1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Kernel memory allocator, as described in the following two papers and a 30 * statement about the consolidator: 31 * 32 * Jeff Bonwick, 33 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 34 * Proceedings of the Summer 1994 Usenix Conference. 35 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 36 * 37 * Jeff Bonwick and Jonathan Adams, 38 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 39 * Arbitrary Resources. 40 * Proceedings of the 2001 Usenix Conference. 41 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 42 * 43 * kmem Slab Consolidator Big Theory Statement: 44 * 45 * 1. Motivation 46 * 47 * As stated in Bonwick94, slabs provide the following advantages over other 48 * allocation structures in terms of memory fragmentation: 49 * 50 * - Internal fragmentation (per-buffer wasted space) is minimal. 51 * - Severe external fragmentation (unused buffers on the free list) is 52 * unlikely. 53 * 54 * Segregating objects by size eliminates one source of external fragmentation, 55 * and according to Bonwick: 56 * 57 * The other reason that slabs reduce external fragmentation is that all 58 * objects in a slab are of the same type, so they have the same lifetime 59 * distribution. The resulting segregation of short-lived and long-lived 60 * objects at slab granularity reduces the likelihood of an entire page being 61 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 62 * 63 * While unlikely, severe external fragmentation remains possible. Clients that 64 * allocate both short- and long-lived objects from the same cache cannot 65 * anticipate the distribution of long-lived objects within the allocator's slab 66 * implementation. Even a small percentage of long-lived objects distributed 67 * randomly across many slabs can lead to a worst case scenario where the client 68 * frees the majority of its objects and the system gets back almost none of the 69 * slabs. Despite the client doing what it reasonably can to help the system 70 * reclaim memory, the allocator cannot shake free enough slabs because of 71 * lonely allocations stubbornly hanging on. Although the allocator is in a 72 * position to diagnose the fragmentation, there is nothing that the allocator 73 * by itself can do about it. It only takes a single allocated object to prevent 74 * an entire slab from being reclaimed, and any object handed out by 75 * kmem_cache_alloc() is by definition in the client's control. Conversely, 76 * although the client is in a position to move a long-lived object, it has no 77 * way of knowing if the object is causing fragmentation, and if so, where to 78 * move it. A solution necessarily requires further cooperation between the 79 * allocator and the client. 80 * 81 * 2. Move Callback 82 * 83 * The kmem slab consolidator therefore adds a move callback to the 84 * allocator/client interface, improving worst-case external fragmentation in 85 * kmem caches that supply a function to move objects from one memory location 86 * to another. In a situation of low memory kmem attempts to consolidate all of 87 * a cache's slabs at once; otherwise it works slowly to bring external 88 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 89 * thereby helping to avoid a low memory situation in the future. 90 * 91 * The callback has the following signature: 92 * 93 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 94 * 95 * It supplies the kmem client with two addresses: the allocated object that 96 * kmem wants to move and a buffer selected by kmem for the client to use as the 97 * copy destination. The callback is kmem's way of saying "Please get off of 98 * this buffer and use this one instead." kmem knows where it wants to move the 99 * object in order to best reduce fragmentation. All the client needs to know 100 * about the second argument (void *new) is that it is an allocated, constructed 101 * object ready to take the contents of the old object. When the move function 102 * is called, the system is likely to be low on memory, and the new object 103 * spares the client from having to worry about allocating memory for the 104 * requested move. The third argument supplies the size of the object, in case a 105 * single move function handles multiple caches whose objects differ only in 106 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 107 * user argument passed to the constructor, destructor, and reclaim functions is 108 * also passed to the move callback. 109 * 110 * 2.1 Setting the Move Callback 111 * 112 * The client sets the move callback after creating the cache and before 113 * allocating from it: 114 * 115 * object_cache = kmem_cache_create(...); 116 * kmem_cache_set_move(object_cache, object_move); 117 * 118 * 2.2 Move Callback Return Values 119 * 120 * Only the client knows about its own data and when is a good time to move it. 121 * The client is cooperating with kmem to return unused memory to the system, 122 * and kmem respectfully accepts this help at the client's convenience. When 123 * asked to move an object, the client can respond with any of the following: 124 * 125 * typedef enum kmem_cbrc { 126 * KMEM_CBRC_YES, 127 * KMEM_CBRC_NO, 128 * KMEM_CBRC_LATER, 129 * KMEM_CBRC_DONT_NEED, 130 * KMEM_CBRC_DONT_KNOW 131 * } kmem_cbrc_t; 132 * 133 * The client must not explicitly kmem_cache_free() either of the objects passed 134 * to the callback, since kmem wants to free them directly to the slab layer 135 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 136 * objects to free: 137 * 138 * YES: (Did it) The client moved the object, so kmem frees the old one. 139 * NO: (Never) The client refused, so kmem frees the new object (the 140 * unused copy destination). kmem also marks the slab of the old 141 * object so as not to bother the client with further callbacks for 142 * that object as long as the slab remains on the partial slab list. 143 * (The system won't be getting the slab back as long as the 144 * immovable object holds it hostage, so there's no point in moving 145 * any of its objects.) 146 * LATER: The client is using the object and cannot move it now, so kmem 147 * frees the new object (the unused copy destination). kmem still 148 * attempts to move other objects off the slab, since it expects to 149 * succeed in clearing the slab in a later callback. The client 150 * should use LATER instead of NO if the object is likely to become 151 * movable very soon. 152 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 153 * with the new object (the unused copy destination). This response 154 * is the client's opportunity to be a model citizen and give back as 155 * much as it can. 156 * DONT_KNOW: The client does not know about the object because 157 * a) the client has just allocated the object and not yet put it 158 * wherever it expects to find known objects 159 * b) the client has removed the object from wherever it expects to 160 * find known objects and is about to free it, or 161 * c) the client has freed the object. 162 * In all these cases (a, b, and c) kmem frees the new object (the 163 * unused copy destination) and searches for the old object in the 164 * magazine layer. If found, the object is removed from the magazine 165 * layer and freed to the slab layer so it will no longer hold the 166 * slab hostage. 167 * 168 * 2.3 Object States 169 * 170 * Neither kmem nor the client can be assumed to know the object's whereabouts 171 * at the time of the callback. An object belonging to a kmem cache may be in 172 * any of the following states: 173 * 174 * 1. Uninitialized on the slab 175 * 2. Allocated from the slab but not constructed (still uninitialized) 176 * 3. Allocated from the slab, constructed, but not yet ready for business 177 * (not in a valid state for the move callback) 178 * 4. In use (valid and known to the client) 179 * 5. About to be freed (no longer in a valid state for the move callback) 180 * 6. Freed to a magazine (still constructed) 181 * 7. Allocated from a magazine, not yet ready for business (not in a valid 182 * state for the move callback), and about to return to state #4 183 * 8. Deconstructed on a magazine that is about to be freed 184 * 9. Freed to the slab 185 * 186 * Since the move callback may be called at any time while the object is in any 187 * of the above states (except state #1), the client needs a safe way to 188 * determine whether or not it knows about the object. Specifically, the client 189 * needs to know whether or not the object is in state #4, the only state in 190 * which a move is valid. If the object is in any other state, the client should 191 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 192 * the object's fields. 193 * 194 * Note that although an object may be in state #4 when kmem initiates the move 195 * request, the object may no longer be in that state by the time kmem actually 196 * calls the move function. Not only does the client free objects 197 * asynchronously, kmem itself puts move requests on a queue where thay are 198 * pending until kmem processes them from another context. Also, objects freed 199 * to a magazine appear allocated from the point of view of the slab layer, so 200 * kmem may even initiate requests for objects in a state other than state #4. 201 * 202 * 2.3.1 Magazine Layer 203 * 204 * An important insight revealed by the states listed above is that the magazine 205 * layer is populated only by kmem_cache_free(). Magazines of constructed 206 * objects are never populated directly from the slab layer (which contains raw, 207 * unconstructed objects). Whenever an allocation request cannot be satisfied 208 * from the magazine layer, the magazines are bypassed and the request is 209 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 210 * the object constructor only when allocating from the slab layer, and only in 211 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 212 * the move callback. kmem does not preconstruct objects in anticipation of 213 * kmem_cache_alloc(). 214 * 215 * 2.3.2 Object Constructor and Destructor 216 * 217 * If the client supplies a destructor, it must be valid to call the destructor 218 * on a newly created object (immediately after the constructor). 219 * 220 * 2.4 Recognizing Known Objects 221 * 222 * There is a simple test to determine safely whether or not the client knows 223 * about a given object in the move callback. It relies on the fact that kmem 224 * guarantees that the object of the move callback has only been touched by the 225 * client itself or else by kmem. kmem does this by ensuring that none of the 226 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 227 * callback is pending. When the last object on a slab is freed, if there is a 228 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 229 * slabs on that list until all pending callbacks are completed. That way, 230 * clients can be certain that the object of a move callback is in one of the 231 * states listed above, making it possible to distinguish known objects (in 232 * state #4) using the two low order bits of any pointer member (with the 233 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 234 * platforms). 235 * 236 * The test works as long as the client always transitions objects from state #4 237 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 238 * order bit of the client-designated pointer member. Since kmem only writes 239 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 240 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 241 * guaranteed to set at least one of the two low order bits. Therefore, given an 242 * object with a back pointer to a 'container_t *o_container', the client can 243 * test 244 * 245 * container_t *container = object->o_container; 246 * if ((uintptr_t)container & 0x3) { 247 * return (KMEM_CBRC_DONT_KNOW); 248 * } 249 * 250 * Typically, an object will have a pointer to some structure with a list or 251 * hash where objects from the cache are kept while in use. Assuming that the 252 * client has some way of knowing that the container structure is valid and will 253 * not go away during the move, and assuming that the structure includes a lock 254 * to protect whatever collection is used, then the client would continue as 255 * follows: 256 * 257 * // Ensure that the container structure does not go away. 258 * if (container_hold(container) == 0) { 259 * return (KMEM_CBRC_DONT_KNOW); 260 * } 261 * mutex_enter(&container->c_objects_lock); 262 * if (container != object->o_container) { 263 * mutex_exit(&container->c_objects_lock); 264 * container_rele(container); 265 * return (KMEM_CBRC_DONT_KNOW); 266 * } 267 * 268 * At this point the client knows that the object cannot be freed as long as 269 * c_objects_lock is held. Note that after acquiring the lock, the client must 270 * recheck the o_container pointer in case the object was removed just before 271 * acquiring the lock. 272 * 273 * When the client is about to free an object, it must first remove that object 274 * from the list, hash, or other structure where it is kept. At that time, to 275 * mark the object so it can be distinguished from the remaining, known objects, 276 * the client sets the designated low order bit: 277 * 278 * mutex_enter(&container->c_objects_lock); 279 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 280 * list_remove(&container->c_objects, object); 281 * mutex_exit(&container->c_objects_lock); 282 * 283 * In the common case, the object is freed to the magazine layer, where it may 284 * be reused on a subsequent allocation without the overhead of calling the 285 * constructor. While in the magazine it appears allocated from the point of 286 * view of the slab layer, making it a candidate for the move callback. Most 287 * objects unrecognized by the client in the move callback fall into this 288 * category and are cheaply distinguished from known objects by the test 289 * described earlier. Since recognition is cheap for the client, and searching 290 * magazines is expensive for kmem, kmem defers searching until the client first 291 * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem 292 * elsewhere does what it can to avoid bothering the client unnecessarily. 293 * 294 * Invalidating the designated pointer member before freeing the object marks 295 * the object to be avoided in the callback, and conversely, assigning a valid 296 * value to the designated pointer member after allocating the object makes the 297 * object fair game for the callback: 298 * 299 * ... allocate object ... 300 * ... set any initial state not set by the constructor ... 301 * 302 * mutex_enter(&container->c_objects_lock); 303 * list_insert_tail(&container->c_objects, object); 304 * membar_producer(); 305 * object->o_container = container; 306 * mutex_exit(&container->c_objects_lock); 307 * 308 * Note that everything else must be valid before setting o_container makes the 309 * object fair game for the move callback. The membar_producer() call ensures 310 * that all the object's state is written to memory before setting the pointer 311 * that transitions the object from state #3 or #7 (allocated, constructed, not 312 * yet in use) to state #4 (in use, valid). That's important because the move 313 * function has to check the validity of the pointer before it can safely 314 * acquire the lock protecting the collection where it expects to find known 315 * objects. 316 * 317 * This method of distinguishing known objects observes the usual symmetry: 318 * invalidating the designated pointer is the first thing the client does before 319 * freeing the object, and setting the designated pointer is the last thing the 320 * client does after allocating the object. Of course, the client is not 321 * required to use this method. Fundamentally, how the client recognizes known 322 * objects is completely up to the client, but this method is recommended as an 323 * efficient and safe way to take advantage of the guarantees made by kmem. If 324 * the entire object is arbitrary data without any markable bits from a suitable 325 * pointer member, then the client must find some other method, such as 326 * searching a hash table of known objects. 327 * 328 * 2.5 Preventing Objects From Moving 329 * 330 * Besides a way to distinguish known objects, the other thing that the client 331 * needs is a strategy to ensure that an object will not move while the client 332 * is actively using it. The details of satisfying this requirement tend to be 333 * highly cache-specific. It might seem that the same rules that let a client 334 * remove an object safely should also decide when an object can be moved 335 * safely. However, any object state that makes a removal attempt invalid is 336 * likely to be long-lasting for objects that the client does not expect to 337 * remove. kmem knows nothing about the object state and is equally likely (from 338 * the client's point of view) to request a move for any object in the cache, 339 * whether prepared for removal or not. Even a low percentage of objects stuck 340 * in place by unremovability will defeat the consolidator if the stuck objects 341 * are the same long-lived allocations likely to hold slabs hostage. 342 * Fundamentally, the consolidator is not aimed at common cases. Severe external 343 * fragmentation is a worst case scenario manifested as sparsely allocated 344 * slabs, by definition a low percentage of the cache's objects. When deciding 345 * what makes an object movable, keep in mind the goal of the consolidator: to 346 * bring worst-case external fragmentation within the limits guaranteed for 347 * internal fragmentation. Removability is a poor criterion if it is likely to 348 * exclude more than an insignificant percentage of objects for long periods of 349 * time. 350 * 351 * A tricky general solution exists, and it has the advantage of letting you 352 * move any object at almost any moment, practically eliminating the likelihood 353 * that an object can hold a slab hostage. However, if there is a cache-specific 354 * way to ensure that an object is not actively in use in the vast majority of 355 * cases, a simpler solution that leverages this cache-specific knowledge is 356 * preferred. 357 * 358 * 2.5.1 Cache-Specific Solution 359 * 360 * As an example of a cache-specific solution, the ZFS znode cache takes 361 * advantage of the fact that the vast majority of znodes are only being 362 * referenced from the DNLC. (A typical case might be a few hundred in active 363 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 364 * client has established that it recognizes the znode and can access its fields 365 * safely (using the method described earlier), it then tests whether the znode 366 * is referenced by anything other than the DNLC. If so, it assumes that the 367 * znode may be in active use and is unsafe to move, so it drops its locks and 368 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 369 * else znodes are used, no change is needed to protect against the possibility 370 * of the znode moving. The disadvantage is that it remains possible for an 371 * application to hold a znode slab hostage with an open file descriptor. 372 * However, this case ought to be rare and the consolidator has a way to deal 373 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 374 * object, kmem eventually stops believing it and treats the slab as if the 375 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 376 * then focus on getting it off of the partial slab list by allocating rather 377 * than freeing all of its objects. (Either way of getting a slab off the 378 * free list reduces fragmentation.) 379 * 380 * 2.5.2 General Solution 381 * 382 * The general solution, on the other hand, requires an explicit hold everywhere 383 * the object is used to prevent it from moving. To keep the client locking 384 * strategy as uncomplicated as possible, kmem guarantees the simplifying 385 * assumption that move callbacks are sequential, even across multiple caches. 386 * Internally, a global queue processed by a single thread supports all caches 387 * implementing the callback function. No matter how many caches supply a move 388 * function, the consolidator never moves more than one object at a time, so the 389 * client does not have to worry about tricky lock ordering involving several 390 * related objects from different kmem caches. 391 * 392 * The general solution implements the explicit hold as a read-write lock, which 393 * allows multiple readers to access an object from the cache simultaneously 394 * while a single writer is excluded from moving it. A single rwlock for the 395 * entire cache would lock out all threads from using any of the cache's objects 396 * even though only a single object is being moved, so to reduce contention, 397 * the client can fan out the single rwlock into an array of rwlocks hashed by 398 * the object address, making it probable that moving one object will not 399 * prevent other threads from using a different object. The rwlock cannot be a 400 * member of the object itself, because the possibility of the object moving 401 * makes it unsafe to access any of the object's fields until the lock is 402 * acquired. 403 * 404 * Assuming a small, fixed number of locks, it's possible that multiple objects 405 * will hash to the same lock. A thread that needs to use multiple objects in 406 * the same function may acquire the same lock multiple times. Since rwlocks are 407 * reentrant for readers, and since there is never more than a single writer at 408 * a time (assuming that the client acquires the lock as a writer only when 409 * moving an object inside the callback), there would seem to be no problem. 