xref: /titanic_51/usr/src/uts/common/os/kmem.c (revision 44c4f64b9f50f21ae3e51ad48a595c85f53db4bc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Kernel memory allocator, as described in the following two papers and a
27  * statement about the consolidator:
28  *
29  * Jeff Bonwick,
30  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
31  * Proceedings of the Summer 1994 Usenix Conference.
32  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
33  *
34  * Jeff Bonwick and Jonathan Adams,
35  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
36  * Arbitrary Resources.
37  * Proceedings of the 2001 Usenix Conference.
38  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
39  *
40  * kmem Slab Consolidator Big Theory Statement:
41  *
42  * 1. Motivation
43  *
44  * As stated in Bonwick94, slabs provide the following advantages over other
45  * allocation structures in terms of memory fragmentation:
46  *
47  *  - Internal fragmentation (per-buffer wasted space) is minimal.
48  *  - Severe external fragmentation (unused buffers on the free list) is
49  *    unlikely.
50  *
51  * Segregating objects by size eliminates one source of external fragmentation,
52  * and according to Bonwick:
53  *
54  *   The other reason that slabs reduce external fragmentation is that all
55  *   objects in a slab are of the same type, so they have the same lifetime
56  *   distribution. The resulting segregation of short-lived and long-lived
57  *   objects at slab granularity reduces the likelihood of an entire page being
58  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
59  *
60  * While unlikely, severe external fragmentation remains possible. Clients that
61  * allocate both short- and long-lived objects from the same cache cannot
62  * anticipate the distribution of long-lived objects within the allocator's slab
63  * implementation. Even a small percentage of long-lived objects distributed
64  * randomly across many slabs can lead to a worst case scenario where the client
65  * frees the majority of its objects and the system gets back almost none of the
66  * slabs. Despite the client doing what it reasonably can to help the system
67  * reclaim memory, the allocator cannot shake free enough slabs because of
68  * lonely allocations stubbornly hanging on. Although the allocator is in a
69  * position to diagnose the fragmentation, there is nothing that the allocator
70  * by itself can do about it. It only takes a single allocated object to prevent
71  * an entire slab from being reclaimed, and any object handed out by
72  * kmem_cache_alloc() is by definition in the client's control. Conversely,
73  * although the client is in a position to move a long-lived object, it has no
74  * way of knowing if the object is causing fragmentation, and if so, where to
75  * move it. A solution necessarily requires further cooperation between the
76  * allocator and the client.
77  *
78  * 2. Move Callback
79  *
80  * The kmem slab consolidator therefore adds a move callback to the
81  * allocator/client interface, improving worst-case external fragmentation in
82  * kmem caches that supply a function to move objects from one memory location
83  * to another. In a situation of low memory kmem attempts to consolidate all of
84  * a cache's slabs at once; otherwise it works slowly to bring external
85  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
86  * thereby helping to avoid a low memory situation in the future.
87  *
88  * The callback has the following signature:
89  *
90  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
91  *
92  * It supplies the kmem client with two addresses: the allocated object that
93  * kmem wants to move and a buffer selected by kmem for the client to use as the
94  * copy destination. The callback is kmem's way of saying "Please get off of
95  * this buffer and use this one instead." kmem knows where it wants to move the
96  * object in order to best reduce fragmentation. All the client needs to know
97  * about the second argument (void *new) is that it is an allocated, constructed
98  * object ready to take the contents of the old object. When the move function
99  * is called, the system is likely to be low on memory, and the new object
100  * spares the client from having to worry about allocating memory for the
101  * requested move. The third argument supplies the size of the object, in case a
102  * single move function handles multiple caches whose objects differ only in
103  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
104  * user argument passed to the constructor, destructor, and reclaim functions is
105  * also passed to the move callback.
106  *
107  * 2.1 Setting the Move Callback
108  *
109  * The client sets the move callback after creating the cache and before
110  * allocating from it:
111  *
112  *	object_cache = kmem_cache_create(...);
113  *      kmem_cache_set_move(object_cache, object_move);
114  *
115  * 2.2 Move Callback Return Values
116  *
117  * Only the client knows about its own data and when is a good time to move it.
118  * The client is cooperating with kmem to return unused memory to the system,
119  * and kmem respectfully accepts this help at the client's convenience. When
120  * asked to move an object, the client can respond with any of the following:
121  *
122  *   typedef enum kmem_cbrc {
123  *           KMEM_CBRC_YES,
124  *           KMEM_CBRC_NO,
125  *           KMEM_CBRC_LATER,
126  *           KMEM_CBRC_DONT_NEED,
127  *           KMEM_CBRC_DONT_KNOW
128  *   } kmem_cbrc_t;
129  *
130  * The client must not explicitly kmem_cache_free() either of the objects passed
131  * to the callback, since kmem wants to free them directly to the slab layer
132  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
133  * objects to free:
134  *
135  *       YES: (Did it) The client moved the object, so kmem frees the old one.
136  *        NO: (Never) The client refused, so kmem frees the new object (the
137  *            unused copy destination). kmem also marks the slab of the old
138  *            object so as not to bother the client with further callbacks for
139  *            that object as long as the slab remains on the partial slab list.
140  *            (The system won't be getting the slab back as long as the
141  *            immovable object holds it hostage, so there's no point in moving
142  *            any of its objects.)
143  *     LATER: The client is using the object and cannot move it now, so kmem
144  *            frees the new object (the unused copy destination). kmem still
145  *            attempts to move other objects off the slab, since it expects to
146  *            succeed in clearing the slab in a later callback. The client
147  *            should use LATER instead of NO if the object is likely to become
148  *            movable very soon.
149  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
150  *            with the new object (the unused copy destination). This response
151  *            is the client's opportunity to be a model citizen and give back as
152  *            much as it can.
153  * DONT_KNOW: The client does not know about the object because
154  *            a) the client has just allocated the object and not yet put it
155  *               wherever it expects to find known objects
156  *            b) the client has removed the object from wherever it expects to
157  *               find known objects and is about to free it, or
158  *            c) the client has freed the object.
159  *            In all these cases (a, b, and c) kmem frees the new object (the
160  *            unused copy destination) and searches for the old object in the
161  *            magazine layer. If found, the object is removed from the magazine
162  *            layer and freed to the slab layer so it will no longer hold the
163  *            slab hostage.
164  *
165  * 2.3 Object States
166  *
167  * Neither kmem nor the client can be assumed to know the object's whereabouts
168  * at the time of the callback. An object belonging to a kmem cache may be in
169  * any of the following states:
170  *
171  * 1. Uninitialized on the slab
172  * 2. Allocated from the slab but not constructed (still uninitialized)
173  * 3. Allocated from the slab, constructed, but not yet ready for business
174  *    (not in a valid state for the move callback)
175  * 4. In use (valid and known to the client)
176  * 5. About to be freed (no longer in a valid state for the move callback)
177  * 6. Freed to a magazine (still constructed)
178  * 7. Allocated from a magazine, not yet ready for business (not in a valid
179  *    state for the move callback), and about to return to state #4
180  * 8. Deconstructed on a magazine that is about to be freed
181  * 9. Freed to the slab
182  *
183  * Since the move callback may be called at any time while the object is in any
184  * of the above states (except state #1), the client needs a safe way to
185  * determine whether or not it knows about the object. Specifically, the client
186  * needs to know whether or not the object is in state #4, the only state in
187  * which a move is valid. If the object is in any other state, the client should
188  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
189  * the object's fields.
190  *
191  * Note that although an object may be in state #4 when kmem initiates the move
192  * request, the object may no longer be in that state by the time kmem actually
193  * calls the move function. Not only does the client free objects
194  * asynchronously, kmem itself puts move requests on a queue where thay are
195  * pending until kmem processes them from another context. Also, objects freed
196  * to a magazine appear allocated from the point of view of the slab layer, so
197  * kmem may even initiate requests for objects in a state other than state #4.
198  *
199  * 2.3.1 Magazine Layer
200  *
201  * An important insight revealed by the states listed above is that the magazine
202  * layer is populated only by kmem_cache_free(). Magazines of constructed
203  * objects are never populated directly from the slab layer (which contains raw,
204  * unconstructed objects). Whenever an allocation request cannot be satisfied
205  * from the magazine layer, the magazines are bypassed and the request is
206  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
207  * the object constructor only when allocating from the slab layer, and only in
208  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
209  * the move callback. kmem does not preconstruct objects in anticipation of
210  * kmem_cache_alloc().
211  *
212  * 2.3.2 Object Constructor and Destructor
213  *
214  * If the client supplies a destructor, it must be valid to call the destructor
215  * on a newly created object (immediately after the constructor).
216  *
217  * 2.4 Recognizing Known Objects
218  *
219  * There is a simple test to determine safely whether or not the client knows
220  * about a given object in the move callback. It relies on the fact that kmem
221  * guarantees that the object of the move callback has only been touched by the
222  * client itself or else by kmem. kmem does this by ensuring that none of the
223  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
224  * callback is pending. When the last object on a slab is freed, if there is a
225  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
226  * slabs on that list until all pending callbacks are completed. That way,
227  * clients can be certain that the object of a move callback is in one of the
228  * states listed above, making it possible to distinguish known objects (in
229  * state #4) using the two low order bits of any pointer member (with the
230  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
231  * platforms).
