1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * Kernel memory allocator, as described in the following two papers and a 29 * statement about the consolidator: 30 * 31 * Jeff Bonwick, 32 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 33 * Proceedings of the Summer 1994 Usenix Conference. 34 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 35 * 36 * Jeff Bonwick and Jonathan Adams, 37 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 38 * Arbitrary Resources. 39 * Proceedings of the 2001 Usenix Conference. 40 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 41 * 42 * kmem Slab Consolidator Big Theory Statement: 43 * 44 * 1. Motivation 45 * 46 * As stated in Bonwick94, slabs provide the following advantages over other 47 * allocation structures in terms of memory fragmentation: 48 * 49 * - Internal fragmentation (per-buffer wasted space) is minimal. 50 * - Severe external fragmentation (unused buffers on the free list) is 51 * unlikely. 52 * 53 * Segregating objects by size eliminates one source of external fragmentation, 54 * and according to Bonwick: 55 * 56 * The other reason that slabs reduce external fragmentation is that all 57 * objects in a slab are of the same type, so they have the same lifetime 58 * distribution. The resulting segregation of short-lived and long-lived 59 * objects at slab granularity reduces the likelihood of an entire page being 60 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 61 * 62 * While unlikely, severe external fragmentation remains possible. Clients that 63 * allocate both short- and long-lived objects from the same cache cannot 64 * anticipate the distribution of long-lived objects within the allocator's slab 65 * implementation. Even a small percentage of long-lived objects distributed 66 * randomly across many slabs can lead to a worst case scenario where the client 67 * frees the majority of its objects and the system gets back almost none of the 68 * slabs. Despite the client doing what it reasonably can to help the system 69 * reclaim memory, the allocator cannot shake free enough slabs because of 70 * lonely allocations stubbornly hanging on. Although the allocator is in a 71 * position to diagnose the fragmentation, there is nothing that the allocator 72 * by itself can do about it. It only takes a single allocated object to prevent 73 * an entire slab from being reclaimed, and any object handed out by 74 * kmem_cache_alloc() is by definition in the client's control. Conversely, 75 * although the client is in a position to move a long-lived object, it has no 76 * way of knowing if the object is causing fragmentation, and if so, where to 77 * move it. A solution necessarily requires further cooperation between the 78 * allocator and the client. 79 * 80 * 2. Move Callback 81 * 82 * The kmem slab consolidator therefore adds a move callback to the 83 * allocator/client interface, improving worst-case external fragmentation in 84 * kmem caches that supply a function to move objects from one memory location 85 * to another. In a situation of low memory kmem attempts to consolidate all of 86 * a cache's slabs at once; otherwise it works slowly to bring external 87 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 88 * thereby helping to avoid a low memory situation in the future. 89 * 90 * The callback has the following signature: 91 * 92 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 93 * 94 * It supplies the kmem client with two addresses: the allocated object that 95 * kmem wants to move and a buffer selected by kmem for the client to use as the 96 * copy destination. The callback is kmem's way of saying "Please get off of 97 * this buffer and use this one instead." kmem knows where it wants to move the 98 * object in order to best reduce fragmentation. All the client needs to know 99 * about the second argument (void *new) is that it is an allocated, constructed 100 * object ready to take the contents of the old object. When the move function 101 * is called, the system is likely to be low on memory, and the new object 102 * spares the client from having to worry about allocating memory for the 103 * requested move. The third argument supplies the size of the object, in case a 104 * single move function handles multiple caches whose objects differ only in 105 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 106 * user argument passed to the constructor, destructor, and reclaim functions is 107 * also passed to the move callback. 108 * 109 * 2.1 Setting the Move Callback 110 * 111 * The client sets the move callback after creating the cache and before 112 * allocating from it: 113 * 114 * object_cache = kmem_cache_create(...); 115 * kmem_cache_set_move(object_cache, object_move); 116 * 117 * 2.2 Move Callback Return Values 118 * 119 * Only the client knows about its own data and when is a good time to move it. 120 * The client is cooperating with kmem to return unused memory to the system, 121 * and kmem respectfully accepts this help at the client's convenience. When 122 * asked to move an object, the client can respond with any of the following: 123 * 124 * typedef enum kmem_cbrc { 125 * KMEM_CBRC_YES, 126 * KMEM_CBRC_NO, 127 * KMEM_CBRC_LATER, 128 * KMEM_CBRC_DONT_NEED, 129 * KMEM_CBRC_DONT_KNOW 130 * } kmem_cbrc_t; 131 * 132 * The client must not explicitly kmem_cache_free() either of the objects passed 133 * to the callback, since kmem wants to free them directly to the slab layer 134 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 135 * objects to free: 136 * 137 * YES: (Did it) The client moved the object, so kmem frees the old one. 138 * NO: (Never) The client refused, so kmem frees the new object (the 139 * unused copy destination). kmem also marks the slab of the old 140 * object so as not to bother the client with further callbacks for 141 * that object as long as the slab remains on the partial slab list. 142 * (The system won't be getting the slab back as long as the 143 * immovable object holds it hostage, so there's no point in moving 144 * any of its objects.) 145 * LATER: The client is using the object and cannot move it now, so kmem 146 * frees the new object (the unused copy destination). kmem still 147 * attempts to move other objects off the slab, since it expects to 148 * succeed in clearing the slab in a later callback. The client 149 * should use LATER instead of NO if the object is likely to become 150 * movable very soon. 151 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 152 * with the new object (the unused copy destination). This response 153 * is the client's opportunity to be a model citizen and give back as 154 * much as it can. 155 * DONT_KNOW: The client does not know about the object because 156 * a) the client has just allocated the object and not yet put it 157 * wherever it expects to find known objects 158 * b) the client has removed the object from wherever it expects to 159 * find known objects and is about to free it, or 160 * c) the client has freed the object. 161 * In all these cases (a, b, and c) kmem frees the new object (the 162 * unused copy destination) and searches for the old object in the 163 * magazine layer. If found, the object is removed from the magazine 164 * layer and freed to the slab layer so it will no longer hold the 165 * slab hostage. 166 * 167 * 2.3 Object States 168 * 169 * Neither kmem nor the client can be assumed to know the object's whereabouts 170 * at the time of the callback. An object belonging to a kmem cache may be in 171 * any of the following states: 172 * 173 * 1. Uninitialized on the slab 174 * 2. Allocated from the slab but not constructed (still uninitialized) 175 * 3. Allocated from the slab, constructed, but not yet ready for business 176 * (not in a valid state for the move callback) 177 * 4. In use (valid and known to the client) 178 * 5. About to be freed (no longer in a valid state for the move callback) 179 * 6. Freed to a magazine (still constructed) 180 * 7. Allocated from a magazine, not yet ready for business (not in a valid 181 * state for the move callback), and about to return to state #4 182 * 8. Deconstructed on a magazine that is about to be freed 183 * 9. Freed to the slab 184 * 185 * Since the move callback may be called at any time while the object is in any 186 * of the above states (except state #1), the client needs a safe way to 187 * determine whether or not it knows about the object. Specifically, the client 188 * needs to know whether or not the object is in state #4, the only state in 189 * which a move is valid. If the object is in any other state, the client should 190 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 191 * the object's fields. 192 * 193 * Note that although an object may be in state #4 when kmem initiates the move 194 * request, the object may no longer be in that state by the time kmem actually 195 * calls the move function. Not only does the client free objects 196 * asynchronously, kmem itself puts move requests on a queue where thay are 197 * pending until kmem processes them from another context. Also, objects freed 198 * to a magazine appear allocated from the point of view of the slab layer, so 199 * kmem may even initiate requests for objects in a state other than state #4. 200 * 201 * 2.3.1 Magazine Layer 202 * 203 * An important insight revealed by the states listed above is that the magazine 204 * layer is populated only by kmem_cache_free(). Magazines of constructed 205 * objects are never populated directly from the slab layer (which contains raw, 206 * unconstructed objects). Whenever an allocation request cannot be satisfied 207 * from the magazine layer, the magazines are bypassed and the request is 208 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 209 * the object constructor only when allocating from the slab layer, and only in 210 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 211 * the move callback. kmem does not preconstruct objects in anticipation of 212 * kmem_cache_alloc(). 213 * 214 * 2.3.2 Object Constructor and Destructor 215 * 216 * If the client supplies a destructor, it must be valid to call the destructor 217 * on a newly created object (immediately after the constructor). 218 * 219 * 2.4 Recognizing Known Objects 220 * 221 * There is a simple test to determine safely whether or not the client knows 222 * about a given object in the move callback. It relies on the fact that kmem 223 * guarantees that the object of the move callback has only been touched by the 224 * client itself or else by kmem. kmem does this by ensuring that none of the 225 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 226 * callback is pending. When the last object on a slab is freed, if there is a 227 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 228 * slabs on that list until all pending callbacks are completed. That way, 229 * clients can be certain that the object of a move callback is in one of the 230 * states listed above, making it possible to distinguish known objects (in 231 * state #4) using the two low order bits of any pointer member (with the 232 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 233 * platforms). 234 * 235 * The test works as long as the client always transitions objects from state #4 236 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 237 * order bit of the client-designated pointer member. Since kmem only writes 238 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 239 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 240 * guaranteed to set at least one of the two low order bits. Therefore, given an 241 * object with a back pointer to a 'container_t *o_container', the client can 242 * test 243 * 244 * container_t *container = object->o_container; 245 * if ((uintptr_t)container & 0x3) { 246 * return (KMEM_CBRC_DONT_KNOW); 247 * } 248 * 249 * Typically, an object will have a pointer to some structure with a list or 250 * hash where objects from the cache are kept while in use. Assuming that the 251 * client has some way of knowing that the container structure is valid and will 252 * not go away during the move, and assuming that the structure includes a lock 253 * to protect whatever collection is used, then the client would continue as 254 * follows: 255 * 256 * // Ensure that the container structure does not go away. 257 * if (container_hold(container) == 0) { 258 * return (KMEM_CBRC_DONT_KNOW); 259 * } 260 * mutex_enter(&container->c_objects_lock); 261 * if (container != object->o_container) { 262 * mutex_exit(&container->c_objects_lock); 263 * container_rele(container); 264 * return (KMEM_CBRC_DONT_KNOW); 265 * } 266 * 267 * At this point the client knows that the object cannot be freed as long as 268 * c_objects_lock is held. Note that after acquiring the lock, the client must 269 * recheck the o_container pointer in case the object was removed just before 270 * acquiring the lock. 271 * 272 * When the client is about to free an object, it must first remove that object 273 * from the list, hash, or other structure where it is kept. At that time, to 274 * mark the object so it can be distinguished from the remaining, known objects, 275 * the client sets the designated low order bit: 276 * 277 * mutex_enter(&container->c_objects_lock); 278 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 279 * list_remove(&container->c_objects, object); 280 * mutex_exit(&container->c_objects_lock); 281 * 282 * In the common case, the object is freed to the magazine layer, where it may 283 * be reused on a subsequent allocation without the overhead of calling the 284 * constructor. While in the magazine it appears allocated from the point of 285 * view of the slab layer, making it a candidate for the move callback. Most 286 * objects unrecognized by the client in the move callback fall into this 287 * category and are cheaply distinguished from known objects by the test 288 * described earlier. Since recognition is cheap for the client, and searching 289 * magazines is expensive for kmem, kmem defers searching until the client first 290 * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem 291 * elsewhere does what it can to avoid bothering the client unnecessarily. 292 * 293 * Invalidating the designated pointer member before freeing the object marks 294 * the object to be avoided in the callback, and conversely, assigning a valid 295 * value to the designated pointer member after allocating the object makes the 296 * object fair game for the callback: 297 * 298 * ... allocate object ... 299 * ... set any initial state not set by the constructor ... 300 * 301 * mutex_enter(&container->c_objects_lock); 302 * list_insert_tail(&container->c_objects, object); 303 * membar_producer(); 304 * object->o_container = container; 305 * mutex_exit(&container->c_objects_lock); 306 * 307 * Note that everything else must be valid before setting o_container makes the 308 * object fair game for the move callback. The membar_producer() call ensures 309 * that all the object's state is written to memory before setting the pointer 310 * that transitions the object from state #3 or #7 (allocated, constructed, not 311 * yet in use) to state #4 (in use, valid). That's important because the move 312 * function has to check the validity of the pointer before it can safely 313 * acquire the lock protecting the collection where it expects to find known 314 * objects. 315 * 316 * This method of distinguishing known objects observes the usual symmetry: 317 * invalidating the designated pointer is the first thing the client does before 318 * freeing the object, and setting the designated pointer is the last thing the 319 * client does after allocating the object. Of course, the client is not 320 * required to use this method. Fundamentally, how the client recognizes known 321 * objects is completely up to the client, but this method is recommended as an 322 * efficient and safe way to take advantage of the guarantees made by kmem. If 323 * the entire object is arbitrary data without any markable bits from a suitable 324 * pointer member, then the client must find some other method, such as 325 * searching a hash table of known objects. 326 * 327 * 2.5 Preventing Objects From Moving 328 * 329 * Besides a way to distinguish known objects, the other thing that the client 330 * needs is a strategy to ensure that an object will not move while the client 331 * is actively using it. The details of satisfying this requirement tend to be 332 * highly cache-specific. It might seem that the same rules that let a client 333 * remove an object safely should also decide when an object can be moved 334 * safely. However, any object state that makes a removal attempt invalid is 335 * likely to be long-lasting for objects that the client does not expect to 336 * remove. kmem knows nothing about the object state and is equally likely (from 337 * the client's point of view) to request a move for any object in the cache, 338 * whether prepared for removal or not. Even a low percentage of objects stuck 339 * in place by unremovability will defeat the consolidator if the stuck objects 340 * are the same long-lived allocations likely to hold slabs hostage. 341 * Fundamentally, the consolidator is not aimed at common cases. Severe external 342 * fragmentation is a worst case scenario manifested as sparsely allocated 343 * slabs, by definition a low percentage of the cache's objects. When deciding 344 * what makes an object movable, keep in mind the goal of the consolidator: to 345 * bring worst-case external fragmentation within the limits guaranteed for 346 * internal fragmentation. Removability is a poor criterion if it is likely to 347 * exclude more than an insignificant percentage of objects for long periods of 348 * time. 349 * 350 * A tricky general solution exists, and it has the advantage of letting you 351 * move any object at almost any moment, practically eliminating the likelihood 352 * that an object can hold a slab hostage. However, if there is a cache-specific 353 * way to ensure that an object is not actively in use in the vast majority of 354 * cases, a simpler solution that leverages this cache-specific knowledge is 355 * preferred. 356 * 357 * 2.5.1 Cache-Specific Solution 358 * 359 * As an example of a cache-specific solution, the ZFS znode cache takes 360 * advantage of the fact that the vast majority of znodes are only being 361 * referenced from the DNLC. (A typical case might be a few hundred in active 362 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 363 * client has established that it recognizes the znode and can access its fields 364 * safely (using the method described earlier), it then tests whether the znode 365 * is referenced by anything other than the DNLC. If so, it assumes that the 366 * znode may be in active use and is unsafe to move, so it drops its locks and 367 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 368 * else znodes are used, no change is needed to protect against the possibility 369 * of the znode moving. The disadvantage is that it remains possible for an 370 * application to hold a znode slab hostage with an open file descriptor. 371 * However, this case ought to be rare and the consolidator has a way to deal 372 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 373 * object, kmem eventually stops believing it and treats the slab as if the 374 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 375 * then focus on getting it off of the partial slab list by allocating rather 376 * than freeing all of its objects. (Either way of getting a slab off the 377 * free list reduces fragmentation.) 378 * 379 * 2.5.2 General Solution 380 * 381 * The general solution, on the other hand, requires an explicit hold everywhere 382 * the object is used to prevent it from moving. To keep the client locking 383 * strategy as uncomplicated as possible, kmem guarantees the simplifying 384 * assumption that move callbacks are sequential, even across multiple caches. 385 * Internally, a global queue processed by a single thread supports all caches 386 * implementing the callback function. No matter how many caches supply a move 387 * function, the consolidator never moves more than one object at a time, so the 388 * client does not have to worry about tricky lock ordering involving several 389 * related objects from different kmem caches. 390 * 391 * The general solution implements the explicit hold as a read-write lock, which 392 * allows multiple readers to access an object from the cache simultaneously 393 * while a single writer is excluded from moving it. A single rwlock for the 394 * entire cache would lock out all threads from using any of the cache's objects 395 * even though only a single object is being moved, so to reduce contention, 396 * the client can fan out the single rwlock into an array of rwlocks hashed by 397 * the object address, making it probable that moving one object will not 398 * prevent other threads from using a different object. The rwlock cannot be a 399 * member of the object itself, because the possibility of the object moving 400 * makes it unsafe to access any of the object's fields until the lock is 401 * acquired. 402 * 403 * Assuming a small, fixed number of locks, it's possible that multiple objects 404 * will hash to the same lock. A thread that needs to use multiple objects in 405 * the same function may acquire the same lock multiple times. Since rwlocks are 406 * reentrant for readers, and since there is never more than a single writer at 407 * a time (assuming that the client acquires the lock as a writer only when 408 * moving an object inside the callback), there would seem to be no problem. 409 * However, a client locking multiple objects in the same function must handle 410 * one case of potential deadlock: Assume that thread A needs to prevent both 411 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 412 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 413 * same lock, that thread A will acquire the lock for object 1 as a reader 414 * before thread B sets the lock's write-wanted bit, preventing thread A from 415 * reacquiring the lock for object 2 as a reader. Unable to make forward 416 * progress, thread A will never release the lock for object 1, resulting in 417 * deadlock. 418 * 419 * There are two ways of avoiding the deadlock just described. The first is to 420 * use rw_tryenter() rather than rw_enter() in the callback function when 421 * attempting to acquire the lock as a writer. If tryenter discovers that the 422 * same object (or another object hashed to the same lock) is already in use, it 423 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 424 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 425 * since it allows a thread to acquire the lock as a reader in spite of a 426 * waiting writer. This second approach insists on moving the object now, no 427 * matter how many readers the move function must wait for in order to do so, 428 * and could delay the completion of the callback indefinitely (blocking 429 * callbacks to other clients). In practice, a less insistent callback using 430 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 431 * little reason to use anything else. 432 * 433 * Avoiding deadlock is not the only problem that an implementation using an 434 * explicit hold needs to solve. Locking the object in the first place (to 435 * prevent it from moving) remains a problem, since the object could move 436 * between the time you obtain a pointer to the object and the time you acquire 437 * the rwlock hashed to that pointer value. Therefore the client needs to 438 * recheck the value of the pointer after acquiring the lock, drop the lock if 439 * the value has changed, and try again. This requires a level of indirection: 440 * something that points to the object rather than the object itself, that the 441 * client can access safely while attempting to acquire the lock. (The object 442 * itself cannot be referenced safely because it can move at any time.) 443 * The following lock-acquisition function takes whatever is safe to reference 444 * (arg), follows its pointer to the object (using function f), and tries as 445 * often as necessary to acquire the hashed lock and verify that the object 446 * still has not moved: 447 * 448 * object_t * 449 * object_hold(object_f f, void *arg) 450 * { 451 * object_t *op; 452 * 453 * op = f(arg); 454 * if (op == NULL) { 455 * return (NULL); 456 * } 457 * 458 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 459 * while (op != f(arg)) { 460 * rw_exit(OBJECT_RWLOCK(op)); 461 * op = f(arg); 462 * if (op == NULL) { 463 * break; 464 * } 465 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 466 * } 467 * 468 * return (op); 469 * } 470 * 471 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 472 * lock reacquisition loop, while necessary, almost never executes. The function 473 * pointer f (used to obtain the object pointer from arg) has the following type 474 * definition: 475 * 476 * typedef object_t *(*object_f)(void *arg); 477 * 478 * An object_f implementation is likely to be as simple as accessing a structure 479 * member: 480 * 481 * object_t * 482 * s_object(void *arg) 483 * { 484 * something_t *sp = arg; 485 * return (sp->s_object); 486 * } 487 * 488 * The flexibility of a function pointer allows the path to the object to be 489 * arbitrarily complex and also supports the notion that depending on where you 490 * are using the object, you may need to get it from someplace different. 