410 * However, a client locking multiple objects in the same function must handle 411 * one case of potential deadlock: Assume that thread A needs to prevent both 412 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 413 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 414 * same lock, that thread A will acquire the lock for object 1 as a reader 415 * before thread B sets the lock's write-wanted bit, preventing thread A from 416 * reacquiring the lock for object 2 as a reader. Unable to make forward 417 * progress, thread A will never release the lock for object 1, resulting in 418 * deadlock. 419 * 420 * There are two ways of avoiding the deadlock just described. The first is to 421 * use rw_tryenter() rather than rw_enter() in the callback function when 422 * attempting to acquire the lock as a writer. If tryenter discovers that the 423 * same object (or another object hashed to the same lock) is already in use, it 424 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 425 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 426 * since it allows a thread to acquire the lock as a reader in spite of a 427 * waiting writer. This second approach insists on moving the object now, no 428 * matter how many readers the move function must wait for in order to do so, 429 * and could delay the completion of the callback indefinitely (blocking 430 * callbacks to other clients). In practice, a less insistent callback using 431 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 432 * little reason to use anything else. 433 * 434 * Avoiding deadlock is not the only problem that an implementation using an 435 * explicit hold needs to solve. Locking the object in the first place (to 436 * prevent it from moving) remains a problem, since the object could move 437 * between the time you obtain a pointer to the object and the time you acquire 438 * the rwlock hashed to that pointer value. Therefore the client needs to 439 * recheck the value of the pointer after acquiring the lock, drop the lock if 440 * the value has changed, and try again. This requires a level of indirection: 441 * something that points to the object rather than the object itself, that the 442 * client can access safely while attempting to acquire the lock. (The object 443 * itself cannot be referenced safely because it can move at any time.) 444 * The following lock-acquisition function takes whatever is safe to reference 445 * (arg), follows its pointer to the object (using function f), and tries as 446 * often as necessary to acquire the hashed lock and verify that the object 447 * still has not moved: 448 * 449 * object_t * 450 * object_hold(object_f f, void *arg) 451 * { 452 * object_t *op; 453 * 454 * op = f(arg); 455 * if (op == NULL) { 456 * return (NULL); 457 * } 458 * 459 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 460 * while (op != f(arg)) { 461 * rw_exit(OBJECT_RWLOCK(op)); 462 * op = f(arg); 463 * if (op == NULL) { 464 * break; 465 * } 466 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 467 * } 468 * 469 * return (op); 470 * } 471 * 472 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 473 * lock reacquisition loop, while necessary, almost never executes. The function 474 * pointer f (used to obtain the object pointer from arg) has the following type 475 * definition: 476 * 477 * typedef object_t *(*object_f)(void *arg); 478 * 479 * An object_f implementation is likely to be as simple as accessing a structure 480 * member: 481 * 482 * object_t * 483 * s_object(void *arg) 484 * { 485 * something_t *sp = arg; 486 * return (sp->s_object); 487 * } 488 * 489 * The flexibility of a function pointer allows the path to the object to be 490 * arbitrarily complex and also supports the notion that depending on where you 491 * are using the object, you may need to get it from someplace different. 492 * 493 * The function that releases the explicit hold is simpler because it does not 494 * have to worry about the object moving: 495 * 496 * void 497 * object_rele(object_t *op) 498 * { 499 * rw_exit(OBJECT_RWLOCK(op)); 500 * } 501 * 502 * The caller is spared these details so that obtaining and releasing an 503 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 504 * of object_hold() only needs to know that the returned object pointer is valid 505 * if not NULL and that the object will not move until released. 506 * 507 * Although object_hold() prevents an object from moving, it does not prevent it 508 * from being freed. The caller must take measures before calling object_hold() 509 * (afterwards is too late) to ensure that the held object cannot be freed. The 510 * caller must do so without accessing the unsafe object reference, so any lock 511 * or reference count used to ensure the continued existence of the object must 512 * live outside the object itself. 513 * 514 * Obtaining a new object is a special case where an explicit hold is impossible 515 * for the caller. Any function that returns a newly allocated object (either as 516 * a return value, or as an in-out paramter) must return it already held; after 517 * the caller gets it is too late, since the object cannot be safely accessed 518 * without the level of indirection described earlier. The following 519 * object_alloc() example uses the same code shown earlier to transition a new 520 * object into the state of being recognized (by the client) as a known object. 521 * The function must acquire the hold (rw_enter) before that state transition 522 * makes the object movable: 523 * 524 * static object_t * 525 * object_alloc(container_t *container) 526 * { 527 * object_t *object = kmem_cache_create(object_cache, 0); 528 * ... set any initial state not set by the constructor ... 529 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 530 * mutex_enter(&container->c_objects_lock); 531 * list_insert_tail(&container->c_objects, object); 532 * membar_producer(); 533 * object->o_container = container; 534 * mutex_exit(&container->c_objects_lock); 535 * return (object); 536 * } 537 * 538 * Functions that implicitly acquire an object hold (any function that calls 539 * object_alloc() to supply an object for the caller) need to be carefully noted 540 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 541 * prevent all objects hashed to the affected rwlocks from ever being moved. 542 * 543 * The pointer to a held object can be hashed to the holding rwlock even after 544 * the object has been freed. Although it is possible to release the hold 545 * after freeing the object, you may decide to release the hold implicitly in 546 * whatever function frees the object, so as to release the hold as soon as 547 * possible, and for the sake of symmetry with the function that implicitly 548 * acquires the hold when it allocates the object. Here, object_free() releases 549 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 550 * matching pair with object_hold(): 551 * 552 * void 553 * object_free(object_t *object) 554 * { 555 * container_t *container; 556 * 557 * ASSERT(object_held(object)); 558 * container = object->o_container; 559 * mutex_enter(&container->c_objects_lock); 560 * object->o_container = 561 * (void *)((uintptr_t)object->o_container | 0x1); 562 * list_remove(&container->c_objects, object); 563 * mutex_exit(&container->c_objects_lock); 564 * object_rele(object); 565 * kmem_cache_free(object_cache, object); 566 * } 567 * 568 * Note that object_free() cannot safely accept an object pointer as an argument 569 * unless the object is already held. Any function that calls object_free() 570 * needs to be carefully noted since it similarly forms a matching pair with 571 * object_hold(). 572 * 573 * To complete the picture, the following callback function implements the 574 * general solution by moving objects only if they are currently unheld: 575 * 576 * static kmem_cbrc_t 577 * object_move(void *buf, void *newbuf, size_t size, void *arg) 578 * { 579 * object_t *op = buf, *np = newbuf; 580 * container_t *container; 581 * 582 * container = op->o_container; 583 * if ((uintptr_t)container & 0x3) { 584 * return (KMEM_CBRC_DONT_KNOW); 585 * } 586 * 587 * // Ensure that the container structure does not go away. 588 * if (container_hold(container) == 0) { 589 * return (KMEM_CBRC_DONT_KNOW); 590 * } 591 * 592 * mutex_enter(&container->c_objects_lock); 593 * if (container != op->o_container) { 594 * mutex_exit(&container->c_objects_lock); 595 * container_rele(container); 596 * return (KMEM_CBRC_DONT_KNOW); 597 * } 598 * 599 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 600 * mutex_exit(&container->c_objects_lock); 601 * container_rele(container); 602 * return (KMEM_CBRC_LATER); 603 * } 604 * 605 * object_move_impl(op, np); // critical section 606 * rw_exit(OBJECT_RWLOCK(op)); 607 * 608 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 609 * list_link_replace(&op->o_link_node, &np->o_link_node); 610 * mutex_exit(&container->c_objects_lock); 611 * container_rele(container); 612 * return (KMEM_CBRC_YES); 613 * } 614 * 615 * Note that object_move() must invalidate the designated o_container pointer of 616 * the old object in the same way that object_free() does, since kmem will free 617 * the object in response to the KMEM_CBRC_YES return value. 618 * 619 * The lock order in object_move() differs from object_alloc(), which locks 620 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 621 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 622 * not a problem. Holding the lock on the object list in the example above 623 * through the entire callback not only prevents the object from going away, it 624 * also allows you to lock the list elsewhere and know that none of its elements 625 * will move during iteration. 626 * 627 * Adding an explicit hold everywhere an object from the cache is used is tricky 628 * and involves much more change to client code than a cache-specific solution 629 * that leverages existing state to decide whether or not an object is 630 * movable. However, this approach has the advantage that no object remains 631 * immovable for any significant length of time, making it extremely unlikely 632 * that long-lived allocations can continue holding slabs hostage; and it works 633 * for any cache. 634 * 635 * 3. Consolidator Implementation 636 * 637 * Once the client supplies a move function that a) recognizes known objects and 638 * b) avoids moving objects that are actively in use, the remaining work is up 639 * to the consolidator to decide which objects to move and when to issue 640 * callbacks. 641 * 642 * The consolidator relies on the fact that a cache's slabs are ordered by 643 * usage. Each slab has a fixed number of objects. Depending on the slab's 644 * "color" (the offset of the first object from the beginning of the slab; 645 * offsets are staggered to mitigate false sharing of cache lines) it is either 646 * the maximum number of objects per slab determined at cache creation time or 647 * else the number closest to the maximum that fits within the space remaining 648 * after the initial offset. A completely allocated slab may contribute some 649 * internal fragmentation (per-slab overhead) but no external fragmentation, so 650 * it is of no interest to the consolidator. At the other extreme, slabs whose 651 * objects have all been freed to the slab are released to the virtual memory 652 * (VM) subsystem (objects freed to magazines are still allocated as far as the 653 * slab is concerned). External fragmentation exists when there are slabs 654 * somewhere between these extremes. A partial slab has at least one but not all 655 * of its objects allocated. The more partial slabs, and the fewer allocated 656 * objects on each of them, the higher the fragmentation. Hence the 657 * consolidator's overall strategy is to reduce the number of partial slabs by 658 * moving allocated objects from the least allocated slabs to the most allocated 659 * slabs. 660 * 661 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 662 * slabs are kept separately in an unordered list. Since the majority of slabs 663 * tend to be completely allocated (a typical unfragmented cache may have 664 * thousands of complete slabs and only a single partial slab), separating 665 * complete slabs improves the efficiency of partial slab ordering, since the 666 * complete slabs do not affect the depth or balance of the AVL tree. This 667 * ordered sequence of partial slabs acts as a "free list" supplying objects for 668 * allocation requests. 669 * 670 * Objects are always allocated from the first partial slab in the free list, 671 * where the allocation is most likely to eliminate a partial slab (by 672 * completely allocating it). Conversely, when a single object from a completely 673 * allocated slab is freed to the slab, that slab is added to the front of the 674 * free list. Since most free list activity involves highly allocated slabs 675 * coming and going at the front of the list, slabs tend naturally toward the 676 * ideal order: highly allocated at the front, sparsely allocated at the back. 677 * Slabs with few allocated objects are likely to become completely free if they 678 * keep a safe distance away from the front of the free list. Slab misorders 679 * interfere with the natural tendency of slabs to become completely free or 680 * completely allocated. For example, a slab with a single allocated object 681 * needs only a single free to escape the cache; its natural desire is 682 * frustrated when it finds itself at the front of the list where a second 683 * allocation happens just before the free could have released it. Another slab 684 * with all but one object allocated might have supplied the buffer instead, so 685 * that both (as opposed to neither) of the slabs would have been taken off the 686 * free list. 687 * 688 * Although slabs tend naturally toward the ideal order, misorders allowed by a 689 * simple list implementation defeat the consolidator's strategy of merging 690 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 691 * needs another way to fix misorders to optimize its callback strategy. One 692 * approach is to periodically scan a limited number of slabs, advancing a 693 * marker to hold the current scan position, and to move extreme misorders to 694 * the front or back of the free list and to the front or back of the current 695 * scan range. By making consecutive scan ranges overlap by one slab, the least 696 * allocated slab in the current range can be carried along from the end of one 697 * scan to the start of the next. 698 * 699 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 700 * task, however. Since most of the cache's activity is in the magazine layer, 701 * and allocations from the slab layer represent only a startup cost, the 702 * overhead of maintaining a balanced tree is not a significant concern compared 703 * to the opportunity of reducing complexity by eliminating the partial slab 704 * scanner just described. The overhead of an AVL tree is minimized by 705 * maintaining only partial slabs in the tree and keeping completely allocated 706 * slabs separately in a list. To avoid increasing the size of the slab 707 * structure the AVL linkage pointers are reused for the slab's list linkage, 708 * since the slab will always be either partial or complete, never stored both 709 * ways at the same time. To further minimize the overhead of the AVL tree the 710 * compare function that orders partial slabs by usage divides the range of 711 * allocated object counts into bins such that counts within the same bin are 712 * considered equal. Binning partial slabs makes it less likely that allocating 713 * or freeing a single object will change the slab's order, requiring a tree 714 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 715 * requiring some rebalancing of the tree). Allocation counts closest to 716 * completely free and completely allocated are left unbinned (finely sorted) to 717 * better support the consolidator's strategy of merging slabs at either 718 * extreme. 719 * 720 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 721 * 722 * The consolidator piggybacks on the kmem maintenance thread and is called on 723 * the same interval as kmem_cache_update(), once per cache every fifteen 724 * seconds. kmem maintains a running count of unallocated objects in the slab 725 * layer (cache_bufslab). The consolidator checks whether that number exceeds 726 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 727 * there is a significant number of slabs in the cache (arbitrarily a minimum 728 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 729 * working set are included in the assessment, and magazines in the depot are 730 * reaped if those objects would lift cache_bufslab above the fragmentation 731 * threshold. Once the consolidator decides that a cache is fragmented, it looks 732 * for a candidate slab to reclaim, starting at the end of the partial slab free 733 * list and scanning backwards. At first the consolidator is choosy: only a slab 734 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 735 * single allocated object, regardless of percentage). If there is difficulty 736 * finding a candidate slab, kmem raises the allocation threshold incrementally, 737 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 738 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 739 * even in the worst case of every slab in the cache being almost 7/8 allocated. 740 * The threshold can also be lowered incrementally when candidate slabs are easy 741 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 742 * is no longer fragmented. 743 * 744 * 3.2 Generating Callbacks 745 * 746 * Once an eligible slab is chosen, a callback is generated for every allocated 747 * object on the slab, in the hope that the client will move everything off the 748 * slab and make it reclaimable. Objects selected as move destinations are 749 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 750 * order (most allocated at the front, least allocated at the back) and a 751 * cooperative client, the consolidator will succeed in removing slabs from both 752 * ends of the free list, completely allocating on the one hand and completely 753 * freeing on the other. Objects selected as move destinations are allocated in 754 * the kmem maintenance thread where move requests are enqueued. A separate 755 * callback thread removes pending callbacks from the queue and calls the 756 * client. The separate thread ensures that client code (the move function) does 757 * not interfere with internal kmem maintenance tasks. A map of pending 758 * callbacks keyed by object address (the object to be moved) is checked to 759 * ensure that duplicate callbacks are not generated for the same object. 760 * Allocating the move destination (the object to move to) prevents subsequent 761 * callbacks from selecting the same destination as an earlier pending callback. 762 * 763 * Move requests can also be generated by kmem_cache_reap() when the system is 764 * desperate for memory and by kmem_cache_move_notify(), called by the client to 765 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 766 * The map of pending callbacks is protected by the same lock that protects the 767 * slab layer. 768 * 769 * When the system is desperate for memory, kmem does not bother to determine 770 * whether or not the cache exceeds the fragmentation threshold, but tries to 771 * consolidate as many slabs as possible. Normally, the consolidator chews 772 * slowly, one sparsely allocated slab at a time during each maintenance 773 * interval that the cache is fragmented. When desperate, the consolidator 774 * starts at the last partial slab and enqueues callbacks for every allocated 775 * object on every partial slab, working backwards until it reaches the first 776 * partial slab. The first partial slab, meanwhile, advances in pace with the 777 * consolidator as allocations to supply move destinations for the enqueued 778 * callbacks use up the highly allocated slabs at the front of the free list. 779 * Ideally, the overgrown free list collapses like an accordion, starting at 780 * both ends and ending at the center with a single partial slab. 781 * 782 * 3.3 Client Responses 783 * 784 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 785 * marks the slab that supplied the stuck object non-reclaimable and moves it to 786 * front of the free list. The slab remains marked as long as it remains on the 787 * free list, and it appears more allocated to the partial slab compare function 788 * than any unmarked slab, no matter how many of its objects are allocated. 789 * Since even one immovable object ties up the entire slab, the goal is to 790 * completely allocate any slab that cannot be completely freed. kmem does not 791 * bother generating callbacks to move objects from a marked slab unless the 792 * system is desperate. 793 * 794 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 795 * slab. If the client responds LATER too many times, kmem disbelieves and 796 * treats the response as a NO. The count is cleared when the slab is taken off 797 * the partial slab list or when the client moves one of the slab's objects. 798 * 799 * 4. Observability 800 * 801 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 802 * the ::kmem_slabs dcmd. For a complete description of the command, enter 803 * '::help kmem_slabs' at the mdb prompt. 