232  *
233  * The test works as long as the client always transitions objects from state #4
234  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
235  * order bit of the client-designated pointer member. Since kmem only writes
236  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
237  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
238  * guaranteed to set at least one of the two low order bits. Therefore, given an
239  * object with a back pointer to a 'container_t *o_container', the client can
240  * test
241  *
242  *      container_t *container = object->o_container;
243  *      if ((uintptr_t)container & 0x3) {
244  *              return (KMEM_CBRC_DONT_KNOW);
245  *      }
246  *
247  * Typically, an object will have a pointer to some structure with a list or
248  * hash where objects from the cache are kept while in use. Assuming that the
249  * client has some way of knowing that the container structure is valid and will
250  * not go away during the move, and assuming that the structure includes a lock
251  * to protect whatever collection is used, then the client would continue as
252  * follows:
253  *
254  *	// Ensure that the container structure does not go away.
255  *      if (container_hold(container) == 0) {
256  *              return (KMEM_CBRC_DONT_KNOW);
257  *      }
258  *      mutex_enter(&container->c_objects_lock);
259  *      if (container != object->o_container) {
260  *              mutex_exit(&container->c_objects_lock);
261  *              container_rele(container);
262  *              return (KMEM_CBRC_DONT_KNOW);
263  *      }
264  *
265  * At this point the client knows that the object cannot be freed as long as
266  * c_objects_lock is held. Note that after acquiring the lock, the client must
267  * recheck the o_container pointer in case the object was removed just before
268  * acquiring the lock.
269  *
270  * When the client is about to free an object, it must first remove that object
271  * from the list, hash, or other structure where it is kept. At that time, to
272  * mark the object so it can be distinguished from the remaining, known objects,
273  * the client sets the designated low order bit:
274  *
275  *      mutex_enter(&container->c_objects_lock);
276  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
277  *      list_remove(&container->c_objects, object);
278  *      mutex_exit(&container->c_objects_lock);
279  *
280  * In the common case, the object is freed to the magazine layer, where it may
281  * be reused on a subsequent allocation without the overhead of calling the
282  * constructor. While in the magazine it appears allocated from the point of
283  * view of the slab layer, making it a candidate for the move callback. Most
284  * objects unrecognized by the client in the move callback fall into this
285  * category and are cheaply distinguished from known objects by the test
286  * described earlier. Since recognition is cheap for the client, and searching
287  * magazines is expensive for kmem, kmem defers searching until the client first
288  * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem
289  * elsewhere does what it can to avoid bothering the client unnecessarily.
290  *
291  * Invalidating the designated pointer member before freeing the object marks
292  * the object to be avoided in the callback, and conversely, assigning a valid
293  * value to the designated pointer member after allocating the object makes the
294  * object fair game for the callback:
295  *
296  *      ... allocate object ...
297  *      ... set any initial state not set by the constructor ...
298  *
299  *      mutex_enter(&container->c_objects_lock);
300  *      list_insert_tail(&container->c_objects, object);
301  *      membar_producer();
302  *      object->o_container = container;
303  *      mutex_exit(&container->c_objects_lock);
304  *
305  * Note that everything else must be valid before setting o_container makes the
306  * object fair game for the move callback. The membar_producer() call ensures
307  * that all the object's state is written to memory before setting the pointer
308  * that transitions the object from state #3 or #7 (allocated, constructed, not
309  * yet in use) to state #4 (in use, valid). That's important because the move
310  * function has to check the validity of the pointer before it can safely
311  * acquire the lock protecting the collection where it expects to find known
312  * objects.
313  *
314  * This method of distinguishing known objects observes the usual symmetry:
315  * invalidating the designated pointer is the first thing the client does before
316  * freeing the object, and setting the designated pointer is the last thing the
317  * client does after allocating the object. Of course, the client is not
318  * required to use this method. Fundamentally, how the client recognizes known
319  * objects is completely up to the client, but this method is recommended as an
320  * efficient and safe way to take advantage of the guarantees made by kmem. If
321  * the entire object is arbitrary data without any markable bits from a suitable
322  * pointer member, then the client must find some other method, such as
323  * searching a hash table of known objects.
324  *
325  * 2.5 Preventing Objects From Moving
326  *
327  * Besides a way to distinguish known objects, the other thing that the client
328  * needs is a strategy to ensure that an object will not move while the client
329  * is actively using it. The details of satisfying this requirement tend to be
330  * highly cache-specific. It might seem that the same rules that let a client
331  * remove an object safely should also decide when an object can be moved
332  * safely. However, any object state that makes a removal attempt invalid is
333  * likely to be long-lasting for objects that the client does not expect to
334  * remove. kmem knows nothing about the object state and is equally likely (from
335  * the client's point of view) to request a move for any object in the cache,
336  * whether prepared for removal or not. Even a low percentage of objects stuck
337  * in place by unremovability will defeat the consolidator if the stuck objects
338  * are the same long-lived allocations likely to hold slabs hostage.
339  * Fundamentally, the consolidator is not aimed at common cases. Severe external
340  * fragmentation is a worst case scenario manifested as sparsely allocated
341  * slabs, by definition a low percentage of the cache's objects. When deciding
342  * what makes an object movable, keep in mind the goal of the consolidator: to
343  * bring worst-case external fragmentation within the limits guaranteed for
344  * internal fragmentation. Removability is a poor criterion if it is likely to
345  * exclude more than an insignificant percentage of objects for long periods of
346  * time.
347  *
348  * A tricky general solution exists, and it has the advantage of letting you
349  * move any object at almost any moment, practically eliminating the likelihood
350  * that an object can hold a slab hostage. However, if there is a cache-specific
351  * way to ensure that an object is not actively in use in the vast majority of
352  * cases, a simpler solution that leverages this cache-specific knowledge is
353  * preferred.
354  *
355  * 2.5.1 Cache-Specific Solution
356  *
357  * As an example of a cache-specific solution, the ZFS znode cache takes
358  * advantage of the fact that the vast majority of znodes are only being
359  * referenced from the DNLC. (A typical case might be a few hundred in active
360  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
361  * client has established that it recognizes the znode and can access its fields
362  * safely (using the method described earlier), it then tests whether the znode
363  * is referenced by anything other than the DNLC. If so, it assumes that the
364  * znode may be in active use and is unsafe to move, so it drops its locks and
365  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
366  * else znodes are used, no change is needed to protect against the possibility
367  * of the znode moving. The disadvantage is that it remains possible for an
368  * application to hold a znode slab hostage with an open file descriptor.
369  * However, this case ought to be rare and the consolidator has a way to deal
370  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
371  * object, kmem eventually stops believing it and treats the slab as if the
372  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
373  * then focus on getting it off of the partial slab list by allocating rather
374  * than freeing all of its objects. (Either way of getting a slab off the
375  * free list reduces fragmentation.)
376  *
377  * 2.5.2 General Solution
378  *
379  * The general solution, on the other hand, requires an explicit hold everywhere
380  * the object is used to prevent it from moving. To keep the client locking
381  * strategy as uncomplicated as possible, kmem guarantees the simplifying
382  * assumption that move callbacks are sequential, even across multiple caches.
383  * Internally, a global queue processed by a single thread supports all caches
384  * implementing the callback function. No matter how many caches supply a move
385  * function, the consolidator never moves more than one object at a time, so the
386  * client does not have to worry about tricky lock ordering involving several
387  * related objects from different kmem caches.
388  *
389  * The general solution implements the explicit hold as a read-write lock, which
390  * allows multiple readers to access an object from the cache simultaneously
391  * while a single writer is excluded from moving it. A single rwlock for the
392  * entire cache would lock out all threads from using any of the cache's objects
393  * even though only a single object is being moved, so to reduce contention,
394  * the client can fan out the single rwlock into an array of rwlocks hashed by
395  * the object address, making it probable that moving one object will not
396  * prevent other threads from using a different object. The rwlock cannot be a
397  * member of the object itself, because the possibility of the object moving
398  * makes it unsafe to access any of the object's fields until the lock is
399  * acquired.
400  *
401  * Assuming a small, fixed number of locks, it's possible that multiple objects
402  * will hash to the same lock. A thread that needs to use multiple objects in
403  * the same function may acquire the same lock multiple times. Since rwlocks are
404  * reentrant for readers, and since there is never more than a single writer at
405  * a time (assuming that the client acquires the lock as a writer only when
406  * moving an object inside the callback), there would seem to be no problem.
407  * However, a client locking multiple objects in the same function must handle
408  * one case of potential deadlock: Assume that thread A needs to prevent both
409  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
410  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
411  * same lock, that thread A will acquire the lock for object 1 as a reader
412  * before thread B sets the lock's write-wanted bit, preventing thread A from
413  * reacquiring the lock for object 2 as a reader. Unable to make forward
414  * progress, thread A will never release the lock for object 1, resulting in
415  * deadlock.