491 * 492 * The function that releases the explicit hold is simpler because it does not 493 * have to worry about the object moving: 494 * 495 * void 496 * object_rele(object_t *op) 497 * { 498 * rw_exit(OBJECT_RWLOCK(op)); 499 * } 500 * 501 * The caller is spared these details so that obtaining and releasing an 502 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 503 * of object_hold() only needs to know that the returned object pointer is valid 504 * if not NULL and that the object will not move until released. 505 * 506 * Although object_hold() prevents an object from moving, it does not prevent it 507 * from being freed. The caller must take measures before calling object_hold() 508 * (afterwards is too late) to ensure that the held object cannot be freed. The 509 * caller must do so without accessing the unsafe object reference, so any lock 510 * or reference count used to ensure the continued existence of the object must 511 * live outside the object itself. 512 * 513 * Obtaining a new object is a special case where an explicit hold is impossible 514 * for the caller. Any function that returns a newly allocated object (either as 515 * a return value, or as an in-out paramter) must return it already held; after 516 * the caller gets it is too late, since the object cannot be safely accessed 517 * without the level of indirection described earlier. The following 518 * object_alloc() example uses the same code shown earlier to transition a new 519 * object into the state of being recognized (by the client) as a known object. 520 * The function must acquire the hold (rw_enter) before that state transition 521 * makes the object movable: 522 * 523 * static object_t * 524 * object_alloc(container_t *container) 525 * { 526 * object_t *object = kmem_cache_alloc(object_cache, 0); 527 * ... set any initial state not set by the constructor ... 528 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 529 * mutex_enter(&container->c_objects_lock); 530 * list_insert_tail(&container->c_objects, object); 531 * membar_producer(); 532 * object->o_container = container; 533 * mutex_exit(&container->c_objects_lock); 534 * return (object); 535 * } 536 * 537 * Functions that implicitly acquire an object hold (any function that calls 538 * object_alloc() to supply an object for the caller) need to be carefully noted 539 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 540 * prevent all objects hashed to the affected rwlocks from ever being moved. 541 * 542 * The pointer to a held object can be hashed to the holding rwlock even after 543 * the object has been freed. Although it is possible to release the hold 544 * after freeing the object, you may decide to release the hold implicitly in 545 * whatever function frees the object, so as to release the hold as soon as 546 * possible, and for the sake of symmetry with the function that implicitly 547 * acquires the hold when it allocates the object. Here, object_free() releases 548 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 549 * matching pair with object_hold(): 550 * 551 * void 552 * object_free(object_t *object) 553 * { 554 * container_t *container; 555 * 556 * ASSERT(object_held(object)); 557 * container = object->o_container; 558 * mutex_enter(&container->c_objects_lock); 559 * object->o_container = 560 * (void *)((uintptr_t)object->o_container | 0x1); 561 * list_remove(&container->c_objects, object); 562 * mutex_exit(&container->c_objects_lock); 563 * object_rele(object); 564 * kmem_cache_free(object_cache, object); 565 * } 566 * 567 * Note that object_free() cannot safely accept an object pointer as an argument 568 * unless the object is already held. Any function that calls object_free() 569 * needs to be carefully noted since it similarly forms a matching pair with 570 * object_hold(). 571 * 572 * To complete the picture, the following callback function implements the 573 * general solution by moving objects only if they are currently unheld: 574 * 575 * static kmem_cbrc_t 576 * object_move(void *buf, void *newbuf, size_t size, void *arg) 577 * { 578 * object_t *op = buf, *np = newbuf; 579 * container_t *container; 580 * 581 * container = op->o_container; 582 * if ((uintptr_t)container & 0x3) { 583 * return (KMEM_CBRC_DONT_KNOW); 584 * } 585 * 586 * // Ensure that the container structure does not go away. 587 * if (container_hold(container) == 0) { 588 * return (KMEM_CBRC_DONT_KNOW); 589 * } 590 * 591 * mutex_enter(&container->c_objects_lock); 592 * if (container != op->o_container) { 593 * mutex_exit(&container->c_objects_lock); 594 * container_rele(container); 595 * return (KMEM_CBRC_DONT_KNOW); 596 * } 597 * 598 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 599 * mutex_exit(&container->c_objects_lock); 600 * container_rele(container); 601 * return (KMEM_CBRC_LATER); 602 * } 603 * 604 * object_move_impl(op, np); // critical section 605 * rw_exit(OBJECT_RWLOCK(op)); 606 * 607 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 608 * list_link_replace(&op->o_link_node, &np->o_link_node); 609 * mutex_exit(&container->c_objects_lock); 610 * container_rele(container); 611 * return (KMEM_CBRC_YES); 612 * } 613 * 614 * Note that object_move() must invalidate the designated o_container pointer of 615 * the old object in the same way that object_free() does, since kmem will free 616 * the object in response to the KMEM_CBRC_YES return value. 617 * 618 * The lock order in object_move() differs from object_alloc(), which locks 619 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 620 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 621 * not a problem. Holding the lock on the object list in the example above 622 * through the entire callback not only prevents the object from going away, it 623 * also allows you to lock the list elsewhere and know that none of its elements 624 * will move during iteration. 625 * 626 * Adding an explicit hold everywhere an object from the cache is used is tricky 627 * and involves much more change to client code than a cache-specific solution 628 * that leverages existing state to decide whether or not an object is 629 * movable. However, this approach has the advantage that no object remains 630 * immovable for any significant length of time, making it extremely unlikely 631 * that long-lived allocations can continue holding slabs hostage; and it works 632 * for any cache. 633 * 634 * 3. Consolidator Implementation 635 * 636 * Once the client supplies a move function that a) recognizes known objects and 637 * b) avoids moving objects that are actively in use, the remaining work is up 638 * to the consolidator to decide which objects to move and when to issue 639 * callbacks. 640 * 641 * The consolidator relies on the fact that a cache's slabs are ordered by 642 * usage. Each slab has a fixed number of objects. Depending on the slab's 643 * "color" (the offset of the first object from the beginning of the slab; 644 * offsets are staggered to mitigate false sharing of cache lines) it is either 645 * the maximum number of objects per slab determined at cache creation time or 646 * else the number closest to the maximum that fits within the space remaining 647 * after the initial offset. A completely allocated slab may contribute some 648 * internal fragmentation (per-slab overhead) but no external fragmentation, so 649 * it is of no interest to the consolidator. At the other extreme, slabs whose 650 * objects have all been freed to the slab are released to the virtual memory 651 * (VM) subsystem (objects freed to magazines are still allocated as far as the 652 * slab is concerned). External fragmentation exists when there are slabs 653 * somewhere between these extremes. A partial slab has at least one but not all 654 * of its objects allocated. The more partial slabs, and the fewer allocated 655 * objects on each of them, the higher the fragmentation. Hence the 656 * consolidator's overall strategy is to reduce the number of partial slabs by 657 * moving allocated objects from the least allocated slabs to the most allocated 658 * slabs. 659 * 660 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 661 * slabs are kept separately in an unordered list. Since the majority of slabs 662 * tend to be completely allocated (a typical unfragmented cache may have 663 * thousands of complete slabs and only a single partial slab), separating 664 * complete slabs improves the efficiency of partial slab ordering, since the 665 * complete slabs do not affect the depth or balance of the AVL tree. This 666 * ordered sequence of partial slabs acts as a "free list" supplying objects for 667 * allocation requests. 668 * 669 * Objects are always allocated from the first partial slab in the free list, 670 * where the allocation is most likely to eliminate a partial slab (by 671 * completely allocating it). Conversely, when a single object from a completely 672 * allocated slab is freed to the slab, that slab is added to the front of the 673 * free list. Since most free list activity involves highly allocated slabs 674 * coming and going at the front of the list, slabs tend naturally toward the 675 * ideal order: highly allocated at the front, sparsely allocated at the back. 676 * Slabs with few allocated objects are likely to become completely free if they 677 * keep a safe distance away from the front of the free list. Slab misorders 678 * interfere with the natural tendency of slabs to become completely free or 679 * completely allocated. For example, a slab with a single allocated object 680 * needs only a single free to escape the cache; its natural desire is 681 * frustrated when it finds itself at the front of the list where a second 682 * allocation happens just before the free could have released it. Another slab 683 * with all but one object allocated might have supplied the buffer instead, so 684 * that both (as opposed to neither) of the slabs would have been taken off the 685 * free list. 686 * 687 * Although slabs tend naturally toward the ideal order, misorders allowed by a 688 * simple list implementation defeat the consolidator's strategy of merging 689 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 690 * needs another way to fix misorders to optimize its callback strategy. One 691 * approach is to periodically scan a limited number of slabs, advancing a 692 * marker to hold the current scan position, and to move extreme misorders to 693 * the front or back of the free list and to the front or back of the current 694 * scan range. By making consecutive scan ranges overlap by one slab, the least 695 * allocated slab in the current range can be carried along from the end of one 696 * scan to the start of the next. 697 * 698 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 699 * task, however. Since most of the cache's activity is in the magazine layer, 700 * and allocations from the slab layer represent only a startup cost, the 701 * overhead of maintaining a balanced tree is not a significant concern compared 702 * to the opportunity of reducing complexity by eliminating the partial slab 703 * scanner just described. The overhead of an AVL tree is minimized by 704 * maintaining only partial slabs in the tree and keeping completely allocated 705 * slabs separately in a list. To avoid increasing the size of the slab 706 * structure the AVL linkage pointers are reused for the slab's list linkage, 707 * since the slab will always be either partial or complete, never stored both 708 * ways at the same time. To further minimize the overhead of the AVL tree the 709 * compare function that orders partial slabs by usage divides the range of 710 * allocated object counts into bins such that counts within the same bin are 711 * considered equal. Binning partial slabs makes it less likely that allocating 712 * or freeing a single object will change the slab's order, requiring a tree 713 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 714 * requiring some rebalancing of the tree). Allocation counts closest to 715 * completely free and completely allocated are left unbinned (finely sorted) to 716 * better support the consolidator's strategy of merging slabs at either 717 * extreme. 718 * 719 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 720 * 721 * The consolidator piggybacks on the kmem maintenance thread and is called on 722 * the same interval as kmem_cache_update(), once per cache every fifteen 723 * seconds. kmem maintains a running count of unallocated objects in the slab 724 * layer (cache_bufslab). The consolidator checks whether that number exceeds 725 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 726 * there is a significant number of slabs in the cache (arbitrarily a minimum 727 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 728 * working set are included in the assessment, and magazines in the depot are 729 * reaped if those objects would lift cache_bufslab above the fragmentation 730 * threshold. Once the consolidator decides that a cache is fragmented, it looks 731 * for a candidate slab to reclaim, starting at the end of the partial slab free 732 * list and scanning backwards. At first the consolidator is choosy: only a slab 733 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 734 * single allocated object, regardless of percentage). If there is difficulty 735 * finding a candidate slab, kmem raises the allocation threshold incrementally, 736 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 737 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 738 * even in the worst case of every slab in the cache being almost 7/8 allocated. 739 * The threshold can also be lowered incrementally when candidate slabs are easy 740 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 741 * is no longer fragmented. 742 * 743 * 3.2 Generating Callbacks 744 * 745 * Once an eligible slab is chosen, a callback is generated for every allocated 746 * object on the slab, in the hope that the client will move everything off the 747 * slab and make it reclaimable. Objects selected as move destinations are 748 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 749 * order (most allocated at the front, least allocated at the back) and a 750 * cooperative client, the consolidator will succeed in removing slabs from both 751 * ends of the free list, completely allocating on the one hand and completely 752 * freeing on the other. Objects selected as move destinations are allocated in 753 * the kmem maintenance thread where move requests are enqueued. A separate 754 * callback thread removes pending callbacks from the queue and calls the 755 * client. The separate thread ensures that client code (the move function) does 756 * not interfere with internal kmem maintenance tasks. A map of pending 757 * callbacks keyed by object address (the object to be moved) is checked to 758 * ensure that duplicate callbacks are not generated for the same object. 759 * Allocating the move destination (the object to move to) prevents subsequent 760 * callbacks from selecting the same destination as an earlier pending callback. 761 * 762 * Move requests can also be generated by kmem_cache_reap() when the system is 763 * desperate for memory and by kmem_cache_move_notify(), called by the client to 764 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 765 * The map of pending callbacks is protected by the same lock that protects the 766 * slab layer. 767 * 768 * When the system is desperate for memory, kmem does not bother to determine 769 * whether or not the cache exceeds the fragmentation threshold, but tries to 770 * consolidate as many slabs as possible. Normally, the consolidator chews 771 * slowly, one sparsely allocated slab at a time during each maintenance 772 * interval that the cache is fragmented. When desperate, the consolidator 773 * starts at the last partial slab and enqueues callbacks for every allocated 774 * object on every partial slab, working backwards until it reaches the first 775 * partial slab. The first partial slab, meanwhile, advances in pace with the 776 * consolidator as allocations to supply move destinations for the enqueued 777 * callbacks use up the highly allocated slabs at the front of the free list. 778 * Ideally, the overgrown free list collapses like an accordion, starting at 779 * both ends and ending at the center with a single partial slab. 780 * 781 * 3.3 Client Responses 782 * 783 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 784 * marks the slab that supplied the stuck object non-reclaimable and moves it to 785 * front of the free list. The slab remains marked as long as it remains on the 786 * free list, and it appears more allocated to the partial slab compare function 787 * than any unmarked slab, no matter how many of its objects are allocated. 788 * Since even one immovable object ties up the entire slab, the goal is to 789 * completely allocate any slab that cannot be completely freed. kmem does not 790 * bother generating callbacks to move objects from a marked slab unless the 791 * system is desperate. 792 * 793 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 794 * slab. If the client responds LATER too many times, kmem disbelieves and 795 * treats the response as a NO. The count is cleared when the slab is taken off 796 * the partial slab list or when the client moves one of the slab's objects. 797 * 798 * 4. Observability 799 * 800 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 801 * the ::kmem_slabs dcmd. For a complete description of the command, enter 802 * '::help kmem_slabs' at the mdb prompt. 803 */ 804 805 #include <sys/kmem_impl.h> 806 #include <sys/vmem_impl.h> 807 #include <sys/param.h> 808 #include <sys/sysmacros.h> 809 #include <sys/vm.h> 810 #include <sys/proc.h> 811 #include <sys/tuneable.h> 812 #include <sys/systm.h> 813 #include <sys/cmn_err.h> 814 #include <sys/debug.h> 815 #include <sys/sdt.h> 816 #include <sys/mutex.h> 817 #include <sys/bitmap.h> 818 #include <sys/atomic.h> 819 #include <sys/kobj.h> 820 #include <sys/disp.h> 821 #include <vm/seg_kmem.h> 822 #include <sys/log.h> 823 #include <sys/callb.h> 824 #include <sys/taskq.h> 825 #include <sys/modctl.h> 826 #include <sys/reboot.h> 827 #include <sys/id32.h> 828 #include <sys/zone.h> 829 #include <sys/netstack.h> 830 #ifdef DEBUG 831 #include <sys/random.h> 832 #endif 833 834 extern void streams_msg_init(void); 835 extern int segkp_fromheap; 836 extern void segkp_cache_free(void); 837 extern int callout_init_done; 838 839 struct kmem_cache_kstat { 840 kstat_named_t kmc_buf_size; 841 kstat_named_t kmc_align; 842 kstat_named_t kmc_chunk_size; 843 kstat_named_t kmc_slab_size; 844 kstat_named_t kmc_alloc; 845 kstat_named_t kmc_alloc_fail; 846 kstat_named_t kmc_free; 847 kstat_named_t kmc_depot_alloc; 848 kstat_named_t kmc_depot_free; 849 kstat_named_t kmc_depot_contention; 850 kstat_named_t kmc_slab_alloc; 851 kstat_named_t kmc_slab_free; 852 kstat_named_t kmc_buf_constructed; 853 kstat_named_t kmc_buf_avail; 854 kstat_named_t kmc_buf_inuse; 855 kstat_named_t kmc_buf_total; 856 kstat_named_t kmc_buf_max; 857 kstat_named_t kmc_slab_create; 858 kstat_named_t kmc_slab_destroy; 859 kstat_named_t kmc_vmem_source; 860 kstat_named_t kmc_hash_size; 861 kstat_named_t kmc_hash_lookup_depth; 862 kstat_named_t kmc_hash_rescale; 863 kstat_named_t kmc_full_magazines; 864 kstat_named_t kmc_empty_magazines; 865 kstat_named_t kmc_magazine_size; 866 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 867 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 868 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 869 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 870 kstat_named_t kmc_move_yes; 871 kstat_named_t kmc_move_no; 872 kstat_named_t kmc_move_later; 873 kstat_named_t kmc_move_dont_need; 874 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 875 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 876 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 877 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 878 } kmem_cache_kstat = { 879 { "buf_size", KSTAT_DATA_UINT64 }, 880 { "align", KSTAT_DATA_UINT64 }, 881 { "chunk_size", KSTAT_DATA_UINT64 }, 882 { "slab_size", KSTAT_DATA_UINT64 }, 883 { "alloc", KSTAT_DATA_UINT64 }, 884 { "alloc_fail", KSTAT_DATA_UINT64 }, 885 { "free", KSTAT_DATA_UINT64 }, 886 { "depot_alloc", KSTAT_DATA_UINT64 }, 887 { "depot_free", KSTAT_DATA_UINT64 }, 888 { "depot_contention", KSTAT_DATA_UINT64 }, 889 { "slab_alloc", KSTAT_DATA_UINT64 }, 890 { "slab_free", KSTAT_DATA_UINT64 }, 891 { "buf_constructed", KSTAT_DATA_UINT64 }, 892 { "buf_avail", KSTAT_DATA_UINT64 }, 893 { "buf_inuse", KSTAT_DATA_UINT64 }, 894 { "buf_total", KSTAT_DATA_UINT64 }, 895 { "buf_max", KSTAT_DATA_UINT64 }, 896 { "slab_create", KSTAT_DATA_UINT64 }, 897 { "slab_destroy", KSTAT_DATA_UINT64 }, 898 { "vmem_source", KSTAT_DATA_UINT64 }, 899 { "hash_size", KSTAT_DATA_UINT64 }, 900 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 901 { "hash_rescale", KSTAT_DATA_UINT64 }, 902 { "full_magazines", KSTAT_DATA_UINT64 }, 903 { "empty_magazines", KSTAT_DATA_UINT64 }, 904 { "magazine_size", KSTAT_DATA_UINT64 }, 905 { "reap", KSTAT_DATA_UINT64 }, 906 { "defrag", KSTAT_DATA_UINT64 }, 907 { "scan", KSTAT_DATA_UINT64 }, 908 { "move_callbacks", KSTAT_DATA_UINT64 }, 909 { "move_yes", KSTAT_DATA_UINT64 }, 910 { "move_no", KSTAT_DATA_UINT64 }, 911 { "move_later", KSTAT_DATA_UINT64 }, 912 { "move_dont_need", KSTAT_DATA_UINT64 }, 913 { "move_dont_know", KSTAT_DATA_UINT64 }, 914 { "move_hunt_found", KSTAT_DATA_UINT64 }, 915 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 916 { "move_reclaimable", KSTAT_DATA_UINT64 }, 917 }; 918 919 static kmutex_t kmem_cache_kstat_lock; 920 921 /* 922 * The default set of caches to back kmem_alloc(). 923 * These sizes should be reevaluated periodically. 924 * 925 * We want allocations that are multiples of the coherency granularity 926 * (64 bytes) to be satisfied from a cache which is a multiple of 64 927 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 928 * the next kmem_cache_size greater than or equal to it must be a 929 * multiple of 64. 930 * 931 * We split the table into two sections: size <= 4k and size > 4k. This 932 * saves a lot of space and cache footprint in our cache tables. 