804 */ 805 806 #include <sys/kmem_impl.h> 807 #include <sys/vmem_impl.h> 808 #include <sys/param.h> 809 #include <sys/sysmacros.h> 810 #include <sys/vm.h> 811 #include <sys/proc.h> 812 #include <sys/tuneable.h> 813 #include <sys/systm.h> 814 #include <sys/cmn_err.h> 815 #include <sys/debug.h> 816 #include <sys/sdt.h> 817 #include <sys/mutex.h> 818 #include <sys/bitmap.h> 819 #include <sys/atomic.h> 820 #include <sys/kobj.h> 821 #include <sys/disp.h> 822 #include <vm/seg_kmem.h> 823 #include <sys/log.h> 824 #include <sys/callb.h> 825 #include <sys/taskq.h> 826 #include <sys/modctl.h> 827 #include <sys/reboot.h> 828 #include <sys/id32.h> 829 #include <sys/zone.h> 830 #include <sys/netstack.h> 831 #ifdef DEBUG 832 #include <sys/random.h> 833 #endif 834 835 extern void streams_msg_init(void); 836 extern int segkp_fromheap; 837 extern void segkp_cache_free(void); 838 839 struct kmem_cache_kstat { 840 kstat_named_t kmc_buf_size; 841 kstat_named_t kmc_align; 842 kstat_named_t kmc_chunk_size; 843 kstat_named_t kmc_slab_size; 844 kstat_named_t kmc_alloc; 845 kstat_named_t kmc_alloc_fail; 846 kstat_named_t kmc_free; 847 kstat_named_t kmc_depot_alloc; 848 kstat_named_t kmc_depot_free; 849 kstat_named_t kmc_depot_contention; 850 kstat_named_t kmc_slab_alloc; 851 kstat_named_t kmc_slab_free; 852 kstat_named_t kmc_buf_constructed; 853 kstat_named_t kmc_buf_avail; 854 kstat_named_t kmc_buf_inuse; 855 kstat_named_t kmc_buf_total; 856 kstat_named_t kmc_buf_max; 857 kstat_named_t kmc_slab_create; 858 kstat_named_t kmc_slab_destroy; 859 kstat_named_t kmc_vmem_source; 860 kstat_named_t kmc_hash_size; 861 kstat_named_t kmc_hash_lookup_depth; 862 kstat_named_t kmc_hash_rescale; 863 kstat_named_t kmc_full_magazines; 864 kstat_named_t kmc_empty_magazines; 865 kstat_named_t kmc_magazine_size; 866 kstat_named_t kmc_move_callbacks; 867 kstat_named_t kmc_move_yes; 868 kstat_named_t kmc_move_no; 869 kstat_named_t kmc_move_later; 870 kstat_named_t kmc_move_dont_need; 871 kstat_named_t kmc_move_dont_know; 872 kstat_named_t kmc_move_hunt_found; 873 } kmem_cache_kstat = { 874 { "buf_size", KSTAT_DATA_UINT64 }, 875 { "align", KSTAT_DATA_UINT64 }, 876 { "chunk_size", KSTAT_DATA_UINT64 }, 877 { "slab_size", KSTAT_DATA_UINT64 }, 878 { "alloc", KSTAT_DATA_UINT64 }, 879 { "alloc_fail", KSTAT_DATA_UINT64 }, 880 { "free", KSTAT_DATA_UINT64 }, 881 { "depot_alloc", KSTAT_DATA_UINT64 }, 882 { "depot_free", KSTAT_DATA_UINT64 }, 883 { "depot_contention", KSTAT_DATA_UINT64 }, 884 { "slab_alloc", KSTAT_DATA_UINT64 }, 885 { "slab_free", KSTAT_DATA_UINT64 }, 886 { "buf_constructed", KSTAT_DATA_UINT64 }, 887 { "buf_avail", KSTAT_DATA_UINT64 }, 888 { "buf_inuse", KSTAT_DATA_UINT64 }, 889 { "buf_total", KSTAT_DATA_UINT64 }, 890 { "buf_max", KSTAT_DATA_UINT64 }, 891 { "slab_create", KSTAT_DATA_UINT64 }, 892 { "slab_destroy", KSTAT_DATA_UINT64 }, 893 { "vmem_source", KSTAT_DATA_UINT64 }, 894 { "hash_size", KSTAT_DATA_UINT64 }, 895 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 896 { "hash_rescale", KSTAT_DATA_UINT64 }, 897 { "full_magazines", KSTAT_DATA_UINT64 }, 898 { "empty_magazines", KSTAT_DATA_UINT64 }, 899 { "magazine_size", KSTAT_DATA_UINT64 }, 900 { "move_callbacks", KSTAT_DATA_UINT64 }, 901 { "move_yes", KSTAT_DATA_UINT64 }, 902 { "move_no", KSTAT_DATA_UINT64 }, 903 { "move_later", KSTAT_DATA_UINT64 }, 904 { "move_dont_need", KSTAT_DATA_UINT64 }, 905 { "move_dont_know", KSTAT_DATA_UINT64 }, 906 { "move_hunt_found", KSTAT_DATA_UINT64 }, 907 }; 908 909 static kmutex_t kmem_cache_kstat_lock; 910 911 /* 912 * The default set of caches to back kmem_alloc(). 913 * These sizes should be reevaluated periodically. 914 * 915 * We want allocations that are multiples of the coherency granularity 916 * (64 bytes) to be satisfied from a cache which is a multiple of 64 917 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 918 * the next kmem_cache_size greater than or equal to it must be a 919 * multiple of 64. 920 */ 921 static const int kmem_alloc_sizes[] = { 922 1 * 8, 923 2 * 8, 924 3 * 8, 925 4 * 8, 5 * 8, 6 * 8, 7 * 8, 926 4 * 16, 5 * 16, 6 * 16, 7 * 16, 927 4 * 32, 5 * 32, 6 * 32, 7 * 32, 928 4 * 64, 5 * 64, 6 * 64, 7 * 64, 929 4 * 128, 5 * 128, 6 * 128, 7 * 128, 930 P2ALIGN(8192 / 7, 64), 931 P2ALIGN(8192 / 6, 64), 932 P2ALIGN(8192 / 5, 64), 933 P2ALIGN(8192 / 4, 64), 934 P2ALIGN(8192 / 3, 64), 935 P2ALIGN(8192 / 2, 64), 936 P2ALIGN(8192 / 1, 64), 937 4096 * 3, 938 8192 * 2, 939 8192 * 3, 940 8192 * 4, 941 }; 942 943 #define KMEM_MAXBUF 32768 944 945 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 946 947 static kmem_magtype_t kmem_magtype[] = { 948 { 1, 8, 3200, 65536 }, 949 { 3, 16, 256, 32768 }, 950 { 7, 32, 64, 16384 }, 951 { 15, 64, 0, 8192 }, 952 { 31, 64, 0, 4096 }, 953 { 47, 64, 0, 2048 }, 954 { 63, 64, 0, 1024 }, 955 { 95, 64, 0, 512 }, 956 { 143, 64, 0, 0 }, 957 }; 958 959 static uint32_t kmem_reaping; 960 static uint32_t kmem_reaping_idspace; 961 962 /* 963 * kmem tunables 964 */ 965 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 966 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 967 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 968 int kmem_panic = 1; /* whether to panic on error */ 969 int kmem_logging = 1; /* kmem_log_enter() override */ 970 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 971 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 972 size_t kmem_content_log_size; /* content log size [2% of memory] */ 973 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 974 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 975 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 976 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 977 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 978 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 979 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 980 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 981 982 #ifdef DEBUG 983 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 984 #else 985 int kmem_flags = 0; 986 #endif 987 int kmem_ready; 988 989 static kmem_cache_t *kmem_slab_cache; 990 static kmem_cache_t *kmem_bufctl_cache; 991 static kmem_cache_t *kmem_bufctl_audit_cache; 992 993 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 994 static list_t kmem_caches; 995 996 static taskq_t *kmem_taskq; 997 static kmutex_t kmem_flags_lock; 998 static vmem_t *kmem_metadata_arena; 999 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1000 static vmem_t *kmem_cache_arena; 1001 static vmem_t *kmem_hash_arena; 1002 static vmem_t *kmem_log_arena; 1003 static vmem_t *kmem_oversize_arena; 1004 static vmem_t *kmem_va_arena; 1005 static vmem_t *kmem_default_arena; 1006 static vmem_t *kmem_firewall_va_arena; 1007 static vmem_t *kmem_firewall_arena; 1008 1009 /* 1010 * Define KMEM_STATS to turn on statistic gathering. By default, it is only 1011 * turned on when DEBUG is also defined. 1012 */ 1013 #ifdef DEBUG 1014 #define KMEM_STATS 1015 #endif /* DEBUG */ 1016 1017 #ifdef KMEM_STATS 1018 #define KMEM_STAT_ADD(stat) ((stat)++) 1019 #define KMEM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++)) 1020 #else 1021 #define KMEM_STAT_ADD(stat) /* nothing */ 1022 #define KMEM_STAT_COND_ADD(cond, stat) /* nothing */ 1023 #endif /* KMEM_STATS */ 1024 1025 /* 1026 * kmem slab consolidator thresholds (tunables) 1027 */ 1028 static size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1029 static size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1030 static size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1031 /* 1032 * Maximum number of slabs from which to move buffers during a single 1033 * maintenance interval while the system is not low on memory. 1034 */ 1035 static size_t kmem_reclaim_max_slabs = 1; 1036 /* 1037 * Number of slabs to scan backwards from the end of the partial slab list 1038 * when searching for buffers to relocate. 1039 */ 1040 static size_t kmem_reclaim_scan_range = 12; 1041 1042 #ifdef KMEM_STATS 1043 static struct { 1044 uint64_t kms_callbacks; 1045 uint64_t kms_yes; 1046 uint64_t kms_no; 1047 uint64_t kms_later; 1048 uint64_t kms_dont_need; 1049 uint64_t kms_dont_know; 1050 uint64_t kms_hunt_found_slab; 1051 uint64_t kms_hunt_found_mag; 1052 uint64_t kms_hunt_alloc_fail; 1053 uint64_t kms_hunt_lucky; 1054 uint64_t kms_notify; 1055 uint64_t kms_notify_callbacks; 1056 uint64_t kms_disbelief; 1057 uint64_t kms_already_pending; 1058 uint64_t kms_callback_alloc_fail; 1059 uint64_t kms_endscan_slab_destroyed; 1060 uint64_t kms_endscan_nomem; 1061 uint64_t kms_endscan_slab_all_used; 1062 uint64_t kms_endscan_refcnt_changed; 1063 uint64_t kms_endscan_nomove_changed; 1064 uint64_t kms_endscan_freelist; 1065 uint64_t kms_avl_update; 1066 uint64_t kms_avl_noupdate; 1067 uint64_t kms_no_longer_reclaimable; 1068 uint64_t kms_notify_no_longer_reclaimable; 1069 uint64_t kms_alloc_fail; 1070 uint64_t kms_constructor_fail; 1071 uint64_t kms_dead_slabs_freed; 1072 uint64_t kms_defrags; 1073 uint64_t kms_scan_depot_ws_reaps; 1074 uint64_t kms_debug_reaps; 1075 uint64_t kms_debug_move_scans; 1076 } kmem_move_stats; 1077 #endif /* KMEM_STATS */ 1078 1079 /* consolidator knobs */ 1080 static boolean_t kmem_move_noreap; 1081 static boolean_t kmem_move_blocked; 1082 static boolean_t kmem_move_fulltilt; 1083 static boolean_t kmem_move_any_partial; 1084 1085 #ifdef DEBUG 1086 /* 1087 * Ensure code coverage by occasionally running the consolidator even when the 1088 * caches are not fragmented (they may never be). These intervals are mean time 1089 * in cache maintenance intervals (kmem_cache_update). 1090 */ 1091 static int kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1092 static int kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1093 #endif /* DEBUG */ 1094 1095 static kmem_cache_t *kmem_defrag_cache; 1096 static kmem_cache_t *kmem_move_cache; 1097 static taskq_t *kmem_move_taskq; 1098 1099 static void kmem_cache_scan(kmem_cache_t *); 1100 static void kmem_cache_defrag(kmem_cache_t *); 1101 1102 1103 kmem_log_header_t *kmem_transaction_log; 1104 kmem_log_header_t *kmem_content_log; 1105 kmem_log_header_t *kmem_failure_log; 1106 kmem_log_header_t *kmem_slab_log; 1107 1108 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1109 1110 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1111 if ((count) > 0) { \ 1112 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1113 pc_t *_e; \ 1114 /* memmove() the old entries down one notch */ \ 1115 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1116 *_e = *(_e - 1); \ 1117 *_s = (uintptr_t)(caller); \ 1118 } 1119 1120 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1121 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1122 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1123 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1124 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1125 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1126 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1127 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1128 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1129 1130 struct { 1131 hrtime_t kmp_timestamp; /* timestamp of panic */ 1132 int kmp_error; /* type of kmem error */ 1133 void *kmp_buffer; /* buffer that induced panic */ 1134 void *kmp_realbuf; /* real start address for buffer */ 1135 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1136 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1137 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1138 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1139 } kmem_panic_info; 1140 1141 1142 static void 1143 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1144 { 1145 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1146 uint64_t *buf = buf_arg; 1147 1148 while (buf < bufend) 1149 *buf++ = pattern; 1150 } 1151 1152 static void * 1153 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1154 { 1155 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1156 uint64_t *buf; 1157 1158 for (buf = buf_arg; buf < bufend; buf++) 1159 if (*buf != pattern) 1160 return (buf); 1161 return (NULL); 1162 } 1163 1164 static void * 1165 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1166 { 1167 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1168 uint64_t *buf; 1169 1170 for (buf = buf_arg; buf < bufend; buf++) { 1171 if (*buf != old) { 1172 copy_pattern(old, buf_arg, 1173 (char *)buf - (char *)buf_arg); 1174 return (buf); 1175 } 1176 *buf = new; 1177 } 1178 1179 return (NULL); 1180 } 1181 1182 static void 1183 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1184 { 1185 kmem_cache_t *cp; 1186 1187 mutex_enter(&kmem_cache_lock); 1188 for (cp = list_head(&kmem_caches); cp != NULL; 1189 cp = list_next(&kmem_caches, cp)) 1190 if (tq != NULL) 1191 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1192 tqflag); 1193 else 1194 func(cp); 1195 mutex_exit(&kmem_cache_lock); 1196 } 1197 1198 static void 1199 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1200 { 1201 kmem_cache_t *cp; 1202 1203 mutex_enter(&kmem_cache_lock); 1204 for (cp = list_head(&kmem_caches); cp != NULL; 1205 cp = list_next(&kmem_caches, cp)) { 1206 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1207 continue; 1208 if (tq != NULL) 1209 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1210 tqflag); 1211 else 1212 func(cp); 1213 } 1214 mutex_exit(&kmem_cache_lock); 1215 } 1216 1217 /* 1218 * Debugging support. Given a buffer address, find its slab. 1219 */ 1220 static kmem_slab_t * 1221 kmem_findslab(kmem_cache_t *cp, void *buf) 1222 { 1223 kmem_slab_t *sp; 1224 1225 mutex_enter(&cp->cache_lock); 1226 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1227 sp = list_next(&cp->cache_complete_slabs, sp)) { 1228 if (KMEM_SLAB_MEMBER(sp, buf)) { 1229 mutex_exit(&cp->cache_lock); 1230 return (sp); 1231 } 1232 } 1233 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1234 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1235 if (KMEM_SLAB_MEMBER(sp, buf)) { 1236 mutex_exit(&cp->cache_lock); 1237 return (sp); 1238 } 1239 } 1240 mutex_exit(&cp->cache_lock); 1241 1242 return (NULL); 1243 } 1244 1245 static void 1246 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1247 { 1248 kmem_buftag_t *btp = NULL; 1249 kmem_bufctl_t *bcp = NULL; 1250 kmem_cache_t *cp = cparg; 1251 kmem_slab_t *sp; 1252 uint64_t *off; 1253 void *buf = bufarg; 1254 1255 kmem_logging = 0; /* stop logging when a bad thing happens */ 1256 1257 kmem_panic_info.kmp_timestamp = gethrtime(); 1258 1259 sp = kmem_findslab(cp, buf); 1260 if (sp == NULL) { 1261 for (cp = list_tail(&kmem_caches); cp != NULL; 1262 cp = list_prev(&kmem_caches, cp)) { 1263 if ((sp = kmem_findslab(cp, buf)) != NULL) 1264 break; 1265 } 1266 } 1267 1268 if (sp == NULL) { 1269 cp = NULL; 1270 error = KMERR_BADADDR; 1271 } else { 1272 if (cp != cparg) 1273 error = KMERR_BADCACHE; 1274 else 1275 buf = (char *)bufarg - ((uintptr_t)bufarg - 1276 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1277 if (buf != bufarg) 1278 error = KMERR_BADBASE; 1279 if (cp->cache_flags & KMF_BUFTAG) 1280 btp = KMEM_BUFTAG(cp, buf); 1281 if (cp->cache_flags & KMF_HASH) { 1282 mutex_enter(&cp->cache_lock); 1283 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1284 if (bcp->bc_addr == buf) 1285 break; 1286 mutex_exit(&cp->cache_lock); 1287 if (bcp == NULL && btp != NULL) 1288 bcp = btp->bt_bufctl; 1289 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1290 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1291 bcp->bc_addr != buf) { 1292 error = KMERR_BADBUFCTL; 1293 bcp = NULL; 1294 } 1295 } 1296 } 1297 1298 kmem_panic_info.kmp_error = error; 1299 kmem_panic_info.kmp_buffer = bufarg; 1300 kmem_panic_info.kmp_realbuf = buf; 1301 kmem_panic_info.kmp_cache = cparg; 1302 kmem_panic_info.kmp_realcache = cp; 1303 kmem_panic_info.kmp_slab = sp; 1304 kmem_panic_info.kmp_bufctl = bcp; 1305 1306 printf("kernel memory allocator: "); 1307 1308 switch (error) { 1309 1310 case KMERR_MODIFIED: 1311 printf("buffer modified after being freed\n"); 1312 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1313 if (off == NULL) /* shouldn't happen */ 1314 off = buf; 1315 printf("modification occurred at offset 0x%lx " 1316 "(0x%llx replaced by 0x%llx)\n", 1317 (uintptr_t)off - (uintptr_t)buf, 1318 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1319 break; 1320 1321 case KMERR_REDZONE: 1322 printf("redzone violation: write past end of buffer\n"); 1323 break; 1324 1325 case KMERR_BADADDR: 1326 printf("invalid free: buffer not in cache\n"); 1327 break; 1328 1329 case KMERR_DUPFREE: 1330 printf("duplicate free: buffer freed twice\n"); 1331 break; 1332 1333 case KMERR_BADBUFTAG: 1334 printf("boundary tag corrupted\n"); 1335 printf("bcp ^ bxstat = %lx, should be %lx\n", 1336 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1337 KMEM_BUFTAG_FREE); 1338 break; 1339 1340 case KMERR_BADBUFCTL: 1341 printf("bufctl corrupted\n"); 1342 break; 1343 1344 case KMERR_BADCACHE: 1345 printf("buffer freed to wrong cache\n"); 1346 printf("buffer was allocated from %s,\n", cp->cache_name); 1347 printf("caller attempting free to %s.\n", cparg->cache_name); 1348 break; 1349 1350 case KMERR_BADSIZE: 1351 printf("bad free: free size (%u) != alloc size (%u)\n", 1352 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1353 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1354 break; 1355 1356 case KMERR_BADBASE: 1357 printf("bad free: free address (%p) != alloc address (%p)\n", 1358 bufarg, buf); 1359 break; 1360 } 1361 1362 printf("buffer=%p bufctl=%p cache: %s\n", 1363 bufarg, (void *)bcp, cparg->cache_name); 1364 1365 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1366 error != KMERR_BADBUFCTL) { 1367 int d; 1368 timestruc_t ts; 1369 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1370 1371 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1372 printf("previous transaction on buffer %p:\n", buf); 1373 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1374 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1375 (void *)sp, cp->cache_name); 1376 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1377 ulong_t off; 1378 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1379 printf("%s+%lx\n", sym ? sym : "?", off); 1380 } 1381 } 1382 if (kmem_panic > 0) 1383 panic("kernel heap corruption detected"); 1384 if (kmem_panic == 0) 1385 debug_enter(NULL); 1386 kmem_logging = 1; /* resume logging */ 1387 } 1388 1389 static kmem_log_header_t * 1390 kmem_log_init(size_t logsize) 1391 { 1392 kmem_log_header_t *lhp; 1393 int nchunks = 4 * max_ncpus; 1394 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1395 int i; 1396 1397 /* 1398 * Make sure that lhp->lh_cpu[] is nicely aligned 1399 * to prevent false sharing of cache lines. 1400 */ 1401 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1402 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1403 NULL, NULL, VM_SLEEP); 1404 bzero(lhp, lhsize); 1405 1406 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1407 lhp->lh_nchunks = nchunks; 1408 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1409 lhp->lh_base = vmem_alloc(kmem_log_arena, 1410 lhp->lh_chunksize * nchunks, VM_SLEEP); 1411 lhp->lh_free = vmem_alloc(kmem_log_arena, 1412 nchunks * sizeof (int), VM_SLEEP); 1413 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1414 1415 for (i = 0; i < max_ncpus; i++) { 1416 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1417 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1418 clhp->clh_chunk = i; 1419 } 1420 1421 for (i = max_ncpus; i < nchunks; i++) 1422 lhp->lh_free[i] = i; 1423 1424 lhp->lh_head = max_ncpus; 1425 lhp->lh_tail = 0; 1426 1427 return (lhp); 1428 } 1429 1430 static void * 1431 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1432 { 1433 void *logspace; 1434 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1435 1436 if (lhp == NULL || kmem_logging == 0 || panicstr) 1437 return (NULL); 1438 1439 mutex_enter(&clhp->clh_lock); 1440 clhp->clh_hits++; 1441 if (size > clhp->clh_avail) { 1442 mutex_enter(&lhp->lh_lock); 1443 lhp->lh_hits++; 1444 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1445 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1446 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1447 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1448 clhp->clh_current = lhp->lh_base + 1449 clhp->clh_chunk * lhp->lh_chunksize; 1450 clhp->clh_avail = lhp->lh_chunksize; 1451 if (size > lhp->lh_chunksize) 1452 size = lhp->lh_chunksize; 1453 mutex_exit(&lhp->lh_lock); 1454 } 1455 logspace = clhp->clh_current; 1456 clhp->clh_current += size; 1457 clhp->clh_avail -= size; 1458 bcopy(data, logspace, size); 1459 mutex_exit(&clhp->clh_lock); 1460 return (logspace); 1461 } 1462 1463 #define KMEM_AUDIT(lp, cp, bcp) \ 1464 { \ 1465 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1466 _bcp->bc_timestamp = gethrtime(); \ 1467 _bcp->bc_thread = curthread; \ 1468 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1469 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1470 } 1471 1472 static void 1473 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1474 kmem_slab_t *sp, void *addr) 1475 { 1476 kmem_bufctl_audit_t bca; 1477 1478 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1479 bca.bc_addr = addr; 1480 bca.bc_slab = sp; 1481 bca.bc_cache = cp; 1482 KMEM_AUDIT(lp, cp, &bca); 1483 } 1484 1485 /* 1486 * Create a new slab for cache cp. 1487 */ 1488 static kmem_slab_t * 1489 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1490 { 1491 size_t slabsize = cp->cache_slabsize; 1492 size_t chunksize = cp->cache_chunksize; 1493 int cache_flags = cp->cache_flags; 1494 size_t color, chunks; 1495 char *buf, *slab; 1496 kmem_slab_t *sp; 1497 kmem_bufctl_t *bcp; 1498 vmem_t *vmp = cp->cache_arena; 1499 1500 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1501 1502 color = cp->cache_color + cp->cache_align; 1503 if (color > cp->cache_maxcolor) 1504 color = cp->cache_mincolor; 1505 cp->cache_color = color; 1506 1507 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1508 1509 if (slab == NULL) 1510 goto vmem_alloc_failure; 1511 1512 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1513 1514 /* 1515 * Reverify what was already checked in kmem_cache_set_move(), since the 1516 * consolidator depends (for correctness) on slabs being initialized 1517 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1518 * clients to distinguish uninitialized memory from known objects). 