416  *
417  * There are two ways of avoiding the deadlock just described. The first is to
418  * use rw_tryenter() rather than rw_enter() in the callback function when
419  * attempting to acquire the lock as a writer. If tryenter discovers that the
420  * same object (or another object hashed to the same lock) is already in use, it
421  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
422  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
423  * since it allows a thread to acquire the lock as a reader in spite of a
424  * waiting writer. This second approach insists on moving the object now, no
425  * matter how many readers the move function must wait for in order to do so,
426  * and could delay the completion of the callback indefinitely (blocking
427  * callbacks to other clients). In practice, a less insistent callback using
428  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
429  * little reason to use anything else.
430  *
431  * Avoiding deadlock is not the only problem that an implementation using an
432  * explicit hold needs to solve. Locking the object in the first place (to
433  * prevent it from moving) remains a problem, since the object could move
434  * between the time you obtain a pointer to the object and the time you acquire
435  * the rwlock hashed to that pointer value. Therefore the client needs to
436  * recheck the value of the pointer after acquiring the lock, drop the lock if
437  * the value has changed, and try again. This requires a level of indirection:
438  * something that points to the object rather than the object itself, that the
439  * client can access safely while attempting to acquire the lock. (The object
440  * itself cannot be referenced safely because it can move at any time.)
441  * The following lock-acquisition function takes whatever is safe to reference
442  * (arg), follows its pointer to the object (using function f), and tries as
443  * often as necessary to acquire the hashed lock and verify that the object
444  * still has not moved:
445  *
446  *      object_t *
447  *      object_hold(object_f f, void *arg)
448  *      {
449  *              object_t *op;
450  *
451  *              op = f(arg);
452  *              if (op == NULL) {
453  *                      return (NULL);
454  *              }
455  *
456  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
457  *              while (op != f(arg)) {
458  *                      rw_exit(OBJECT_RWLOCK(op));
459  *                      op = f(arg);
460  *                      if (op == NULL) {
461  *                              break;
462  *                      }
463  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
464  *              }
465  *
466  *              return (op);
467  *      }
468  *
469  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
470  * lock reacquisition loop, while necessary, almost never executes. The function
471  * pointer f (used to obtain the object pointer from arg) has the following type
472  * definition:
473  *
474  *      typedef object_t *(*object_f)(void *arg);
475  *
476  * An object_f implementation is likely to be as simple as accessing a structure
477  * member:
478  *
479  *      object_t *
480  *      s_object(void *arg)
481  *      {
482  *              something_t *sp = arg;
483  *              return (sp->s_object);
484  *      }
485  *
486  * The flexibility of a function pointer allows the path to the object to be
487  * arbitrarily complex and also supports the notion that depending on where you
488  * are using the object, you may need to get it from someplace different.
489  *
490  * The function that releases the explicit hold is simpler because it does not
491  * have to worry about the object moving:
492  *
493  *      void
494  *      object_rele(object_t *op)
495  *      {
496  *              rw_exit(OBJECT_RWLOCK(op));
497  *      }
498  *
499  * The caller is spared these details so that obtaining and releasing an
500  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
501  * of object_hold() only needs to know that the returned object pointer is valid
502  * if not NULL and that the object will not move until released.
503  *
504  * Although object_hold() prevents an object from moving, it does not prevent it
505  * from being freed. The caller must take measures before calling object_hold()
506  * (afterwards is too late) to ensure that the held object cannot be freed. The
507  * caller must do so without accessing the unsafe object reference, so any lock
508  * or reference count used to ensure the continued existence of the object must
509  * live outside the object itself.
510  *
511  * Obtaining a new object is a special case where an explicit hold is impossible
512  * for the caller. Any function that returns a newly allocated object (either as
513  * a return value, or as an in-out paramter) must return it already held; after
514  * the caller gets it is too late, since the object cannot be safely accessed
515  * without the level of indirection described earlier. The following
516  * object_alloc() example uses the same code shown earlier to transition a new
517  * object into the state of being recognized (by the client) as a known object.
518  * The function must acquire the hold (rw_enter) before that state transition
519  * makes the object movable:
520  *
521  *      static object_t *
522  *      object_alloc(container_t *container)
523  *      {
524  *              object_t *object = kmem_cache_alloc(object_cache, 0);
525  *              ... set any initial state not set by the constructor ...
526  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
527  *              mutex_enter(&container->c_objects_lock);
528  *              list_insert_tail(&container->c_objects, object);
529  *              membar_producer();
530  *              object->o_container = container;
531  *              mutex_exit(&container->c_objects_lock);
532  *              return (object);
533  *      }
534  *
535  * Functions that implicitly acquire an object hold (any function that calls
536  * object_alloc() to supply an object for the caller) need to be carefully noted
537  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
538  * prevent all objects hashed to the affected rwlocks from ever being moved.
539  *
540  * The pointer to a held object can be hashed to the holding rwlock even after
541  * the object has been freed. Although it is possible to release the hold
542  * after freeing the object, you may decide to release the hold implicitly in
543  * whatever function frees the object, so as to release the hold as soon as
544  * possible, and for the sake of symmetry with the function that implicitly
545  * acquires the hold when it allocates the object. Here, object_free() releases
546  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
547  * matching pair with object_hold():
548  *
549  *      void
550  *      object_free(object_t *object)
551  *      {
552  *              container_t *container;
553  *
554  *              ASSERT(object_held(object));
555  *              container = object->o_container;
556  *              mutex_enter(&container->c_objects_lock);
557  *              object->o_container =
558  *                  (void *)((uintptr_t)object->o_container | 0x1);
559  *              list_remove(&container->c_objects, object);
560  *              mutex_exit(&container->c_objects_lock);
561  *              object_rele(object);
562  *              kmem_cache_free(object_cache, object);
563  *      }
564  *
565  * Note that object_free() cannot safely accept an object pointer as an argument
566  * unless the object is already held. Any function that calls object_free()
567  * needs to be carefully noted since it similarly forms a matching pair with
568  * object_hold().
569  *
570  * To complete the picture, the following callback function implements the
571  * general solution by moving objects only if they are currently unheld:
572  *
573  *      static kmem_cbrc_t
574  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
575  *      {
576  *              object_t *op = buf, *np = newbuf;
577  *              container_t *container;
578  *
579  *              container = op->o_container;
580  *              if ((uintptr_t)container & 0x3) {
581  *                      return (KMEM_CBRC_DONT_KNOW);
582  *              }
583  *
584  *	        // Ensure that the container structure does not go away.
585  *              if (container_hold(container) == 0) {
586  *                      return (KMEM_CBRC_DONT_KNOW);
587  *              }
588  *
589  *              mutex_enter(&container->c_objects_lock);
590  *              if (container != op->o_container) {
591  *                      mutex_exit(&container->c_objects_lock);
592  *                      container_rele(container);
593  *                      return (KMEM_CBRC_DONT_KNOW);
594  *              }
595  *
596  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
597  *                      mutex_exit(&container->c_objects_lock);
598  *                      container_rele(container);
599  *                      return (KMEM_CBRC_LATER);
600  *              }
601  *
602  *              object_move_impl(op, np); // critical section
603  *              rw_exit(OBJECT_RWLOCK(op));
604  *
605  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
606  *              list_link_replace(&op->o_link_node, &np->o_link_node);
607  *              mutex_exit(&container->c_objects_lock);
608  *              container_rele(container);
609  *              return (KMEM_CBRC_YES);
610  *      }
611  *
612  * Note that object_move() must invalidate the designated o_container pointer of
613  * the old object in the same way that object_free() does, since kmem will free
614  * the object in response to the KMEM_CBRC_YES return value.
615  *
616  * The lock order in object_move() differs from object_alloc(), which locks
617  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
618  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
619  * not a problem. Holding the lock on the object list in the example above
620  * through the entire callback not only prevents the object from going away, it
621  * also allows you to lock the list elsewhere and know that none of its elements
622  * will move during iteration.
623  *
624  * Adding an explicit hold everywhere an object from the cache is used is tricky
625  * and involves much more change to client code than a cache-specific solution
626  * that leverages existing state to decide whether or not an object is
627  * movable. However, this approach has the advantage that no object remains
628  * immovable for any significant length of time, making it extremely unlikely
629  * that long-lived allocations can continue holding slabs hostage; and it works
630  * for any cache.
631  *
632  * 3. Consolidator Implementation
633  *
634  * Once the client supplies a move function that a) recognizes known objects and
635  * b) avoids moving objects that are actively in use, the remaining work is up
636  * to the consolidator to decide which objects to move and when to issue
637  * callbacks.