933 */ 934 static const int kmem_alloc_sizes[] = { 935 1 * 8, 936 2 * 8, 937 3 * 8, 938 4 * 8, 5 * 8, 6 * 8, 7 * 8, 939 4 * 16, 5 * 16, 6 * 16, 7 * 16, 940 4 * 32, 5 * 32, 6 * 32, 7 * 32, 941 4 * 64, 5 * 64, 6 * 64, 7 * 64, 942 4 * 128, 5 * 128, 6 * 128, 7 * 128, 943 P2ALIGN(8192 / 7, 64), 944 P2ALIGN(8192 / 6, 64), 945 P2ALIGN(8192 / 5, 64), 946 P2ALIGN(8192 / 4, 64), 947 P2ALIGN(8192 / 3, 64), 948 P2ALIGN(8192 / 2, 64), 949 }; 950 951 static const int kmem_big_alloc_sizes[] = { 952 2 * 4096, 3 * 4096, 953 2 * 8192, 3 * 8192, 954 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 955 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 956 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 957 16 * 8192 958 }; 959 960 #define KMEM_MAXBUF 4096 961 #define KMEM_BIG_MAXBUF_32BIT 32768 962 #define KMEM_BIG_MAXBUF 131072 963 964 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 965 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 966 967 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 968 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 969 970 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 971 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 972 973 static kmem_magtype_t kmem_magtype[] = { 974 { 1, 8, 3200, 65536 }, 975 { 3, 16, 256, 32768 }, 976 { 7, 32, 64, 16384 }, 977 { 15, 64, 0, 8192 }, 978 { 31, 64, 0, 4096 }, 979 { 47, 64, 0, 2048 }, 980 { 63, 64, 0, 1024 }, 981 { 95, 64, 0, 512 }, 982 { 143, 64, 0, 0 }, 983 }; 984 985 static uint32_t kmem_reaping; 986 static uint32_t kmem_reaping_idspace; 987 988 /* 989 * kmem tunables 990 */ 991 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 992 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 993 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 994 int kmem_panic = 1; /* whether to panic on error */ 995 int kmem_logging = 1; /* kmem_log_enter() override */ 996 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 997 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 998 size_t kmem_content_log_size; /* content log size [2% of memory] */ 999 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 1000 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 1001 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1002 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1003 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1004 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1005 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1006 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1007 1008 #ifdef _LP64 1009 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1010 #else 1011 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1012 #endif 1013 1014 #ifdef DEBUG 1015 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1016 #else 1017 int kmem_flags = 0; 1018 #endif 1019 int kmem_ready; 1020 1021 static kmem_cache_t *kmem_slab_cache; 1022 static kmem_cache_t *kmem_bufctl_cache; 1023 static kmem_cache_t *kmem_bufctl_audit_cache; 1024 1025 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1026 static list_t kmem_caches; 1027 1028 static taskq_t *kmem_taskq; 1029 static kmutex_t kmem_flags_lock; 1030 static vmem_t *kmem_metadata_arena; 1031 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1032 static vmem_t *kmem_cache_arena; 1033 static vmem_t *kmem_hash_arena; 1034 static vmem_t *kmem_log_arena; 1035 static vmem_t *kmem_oversize_arena; 1036 static vmem_t *kmem_va_arena; 1037 static vmem_t *kmem_default_arena; 1038 static vmem_t *kmem_firewall_va_arena; 1039 static vmem_t *kmem_firewall_arena; 1040 1041 /* 1042 * Define KMEM_STATS to turn on statistic gathering. By default, it is only 1043 * turned on when DEBUG is also defined. 1044 */ 1045 #ifdef DEBUG 1046 #define KMEM_STATS 1047 #endif /* DEBUG */ 1048 1049 #ifdef KMEM_STATS 1050 #define KMEM_STAT_ADD(stat) ((stat)++) 1051 #define KMEM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++)) 1052 #else 1053 #define KMEM_STAT_ADD(stat) /* nothing */ 1054 #define KMEM_STAT_COND_ADD(cond, stat) /* nothing */ 1055 #endif /* KMEM_STATS */ 1056 1057 /* 1058 * kmem slab consolidator thresholds (tunables) 1059 */ 1060 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1061 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1062 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1063 /* 1064 * Maximum number of slabs from which to move buffers during a single 1065 * maintenance interval while the system is not low on memory. 1066 */ 1067 size_t kmem_reclaim_max_slabs = 1; 1068 /* 1069 * Number of slabs to scan backwards from the end of the partial slab list 1070 * when searching for buffers to relocate. 1071 */ 1072 size_t kmem_reclaim_scan_range = 12; 1073 1074 #ifdef KMEM_STATS 1075 static struct { 1076 uint64_t kms_callbacks; 1077 uint64_t kms_yes; 1078 uint64_t kms_no; 1079 uint64_t kms_later; 1080 uint64_t kms_dont_need; 1081 uint64_t kms_dont_know; 1082 uint64_t kms_hunt_found_mag; 1083 uint64_t kms_hunt_found_slab; 1084 uint64_t kms_hunt_alloc_fail; 1085 uint64_t kms_hunt_lucky; 1086 uint64_t kms_notify; 1087 uint64_t kms_notify_callbacks; 1088 uint64_t kms_disbelief; 1089 uint64_t kms_already_pending; 1090 uint64_t kms_callback_alloc_fail; 1091 uint64_t kms_callback_taskq_fail; 1092 uint64_t kms_endscan_slab_dead; 1093 uint64_t kms_endscan_slab_destroyed; 1094 uint64_t kms_endscan_nomem; 1095 uint64_t kms_endscan_refcnt_changed; 1096 uint64_t kms_endscan_nomove_changed; 1097 uint64_t kms_endscan_freelist; 1098 uint64_t kms_avl_update; 1099 uint64_t kms_avl_noupdate; 1100 uint64_t kms_no_longer_reclaimable; 1101 uint64_t kms_notify_no_longer_reclaimable; 1102 uint64_t kms_notify_slab_dead; 1103 uint64_t kms_notify_slab_destroyed; 1104 uint64_t kms_alloc_fail; 1105 uint64_t kms_constructor_fail; 1106 uint64_t kms_dead_slabs_freed; 1107 uint64_t kms_defrags; 1108 uint64_t kms_scans; 1109 uint64_t kms_scan_depot_ws_reaps; 1110 uint64_t kms_debug_reaps; 1111 uint64_t kms_debug_scans; 1112 } kmem_move_stats; 1113 #endif /* KMEM_STATS */ 1114 1115 /* consolidator knobs */ 1116 static boolean_t kmem_move_noreap; 1117 static boolean_t kmem_move_blocked; 1118 static boolean_t kmem_move_fulltilt; 1119 static boolean_t kmem_move_any_partial; 1120 1121 #ifdef DEBUG 1122 /* 1123 * kmem consolidator debug tunables: 1124 * Ensure code coverage by occasionally running the consolidator even when the 1125 * caches are not fragmented (they may never be). These intervals are mean time 1126 * in cache maintenance intervals (kmem_cache_update). 1127 */ 1128 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1129 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1130 #endif /* DEBUG */ 1131 1132 static kmem_cache_t *kmem_defrag_cache; 1133 static kmem_cache_t *kmem_move_cache; 1134 static taskq_t *kmem_move_taskq; 1135 1136 static void kmem_cache_scan(kmem_cache_t *); 1137 static void kmem_cache_defrag(kmem_cache_t *); 1138 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1139 1140 1141 kmem_log_header_t *kmem_transaction_log; 1142 kmem_log_header_t *kmem_content_log; 1143 kmem_log_header_t *kmem_failure_log; 1144 kmem_log_header_t *kmem_slab_log; 1145 1146 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1147 1148 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1149 if ((count) > 0) { \ 1150 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1151 pc_t *_e; \ 1152 /* memmove() the old entries down one notch */ \ 1153 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1154 *_e = *(_e - 1); \ 1155 *_s = (uintptr_t)(caller); \ 1156 } 1157 1158 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1159 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1160 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1161 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1162 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1163 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1164 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1165 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1166 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1167 1168 struct { 1169 hrtime_t kmp_timestamp; /* timestamp of panic */ 1170 int kmp_error; /* type of kmem error */ 1171 void *kmp_buffer; /* buffer that induced panic */ 1172 void *kmp_realbuf; /* real start address for buffer */ 1173 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1174 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1175 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1176 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1177 } kmem_panic_info; 1178 1179 1180 static void 1181 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1182 { 1183 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1184 uint64_t *buf = buf_arg; 1185 1186 while (buf < bufend) 1187 *buf++ = pattern; 1188 } 1189 1190 static void * 1191 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1192 { 1193 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1194 uint64_t *buf; 1195 1196 for (buf = buf_arg; buf < bufend; buf++) 1197 if (*buf != pattern) 1198 return (buf); 1199 return (NULL); 1200 } 1201 1202 static void * 1203 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1204 { 1205 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1206 uint64_t *buf; 1207 1208 for (buf = buf_arg; buf < bufend; buf++) { 1209 if (*buf != old) { 1210 copy_pattern(old, buf_arg, 1211 (char *)buf - (char *)buf_arg); 1212 return (buf); 1213 } 1214 *buf = new; 1215 } 1216 1217 return (NULL); 1218 } 1219 1220 static void 1221 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1222 { 1223 kmem_cache_t *cp; 1224 1225 mutex_enter(&kmem_cache_lock); 1226 for (cp = list_head(&kmem_caches); cp != NULL; 1227 cp = list_next(&kmem_caches, cp)) 1228 if (tq != NULL) 1229 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1230 tqflag); 1231 else 1232 func(cp); 1233 mutex_exit(&kmem_cache_lock); 1234 } 1235 1236 static void 1237 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1238 { 1239 kmem_cache_t *cp; 1240 1241 mutex_enter(&kmem_cache_lock); 1242 for (cp = list_head(&kmem_caches); cp != NULL; 1243 cp = list_next(&kmem_caches, cp)) { 1244 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1245 continue; 1246 if (tq != NULL) 1247 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1248 tqflag); 1249 else 1250 func(cp); 1251 } 1252 mutex_exit(&kmem_cache_lock); 1253 } 1254 1255 /* 1256 * Debugging support. Given a buffer address, find its slab. 1257 */ 1258 static kmem_slab_t * 1259 kmem_findslab(kmem_cache_t *cp, void *buf) 1260 { 1261 kmem_slab_t *sp; 1262 1263 mutex_enter(&cp->cache_lock); 1264 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1265 sp = list_next(&cp->cache_complete_slabs, sp)) { 1266 if (KMEM_SLAB_MEMBER(sp, buf)) { 1267 mutex_exit(&cp->cache_lock); 1268 return (sp); 1269 } 1270 } 1271 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1272 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1273 if (KMEM_SLAB_MEMBER(sp, buf)) { 1274 mutex_exit(&cp->cache_lock); 1275 return (sp); 1276 } 1277 } 1278 mutex_exit(&cp->cache_lock); 1279 1280 return (NULL); 1281 } 1282 1283 static void 1284 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1285 { 1286 kmem_buftag_t *btp = NULL; 1287 kmem_bufctl_t *bcp = NULL; 1288 kmem_cache_t *cp = cparg; 1289 kmem_slab_t *sp; 1290 uint64_t *off; 1291 void *buf = bufarg; 1292 1293 kmem_logging = 0; /* stop logging when a bad thing happens */ 1294 1295 kmem_panic_info.kmp_timestamp = gethrtime(); 1296 1297 sp = kmem_findslab(cp, buf); 1298 if (sp == NULL) { 1299 for (cp = list_tail(&kmem_caches); cp != NULL; 1300 cp = list_prev(&kmem_caches, cp)) { 1301 if ((sp = kmem_findslab(cp, buf)) != NULL) 1302 break; 1303 } 1304 } 1305 1306 if (sp == NULL) { 1307 cp = NULL; 1308 error = KMERR_BADADDR; 1309 } else { 1310 if (cp != cparg) 1311 error = KMERR_BADCACHE; 1312 else 1313 buf = (char *)bufarg - ((uintptr_t)bufarg - 1314 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1315 if (buf != bufarg) 1316 error = KMERR_BADBASE; 1317 if (cp->cache_flags & KMF_BUFTAG) 1318 btp = KMEM_BUFTAG(cp, buf); 1319 if (cp->cache_flags & KMF_HASH) { 1320 mutex_enter(&cp->cache_lock); 1321 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1322 if (bcp->bc_addr == buf) 1323 break; 1324 mutex_exit(&cp->cache_lock); 1325 if (bcp == NULL && btp != NULL) 1326 bcp = btp->bt_bufctl; 1327 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1328 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1329 bcp->bc_addr != buf) { 1330 error = KMERR_BADBUFCTL; 1331 bcp = NULL; 1332 } 1333 } 1334 } 1335 1336 kmem_panic_info.kmp_error = error; 1337 kmem_panic_info.kmp_buffer = bufarg; 1338 kmem_panic_info.kmp_realbuf = buf; 1339 kmem_panic_info.kmp_cache = cparg; 1340 kmem_panic_info.kmp_realcache = cp; 1341 kmem_panic_info.kmp_slab = sp; 1342 kmem_panic_info.kmp_bufctl = bcp; 1343 1344 printf("kernel memory allocator: "); 1345 1346 switch (error) { 1347 1348 case KMERR_MODIFIED: 1349 printf("buffer modified after being freed\n"); 1350 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1351 if (off == NULL) /* shouldn't happen */ 1352 off = buf; 1353 printf("modification occurred at offset 0x%lx " 1354 "(0x%llx replaced by 0x%llx)\n", 1355 (uintptr_t)off - (uintptr_t)buf, 1356 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1357 break; 1358 1359 case KMERR_REDZONE: 1360 printf("redzone violation: write past end of buffer\n"); 1361 break; 1362 1363 case KMERR_BADADDR: 1364 printf("invalid free: buffer not in cache\n"); 1365 break; 1366 1367 case KMERR_DUPFREE: 1368 printf("duplicate free: buffer freed twice\n"); 1369 break; 1370 1371 case KMERR_BADBUFTAG: 1372 printf("boundary tag corrupted\n"); 1373 printf("bcp ^ bxstat = %lx, should be %lx\n", 1374 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1375 KMEM_BUFTAG_FREE); 1376 break; 1377 1378 case KMERR_BADBUFCTL: 1379 printf("bufctl corrupted\n"); 1380 break; 1381 1382 case KMERR_BADCACHE: 1383 printf("buffer freed to wrong cache\n"); 1384 printf("buffer was allocated from %s,\n", cp->cache_name); 1385 printf("caller attempting free to %s.\n", cparg->cache_name); 1386 break; 1387 1388 case KMERR_BADSIZE: 1389 printf("bad free: free size (%u) != alloc size (%u)\n", 1390 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1391 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1392 break; 1393 1394 case KMERR_BADBASE: 1395 printf("bad free: free address (%p) != alloc address (%p)\n", 1396 bufarg, buf); 1397 break; 1398 } 1399 1400 printf("buffer=%p bufctl=%p cache: %s\n", 1401 bufarg, (void *)bcp, cparg->cache_name); 1402 1403 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1404 error != KMERR_BADBUFCTL) { 1405 int d; 1406 timestruc_t ts; 1407 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1408 1409 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1410 printf("previous transaction on buffer %p:\n", buf); 1411 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1412 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1413 (void *)sp, cp->cache_name); 1414 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1415 ulong_t off; 1416 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1417 printf("%s+%lx\n", sym ? sym : "?", off); 1418 } 1419 } 1420 if (kmem_panic > 0) 1421 panic("kernel heap corruption detected"); 1422 if (kmem_panic == 0) 1423 debug_enter(NULL); 1424 kmem_logging = 1; /* resume logging */ 1425 } 1426 1427 static kmem_log_header_t * 1428 kmem_log_init(size_t logsize) 1429 { 1430 kmem_log_header_t *lhp; 1431 int nchunks = 4 * max_ncpus; 1432 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1433 int i; 1434 1435 /* 1436 * Make sure that lhp->lh_cpu[] is nicely aligned 1437 * to prevent false sharing of cache lines. 1438 */ 1439 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1440 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1441 NULL, NULL, VM_SLEEP); 1442 bzero(lhp, lhsize); 1443 1444 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1445 lhp->lh_nchunks = nchunks; 1446 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1447 lhp->lh_base = vmem_alloc(kmem_log_arena, 1448 lhp->lh_chunksize * nchunks, VM_SLEEP); 1449 lhp->lh_free = vmem_alloc(kmem_log_arena, 1450 nchunks * sizeof (int), VM_SLEEP); 1451 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1452 1453 for (i = 0; i < max_ncpus; i++) { 1454 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1455 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1456 clhp->clh_chunk = i; 1457 } 1458 1459 for (i = max_ncpus; i < nchunks; i++) 1460 lhp->lh_free[i] = i; 1461 1462 lhp->lh_head = max_ncpus; 1463 lhp->lh_tail = 0; 1464 1465 return (lhp); 1466 } 1467 1468 static void * 1469 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1470 { 1471 void *logspace; 1472 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1473 1474 if (lhp == NULL || kmem_logging == 0 || panicstr) 1475 return (NULL); 1476 1477 mutex_enter(&clhp->clh_lock); 1478 clhp->clh_hits++; 1479 if (size > clhp->clh_avail) { 1480 mutex_enter(&lhp->lh_lock); 1481 lhp->lh_hits++; 1482 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1483 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1484 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1485 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1486 clhp->clh_current = lhp->lh_base + 1487 clhp->clh_chunk * lhp->lh_chunksize; 1488 clhp->clh_avail = lhp->lh_chunksize; 1489 if (size > lhp->lh_chunksize) 1490 size = lhp->lh_chunksize; 1491 mutex_exit(&lhp->lh_lock); 1492 } 1493 logspace = clhp->clh_current; 1494 clhp->clh_current += size; 1495 clhp->clh_avail -= size; 1496 bcopy(data, logspace, size); 1497 mutex_exit(&clhp->clh_lock); 1498 return (logspace); 1499 } 1500 1501 #define KMEM_AUDIT(lp, cp, bcp) \ 1502 { \ 1503 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1504 _bcp->bc_timestamp = gethrtime(); \ 1505 _bcp->bc_thread = curthread; \ 1506 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1507 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1508 } 1509 1510 static void 1511 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1512 kmem_slab_t *sp, void *addr) 1513 { 1514 kmem_bufctl_audit_t bca; 1515 1516 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1517 bca.bc_addr = addr; 1518 bca.bc_slab = sp; 1519 bca.bc_cache = cp; 1520 KMEM_AUDIT(lp, cp, &bca); 1521 } 1522 1523 /* 1524 * Create a new slab for cache cp. 1525 */ 1526 static kmem_slab_t * 1527 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1528 { 1529 size_t slabsize = cp->cache_slabsize; 1530 size_t chunksize = cp->cache_chunksize; 1531 int cache_flags = cp->cache_flags; 1532 size_t color, chunks; 1533 char *buf, *slab; 1534 kmem_slab_t *sp; 1535 kmem_bufctl_t *bcp; 1536 vmem_t *vmp = cp->cache_arena; 1537 1538 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1539 1540 color = cp->cache_color + cp->cache_align; 1541 if (color > cp->cache_maxcolor) 1542 color = cp->cache_mincolor; 1543 cp->cache_color = color; 1544 1545 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1546 1547 if (slab == NULL) 1548 goto vmem_alloc_failure; 1549 1550 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1551 1552 /* 1553 * Reverify what was already checked in kmem_cache_set_move(), since the 1554 * consolidator depends (for correctness) on slabs being initialized 1555 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1556 * clients to distinguish uninitialized memory from known objects). 1557 */ 1558 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1559 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1560 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1561 1562 if (cache_flags & KMF_HASH) { 1563 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1564 goto slab_alloc_failure; 1565 chunks = (slabsize - color) / chunksize; 1566 } else { 1567 sp = KMEM_SLAB(cp, slab); 1568 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1569 } 1570 1571 sp->slab_cache = cp; 1572 sp->slab_head = NULL; 1573 sp->slab_refcnt = 0; 1574 sp->slab_base = buf = slab + color; 1575 sp->slab_chunks = chunks; 1576 sp->slab_stuck_offset = (uint32_t)-1; 1577 sp->slab_later_count = 0; 1578 sp->slab_flags = 0; 1579 1580 ASSERT(chunks > 0); 1581 while (chunks-- != 0) { 1582 if (cache_flags & KMF_HASH) { 1583 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1584 if (bcp == NULL) 1585 goto bufctl_alloc_failure; 1586 if (cache_flags & KMF_AUDIT) { 1587 kmem_bufctl_audit_t *bcap = 1588 (kmem_bufctl_audit_t *)bcp; 1589 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1590 bcap->bc_cache = cp; 1591 } 1592 bcp->bc_addr = buf; 1593 bcp->bc_slab = sp; 1594 } else { 1595 bcp = KMEM_BUFCTL(cp, buf); 1596 } 1597 if (cache_flags & KMF_BUFTAG) { 1598 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1599 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1600 btp->bt_bufctl = bcp; 1601 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1602 if (cache_flags & KMF_DEADBEEF) { 1603 copy_pattern(KMEM_FREE_PATTERN, buf, 1604 cp->cache_verify); 1605 } 1606 } 1607 bcp->bc_next = sp->slab_head; 1608 sp->slab_head = bcp; 1609 buf += chunksize; 1610 } 1611 1612 kmem_log_event(kmem_slab_log, cp, sp, slab); 1613 1614 return (sp); 1615 1616 bufctl_alloc_failure: 1617 1618 while ((bcp = sp->slab_head) != NULL) { 1619 sp->slab_head = bcp->bc_next; 1620 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1621 } 1622 kmem_cache_free(kmem_slab_cache, sp); 1623 1624 slab_alloc_failure: 1625 1626 vmem_free(vmp, slab, slabsize); 1627 1628 vmem_alloc_failure: 1629 1630 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1631 atomic_inc_64(&cp->cache_alloc_fail); 1632 1633 return (NULL); 1634 } 1635 1636 /* 1637 * Destroy a slab. 1638 */ 1639 static void 1640 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1641 { 1642 vmem_t *vmp = cp->cache_arena; 1643 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1644 1645 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1646 ASSERT(sp->slab_refcnt == 0); 1647 1648 if (cp->cache_flags & KMF_HASH) { 1649 kmem_bufctl_t *bcp; 1650 while ((bcp = sp->slab_head) != NULL) { 1651 sp->slab_head = bcp->bc_next; 1652 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1653 } 1654 kmem_cache_free(kmem_slab_cache, sp); 1655 } 1656 vmem_free(vmp, slab, cp->cache_slabsize); 1657 } 1658 1659 static void * 1660 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 1661 { 1662 kmem_bufctl_t *bcp, **hash_bucket; 1663 void *buf; 1664 boolean_t new_slab = (sp->slab_refcnt == 0); 1665 1666 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1667 /* 1668 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1669 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1670 * slab is newly created. 1671 */ 1672 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1673 (sp == avl_first(&cp->cache_partial_slabs)))); 1674 ASSERT(sp->slab_cache == cp); 1675 1676 cp->cache_slab_alloc++; 1677 cp->cache_bufslab--; 1678 sp->slab_refcnt++; 1679 1680 bcp = sp->slab_head; 1681 sp->slab_head = bcp->bc_next; 1682 1683 if (cp->cache_flags & KMF_HASH) { 1684 /* 1685 * Add buffer to allocated-address hash table. 1686 */ 1687 buf = bcp->bc_addr; 1688 hash_bucket = KMEM_HASH(cp, buf); 1689 bcp->bc_next = *hash_bucket; 1690 *hash_bucket = bcp; 1691 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1692 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1693 } 1694 } else { 1695 buf = KMEM_BUF(cp, bcp); 1696 } 1697 1698 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1699 1700 if (sp->slab_head == NULL) { 1701 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1702 if (new_slab) { 1703 ASSERT(sp->slab_chunks == 1); 1704 } else { 1705 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1706 avl_remove(&cp->cache_partial_slabs, sp); 1707 sp->slab_later_count = 0; /* clear history */ 1708 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1709 sp->slab_stuck_offset = (uint32_t)-1; 1710 } 1711 list_insert_head(&cp->cache_complete_slabs, sp); 1712 cp->cache_complete_slab_count++; 1713 return (buf); 1714 } 1715 1716 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1717 /* 1718 * Peek to see if the magazine layer is enabled before 1719 * we prefill. We're not holding the cpu cache lock, 1720 * so the peek could be wrong, but there's no harm in it. 1721 */ 1722 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1723 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1724 kmem_slab_prefill(cp, sp); 1725 return (buf); 1726 } 1727 1728 if (new_slab) { 1729 avl_add(&cp->cache_partial_slabs, sp); 1730 return (buf); 1731 } 1732 1733 /* 1734 * The slab is now more allocated than it was, so the 1735 * order remains unchanged. 