1519 */ 1520 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1521 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1522 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1523 1524 if (cache_flags & KMF_HASH) { 1525 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1526 goto slab_alloc_failure; 1527 chunks = (slabsize - color) / chunksize; 1528 } else { 1529 sp = KMEM_SLAB(cp, slab); 1530 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1531 } 1532 1533 sp->slab_cache = cp; 1534 sp->slab_head = NULL; 1535 sp->slab_refcnt = 0; 1536 sp->slab_base = buf = slab + color; 1537 sp->slab_chunks = chunks; 1538 sp->slab_stuck_offset = (uint32_t)-1; 1539 sp->slab_later_count = 0; 1540 sp->slab_flags = 0; 1541 1542 ASSERT(chunks > 0); 1543 while (chunks-- != 0) { 1544 if (cache_flags & KMF_HASH) { 1545 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1546 if (bcp == NULL) 1547 goto bufctl_alloc_failure; 1548 if (cache_flags & KMF_AUDIT) { 1549 kmem_bufctl_audit_t *bcap = 1550 (kmem_bufctl_audit_t *)bcp; 1551 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1552 bcap->bc_cache = cp; 1553 } 1554 bcp->bc_addr = buf; 1555 bcp->bc_slab = sp; 1556 } else { 1557 bcp = KMEM_BUFCTL(cp, buf); 1558 } 1559 if (cache_flags & KMF_BUFTAG) { 1560 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1561 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1562 btp->bt_bufctl = bcp; 1563 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1564 if (cache_flags & KMF_DEADBEEF) { 1565 copy_pattern(KMEM_FREE_PATTERN, buf, 1566 cp->cache_verify); 1567 } 1568 } 1569 bcp->bc_next = sp->slab_head; 1570 sp->slab_head = bcp; 1571 buf += chunksize; 1572 } 1573 1574 kmem_log_event(kmem_slab_log, cp, sp, slab); 1575 1576 return (sp); 1577 1578 bufctl_alloc_failure: 1579 1580 while ((bcp = sp->slab_head) != NULL) { 1581 sp->slab_head = bcp->bc_next; 1582 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1583 } 1584 kmem_cache_free(kmem_slab_cache, sp); 1585 1586 slab_alloc_failure: 1587 1588 vmem_free(vmp, slab, slabsize); 1589 1590 vmem_alloc_failure: 1591 1592 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1593 atomic_add_64(&cp->cache_alloc_fail, 1); 1594 1595 return (NULL); 1596 } 1597 1598 /* 1599 * Destroy a slab. 1600 */ 1601 static void 1602 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1603 { 1604 vmem_t *vmp = cp->cache_arena; 1605 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1606 1607 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1608 ASSERT(sp->slab_refcnt == 0); 1609 1610 if (cp->cache_flags & KMF_HASH) { 1611 kmem_bufctl_t *bcp; 1612 while ((bcp = sp->slab_head) != NULL) { 1613 sp->slab_head = bcp->bc_next; 1614 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1615 } 1616 kmem_cache_free(kmem_slab_cache, sp); 1617 } 1618 vmem_free(vmp, slab, cp->cache_slabsize); 1619 } 1620 1621 static void * 1622 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp) 1623 { 1624 kmem_bufctl_t *bcp, **hash_bucket; 1625 void *buf; 1626 1627 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1628 /* 1629 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1630 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1631 * slab is newly created (sp->slab_refcnt == 0). 1632 */ 1633 ASSERT((sp->slab_refcnt == 0) || (KMEM_SLAB_IS_PARTIAL(sp) && 1634 (sp == avl_first(&cp->cache_partial_slabs)))); 1635 ASSERT(sp->slab_cache == cp); 1636 1637 cp->cache_slab_alloc++; 1638 cp->cache_bufslab--; 1639 sp->slab_refcnt++; 1640 1641 bcp = sp->slab_head; 1642 if ((sp->slab_head = bcp->bc_next) == NULL) { 1643 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1644 if (sp->slab_refcnt == 1) { 1645 ASSERT(sp->slab_chunks == 1); 1646 } else { 1647 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1648 avl_remove(&cp->cache_partial_slabs, sp); 1649 sp->slab_later_count = 0; /* clear history */ 1650 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1651 sp->slab_stuck_offset = (uint32_t)-1; 1652 } 1653 list_insert_head(&cp->cache_complete_slabs, sp); 1654 cp->cache_complete_slab_count++; 1655 } else { 1656 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1657 if (sp->slab_refcnt == 1) { 1658 avl_add(&cp->cache_partial_slabs, sp); 1659 } else { 1660 /* 1661 * The slab is now more allocated than it was, so the 1662 * order remains unchanged. 1663 */ 1664 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1665 } 1666 } 1667 1668 if (cp->cache_flags & KMF_HASH) { 1669 /* 1670 * Add buffer to allocated-address hash table. 1671 */ 1672 buf = bcp->bc_addr; 1673 hash_bucket = KMEM_HASH(cp, buf); 1674 bcp->bc_next = *hash_bucket; 1675 *hash_bucket = bcp; 1676 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1677 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1678 } 1679 } else { 1680 buf = KMEM_BUF(cp, bcp); 1681 } 1682 1683 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1684 return (buf); 1685 } 1686 1687 /* 1688 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1689 */ 1690 static void * 1691 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1692 { 1693 kmem_slab_t *sp; 1694 void *buf; 1695 1696 mutex_enter(&cp->cache_lock); 1697 sp = avl_first(&cp->cache_partial_slabs); 1698 if (sp == NULL) { 1699 ASSERT(cp->cache_bufslab == 0); 1700 1701 /* 1702 * The freelist is empty. Create a new slab. 1703 */ 1704 mutex_exit(&cp->cache_lock); 1705 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1706 return (NULL); 1707 } 1708 mutex_enter(&cp->cache_lock); 1709 cp->cache_slab_create++; 1710 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1711 cp->cache_bufmax = cp->cache_buftotal; 1712 cp->cache_bufslab += sp->slab_chunks; 1713 } 1714 1715 buf = kmem_slab_alloc_impl(cp, sp); 1716 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1717 (cp->cache_complete_slab_count + 1718 avl_numnodes(&cp->cache_partial_slabs) + 1719 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1720 mutex_exit(&cp->cache_lock); 1721 1722 return (buf); 1723 } 1724 1725 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1726 1727 /* 1728 * Free a raw (unconstructed) buffer to cp's slab layer. 1729 */ 1730 static void 1731 kmem_slab_free(kmem_cache_t *cp, void *buf) 1732 { 1733 kmem_slab_t *sp; 1734 kmem_bufctl_t *bcp, **prev_bcpp; 1735 1736 ASSERT(buf != NULL); 1737 1738 mutex_enter(&cp->cache_lock); 1739 cp->cache_slab_free++; 1740 1741 if (cp->cache_flags & KMF_HASH) { 1742 /* 1743 * Look up buffer in allocated-address hash table. 1744 */ 1745 prev_bcpp = KMEM_HASH(cp, buf); 1746 while ((bcp = *prev_bcpp) != NULL) { 1747 if (bcp->bc_addr == buf) { 1748 *prev_bcpp = bcp->bc_next; 1749 sp = bcp->bc_slab; 1750 break; 1751 } 1752 cp->cache_lookup_depth++; 1753 prev_bcpp = &bcp->bc_next; 1754 } 1755 } else { 1756 bcp = KMEM_BUFCTL(cp, buf); 1757 sp = KMEM_SLAB(cp, buf); 1758 } 1759 1760 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1761 mutex_exit(&cp->cache_lock); 1762 kmem_error(KMERR_BADADDR, cp, buf); 1763 return; 1764 } 1765 1766 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1767 /* 1768 * If this is the buffer that prevented the consolidator from 1769 * clearing the slab, we can reset the slab flags now that the 1770 * buffer is freed. (It makes sense to do this in 1771 * kmem_cache_free(), where the client gives up ownership of the 1772 * buffer, but on the hot path the test is too expensive.) 1773 */ 1774 kmem_slab_move_yes(cp, sp, buf); 1775 } 1776 1777 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1778 if (cp->cache_flags & KMF_CONTENTS) 1779 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1780 kmem_log_enter(kmem_content_log, buf, 1781 cp->cache_contents); 1782 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1783 } 1784 1785 bcp->bc_next = sp->slab_head; 1786 sp->slab_head = bcp; 1787 1788 cp->cache_bufslab++; 1789 ASSERT(sp->slab_refcnt >= 1); 1790 1791 if (--sp->slab_refcnt == 0) { 1792 /* 1793 * There are no outstanding allocations from this slab, 1794 * so we can reclaim the memory. 1795 */ 1796 if (sp->slab_chunks == 1) { 1797 list_remove(&cp->cache_complete_slabs, sp); 1798 cp->cache_complete_slab_count--; 1799 } else { 1800 avl_remove(&cp->cache_partial_slabs, sp); 1801 } 1802 1803 cp->cache_buftotal -= sp->slab_chunks; 1804 cp->cache_bufslab -= sp->slab_chunks; 1805 /* 1806 * Defer releasing the slab to the virtual memory subsystem 1807 * while there is a pending move callback, since we guarantee 1808 * that buffers passed to the move callback have only been 1809 * touched by kmem or by the client itself. Since the memory 1810 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1811 * set at least one of the two lowest order bits, the client can 1812 * test those bits in the move callback to determine whether or 1813 * not it knows about the buffer (assuming that the client also 1814 * sets one of those low order bits whenever it frees a buffer). 1815 */ 1816 if (cp->cache_defrag == NULL || 1817 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1818 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1819 cp->cache_slab_destroy++; 1820 mutex_exit(&cp->cache_lock); 1821 kmem_slab_destroy(cp, sp); 1822 } else { 1823 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1824 /* 1825 * Slabs are inserted at both ends of the deadlist to 1826 * distinguish between slabs freed while move callbacks 1827 * are pending (list head) and a slab freed while the 1828 * lock is dropped in kmem_move_buffers() (list tail) so 1829 * that in both cases slab_destroy() is called from the 1830 * right context. 1831 */ 1832 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1833 list_insert_tail(deadlist, sp); 1834 } else { 1835 list_insert_head(deadlist, sp); 1836 } 1837 cp->cache_defrag->kmd_deadcount++; 1838 mutex_exit(&cp->cache_lock); 1839 } 1840 return; 1841 } 1842 1843 if (bcp->bc_next == NULL) { 1844 /* Transition the slab from completely allocated to partial. */ 1845 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1846 ASSERT(sp->slab_chunks > 1); 1847 list_remove(&cp->cache_complete_slabs, sp); 1848 cp->cache_complete_slab_count--; 1849 avl_add(&cp->cache_partial_slabs, sp); 1850 } else { 1851 #ifdef DEBUG 1852 if (avl_update_gt(&cp->cache_partial_slabs, sp)) { 1853 KMEM_STAT_ADD(kmem_move_stats.kms_avl_update); 1854 } else { 1855 KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate); 1856 } 1857 #else 1858 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1859 #endif 1860 } 1861 1862 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1863 (cp->cache_complete_slab_count + 1864 avl_numnodes(&cp->cache_partial_slabs) + 1865 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1866 mutex_exit(&cp->cache_lock); 1867 } 1868 1869 /* 1870 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1871 */ 1872 static int 1873 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1874 caddr_t caller) 1875 { 1876 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1877 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1878 uint32_t mtbf; 1879 1880 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1881 kmem_error(KMERR_BADBUFTAG, cp, buf); 1882 return (-1); 1883 } 1884 1885 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1886 1887 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1888 kmem_error(KMERR_BADBUFCTL, cp, buf); 1889 return (-1); 1890 } 1891 1892 if (cp->cache_flags & KMF_DEADBEEF) { 1893 if (!construct && (cp->cache_flags & KMF_LITE)) { 1894 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1895 kmem_error(KMERR_MODIFIED, cp, buf); 1896 return (-1); 1897 } 1898 if (cp->cache_constructor != NULL) 1899 *(uint64_t *)buf = btp->bt_redzone; 1900 else 1901 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1902 } else { 1903 construct = 1; 1904 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1905 KMEM_UNINITIALIZED_PATTERN, buf, 1906 cp->cache_verify)) { 1907 kmem_error(KMERR_MODIFIED, cp, buf); 1908 return (-1); 1909 } 1910 } 1911 } 1912 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1913 1914 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1915 gethrtime() % mtbf == 0 && 1916 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1917 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1918 if (!construct && cp->cache_destructor != NULL) 1919 cp->cache_destructor(buf, cp->cache_private); 1920 } else { 1921 mtbf = 0; 1922 } 1923 1924 if (mtbf || (construct && cp->cache_constructor != NULL && 1925 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1926 atomic_add_64(&cp->cache_alloc_fail, 1); 1927 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1928 if (cp->cache_flags & KMF_DEADBEEF) 1929 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1930 kmem_slab_free(cp, buf); 1931 return (1); 1932 } 1933 1934 if (cp->cache_flags & KMF_AUDIT) { 1935 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1936 } 1937 1938 if ((cp->cache_flags & KMF_LITE) && 1939 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1940 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1941 } 1942 1943 return (0); 1944 } 1945 1946 static int 1947 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1948 { 1949 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1950 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1951 kmem_slab_t *sp; 1952 1953 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1954 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1955 kmem_error(KMERR_DUPFREE, cp, buf); 1956 return (-1); 1957 } 1958 sp = kmem_findslab(cp, buf); 1959 if (sp == NULL || sp->slab_cache != cp) 1960 kmem_error(KMERR_BADADDR, cp, buf); 1961 else 1962 kmem_error(KMERR_REDZONE, cp, buf); 1963 return (-1); 1964 } 1965 1966 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1967 1968 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1969 kmem_error(KMERR_BADBUFCTL, cp, buf); 1970 return (-1); 1971 } 1972 1973 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 1974 kmem_error(KMERR_REDZONE, cp, buf); 1975 return (-1); 1976 } 1977 1978 if (cp->cache_flags & KMF_AUDIT) { 1979 if (cp->cache_flags & KMF_CONTENTS) 1980 bcp->bc_contents = kmem_log_enter(kmem_content_log, 1981 buf, cp->cache_contents); 1982 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1983 } 1984 1985 if ((cp->cache_flags & KMF_LITE) && 1986 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1987 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1988 } 1989 1990 if (cp->cache_flags & KMF_DEADBEEF) { 1991 if (cp->cache_flags & KMF_LITE) 1992 btp->bt_redzone = *(uint64_t *)buf; 1993 else if (cp->cache_destructor != NULL) 1994 cp->cache_destructor(buf, cp->cache_private); 1995 1996 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1997 } 1998 1999 return (0); 2000 } 2001 2002 /* 2003 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2004 */ 2005 static void 2006 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2007 { 2008 int round; 2009 2010 ASSERT(!list_link_active(&cp->cache_link) || 2011 taskq_member(kmem_taskq, curthread)); 2012 2013 for (round = 0; round < nrounds; round++) { 2014 void *buf = mp->mag_round[round]; 2015 2016 if (cp->cache_flags & KMF_DEADBEEF) { 2017 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2018 cp->cache_verify) != NULL) { 2019 kmem_error(KMERR_MODIFIED, cp, buf); 2020 continue; 2021 } 2022 if ((cp->cache_flags & KMF_LITE) && 2023 cp->cache_destructor != NULL) { 2024 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2025 *(uint64_t *)buf = btp->bt_redzone; 2026 cp->cache_destructor(buf, cp->cache_private); 2027 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2028 } 2029 } else if (cp->cache_destructor != NULL) { 2030 cp->cache_destructor(buf, cp->cache_private); 2031 } 2032 2033 kmem_slab_free(cp, buf); 2034 } 2035 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2036 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2037 } 2038 2039 /* 2040 * Allocate a magazine from the depot. 2041 */ 2042 static kmem_magazine_t * 2043 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2044 { 2045 kmem_magazine_t *mp; 2046 2047 /* 2048 * If we can't get the depot lock without contention, 2049 * update our contention count. We use the depot 2050 * contention rate to determine whether we need to 2051 * increase the magazine size for better scalability. 2052 */ 2053 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2054 mutex_enter(&cp->cache_depot_lock); 2055 cp->cache_depot_contention++; 2056 } 2057 2058 if ((mp = mlp->ml_list) != NULL) { 2059 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2060 mlp->ml_list = mp->mag_next; 2061 if (--mlp->ml_total < mlp->ml_min) 2062 mlp->ml_min = mlp->ml_total; 2063 mlp->ml_alloc++; 2064 } 2065 2066 mutex_exit(&cp->cache_depot_lock); 2067 2068 return (mp); 2069 } 2070 2071 /* 2072 * Free a magazine to the depot. 2073 */ 2074 static void 2075 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2076 { 2077 mutex_enter(&cp->cache_depot_lock); 2078 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2079 mp->mag_next = mlp->ml_list; 2080 mlp->ml_list = mp; 2081 mlp->ml_total++; 2082 mutex_exit(&cp->cache_depot_lock); 2083 } 2084 2085 /* 2086 * Update the working set statistics for cp's depot. 2087 */ 2088 static void 2089 kmem_depot_ws_update(kmem_cache_t *cp) 2090 { 2091 mutex_enter(&cp->cache_depot_lock); 2092 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2093 cp->cache_full.ml_min = cp->cache_full.ml_total; 2094 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2095 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2096 mutex_exit(&cp->cache_depot_lock); 2097 } 2098 2099 /* 2100 * Reap all magazines that have fallen out of the depot's working set. 2101 */ 2102 static void 2103 kmem_depot_ws_reap(kmem_cache_t *cp) 2104 { 2105 long reap; 2106 kmem_magazine_t *mp; 2107 2108 ASSERT(!list_link_active(&cp->cache_link) || 2109 taskq_member(kmem_taskq, curthread)); 2110 2111 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2112 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) 2113 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2114 2115 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2116 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) 2117 kmem_magazine_destroy(cp, mp, 0); 2118 } 2119 2120 static void 2121 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2122 { 2123 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2124 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2125 ASSERT(ccp->cc_magsize > 0); 2126 2127 ccp->cc_ploaded = ccp->cc_loaded; 2128 ccp->cc_prounds = ccp->cc_rounds; 2129 ccp->cc_loaded = mp; 2130 ccp->cc_rounds = rounds; 2131 } 2132 2133 /* 2134 * Allocate a constructed object from cache cp. 2135 */ 2136 void * 2137 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2138 { 2139 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2140 kmem_magazine_t *fmp; 2141 void *buf; 2142 2143 mutex_enter(&ccp->cc_lock); 2144 for (;;) { 2145 /* 2146 * If there's an object available in the current CPU's 2147 * loaded magazine, just take it and return. 2148 */ 2149 if (ccp->cc_rounds > 0) { 2150 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2151 ccp->cc_alloc++; 2152 mutex_exit(&ccp->cc_lock); 2153 if ((ccp->cc_flags & KMF_BUFTAG) && 2154 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2155 caller()) != 0) { 2156 if (kmflag & KM_NOSLEEP) 2157 return (NULL); 2158 mutex_enter(&ccp->cc_lock); 2159 continue; 2160 } 2161 return (buf); 2162 } 2163 2164 /* 2165 * The loaded magazine is empty. If the previously loaded 2166 * magazine was full, exchange them and try again. 2167 */ 2168 if (ccp->cc_prounds > 0) { 2169 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2170 continue; 2171 } 2172 2173 /* 2174 * If the magazine layer is disabled, break out now. 2175 */ 2176 if (ccp->cc_magsize == 0) 2177 break; 2178 2179 /* 2180 * Try to get a full magazine from the depot. 2181 */ 2182 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2183 if (fmp != NULL) { 2184 if (ccp->cc_ploaded != NULL) 2185 kmem_depot_free(cp, &cp->cache_empty, 2186 ccp->cc_ploaded); 2187 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2188 continue; 2189 } 2190 2191 /* 2192 * There are no full magazines in the depot, 2193 * so fall through to the slab layer. 2194 */ 2195 break; 2196 } 2197 mutex_exit(&ccp->cc_lock); 2198 2199 /* 2200 * We couldn't allocate a constructed object from the magazine layer, 2201 * so get a raw buffer from the slab layer and apply its constructor. 2202 */ 2203 buf = kmem_slab_alloc(cp, kmflag); 2204 2205 if (buf == NULL) 2206 return (NULL); 2207 2208 if (cp->cache_flags & KMF_BUFTAG) { 2209 /* 2210 * Make kmem_cache_alloc_debug() apply the constructor for us. 2211 */ 2212 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2213 if (rc != 0) { 2214 if (kmflag & KM_NOSLEEP) 2215 return (NULL); 2216 /* 2217 * kmem_cache_alloc_debug() detected corruption 2218 * but didn't panic (kmem_panic <= 0). We should not be 2219 * here because the constructor failed (indicated by a 2220 * return code of 1). Try again. 