638  *
639  * The consolidator relies on the fact that a cache's slabs are ordered by
640  * usage. Each slab has a fixed number of objects. Depending on the slab's
641  * "color" (the offset of the first object from the beginning of the slab;
642  * offsets are staggered to mitigate false sharing of cache lines) it is either
643  * the maximum number of objects per slab determined at cache creation time or
644  * else the number closest to the maximum that fits within the space remaining
645  * after the initial offset. A completely allocated slab may contribute some
646  * internal fragmentation (per-slab overhead) but no external fragmentation, so
647  * it is of no interest to the consolidator. At the other extreme, slabs whose
648  * objects have all been freed to the slab are released to the virtual memory
649  * (VM) subsystem (objects freed to magazines are still allocated as far as the
650  * slab is concerned). External fragmentation exists when there are slabs
651  * somewhere between these extremes. A partial slab has at least one but not all
652  * of its objects allocated. The more partial slabs, and the fewer allocated
653  * objects on each of them, the higher the fragmentation. Hence the
654  * consolidator's overall strategy is to reduce the number of partial slabs by
655  * moving allocated objects from the least allocated slabs to the most allocated
656  * slabs.
657  *
658  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
659  * slabs are kept separately in an unordered list. Since the majority of slabs
660  * tend to be completely allocated (a typical unfragmented cache may have
661  * thousands of complete slabs and only a single partial slab), separating
662  * complete slabs improves the efficiency of partial slab ordering, since the
663  * complete slabs do not affect the depth or balance of the AVL tree. This
664  * ordered sequence of partial slabs acts as a "free list" supplying objects for
665  * allocation requests.
666  *
667  * Objects are always allocated from the first partial slab in the free list,
668  * where the allocation is most likely to eliminate a partial slab (by
669  * completely allocating it). Conversely, when a single object from a completely
670  * allocated slab is freed to the slab, that slab is added to the front of the
671  * free list. Since most free list activity involves highly allocated slabs
672  * coming and going at the front of the list, slabs tend naturally toward the
673  * ideal order: highly allocated at the front, sparsely allocated at the back.
674  * Slabs with few allocated objects are likely to become completely free if they
675  * keep a safe distance away from the front of the free list. Slab misorders
676  * interfere with the natural tendency of slabs to become completely free or
677  * completely allocated. For example, a slab with a single allocated object
678  * needs only a single free to escape the cache; its natural desire is
679  * frustrated when it finds itself at the front of the list where a second
680  * allocation happens just before the free could have released it. Another slab
681  * with all but one object allocated might have supplied the buffer instead, so
682  * that both (as opposed to neither) of the slabs would have been taken off the
683  * free list.
684  *
685  * Although slabs tend naturally toward the ideal order, misorders allowed by a
686  * simple list implementation defeat the consolidator's strategy of merging
687  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
688  * needs another way to fix misorders to optimize its callback strategy. One
689  * approach is to periodically scan a limited number of slabs, advancing a
690  * marker to hold the current scan position, and to move extreme misorders to
691  * the front or back of the free list and to the front or back of the current
692  * scan range. By making consecutive scan ranges overlap by one slab, the least
693  * allocated slab in the current range can be carried along from the end of one
694  * scan to the start of the next.
695  *
696  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
697  * task, however. Since most of the cache's activity is in the magazine layer,
698  * and allocations from the slab layer represent only a startup cost, the
699  * overhead of maintaining a balanced tree is not a significant concern compared
700  * to the opportunity of reducing complexity by eliminating the partial slab
701  * scanner just described. The overhead of an AVL tree is minimized by
702  * maintaining only partial slabs in the tree and keeping completely allocated
703  * slabs separately in a list. To avoid increasing the size of the slab
704  * structure the AVL linkage pointers are reused for the slab's list linkage,
705  * since the slab will always be either partial or complete, never stored both
706  * ways at the same time. To further minimize the overhead of the AVL tree the
707  * compare function that orders partial slabs by usage divides the range of
708  * allocated object counts into bins such that counts within the same bin are
709  * considered equal. Binning partial slabs makes it less likely that allocating
710  * or freeing a single object will change the slab's order, requiring a tree
711  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
712  * requiring some rebalancing of the tree). Allocation counts closest to
713  * completely free and completely allocated are left unbinned (finely sorted) to
714  * better support the consolidator's strategy of merging slabs at either
715  * extreme.
716  *
717  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
718  *
719  * The consolidator piggybacks on the kmem maintenance thread and is called on
720  * the same interval as kmem_cache_update(), once per cache every fifteen
721  * seconds. kmem maintains a running count of unallocated objects in the slab
722  * layer (cache_bufslab). The consolidator checks whether that number exceeds
723  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
724  * there is a significant number of slabs in the cache (arbitrarily a minimum
725  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
726  * working set are included in the assessment, and magazines in the depot are
727  * reaped if those objects would lift cache_bufslab above the fragmentation
728  * threshold. Once the consolidator decides that a cache is fragmented, it looks
729  * for a candidate slab to reclaim, starting at the end of the partial slab free
730  * list and scanning backwards. At first the consolidator is choosy: only a slab
731  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
732  * single allocated object, regardless of percentage). If there is difficulty
733  * finding a candidate slab, kmem raises the allocation threshold incrementally,
734  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
735  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
736  * even in the worst case of every slab in the cache being almost 7/8 allocated.
737  * The threshold can also be lowered incrementally when candidate slabs are easy
738  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
739  * is no longer fragmented.
740  *
741  * 3.2 Generating Callbacks
742  *
743  * Once an eligible slab is chosen, a callback is generated for every allocated
744  * object on the slab, in the hope that the client will move everything off the
745  * slab and make it reclaimable. Objects selected as move destinations are
746  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
747  * order (most allocated at the front, least allocated at the back) and a
748  * cooperative client, the consolidator will succeed in removing slabs from both
749  * ends of the free list, completely allocating on the one hand and completely
750  * freeing on the other. Objects selected as move destinations are allocated in
751  * the kmem maintenance thread where move requests are enqueued. A separate
752  * callback thread removes pending callbacks from the queue and calls the
753  * client. The separate thread ensures that client code (the move function) does
754  * not interfere with internal kmem maintenance tasks. A map of pending
755  * callbacks keyed by object address (the object to be moved) is checked to
756  * ensure that duplicate callbacks are not generated for the same object.
757  * Allocating the move destination (the object to move to) prevents subsequent
758  * callbacks from selecting the same destination as an earlier pending callback.
759  *
760  * Move requests can also be generated by kmem_cache_reap() when the system is
761  * desperate for memory and by kmem_cache_move_notify(), called by the client to
762  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
763  * The map of pending callbacks is protected by the same lock that protects the
764  * slab layer.
765  *
766  * When the system is desperate for memory, kmem does not bother to determine
767  * whether or not the cache exceeds the fragmentation threshold, but tries to
768  * consolidate as many slabs as possible. Normally, the consolidator chews
769  * slowly, one sparsely allocated slab at a time during each maintenance
770  * interval that the cache is fragmented. When desperate, the consolidator
771  * starts at the last partial slab and enqueues callbacks for every allocated
772  * object on every partial slab, working backwards until it reaches the first
773  * partial slab. The first partial slab, meanwhile, advances in pace with the
774  * consolidator as allocations to supply move destinations for the enqueued
775  * callbacks use up the highly allocated slabs at the front of the free list.
776  * Ideally, the overgrown free list collapses like an accordion, starting at
777  * both ends and ending at the center with a single partial slab.
778  *
779  * 3.3 Client Responses
780  *
781  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
782  * marks the slab that supplied the stuck object non-reclaimable and moves it to
783  * front of the free list. The slab remains marked as long as it remains on the
784  * free list, and it appears more allocated to the partial slab compare function
785  * than any unmarked slab, no matter how many of its objects are allocated.
786  * Since even one immovable object ties up the entire slab, the goal is to
787  * completely allocate any slab that cannot be completely freed. kmem does not
788  * bother generating callbacks to move objects from a marked slab unless the
789  * system is desperate.
790  *
791  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
792  * slab. If the client responds LATER too many times, kmem disbelieves and
793  * treats the response as a NO. The count is cleared when the slab is taken off
794  * the partial slab list or when the client moves one of the slab's objects.
795  *
796  * 4. Observability
797  *
798  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
799  * the ::kmem_slabs dcmd. For a complete description of the command, enter
800  * '::help kmem_slabs' at the mdb prompt.