1736 */ 1737 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1738 return (buf); 1739 } 1740 1741 /* 1742 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1743 */ 1744 static void * 1745 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1746 { 1747 kmem_slab_t *sp; 1748 void *buf; 1749 boolean_t test_destructor; 1750 1751 mutex_enter(&cp->cache_lock); 1752 test_destructor = (cp->cache_slab_alloc == 0); 1753 sp = avl_first(&cp->cache_partial_slabs); 1754 if (sp == NULL) { 1755 ASSERT(cp->cache_bufslab == 0); 1756 1757 /* 1758 * The freelist is empty. Create a new slab. 1759 */ 1760 mutex_exit(&cp->cache_lock); 1761 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1762 return (NULL); 1763 } 1764 mutex_enter(&cp->cache_lock); 1765 cp->cache_slab_create++; 1766 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1767 cp->cache_bufmax = cp->cache_buftotal; 1768 cp->cache_bufslab += sp->slab_chunks; 1769 } 1770 1771 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1772 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1773 (cp->cache_complete_slab_count + 1774 avl_numnodes(&cp->cache_partial_slabs) + 1775 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1776 mutex_exit(&cp->cache_lock); 1777 1778 if (test_destructor && cp->cache_destructor != NULL) { 1779 /* 1780 * On the first kmem_slab_alloc(), assert that it is valid to 1781 * call the destructor on a newly constructed object without any 1782 * client involvement. 1783 */ 1784 if ((cp->cache_constructor == NULL) || 1785 cp->cache_constructor(buf, cp->cache_private, 1786 kmflag) == 0) { 1787 cp->cache_destructor(buf, cp->cache_private); 1788 } 1789 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1790 cp->cache_bufsize); 1791 if (cp->cache_flags & KMF_DEADBEEF) { 1792 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1793 } 1794 } 1795 1796 return (buf); 1797 } 1798 1799 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1800 1801 /* 1802 * Free a raw (unconstructed) buffer to cp's slab layer. 1803 */ 1804 static void 1805 kmem_slab_free(kmem_cache_t *cp, void *buf) 1806 { 1807 kmem_slab_t *sp; 1808 kmem_bufctl_t *bcp, **prev_bcpp; 1809 1810 ASSERT(buf != NULL); 1811 1812 mutex_enter(&cp->cache_lock); 1813 cp->cache_slab_free++; 1814 1815 if (cp->cache_flags & KMF_HASH) { 1816 /* 1817 * Look up buffer in allocated-address hash table. 1818 */ 1819 prev_bcpp = KMEM_HASH(cp, buf); 1820 while ((bcp = *prev_bcpp) != NULL) { 1821 if (bcp->bc_addr == buf) { 1822 *prev_bcpp = bcp->bc_next; 1823 sp = bcp->bc_slab; 1824 break; 1825 } 1826 cp->cache_lookup_depth++; 1827 prev_bcpp = &bcp->bc_next; 1828 } 1829 } else { 1830 bcp = KMEM_BUFCTL(cp, buf); 1831 sp = KMEM_SLAB(cp, buf); 1832 } 1833 1834 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1835 mutex_exit(&cp->cache_lock); 1836 kmem_error(KMERR_BADADDR, cp, buf); 1837 return; 1838 } 1839 1840 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1841 /* 1842 * If this is the buffer that prevented the consolidator from 1843 * clearing the slab, we can reset the slab flags now that the 1844 * buffer is freed. (It makes sense to do this in 1845 * kmem_cache_free(), where the client gives up ownership of the 1846 * buffer, but on the hot path the test is too expensive.) 1847 */ 1848 kmem_slab_move_yes(cp, sp, buf); 1849 } 1850 1851 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1852 if (cp->cache_flags & KMF_CONTENTS) 1853 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1854 kmem_log_enter(kmem_content_log, buf, 1855 cp->cache_contents); 1856 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1857 } 1858 1859 bcp->bc_next = sp->slab_head; 1860 sp->slab_head = bcp; 1861 1862 cp->cache_bufslab++; 1863 ASSERT(sp->slab_refcnt >= 1); 1864 1865 if (--sp->slab_refcnt == 0) { 1866 /* 1867 * There are no outstanding allocations from this slab, 1868 * so we can reclaim the memory. 1869 */ 1870 if (sp->slab_chunks == 1) { 1871 list_remove(&cp->cache_complete_slabs, sp); 1872 cp->cache_complete_slab_count--; 1873 } else { 1874 avl_remove(&cp->cache_partial_slabs, sp); 1875 } 1876 1877 cp->cache_buftotal -= sp->slab_chunks; 1878 cp->cache_bufslab -= sp->slab_chunks; 1879 /* 1880 * Defer releasing the slab to the virtual memory subsystem 1881 * while there is a pending move callback, since we guarantee 1882 * that buffers passed to the move callback have only been 1883 * touched by kmem or by the client itself. Since the memory 1884 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1885 * set at least one of the two lowest order bits, the client can 1886 * test those bits in the move callback to determine whether or 1887 * not it knows about the buffer (assuming that the client also 1888 * sets one of those low order bits whenever it frees a buffer). 1889 */ 1890 if (cp->cache_defrag == NULL || 1891 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1892 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1893 cp->cache_slab_destroy++; 1894 mutex_exit(&cp->cache_lock); 1895 kmem_slab_destroy(cp, sp); 1896 } else { 1897 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1898 /* 1899 * Slabs are inserted at both ends of the deadlist to 1900 * distinguish between slabs freed while move callbacks 1901 * are pending (list head) and a slab freed while the 1902 * lock is dropped in kmem_move_buffers() (list tail) so 1903 * that in both cases slab_destroy() is called from the 1904 * right context. 1905 */ 1906 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1907 list_insert_tail(deadlist, sp); 1908 } else { 1909 list_insert_head(deadlist, sp); 1910 } 1911 cp->cache_defrag->kmd_deadcount++; 1912 mutex_exit(&cp->cache_lock); 1913 } 1914 return; 1915 } 1916 1917 if (bcp->bc_next == NULL) { 1918 /* Transition the slab from completely allocated to partial. */ 1919 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1920 ASSERT(sp->slab_chunks > 1); 1921 list_remove(&cp->cache_complete_slabs, sp); 1922 cp->cache_complete_slab_count--; 1923 avl_add(&cp->cache_partial_slabs, sp); 1924 } else { 1925 #ifdef DEBUG 1926 if (avl_update_gt(&cp->cache_partial_slabs, sp)) { 1927 KMEM_STAT_ADD(kmem_move_stats.kms_avl_update); 1928 } else { 1929 KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate); 1930 } 1931 #else 1932 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1933 #endif 1934 } 1935 1936 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1937 (cp->cache_complete_slab_count + 1938 avl_numnodes(&cp->cache_partial_slabs) + 1939 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1940 mutex_exit(&cp->cache_lock); 1941 } 1942 1943 /* 1944 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1945 */ 1946 static int 1947 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1948 caddr_t caller) 1949 { 1950 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1951 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1952 uint32_t mtbf; 1953 1954 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1955 kmem_error(KMERR_BADBUFTAG, cp, buf); 1956 return (-1); 1957 } 1958 1959 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1960 1961 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1962 kmem_error(KMERR_BADBUFCTL, cp, buf); 1963 return (-1); 1964 } 1965 1966 if (cp->cache_flags & KMF_DEADBEEF) { 1967 if (!construct && (cp->cache_flags & KMF_LITE)) { 1968 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1969 kmem_error(KMERR_MODIFIED, cp, buf); 1970 return (-1); 1971 } 1972 if (cp->cache_constructor != NULL) 1973 *(uint64_t *)buf = btp->bt_redzone; 1974 else 1975 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1976 } else { 1977 construct = 1; 1978 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1979 KMEM_UNINITIALIZED_PATTERN, buf, 1980 cp->cache_verify)) { 1981 kmem_error(KMERR_MODIFIED, cp, buf); 1982 return (-1); 1983 } 1984 } 1985 } 1986 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1987 1988 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1989 gethrtime() % mtbf == 0 && 1990 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1991 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1992 if (!construct && cp->cache_destructor != NULL) 1993 cp->cache_destructor(buf, cp->cache_private); 1994 } else { 1995 mtbf = 0; 1996 } 1997 1998 if (mtbf || (construct && cp->cache_constructor != NULL && 1999 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 2000 atomic_inc_64(&cp->cache_alloc_fail); 2001 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 2002 if (cp->cache_flags & KMF_DEADBEEF) 2003 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2004 kmem_slab_free(cp, buf); 2005 return (1); 2006 } 2007 2008 if (cp->cache_flags & KMF_AUDIT) { 2009 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2010 } 2011 2012 if ((cp->cache_flags & KMF_LITE) && 2013 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2014 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2015 } 2016 2017 return (0); 2018 } 2019 2020 static int 2021 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 2022 { 2023 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2024 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 2025 kmem_slab_t *sp; 2026 2027 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 2028 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 2029 kmem_error(KMERR_DUPFREE, cp, buf); 2030 return (-1); 2031 } 2032 sp = kmem_findslab(cp, buf); 2033 if (sp == NULL || sp->slab_cache != cp) 2034 kmem_error(KMERR_BADADDR, cp, buf); 2035 else 2036 kmem_error(KMERR_REDZONE, cp, buf); 2037 return (-1); 2038 } 2039 2040 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 2041 2042 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 2043 kmem_error(KMERR_BADBUFCTL, cp, buf); 2044 return (-1); 2045 } 2046 2047 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 2048 kmem_error(KMERR_REDZONE, cp, buf); 2049 return (-1); 2050 } 2051 2052 if (cp->cache_flags & KMF_AUDIT) { 2053 if (cp->cache_flags & KMF_CONTENTS) 2054 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2055 buf, cp->cache_contents); 2056 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2057 } 2058 2059 if ((cp->cache_flags & KMF_LITE) && 2060 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2061 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2062 } 2063 2064 if (cp->cache_flags & KMF_DEADBEEF) { 2065 if (cp->cache_flags & KMF_LITE) 2066 btp->bt_redzone = *(uint64_t *)buf; 2067 else if (cp->cache_destructor != NULL) 2068 cp->cache_destructor(buf, cp->cache_private); 2069 2070 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2071 } 2072 2073 return (0); 2074 } 2075 2076 /* 2077 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2078 */ 2079 static void 2080 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2081 { 2082 int round; 2083 2084 ASSERT(!list_link_active(&cp->cache_link) || 2085 taskq_member(kmem_taskq, curthread)); 2086 2087 for (round = 0; round < nrounds; round++) { 2088 void *buf = mp->mag_round[round]; 2089 2090 if (cp->cache_flags & KMF_DEADBEEF) { 2091 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2092 cp->cache_verify) != NULL) { 2093 kmem_error(KMERR_MODIFIED, cp, buf); 2094 continue; 2095 } 2096 if ((cp->cache_flags & KMF_LITE) && 2097 cp->cache_destructor != NULL) { 2098 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2099 *(uint64_t *)buf = btp->bt_redzone; 2100 cp->cache_destructor(buf, cp->cache_private); 2101 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2102 } 2103 } else if (cp->cache_destructor != NULL) { 2104 cp->cache_destructor(buf, cp->cache_private); 2105 } 2106 2107 kmem_slab_free(cp, buf); 2108 } 2109 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2110 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2111 } 2112 2113 /* 2114 * Allocate a magazine from the depot. 2115 */ 2116 static kmem_magazine_t * 2117 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2118 { 2119 kmem_magazine_t *mp; 2120 2121 /* 2122 * If we can't get the depot lock without contention, 2123 * update our contention count. We use the depot 2124 * contention rate to determine whether we need to 2125 * increase the magazine size for better scalability. 2126 */ 2127 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2128 mutex_enter(&cp->cache_depot_lock); 2129 cp->cache_depot_contention++; 2130 } 2131 2132 if ((mp = mlp->ml_list) != NULL) { 2133 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2134 mlp->ml_list = mp->mag_next; 2135 if (--mlp->ml_total < mlp->ml_min) 2136 mlp->ml_min = mlp->ml_total; 2137 mlp->ml_alloc++; 2138 } 2139 2140 mutex_exit(&cp->cache_depot_lock); 2141 2142 return (mp); 2143 } 2144 2145 /* 2146 * Free a magazine to the depot. 2147 */ 2148 static void 2149 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2150 { 2151 mutex_enter(&cp->cache_depot_lock); 2152 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2153 mp->mag_next = mlp->ml_list; 2154 mlp->ml_list = mp; 2155 mlp->ml_total++; 2156 mutex_exit(&cp->cache_depot_lock); 2157 } 2158 2159 /* 2160 * Update the working set statistics for cp's depot. 2161 */ 2162 static void 2163 kmem_depot_ws_update(kmem_cache_t *cp) 2164 { 2165 mutex_enter(&cp->cache_depot_lock); 2166 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2167 cp->cache_full.ml_min = cp->cache_full.ml_total; 2168 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2169 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2170 mutex_exit(&cp->cache_depot_lock); 2171 } 2172 2173 /* 2174 * Set the working set statistics for cp's depot to zero. (Everything is 2175 * eligible for reaping.) 2176 */ 2177 static void 2178 kmem_depot_ws_zero(kmem_cache_t *cp) 2179 { 2180 mutex_enter(&cp->cache_depot_lock); 2181 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; 2182 cp->cache_full.ml_min = cp->cache_full.ml_total; 2183 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; 2184 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2185 mutex_exit(&cp->cache_depot_lock); 2186 } 2187 2188 /* 2189 * The number of bytes to reap before we call kpreempt(). The default (1MB) 2190 * causes us to preempt reaping up to hundreds of times per second. Using a 2191 * larger value (1GB) causes this to have virtually no effect. 2192 */ 2193 size_t kmem_reap_preempt_bytes = 1024 * 1024; 2194 2195 /* 2196 * Reap all magazines that have fallen out of the depot's working set. 2197 */ 2198 static void 2199 kmem_depot_ws_reap(kmem_cache_t *cp) 2200 { 2201 size_t bytes = 0; 2202 long reap; 2203 kmem_magazine_t *mp; 2204 2205 ASSERT(!list_link_active(&cp->cache_link) || 2206 taskq_member(kmem_taskq, curthread)); 2207 2208 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2209 while (reap-- && 2210 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { 2211 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2212 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2213 if (bytes > kmem_reap_preempt_bytes) { 2214 kpreempt(KPREEMPT_SYNC); 2215 bytes = 0; 2216 } 2217 } 2218 2219 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2220 while (reap-- && 2221 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { 2222 kmem_magazine_destroy(cp, mp, 0); 2223 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2224 if (bytes > kmem_reap_preempt_bytes) { 2225 kpreempt(KPREEMPT_SYNC); 2226 bytes = 0; 2227 } 2228 } 2229 } 2230 2231 static void 2232 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2233 { 2234 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2235 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2236 ASSERT(ccp->cc_magsize > 0); 2237 2238 ccp->cc_ploaded = ccp->cc_loaded; 2239 ccp->cc_prounds = ccp->cc_rounds; 2240 ccp->cc_loaded = mp; 2241 ccp->cc_rounds = rounds; 2242 } 2243 2244 /* 2245 * Intercept kmem alloc/free calls during crash dump in order to avoid 2246 * changing kmem state while memory is being saved to the dump device. 2247 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2248 * there are no locks because only one CPU calls kmem during a crash 2249 * dump. To enable this feature, first create the associated vmem 2250 * arena with VMC_DUMPSAFE. 2251 */ 2252 static void *kmem_dump_start; /* start of pre-reserved heap */ 2253 static void *kmem_dump_end; /* end of heap area */ 2254 static void *kmem_dump_curr; /* current free heap pointer */ 2255 static size_t kmem_dump_size; /* size of heap area */ 2256 2257 /* append to each buf created in the pre-reserved heap */ 2258 typedef struct kmem_dumpctl { 2259 void *kdc_next; /* cache dump free list linkage */ 2260 } kmem_dumpctl_t; 2261 2262 #define KMEM_DUMPCTL(cp, buf) \ 2263 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2264 sizeof (void *))) 2265 2266 /* set non zero for full report */ 2267 uint_t kmem_dump_verbose = 0; 2268 2269 /* stats for overize heap */ 2270 uint_t kmem_dump_oversize_allocs = 0; 2271 uint_t kmem_dump_oversize_max = 0; 2272 2273 static void 2274 kmem_dumppr(char **pp, char *e, const char *format, ...) 2275 { 2276 char *p = *pp; 2277 2278 if (p < e) { 2279 int n; 2280 va_list ap; 2281 2282 va_start(ap, format); 2283 n = vsnprintf(p, e - p, format, ap); 2284 va_end(ap); 2285 *pp = p + n; 2286 } 2287 } 2288 2289 /* 2290 * Called when dumpadm(1M) configures dump parameters. 2291 */ 2292 void 2293 kmem_dump_init(size_t size) 2294 { 2295 /* Our caller ensures size is always set. */ 2296 ASSERT3U(size, >, 0); 2297 2298 if (kmem_dump_start != NULL) 2299 kmem_free(kmem_dump_start, kmem_dump_size); 2300 2301 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2302 kmem_dump_size = size; 2303 kmem_dump_curr = kmem_dump_start; 2304 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2305 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2306 } 2307 2308 /* 2309 * Set flag for each kmem_cache_t if is safe to use alternate dump 2310 * memory. Called just before panic crash dump starts. Set the flag 2311 * for the calling CPU. 2312 */ 2313 void 2314 kmem_dump_begin(void) 2315 { 2316 kmem_cache_t *cp; 2317 2318 ASSERT(panicstr != NULL); 2319 2320 for (cp = list_head(&kmem_caches); cp != NULL; 2321 cp = list_next(&kmem_caches, cp)) { 2322 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2323 2324 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2325 cp->cache_flags |= KMF_DUMPDIVERT; 2326 ccp->cc_flags |= KMF_DUMPDIVERT; 2327 ccp->cc_dump_rounds = ccp->cc_rounds; 2328 ccp->cc_dump_prounds = ccp->cc_prounds; 2329 ccp->cc_rounds = ccp->cc_prounds = -1; 2330 } else { 2331 cp->cache_flags |= KMF_DUMPUNSAFE; 2332 ccp->cc_flags |= KMF_DUMPUNSAFE; 2333 } 2334 } 2335 } 2336 2337 /* 2338 * finished dump intercept 2339 * print any warnings on the console 2340 * return verbose information to dumpsys() in the given buffer 2341 */ 2342 size_t 2343 kmem_dump_finish(char *buf, size_t size) 2344 { 2345 int percent = 0; 2346 size_t used; 2347 char *e = buf + size; 2348 char *p = buf; 2349 2350 if (kmem_dump_curr == kmem_dump_end) { 2351 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu " 2352 "bytes: kmem state in dump may be inconsistent", 2353 kmem_dump_size); 2354 } 2355 2356 if (kmem_dump_verbose == 0) 2357 return (0); 2358 2359 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2360 percent = (used * 100) / kmem_dump_size; 2361 2362 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2363 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2364 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2365 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2366 kmem_dump_oversize_allocs); 2367 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2368 kmem_dump_oversize_max); 2369 2370 /* return buffer size used */ 2371 if (p < e) 2372 bzero(p, e - p); 2373 return (p - buf); 2374 } 2375 2376 /* 2377 * Allocate a constructed object from alternate dump memory. 2378 */ 2379 void * 2380 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2381 { 2382 void *buf; 2383 void *curr; 2384 char *bufend; 2385 2386 /* return a constructed object */ 2387 if ((buf = cp->cache_dump.kd_freelist) != NULL) { 2388 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2389 return (buf); 2390 } 2391 2392 /* create a new constructed object */ 2393 curr = kmem_dump_curr; 2394 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2395 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2396 2397 /* hat layer objects cannot cross a page boundary */ 2398 if (cp->cache_align < PAGESIZE) { 2399 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2400 if (bufend > page) { 2401 bufend += page - (char *)buf; 2402 buf = (void *)page; 2403 } 2404 } 2405 2406 /* fall back to normal alloc if reserved area is used up */ 2407 if (bufend > (char *)kmem_dump_end) { 2408 kmem_dump_curr = kmem_dump_end; 2409 cp->cache_dump.kd_alloc_fails++; 2410 return (NULL); 2411 } 2412 2413 /* 2414 * Must advance curr pointer before calling a constructor that 2415 * may also allocate memory. 2416 */ 2417 kmem_dump_curr = bufend; 2418 2419 /* run constructor */ 2420 if (cp->cache_constructor != NULL && 2421 cp->cache_constructor(buf, cp->cache_private, kmflag) 2422 != 0) { 2423 #ifdef DEBUG 2424 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2425 cp->cache_name, (void *)cp); 2426 #endif 2427 /* reset curr pointer iff no allocs were done */ 2428 if (kmem_dump_curr == bufend) 2429 kmem_dump_curr = curr; 2430 2431 cp->cache_dump.kd_alloc_fails++; 2432 /* fall back to normal alloc if the constructor fails */ 2433 return (NULL); 2434 } 2435 2436 return (buf); 2437 } 2438 2439 /* 2440 * Free a constructed object in alternate dump memory. 2441 */ 2442 int 2443 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2444 { 2445 /* save constructed buffers for next time */ 2446 if ((char *)buf >= (char *)kmem_dump_start && 2447 (char *)buf < (char *)kmem_dump_end) { 2448 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist; 2449 cp->cache_dump.kd_freelist = buf; 2450 return (0); 2451 } 2452 2453 /* just drop buffers that were allocated before dump started */ 2454 if (kmem_dump_curr < kmem_dump_end) 2455 return (0); 2456 2457 /* fall back to normal free if reserved area is used up */ 2458 return (1); 2459 } 2460 2461 /* 2462 * Allocate a constructed object from cache cp. 2463 */ 2464 void * 2465 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2466 { 2467 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2468 kmem_magazine_t *fmp; 2469 void *buf; 2470 2471 mutex_enter(&ccp->cc_lock); 2472 for (;;) { 2473 /* 2474 * If there's an object available in the current CPU's 2475 * loaded magazine, just take it and return. 2476 */ 2477 if (ccp->cc_rounds > 0) { 2478 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2479 ccp->cc_alloc++; 2480 mutex_exit(&ccp->cc_lock); 2481 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2482 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2483 ASSERT(!(ccp->cc_flags & 2484 KMF_DUMPDIVERT)); 2485 cp->cache_dump.kd_unsafe++; 2486 } 2487 if ((ccp->cc_flags & KMF_BUFTAG) && 2488 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2489 caller()) != 0) { 2490 if (kmflag & KM_NOSLEEP) 2491 return (NULL); 2492 mutex_enter(&ccp->cc_lock); 2493 continue; 2494 } 2495 } 2496 return (buf); 2497 } 2498 2499 /* 2500 * The loaded magazine is empty. If the previously loaded 2501 * magazine was full, exchange them and try again. 2502 */ 2503 if (ccp->cc_prounds > 0) { 2504 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2505 continue; 2506 } 2507 2508 /* 2509 * Return an alternate buffer at dump time to preserve 2510 * the heap. 2511 */ 2512 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2513 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2514 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2515 /* log it so that we can warn about it */ 2516 cp->cache_dump.kd_unsafe++; 2517 } else { 2518 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2519 NULL) { 2520 mutex_exit(&ccp->cc_lock); 2521 return (buf); 2522 } 2523 break; /* fall back to slab layer */ 2524 } 2525 } 2526 2527 /* 2528 * If the magazine layer is disabled, break out now. 2529 */ 2530 if (ccp->cc_magsize == 0) 2531 break; 2532 2533 /* 2534 * Try to get a full magazine from the depot. 