2221 */ 2222 ASSERT(rc == -1); 2223 return (kmem_cache_alloc(cp, kmflag)); 2224 } 2225 return (buf); 2226 } 2227 2228 if (cp->cache_constructor != NULL && 2229 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2230 atomic_add_64(&cp->cache_alloc_fail, 1); 2231 kmem_slab_free(cp, buf); 2232 return (NULL); 2233 } 2234 2235 return (buf); 2236 } 2237 2238 /* 2239 * The freed argument tells whether or not kmem_cache_free_debug() has already 2240 * been called so that we can avoid the duplicate free error. For example, a 2241 * buffer on a magazine has already been freed by the client but is still 2242 * constructed. 2243 */ 2244 static void 2245 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2246 { 2247 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2248 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2249 return; 2250 2251 /* 2252 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2253 * kmem_cache_free_debug() will have already applied the destructor. 2254 */ 2255 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2256 cp->cache_destructor != NULL) { 2257 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2258 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2259 *(uint64_t *)buf = btp->bt_redzone; 2260 cp->cache_destructor(buf, cp->cache_private); 2261 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2262 } else { 2263 cp->cache_destructor(buf, cp->cache_private); 2264 } 2265 } 2266 2267 kmem_slab_free(cp, buf); 2268 } 2269 2270 /* 2271 * Free a constructed object to cache cp. 2272 */ 2273 void 2274 kmem_cache_free(kmem_cache_t *cp, void *buf) 2275 { 2276 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2277 kmem_magazine_t *emp; 2278 kmem_magtype_t *mtp; 2279 2280 /* 2281 * The client must not free either of the buffers passed to the move 2282 * callback function. 2283 */ 2284 ASSERT(cp->cache_defrag == NULL || 2285 cp->cache_defrag->kmd_thread != curthread || 2286 (buf != cp->cache_defrag->kmd_from_buf && 2287 buf != cp->cache_defrag->kmd_to_buf)); 2288 2289 if (ccp->cc_flags & KMF_BUFTAG) 2290 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2291 return; 2292 2293 mutex_enter(&ccp->cc_lock); 2294 for (;;) { 2295 /* 2296 * If there's a slot available in the current CPU's 2297 * loaded magazine, just put the object there and return. 2298 */ 2299 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2300 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2301 ccp->cc_free++; 2302 mutex_exit(&ccp->cc_lock); 2303 return; 2304 } 2305 2306 /* 2307 * The loaded magazine is full. If the previously loaded 2308 * magazine was empty, exchange them and try again. 2309 */ 2310 if (ccp->cc_prounds == 0) { 2311 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2312 continue; 2313 } 2314 2315 /* 2316 * If the magazine layer is disabled, break out now. 2317 */ 2318 if (ccp->cc_magsize == 0) 2319 break; 2320 2321 /* 2322 * Try to get an empty magazine from the depot. 2323 */ 2324 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2325 if (emp != NULL) { 2326 if (ccp->cc_ploaded != NULL) 2327 kmem_depot_free(cp, &cp->cache_full, 2328 ccp->cc_ploaded); 2329 kmem_cpu_reload(ccp, emp, 0); 2330 continue; 2331 } 2332 2333 /* 2334 * There are no empty magazines in the depot, 2335 * so try to allocate a new one. We must drop all locks 2336 * across kmem_cache_alloc() because lower layers may 2337 * attempt to allocate from this cache. 2338 */ 2339 mtp = cp->cache_magtype; 2340 mutex_exit(&ccp->cc_lock); 2341 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2342 mutex_enter(&ccp->cc_lock); 2343 2344 if (emp != NULL) { 2345 /* 2346 * We successfully allocated an empty magazine. 2347 * However, we had to drop ccp->cc_lock to do it, 2348 * so the cache's magazine size may have changed. 2349 * If so, free the magazine and try again. 2350 */ 2351 if (ccp->cc_magsize != mtp->mt_magsize) { 2352 mutex_exit(&ccp->cc_lock); 2353 kmem_cache_free(mtp->mt_cache, emp); 2354 mutex_enter(&ccp->cc_lock); 2355 continue; 2356 } 2357 2358 /* 2359 * We got a magazine of the right size. Add it to 2360 * the depot and try the whole dance again. 2361 */ 2362 kmem_depot_free(cp, &cp->cache_empty, emp); 2363 continue; 2364 } 2365 2366 /* 2367 * We couldn't allocate an empty magazine, 2368 * so fall through to the slab layer. 2369 */ 2370 break; 2371 } 2372 mutex_exit(&ccp->cc_lock); 2373 2374 /* 2375 * We couldn't free our constructed object to the magazine layer, 2376 * so apply its destructor and free it to the slab layer. 2377 */ 2378 kmem_slab_free_constructed(cp, buf, B_TRUE); 2379 } 2380 2381 void * 2382 kmem_zalloc(size_t size, int kmflag) 2383 { 2384 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2385 void *buf; 2386 2387 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2388 kmem_cache_t *cp = kmem_alloc_table[index]; 2389 buf = kmem_cache_alloc(cp, kmflag); 2390 if (buf != NULL) { 2391 if (cp->cache_flags & KMF_BUFTAG) { 2392 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2393 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2394 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2395 2396 if (cp->cache_flags & KMF_LITE) { 2397 KMEM_BUFTAG_LITE_ENTER(btp, 2398 kmem_lite_count, caller()); 2399 } 2400 } 2401 bzero(buf, size); 2402 } 2403 } else { 2404 buf = kmem_alloc(size, kmflag); 2405 if (buf != NULL) 2406 bzero(buf, size); 2407 } 2408 return (buf); 2409 } 2410 2411 void * 2412 kmem_alloc(size_t size, int kmflag) 2413 { 2414 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2415 void *buf; 2416 2417 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2418 kmem_cache_t *cp = kmem_alloc_table[index]; 2419 buf = kmem_cache_alloc(cp, kmflag); 2420 if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) { 2421 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2422 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2423 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2424 2425 if (cp->cache_flags & KMF_LITE) { 2426 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2427 caller()); 2428 } 2429 } 2430 return (buf); 2431 } 2432 if (size == 0) 2433 return (NULL); 2434 buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS); 2435 if (buf == NULL) 2436 kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size); 2437 return (buf); 2438 } 2439 2440 void 2441 kmem_free(void *buf, size_t size) 2442 { 2443 size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; 2444 2445 if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { 2446 kmem_cache_t *cp = kmem_alloc_table[index]; 2447 if (cp->cache_flags & KMF_BUFTAG) { 2448 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2449 uint32_t *ip = (uint32_t *)btp; 2450 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2451 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2452 kmem_error(KMERR_DUPFREE, cp, buf); 2453 return; 2454 } 2455 if (KMEM_SIZE_VALID(ip[1])) { 2456 ip[0] = KMEM_SIZE_ENCODE(size); 2457 kmem_error(KMERR_BADSIZE, cp, buf); 2458 } else { 2459 kmem_error(KMERR_REDZONE, cp, buf); 2460 } 2461 return; 2462 } 2463 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2464 kmem_error(KMERR_REDZONE, cp, buf); 2465 return; 2466 } 2467 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2468 if (cp->cache_flags & KMF_LITE) { 2469 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2470 caller()); 2471 } 2472 } 2473 kmem_cache_free(cp, buf); 2474 } else { 2475 if (buf == NULL && size == 0) 2476 return; 2477 vmem_free(kmem_oversize_arena, buf, size); 2478 } 2479 } 2480 2481 void * 2482 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2483 { 2484 size_t realsize = size + vmp->vm_quantum; 2485 void *addr; 2486 2487 /* 2488 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2489 * vm_quantum will cause integer wraparound. Check for this, and 2490 * blow off the firewall page in this case. Note that such a 2491 * giant allocation (the entire kernel address space) can never 2492 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2493 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2494 * corresponding check in kmem_firewall_va_free(). 2495 */ 2496 if (realsize < size) 2497 realsize = size; 2498 2499 /* 2500 * While boot still owns resource management, make sure that this 2501 * redzone virtual address allocation is properly accounted for in 2502 * OBPs "virtual-memory" "available" lists because we're 2503 * effectively claiming them for a red zone. If we don't do this, 2504 * the available lists become too fragmented and too large for the 2505 * current boot/kernel memory list interface. 2506 */ 2507 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 2508 2509 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 2510 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 2511 2512 return (addr); 2513 } 2514 2515 void 2516 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2517 { 2518 ASSERT((kvseg.s_base == NULL ? 2519 va_to_pfn((char *)addr + size) : 2520 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 2521 2522 vmem_free(vmp, addr, size + vmp->vm_quantum); 2523 } 2524 2525 /* 2526 * Try to allocate at least `size' bytes of memory without sleeping or 2527 * panicking. Return actual allocated size in `asize'. If allocation failed, 2528 * try final allocation with sleep or panic allowed. 2529 */ 2530 void * 2531 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 2532 { 2533 void *p; 2534 2535 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2536 do { 2537 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 2538 if (p != NULL) 2539 return (p); 2540 *asize += KMEM_ALIGN; 2541 } while (*asize <= PAGESIZE); 2542 2543 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2544 return (kmem_alloc(*asize, kmflag)); 2545 } 2546 2547 /* 2548 * Reclaim all unused memory from a cache. 2549 */ 2550 static void 2551 kmem_cache_reap(kmem_cache_t *cp) 2552 { 2553 ASSERT(taskq_member(kmem_taskq, curthread)); 2554 2555 /* 2556 * Ask the cache's owner to free some memory if possible. 2557 * The idea is to handle things like the inode cache, which 2558 * typically sits on a bunch of memory that it doesn't truly 2559 * *need*. Reclaim policy is entirely up to the owner; this 2560 * callback is just an advisory plea for help. 2561 */ 2562 if (cp->cache_reclaim != NULL) { 2563 long delta; 2564 2565 /* 2566 * Reclaimed memory should be reapable (not included in the 2567 * depot's working set). 2568 */ 2569 delta = cp->cache_full.ml_total; 2570 cp->cache_reclaim(cp->cache_private); 2571 delta = cp->cache_full.ml_total - delta; 2572 if (delta > 0) { 2573 mutex_enter(&cp->cache_depot_lock); 2574 cp->cache_full.ml_reaplimit += delta; 2575 cp->cache_full.ml_min += delta; 2576 mutex_exit(&cp->cache_depot_lock); 2577 } 2578 } 2579 2580 kmem_depot_ws_reap(cp); 2581 2582 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 2583 kmem_cache_defrag(cp); 2584 } 2585 } 2586 2587 static void 2588 kmem_reap_timeout(void *flag_arg) 2589 { 2590 uint32_t *flag = (uint32_t *)flag_arg; 2591 2592 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2593 *flag = 0; 2594 } 2595 2596 static void 2597 kmem_reap_done(void *flag) 2598 { 2599 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 2600 } 2601 2602 static void 2603 kmem_reap_start(void *flag) 2604 { 2605 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 2606 2607 if (flag == &kmem_reaping) { 2608 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 2609 /* 2610 * if we have segkp under heap, reap segkp cache. 2611 */ 2612 if (segkp_fromheap) 2613 segkp_cache_free(); 2614 } 2615 else 2616 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 2617 2618 /* 2619 * We use taskq_dispatch() to schedule a timeout to clear 2620 * the flag so that kmem_reap() becomes self-throttling: 2621 * we won't reap again until the current reap completes *and* 2622 * at least kmem_reap_interval ticks have elapsed. 2623 */ 2624 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 2625 kmem_reap_done(flag); 2626 } 2627 2628 static void 2629 kmem_reap_common(void *flag_arg) 2630 { 2631 uint32_t *flag = (uint32_t *)flag_arg; 2632 2633 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 2634 cas32(flag, 0, 1) != 0) 2635 return; 2636 2637 /* 2638 * It may not be kosher to do memory allocation when a reap is called 2639 * is called (for example, if vmem_populate() is in the call chain). 2640 * So we start the reap going with a TQ_NOALLOC dispatch. If the 2641 * dispatch fails, we reset the flag, and the next reap will try again. 2642 */ 2643 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 2644 *flag = 0; 2645 } 2646 2647 /* 2648 * Reclaim all unused memory from all caches. Called from the VM system 2649 * when memory gets tight. 2650 */ 2651 void 2652 kmem_reap(void) 2653 { 2654 kmem_reap_common(&kmem_reaping); 2655 } 2656 2657 /* 2658 * Reclaim all unused memory from identifier arenas, called when a vmem 2659 * arena not back by memory is exhausted. Since reaping memory-backed caches 2660 * cannot help with identifier exhaustion, we avoid both a large amount of 2661 * work and unwanted side-effects from reclaim callbacks. 2662 */ 2663 void 2664 kmem_reap_idspace(void) 2665 { 2666 kmem_reap_common(&kmem_reaping_idspace); 2667 } 2668 2669 /* 2670 * Purge all magazines from a cache and set its magazine limit to zero. 2671 * All calls are serialized by the kmem_taskq lock, except for the final 2672 * call from kmem_cache_destroy(). 2673 */ 2674 static void 2675 kmem_cache_magazine_purge(kmem_cache_t *cp) 2676 { 2677 kmem_cpu_cache_t *ccp; 2678 kmem_magazine_t *mp, *pmp; 2679 int rounds, prounds, cpu_seqid; 2680 2681 ASSERT(!list_link_active(&cp->cache_link) || 2682 taskq_member(kmem_taskq, curthread)); 2683 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 2684 2685 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2686 ccp = &cp->cache_cpu[cpu_seqid]; 2687 2688 mutex_enter(&ccp->cc_lock); 2689 mp = ccp->cc_loaded; 2690 pmp = ccp->cc_ploaded; 2691 rounds = ccp->cc_rounds; 2692 prounds = ccp->cc_prounds; 2693 ccp->cc_loaded = NULL; 2694 ccp->cc_ploaded = NULL; 2695 ccp->cc_rounds = -1; 2696 ccp->cc_prounds = -1; 2697 ccp->cc_magsize = 0; 2698 mutex_exit(&ccp->cc_lock); 2699 2700 if (mp) 2701 kmem_magazine_destroy(cp, mp, rounds); 2702 if (pmp) 2703 kmem_magazine_destroy(cp, pmp, prounds); 2704 } 2705 2706 /* 2707 * Updating the working set statistics twice in a row has the 2708 * effect of setting the working set size to zero, so everything 2709 * is eligible for reaping. 2710 */ 2711 kmem_depot_ws_update(cp); 2712 kmem_depot_ws_update(cp); 2713 2714 kmem_depot_ws_reap(cp); 2715 } 2716 2717 /* 2718 * Enable per-cpu magazines on a cache. 2719 */ 2720 static void 2721 kmem_cache_magazine_enable(kmem_cache_t *cp) 2722 { 2723 int cpu_seqid; 2724 2725 if (cp->cache_flags & KMF_NOMAGAZINE) 2726 return; 2727 2728 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2729 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2730 mutex_enter(&ccp->cc_lock); 2731 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2732 mutex_exit(&ccp->cc_lock); 2733 } 2734 2735 } 2736 2737 /* 2738 * Reap (almost) everything right now. See kmem_cache_magazine_purge() 2739 * for explanation of the back-to-back kmem_depot_ws_update() calls. 2740 */ 2741 void 2742 kmem_cache_reap_now(kmem_cache_t *cp) 2743 { 2744 ASSERT(list_link_active(&cp->cache_link)); 2745 2746 kmem_depot_ws_update(cp); 2747 kmem_depot_ws_update(cp); 2748 2749 (void) taskq_dispatch(kmem_taskq, 2750 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 2751 taskq_wait(kmem_taskq); 2752 } 2753 2754 /* 2755 * Recompute a cache's magazine size. The trade-off is that larger magazines 2756 * provide a higher transfer rate with the depot, while smaller magazines 2757 * reduce memory consumption. Magazine resizing is an expensive operation; 2758 * it should not be done frequently. 2759 * 2760 * Changes to the magazine size are serialized by the kmem_taskq lock. 2761 * 2762 * Note: at present this only grows the magazine size. It might be useful 2763 * to allow shrinkage too. 2764 */ 2765 static void 2766 kmem_cache_magazine_resize(kmem_cache_t *cp) 2767 { 2768 kmem_magtype_t *mtp = cp->cache_magtype; 2769 2770 ASSERT(taskq_member(kmem_taskq, curthread)); 2771 2772 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2773 kmem_cache_magazine_purge(cp); 2774 mutex_enter(&cp->cache_depot_lock); 2775 cp->cache_magtype = ++mtp; 2776 cp->cache_depot_contention_prev = 2777 cp->cache_depot_contention + INT_MAX; 2778 mutex_exit(&cp->cache_depot_lock); 2779 kmem_cache_magazine_enable(cp); 2780 } 2781 } 2782 2783 /* 2784 * Rescale a cache's hash table, so that the table size is roughly the 2785 * cache size. We want the average lookup time to be extremely small. 2786 */ 2787 static void 2788 kmem_hash_rescale(kmem_cache_t *cp) 2789 { 2790 kmem_bufctl_t **old_table, **new_table, *bcp; 2791 size_t old_size, new_size, h; 2792 2793 ASSERT(taskq_member(kmem_taskq, curthread)); 2794 2795 new_size = MAX(KMEM_HASH_INITIAL, 2796 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2797 old_size = cp->cache_hash_mask + 1; 2798 2799 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2800 return; 2801 2802 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 2803 VM_NOSLEEP); 2804 if (new_table == NULL) 2805 return; 2806 bzero(new_table, new_size * sizeof (void *)); 2807 2808 mutex_enter(&cp->cache_lock); 2809 2810 old_size = cp->cache_hash_mask + 1; 2811 old_table = cp->cache_hash_table; 2812 2813 cp->cache_hash_mask = new_size - 1; 2814 cp->cache_hash_table = new_table; 2815 cp->cache_rescale++; 2816 2817 for (h = 0; h < old_size; h++) { 2818 bcp = old_table[h]; 2819 while (bcp != NULL) { 2820 void *addr = bcp->bc_addr; 2821 kmem_bufctl_t *next_bcp = bcp->bc_next; 2822 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 2823 bcp->bc_next = *hash_bucket; 2824 *hash_bucket = bcp; 2825 bcp = next_bcp; 2826 } 2827 } 2828 2829 mutex_exit(&cp->cache_lock); 2830 2831 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 2832 } 2833 2834 /* 2835 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 2836 * update, magazine resizing, and slab consolidation. 2837 */ 2838 static void 2839 kmem_cache_update(kmem_cache_t *cp) 2840 { 2841 int need_hash_rescale = 0; 2842 int need_magazine_resize = 0; 2843 2844 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 2845 2846 /* 2847 * If the cache has become much larger or smaller than its hash table, 2848 * fire off a request to rescale the hash table. 2849 */ 2850 mutex_enter(&cp->cache_lock); 2851 2852 if ((cp->cache_flags & KMF_HASH) && 2853 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2854 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2855 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 2856 need_hash_rescale = 1; 2857 2858 mutex_exit(&cp->cache_lock); 2859 2860 /* 2861 * Update the depot working set statistics. 2862 */ 2863 kmem_depot_ws_update(cp); 2864 2865 /* 2866 * If there's a lot of contention in the depot, 2867 * increase the magazine size. 2868 */ 2869 mutex_enter(&cp->cache_depot_lock); 2870 2871 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2872 (int)(cp->cache_depot_contention - 2873 cp->cache_depot_contention_prev) > kmem_depot_contention) 2874 need_magazine_resize = 1; 2875 2876 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2877 2878 mutex_exit(&cp->cache_depot_lock); 2879 2880 if (need_hash_rescale) 2881 (void) taskq_dispatch(kmem_taskq, 2882 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 2883 2884 if (need_magazine_resize) 2885 (void) taskq_dispatch(kmem_taskq, 2886 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 2887 2888 if (cp->cache_defrag != NULL) 2889 (void) taskq_dispatch(kmem_taskq, 2890 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 2891 } 2892 2893 static void 2894 kmem_update_timeout(void *dummy) 2895 { 2896 static void kmem_update(void *); 2897 2898 (void) timeout(kmem_update, dummy, kmem_reap_interval); 2899 } 2900 2901 static void 2902 kmem_update(void *dummy) 2903 { 2904 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 2905 2906 /* 2907 * We use taskq_dispatch() to reschedule the timeout so that 2908 * kmem_update() becomes self-throttling: it won't schedule 2909 * new tasks until all previous tasks have completed. 2910 */ 2911 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 2912 kmem_update_timeout(NULL); 2913 } 2914 2915 static int 2916 kmem_cache_kstat_update(kstat_t *ksp, int rw) 2917 { 2918 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 2919 kmem_cache_t *cp = ksp->ks_private; 2920 uint64_t cpu_buf_avail; 2921 uint64_t buf_avail = 0; 2922 int cpu_seqid; 2923 2924 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 2925 2926 if (rw == KSTAT_WRITE) 2927 return (EACCES); 2928 2929 mutex_enter(&cp->cache_lock); 2930 2931 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 2932 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 2933 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 2934 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 2935 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 2936 2937 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 2938 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2939 2940 mutex_enter(&ccp->cc_lock); 2941 2942 cpu_buf_avail = 0; 2943 if (ccp->cc_rounds > 0) 2944 cpu_buf_avail += ccp->cc_rounds; 2945 if (ccp->cc_prounds > 0) 2946 cpu_buf_avail += ccp->cc_prounds; 2947 2948 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 2949 kmcp->kmc_free.value.ui64 += ccp->cc_free; 2950 buf_avail += cpu_buf_avail; 2951 2952 mutex_exit(&ccp->cc_lock); 2953 } 2954 2955 mutex_enter(&cp->cache_depot_lock); 2956 2957 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 2958 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 2959 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 2960 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 2961 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 2962 kmcp->kmc_magazine_size.value.ui64 = 2963 (cp->cache_flags & KMF_NOMAGAZINE) ? 