801  */
802 
803 #include <sys/kmem_impl.h>
804 #include <sys/vmem_impl.h>
805 #include <sys/param.h>
806 #include <sys/sysmacros.h>
807 #include <sys/vm.h>
808 #include <sys/proc.h>
809 #include <sys/tuneable.h>
810 #include <sys/systm.h>
811 #include <sys/cmn_err.h>
812 #include <sys/debug.h>
813 #include <sys/sdt.h>
814 #include <sys/mutex.h>
815 #include <sys/bitmap.h>
816 #include <sys/atomic.h>
817 #include <sys/kobj.h>
818 #include <sys/disp.h>
819 #include <vm/seg_kmem.h>
820 #include <sys/log.h>
821 #include <sys/callb.h>
822 #include <sys/taskq.h>
823 #include <sys/modctl.h>
824 #include <sys/reboot.h>
825 #include <sys/id32.h>
826 #include <sys/zone.h>
827 #include <sys/netstack.h>
828 #ifdef	DEBUG
829 #include <sys/random.h>
830 #endif
831 
832 extern void streams_msg_init(void);
833 extern int segkp_fromheap;
834 extern void segkp_cache_free(void);
835 
836 struct kmem_cache_kstat {
837 	kstat_named_t	kmc_buf_size;
838 	kstat_named_t	kmc_align;
839 	kstat_named_t	kmc_chunk_size;
840 	kstat_named_t	kmc_slab_size;
841 	kstat_named_t	kmc_alloc;
842 	kstat_named_t	kmc_alloc_fail;
843 	kstat_named_t	kmc_free;
844 	kstat_named_t	kmc_depot_alloc;
845 	kstat_named_t	kmc_depot_free;
846 	kstat_named_t	kmc_depot_contention;
847 	kstat_named_t	kmc_slab_alloc;
848 	kstat_named_t	kmc_slab_free;
849 	kstat_named_t	kmc_buf_constructed;
850 	kstat_named_t	kmc_buf_avail;
851 	kstat_named_t	kmc_buf_inuse;
852 	kstat_named_t	kmc_buf_total;
853 	kstat_named_t	kmc_buf_max;
854 	kstat_named_t	kmc_slab_create;
855 	kstat_named_t	kmc_slab_destroy;
856 	kstat_named_t	kmc_vmem_source;
857 	kstat_named_t	kmc_hash_size;
858 	kstat_named_t	kmc_hash_lookup_depth;
859 	kstat_named_t	kmc_hash_rescale;
860 	kstat_named_t	kmc_full_magazines;
861 	kstat_named_t	kmc_empty_magazines;
862 	kstat_named_t	kmc_magazine_size;
863 	kstat_named_t	kmc_reap; /* number of kmem_cache_reap() calls */
864 	kstat_named_t	kmc_defrag; /* attempts to defrag all partial slabs */
865 	kstat_named_t	kmc_scan; /* attempts to defrag one partial slab */
866 	kstat_named_t	kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
867 	kstat_named_t	kmc_move_yes;
868 	kstat_named_t	kmc_move_no;
869 	kstat_named_t	kmc_move_later;
870 	kstat_named_t	kmc_move_dont_need;
871 	kstat_named_t	kmc_move_dont_know; /* obj unrecognized by client ... */
872 	kstat_named_t	kmc_move_hunt_found; /* ... but found in mag layer */
873 	kstat_named_t	kmc_move_slabs_freed; /* slabs freed by consolidator */
874 	kstat_named_t	kmc_move_reclaimable; /* buffers, if consolidator ran */
875 } kmem_cache_kstat = {
876 	{ "buf_size",		KSTAT_DATA_UINT64 },
877 	{ "align",		KSTAT_DATA_UINT64 },
878 	{ "chunk_size",		KSTAT_DATA_UINT64 },
879 	{ "slab_size",		KSTAT_DATA_UINT64 },
880 	{ "alloc",		KSTAT_DATA_UINT64 },
881 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
882 	{ "free",		KSTAT_DATA_UINT64 },
883 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
884 	{ "depot_free",		KSTAT_DATA_UINT64 },
885 	{ "depot_contention",	KSTAT_DATA_UINT64 },
886 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
887 	{ "slab_free",		KSTAT_DATA_UINT64 },
888 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
889 	{ "buf_avail",		KSTAT_DATA_UINT64 },
890 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
891 	{ "buf_total",		KSTAT_DATA_UINT64 },
892 	{ "buf_max",		KSTAT_DATA_UINT64 },
893 	{ "slab_create",	KSTAT_DATA_UINT64 },
894 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
895 	{ "vmem_source",	KSTAT_DATA_UINT64 },
896 	{ "hash_size",		KSTAT_DATA_UINT64 },
897 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
898 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
899 	{ "full_magazines",	KSTAT_DATA_UINT64 },
900 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
901 	{ "magazine_size",	KSTAT_DATA_UINT64 },
902 	{ "reap",		KSTAT_DATA_UINT64 },
903 	{ "defrag",		KSTAT_DATA_UINT64 },
904 	{ "scan",		KSTAT_DATA_UINT64 },
905 	{ "move_callbacks",	KSTAT_DATA_UINT64 },
906 	{ "move_yes",		KSTAT_DATA_UINT64 },
907 	{ "move_no",		KSTAT_DATA_UINT64 },
908 	{ "move_later",		KSTAT_DATA_UINT64 },
909 	{ "move_dont_need",	KSTAT_DATA_UINT64 },
910 	{ "move_dont_know",	KSTAT_DATA_UINT64 },
911 	{ "move_hunt_found",	KSTAT_DATA_UINT64 },
912 	{ "move_slabs_freed",	KSTAT_DATA_UINT64 },
913 	{ "move_reclaimable",	KSTAT_DATA_UINT64 },
914 };
915 
916 static kmutex_t kmem_cache_kstat_lock;
917 
918 /*
919  * The default set of caches to back kmem_alloc().
920  * These sizes should be reevaluated periodically.
921  *
922  * We want allocations that are multiples of the coherency granularity
923  * (64 bytes) to be satisfied from a cache which is a multiple of 64
924  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
925  * the next kmem_cache_size greater than or equal to it must be a
926  * multiple of 64.
927  *
928  * We split the table into two sections:  size <= 4k and size > 4k.  This
929  * saves a lot of space and cache footprint in our cache tables.
930  */
931 static const int kmem_alloc_sizes[] = {
932 	1 * 8,
933 	2 * 8,
934 	3 * 8,
935 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
936 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
937 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
938 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
939 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
940 	P2ALIGN(8192 / 7, 64),
941 	P2ALIGN(8192 / 6, 64),
942 	P2ALIGN(8192 / 5, 64),
943 	P2ALIGN(8192 / 4, 64),
944 	P2ALIGN(8192 / 3, 64),
945 	P2ALIGN(8192 / 2, 64),
946 };
947 
948 static const int kmem_big_alloc_sizes[] = {
949 	2 * 4096,	3 * 4096,
950 	2 * 8192,	3 * 8192,
951 	4 * 8192,	5 * 8192,	6 * 8192,	7 * 8192,
952 	8 * 8192,	9 * 8192,	10 * 8192,	11 * 8192,
953 	12 * 8192,	13 * 8192,	14 * 8192,	15 * 8192,
954 	16 * 8192
955 };
956 
957 #define	KMEM_MAXBUF		4096
958 #define	KMEM_BIG_MAXBUF_32BIT	32768
959 #define	KMEM_BIG_MAXBUF		131072
960 
961 #define	KMEM_BIG_MULTIPLE	4096	/* big_alloc_sizes must be a multiple */
962 #define	KMEM_BIG_SHIFT		12	/* lg(KMEM_BIG_MULTIPLE) */
963 
964 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
965 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
966 
967 #define	KMEM_ALLOC_TABLE_MAX	(KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
968 static size_t kmem_big_alloc_table_max = 0;	/* # of filled elements */
969 
970 static kmem_magtype_t kmem_magtype[] = {
971 	{ 1,	8,	3200,	65536	},
972 	{ 3,	16,	256,	32768	},
973 	{ 7,	32,	64,	16384	},
974 	{ 15,	64,	0,	8192	},
975 	{ 31,	64,	0,	4096	},
976 	{ 47,	64,	0,	2048	},
977 	{ 63,	64,	0,	1024	},
978 	{ 95,	64,	0,	512	},
979 	{ 143,	64,	0,	0	},
980 };
981 
982 static uint32_t kmem_reaping;
983 static uint32_t kmem_reaping_idspace;
984 
985 /*
986  * kmem tunables
987  */
988 clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
989 int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
990 pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
991 int kmem_panic = 1;		/* whether to panic on error */
992 int kmem_logging = 1;		/* kmem_log_enter() override */
993 uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
994 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
995 size_t kmem_content_log_size;	/* content log size [2% of memory] */
996 size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
997 size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
998 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
999 size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
1000 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1001 int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
1002 size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
1003 size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
1004 
1005 #ifdef _LP64
1006 size_t	kmem_max_cached = KMEM_BIG_MAXBUF;	/* maximum kmem_alloc cache */
1007 #else
1008 size_t	kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1009 #endif
1010 
1011 #ifdef DEBUG
1012 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1013 #else
1014 int kmem_flags = 0;
1015 #endif
1016 int kmem_ready;
1017 
1018 static kmem_cache_t	*kmem_slab_cache;
1019 static kmem_cache_t	*kmem_bufctl_cache;
1020 static kmem_cache_t	*kmem_bufctl_audit_cache;
1021 
1022 static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
1023 static list_t		kmem_caches;
1024 
1025 static taskq_t		*kmem_taskq;
1026 static kmutex_t		kmem_flags_lock;
1027 static vmem_t		*kmem_metadata_arena;
1028 static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
1029 static vmem_t		*kmem_cache_arena;
1030 static vmem_t		*kmem_hash_arena;
1031 static vmem_t		*kmem_log_arena;
1032 static vmem_t		*kmem_oversize_arena;
1033 static vmem_t		*kmem_va_arena;
1034 static vmem_t		*kmem_default_arena;
1035 static vmem_t		*kmem_firewall_va_arena;
1036 static vmem_t		*kmem_firewall_arena;
1037 
1038 /*
1039  * Define KMEM_STATS to turn on statistic gathering. By default, it is only
1040  * turned on when DEBUG is also defined.