2535 */ 2536 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2537 if (fmp != NULL) { 2538 if (ccp->cc_ploaded != NULL) 2539 kmem_depot_free(cp, &cp->cache_empty, 2540 ccp->cc_ploaded); 2541 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2542 continue; 2543 } 2544 2545 /* 2546 * There are no full magazines in the depot, 2547 * so fall through to the slab layer. 2548 */ 2549 break; 2550 } 2551 mutex_exit(&ccp->cc_lock); 2552 2553 /* 2554 * We couldn't allocate a constructed object from the magazine layer, 2555 * so get a raw buffer from the slab layer and apply its constructor. 2556 */ 2557 buf = kmem_slab_alloc(cp, kmflag); 2558 2559 if (buf == NULL) 2560 return (NULL); 2561 2562 if (cp->cache_flags & KMF_BUFTAG) { 2563 /* 2564 * Make kmem_cache_alloc_debug() apply the constructor for us. 2565 */ 2566 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2567 if (rc != 0) { 2568 if (kmflag & KM_NOSLEEP) 2569 return (NULL); 2570 /* 2571 * kmem_cache_alloc_debug() detected corruption 2572 * but didn't panic (kmem_panic <= 0). We should not be 2573 * here because the constructor failed (indicated by a 2574 * return code of 1). Try again. 2575 */ 2576 ASSERT(rc == -1); 2577 return (kmem_cache_alloc(cp, kmflag)); 2578 } 2579 return (buf); 2580 } 2581 2582 if (cp->cache_constructor != NULL && 2583 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2584 atomic_inc_64(&cp->cache_alloc_fail); 2585 kmem_slab_free(cp, buf); 2586 return (NULL); 2587 } 2588 2589 return (buf); 2590 } 2591 2592 /* 2593 * The freed argument tells whether or not kmem_cache_free_debug() has already 2594 * been called so that we can avoid the duplicate free error. For example, a 2595 * buffer on a magazine has already been freed by the client but is still 2596 * constructed. 2597 */ 2598 static void 2599 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2600 { 2601 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2602 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2603 return; 2604 2605 /* 2606 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2607 * kmem_cache_free_debug() will have already applied the destructor. 2608 */ 2609 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2610 cp->cache_destructor != NULL) { 2611 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2612 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2613 *(uint64_t *)buf = btp->bt_redzone; 2614 cp->cache_destructor(buf, cp->cache_private); 2615 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2616 } else { 2617 cp->cache_destructor(buf, cp->cache_private); 2618 } 2619 } 2620 2621 kmem_slab_free(cp, buf); 2622 } 2623 2624 /* 2625 * Used when there's no room to free a buffer to the per-CPU cache. 2626 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2627 * caller should try freeing to the per-CPU cache again. 2628 * Note that we don't directly install the magazine in the cpu cache, 2629 * since its state may have changed wildly while the lock was dropped. 2630 */ 2631 static int 2632 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2633 { 2634 kmem_magazine_t *emp; 2635 kmem_magtype_t *mtp; 2636 2637 ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2638 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2639 ((uint_t)ccp->cc_rounds == -1)) && 2640 ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2641 ((uint_t)ccp->cc_prounds == -1))); 2642 2643 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2644 if (emp != NULL) { 2645 if (ccp->cc_ploaded != NULL) 2646 kmem_depot_free(cp, &cp->cache_full, 2647 ccp->cc_ploaded); 2648 kmem_cpu_reload(ccp, emp, 0); 2649 return (1); 2650 } 2651 /* 2652 * There are no empty magazines in the depot, 2653 * so try to allocate a new one. We must drop all locks 2654 * across kmem_cache_alloc() because lower layers may 2655 * attempt to allocate from this cache. 2656 */ 2657 mtp = cp->cache_magtype; 2658 mutex_exit(&ccp->cc_lock); 2659 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2660 mutex_enter(&ccp->cc_lock); 2661 2662 if (emp != NULL) { 2663 /* 2664 * We successfully allocated an empty magazine. 2665 * However, we had to drop ccp->cc_lock to do it, 2666 * so the cache's magazine size may have changed. 2667 * If so, free the magazine and try again. 2668 */ 2669 if (ccp->cc_magsize != mtp->mt_magsize) { 2670 mutex_exit(&ccp->cc_lock); 2671 kmem_cache_free(mtp->mt_cache, emp); 2672 mutex_enter(&ccp->cc_lock); 2673 return (1); 2674 } 2675 2676 /* 2677 * We got a magazine of the right size. Add it to 2678 * the depot and try the whole dance again. 2679 */ 2680 kmem_depot_free(cp, &cp->cache_empty, emp); 2681 return (1); 2682 } 2683 2684 /* 2685 * We couldn't allocate an empty magazine, 2686 * so fall through to the slab layer. 2687 */ 2688 return (0); 2689 } 2690 2691 /* 2692 * Free a constructed object to cache cp. 2693 */ 2694 void 2695 kmem_cache_free(kmem_cache_t *cp, void *buf) 2696 { 2697 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2698 2699 /* 2700 * The client must not free either of the buffers passed to the move 2701 * callback function. 2702 */ 2703 ASSERT(cp->cache_defrag == NULL || 2704 cp->cache_defrag->kmd_thread != curthread || 2705 (buf != cp->cache_defrag->kmd_from_buf && 2706 buf != cp->cache_defrag->kmd_to_buf)); 2707 2708 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2709 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2710 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2711 /* log it so that we can warn about it */ 2712 cp->cache_dump.kd_unsafe++; 2713 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2714 return; 2715 } 2716 if (ccp->cc_flags & KMF_BUFTAG) { 2717 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2718 return; 2719 } 2720 } 2721 2722 mutex_enter(&ccp->cc_lock); 2723 /* 2724 * Any changes to this logic should be reflected in kmem_slab_prefill() 2725 */ 2726 for (;;) { 2727 /* 2728 * If there's a slot available in the current CPU's 2729 * loaded magazine, just put the object there and return. 2730 */ 2731 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2732 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2733 ccp->cc_free++; 2734 mutex_exit(&ccp->cc_lock); 2735 return; 2736 } 2737 2738 /* 2739 * The loaded magazine is full. If the previously loaded 2740 * magazine was empty, exchange them and try again. 2741 */ 2742 if (ccp->cc_prounds == 0) { 2743 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2744 continue; 2745 } 2746 2747 /* 2748 * If the magazine layer is disabled, break out now. 2749 */ 2750 if (ccp->cc_magsize == 0) 2751 break; 2752 2753 if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 2754 /* 2755 * We couldn't free our constructed object to the 2756 * magazine layer, so apply its destructor and free it 2757 * to the slab layer. 2758 */ 2759 break; 2760 } 2761 } 2762 mutex_exit(&ccp->cc_lock); 2763 kmem_slab_free_constructed(cp, buf, B_TRUE); 2764 } 2765 2766 static void 2767 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2768 { 2769 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2770 int cache_flags = cp->cache_flags; 2771 2772 kmem_bufctl_t *next, *head; 2773 size_t nbufs; 2774 2775 /* 2776 * Completely allocate the newly created slab and put the pre-allocated 2777 * buffers in magazines. Any of the buffers that cannot be put in 2778 * magazines must be returned to the slab. 2779 */ 2780 ASSERT(MUTEX_HELD(&cp->cache_lock)); 2781 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2782 ASSERT(cp->cache_constructor == NULL); 2783 ASSERT(sp->slab_cache == cp); 2784 ASSERT(sp->slab_refcnt == 1); 2785 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2786 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2787 2788 head = sp->slab_head; 2789 nbufs = (sp->slab_chunks - sp->slab_refcnt); 2790 sp->slab_head = NULL; 2791 sp->slab_refcnt += nbufs; 2792 cp->cache_bufslab -= nbufs; 2793 cp->cache_slab_alloc += nbufs; 2794 list_insert_head(&cp->cache_complete_slabs, sp); 2795 cp->cache_complete_slab_count++; 2796 mutex_exit(&cp->cache_lock); 2797 mutex_enter(&ccp->cc_lock); 2798 2799 while (head != NULL) { 2800 void *buf = KMEM_BUF(cp, head); 2801 /* 2802 * If there's a slot available in the current CPU's 2803 * loaded magazine, just put the object there and 2804 * continue. 2805 */ 2806 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2807 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2808 buf; 2809 ccp->cc_free++; 2810 nbufs--; 2811 head = head->bc_next; 2812 continue; 2813 } 2814 2815 /* 2816 * The loaded magazine is full. If the previously 2817 * loaded magazine was empty, exchange them and try 2818 * again. 2819 */ 2820 if (ccp->cc_prounds == 0) { 2821 kmem_cpu_reload(ccp, ccp->cc_ploaded, 2822 ccp->cc_prounds); 2823 continue; 2824 } 2825 2826 /* 2827 * If the magazine layer is disabled, break out now. 2828 */ 2829 2830 if (ccp->cc_magsize == 0) { 2831 break; 2832 } 2833 2834 if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2835 break; 2836 } 2837 mutex_exit(&ccp->cc_lock); 2838 if (nbufs != 0) { 2839 ASSERT(head != NULL); 2840 2841 /* 2842 * If there was a failure, return remaining objects to 2843 * the slab 2844 */ 2845 while (head != NULL) { 2846 ASSERT(nbufs != 0); 2847 next = head->bc_next; 2848 head->bc_next = NULL; 2849 kmem_slab_free(cp, KMEM_BUF(cp, head)); 2850 head = next; 2851 nbufs--; 2852 } 2853 } 2854 ASSERT(head == NULL); 2855 ASSERT(nbufs == 0); 2856 mutex_enter(&cp->cache_lock); 2857 } 2858 2859 void * 2860 kmem_zalloc(size_t size, int kmflag) 2861 { 2862 size_t index; 2863 void *buf; 2864 2865 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2866 kmem_cache_t *cp = kmem_alloc_table[index]; 2867 buf = kmem_cache_alloc(cp, kmflag); 2868 if (buf != NULL) { 2869 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2870 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2871 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2872 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2873 2874 if (cp->cache_flags & KMF_LITE) { 2875 KMEM_BUFTAG_LITE_ENTER(btp, 2876 kmem_lite_count, caller()); 2877 } 2878 } 2879 bzero(buf, size); 2880 } 2881 } else { 2882 buf = kmem_alloc(size, kmflag); 2883 if (buf != NULL) 2884 bzero(buf, size); 2885 } 2886 return (buf); 2887 } 2888 2889 void * 2890 kmem_alloc(size_t size, int kmflag) 2891 { 2892 size_t index; 2893 kmem_cache_t *cp; 2894 void *buf; 2895 2896 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2897 cp = kmem_alloc_table[index]; 2898 /* fall through to kmem_cache_alloc() */ 2899 2900 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2901 kmem_big_alloc_table_max) { 2902 cp = kmem_big_alloc_table[index]; 2903 /* fall through to kmem_cache_alloc() */ 2904 2905 } else { 2906 if (size == 0) 2907 return (NULL); 2908 2909 buf = vmem_alloc(kmem_oversize_arena, size, 2910 kmflag & KM_VMFLAGS); 2911 if (buf == NULL) 2912 kmem_log_event(kmem_failure_log, NULL, NULL, 2913 (void *)size); 2914 else if (KMEM_DUMP(kmem_slab_cache)) { 2915 /* stats for dump intercept */ 2916 kmem_dump_oversize_allocs++; 2917 if (size > kmem_dump_oversize_max) 2918 kmem_dump_oversize_max = size; 2919 } 2920 return (buf); 2921 } 2922 2923 buf = kmem_cache_alloc(cp, kmflag); 2924 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2925 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2926 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2927 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2928 2929 if (cp->cache_flags & KMF_LITE) { 2930 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2931 } 2932 } 2933 return (buf); 2934 } 2935 2936 void 2937 kmem_free(void *buf, size_t size) 2938 { 2939 size_t index; 2940 kmem_cache_t *cp; 2941 2942 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2943 cp = kmem_alloc_table[index]; 2944 /* fall through to kmem_cache_free() */ 2945 2946 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2947 kmem_big_alloc_table_max) { 2948 cp = kmem_big_alloc_table[index]; 2949 /* fall through to kmem_cache_free() */ 2950 2951 } else { 2952 EQUIV(buf == NULL, size == 0); 2953 if (buf == NULL && size == 0) 2954 return; 2955 vmem_free(kmem_oversize_arena, buf, size); 2956 return; 2957 } 2958 2959 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2960 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2961 uint32_t *ip = (uint32_t *)btp; 2962 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2963 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2964 kmem_error(KMERR_DUPFREE, cp, buf); 2965 return; 2966 } 2967 if (KMEM_SIZE_VALID(ip[1])) { 2968 ip[0] = KMEM_SIZE_ENCODE(size); 2969 kmem_error(KMERR_BADSIZE, cp, buf); 2970 } else { 2971 kmem_error(KMERR_REDZONE, cp, buf); 2972 } 2973 return; 2974 } 2975 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2976 kmem_error(KMERR_REDZONE, cp, buf); 2977 return; 2978 } 2979 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2980 if (cp->cache_flags & KMF_LITE) { 2981 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2982 caller()); 2983 } 2984 } 2985 kmem_cache_free(cp, buf); 2986 } 2987 2988 void * 2989 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2990 { 2991 size_t realsize = size + vmp->vm_quantum; 2992 void *addr; 2993 2994 /* 2995 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2996 * vm_quantum will cause integer wraparound. Check for this, and 2997 * blow off the firewall page in this case. Note that such a 2998 * giant allocation (the entire kernel address space) can never 2999 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 3000 * or sleep forever (VM_SLEEP). Thus, there is no need for a 3001 * corresponding check in kmem_firewall_va_free(). 3002 */ 3003 if (realsize < size) 3004 realsize = size; 3005 3006 /* 3007 * While boot still owns resource management, make sure that this 3008 * redzone virtual address allocation is properly accounted for in 3009 * OBPs "virtual-memory" "available" lists because we're 3010 * effectively claiming them for a red zone. If we don't do this, 3011 * the available lists become too fragmented and too large for the 3012 * current boot/kernel memory list interface. 3013 */ 3014 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 3015 3016 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 3017 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 3018 3019 return (addr); 3020 } 3021 3022 void 3023 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 3024 { 3025 ASSERT((kvseg.s_base == NULL ? 3026 va_to_pfn((char *)addr + size) : 3027 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 3028 3029 vmem_free(vmp, addr, size + vmp->vm_quantum); 3030 } 3031 3032 /* 3033 * Try to allocate at least `size' bytes of memory without sleeping or 3034 * panicking. Return actual allocated size in `asize'. If allocation failed, 3035 * try final allocation with sleep or panic allowed. 3036 */ 3037 void * 3038 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 3039 { 3040 void *p; 3041 3042 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3043 do { 3044 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 3045 if (p != NULL) 3046 return (p); 3047 *asize += KMEM_ALIGN; 3048 } while (*asize <= PAGESIZE); 3049 3050 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3051 return (kmem_alloc(*asize, kmflag)); 3052 } 3053 3054 /* 3055 * Reclaim all unused memory from a cache. 3056 */ 3057 static void 3058 kmem_cache_reap(kmem_cache_t *cp) 3059 { 3060 ASSERT(taskq_member(kmem_taskq, curthread)); 3061 cp->cache_reap++; 3062 3063 /* 3064 * Ask the cache's owner to free some memory if possible. 3065 * The idea is to handle things like the inode cache, which 3066 * typically sits on a bunch of memory that it doesn't truly 3067 * *need*. Reclaim policy is entirely up to the owner; this 3068 * callback is just an advisory plea for help. 3069 */ 3070 if (cp->cache_reclaim != NULL) { 3071 long delta; 3072 3073 /* 3074 * Reclaimed memory should be reapable (not included in the 3075 * depot's working set). 3076 */ 3077 delta = cp->cache_full.ml_total; 3078 cp->cache_reclaim(cp->cache_private); 3079 delta = cp->cache_full.ml_total - delta; 3080 if (delta > 0) { 3081 mutex_enter(&cp->cache_depot_lock); 3082 cp->cache_full.ml_reaplimit += delta; 3083 cp->cache_full.ml_min += delta; 3084 mutex_exit(&cp->cache_depot_lock); 3085 } 3086 } 3087 3088 kmem_depot_ws_reap(cp); 3089 3090 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3091 kmem_cache_defrag(cp); 3092 } 3093 } 3094 3095 static void 3096 kmem_reap_timeout(void *flag_arg) 3097 { 3098 uint32_t *flag = (uint32_t *)flag_arg; 3099 3100 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3101 *flag = 0; 3102 } 3103 3104 static void 3105 kmem_reap_done(void *flag) 3106 { 3107 if (!callout_init_done) { 3108 /* can't schedule a timeout at this point */ 3109 kmem_reap_timeout(flag); 3110 } else { 3111 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 3112 } 3113 } 3114 3115 static void 3116 kmem_reap_start(void *flag) 3117 { 3118 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3119 3120 if (flag == &kmem_reaping) { 3121 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3122 /* 3123 * if we have segkp under heap, reap segkp cache. 3124 */ 3125 if (segkp_fromheap) 3126 segkp_cache_free(); 3127 } 3128 else 3129 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3130 3131 /* 3132 * We use taskq_dispatch() to schedule a timeout to clear 3133 * the flag so that kmem_reap() becomes self-throttling: 3134 * we won't reap again until the current reap completes *and* 3135 * at least kmem_reap_interval ticks have elapsed. 3136 */ 3137 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 3138 kmem_reap_done(flag); 3139 } 3140 3141 static void 3142 kmem_reap_common(void *flag_arg) 3143 { 3144 uint32_t *flag = (uint32_t *)flag_arg; 3145 3146 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3147 atomic_cas_32(flag, 0, 1) != 0) 3148 return; 3149 3150 /* 3151 * It may not be kosher to do memory allocation when a reap is called 3152 * (for example, if vmem_populate() is in the call chain). So we 3153 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch 3154 * fails, we reset the flag, and the next reap will try again. 3155 */ 3156 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 3157 *flag = 0; 3158 } 3159 3160 /* 3161 * Reclaim all unused memory from all caches. Called from the VM system 3162 * when memory gets tight. 3163 */ 3164 void 3165 kmem_reap(void) 3166 { 3167 kmem_reap_common(&kmem_reaping); 3168 } 3169 3170 /* 3171 * Reclaim all unused memory from identifier arenas, called when a vmem 3172 * arena not back by memory is exhausted. Since reaping memory-backed caches 3173 * cannot help with identifier exhaustion, we avoid both a large amount of 3174 * work and unwanted side-effects from reclaim callbacks. 3175 */ 3176 void 3177 kmem_reap_idspace(void) 3178 { 3179 kmem_reap_common(&kmem_reaping_idspace); 3180 } 3181 3182 /* 3183 * Purge all magazines from a cache and set its magazine limit to zero. 3184 * All calls are serialized by the kmem_taskq lock, except for the final 3185 * call from kmem_cache_destroy(). 3186 */ 3187 static void 3188 kmem_cache_magazine_purge(kmem_cache_t *cp) 3189 { 3190 kmem_cpu_cache_t *ccp; 3191 kmem_magazine_t *mp, *pmp; 3192 int rounds, prounds, cpu_seqid; 3193 3194 ASSERT(!list_link_active(&cp->cache_link) || 3195 taskq_member(kmem_taskq, curthread)); 3196 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3197 3198 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3199 ccp = &cp->cache_cpu[cpu_seqid]; 3200 3201 mutex_enter(&ccp->cc_lock); 3202 mp = ccp->cc_loaded; 3203 pmp = ccp->cc_ploaded; 3204 rounds = ccp->cc_rounds; 3205 prounds = ccp->cc_prounds; 3206 ccp->cc_loaded = NULL; 3207 ccp->cc_ploaded = NULL; 3208 ccp->cc_rounds = -1; 3209 ccp->cc_prounds = -1; 3210 ccp->cc_magsize = 0; 3211 mutex_exit(&ccp->cc_lock); 3212 3213 if (mp) 3214 kmem_magazine_destroy(cp, mp, rounds); 3215 if (pmp) 3216 kmem_magazine_destroy(cp, pmp, prounds); 3217 } 3218 3219 kmem_depot_ws_zero(cp); 3220 kmem_depot_ws_reap(cp); 3221 } 3222 3223 /* 3224 * Enable per-cpu magazines on a cache. 3225 */ 3226 static void 3227 kmem_cache_magazine_enable(kmem_cache_t *cp) 3228 { 3229 int cpu_seqid; 3230 3231 if (cp->cache_flags & KMF_NOMAGAZINE) 3232 return; 3233 3234 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3235 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3236 mutex_enter(&ccp->cc_lock); 3237 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3238 mutex_exit(&ccp->cc_lock); 3239 } 3240 3241 } 3242 3243 /* 3244 * Reap (almost) everything right now. 3245 */ 3246 void 3247 kmem_cache_reap_now(kmem_cache_t *cp) 3248 { 3249 ASSERT(list_link_active(&cp->cache_link)); 3250 3251 kmem_depot_ws_zero(cp); 3252 3253 (void) taskq_dispatch(kmem_taskq, 3254 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3255 taskq_wait(kmem_taskq); 3256 } 3257 3258 /* 3259 * Recompute a cache's magazine size. The trade-off is that larger magazines 3260 * provide a higher transfer rate with the depot, while smaller magazines 3261 * reduce memory consumption. Magazine resizing is an expensive operation; 3262 * it should not be done frequently. 3263 * 3264 * Changes to the magazine size are serialized by the kmem_taskq lock. 3265 * 3266 * Note: at present this only grows the magazine size. It might be useful 3267 * to allow shrinkage too. 3268 */ 3269 static void 3270 kmem_cache_magazine_resize(kmem_cache_t *cp) 3271 { 3272 kmem_magtype_t *mtp = cp->cache_magtype; 3273 3274 ASSERT(taskq_member(kmem_taskq, curthread)); 3275 3276 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3277 kmem_cache_magazine_purge(cp); 3278 mutex_enter(&cp->cache_depot_lock); 3279 cp->cache_magtype = ++mtp; 3280 cp->cache_depot_contention_prev = 3281 cp->cache_depot_contention + INT_MAX; 3282 mutex_exit(&cp->cache_depot_lock); 3283 kmem_cache_magazine_enable(cp); 3284 } 3285 } 3286 3287 /* 3288 * Rescale a cache's hash table, so that the table size is roughly the 3289 * cache size. We want the average lookup time to be extremely small. 3290 */ 3291 static void 3292 kmem_hash_rescale(kmem_cache_t *cp) 3293 { 3294 kmem_bufctl_t **old_table, **new_table, *bcp; 3295 size_t old_size, new_size, h; 3296 3297 ASSERT(taskq_member(kmem_taskq, curthread)); 3298 3299 new_size = MAX(KMEM_HASH_INITIAL, 3300 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3301 old_size = cp->cache_hash_mask + 1; 3302 3303 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3304 return; 3305 3306 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3307 VM_NOSLEEP); 3308 if (new_table == NULL) 3309 return; 3310 bzero(new_table, new_size * sizeof (void *)); 3311 3312 mutex_enter(&cp->cache_lock); 3313 3314 old_size = cp->cache_hash_mask + 1; 3315 old_table = cp->cache_hash_table; 3316 3317 cp->cache_hash_mask = new_size - 1; 3318 cp->cache_hash_table = new_table; 3319 cp->cache_rescale++; 3320 3321 for (h = 0; h < old_size; h++) { 3322 bcp = old_table[h]; 3323 while (bcp != NULL) { 3324 void *addr = bcp->bc_addr; 3325 kmem_bufctl_t *next_bcp = bcp->bc_next; 3326 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3327 bcp->bc_next = *hash_bucket; 3328 *hash_bucket = bcp; 3329 bcp = next_bcp; 3330 } 3331 } 3332 3333 mutex_exit(&cp->cache_lock); 3334 3335 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3336 } 3337 3338 /* 3339 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3340 * update, magazine resizing, and slab consolidation. 3341 */ 3342 static void 3343 kmem_cache_update(kmem_cache_t *cp) 3344 { 3345 int need_hash_rescale = 0; 3346 int need_magazine_resize = 0; 3347 3348 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3349 3350 /* 3351 * If the cache has become much larger or smaller than its hash table, 3352 * fire off a request to rescale the hash table. 