2964 0 : cp->cache_magtype->mt_magsize; 2965 2966 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 2967 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 2968 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 2969 2970 mutex_exit(&cp->cache_depot_lock); 2971 2972 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 2973 kmcp->kmc_align.value.ui64 = cp->cache_align; 2974 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 2975 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 2976 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 2977 buf_avail += cp->cache_bufslab; 2978 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 2979 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 2980 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 2981 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 2982 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 2983 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 2984 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 2985 cp->cache_hash_mask + 1 : 0; 2986 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 2987 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 2988 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 2989 2990 if (cp->cache_defrag == NULL) { 2991 kmcp->kmc_move_callbacks.value.ui64 = 0; 2992 kmcp->kmc_move_yes.value.ui64 = 0; 2993 kmcp->kmc_move_no.value.ui64 = 0; 2994 kmcp->kmc_move_later.value.ui64 = 0; 2995 kmcp->kmc_move_dont_need.value.ui64 = 0; 2996 kmcp->kmc_move_dont_know.value.ui64 = 0; 2997 kmcp->kmc_move_hunt_found.value.ui64 = 0; 2998 } else { 2999 kmem_defrag_t *kd = cp->cache_defrag; 3000 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3001 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3002 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3003 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3004 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3005 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3006 kmcp->kmc_move_hunt_found.value.ui64 = kd->kmd_hunt_found; 3007 } 3008 3009 mutex_exit(&cp->cache_lock); 3010 return (0); 3011 } 3012 3013 /* 3014 * Return a named statistic about a particular cache. 3015 * This shouldn't be called very often, so it's currently designed for 3016 * simplicity (leverages existing kstat support) rather than efficiency. 3017 */ 3018 uint64_t 3019 kmem_cache_stat(kmem_cache_t *cp, char *name) 3020 { 3021 int i; 3022 kstat_t *ksp = cp->cache_kstat; 3023 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3024 uint64_t value = 0; 3025 3026 if (ksp != NULL) { 3027 mutex_enter(&kmem_cache_kstat_lock); 3028 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3029 for (i = 0; i < ksp->ks_ndata; i++) { 3030 if (strcmp(knp[i].name, name) == 0) { 3031 value = knp[i].value.ui64; 3032 break; 3033 } 3034 } 3035 mutex_exit(&kmem_cache_kstat_lock); 3036 } 3037 return (value); 3038 } 3039 3040 /* 3041 * Return an estimate of currently available kernel heap memory. 3042 * On 32-bit systems, physical memory may exceed virtual memory, 3043 * we just truncate the result at 1GB. 3044 */ 3045 size_t 3046 kmem_avail(void) 3047 { 3048 spgcnt_t rmem = availrmem - tune.t_minarmem; 3049 spgcnt_t fmem = freemem - minfree; 3050 3051 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3052 1 << (30 - PAGESHIFT)))); 3053 } 3054 3055 /* 3056 * Return the maximum amount of memory that is (in theory) allocatable 3057 * from the heap. This may be used as an estimate only since there 3058 * is no guarentee this space will still be available when an allocation 3059 * request is made, nor that the space may be allocated in one big request 3060 * due to kernel heap fragmentation. 3061 */ 3062 size_t 3063 kmem_maxavail(void) 3064 { 3065 spgcnt_t pmem = availrmem - tune.t_minarmem; 3066 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3067 3068 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3069 } 3070 3071 /* 3072 * Indicate whether memory-intensive kmem debugging is enabled. 3073 */ 3074 int 3075 kmem_debugging(void) 3076 { 3077 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3078 } 3079 3080 /* binning function, sorts finely at the two extremes */ 3081 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3082 ((((sp)->slab_refcnt <= (binshift)) || \ 3083 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3084 ? -(sp)->slab_refcnt \ 3085 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3086 3087 /* 3088 * Minimizing the number of partial slabs on the freelist minimizes 3089 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3090 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3091 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3092 * the most-used slabs at the front of the list where they have the best chance 3093 * of being completely allocated, and the least-used slabs at a safe distance 3094 * from the front to improve the odds that the few remaining buffers will all be 3095 * freed before another allocation can tie up the slab. For that reason a slab 3096 * with a higher slab_refcnt sorts less than than a slab with a lower 3097 * slab_refcnt. 3098 * 3099 * However, if a slab has at least one buffer that is deemed unfreeable, we 3100 * would rather have that slab at the front of the list regardless of 3101 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3102 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3103 * callback, the slab is marked unfreeable for as long as it remains on the 3104 * freelist. 3105 */ 3106 static int 3107 kmem_partial_slab_cmp(const void *p0, const void *p1) 3108 { 3109 const kmem_cache_t *cp; 3110 const kmem_slab_t *s0 = p0; 3111 const kmem_slab_t *s1 = p1; 3112 int w0, w1; 3113 size_t binshift; 3114 3115 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3116 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3117 ASSERT(s0->slab_cache == s1->slab_cache); 3118 cp = s1->slab_cache; 3119 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3120 binshift = cp->cache_partial_binshift; 3121 3122 /* weight of first slab */ 3123 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3124 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3125 w0 -= cp->cache_maxchunks; 3126 } 3127 3128 /* weight of second slab */ 3129 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3130 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3131 w1 -= cp->cache_maxchunks; 3132 } 3133 3134 if (w0 < w1) 3135 return (-1); 3136 if (w0 > w1) 3137 return (1); 3138 3139 /* compare pointer values */ 3140 if ((uintptr_t)s0 < (uintptr_t)s1) 3141 return (-1); 3142 if ((uintptr_t)s0 > (uintptr_t)s1) 3143 return (1); 3144 3145 return (0); 3146 } 3147 3148 static void 3149 kmem_check_destructor(kmem_cache_t *cp) 3150 { 3151 ASSERT(taskq_member(kmem_move_taskq, curthread)); 3152 3153 if (cp->cache_destructor == NULL) 3154 return; 3155 3156 /* 3157 * Assert that it is valid to call the destructor on a newly constructed 3158 * object without any intervening client code using the object. 3159 * Allocate from the slab layer to ensure that the client has not 3160 * touched the buffer. 3161 */ 3162 void *buf = kmem_slab_alloc(cp, KM_NOSLEEP); 3163 if (buf == NULL) 3164 return; 3165 3166 if (cp->cache_flags & KMF_BUFTAG) { 3167 if (kmem_cache_alloc_debug(cp, buf, KM_NOSLEEP, 1, 3168 caller()) != 0) 3169 return; 3170 } else if (cp->cache_constructor != NULL && 3171 cp->cache_constructor(buf, cp->cache_private, KM_NOSLEEP) != 0) { 3172 atomic_add_64(&cp->cache_alloc_fail, 1); 3173 kmem_slab_free(cp, buf); 3174 return; 3175 } 3176 3177 kmem_slab_free_constructed(cp, buf, B_FALSE); 3178 } 3179 3180 /* 3181 * It must be valid to call the destructor (if any) on a newly created object. 3182 * That is, the constructor (if any) must leave the object in a valid state for 3183 * the destructor. 3184 */ 3185 kmem_cache_t * 3186 kmem_cache_create( 3187 char *name, /* descriptive name for this cache */ 3188 size_t bufsize, /* size of the objects it manages */ 3189 size_t align, /* required object alignment */ 3190 int (*constructor)(void *, void *, int), /* object constructor */ 3191 void (*destructor)(void *, void *), /* object destructor */ 3192 void (*reclaim)(void *), /* memory reclaim callback */ 3193 void *private, /* pass-thru arg for constr/destr/reclaim */ 3194 vmem_t *vmp, /* vmem source for slab allocation */ 3195 int cflags) /* cache creation flags */ 3196 { 3197 int cpu_seqid; 3198 size_t chunksize; 3199 kmem_cache_t *cp; 3200 kmem_magtype_t *mtp; 3201 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3202 3203 #ifdef DEBUG 3204 /* 3205 * Cache names should conform to the rules for valid C identifiers 3206 */ 3207 if (!strident_valid(name)) { 3208 cmn_err(CE_CONT, 3209 "kmem_cache_create: '%s' is an invalid cache name\n" 3210 "cache names must conform to the rules for " 3211 "C identifiers\n", name); 3212 } 3213 #endif /* DEBUG */ 3214 3215 if (vmp == NULL) 3216 vmp = kmem_default_arena; 3217 3218 /* 3219 * If this kmem cache has an identifier vmem arena as its source, mark 3220 * it such to allow kmem_reap_idspace(). 3221 */ 3222 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3223 if (vmp->vm_cflags & VMC_IDENTIFIER) 3224 cflags |= KMC_IDENTIFIER; 3225 3226 /* 3227 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3228 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3229 * false sharing of per-CPU data. 3230 */ 3231 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3232 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3233 bzero(cp, csize); 3234 list_link_init(&cp->cache_link); 3235 3236 if (align == 0) 3237 align = KMEM_ALIGN; 3238 3239 /* 3240 * If we're not at least KMEM_ALIGN aligned, we can't use free 3241 * memory to hold bufctl information (because we can't safely 3242 * perform word loads and stores on it). 3243 */ 3244 if (align < KMEM_ALIGN) 3245 cflags |= KMC_NOTOUCH; 3246 3247 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum) 3248 panic("kmem_cache_create: bad alignment %lu", align); 3249 3250 mutex_enter(&kmem_flags_lock); 3251 if (kmem_flags & KMF_RANDOMIZE) 3252 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3253 KMF_RANDOMIZE; 3254 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3255 mutex_exit(&kmem_flags_lock); 3256 3257 /* 3258 * Make sure all the various flags are reasonable. 3259 */ 3260 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3261 3262 if (cp->cache_flags & KMF_LITE) { 3263 if (bufsize >= kmem_lite_minsize && 3264 align <= kmem_lite_maxalign && 3265 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3266 cp->cache_flags |= KMF_BUFTAG; 3267 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3268 } else { 3269 cp->cache_flags &= ~KMF_DEBUG; 3270 } 3271 } 3272 3273 if (cp->cache_flags & KMF_DEADBEEF) 3274 cp->cache_flags |= KMF_REDZONE; 3275 3276 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3277 cp->cache_flags |= KMF_NOMAGAZINE; 3278 3279 if (cflags & KMC_NODEBUG) 3280 cp->cache_flags &= ~KMF_DEBUG; 3281 3282 if (cflags & KMC_NOTOUCH) 3283 cp->cache_flags &= ~KMF_TOUCH; 3284 3285 if (cflags & KMC_NOHASH) 3286 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3287 3288 if (cflags & KMC_NOMAGAZINE) 3289 cp->cache_flags |= KMF_NOMAGAZINE; 3290 3291 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3292 cp->cache_flags |= KMF_REDZONE; 3293 3294 if (!(cp->cache_flags & KMF_AUDIT)) 3295 cp->cache_flags &= ~KMF_CONTENTS; 3296 3297 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3298 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3299 cp->cache_flags |= KMF_FIREWALL; 3300 3301 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3302 cp->cache_flags &= ~KMF_FIREWALL; 3303 3304 if (cp->cache_flags & KMF_FIREWALL) { 3305 cp->cache_flags &= ~KMF_BUFTAG; 3306 cp->cache_flags |= KMF_NOMAGAZINE; 3307 ASSERT(vmp == kmem_default_arena); 3308 vmp = kmem_firewall_arena; 3309 } 3310 3311 /* 3312 * Set cache properties. 3313 */ 3314 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3315 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3316 cp->cache_bufsize = bufsize; 3317 cp->cache_align = align; 3318 cp->cache_constructor = constructor; 3319 cp->cache_destructor = destructor; 3320 cp->cache_reclaim = reclaim; 3321 cp->cache_private = private; 3322 cp->cache_arena = vmp; 3323 cp->cache_cflags = cflags; 3324 3325 /* 3326 * Determine the chunk size. 3327 */ 3328 chunksize = bufsize; 3329 3330 if (align >= KMEM_ALIGN) { 3331 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3332 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3333 } 3334 3335 if (cp->cache_flags & KMF_BUFTAG) { 3336 cp->cache_bufctl = chunksize; 3337 cp->cache_buftag = chunksize; 3338 if (cp->cache_flags & KMF_LITE) 3339 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3340 else 3341 chunksize += sizeof (kmem_buftag_t); 3342 } 3343 3344 if (cp->cache_flags & KMF_DEADBEEF) { 3345 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3346 if (cp->cache_flags & KMF_LITE) 3347 cp->cache_verify = sizeof (uint64_t); 3348 } 3349 3350 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3351 3352 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3353 3354 /* 3355 * Now that we know the chunk size, determine the optimal slab size. 3356 */ 3357 if (vmp == kmem_firewall_arena) { 3358 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3359 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3360 cp->cache_maxcolor = cp->cache_mincolor; 3361 cp->cache_flags |= KMF_HASH; 3362 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3363 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3364 !(cp->cache_flags & KMF_AUDIT) && 3365 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3366 cp->cache_slabsize = vmp->vm_quantum; 3367 cp->cache_mincolor = 0; 3368 cp->cache_maxcolor = 3369 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3370 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3371 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3372 } else { 3373 size_t chunks, bestfit, waste, slabsize; 3374 size_t minwaste = LONG_MAX; 3375 3376 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3377 slabsize = P2ROUNDUP(chunksize * chunks, 3378 vmp->vm_quantum); 3379 chunks = slabsize / chunksize; 3380 waste = (slabsize % chunksize) / chunks; 3381 if (waste < minwaste) { 3382 minwaste = waste; 3383 bestfit = slabsize; 3384 } 3385 } 3386 if (cflags & KMC_QCACHE) 3387 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3388 cp->cache_slabsize = bestfit; 3389 cp->cache_mincolor = 0; 3390 cp->cache_maxcolor = bestfit % chunksize; 3391 cp->cache_flags |= KMF_HASH; 3392 } 3393 3394 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3395 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3396 3397 if (cp->cache_flags & KMF_HASH) { 3398 ASSERT(!(cflags & KMC_NOHASH)); 3399 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3400 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3401 } 3402 3403 if (cp->cache_maxcolor >= vmp->vm_quantum) 3404 cp->cache_maxcolor = vmp->vm_quantum - 1; 3405 3406 cp->cache_color = cp->cache_mincolor; 3407 3408 /* 3409 * Initialize the rest of the slab layer. 3410 */ 3411 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3412 3413 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3414 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3415 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3416 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3417 /* reuse partial slab AVL linkage for complete slab list linkage */ 3418 list_create(&cp->cache_complete_slabs, 3419 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3420 3421 if (cp->cache_flags & KMF_HASH) { 3422 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3423 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3424 bzero(cp->cache_hash_table, 3425 KMEM_HASH_INITIAL * sizeof (void *)); 3426 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3427 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3428 } 3429 3430 /* 3431 * Initialize the depot. 3432 */ 3433 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3434 3435 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3436 continue; 3437 3438 cp->cache_magtype = mtp; 3439 3440 /* 3441 * Initialize the CPU layer. 3442 */ 3443 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3444 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3445 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3446 ccp->cc_flags = cp->cache_flags; 3447 ccp->cc_rounds = -1; 3448 ccp->cc_prounds = -1; 3449 } 3450 3451 /* 3452 * Create the cache's kstats. 3453 */ 3454 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3455 "kmem_cache", KSTAT_TYPE_NAMED, 3456 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3457 KSTAT_FLAG_VIRTUAL)) != NULL) { 3458 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3459 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3460 cp->cache_kstat->ks_private = cp; 3461 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3462 kstat_install(cp->cache_kstat); 3463 } 3464 3465 /* 3466 * Add the cache to the global list. This makes it visible 3467 * to kmem_update(), so the cache must be ready for business. 3468 */ 3469 mutex_enter(&kmem_cache_lock); 3470 list_insert_tail(&kmem_caches, cp); 3471 mutex_exit(&kmem_cache_lock); 3472 3473 if (kmem_ready) 3474 kmem_cache_magazine_enable(cp); 3475 3476 if (kmem_move_taskq != NULL && cp->cache_destructor != NULL) { 3477 (void) taskq_dispatch(kmem_move_taskq, 3478 (task_func_t *)kmem_check_destructor, cp, 3479 TQ_NOSLEEP); 3480 } 3481 3482 return (cp); 3483 } 3484 3485 static int 3486 kmem_move_cmp(const void *buf, const void *p) 3487 { 3488 const kmem_move_t *kmm = p; 3489 uintptr_t v1 = (uintptr_t)buf; 3490 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3491 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3492 } 3493 3494 static void 3495 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3496 { 3497 kmd->kmd_reclaim_numer = 1; 3498 } 3499 3500 /* 3501 * Initially, when choosing candidate slabs for buffers to move, we want to be 3502 * very selective and take only slabs that are less than 3503 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 3504 * slabs, then we raise the allocation ceiling incrementally. The reclaim 3505 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 3506 * longer fragmented. 3507 */ 3508 static void 3509 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 3510 { 3511 if (direction > 0) { 3512 /* make it easier to find a candidate slab */ 3513 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 3514 kmd->kmd_reclaim_numer++; 3515 } 3516 } else { 3517 /* be more selective */ 3518 if (kmd->kmd_reclaim_numer > 1) { 3519 kmd->kmd_reclaim_numer--; 3520 } 3521 } 3522 } 3523 3524 void 3525 kmem_cache_set_move(kmem_cache_t *cp, 3526 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 3527 { 3528 kmem_defrag_t *defrag; 3529 3530 ASSERT(move != NULL); 3531 /* 3532 * The consolidator does not support NOTOUCH caches because kmem cannot 3533 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 3534 * a low order bit usable by clients to distinguish uninitialized memory 3535 * from known objects (see kmem_slab_create). 3536 */ 3537 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 3538 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 3539 3540 /* 3541 * We should not be holding anyone's cache lock when calling 3542 * kmem_cache_alloc(), so allocate in all cases before acquiring the 3543 * lock. 3544 */ 3545 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 3546 3547 mutex_enter(&cp->cache_lock); 3548 3549 if (KMEM_IS_MOVABLE(cp)) { 3550 if (cp->cache_move == NULL) { 3551 /* 3552 * We want to assert that the client has not allocated 3553 * any objects from this cache before setting a move 3554 * callback function. However, it's possible that 3555 * kmem_check_destructor() has created a slab between 3556 * the time that the client called kmem_cache_create() 3557 * and this call to kmem_cache_set_move(). Currently 3558 * there are no correctness issues involved; the client 3559 * could allocate many objects before setting a 3560 * callback, but we want to enforce the rule anyway to 3561 * allow the greatest flexibility for the consolidator 3562 * in the future. 3563 * 3564 * It's possible that kmem_check_destructor() can be 3565 * called twice for the same cache. 