1041  */
1042 #ifdef	DEBUG
1043 #define	KMEM_STATS
1044 #endif	/* DEBUG */
1045 
1046 #ifdef	KMEM_STATS
1047 #define	KMEM_STAT_ADD(stat)			((stat)++)
1048 #define	KMEM_STAT_COND_ADD(cond, stat)		((void) (!(cond) || (stat)++))
1049 #else
1050 #define	KMEM_STAT_ADD(stat)			/* nothing */
1051 #define	KMEM_STAT_COND_ADD(cond, stat)		/* nothing */
1052 #endif	/* KMEM_STATS */
1053 
1054 /*
1055  * kmem slab consolidator thresholds (tunables)
1056  */
1057 size_t kmem_frag_minslabs = 101;	/* minimum total slabs */
1058 size_t kmem_frag_numer = 1;		/* free buffers (numerator) */
1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1060 /*
1061  * Maximum number of slabs from which to move buffers during a single
1062  * maintenance interval while the system is not low on memory.
1063  */
1064 size_t kmem_reclaim_max_slabs = 1;
1065 /*
1066  * Number of slabs to scan backwards from the end of the partial slab list
1067  * when searching for buffers to relocate.
1068  */
1069 size_t kmem_reclaim_scan_range = 12;
1070 
1071 #ifdef	KMEM_STATS
1072 static struct {
1073 	uint64_t kms_callbacks;
1074 	uint64_t kms_yes;
1075 	uint64_t kms_no;
1076 	uint64_t kms_later;
1077 	uint64_t kms_dont_need;
1078 	uint64_t kms_dont_know;
1079 	uint64_t kms_hunt_found_mag;
1080 	uint64_t kms_hunt_found_slab;
1081 	uint64_t kms_hunt_alloc_fail;
1082 	uint64_t kms_hunt_lucky;
1083 	uint64_t kms_notify;
1084 	uint64_t kms_notify_callbacks;
1085 	uint64_t kms_disbelief;
1086 	uint64_t kms_already_pending;
1087 	uint64_t kms_callback_alloc_fail;
1088 	uint64_t kms_callback_taskq_fail;
1089 	uint64_t kms_endscan_slab_dead;
1090 	uint64_t kms_endscan_slab_destroyed;
1091 	uint64_t kms_endscan_nomem;
1092 	uint64_t kms_endscan_refcnt_changed;
1093 	uint64_t kms_endscan_nomove_changed;
1094 	uint64_t kms_endscan_freelist;
1095 	uint64_t kms_avl_update;
1096 	uint64_t kms_avl_noupdate;
1097 	uint64_t kms_no_longer_reclaimable;
1098 	uint64_t kms_notify_no_longer_reclaimable;
1099 	uint64_t kms_notify_slab_dead;
1100 	uint64_t kms_notify_slab_destroyed;
1101 	uint64_t kms_alloc_fail;
1102 	uint64_t kms_constructor_fail;
1103 	uint64_t kms_dead_slabs_freed;
1104 	uint64_t kms_defrags;
1105 	uint64_t kms_scans;
1106 	uint64_t kms_scan_depot_ws_reaps;
1107 	uint64_t kms_debug_reaps;
1108 	uint64_t kms_debug_scans;
1109 } kmem_move_stats;
1110 #endif	/* KMEM_STATS */
1111 
1112 /* consolidator knobs */
1113 static boolean_t kmem_move_noreap;
1114 static boolean_t kmem_move_blocked;
1115 static boolean_t kmem_move_fulltilt;
1116 static boolean_t kmem_move_any_partial;
1117 
1118 #ifdef	DEBUG
1119 /*
1120  * kmem consolidator debug tunables:
1121  * Ensure code coverage by occasionally running the consolidator even when the
1122  * caches are not fragmented (they may never be). These intervals are mean time
1123  * in cache maintenance intervals (kmem_cache_update).
1124  */
1125 uint32_t kmem_mtb_move = 60;	/* defrag 1 slab (~15min) */
1126 uint32_t kmem_mtb_reap = 1800;	/* defrag all slabs (~7.5hrs) */
1127 #endif	/* DEBUG */
1128 
1129 static kmem_cache_t	*kmem_defrag_cache;
1130 static kmem_cache_t	*kmem_move_cache;
1131 static taskq_t		*kmem_move_taskq;
1132 
1133 static void kmem_cache_scan(kmem_cache_t *);
1134 static void kmem_cache_defrag(kmem_cache_t *);
1135 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1136 
1137 
1138 kmem_log_header_t	*kmem_transaction_log;
1139 kmem_log_header_t	*kmem_content_log;
1140 kmem_log_header_t	*kmem_failure_log;
1141 kmem_log_header_t	*kmem_slab_log;
1142 
1143 static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1144 
1145 #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
1146 	if ((count) > 0) {						\
1147 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
1148 		pc_t *_e;						\
1149 		/* memmove() the old entries down one notch */		\
1150 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
1151 			*_e = *(_e - 1);				\
1152 		*_s = (uintptr_t)(caller);				\
1153 	}
1154 
1155 #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
1156 #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
1157 #define	KMERR_DUPFREE	2	/* freed a buffer twice */
1158 #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
1159 #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
1160 #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
1161 #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
1162 #define	KMERR_BADSIZE	7	/* alloc size != free size */
1163 #define	KMERR_BADBASE	8	/* buffer base address wrong */
1164 
1165 struct {
1166 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
1167 	int		kmp_error;	/* type of kmem error */
1168 	void		*kmp_buffer;	/* buffer that induced panic */
1169 	void		*kmp_realbuf;	/* real start address for buffer */
1170 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
1171 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
1172 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
1173 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
1174 } kmem_panic_info;
1175 
1176 
1177 static void
1178 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1179 {
1180 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1181 	uint64_t *buf = buf_arg;
1182 
1183 	while (buf < bufend)
1184 		*buf++ = pattern;
1185 }
1186 
1187 static void *
1188 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1189 {
1190 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1191 	uint64_t *buf;
1192 
1193 	for (buf = buf_arg; buf < bufend; buf++)
1194 		if (*buf != pattern)
1195 			return (buf);
1196 	return (NULL);
1197 }
1198 
1199 static void *
1200 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1201 {
1202 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1203 	uint64_t *buf;
1204 
1205 	for (buf = buf_arg; buf < bufend; buf++) {
1206 		if (*buf != old) {
1207 			copy_pattern(old, buf_arg,
1208 			    (char *)buf - (char *)buf_arg);
1209 			return (buf);
1210 		}
1211 		*buf = new;
1212 	}
1213 
1214 	return (NULL);
1215 }
1216 
1217 static void
1218 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1219 {
1220 	kmem_cache_t *cp;
1221 
1222 	mutex_enter(&kmem_cache_lock);
1223 	for (cp = list_head(&kmem_caches); cp != NULL;
1224 	    cp = list_next(&kmem_caches, cp))
1225 		if (tq != NULL)
1226 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1227 			    tqflag);
1228 		else
1229 			func(cp);
1230 	mutex_exit(&kmem_cache_lock);
1231 }
1232 
1233 static void
1234 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1235 {
1236 	kmem_cache_t *cp;
1237 
1238 	mutex_enter(&kmem_cache_lock);
1239 	for (cp = list_head(&kmem_caches); cp != NULL;
1240 	    cp = list_next(&kmem_caches, cp)) {
1241 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
1242 			continue;
1243 		if (tq != NULL)
1244 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1245 			    tqflag);
1246 		else
1247 			func(cp);
1248 	}
1249 	mutex_exit(&kmem_cache_lock);
1250 }
1251 
1252 /*
1253  * Debugging support.  Given a buffer address, find its slab.