3353 */ 3354 mutex_enter(&cp->cache_lock); 3355 3356 if ((cp->cache_flags & KMF_HASH) && 3357 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3358 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3359 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3360 need_hash_rescale = 1; 3361 3362 mutex_exit(&cp->cache_lock); 3363 3364 /* 3365 * Update the depot working set statistics. 3366 */ 3367 kmem_depot_ws_update(cp); 3368 3369 /* 3370 * If there's a lot of contention in the depot, 3371 * increase the magazine size. 3372 */ 3373 mutex_enter(&cp->cache_depot_lock); 3374 3375 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3376 (int)(cp->cache_depot_contention - 3377 cp->cache_depot_contention_prev) > kmem_depot_contention) 3378 need_magazine_resize = 1; 3379 3380 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3381 3382 mutex_exit(&cp->cache_depot_lock); 3383 3384 if (need_hash_rescale) 3385 (void) taskq_dispatch(kmem_taskq, 3386 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3387 3388 if (need_magazine_resize) 3389 (void) taskq_dispatch(kmem_taskq, 3390 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3391 3392 if (cp->cache_defrag != NULL) 3393 (void) taskq_dispatch(kmem_taskq, 3394 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3395 } 3396 3397 static void kmem_update(void *); 3398 3399 static void 3400 kmem_update_timeout(void *dummy) 3401 { 3402 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3403 } 3404 3405 static void 3406 kmem_update(void *dummy) 3407 { 3408 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3409 3410 /* 3411 * We use taskq_dispatch() to reschedule the timeout so that 3412 * kmem_update() becomes self-throttling: it won't schedule 3413 * new tasks until all previous tasks have completed. 3414 */ 3415 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 3416 kmem_update_timeout(NULL); 3417 } 3418 3419 static int 3420 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3421 { 3422 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3423 kmem_cache_t *cp = ksp->ks_private; 3424 uint64_t cpu_buf_avail; 3425 uint64_t buf_avail = 0; 3426 int cpu_seqid; 3427 long reap; 3428 3429 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3430 3431 if (rw == KSTAT_WRITE) 3432 return (EACCES); 3433 3434 mutex_enter(&cp->cache_lock); 3435 3436 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3437 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3438 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3439 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3440 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3441 3442 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3443 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3444 3445 mutex_enter(&ccp->cc_lock); 3446 3447 cpu_buf_avail = 0; 3448 if (ccp->cc_rounds > 0) 3449 cpu_buf_avail += ccp->cc_rounds; 3450 if (ccp->cc_prounds > 0) 3451 cpu_buf_avail += ccp->cc_prounds; 3452 3453 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3454 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3455 buf_avail += cpu_buf_avail; 3456 3457 mutex_exit(&ccp->cc_lock); 3458 } 3459 3460 mutex_enter(&cp->cache_depot_lock); 3461 3462 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3463 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3464 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3465 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3466 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3467 kmcp->kmc_magazine_size.value.ui64 = 3468 (cp->cache_flags & KMF_NOMAGAZINE) ? 3469 0 : cp->cache_magtype->mt_magsize; 3470 3471 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3472 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3473 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3474 3475 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3476 reap = MIN(reap, cp->cache_full.ml_total); 3477 3478 mutex_exit(&cp->cache_depot_lock); 3479 3480 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3481 kmcp->kmc_align.value.ui64 = cp->cache_align; 3482 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3483 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3484 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3485 buf_avail += cp->cache_bufslab; 3486 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3487 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3488 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3489 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3490 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3491 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3492 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3493 cp->cache_hash_mask + 1 : 0; 3494 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3495 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3496 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3497 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3498 3499 if (cp->cache_defrag == NULL) { 3500 kmcp->kmc_move_callbacks.value.ui64 = 0; 3501 kmcp->kmc_move_yes.value.ui64 = 0; 3502 kmcp->kmc_move_no.value.ui64 = 0; 3503 kmcp->kmc_move_later.value.ui64 = 0; 3504 kmcp->kmc_move_dont_need.value.ui64 = 0; 3505 kmcp->kmc_move_dont_know.value.ui64 = 0; 3506 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3507 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3508 kmcp->kmc_defrag.value.ui64 = 0; 3509 kmcp->kmc_scan.value.ui64 = 0; 3510 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3511 } else { 3512 int64_t reclaimable; 3513 3514 kmem_defrag_t *kd = cp->cache_defrag; 3515 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3516 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3517 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3518 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3519 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3520 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3521 kmcp->kmc_move_hunt_found.value.ui64 = kd->kmd_hunt_found; 3522 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3523 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3524 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3525 3526 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3527 reclaimable = MAX(reclaimable, 0); 3528 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3529 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3530 } 3531 3532 mutex_exit(&cp->cache_lock); 3533 return (0); 3534 } 3535 3536 /* 3537 * Return a named statistic about a particular cache. 3538 * This shouldn't be called very often, so it's currently designed for 3539 * simplicity (leverages existing kstat support) rather than efficiency. 3540 */ 3541 uint64_t 3542 kmem_cache_stat(kmem_cache_t *cp, char *name) 3543 { 3544 int i; 3545 kstat_t *ksp = cp->cache_kstat; 3546 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3547 uint64_t value = 0; 3548 3549 if (ksp != NULL) { 3550 mutex_enter(&kmem_cache_kstat_lock); 3551 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3552 for (i = 0; i < ksp->ks_ndata; i++) { 3553 if (strcmp(knp[i].name, name) == 0) { 3554 value = knp[i].value.ui64; 3555 break; 3556 } 3557 } 3558 mutex_exit(&kmem_cache_kstat_lock); 3559 } 3560 return (value); 3561 } 3562 3563 /* 3564 * Return an estimate of currently available kernel heap memory. 3565 * On 32-bit systems, physical memory may exceed virtual memory, 3566 * we just truncate the result at 1GB. 3567 */ 3568 size_t 3569 kmem_avail(void) 3570 { 3571 spgcnt_t rmem = availrmem - tune.t_minarmem; 3572 spgcnt_t fmem = freemem - minfree; 3573 3574 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3575 1 << (30 - PAGESHIFT)))); 3576 } 3577 3578 /* 3579 * Return the maximum amount of memory that is (in theory) allocatable 3580 * from the heap. This may be used as an estimate only since there 3581 * is no guarentee this space will still be available when an allocation 3582 * request is made, nor that the space may be allocated in one big request 3583 * due to kernel heap fragmentation. 3584 */ 3585 size_t 3586 kmem_maxavail(void) 3587 { 3588 spgcnt_t pmem = availrmem - tune.t_minarmem; 3589 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3590 3591 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3592 } 3593 3594 /* 3595 * Indicate whether memory-intensive kmem debugging is enabled. 3596 */ 3597 int 3598 kmem_debugging(void) 3599 { 3600 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3601 } 3602 3603 /* binning function, sorts finely at the two extremes */ 3604 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3605 ((((sp)->slab_refcnt <= (binshift)) || \ 3606 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3607 ? -(sp)->slab_refcnt \ 3608 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3609 3610 /* 3611 * Minimizing the number of partial slabs on the freelist minimizes 3612 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3613 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3614 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3615 * the most-used slabs at the front of the list where they have the best chance 3616 * of being completely allocated, and the least-used slabs at a safe distance 3617 * from the front to improve the odds that the few remaining buffers will all be 3618 * freed before another allocation can tie up the slab. For that reason a slab 3619 * with a higher slab_refcnt sorts less than than a slab with a lower 3620 * slab_refcnt. 3621 * 3622 * However, if a slab has at least one buffer that is deemed unfreeable, we 3623 * would rather have that slab at the front of the list regardless of 3624 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3625 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3626 * callback, the slab is marked unfreeable for as long as it remains on the 3627 * freelist. 3628 */ 3629 static int 3630 kmem_partial_slab_cmp(const void *p0, const void *p1) 3631 { 3632 const kmem_cache_t *cp; 3633 const kmem_slab_t *s0 = p0; 3634 const kmem_slab_t *s1 = p1; 3635 int w0, w1; 3636 size_t binshift; 3637 3638 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3639 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3640 ASSERT(s0->slab_cache == s1->slab_cache); 3641 cp = s1->slab_cache; 3642 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3643 binshift = cp->cache_partial_binshift; 3644 3645 /* weight of first slab */ 3646 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3647 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3648 w0 -= cp->cache_maxchunks; 3649 } 3650 3651 /* weight of second slab */ 3652 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3653 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3654 w1 -= cp->cache_maxchunks; 3655 } 3656 3657 if (w0 < w1) 3658 return (-1); 3659 if (w0 > w1) 3660 return (1); 3661 3662 /* compare pointer values */ 3663 if ((uintptr_t)s0 < (uintptr_t)s1) 3664 return (-1); 3665 if ((uintptr_t)s0 > (uintptr_t)s1) 3666 return (1); 3667 3668 return (0); 3669 } 3670 3671 /* 3672 * It must be valid to call the destructor (if any) on a newly created object. 3673 * That is, the constructor (if any) must leave the object in a valid state for 3674 * the destructor. 3675 */ 3676 kmem_cache_t * 3677 kmem_cache_create( 3678 char *name, /* descriptive name for this cache */ 3679 size_t bufsize, /* size of the objects it manages */ 3680 size_t align, /* required object alignment */ 3681 int (*constructor)(void *, void *, int), /* object constructor */ 3682 void (*destructor)(void *, void *), /* object destructor */ 3683 void (*reclaim)(void *), /* memory reclaim callback */ 3684 void *private, /* pass-thru arg for constr/destr/reclaim */ 3685 vmem_t *vmp, /* vmem source for slab allocation */ 3686 int cflags) /* cache creation flags */ 3687 { 3688 int cpu_seqid; 3689 size_t chunksize; 3690 kmem_cache_t *cp; 3691 kmem_magtype_t *mtp; 3692 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3693 3694 #ifdef DEBUG 3695 /* 3696 * Cache names should conform to the rules for valid C identifiers 3697 */ 3698 if (!strident_valid(name)) { 3699 cmn_err(CE_CONT, 3700 "kmem_cache_create: '%s' is an invalid cache name\n" 3701 "cache names must conform to the rules for " 3702 "C identifiers\n", name); 3703 } 3704 #endif /* DEBUG */ 3705 3706 if (vmp == NULL) 3707 vmp = kmem_default_arena; 3708 3709 /* 3710 * If this kmem cache has an identifier vmem arena as its source, mark 3711 * it such to allow kmem_reap_idspace(). 3712 */ 3713 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3714 if (vmp->vm_cflags & VMC_IDENTIFIER) 3715 cflags |= KMC_IDENTIFIER; 3716 3717 /* 3718 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3719 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3720 * false sharing of per-CPU data. 3721 */ 3722 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3723 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3724 bzero(cp, csize); 3725 list_link_init(&cp->cache_link); 3726 3727 if (align == 0) 3728 align = KMEM_ALIGN; 3729 3730 /* 3731 * If we're not at least KMEM_ALIGN aligned, we can't use free 3732 * memory to hold bufctl information (because we can't safely 3733 * perform word loads and stores on it). 3734 */ 3735 if (align < KMEM_ALIGN) 3736 cflags |= KMC_NOTOUCH; 3737 3738 if (!ISP2(align) || align > vmp->vm_quantum) 3739 panic("kmem_cache_create: bad alignment %lu", align); 3740 3741 mutex_enter(&kmem_flags_lock); 3742 if (kmem_flags & KMF_RANDOMIZE) 3743 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3744 KMF_RANDOMIZE; 3745 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3746 mutex_exit(&kmem_flags_lock); 3747 3748 /* 3749 * Make sure all the various flags are reasonable. 3750 */ 3751 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3752 3753 if (cp->cache_flags & KMF_LITE) { 3754 if (bufsize >= kmem_lite_minsize && 3755 align <= kmem_lite_maxalign && 3756 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3757 cp->cache_flags |= KMF_BUFTAG; 3758 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3759 } else { 3760 cp->cache_flags &= ~KMF_DEBUG; 3761 } 3762 } 3763 3764 if (cp->cache_flags & KMF_DEADBEEF) 3765 cp->cache_flags |= KMF_REDZONE; 3766 3767 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3768 cp->cache_flags |= KMF_NOMAGAZINE; 3769 3770 if (cflags & KMC_NODEBUG) 3771 cp->cache_flags &= ~KMF_DEBUG; 3772 3773 if (cflags & KMC_NOTOUCH) 3774 cp->cache_flags &= ~KMF_TOUCH; 3775 3776 if (cflags & KMC_PREFILL) 3777 cp->cache_flags |= KMF_PREFILL; 3778 3779 if (cflags & KMC_NOHASH) 3780 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3781 3782 if (cflags & KMC_NOMAGAZINE) 3783 cp->cache_flags |= KMF_NOMAGAZINE; 3784 3785 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3786 cp->cache_flags |= KMF_REDZONE; 3787 3788 if (!(cp->cache_flags & KMF_AUDIT)) 3789 cp->cache_flags &= ~KMF_CONTENTS; 3790 3791 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3792 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3793 cp->cache_flags |= KMF_FIREWALL; 3794 3795 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3796 cp->cache_flags &= ~KMF_FIREWALL; 3797 3798 if (cp->cache_flags & KMF_FIREWALL) { 3799 cp->cache_flags &= ~KMF_BUFTAG; 3800 cp->cache_flags |= KMF_NOMAGAZINE; 3801 ASSERT(vmp == kmem_default_arena); 3802 vmp = kmem_firewall_arena; 3803 } 3804 3805 /* 3806 * Set cache properties. 3807 */ 3808 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3809 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3810 cp->cache_bufsize = bufsize; 3811 cp->cache_align = align; 3812 cp->cache_constructor = constructor; 3813 cp->cache_destructor = destructor; 3814 cp->cache_reclaim = reclaim; 3815 cp->cache_private = private; 3816 cp->cache_arena = vmp; 3817 cp->cache_cflags = cflags; 3818 3819 /* 3820 * Determine the chunk size. 3821 */ 3822 chunksize = bufsize; 3823 3824 if (align >= KMEM_ALIGN) { 3825 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3826 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3827 } 3828 3829 if (cp->cache_flags & KMF_BUFTAG) { 3830 cp->cache_bufctl = chunksize; 3831 cp->cache_buftag = chunksize; 3832 if (cp->cache_flags & KMF_LITE) 3833 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3834 else 3835 chunksize += sizeof (kmem_buftag_t); 3836 } 3837 3838 if (cp->cache_flags & KMF_DEADBEEF) { 3839 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3840 if (cp->cache_flags & KMF_LITE) 3841 cp->cache_verify = sizeof (uint64_t); 3842 } 3843 3844 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3845 3846 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3847 3848 /* 3849 * Now that we know the chunk size, determine the optimal slab size. 3850 */ 3851 if (vmp == kmem_firewall_arena) { 3852 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3853 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3854 cp->cache_maxcolor = cp->cache_mincolor; 3855 cp->cache_flags |= KMF_HASH; 3856 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3857 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3858 !(cp->cache_flags & KMF_AUDIT) && 3859 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3860 cp->cache_slabsize = vmp->vm_quantum; 3861 cp->cache_mincolor = 0; 3862 cp->cache_maxcolor = 3863 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3864 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3865 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3866 } else { 3867 size_t chunks, bestfit, waste, slabsize; 3868 size_t minwaste = LONG_MAX; 3869 3870 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3871 slabsize = P2ROUNDUP(chunksize * chunks, 3872 vmp->vm_quantum); 3873 chunks = slabsize / chunksize; 3874 waste = (slabsize % chunksize) / chunks; 3875 if (waste < minwaste) { 3876 minwaste = waste; 3877 bestfit = slabsize; 3878 } 3879 } 3880 if (cflags & KMC_QCACHE) 3881 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3882 cp->cache_slabsize = bestfit; 3883 cp->cache_mincolor = 0; 3884 cp->cache_maxcolor = bestfit % chunksize; 3885 cp->cache_flags |= KMF_HASH; 3886 } 3887 3888 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3889 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3890 3891 /* 3892 * Disallowing prefill when either the DEBUG or HASH flag is set or when 3893 * there is a constructor avoids some tricky issues with debug setup 3894 * that may be revisited later. We cannot allow prefill in a 3895 * metadata cache because of potential recursion. 3896 */ 3897 if (vmp == kmem_msb_arena || 3898 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) || 3899 cp->cache_constructor != NULL) 3900 cp->cache_flags &= ~KMF_PREFILL; 3901 3902 if (cp->cache_flags & KMF_HASH) { 3903 ASSERT(!(cflags & KMC_NOHASH)); 3904 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3905 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3906 } 3907 3908 if (cp->cache_maxcolor >= vmp->vm_quantum) 3909 cp->cache_maxcolor = vmp->vm_quantum - 1; 3910 3911 cp->cache_color = cp->cache_mincolor; 3912 3913 /* 3914 * Initialize the rest of the slab layer. 3915 */ 3916 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3917 3918 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3919 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3920 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3921 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3922 /* reuse partial slab AVL linkage for complete slab list linkage */ 3923 list_create(&cp->cache_complete_slabs, 3924 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3925 3926 if (cp->cache_flags & KMF_HASH) { 3927 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3928 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3929 bzero(cp->cache_hash_table, 3930 KMEM_HASH_INITIAL * sizeof (void *)); 3931 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3932 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3933 } 3934 3935 /* 3936 * Initialize the depot. 3937 */ 3938 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3939 3940 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3941 continue; 3942 3943 cp->cache_magtype = mtp; 3944 3945 /* 3946 * Initialize the CPU layer. 3947 */ 3948 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3949 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3950 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3951 ccp->cc_flags = cp->cache_flags; 3952 ccp->cc_rounds = -1; 3953 ccp->cc_prounds = -1; 3954 } 3955 3956 /* 3957 * Create the cache's kstats. 3958 */ 3959 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3960 "kmem_cache", KSTAT_TYPE_NAMED, 3961 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3962 KSTAT_FLAG_VIRTUAL)) != NULL) { 3963 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3964 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3965 cp->cache_kstat->ks_private = cp; 3966 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3967 kstat_install(cp->cache_kstat); 3968 } 3969 3970 /* 3971 * Add the cache to the global list. This makes it visible 3972 * to kmem_update(), so the cache must be ready for business. 3973 */ 3974 mutex_enter(&kmem_cache_lock); 3975 list_insert_tail(&kmem_caches, cp); 3976 mutex_exit(&kmem_cache_lock); 3977 3978 if (kmem_ready) 3979 kmem_cache_magazine_enable(cp); 3980 3981 return (cp); 3982 } 3983 3984 static int 3985 kmem_move_cmp(const void *buf, const void *p) 3986 { 3987 const kmem_move_t *kmm = p; 3988 uintptr_t v1 = (uintptr_t)buf; 3989 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3990 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3991 } 3992 3993 static void 3994 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3995 { 3996 kmd->kmd_reclaim_numer = 1; 3997 } 3998 3999 /* 4000 * Initially, when choosing candidate slabs for buffers to move, we want to be 4001 * very selective and take only slabs that are less than 4002 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 4003 * slabs, then we raise the allocation ceiling incrementally. The reclaim 4004 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 4005 * longer fragmented. 4006 */ 4007 static void 4008 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 4009 { 4010 if (direction > 0) { 4011 /* make it easier to find a candidate slab */ 4012 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 4013 kmd->kmd_reclaim_numer++; 4014 } 4015 } else { 4016 /* be more selective */ 4017 if (kmd->kmd_reclaim_numer > 1) { 4018 kmd->kmd_reclaim_numer--; 4019 } 4020 } 4021 } 4022 4023 void 4024 kmem_cache_set_move(kmem_cache_t *cp, 4025 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 4026 { 4027 kmem_defrag_t *defrag; 4028 4029 ASSERT(move != NULL); 4030 /* 4031 * The consolidator does not support NOTOUCH caches because kmem cannot 4032 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 4033 * a low order bit usable by clients to distinguish uninitialized memory 4034 * from known objects (see kmem_slab_create). 4035 */ 4036 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 4037 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 4038 4039 /* 4040 * We should not be holding anyone's cache lock when calling 4041 * kmem_cache_alloc(), so allocate in all cases before acquiring the 4042 * lock. 4043 */ 4044 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 4045 4046 mutex_enter(&cp->cache_lock); 4047 4048 if (KMEM_IS_MOVABLE(cp)) { 4049 if (cp->cache_move == NULL) { 4050 ASSERT(cp->cache_slab_alloc == 0); 4051 4052 cp->cache_defrag = defrag; 4053 defrag = NULL; /* nothing to free */ 4054 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 4055 avl_create(&cp->cache_defrag->kmd_moves_pending, 4056 kmem_move_cmp, sizeof (kmem_move_t), 4057 offsetof(kmem_move_t, kmm_entry)); 4058 /* LINTED: E_TRUE_LOGICAL_EXPR */ 4059 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 4060 /* reuse the slab's AVL linkage for deadlist linkage */ 4061 list_create(&cp->cache_defrag->kmd_deadlist, 4062 sizeof (kmem_slab_t), 4063 offsetof(kmem_slab_t, slab_link)); 4064 kmem_reset_reclaim_threshold(cp->cache_defrag); 4065 } 4066 cp->cache_move = move; 4067 } 4068 4069 mutex_exit(&cp->cache_lock); 4070 4071 if (defrag != NULL) { 4072 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 4073 } 4074 } 4075 4076 void 4077 kmem_cache_destroy(kmem_cache_t *cp) 4078 { 4079 int cpu_seqid; 4080 4081 /* 4082 * Remove the cache from the global cache list so that no one else 4083 * can schedule tasks on its behalf, wait for any pending tasks to 4084 * complete, purge the cache, and then destroy it. 4085 */ 4086 mutex_enter(&kmem_cache_lock); 4087 list_remove(&kmem_caches, cp); 4088 mutex_exit(&kmem_cache_lock); 4089 4090 if (kmem_taskq != NULL) 4091 taskq_wait(kmem_taskq); 4092 if (kmem_move_taskq != NULL) 4093 taskq_wait(kmem_move_taskq); 4094 4095 kmem_cache_magazine_purge(cp); 4096 4097 mutex_enter(&cp->cache_lock); 4098 if (cp->cache_buftotal != 0) 4099 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 4100 cp->cache_name, (void *)cp); 4101 if (cp->cache_defrag != NULL) { 4102 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 4103 list_destroy(&cp->cache_defrag->kmd_deadlist); 4104 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 4105 cp->cache_defrag = NULL; 4106 } 4107 /* 4108 * The cache is now dead. There should be no further activity. We 4109 * enforce this by setting land mines in the constructor, destructor, 4110 * reclaim, and move routines that induce a kernel text fault if 4111 * invoked. 