3566 */ 3567 ASSERT(cp->cache_slab_alloc <= 2); 3568 3569 cp->cache_defrag = defrag; 3570 defrag = NULL; /* nothing to free */ 3571 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 3572 avl_create(&cp->cache_defrag->kmd_moves_pending, 3573 kmem_move_cmp, sizeof (kmem_move_t), 3574 offsetof(kmem_move_t, kmm_entry)); 3575 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3576 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3577 /* reuse the slab's AVL linkage for deadlist linkage */ 3578 list_create(&cp->cache_defrag->kmd_deadlist, 3579 sizeof (kmem_slab_t), 3580 offsetof(kmem_slab_t, slab_link)); 3581 kmem_reset_reclaim_threshold(cp->cache_defrag); 3582 } 3583 cp->cache_move = move; 3584 } 3585 3586 mutex_exit(&cp->cache_lock); 3587 3588 if (defrag != NULL) { 3589 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 3590 } 3591 } 3592 3593 void 3594 kmem_cache_destroy(kmem_cache_t *cp) 3595 { 3596 int cpu_seqid; 3597 3598 /* 3599 * Remove the cache from the global cache list so that no one else 3600 * can schedule tasks on its behalf, wait for any pending tasks to 3601 * complete, purge the cache, and then destroy it. 3602 */ 3603 mutex_enter(&kmem_cache_lock); 3604 list_remove(&kmem_caches, cp); 3605 mutex_exit(&kmem_cache_lock); 3606 3607 if (kmem_taskq != NULL) 3608 taskq_wait(kmem_taskq); 3609 if (kmem_move_taskq != NULL) 3610 taskq_wait(kmem_move_taskq); 3611 3612 kmem_cache_magazine_purge(cp); 3613 3614 mutex_enter(&cp->cache_lock); 3615 if (cp->cache_buftotal != 0) 3616 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 3617 cp->cache_name, (void *)cp); 3618 if (cp->cache_defrag != NULL) { 3619 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 3620 list_destroy(&cp->cache_defrag->kmd_deadlist); 3621 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 3622 cp->cache_defrag = NULL; 3623 } 3624 /* 3625 * The cache is now dead. There should be no further activity. We 3626 * enforce this by setting land mines in the constructor, destructor, 3627 * reclaim, and move routines that induce a kernel text fault if 3628 * invoked. 3629 */ 3630 cp->cache_constructor = (int (*)(void *, void *, int))1; 3631 cp->cache_destructor = (void (*)(void *, void *))2; 3632 cp->cache_reclaim = (void (*)(void *))3; 3633 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 3634 mutex_exit(&cp->cache_lock); 3635 3636 kstat_delete(cp->cache_kstat); 3637 3638 if (cp->cache_hash_table != NULL) 3639 vmem_free(kmem_hash_arena, cp->cache_hash_table, 3640 (cp->cache_hash_mask + 1) * sizeof (void *)); 3641 3642 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 3643 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 3644 3645 mutex_destroy(&cp->cache_depot_lock); 3646 mutex_destroy(&cp->cache_lock); 3647 3648 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 3649 } 3650 3651 /*ARGSUSED*/ 3652 static int 3653 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 3654 { 3655 ASSERT(MUTEX_HELD(&cpu_lock)); 3656 if (what == CPU_UNCONFIG) { 3657 kmem_cache_applyall(kmem_cache_magazine_purge, 3658 kmem_taskq, TQ_SLEEP); 3659 kmem_cache_applyall(kmem_cache_magazine_enable, 3660 kmem_taskq, TQ_SLEEP); 3661 } 3662 return (0); 3663 } 3664 3665 static void 3666 kmem_cache_init(int pass, int use_large_pages) 3667 { 3668 int i; 3669 size_t size; 3670 kmem_cache_t *cp; 3671 kmem_magtype_t *mtp; 3672 char name[KMEM_CACHE_NAMELEN + 1]; 3673 3674 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 3675 mtp = &kmem_magtype[i]; 3676 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 3677 mtp->mt_cache = kmem_cache_create(name, 3678 (mtp->mt_magsize + 1) * sizeof (void *), 3679 mtp->mt_align, NULL, NULL, NULL, NULL, 3680 kmem_msb_arena, KMC_NOHASH); 3681 } 3682 3683 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 3684 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 3685 kmem_msb_arena, KMC_NOHASH); 3686 3687 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 3688 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 3689 kmem_msb_arena, KMC_NOHASH); 3690 3691 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 3692 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 3693 kmem_msb_arena, KMC_NOHASH); 3694 3695 if (pass == 2) { 3696 kmem_va_arena = vmem_create("kmem_va", 3697 NULL, 0, PAGESIZE, 3698 vmem_alloc, vmem_free, heap_arena, 3699 8 * PAGESIZE, VM_SLEEP); 3700 3701 if (use_large_pages) { 3702 kmem_default_arena = vmem_xcreate("kmem_default", 3703 NULL, 0, PAGESIZE, 3704 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 3705 0, VM_SLEEP); 3706 } else { 3707 kmem_default_arena = vmem_create("kmem_default", 3708 NULL, 0, PAGESIZE, 3709 segkmem_alloc, segkmem_free, kmem_va_arena, 3710 0, VM_SLEEP); 3711 } 3712 } else { 3713 /* 3714 * During the first pass, the kmem_alloc_* caches 3715 * are treated as metadata. 3716 */ 3717 kmem_default_arena = kmem_msb_arena; 3718 } 3719 3720 /* 3721 * Set up the default caches to back kmem_alloc() 3722 */ 3723 size = KMEM_ALIGN; 3724 for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) { 3725 size_t align = KMEM_ALIGN; 3726 size_t cache_size = kmem_alloc_sizes[i]; 3727 /* 3728 * If they allocate a multiple of the coherency granularity, 3729 * they get a coherency-granularity-aligned address. 3730 */ 3731 if (IS_P2ALIGNED(cache_size, 64)) 3732 align = 64; 3733 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 3734 align = PAGESIZE; 3735 (void) sprintf(name, "kmem_alloc_%lu", cache_size); 3736 cp = kmem_cache_create(name, cache_size, align, 3737 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 3738 while (size <= cache_size) { 3739 kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp; 3740 size += KMEM_ALIGN; 3741 } 3742 } 3743 } 3744 3745 void 3746 kmem_init(void) 3747 { 3748 kmem_cache_t *cp; 3749 int old_kmem_flags = kmem_flags; 3750 int use_large_pages = 0; 3751 size_t maxverify, minfirewall; 3752 3753 kstat_init(); 3754 3755 /* 3756 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead. 3757 */ 3758 if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY)) 3759 kmem_flags = 0; 3760 3761 /* 3762 * Don't do firewalled allocations if the heap is less than 1TB 3763 * (i.e. on a 32-bit kernel) 3764 * The resulting VM_NEXTFIT allocations would create too much 3765 * fragmentation in a small heap. 3766 */ 3767 #if defined(_LP64) 3768 maxverify = minfirewall = PAGESIZE / 2; 3769 #else 3770 maxverify = minfirewall = ULONG_MAX; 3771 #endif 3772 3773 /* LINTED */ 3774 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 3775 3776 list_create(&kmem_caches, sizeof (kmem_cache_t), 3777 offsetof(kmem_cache_t, cache_link)); 3778 3779 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 3780 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 3781 VM_SLEEP | VMC_NO_QCACHE); 3782 3783 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 3784 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 3785 VM_SLEEP); 3786 3787 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 3788 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 3789 3790 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 3791 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 3792 3793 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 3794 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 3795 3796 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 3797 NULL, 0, PAGESIZE, 3798 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 3799 0, VM_SLEEP); 3800 3801 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 3802 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP); 3803 3804 /* temporary oversize arena for mod_read_system_file */ 3805 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 3806 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 3807 3808 kmem_reap_interval = 15 * hz; 3809 3810 /* 3811 * Read /etc/system. This is a chicken-and-egg problem because 3812 * kmem_flags may be set in /etc/system, but mod_read_system_file() 3813 * needs to use the allocator. The simplest solution is to create 3814 * all the standard kmem caches, read /etc/system, destroy all the 3815 * caches we just created, and then create them all again in light 3816 * of the (possibly) new kmem_flags and other kmem tunables. 3817 */ 3818 kmem_cache_init(1, 0); 3819 3820 mod_read_system_file(boothowto & RB_ASKNAME); 3821 3822 while ((cp = list_tail(&kmem_caches)) != NULL) 3823 kmem_cache_destroy(cp); 3824 3825 vmem_destroy(kmem_oversize_arena); 3826 3827 if (old_kmem_flags & KMF_STICKY) 3828 kmem_flags = old_kmem_flags; 3829 3830 if (!(kmem_flags & KMF_AUDIT)) 3831 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 3832 3833 if (kmem_maxverify == 0) 3834 kmem_maxverify = maxverify; 3835 3836 if (kmem_minfirewall == 0) 3837 kmem_minfirewall = minfirewall; 3838 3839 /* 3840 * give segkmem a chance to figure out if we are using large pages 3841 * for the kernel heap 3842 */ 3843 use_large_pages = segkmem_lpsetup(); 3844 3845 /* 3846 * To protect against corruption, we keep the actual number of callers 3847 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 3848 * to 16, since the overhead for small buffers quickly gets out of 3849 * hand. 3850 * 3851 * The real limit would depend on the needs of the largest KMC_NOHASH 3852 * cache. 3853 */ 3854 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 3855 kmem_lite_pcs = kmem_lite_count; 3856 3857 /* 3858 * Normally, we firewall oversized allocations when possible, but 3859 * if we are using large pages for kernel memory, and we don't have 3860 * any non-LITE debugging flags set, we want to allocate oversized 3861 * buffers from large pages, and so skip the firewalling. 3862 */ 3863 if (use_large_pages && 3864 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 3865 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 3866 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 3867 0, VM_SLEEP); 3868 } else { 3869 kmem_oversize_arena = vmem_create("kmem_oversize", 3870 NULL, 0, PAGESIZE, 3871 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 3872 kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP); 3873 } 3874 3875 kmem_cache_init(2, use_large_pages); 3876 3877 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 3878 if (kmem_transaction_log_size == 0) 3879 kmem_transaction_log_size = kmem_maxavail() / 50; 3880 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 3881 } 3882 3883 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 3884 if (kmem_content_log_size == 0) 3885 kmem_content_log_size = kmem_maxavail() / 50; 3886 kmem_content_log = kmem_log_init(kmem_content_log_size); 3887 } 3888 3889 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 3890 3891 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 3892 3893 /* 3894 * Initialize STREAMS message caches so allocb() is available. 3895 * This allows us to initialize the logging framework (cmn_err(9F), 3896 * strlog(9F), etc) so we can start recording messages. 3897 */ 3898 streams_msg_init(); 3899 3900 /* 3901 * Initialize the ZSD framework in Zones so modules loaded henceforth 3902 * can register their callbacks. 3903 */ 3904 zone_zsd_init(); 3905 3906 log_init(); 3907 taskq_init(); 3908 3909 /* 3910 * Warn about invalid or dangerous values of kmem_flags. 3911 * Always warn about unsupported values. 3912 */ 3913 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 3914 KMF_CONTENTS | KMF_LITE)) != 0) || 3915 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 3916 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 3917 "See the Solaris Tunable Parameters Reference Manual.", 3918 kmem_flags); 3919 3920 #ifdef DEBUG 3921 if ((kmem_flags & KMF_DEBUG) == 0) 3922 cmn_err(CE_NOTE, "kmem debugging disabled."); 3923 #else 3924 /* 3925 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 3926 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 3927 * if KMF_AUDIT is set). We should warn the user about the performance 3928 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 3929 * isn't set (since that disables AUDIT). 3930 */ 3931 if (!(kmem_flags & KMF_LITE) && 3932 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 3933 cmn_err(CE_WARN, "High-overhead kmem debugging features " 3934 "enabled (kmem_flags = 0x%x). Performance degradation " 3935 "and large memory overhead possible. See the Solaris " 3936 "Tunable Parameters Reference Manual.", kmem_flags); 3937 #endif /* not DEBUG */ 3938 3939 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 3940 3941 kmem_ready = 1; 3942 3943 /* 3944 * Initialize the platform-specific aligned/DMA memory allocator. 3945 */ 3946 ka_init(); 3947 3948 /* 3949 * Initialize 32-bit ID cache. 3950 */ 3951 id32_init(); 3952 3953 /* 3954 * Initialize the networking stack so modules loaded can 3955 * register their callbacks. 3956 */ 3957 netstack_init(); 3958 } 3959 3960 static void 3961 kmem_move_init(void) 3962 { 3963 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 3964 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 3965 kmem_msb_arena, KMC_NOHASH); 3966 kmem_move_cache = kmem_cache_create("kmem_move_cache", 3967 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 3968 kmem_msb_arena, KMC_NOHASH); 3969 3970 /* 3971 * kmem guarantees that move callbacks are sequential and that even 3972 * across multiple caches no two moves ever execute simultaneously. 3973 * Move callbacks are processed on a separate taskq so that client code 3974 * does not interfere with internal maintenance tasks. 3975 */ 3976 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 3977 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 3978 } 3979 3980 void 3981 kmem_thread_init(void) 3982 { 3983 kmem_move_init(); 3984 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 3985 300, INT_MAX, TASKQ_PREPOPULATE); 3986 kmem_cache_applyall(kmem_check_destructor, kmem_move_taskq, 3987 TQ_NOSLEEP); 3988 } 3989 3990 void 3991 kmem_mp_init(void) 3992 { 3993 mutex_enter(&cpu_lock); 3994 register_cpu_setup_func(kmem_cpu_setup, NULL); 3995 mutex_exit(&cpu_lock); 3996 3997 kmem_update_timeout(NULL); 3998 } 3999 4000 /* 4001 * Return the slab of the allocated buffer, or NULL if the buffer is not 4002 * allocated. This function may be called with a known slab address to determine 4003 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4004 * an allocated buffer's slab. 4005 */ 4006 static kmem_slab_t * 4007 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4008 { 4009 kmem_bufctl_t *bcp, *bufbcp; 4010 4011 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4012 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4013 4014 if (cp->cache_flags & KMF_HASH) { 4015 for (bcp = *KMEM_HASH(cp, buf); 4016 (bcp != NULL) && (bcp->bc_addr != buf); 4017 bcp = bcp->bc_next) { 4018 continue; 4019 } 4020 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4021 return (bcp == NULL ? NULL : bcp->bc_slab); 4022 } 4023 4024 if (sp == NULL) { 4025 sp = KMEM_SLAB(cp, buf); 4026 } 4027 bufbcp = KMEM_BUFCTL(cp, buf); 4028 for (bcp = sp->slab_head; 4029 (bcp != NULL) && (bcp != bufbcp); 4030 bcp = bcp->bc_next) { 4031 continue; 4032 } 4033 return (bcp == NULL ? sp : NULL); 4034 } 4035 4036 static boolean_t 4037 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4038 { 4039 long refcnt; 4040 4041 ASSERT(cp->cache_defrag != NULL); 4042 4043 /* If we're desperate, we don't care if the client said NO. */ 4044 refcnt = sp->slab_refcnt; 4045 if (flags & KMM_DESPERATE) { 4046 return (refcnt < sp->slab_chunks); /* any partial */ 4047 } 4048 4049 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4050 return (B_FALSE); 4051 } 4052 4053 if (kmem_move_any_partial) { 4054 return (refcnt < sp->slab_chunks); 4055 } 4056 4057 if ((refcnt == 1) && (refcnt < sp->slab_chunks)) { 4058 return (B_TRUE); 4059 } 4060 4061 /* 4062 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4063 * slabs with a progressively higher percentage of used buffers can be 4064 * reclaimed until the cache as a whole is no longer fragmented. 4065 * 4066 * sp->slab_refcnt kmd_reclaim_numer 4067 * --------------- < ------------------ 4068 * sp->slab_chunks KMEM_VOID_FRACTION 4069 */ 4070 return ((refcnt * KMEM_VOID_FRACTION) < 4071 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4072 } 4073 4074 static void * 4075 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf, 4076 void *tbuf) 4077 { 4078 int i; /* magazine round index */ 4079 4080 for (i = 0; i < n; i++) { 4081 if (buf == m->mag_round[i]) { 4082 if (cp->cache_flags & KMF_BUFTAG) { 4083 (void) kmem_cache_free_debug(cp, tbuf, 4084 caller()); 4085 } 4086 m->mag_round[i] = tbuf; 4087 return (buf); 4088 } 4089 } 4090 4091 return (NULL); 4092 } 4093 4094 /* 4095 * Hunt the magazine layer for the given buffer. If found, the buffer is 4096 * removed from the magazine layer and returned, otherwise NULL is returned. 4097 * The state of the returned buffer is freed and constructed. 4098 */ 4099 static void * 4100 kmem_hunt_mags(kmem_cache_t *cp, void *buf) 4101 { 4102 kmem_cpu_cache_t *ccp; 4103 kmem_magazine_t *m; 4104 int cpu_seqid; 4105 int n; /* magazine rounds */ 4106 void *tbuf; /* temporary swap buffer */ 4107 4108 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4109 4110 /* 4111 * Allocated a buffer to swap with the one we hope to pull out of a 4112 * magazine when found. 4113 */ 4114 tbuf = kmem_cache_alloc(cp, KM_NOSLEEP); 4115 if (tbuf == NULL) { 4116 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail); 4117 return (NULL); 4118 } 4119 if (tbuf == buf) { 4120 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky); 4121 if (cp->cache_flags & KMF_BUFTAG) { 4122 (void) kmem_cache_free_debug(cp, buf, caller()); 4123 } 4124 return (buf); 4125 } 4126 4127 /* Hunt the depot. */ 4128 mutex_enter(&cp->cache_depot_lock); 4129 n = cp->cache_magtype->mt_magsize; 4130 for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) { 4131 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4132 mutex_exit(&cp->cache_depot_lock); 4133 return (buf); 4134 } 4135 } 4136 mutex_exit(&cp->cache_depot_lock); 4137 4138 /* Hunt the per-CPU magazines. */ 4139 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 4140 ccp = &cp->cache_cpu[cpu_seqid]; 4141 4142 mutex_enter(&ccp->cc_lock); 4143 m = ccp->cc_loaded; 4144 n = ccp->cc_rounds; 4145 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4146 mutex_exit(&ccp->cc_lock); 4147 return (buf); 4148 } 4149 m = ccp->cc_ploaded; 4150 n = ccp->cc_prounds; 4151 if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) { 4152 mutex_exit(&ccp->cc_lock); 4153 return (buf); 4154 } 4155 mutex_exit(&ccp->cc_lock); 4156 } 4157 4158 kmem_cache_free(cp, tbuf); 4159 return (NULL); 4160 } 4161 4162 /* 4163 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4164 * or when the buffer is freed. 4165 */ 4166 static void 4167 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4168 { 4169 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4170 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4171 4172 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4173 return; 4174 } 4175 4176 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4177 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4178 avl_remove(&cp->cache_partial_slabs, sp); 4179 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4180 sp->slab_stuck_offset = (uint32_t)-1; 4181 avl_add(&cp->cache_partial_slabs, sp); 4182 } 4183 } else { 4184 sp->slab_later_count = 0; 4185 sp->slab_stuck_offset = (uint32_t)-1; 4186 } 4187 } 4188 4189 static void 4190 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4191 { 4192 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4193 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4194 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4195 4196 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4197 return; 4198 } 4199 4200 avl_remove(&cp->cache_partial_slabs, sp); 4201 sp->slab_later_count = 0; 4202 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4203 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4204 avl_add(&cp->cache_partial_slabs, sp); 4205 } 4206 4207 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4208 4209 /* 4210 * The move callback takes two buffer addresses, the buffer to be moved, and a 4211 * newly allocated and constructed buffer selected by kmem as the destination. 4212 * It also takes the size of the buffer and an optional user argument specified 4213 * at cache creation time. kmem guarantees that the buffer to be moved has not 4214 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4215 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4216 * the client to safely determine whether or not it is still using the buffer. 4217 * The client must not free either of the buffers passed to the move callback, 4218 * since kmem wants to free them directly to the slab layer. The client response 4219 * tells kmem which of the two buffers to free: 4220 * 4221 * YES kmem frees the old buffer (the move was successful) 4222 * NO kmem frees the new buffer, marks the slab of the old buffer 4223 * non-reclaimable to avoid bothering the client again 4224 * LATER kmem frees the new buffer, increments slab_later_count 4225 * DONT_KNOW kmem frees the new buffer, searches mags for the old buffer 4226 * DONT_NEED kmem frees both the old buffer and the new buffer 4227 * 4228 * The pending callback argument now being processed contains both of the 4229 * buffers (old and new) passed to the move callback function, the slab of the 4230 * old buffer, and flags related to the move request, such as whether or not the 4231 * system was desperate for memory. 4232 */ 4233 static void 4234 kmem_move_buffer(kmem_move_t *callback) 4235 { 4236 kmem_cbrc_t response; 4237 kmem_slab_t *sp = callback->kmm_from_slab; 4238 kmem_cache_t *cp = sp->slab_cache; 4239 boolean_t free_on_slab; 4240 4241 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4242 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4243 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4244 4245 /* 4246 * The number of allocated buffers on the slab may have changed since we 4247 * last checked the slab's reclaimability (when the pending move was 4248 * enqueued), or the client may have responded NO when asked to move 4249 * another buffer on the same slab. 4250 */ 4251 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4252 KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable); 4253 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4254 kmem_move_stats.kms_notify_no_longer_reclaimable); 4255 kmem_slab_free(cp, callback->kmm_to_buf); 4256 kmem_move_end(cp, callback); 4257 return; 4258 } 4259 4260 /* 4261 * Hunting magazines is expensive, so we'll wait to do that until the 4262 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer 4263 * is cheap, so we might as well do that here in case we can avoid 4264 * bothering the client. 