1254  */
1255 static kmem_slab_t *
1256 kmem_findslab(kmem_cache_t *cp, void *buf)
1257 {
1258 	kmem_slab_t *sp;
1259 
1260 	mutex_enter(&cp->cache_lock);
1261 	for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1262 	    sp = list_next(&cp->cache_complete_slabs, sp)) {
1263 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1264 			mutex_exit(&cp->cache_lock);
1265 			return (sp);
1266 		}
1267 	}
1268 	for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1269 	    sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1270 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1271 			mutex_exit(&cp->cache_lock);
1272 			return (sp);
1273 		}
1274 	}
1275 	mutex_exit(&cp->cache_lock);
1276 
1277 	return (NULL);
1278 }
1279 
1280 static void
1281 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1282 {
1283 	kmem_buftag_t *btp = NULL;
1284 	kmem_bufctl_t *bcp = NULL;
1285 	kmem_cache_t *cp = cparg;
1286 	kmem_slab_t *sp;
1287 	uint64_t *off;
1288 	void *buf = bufarg;
1289 
1290 	kmem_logging = 0;	/* stop logging when a bad thing happens */
1291 
1292 	kmem_panic_info.kmp_timestamp = gethrtime();
1293 
1294 	sp = kmem_findslab(cp, buf);
1295 	if (sp == NULL) {
1296 		for (cp = list_tail(&kmem_caches); cp != NULL;
1297 		    cp = list_prev(&kmem_caches, cp)) {
1298 			if ((sp = kmem_findslab(cp, buf)) != NULL)
1299 				break;
1300 		}
1301 	}
1302 
1303 	if (sp == NULL) {
1304 		cp = NULL;
1305 		error = KMERR_BADADDR;
1306 	} else {
1307 		if (cp != cparg)
1308 			error = KMERR_BADCACHE;
1309 		else
1310 			buf = (char *)bufarg - ((uintptr_t)bufarg -
1311 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1312 		if (buf != bufarg)
1313 			error = KMERR_BADBASE;
1314 		if (cp->cache_flags & KMF_BUFTAG)
1315 			btp = KMEM_BUFTAG(cp, buf);
1316 		if (cp->cache_flags & KMF_HASH) {
1317 			mutex_enter(&cp->cache_lock);
1318 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1319 				if (bcp->bc_addr == buf)
1320 					break;
1321 			mutex_exit(&cp->cache_lock);
1322 			if (bcp == NULL && btp != NULL)
1323 				bcp = btp->bt_bufctl;
1324 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1325 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1326 			    bcp->bc_addr != buf) {
1327 				error = KMERR_BADBUFCTL;
1328 				bcp = NULL;
1329 			}
1330 		}
1331 	}
1332 
1333 	kmem_panic_info.kmp_error = error;
1334 	kmem_panic_info.kmp_buffer = bufarg;
1335 	kmem_panic_info.kmp_realbuf = buf;
1336 	kmem_panic_info.kmp_cache = cparg;
1337 	kmem_panic_info.kmp_realcache = cp;
1338 	kmem_panic_info.kmp_slab = sp;
1339 	kmem_panic_info.kmp_bufctl = bcp;
1340 
1341 	printf("kernel memory allocator: ");
1342 
1343 	switch (error) {
1344 
1345 	case KMERR_MODIFIED:
1346 		printf("buffer modified after being freed\n");
1347 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1348 		if (off == NULL)	/* shouldn't happen */
1349 			off = buf;
1350 		printf("modification occurred at offset 0x%lx "
1351 		    "(0x%llx replaced by 0x%llx)\n",
1352 		    (uintptr_t)off - (uintptr_t)buf,
1353 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1354 		break;
1355 
1356 	case KMERR_REDZONE:
1357 		printf("redzone violation: write past end of buffer\n");
1358 		break;
1359 
1360 	case KMERR_BADADDR:
1361 		printf("invalid free: buffer not in cache\n");
1362 		break;
1363 
1364 	case KMERR_DUPFREE:
1365 		printf("duplicate free: buffer freed twice\n");
1366 		break;
1367 
1368 	case KMERR_BADBUFTAG:
1369 		printf("boundary tag corrupted\n");
1370 		printf("bcp ^ bxstat = %lx, should be %lx\n",
1371 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1372 		    KMEM_BUFTAG_FREE);
1373 		break;
1374 
1375 	case KMERR_BADBUFCTL:
1376 		printf("bufctl corrupted\n");
1377 		break;
1378 
1379 	case KMERR_BADCACHE:
1380 		printf("buffer freed to wrong cache\n");
1381 		printf("buffer was allocated from %s,\n", cp->cache_name);
1382 		printf("caller attempting free to %s.\n", cparg->cache_name);
1383 		break;
1384 
1385 	case KMERR_BADSIZE:
1386 		printf("bad free: free size (%u) != alloc size (%u)\n",
1387 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1388 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1389 		break;
1390 
1391 	case KMERR_BADBASE:
1392 		printf("bad free: free address (%p) != alloc address (%p)\n",
1393 		    bufarg, buf);
1394 		break;
1395 	}
1396 
1397 	printf("buffer=%p  bufctl=%p  cache: %s\n",
1398 	    bufarg, (void *)bcp, cparg->cache_name);
1399 
1400 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1401 	    error != KMERR_BADBUFCTL) {
1402 		int d;
1403 		timestruc_t ts;
1404 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1405 
1406 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1407 		printf("previous transaction on buffer %p:\n", buf);
1408 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1409 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1410 		    (void *)sp, cp->cache_name);
1411 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1412 			ulong_t off;
1413 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1414 			printf("%s+%lx\n", sym ? sym : "?", off);
1415 		}
1416 	}
1417 	if (kmem_panic > 0)
1418 		panic("kernel heap corruption detected");
1419 	if (kmem_panic == 0)
1420 		debug_enter(NULL);
1421 	kmem_logging = 1;	/* resume logging */
1422 }
1423 
1424 static kmem_log_header_t *
1425 kmem_log_init(size_t logsize)
1426 {
1427 	kmem_log_header_t *lhp;
1428 	int nchunks = 4 * max_ncpus;
1429 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1430 	int i;
1431 
1432 	/*
1433 	 * Make sure that lhp->lh_cpu[] is nicely aligned
1434 	 * to prevent false sharing of cache lines.
1435 	 */
1436 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1437 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1438 	    NULL, NULL, VM_SLEEP);
1439 	bzero(lhp, lhsize);
1440 
1441 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1442 	lhp->lh_nchunks = nchunks;
1443 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1444 	lhp->lh_base = vmem_alloc(kmem_log_arena,
1445 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
1446 	lhp->lh_free = vmem_alloc(kmem_log_arena,
1447 	    nchunks * sizeof (int), VM_SLEEP);
1448 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1449 
1450 	for (i = 0; i < max_ncpus; i++) {
1451 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1452 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1453 		clhp->clh_chunk = i;
1454 	}
1455 
1456 	for (i = max_ncpus; i < nchunks; i++)
1457 		lhp->lh_free[i] = i;
1458 
1459 	lhp->lh_head = max_ncpus;
1460 	lhp->lh_tail = 0;
1461 
1462 	return (lhp);
1463 }
1464 
1465 static void *
1466 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1467 {
1468 	void *logspace;
1469 	kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1470 
1471 	if (lhp == NULL || kmem_logging == 0 || panicstr)
1472 		return (NULL);
1473 
1474 	mutex_enter(&clhp->clh_lock);
1475 	clhp->clh_hits++;
1476 	if (size > clhp->clh_avail) {
1477 		mutex_enter(&lhp->lh_lock);
1478 		lhp->lh_hits++;
1479 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1480 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1481 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1482 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1483 		clhp->clh_current = lhp->lh_base +
1484 		    clhp->clh_chunk * lhp->lh_chunksize;
1485 		clhp->clh_avail = lhp->lh_chunksize;
1486 		if (size > lhp->lh_chunksize)
1487 			size = lhp->lh_chunksize;
1488 		mutex_exit(&lhp->lh_lock);
1489 	}
1490 	logspace = clhp->clh_current;
1491 	clhp->clh_current += size;
1492 	clhp->clh_avail -= size;
1493 	bcopy(data, logspace, size);
1494 	mutex_exit(&clhp->clh_lock);
1495 	return (logspace);
1496 }
1497 
1498 #define	KMEM_AUDIT(lp, cp, bcp)						\
1499 {									\
1500 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
1501 	_bcp->bc_timestamp = gethrtime();				\
1502 	_bcp->bc_thread = curthread;					\
1503 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
1504 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
1505 }
1506 
1507 static void
1508 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1509 	kmem_slab_t *sp, void *addr)
1510 {
1511 	kmem_bufctl_audit_t bca;
1512 
1513 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
1514 	bca.bc_addr = addr;
1515 	bca.bc_slab = sp;
1516 	bca.bc_cache = cp;
1517 	KMEM_AUDIT(lp, cp, &bca);
1518 }
1519 
1520 /*
1521  * Create a new slab for cache cp.
1522  */
1523 static kmem_slab_t *
1524 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1525 {
1526 	size_t slabsize = cp->cache_slabsize;
1527 	size_t chunksize = cp->cache_chunksize;
1528 	int cache_flags = cp->cache_flags;
1529 	size_t color, chunks;
1530 	char *buf, *slab;
1531 	kmem_slab_t *sp;
1532 	kmem_bufctl_t *bcp;
1533 	vmem_t *vmp = cp->cache_arena;
1534 
1535 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1536 
1537 	color = cp->cache_color + cp->cache_align;
1538 	if (color > cp->cache_maxcolor)
1539 		color = cp->cache_mincolor;
1540 	cp->cache_color = color;
1541 
1542 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1543 
1544 	if (slab == NULL)
1545 		goto vmem_alloc_failure;
1546 
1547 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1548 
1549 	/*
1550 	 * Reverify what was already checked in kmem_cache_set_move(), since the
1551 	 * consolidator depends (for correctness) on slabs being initialized
1552 	 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1553 	 * clients to distinguish uninitialized memory from known objects).