4112 */ 4113 cp->cache_constructor = (int (*)(void *, void *, int))1; 4114 cp->cache_destructor = (void (*)(void *, void *))2; 4115 cp->cache_reclaim = (void (*)(void *))3; 4116 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 4117 mutex_exit(&cp->cache_lock); 4118 4119 kstat_delete(cp->cache_kstat); 4120 4121 if (cp->cache_hash_table != NULL) 4122 vmem_free(kmem_hash_arena, cp->cache_hash_table, 4123 (cp->cache_hash_mask + 1) * sizeof (void *)); 4124 4125 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 4126 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 4127 4128 mutex_destroy(&cp->cache_depot_lock); 4129 mutex_destroy(&cp->cache_lock); 4130 4131 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 4132 } 4133 4134 /*ARGSUSED*/ 4135 static int 4136 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 4137 { 4138 ASSERT(MUTEX_HELD(&cpu_lock)); 4139 if (what == CPU_UNCONFIG) { 4140 kmem_cache_applyall(kmem_cache_magazine_purge, 4141 kmem_taskq, TQ_SLEEP); 4142 kmem_cache_applyall(kmem_cache_magazine_enable, 4143 kmem_taskq, TQ_SLEEP); 4144 } 4145 return (0); 4146 } 4147 4148 static void 4149 kmem_alloc_caches_create(const int *array, size_t count, 4150 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 4151 { 4152 char name[KMEM_CACHE_NAMELEN + 1]; 4153 size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 4154 size_t size = table_unit; 4155 int i; 4156 4157 for (i = 0; i < count; i++) { 4158 size_t cache_size = array[i]; 4159 size_t align = KMEM_ALIGN; 4160 kmem_cache_t *cp; 4161 4162 /* if the table has an entry for maxbuf, we're done */ 4163 if (size > maxbuf) 4164 break; 4165 4166 /* cache size must be a multiple of the table unit */ 4167 ASSERT(P2PHASE(cache_size, table_unit) == 0); 4168 4169 /* 4170 * If they allocate a multiple of the coherency granularity, 4171 * they get a coherency-granularity-aligned address. 4172 */ 4173 if (IS_P2ALIGNED(cache_size, 64)) 4174 align = 64; 4175 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 4176 align = PAGESIZE; 4177 (void) snprintf(name, sizeof (name), 4178 "kmem_alloc_%lu", cache_size); 4179 cp = kmem_cache_create(name, cache_size, align, 4180 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 4181 4182 while (size <= cache_size) { 4183 alloc_table[(size - 1) >> shift] = cp; 4184 size += table_unit; 4185 } 4186 } 4187 4188 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 4189 } 4190 4191 static void 4192 kmem_cache_init(int pass, int use_large_pages) 4193 { 4194 int i; 4195 size_t maxbuf; 4196 kmem_magtype_t *mtp; 4197 4198 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 4199 char name[KMEM_CACHE_NAMELEN + 1]; 4200 4201 mtp = &kmem_magtype[i]; 4202 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 4203 mtp->mt_cache = kmem_cache_create(name, 4204 (mtp->mt_magsize + 1) * sizeof (void *), 4205 mtp->mt_align, NULL, NULL, NULL, NULL, 4206 kmem_msb_arena, KMC_NOHASH); 4207 } 4208 4209 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 4210 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 4211 kmem_msb_arena, KMC_NOHASH); 4212 4213 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 4214 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 4215 kmem_msb_arena, KMC_NOHASH); 4216 4217 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 4218 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 4219 kmem_msb_arena, KMC_NOHASH); 4220 4221 if (pass == 2) { 4222 kmem_va_arena = vmem_create("kmem_va", 4223 NULL, 0, PAGESIZE, 4224 vmem_alloc, vmem_free, heap_arena, 4225 8 * PAGESIZE, VM_SLEEP); 4226 4227 if (use_large_pages) { 4228 kmem_default_arena = vmem_xcreate("kmem_default", 4229 NULL, 0, PAGESIZE, 4230 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 4231 0, VMC_DUMPSAFE | VM_SLEEP); 4232 } else { 4233 kmem_default_arena = vmem_create("kmem_default", 4234 NULL, 0, PAGESIZE, 4235 segkmem_alloc, segkmem_free, kmem_va_arena, 4236 0, VMC_DUMPSAFE | VM_SLEEP); 4237 } 4238 4239 /* Figure out what our maximum cache size is */ 4240 maxbuf = kmem_max_cached; 4241 if (maxbuf <= KMEM_MAXBUF) { 4242 maxbuf = 0; 4243 kmem_max_cached = KMEM_MAXBUF; 4244 } else { 4245 size_t size = 0; 4246 size_t max = 4247 sizeof (kmem_big_alloc_sizes) / sizeof (int); 4248 /* 4249 * Round maxbuf up to an existing cache size. If maxbuf 4250 * is larger than the largest cache, we truncate it to 4251 * the largest cache's size. 4252 */ 4253 for (i = 0; i < max; i++) { 4254 size = kmem_big_alloc_sizes[i]; 4255 if (maxbuf <= size) 4256 break; 4257 } 4258 kmem_max_cached = maxbuf = size; 4259 } 4260 4261 /* 4262 * The big alloc table may not be completely overwritten, so 4263 * we clear out any stale cache pointers from the first pass. 4264 */ 4265 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 4266 } else { 4267 /* 4268 * During the first pass, the kmem_alloc_* caches 4269 * are treated as metadata. 4270 */ 4271 kmem_default_arena = kmem_msb_arena; 4272 maxbuf = KMEM_BIG_MAXBUF_32BIT; 4273 } 4274 4275 /* 4276 * Set up the default caches to back kmem_alloc() 4277 */ 4278 kmem_alloc_caches_create( 4279 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 4280 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 4281 4282 kmem_alloc_caches_create( 4283 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 4284 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 4285 4286 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 4287 } 4288 4289 void 4290 kmem_init(void) 4291 { 4292 kmem_cache_t *cp; 4293 int old_kmem_flags = kmem_flags; 4294 int use_large_pages = 0; 4295 size_t maxverify, minfirewall; 4296 4297 kstat_init(); 4298 4299 /* 4300 * Don't do firewalled allocations if the heap is less than 1TB 4301 * (i.e. on a 32-bit kernel) 4302 * The resulting VM_NEXTFIT allocations would create too much 4303 * fragmentation in a small heap. 4304 */ 4305 #if defined(_LP64) 4306 maxverify = minfirewall = PAGESIZE / 2; 4307 #else 4308 maxverify = minfirewall = ULONG_MAX; 4309 #endif 4310 4311 /* LINTED */ 4312 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 4313 4314 list_create(&kmem_caches, sizeof (kmem_cache_t), 4315 offsetof(kmem_cache_t, cache_link)); 4316 4317 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 4318 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 4319 VM_SLEEP | VMC_NO_QCACHE); 4320 4321 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 4322 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 4323 VMC_DUMPSAFE | VM_SLEEP); 4324 4325 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 4326 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4327 4328 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 4329 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4330 4331 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 4332 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4333 4334 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 4335 NULL, 0, PAGESIZE, 4336 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 4337 0, VM_SLEEP); 4338 4339 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 4340 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, 4341 VMC_DUMPSAFE | VM_SLEEP); 4342 4343 /* temporary oversize arena for mod_read_system_file */ 4344 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 4345 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4346 4347 kmem_reap_interval = 15 * hz; 4348 4349 /* 4350 * Read /etc/system. This is a chicken-and-egg problem because 4351 * kmem_flags may be set in /etc/system, but mod_read_system_file() 4352 * needs to use the allocator. The simplest solution is to create 4353 * all the standard kmem caches, read /etc/system, destroy all the 4354 * caches we just created, and then create them all again in light 4355 * of the (possibly) new kmem_flags and other kmem tunables. 4356 */ 4357 kmem_cache_init(1, 0); 4358 4359 mod_read_system_file(boothowto & RB_ASKNAME); 4360 4361 while ((cp = list_tail(&kmem_caches)) != NULL) 4362 kmem_cache_destroy(cp); 4363 4364 vmem_destroy(kmem_oversize_arena); 4365 4366 if (old_kmem_flags & KMF_STICKY) 4367 kmem_flags = old_kmem_flags; 4368 4369 if (!(kmem_flags & KMF_AUDIT)) 4370 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 4371 4372 if (kmem_maxverify == 0) 4373 kmem_maxverify = maxverify; 4374 4375 if (kmem_minfirewall == 0) 4376 kmem_minfirewall = minfirewall; 4377 4378 /* 4379 * give segkmem a chance to figure out if we are using large pages 4380 * for the kernel heap 4381 */ 4382 use_large_pages = segkmem_lpsetup(); 4383 4384 /* 4385 * To protect against corruption, we keep the actual number of callers 4386 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 4387 * to 16, since the overhead for small buffers quickly gets out of 4388 * hand. 4389 * 4390 * The real limit would depend on the needs of the largest KMC_NOHASH 4391 * cache. 4392 */ 4393 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 4394 kmem_lite_pcs = kmem_lite_count; 4395 4396 /* 4397 * Normally, we firewall oversized allocations when possible, but 4398 * if we are using large pages for kernel memory, and we don't have 4399 * any non-LITE debugging flags set, we want to allocate oversized 4400 * buffers from large pages, and so skip the firewalling. 4401 */ 4402 if (use_large_pages && 4403 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 4404 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 4405 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 4406 0, VMC_DUMPSAFE | VM_SLEEP); 4407 } else { 4408 kmem_oversize_arena = vmem_create("kmem_oversize", 4409 NULL, 0, PAGESIZE, 4410 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 4411 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | 4412 VM_SLEEP); 4413 } 4414 4415 kmem_cache_init(2, use_large_pages); 4416 4417 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 4418 if (kmem_transaction_log_size == 0) 4419 kmem_transaction_log_size = kmem_maxavail() / 50; 4420 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 4421 } 4422 4423 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 4424 if (kmem_content_log_size == 0) 4425 kmem_content_log_size = kmem_maxavail() / 50; 4426 kmem_content_log = kmem_log_init(kmem_content_log_size); 4427 } 4428 4429 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 4430 4431 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 4432 4433 /* 4434 * Initialize STREAMS message caches so allocb() is available. 4435 * This allows us to initialize the logging framework (cmn_err(9F), 4436 * strlog(9F), etc) so we can start recording messages. 4437 */ 4438 streams_msg_init(); 4439 4440 /* 4441 * Initialize the ZSD framework in Zones so modules loaded henceforth 4442 * can register their callbacks. 4443 */ 4444 zone_zsd_init(); 4445 4446 log_init(); 4447 taskq_init(); 4448 4449 /* 4450 * Warn about invalid or dangerous values of kmem_flags. 4451 * Always warn about unsupported values. 4452 */ 4453 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 4454 KMF_CONTENTS | KMF_LITE)) != 0) || 4455 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 4456 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 4457 "See the Solaris Tunable Parameters Reference Manual.", 4458 kmem_flags); 4459 4460 #ifdef DEBUG 4461 if ((kmem_flags & KMF_DEBUG) == 0) 4462 cmn_err(CE_NOTE, "kmem debugging disabled."); 4463 #else 4464 /* 4465 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 4466 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 4467 * if KMF_AUDIT is set). We should warn the user about the performance 4468 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 4469 * isn't set (since that disables AUDIT). 4470 */ 4471 if (!(kmem_flags & KMF_LITE) && 4472 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 4473 cmn_err(CE_WARN, "High-overhead kmem debugging features " 4474 "enabled (kmem_flags = 0x%x). Performance degradation " 4475 "and large memory overhead possible. See the Solaris " 4476 "Tunable Parameters Reference Manual.", kmem_flags); 4477 #endif /* not DEBUG */ 4478 4479 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 4480 4481 kmem_ready = 1; 4482 4483 /* 4484 * Initialize the platform-specific aligned/DMA memory allocator. 4485 */ 4486 ka_init(); 4487 4488 /* 4489 * Initialize 32-bit ID cache. 4490 */ 4491 id32_init(); 4492 4493 /* 4494 * Initialize the networking stack so modules loaded can 4495 * register their callbacks. 4496 */ 4497 netstack_init(); 4498 } 4499 4500 static void 4501 kmem_move_init(void) 4502 { 4503 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4504 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4505 kmem_msb_arena, KMC_NOHASH); 4506 kmem_move_cache = kmem_cache_create("kmem_move_cache", 4507 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4508 kmem_msb_arena, KMC_NOHASH); 4509 4510 /* 4511 * kmem guarantees that move callbacks are sequential and that even 4512 * across multiple caches no two moves ever execute simultaneously. 4513 * Move callbacks are processed on a separate taskq so that client code 4514 * does not interfere with internal maintenance tasks. 4515 */ 4516 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4517 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4518 } 4519 4520 void 4521 kmem_thread_init(void) 4522 { 4523 kmem_move_init(); 4524 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4525 300, INT_MAX, TASKQ_PREPOPULATE); 4526 } 4527 4528 void 4529 kmem_mp_init(void) 4530 { 4531 mutex_enter(&cpu_lock); 4532 register_cpu_setup_func(kmem_cpu_setup, NULL); 4533 mutex_exit(&cpu_lock); 4534 4535 kmem_update_timeout(NULL); 4536 4537 taskq_mp_init(); 4538 } 4539 4540 /* 4541 * Return the slab of the allocated buffer, or NULL if the buffer is not 4542 * allocated. This function may be called with a known slab address to determine 4543 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4544 * an allocated buffer's slab. 4545 */ 4546 static kmem_slab_t * 4547 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4548 { 4549 kmem_bufctl_t *bcp, *bufbcp; 4550 4551 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4552 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4553 4554 if (cp->cache_flags & KMF_HASH) { 4555 for (bcp = *KMEM_HASH(cp, buf); 4556 (bcp != NULL) && (bcp->bc_addr != buf); 4557 bcp = bcp->bc_next) { 4558 continue; 4559 } 4560 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4561 return (bcp == NULL ? NULL : bcp->bc_slab); 4562 } 4563 4564 if (sp == NULL) { 4565 sp = KMEM_SLAB(cp, buf); 4566 } 4567 bufbcp = KMEM_BUFCTL(cp, buf); 4568 for (bcp = sp->slab_head; 4569 (bcp != NULL) && (bcp != bufbcp); 4570 bcp = bcp->bc_next) { 4571 continue; 4572 } 4573 return (bcp == NULL ? sp : NULL); 4574 } 4575 4576 static boolean_t 4577 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4578 { 4579 long refcnt = sp->slab_refcnt; 4580 4581 ASSERT(cp->cache_defrag != NULL); 4582 4583 /* 4584 * For code coverage we want to be able to move an object within the 4585 * same slab (the only partial slab) even if allocating the destination 4586 * buffer resulted in a completely allocated slab. 4587 */ 4588 if (flags & KMM_DEBUG) { 4589 return ((flags & KMM_DESPERATE) || 4590 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4591 } 4592 4593 /* If we're desperate, we don't care if the client said NO. */ 4594 if (flags & KMM_DESPERATE) { 4595 return (refcnt < sp->slab_chunks); /* any partial */ 4596 } 4597 4598 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4599 return (B_FALSE); 4600 } 4601 4602 if ((refcnt == 1) || kmem_move_any_partial) { 4603 return (refcnt < sp->slab_chunks); 4604 } 4605 4606 /* 4607 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4608 * slabs with a progressively higher percentage of used buffers can be 4609 * reclaimed until the cache as a whole is no longer fragmented. 4610 * 4611 * sp->slab_refcnt kmd_reclaim_numer 4612 * --------------- < ------------------ 4613 * sp->slab_chunks KMEM_VOID_FRACTION 4614 */ 4615 return ((refcnt * KMEM_VOID_FRACTION) < 4616 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4617 } 4618 4619 static void * 4620 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf, 4621 void *tbuf) 4622 { 4623 int i; /* magazine round index */ 4624 4625 for (i = 0; i < n; i++) { 4626 if (buf == m->mag_round[i]) { 4627 if (cp->cache_flags & KMF_BUFTAG) { 4628 (void) kmem_cache_free_debug(cp, tbuf, 4629 caller()); 4630 } 4631 m->mag_round[i] = tbuf; 4632 return (buf); 4633 } 4634 } 4635 4636 return (NULL); 4637 } 4638 4639 /* 4640 * Hunt the magazine layer for the given buffer. If found, the buffer is 4641 * removed from the magazine layer and returned, otherwise NULL is returned. 4642 * The state of the returned buffer is freed and constructed. 4643 */ 4644 static void * 4645 kmem_hunt_mags(kmem_cache_t *cp, void *buf) 4646 { 4647 kmem_cpu_cache_t *ccp; 4648 kmem_magazine_t *m; 4649 int cpu_seqid; 4650 int n; /* magazine rounds */ 4651 void *tbuf; /* temporary swap buffer */ 4652 4653 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4654 4655 /* 4656 * Allocated a buffer to swap with the one we hope to pull out of a 4657 * magazine when found. 4658 */ 4659 tbuf = kmem_cache_alloc(cp, KM_NOSLEEP); 4660 if (tbuf == NULL) { 4661 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail); 4662 return (NULL); 4663 } 4664 if (tbuf == buf) { 4665 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky); 4666 if (cp->cache_flags & KMF_BUFTAG) { 4667 (void) kmem_cache_free_debug(cp, buf, caller()); 4668 } 4669 return (buf); 4670 } 4671 4672 /* Hunt the depot. */ 4673 mutex_enter(&cp->cache_depot_lock); 4674 n = cp->cache_magtype->mt_magsize; 4675 for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) { 4676 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4677 mutex_exit(&cp->cache_depot_lock); 4678 return (buf); 4679 } 4680 } 4681 mutex_exit(&cp->cache_depot_lock); 4682 4683 /* Hunt the per-CPU magazines. */ 4684 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 4685 ccp = &cp->cache_cpu[cpu_seqid]; 4686 4687 mutex_enter(&ccp->cc_lock); 4688 m = ccp->cc_loaded; 4689 n = ccp->cc_rounds; 4690 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4691 mutex_exit(&ccp->cc_lock); 4692 return (buf); 4693 } 4694 m = ccp->cc_ploaded; 4695 n = ccp->cc_prounds; 4696 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4697 mutex_exit(&ccp->cc_lock); 4698 return (buf); 4699 } 4700 mutex_exit(&ccp->cc_lock); 4701 } 4702 4703 kmem_cache_free(cp, tbuf); 4704 return (NULL); 4705 } 4706 4707 /* 4708 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4709 * or when the buffer is freed. 4710 */ 4711 static void 4712 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4713 { 4714 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4715 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4716 4717 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4718 return; 4719 } 4720 4721 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4722 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4723 avl_remove(&cp->cache_partial_slabs, sp); 4724 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4725 sp->slab_stuck_offset = (uint32_t)-1; 4726 avl_add(&cp->cache_partial_slabs, sp); 4727 } 4728 } else { 4729 sp->slab_later_count = 0; 4730 sp->slab_stuck_offset = (uint32_t)-1; 4731 } 4732 } 4733 4734 static void 4735 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4736 { 4737 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4738 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4739 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4740 4741 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4742 return; 4743 } 4744 4745 avl_remove(&cp->cache_partial_slabs, sp); 4746 sp->slab_later_count = 0; 4747 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4748 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4749 avl_add(&cp->cache_partial_slabs, sp); 4750 } 4751 4752 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4753 4754 /* 4755 * The move callback takes two buffer addresses, the buffer to be moved, and a 4756 * newly allocated and constructed buffer selected by kmem as the destination. 4757 * It also takes the size of the buffer and an optional user argument specified 4758 * at cache creation time. kmem guarantees that the buffer to be moved has not 4759 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4760 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4761 * the client to safely determine whether or not it is still using the buffer. 4762 * The client must not free either of the buffers passed to the move callback, 4763 * since kmem wants to free them directly to the slab layer. The client response 4764 * tells kmem which of the two buffers to free: 4765 * 4766 * YES kmem frees the old buffer (the move was successful) 4767 * NO kmem frees the new buffer, marks the slab of the old buffer 4768 * non-reclaimable to avoid bothering the client again 4769 * LATER kmem frees the new buffer, increments slab_later_count 4770 * DONT_KNOW kmem frees the new buffer, searches mags for the old buffer 4771 * DONT_NEED kmem frees both the old buffer and the new buffer 4772 * 4773 * The pending callback argument now being processed contains both of the 4774 * buffers (old and new) passed to the move callback function, the slab of the 4775 * old buffer, and flags related to the move request, such as whether or not the 4776 * system was desperate for memory. 4777 * 4778 * Slabs are not freed while there is a pending callback, but instead are kept 4779 * on a deadlist, which is drained after the last callback completes. This means 4780 * that slabs are safe to access until kmem_move_end(), no matter how many of 4781 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4782 * zero for as long as the slab remains on the deadlist and until the slab is 4783 * freed. 4784 */ 4785 static void 4786 kmem_move_buffer(kmem_move_t *callback) 4787 { 4788 kmem_cbrc_t response; 4789 kmem_slab_t *sp = callback->kmm_from_slab; 4790 kmem_cache_t *cp = sp->slab_cache; 4791 boolean_t free_on_slab; 4792 4793 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4794 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4795 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4796 4797 /* 4798 * The number of allocated buffers on the slab may have changed since we 4799 * last checked the slab's reclaimability (when the pending move was 4800 * enqueued), or the client may have responded NO when asked to move 4801 * another buffer on the same slab. 4802 */ 4803 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4804 KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable); 4805 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4806 kmem_move_stats.kms_notify_no_longer_reclaimable); 4807 kmem_slab_free(cp, callback->kmm_to_buf); 4808 kmem_move_end(cp, callback); 4809 return; 4810 } 4811 4812 /* 4813 * Hunting magazines is expensive, so we'll wait to do that until the 4814 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer 4815 * is cheap, so we might as well do that here in case we can avoid 4816 * bothering the client. 