (lep->le_lwpid == lwpid) { 1790 prlwpfree(p, lep); /* /proc deals with le_trace */ 1791 *ldpp = ldp->ld_next; 1792 ldp->ld_entry = NULL; 1793 ldp->ld_next = p->p_lwpfree; 1794 p->p_lwpfree = ldp; 1795 kmem_free(lep, sizeof (*lep)); 1796 break; 1797 } 1798 } 1799 } 1800 1801 /* 1802 * Lookup an lwp in the lwpid hash table by lwpid. 1803 */ 1804 lwpdir_t * 1805 lwp_hash_lookup(proc_t *p, id_t lwpid) 1806 { 1807 lwpdir_t *ldp; 1808 1809 /* 1810 * The process may be exiting, after p_tidhash has been set to NULL in 1811 * proc_exit() but before prfee() has been called. Return failure in 1812 * this case. 1813 */ 1814 if (p->p_tidhash == NULL) 1815 return (NULL); 1816 1817 for (ldp = p->p_tidhash[TIDHASH(p, lwpid)]; 1818 ldp != NULL; ldp = ldp->ld_next) { 1819 if (ldp->ld_entry->le_lwpid == lwpid) 1820 return (ldp); 1821 } 1822 1823 return (NULL); 1824 } 1825 1826 /* 1827 * Update the indicated LWP usage statistic for the current LWP. 1828 */ 1829 void 1830 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 1831 { 1832 klwp_t *lwp = ttolwp(curthread); 1833 1834 if (lwp == NULL) 1835 return; 1836 1837 switch (lwp_stat_id) { 1838 case LWP_STAT_INBLK: 1839 lwp->lwp_ru.inblock += inc; 1840 break; 1841 case LWP_STAT_OUBLK: 1842 lwp->lwp_ru.oublock += inc; 1843 break; 1844 case LWP_STAT_MSGRCV: 1845 lwp->lwp_ru.msgrcv += inc; 1846 break; 1847 case LWP_STAT_MSGSND: 1848 lwp->lwp_ru.msgsnd += inc; 1849 break; 1850 default: 1851 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 1852 } 1853 } 1854