4265 */ 4266 mutex_enter(&cp->cache_lock); 4267 free_on_slab = (kmem_slab_allocated(cp, sp, 4268 callback->kmm_from_buf) == NULL); 4269 mutex_exit(&cp->cache_lock); 4270 4271 if (free_on_slab) { 4272 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab); 4273 kmem_slab_free(cp, callback->kmm_to_buf); 4274 kmem_move_end(cp, callback); 4275 return; 4276 } 4277 4278 if (cp->cache_flags & KMF_BUFTAG) { 4279 /* 4280 * Make kmem_cache_alloc_debug() apply the constructor for us. 4281 */ 4282 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4283 KM_NOSLEEP, 1, caller()) != 0) { 4284 KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail); 4285 kmem_move_end(cp, callback); 4286 return; 4287 } 4288 } else if (cp->cache_constructor != NULL && 4289 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4290 KM_NOSLEEP) != 0) { 4291 atomic_add_64(&cp->cache_alloc_fail, 1); 4292 KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail); 4293 kmem_slab_free(cp, callback->kmm_to_buf); 4294 kmem_move_end(cp, callback); 4295 return; 4296 } 4297 4298 KMEM_STAT_ADD(kmem_move_stats.kms_callbacks); 4299 KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY), 4300 kmem_move_stats.kms_notify_callbacks); 4301 cp->cache_defrag->kmd_callbacks++; 4302 cp->cache_defrag->kmd_thread = curthread; 4303 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4304 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4305 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4306 callback); 4307 4308 response = cp->cache_move(callback->kmm_from_buf, 4309 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4310 4311 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4312 callback, kmem_cbrc_t, response); 4313 cp->cache_defrag->kmd_thread = NULL; 4314 cp->cache_defrag->kmd_from_buf = NULL; 4315 cp->cache_defrag->kmd_to_buf = NULL; 4316 4317 if (response == KMEM_CBRC_YES) { 4318 KMEM_STAT_ADD(kmem_move_stats.kms_yes); 4319 cp->cache_defrag->kmd_yes++; 4320 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4321 mutex_enter(&cp->cache_lock); 4322 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4323 mutex_exit(&cp->cache_lock); 4324 kmem_move_end(cp, callback); 4325 return; 4326 } 4327 4328 switch (response) { 4329 case KMEM_CBRC_NO: 4330 KMEM_STAT_ADD(kmem_move_stats.kms_no); 4331 cp->cache_defrag->kmd_no++; 4332 mutex_enter(&cp->cache_lock); 4333 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4334 mutex_exit(&cp->cache_lock); 4335 break; 4336 case KMEM_CBRC_LATER: 4337 KMEM_STAT_ADD(kmem_move_stats.kms_later); 4338 cp->cache_defrag->kmd_later++; 4339 mutex_enter(&cp->cache_lock); 4340 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4341 mutex_exit(&cp->cache_lock); 4342 break; 4343 } 4344 4345 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4346 KMEM_STAT_ADD(kmem_move_stats.kms_disbelief); 4347 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4348 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4349 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4350 callback->kmm_from_buf); 4351 } 4352 mutex_exit(&cp->cache_lock); 4353 break; 4354 case KMEM_CBRC_DONT_NEED: 4355 KMEM_STAT_ADD(kmem_move_stats.kms_dont_need); 4356 cp->cache_defrag->kmd_dont_need++; 4357 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4358 mutex_enter(&cp->cache_lock); 4359 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4360 mutex_exit(&cp->cache_lock); 4361 break; 4362 case KMEM_CBRC_DONT_KNOW: 4363 KMEM_STAT_ADD(kmem_move_stats.kms_dont_know); 4364 cp->cache_defrag->kmd_dont_know++; 4365 if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) { 4366 KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag); 4367 cp->cache_defrag->kmd_hunt_found++; 4368 kmem_slab_free_constructed(cp, callback->kmm_from_buf, 4369 B_TRUE); 4370 mutex_enter(&cp->cache_lock); 4371 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4372 mutex_exit(&cp->cache_lock); 4373 } 4374 break; 4375 default: 4376 panic("'%s' (%p) unexpected move callback response %d\n", 4377 cp->cache_name, (void *)cp, response); 4378 } 4379 4380 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4381 kmem_move_end(cp, callback); 4382 } 4383 4384 /* Return B_FALSE if there is insufficient memory for the move request. */ 4385 static boolean_t 4386 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4387 { 4388 void *to_buf; 4389 avl_index_t index; 4390 kmem_move_t *callback, *pending; 4391 4392 ASSERT(taskq_member(kmem_taskq, curthread)); 4393 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4394 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4395 4396 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4397 if (callback == NULL) { 4398 KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail); 4399 return (B_FALSE); 4400 } 4401 4402 callback->kmm_from_slab = sp; 4403 callback->kmm_from_buf = buf; 4404 callback->kmm_flags = flags; 4405 4406 mutex_enter(&cp->cache_lock); 4407 4408 if (avl_numnodes(&cp->cache_partial_slabs) <= 1) { 4409 mutex_exit(&cp->cache_lock); 4410 kmem_cache_free(kmem_move_cache, callback); 4411 return (B_TRUE); /* there is no need for the move request */ 4412 } 4413 4414 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4415 if (pending != NULL) { 4416 /* 4417 * If the move is already pending and we're desperate now, 4418 * update the move flags. 4419 */ 4420 if (flags & KMM_DESPERATE) { 4421 pending->kmm_flags |= KMM_DESPERATE; 4422 } 4423 mutex_exit(&cp->cache_lock); 4424 KMEM_STAT_ADD(kmem_move_stats.kms_already_pending); 4425 kmem_cache_free(kmem_move_cache, callback); 4426 return (B_TRUE); 4427 } 4428 4429 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs)); 4430 callback->kmm_to_buf = to_buf; 4431 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4432 4433 mutex_exit(&cp->cache_lock); 4434 4435 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4436 callback, TQ_NOSLEEP)) { 4437 mutex_enter(&cp->cache_lock); 4438 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4439 mutex_exit(&cp->cache_lock); 4440 kmem_slab_free_constructed(cp, to_buf, B_FALSE); 4441 kmem_cache_free(kmem_move_cache, callback); 4442 return (B_FALSE); 4443 } 4444 4445 return (B_TRUE); 4446 } 4447 4448 static void 4449 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4450 { 4451 avl_index_t index; 4452 4453 ASSERT(cp->cache_defrag != NULL); 4454 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4455 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4456 4457 mutex_enter(&cp->cache_lock); 4458 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4459 callback->kmm_from_buf, &index) != NULL); 4460 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4461 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4462 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4463 kmem_slab_t *sp; 4464 4465 /* 4466 * The last pending move completed. Release all slabs from the 4467 * front of the dead list except for any slab at the tail that 4468 * needs to be released from the context of kmem_move_buffers(). 4469 * kmem deferred unmapping the buffers on these slabs in order 4470 * to guarantee that buffers passed to the move callback have 4471 * been touched only by kmem or by the client itself. 4472 */ 4473 while ((sp = list_remove_head(deadlist)) != NULL) { 4474 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4475 list_insert_tail(deadlist, sp); 4476 break; 4477 } 4478 cp->cache_defrag->kmd_deadcount--; 4479 cp->cache_slab_destroy++; 4480 mutex_exit(&cp->cache_lock); 4481 kmem_slab_destroy(cp, sp); 4482 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4483 mutex_enter(&cp->cache_lock); 4484 } 4485 } 4486 mutex_exit(&cp->cache_lock); 4487 kmem_cache_free(kmem_move_cache, callback); 4488 } 4489 4490 /* 4491 * Move buffers from least used slabs first by scanning backwards from the end 4492 * of the partial slab list. Scan at most max_scan candidate slabs and move 4493 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4494 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4495 * skip slabs with a ratio of allocated buffers at or above the current 4496 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4497 * scan is aborted) so that the caller can adjust the reclaimability threshold 4498 * depending on how many reclaimable slabs it finds. 4499 * 4500 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4501 * move request, since it is not valid for kmem_move_begin() to call 4502 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4503 */ 4504 static int 4505 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4506 int flags) 4507 { 4508 kmem_slab_t *sp; 4509 void *buf; 4510 int i, j; /* slab index, buffer index */ 4511 int s; /* reclaimable slabs */ 4512 int b; /* allocated (movable) buffers on reclaimable slab */ 4513 boolean_t success; 4514 int refcnt; 4515 int nomove; 4516 4517 ASSERT(taskq_member(kmem_taskq, curthread)); 4518 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4519 ASSERT(kmem_move_cache != NULL); 4520 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4521 ASSERT(avl_numnodes(&cp->cache_partial_slabs) > 1); 4522 4523 if (kmem_move_blocked) { 4524 return (0); 4525 } 4526 4527 if (kmem_move_fulltilt) { 4528 max_slabs = 0; 4529 flags |= KMM_DESPERATE; 4530 } 4531 4532 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 4533 /* 4534 * Scan as many slabs as needed to find the desired number of 4535 * candidate slabs. 4536 */ 4537 max_scan = (size_t)-1; 4538 } 4539 4540 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 4541 /* Find as many candidate slabs as possible. */ 4542 max_slabs = (size_t)-1; 4543 } 4544 4545 sp = avl_last(&cp->cache_partial_slabs); 4546 ASSERT(sp != NULL && KMEM_SLAB_IS_PARTIAL(sp)); 4547 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && 4548 (sp != avl_first(&cp->cache_partial_slabs)); 4549 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 4550 4551 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 4552 continue; 4553 } 4554 s++; 4555 4556 /* Look for allocated buffers to move. */ 4557 for (j = 0, b = 0, buf = sp->slab_base; 4558 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 4559 buf = (((char *)buf) + cp->cache_chunksize), j++) { 4560 4561 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 4562 continue; 4563 } 4564 4565 b++; 4566 4567 /* 4568 * Prevent the slab from being destroyed while we drop 4569 * cache_lock and while the pending move is not yet 4570 * registered. Flag the pending move while 4571 * kmd_moves_pending may still be empty, since we can't 4572 * yet rely on a non-zero pending move count to prevent 4573 * the slab from being destroyed. 4574 */ 4575 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4576 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4577 /* 4578 * Recheck refcnt and nomove after reacquiring the lock, 4579 * since these control the order of partial slabs, and 4580 * we want to know if we can pick up the scan where we 4581 * left off. 4582 */ 4583 refcnt = sp->slab_refcnt; 4584 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 4585 mutex_exit(&cp->cache_lock); 4586 4587 success = kmem_move_begin(cp, sp, buf, flags); 4588 4589 /* 4590 * Now, before the lock is reacquired, kmem could 4591 * process all pending move requests and purge the 4592 * deadlist, so that upon reacquiring the lock, sp has 4593 * been remapped. Therefore, the KMEM_SLAB_MOVE_PENDING 4594 * flag causes the slab to be put at the end of the 4595 * deadlist and prevents it from being purged, since we 4596 * plan to destroy it here after reacquiring the lock. 4597 */ 4598 mutex_enter(&cp->cache_lock); 4599 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4600 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 4601 4602 /* 4603 * Destroy the slab now if it was completely freed while 4604 * we dropped cache_lock. 4605 */ 4606 if (sp->slab_refcnt == 0) { 4607 list_t *deadlist = 4608 &cp->cache_defrag->kmd_deadlist; 4609 4610 ASSERT(!list_is_empty(deadlist)); 4611 ASSERT(list_link_active((list_node_t *) 4612 &sp->slab_link)); 4613 4614 list_remove(deadlist, sp); 4615 cp->cache_defrag->kmd_deadcount--; 4616 cp->cache_slab_destroy++; 4617 mutex_exit(&cp->cache_lock); 4618 kmem_slab_destroy(cp, sp); 4619 KMEM_STAT_ADD(kmem_move_stats. 4620 kms_dead_slabs_freed); 4621 KMEM_STAT_ADD(kmem_move_stats. 4622 kms_endscan_slab_destroyed); 4623 mutex_enter(&cp->cache_lock); 4624 /* 4625 * Since we can't pick up the scan where we left 4626 * off, abort the scan and say nothing about the 4627 * number of reclaimable slabs. 4628 */ 4629 return (-1); 4630 } 4631 4632 if (!success) { 4633 /* 4634 * Abort the scan if there is not enough memory 4635 * for the request and say nothing about the 4636 * number of reclaimable slabs. 4637 */ 4638 KMEM_STAT_ADD( 4639 kmem_move_stats.kms_endscan_nomem); 4640 return (-1); 4641 } 4642 4643 /* 4644 * The slab may have been completely allocated while the 4645 * lock was dropped. 4646 */ 4647 if (KMEM_SLAB_IS_ALL_USED(sp)) { 4648 KMEM_STAT_ADD( 4649 kmem_move_stats.kms_endscan_slab_all_used); 4650 return (-1); 4651 } 4652 4653 /* 4654 * The slab's position changed while the lock was 4655 * dropped, so we don't know where we are in the 4656 * sequence any more. 4657 */ 4658 if (sp->slab_refcnt != refcnt) { 4659 KMEM_STAT_ADD( 4660 kmem_move_stats.kms_endscan_refcnt_changed); 4661 return (-1); 4662 } 4663 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) { 4664 KMEM_STAT_ADD( 4665 kmem_move_stats.kms_endscan_nomove_changed); 4666 return (-1); 4667 } 4668 4669 /* 4670 * Generating a move request allocates a destination 4671 * buffer from the slab layer, bumping the first slab if 4672 * it is completely allocated. 4673 */ 4674 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 4675 if (sp == avl_first(&cp->cache_partial_slabs)) { 4676 goto end_scan; 4677 } 4678 } 4679 } 4680 end_scan: 4681 4682 KMEM_STAT_COND_ADD(sp == avl_first(&cp->cache_partial_slabs), 4683 kmem_move_stats.kms_endscan_freelist); 4684 4685 return (s); 4686 } 4687 4688 typedef struct kmem_move_notify_args { 4689 kmem_cache_t *kmna_cache; 4690 void *kmna_buf; 4691 } kmem_move_notify_args_t; 4692 4693 static void 4694 kmem_cache_move_notify_task(void *arg) 4695 { 4696 kmem_move_notify_args_t *args = arg; 4697 kmem_cache_t *cp = args->kmna_cache; 4698 void *buf = args->kmna_buf; 4699 kmem_slab_t *sp; 4700 4701 ASSERT(taskq_member(kmem_taskq, curthread)); 4702 ASSERT(list_link_active(&cp->cache_link)); 4703 4704 kmem_free(args, sizeof (kmem_move_notify_args_t)); 4705 mutex_enter(&cp->cache_lock); 4706 sp = kmem_slab_allocated(cp, NULL, buf); 4707 4708 /* Ignore the notification if the buffer is no longer allocated. */ 4709 if (sp == NULL) { 4710 mutex_exit(&cp->cache_lock); 4711 return; 4712 } 4713 4714 /* Ignore the notification if there's no reason to move the buffer. */ 4715 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 4716 /* 4717 * So far the notification is not ignored. Ignore the 4718 * notification if the slab is not marked by an earlier refusal 4719 * to move a buffer. 4720 */ 4721 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 4722 (sp->slab_later_count == 0)) { 4723 mutex_exit(&cp->cache_lock); 4724 return; 4725 } 4726 4727 kmem_slab_move_yes(cp, sp, buf); 4728 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4729 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4730 mutex_exit(&cp->cache_lock); 4731 /* see kmem_move_buffers() about dropping the lock */ 4732 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 4733 mutex_enter(&cp->cache_lock); 4734 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4735 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 4736 if (sp->slab_refcnt == 0) { 4737 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4738 4739 ASSERT(!list_is_empty(deadlist)); 4740 ASSERT(list_link_active((list_node_t *) 4741 &sp->slab_link)); 4742 4743 list_remove(deadlist, sp); 4744 cp->cache_defrag->kmd_deadcount--; 4745 cp->cache_slab_destroy++; 4746 mutex_exit(&cp->cache_lock); 4747 kmem_slab_destroy(cp, sp); 4748 KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed); 4749 return; 4750 } 4751 } else { 4752 kmem_slab_move_yes(cp, sp, buf); 4753 } 4754 mutex_exit(&cp->cache_lock); 4755 } 4756 4757 void 4758 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 4759 { 4760 kmem_move_notify_args_t *args; 4761 4762 KMEM_STAT_ADD(kmem_move_stats.kms_notify); 4763 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 4764 if (args != NULL) { 4765 args->kmna_cache = cp; 4766 args->kmna_buf = buf; 4767 if (!taskq_dispatch(kmem_taskq, 4768 (task_func_t *)kmem_cache_move_notify_task, args, 4769 TQ_NOSLEEP)) 4770 kmem_free(args, sizeof (kmem_move_notify_args_t)); 4771 } 4772 } 4773 4774 static void 4775 kmem_cache_defrag(kmem_cache_t *cp) 4776 { 4777 size_t n; 4778 4779 ASSERT(cp->cache_defrag != NULL); 4780 4781 mutex_enter(&cp->cache_lock); 4782 n = avl_numnodes(&cp->cache_partial_slabs); 4783 if (n > 1) { 4784 /* kmem_move_buffers() drops and reacquires cache_lock */ 4785 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 4786 KMEM_STAT_ADD(kmem_move_stats.kms_defrags); 4787 } 4788 mutex_exit(&cp->cache_lock); 4789 } 4790 4791 /* Is this cache above the fragmentation threshold? */ 4792 static boolean_t 4793 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 4794 { 4795 if (avl_numnodes(&cp->cache_partial_slabs) <= 1) 4796 return (B_FALSE); 4797 4798 /* 4799 * nfree kmem_frag_numer 4800 * ------------------ > --------------- 4801 * cp->cache_buftotal kmem_frag_denom 4802 */ 4803 return ((nfree * kmem_frag_denom) > 4804 (cp->cache_buftotal * kmem_frag_numer)); 4805 } 4806 4807 static boolean_t 4808 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 4809 { 4810 boolean_t fragmented; 4811 uint64_t nfree; 4812 4813 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4814 *doreap = B_FALSE; 4815 4816 if (!kmem_move_fulltilt && ((cp->cache_complete_slab_count + 4817 avl_numnodes(&cp->cache_partial_slabs)) < kmem_frag_minslabs)) 4818 return (B_FALSE); 4819 4820 nfree = cp->cache_bufslab; 4821 fragmented = kmem_cache_frag_threshold(cp, nfree); 4822 /* 4823 * Free buffers in the magazine layer appear allocated from the point of 4824 * view of the slab layer. We want to know if the slab layer would 4825 * appear fragmented if we included free buffers from magazines that 4826 * have fallen out of the working set. 4827 */ 4828 if (!fragmented) { 4829 long reap; 4830 4831 mutex_enter(&cp->cache_depot_lock); 4832 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 4833 reap = MIN(reap, cp->cache_full.ml_total); 4834 mutex_exit(&cp->cache_depot_lock); 4835 4836 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 4837 if (kmem_cache_frag_threshold(cp, nfree)) { 4838 *doreap = B_TRUE; 4839 } 4840 } 4841 4842 return (fragmented); 4843 } 4844 4845 /* Called periodically from kmem_taskq */ 4846 static void 4847 kmem_cache_scan(kmem_cache_t *cp) 4848 { 4849 boolean_t reap = B_FALSE; 4850 4851 ASSERT(taskq_member(kmem_taskq, curthread)); 4852 ASSERT(cp->cache_defrag != NULL); 4853 4854 mutex_enter(&cp->cache_lock); 4855 4856 if (kmem_cache_is_fragmented(cp, &reap)) { 4857 kmem_defrag_t *kmd = cp->cache_defrag; 4858 size_t slabs_found; 4859 4860 /* 4861 * Consolidate reclaimable slabs from the end of the partial 4862 * slab list (scan at most kmem_reclaim_scan_range slabs to find 4863 * reclaimable slabs). Keep track of how many candidate slabs we 4864 * looked for and how many we actually found so we can adjust 4865 * the definition of a candidate slab if we're having trouble 4866 * finding them. 4867 * 4868 * kmem_move_buffers() drops and reacquires cache_lock. 4869 */ 4870 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 4871 kmem_reclaim_max_slabs, 0); 4872 if (slabs_found >= 0) { 4873 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 4874 kmd->kmd_slabs_found += slabs_found; 4875 } 4876 4877 if (++kmd->kmd_scans >= kmem_reclaim_scan_range) { 4878 kmd->kmd_scans = 0; 4879 4880 /* 4881 * If we had difficulty finding candidate slabs in 4882 * previous scans, adjust the threshold so that 4883 * candidates are easier to find. 4884 */ 4885 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 4886 kmem_adjust_reclaim_threshold(kmd, -1); 4887 } else if ((kmd->kmd_slabs_found * 2) < 4888 kmd->kmd_slabs_sought) { 4889 kmem_adjust_reclaim_threshold(kmd, 1); 4890 } 4891 kmd->kmd_slabs_sought = 0; 4892 kmd->kmd_slabs_found = 0; 4893 } 4894 } else { 4895 kmem_reset_reclaim_threshold(cp->cache_defrag); 4896 #ifdef DEBUG 4897 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 4898 /* 4899 * In a debug kernel we want the consolidator to 4900 * run occasionally even when there is plenty of 4901 * memory. 4902 */ 4903 uint32_t debug_rand; 4904 4905 (void) random_get_bytes((uint8_t *)&debug_rand, 4); 4906 if (!kmem_move_noreap && 4907 ((debug_rand % kmem_mtb_reap) == 0)) { 4908 mutex_exit(&cp->cache_lock); 4909 kmem_cache_reap(cp); 4910 KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps); 4911 return; 4912 } else if ((debug_rand % kmem_mtb_move) == 0) { 4913 (void) kmem_move_buffers(cp, 4914 kmem_reclaim_scan_range, 1, 0); 4915 KMEM_STAT_ADD(kmem_move_stats. 4916 kms_debug_move_scans); 4917 } 4918 } 4919 #endif /* DEBUG */ 4920 } 4921 4922 mutex_exit(&cp->cache_lock); 4923 4924 if (reap) { 4925 KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps); 4926 kmem_depot_ws_reap(cp); 4927 } 4928 } 4929