4817 */ 4818 mutex_enter(&cp->cache_lock); 4819 free_on_slab = (kmem_slab_allocated(cp, sp, 4820 callback->kmm_from_buf) == NULL); 4821 mutex_exit(&cp->cache_lock); 4822 4823 if (free_on_slab) { 4824 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab); 4825 kmem_slab_free(cp, callback->kmm_to_buf); 4826 kmem_move_end(cp, callback); 4827 return; 4828 } 4829 4830 if (cp->cache_flags & KMF_BUFTAG) { 4831 /* 4832 * Make kmem_cache_alloc_debug() apply the constructor for us. 4833 */ 4834 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4835 KM_NOSLEEP, 1, caller()) != 0) { 4836 KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail); 4837 kmem_move_end(cp, callback); 4838 return; 4839 } 4840 } else if (cp->cache_constructor != NULL && 4841 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4842 KM_NOSLEEP) != 0) { 4843 atomic_inc_64(&cp->cache_alloc_fail); 4844 KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail); 4845 kmem_slab_free(cp, callback->kmm_to_buf); 4846 kmem_move_end(cp, callback); 4847 return; 4848 } 4849 4850 KMEM_STAT_ADD(kmem_move_stats.kms_callbacks); 4851 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4852 kmem_move_stats.kms_notify_callbacks); 4853 cp->cache_defrag->kmd_callbacks++; 4854 cp->cache_defrag->kmd_thread = curthread; 4855 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4856 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4857 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4858 callback); 4859 4860 response = cp->cache_move(callback->kmm_from_buf, 4861 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4862 4863 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4864 callback, kmem_cbrc_t, response); 4865 cp->cache_defrag->kmd_thread = NULL; 4866 cp->cache_defrag->kmd_from_buf = NULL; 4867 cp->cache_defrag->kmd_to_buf = NULL; 4868 4869 if (response == KMEM_CBRC_YES) { 4870 KMEM_STAT_ADD(kmem_move_stats.kms_yes); 4871 cp->cache_defrag->kmd_yes++; 4872 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4873 /* slab safe to access until kmem_move_end() */ 4874 if (sp->slab_refcnt == 0) 4875 cp->cache_defrag->kmd_slabs_freed++; 4876 mutex_enter(&cp->cache_lock); 4877 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4878 mutex_exit(&cp->cache_lock); 4879 kmem_move_end(cp, callback); 4880 return; 4881 } 4882 4883 switch (response) { 4884 case KMEM_CBRC_NO: 4885 KMEM_STAT_ADD(kmem_move_stats.kms_no); 4886 cp->cache_defrag->kmd_no++; 4887 mutex_enter(&cp->cache_lock); 4888 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4889 mutex_exit(&cp->cache_lock); 4890 break; 4891 case KMEM_CBRC_LATER: 4892 KMEM_STAT_ADD(kmem_move_stats.kms_later); 4893 cp->cache_defrag->kmd_later++; 4894 mutex_enter(&cp->cache_lock); 4895 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4896 mutex_exit(&cp->cache_lock); 4897 break; 4898 } 4899 4900 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4901 KMEM_STAT_ADD(kmem_move_stats.kms_disbelief); 4902 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4903 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4904 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4905 callback->kmm_from_buf); 4906 } 4907 mutex_exit(&cp->cache_lock); 4908 break; 4909 case KMEM_CBRC_DONT_NEED: 4910 KMEM_STAT_ADD(kmem_move_stats.kms_dont_need); 4911 cp->cache_defrag->kmd_dont_need++; 4912 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4913 if (sp->slab_refcnt == 0) 4914 cp->cache_defrag->kmd_slabs_freed++; 4915 mutex_enter(&cp->cache_lock); 4916 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4917 mutex_exit(&cp->cache_lock); 4918 break; 4919 case KMEM_CBRC_DONT_KNOW: 4920 KMEM_STAT_ADD(kmem_move_stats.kms_dont_know); 4921 cp->cache_defrag->kmd_dont_know++; 4922 if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) { 4923 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag); 4924 cp->cache_defrag->kmd_hunt_found++; 4925 kmem_slab_free_constructed(cp, callback->kmm_from_buf, 4926 B_TRUE); 4927 if (sp->slab_refcnt == 0) 4928 cp->cache_defrag->kmd_slabs_freed++; 4929 mutex_enter(&cp->cache_lock); 4930 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4931 mutex_exit(&cp->cache_lock); 4932 } 4933 break; 4934 default: 4935 panic("'%s' (%p) unexpected move callback response %d\n", 4936 cp->cache_name, (void *)cp, response); 4937 } 4938 4939 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4940 kmem_move_end(cp, callback); 4941 } 4942 4943 /* Return B_FALSE if there is insufficient memory for the move request. */ 4944 static boolean_t 4945 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4946 { 4947 void *to_buf; 4948 avl_index_t index; 4949 kmem_move_t *callback, *pending; 4950 ulong_t n; 4951 4952 ASSERT(taskq_member(kmem_taskq, curthread)); 4953 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4954 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4955 4956 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4957 if (callback == NULL) { 4958 KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail); 4959 return (B_FALSE); 4960 } 4961 4962 callback->kmm_from_slab = sp; 4963 callback->kmm_from_buf = buf; 4964 callback->kmm_flags = flags; 4965 4966 mutex_enter(&cp->cache_lock); 4967 4968 n = avl_numnodes(&cp->cache_partial_slabs); 4969 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4970 mutex_exit(&cp->cache_lock); 4971 kmem_cache_free(kmem_move_cache, callback); 4972 return (B_TRUE); /* there is no need for the move request */ 4973 } 4974 4975 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4976 if (pending != NULL) { 4977 /* 4978 * If the move is already pending and we're desperate now, 4979 * update the move flags. 4980 */ 4981 if (flags & KMM_DESPERATE) { 4982 pending->kmm_flags |= KMM_DESPERATE; 4983 } 4984 mutex_exit(&cp->cache_lock); 4985 KMEM_STAT_ADD(kmem_move_stats.kms_already_pending); 4986 kmem_cache_free(kmem_move_cache, callback); 4987 return (B_TRUE); 4988 } 4989 4990 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs), 4991 B_FALSE); 4992 callback->kmm_to_buf = to_buf; 4993 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4994 4995 mutex_exit(&cp->cache_lock); 4996 4997 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4998 callback, TQ_NOSLEEP)) { 4999 KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail); 5000 mutex_enter(&cp->cache_lock); 5001 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 5002 mutex_exit(&cp->cache_lock); 5003 kmem_slab_free(cp, to_buf); 5004 kmem_cache_free(kmem_move_cache, callback); 5005 return (B_FALSE); 5006 } 5007 5008 return (B_TRUE); 5009 } 5010 5011 static void 5012 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 5013 { 5014 avl_index_t index; 5015 5016 ASSERT(cp->cache_defrag != NULL); 5017 ASSERT(taskq_member(kmem_move_taskq, curthread)); 5018 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 5019 5020 mutex_enter(&cp->cache_lock); 5021 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 5022 callback->kmm_from_buf, &index) != NULL); 5023 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 5024 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 5025 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5026 kmem_slab_t *sp; 5027 5028 /* 5029 * The last pending move completed. Release all slabs from the 5030 * front of the dead list except for any slab at the tail that 5031 * needs to be released from the context of kmem_move_buffers(). 5032 * kmem deferred unmapping the buffers on these slabs in order 5033 * to guarantee that buffers passed to the move callback have 5034 * been touched only by kmem or by the client itself. 5035 */ 5036 while ((sp = list_remove_head(deadlist)) != NULL) { 5037 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 5038 list_insert_tail(deadlist, sp); 5039 break; 5040 } 5041 cp->cache_defrag->kmd_deadcount--; 5042 cp->cache_slab_destroy++; 5043 mutex_exit(&cp->cache_lock); 5044 kmem_slab_destroy(cp, sp); 5045 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 5046 mutex_enter(&cp->cache_lock); 5047 } 5048 } 5049 mutex_exit(&cp->cache_lock); 5050 kmem_cache_free(kmem_move_cache, callback); 5051 } 5052 5053 /* 5054 * Move buffers from least used slabs first by scanning backwards from the end 5055 * of the partial slab list. Scan at most max_scan candidate slabs and move 5056 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 5057 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 5058 * skip slabs with a ratio of allocated buffers at or above the current 5059 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 5060 * scan is aborted) so that the caller can adjust the reclaimability threshold 5061 * depending on how many reclaimable slabs it finds. 5062 * 5063 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 5064 * move request, since it is not valid for kmem_move_begin() to call 5065 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 5066 */ 5067 static int 5068 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 5069 int flags) 5070 { 5071 kmem_slab_t *sp; 5072 void *buf; 5073 int i, j; /* slab index, buffer index */ 5074 int s; /* reclaimable slabs */ 5075 int b; /* allocated (movable) buffers on reclaimable slab */ 5076 boolean_t success; 5077 int refcnt; 5078 int nomove; 5079 5080 ASSERT(taskq_member(kmem_taskq, curthread)); 5081 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5082 ASSERT(kmem_move_cache != NULL); 5083 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 5084 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 5085 avl_numnodes(&cp->cache_partial_slabs) > 1); 5086 5087 if (kmem_move_blocked) { 5088 return (0); 5089 } 5090 5091 if (kmem_move_fulltilt) { 5092 flags |= KMM_DESPERATE; 5093 } 5094 5095 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 5096 /* 5097 * Scan as many slabs as needed to find the desired number of 5098 * candidate slabs. 5099 */ 5100 max_scan = (size_t)-1; 5101 } 5102 5103 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 5104 /* Find as many candidate slabs as possible. */ 5105 max_slabs = (size_t)-1; 5106 } 5107 5108 sp = avl_last(&cp->cache_partial_slabs); 5109 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 5110 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 5111 ((sp != avl_first(&cp->cache_partial_slabs)) || 5112 (flags & KMM_DEBUG)); 5113 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 5114 5115 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 5116 continue; 5117 } 5118 s++; 5119 5120 /* Look for allocated buffers to move. */ 5121 for (j = 0, b = 0, buf = sp->slab_base; 5122 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 5123 buf = (((char *)buf) + cp->cache_chunksize), j++) { 5124 5125 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 5126 continue; 5127 } 5128 5129 b++; 5130 5131 /* 5132 * Prevent the slab from being destroyed while we drop 5133 * cache_lock and while the pending move is not yet 5134 * registered. Flag the pending move while 5135 * kmd_moves_pending may still be empty, since we can't 5136 * yet rely on a non-zero pending move count to prevent 5137 * the slab from being destroyed. 5138 */ 5139 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5140 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5141 /* 5142 * Recheck refcnt and nomove after reacquiring the lock, 5143 * since these control the order of partial slabs, and 5144 * we want to know if we can pick up the scan where we 5145 * left off. 5146 */ 5147 refcnt = sp->slab_refcnt; 5148 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 5149 mutex_exit(&cp->cache_lock); 5150 5151 success = kmem_move_begin(cp, sp, buf, flags); 5152 5153 /* 5154 * Now, before the lock is reacquired, kmem could 5155 * process all pending move requests and purge the 5156 * deadlist, so that upon reacquiring the lock, sp has 5157 * been remapped. Or, the client may free all the 5158 * objects on the slab while the pending moves are still 5159 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 5160 * flag causes the slab to be put at the end of the 5161 * deadlist and prevents it from being destroyed, since 5162 * we plan to destroy it here after reacquiring the 5163 * lock. 5164 */ 5165 mutex_enter(&cp->cache_lock); 5166 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5167 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5168 5169 if (sp->slab_refcnt == 0) { 5170 list_t *deadlist = 5171 &cp->cache_defrag->kmd_deadlist; 5172 list_remove(deadlist, sp); 5173 5174 if (!avl_is_empty( 5175 &cp->cache_defrag->kmd_moves_pending)) { 5176 /* 5177 * A pending move makes it unsafe to 5178 * destroy the slab, because even though 5179 * the move is no longer needed, the 5180 * context where that is determined 5181 * requires the slab to exist. 5182 * Fortunately, a pending move also 5183 * means we don't need to destroy the 5184 * slab here, since it will get 5185 * destroyed along with any other slabs 5186 * on the deadlist after the last 5187 * pending move completes. 5188 */ 5189 list_insert_head(deadlist, sp); 5190 KMEM_STAT_ADD(kmem_move_stats. 5191 kms_endscan_slab_dead); 5192 return (-1); 5193 } 5194 5195 /* 5196 * Destroy the slab now if it was completely 5197 * freed while we dropped cache_lock and there 5198 * are no pending moves. Since slab_refcnt 5199 * cannot change once it reaches zero, no new 5200 * pending moves from that slab are possible. 5201 */ 5202 cp->cache_defrag->kmd_deadcount--; 5203 cp->cache_slab_destroy++; 5204 mutex_exit(&cp->cache_lock); 5205 kmem_slab_destroy(cp, sp); 5206 KMEM_STAT_ADD(kmem_move_stats. 5207 kms_dead_slabs_freed); 5208 KMEM_STAT_ADD(kmem_move_stats. 5209 kms_endscan_slab_destroyed); 5210 mutex_enter(&cp->cache_lock); 5211 /* 5212 * Since we can't pick up the scan where we left 5213 * off, abort the scan and say nothing about the 5214 * number of reclaimable slabs. 5215 */ 5216 return (-1); 5217 } 5218 5219 if (!success) { 5220 /* 5221 * Abort the scan if there is not enough memory 5222 * for the request and say nothing about the 5223 * number of reclaimable slabs. 5224 */ 5225 KMEM_STAT_COND_ADD(s < max_slabs, 5226 kmem_move_stats.kms_endscan_nomem); 5227 return (-1); 5228 } 5229 5230 /* 5231 * The slab's position changed while the lock was 5232 * dropped, so we don't know where we are in the 5233 * sequence any more. 5234 */ 5235 if (sp->slab_refcnt != refcnt) { 5236 /* 5237 * If this is a KMM_DEBUG move, the slab_refcnt 5238 * may have changed because we allocated a 5239 * destination buffer on the same slab. In that 5240 * case, we're not interested in counting it. 5241 */ 5242 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) && 5243 (s < max_slabs), 5244 kmem_move_stats.kms_endscan_refcnt_changed); 5245 return (-1); 5246 } 5247 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) { 5248 KMEM_STAT_COND_ADD(s < max_slabs, 5249 kmem_move_stats.kms_endscan_nomove_changed); 5250 return (-1); 5251 } 5252 5253 /* 5254 * Generating a move request allocates a destination 5255 * buffer from the slab layer, bumping the first partial 5256 * slab if it is completely allocated. If the current 5257 * slab becomes the first partial slab as a result, we 5258 * can't continue to scan backwards. 5259 * 5260 * If this is a KMM_DEBUG move and we allocated the 5261 * destination buffer from the last partial slab, then 5262 * the buffer we're moving is on the same slab and our 5263 * slab_refcnt has changed, causing us to return before 5264 * reaching here if there are no partial slabs left. 5265 */ 5266 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 5267 if (sp == avl_first(&cp->cache_partial_slabs)) { 5268 /* 5269 * We're not interested in a second KMM_DEBUG 5270 * move. 5271 */ 5272 goto end_scan; 5273 } 5274 } 5275 } 5276 end_scan: 5277 5278 KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) && 5279 (s < max_slabs) && 5280 (sp == avl_first(&cp->cache_partial_slabs)), 5281 kmem_move_stats.kms_endscan_freelist); 5282 5283 return (s); 5284 } 5285 5286 typedef struct kmem_move_notify_args { 5287 kmem_cache_t *kmna_cache; 5288 void *kmna_buf; 5289 } kmem_move_notify_args_t; 5290 5291 static void 5292 kmem_cache_move_notify_task(void *arg) 5293 { 5294 kmem_move_notify_args_t *args = arg; 5295 kmem_cache_t *cp = args->kmna_cache; 5296 void *buf = args->kmna_buf; 5297 kmem_slab_t *sp; 5298 5299 ASSERT(taskq_member(kmem_taskq, curthread)); 5300 ASSERT(list_link_active(&cp->cache_link)); 5301 5302 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5303 mutex_enter(&cp->cache_lock); 5304 sp = kmem_slab_allocated(cp, NULL, buf); 5305 5306 /* Ignore the notification if the buffer is no longer allocated. */ 5307 if (sp == NULL) { 5308 mutex_exit(&cp->cache_lock); 5309 return; 5310 } 5311 5312 /* Ignore the notification if there's no reason to move the buffer. */ 5313 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5314 /* 5315 * So far the notification is not ignored. Ignore the 5316 * notification if the slab is not marked by an earlier refusal 5317 * to move a buffer. 5318 */ 5319 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 5320 (sp->slab_later_count == 0)) { 5321 mutex_exit(&cp->cache_lock); 5322 return; 5323 } 5324 5325 kmem_slab_move_yes(cp, sp, buf); 5326 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5327 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5328 mutex_exit(&cp->cache_lock); 5329 /* see kmem_move_buffers() about dropping the lock */ 5330 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 5331 mutex_enter(&cp->cache_lock); 5332 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5333 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5334 if (sp->slab_refcnt == 0) { 5335 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5336 list_remove(deadlist, sp); 5337 5338 if (!avl_is_empty( 5339 &cp->cache_defrag->kmd_moves_pending)) { 5340 list_insert_head(deadlist, sp); 5341 mutex_exit(&cp->cache_lock); 5342 KMEM_STAT_ADD(kmem_move_stats. 5343 kms_notify_slab_dead); 5344 return; 5345 } 5346 5347 cp->cache_defrag->kmd_deadcount--; 5348 cp->cache_slab_destroy++; 5349 mutex_exit(&cp->cache_lock); 5350 kmem_slab_destroy(cp, sp); 5351 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 5352 KMEM_STAT_ADD(kmem_move_stats. 5353 kms_notify_slab_destroyed); 5354 return; 5355 } 5356 } else { 5357 kmem_slab_move_yes(cp, sp, buf); 5358 } 5359 mutex_exit(&cp->cache_lock); 5360 } 5361 5362 void 5363 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 5364 { 5365 kmem_move_notify_args_t *args; 5366 5367 KMEM_STAT_ADD(kmem_move_stats.kms_notify); 5368 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 5369 if (args != NULL) { 5370 args->kmna_cache = cp; 5371 args->kmna_buf = buf; 5372 if (!taskq_dispatch(kmem_taskq, 5373 (task_func_t *)kmem_cache_move_notify_task, args, 5374 TQ_NOSLEEP)) 5375 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5376 } 5377 } 5378 5379 static void 5380 kmem_cache_defrag(kmem_cache_t *cp) 5381 { 5382 size_t n; 5383 5384 ASSERT(cp->cache_defrag != NULL); 5385 5386 mutex_enter(&cp->cache_lock); 5387 n = avl_numnodes(&cp->cache_partial_slabs); 5388 if (n > 1) { 5389 /* kmem_move_buffers() drops and reacquires cache_lock */ 5390 KMEM_STAT_ADD(kmem_move_stats.kms_defrags); 5391 cp->cache_defrag->kmd_defrags++; 5392 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 5393 } 5394 mutex_exit(&cp->cache_lock); 5395 } 5396 5397 /* Is this cache above the fragmentation threshold? */ 5398 static boolean_t 5399 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 5400 { 5401 /* 5402 * nfree kmem_frag_numer 5403 * ------------------ > --------------- 5404 * cp->cache_buftotal kmem_frag_denom 5405 */ 5406 return ((nfree * kmem_frag_denom) > 5407 (cp->cache_buftotal * kmem_frag_numer)); 5408 } 5409 5410 static boolean_t 5411 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 5412 { 5413 boolean_t fragmented; 5414 uint64_t nfree; 5415 5416 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5417 *doreap = B_FALSE; 5418 5419 if (kmem_move_fulltilt) { 5420 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5421 return (B_TRUE); 5422 } 5423 } else { 5424 if ((cp->cache_complete_slab_count + avl_numnodes( 5425 &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 5426 return (B_FALSE); 5427 } 5428 } 5429 5430 nfree = cp->cache_bufslab; 5431 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 5432 kmem_cache_frag_threshold(cp, nfree)); 5433 5434 /* 5435 * Free buffers in the magazine layer appear allocated from the point of 5436 * view of the slab layer. We want to know if the slab layer would 5437 * appear fragmented if we included free buffers from magazines that 5438 * have fallen out of the working set. 5439 */ 5440 if (!fragmented) { 5441 long reap; 5442 5443 mutex_enter(&cp->cache_depot_lock); 5444 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5445 reap = MIN(reap, cp->cache_full.ml_total); 5446 mutex_exit(&cp->cache_depot_lock); 5447 5448 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5449 if (kmem_cache_frag_threshold(cp, nfree)) { 5450 *doreap = B_TRUE; 5451 } 5452 } 5453 5454 return (fragmented); 5455 } 5456 5457 /* Called periodically from kmem_taskq */ 5458 static void 5459 kmem_cache_scan(kmem_cache_t *cp) 5460 { 5461 boolean_t reap = B_FALSE; 5462 kmem_defrag_t *kmd; 5463 5464 ASSERT(taskq_member(kmem_taskq, curthread)); 5465 5466 mutex_enter(&cp->cache_lock); 5467 5468 kmd = cp->cache_defrag; 5469 if (kmd->kmd_consolidate > 0) { 5470 kmd->kmd_consolidate--; 5471 mutex_exit(&cp->cache_lock); 5472 kmem_cache_reap(cp); 5473 return; 5474 } 5475 5476 if (kmem_cache_is_fragmented(cp, &reap)) { 5477 size_t slabs_found; 5478 5479 /* 5480 * Consolidate reclaimable slabs from the end of the partial 5481 * slab list (scan at most kmem_reclaim_scan_range slabs to find 5482 * reclaimable slabs). Keep track of how many candidate slabs we 5483 * looked for and how many we actually found so we can adjust 5484 * the definition of a candidate slab if we're having trouble 5485 * finding them. 5486 * 5487 * kmem_move_buffers() drops and reacquires cache_lock. 5488 */ 5489 KMEM_STAT_ADD(kmem_move_stats.kms_scans); 5490 kmd->kmd_scans++; 5491 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5492 kmem_reclaim_max_slabs, 0); 5493 if (slabs_found >= 0) { 5494 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5495 kmd->kmd_slabs_found += slabs_found; 5496 } 5497 5498 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5499 kmd->kmd_tries = 0; 5500 5501 /* 5502 * If we had difficulty finding candidate slabs in 5503 * previous scans, adjust the threshold so that 5504 * candidates are easier to find. 5505 */ 5506 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5507 kmem_adjust_reclaim_threshold(kmd, -1); 5508 } else if ((kmd->kmd_slabs_found * 2) < 5509 kmd->kmd_slabs_sought) { 5510 kmem_adjust_reclaim_threshold(kmd, 1); 5511 } 5512 kmd->kmd_slabs_sought = 0; 5513 kmd->kmd_slabs_found = 0; 5514 } 5515 } else { 5516 kmem_reset_reclaim_threshold(cp->cache_defrag); 5517 #ifdef DEBUG 5518 if (!avl_is_empty(&cp->cache_partial_slabs)) { 5519 /* 5520 * In a debug kernel we want the consolidator to 5521 * run occasionally even when there is plenty of 5522 * memory. 5523 */ 5524 uint16_t debug_rand; 5525 5526 (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5527 if (!kmem_move_noreap && 5528 ((debug_rand % kmem_mtb_reap) == 0)) { 5529 mutex_exit(&cp->cache_lock); 5530 KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps); 5531 kmem_cache_reap(cp); 5532 return; 5533 } else if ((debug_rand % kmem_mtb_move) == 0) { 5534 KMEM_STAT_ADD(kmem_move_stats.kms_scans); 5535 KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans); 5536 kmd->kmd_scans++; 5537 (void) kmem_move_buffers(cp, 5538 kmem_reclaim_scan_range, 1, KMM_DEBUG); 5539 } 5540 } 5541 #endif /* DEBUG */ 5542 } 5543 5544 mutex_exit(&cp->cache_lock); 5545 5546 if (reap) { 5547 KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps); 5548 kmem_depot_ws_reap(cp); 5549 } 5550 } 5551