1554 	 */
1555 	ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1556 	if (!(cp->cache_cflags & KMC_NOTOUCH))
1557 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1558 
1559 	if (cache_flags & KMF_HASH) {
1560 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1561 			goto slab_alloc_failure;
1562 		chunks = (slabsize - color) / chunksize;
1563 	} else {
1564 		sp = KMEM_SLAB(cp, slab);
1565 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1566 	}
1567 
1568 	sp->slab_cache	= cp;
1569 	sp->slab_head	= NULL;
1570 	sp->slab_refcnt	= 0;
1571 	sp->slab_base	= buf = slab + color;
1572 	sp->slab_chunks	= chunks;
1573 	sp->slab_stuck_offset = (uint32_t)-1;
1574 	sp->slab_later_count = 0;
1575 	sp->slab_flags = 0;
1576 
1577 	ASSERT(chunks > 0);
1578 	while (chunks-- != 0) {
1579 		if (cache_flags & KMF_HASH) {
1580 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1581 			if (bcp == NULL)
1582 				goto bufctl_alloc_failure;
1583 			if (cache_flags & KMF_AUDIT) {
1584 				kmem_bufctl_audit_t *bcap =
1585 				    (kmem_bufctl_audit_t *)bcp;
1586 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
1587 				bcap->bc_cache = cp;
1588 			}
1589 			bcp->bc_addr = buf;
1590 			bcp->bc_slab = sp;
1591 		} else {
1592 			bcp = KMEM_BUFCTL(cp, buf);
1593 		}
1594 		if (cache_flags & KMF_BUFTAG) {
1595 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1596 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
1597 			btp->bt_bufctl = bcp;
1598 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1599 			if (cache_flags & KMF_DEADBEEF) {
1600 				copy_pattern(KMEM_FREE_PATTERN, buf,
1601 				    cp->cache_verify);
1602 			}
1603 		}
1604 		bcp->bc_next = sp->slab_head;
1605 		sp->slab_head = bcp;
1606 		buf += chunksize;
1607 	}
1608 
1609 	kmem_log_event(kmem_slab_log, cp, sp, slab);
1610 
1611 	return (sp);
1612 
1613 bufctl_alloc_failure:
1614 
1615 	while ((bcp = sp->slab_head) != NULL) {
1616 		sp->slab_head = bcp->bc_next;
1617 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
1618 	}
1619 	kmem_cache_free(kmem_slab_cache, sp);
1620 
1621 slab_alloc_failure:
1622 
1623 	vmem_free(vmp, slab, slabsize);
1624 
1625 vmem_alloc_failure:
1626 
1627 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1628 	atomic_add_64(&cp->cache_alloc_fail, 1);
1629 
1630 	return (NULL);
1631 }
1632 
1633 /*
1634  * Destroy a slab.
1635  */
1636 static void
1637 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1638 {
1639 	vmem_t *vmp = cp->cache_arena;
1640 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1641 
1642 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1643 	ASSERT(sp->slab_refcnt == 0);
1644 
1645 	if (cp->cache_flags & KMF_HASH) {
1646 		kmem_bufctl_t *bcp;
1647 		while ((bcp = sp->slab_head) != NULL) {
1648 			sp->slab_head = bcp->bc_next;
1649 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
1650 		}
1651 		kmem_cache_free(kmem_slab_cache, sp);
1652 	}
1653 	vmem_free(vmp, slab, cp->cache_slabsize);
1654 }
1655 
1656 static void *
1657 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1658 {
1659 	kmem_bufctl_t *bcp, **hash_bucket;
1660 	void *buf;
1661 	boolean_t new_slab = (sp->slab_refcnt == 0);
1662 
1663 	ASSERT(MUTEX_HELD(&cp->cache_lock));
1664 	/*
1665 	 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1666 	 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1667 	 * slab is newly created.
1668 	 */
1669 	ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1670 	    (sp == avl_first(&cp->cache_partial_slabs))));
1671 	ASSERT(sp->slab_cache == cp);
1672 
1673 	cp->cache_slab_alloc++;
1674 	cp->cache_bufslab--;
1675 	sp->slab_refcnt++;
1676 
1677 	bcp = sp->slab_head;
1678 	sp->slab_head = bcp->bc_next;
1679 
1680 	if (cp->cache_flags & KMF_HASH) {
1681 		/*
1682 		 * Add buffer to allocated-address hash table.
1683 		 */
1684 		buf = bcp->bc_addr;
1685 		hash_bucket = KMEM_HASH(cp, buf);
1686 		bcp->bc_next = *hash_bucket;
1687 		*hash_bucket = bcp;
1688 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1689 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1690 		}
1691 	} else {
1692 		buf = KMEM_BUF(cp, bcp);
1693 	}
1694 
1695 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1696 
1697 	if (sp->slab_head == NULL) {
1698 		ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1699 		if (new_slab) {
1700 			ASSERT(sp->slab_chunks == 1);
1701 		} else {
1702 			ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1703 			avl_remove(&cp->cache_partial_slabs, sp);
1704 			sp->slab_later_count = 0; /* clear history */
1705 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1706 			sp->slab_stuck_offset = (uint32_t)-1;
1707 		}
1708 		list_insert_head(&cp->cache_complete_slabs, sp);
1709 		cp->cache_complete_slab_count++;
1710 		return (buf);
1711 	}
1712 
1713 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1714 	/*
1715 	 * Peek to see if the magazine layer is enabled before
1716 	 * we prefill.  We're not holding the cpu cache lock,
1717 	 * so the peek could be wrong, but there's no harm in it.
1718 	 */
1719 	if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1720 	    (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1721 		kmem_slab_prefill(cp, sp);
1722 		return (buf);
1723 	}
1724 
1725 	if (new_slab) {
1726 		avl_add(&cp->cache_partial_slabs, sp);
1727 		return (buf);
1728 	}
1729 
1730 	/*
1731 	 * The slab is now more allocated than it was, so the
1732 	 * order remains unchanged.
1733 	 */
1734 	ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1735 	return (buf);
1736 }
1737 
1738 /*
1739  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1740  */
1741 static void *
1742 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1743 {
1744 	kmem_slab_t *sp;
1745 	void *buf;
1746 	boolean_t test_destructor;
1747 
1748 	mutex_enter(&cp->cache_lock);
1749 	test_destructor = (cp->cache_slab_alloc == 0);
1750 	sp = avl_first(&cp->cache_partial_slabs);
1751 	if (sp == NULL) {
1752 		ASSERT(cp->cache_bufslab == 0);
1753 
1754 		/*
1755 		 * The freelist is empty.  Create a new slab.
1756 		 */
1757 		mutex_exit(&cp->cache_lock);
1758 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1759 			return (NULL);
1760 		}
1761 		mutex_enter(&cp->cache_lock);
1762 		cp->cache_slab_create++;
1763 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1764 			cp->cache_bufmax = cp->cache_buftotal;
1765 		cp->cache_bufslab += sp->slab_chunks;
1766 	}
1767 
1768 	buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1769 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1770 	    (cp->cache_complete_slab_count +
1771 	    avl_numnodes(&cp->cache_partial_slabs) +
1772 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1773 	mutex_exit(&cp->cache_lock);
1774 
1775 	if (test_destructor && cp->cache_destructor != NULL) {
1776 		/*
1777 		 * On the first kmem_slab_alloc(), assert that it is valid to
1778 		 * call the destructor on a newly constructed object without any
1779 		 * client involvement.
1780 		 */
1781 		if ((cp->cache_constructor == NULL) ||
1782 		    cp->cache_constructor(buf, cp->cache_private,
1783 		    kmflag) == 0) {
1784 			cp->cache_destructor(buf, cp->cache_private);
1785 		}
1786 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1787 		    cp->cache_bufsize);
1788 		if (cp->cache_flags & KMF_DEADBEEF) {
1789 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1790 		}
1791 	}
1792 
1793 	return (buf);
1794 }
1795 
1796 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1797 
1798 /*
1799  * Free a raw (unconstructed) buffer to cp's slab layer.
1800  */
1801 static void
1802 kmem_slab_free(kmem_cache_t *cp, void *buf)
1803 {
1804 	kmem_slab_t *sp;
1805 	kmem_bufctl_t *bcp, **prev_bcpp;
1806 
1807 	ASSERT(buf != NULL);
1808 
1809 	mutex_enter(&cp->cache_lock);
1810 	cp->cache_slab_free++;
1811 
1812 	if (cp->cache_flags & KMF_HASH) {
1813 		/*
1814 		 * Look up buffer in allocated-address hash table.
1815 		 */
1816 		prev_bcpp = KMEM_HASH(cp, buf);
1817 		while ((bcp = *prev_bcpp) != NULL) {
1818 			if (bcp->bc_addr == buf) {
1819 				*prev_bcpp = bcp->bc_next;
1820 				sp = bcp->bc_slab;
1821 				break;
1822 			}
1823 			cp->cache_lookup_depth++;
1824 			prev_bcpp = &bcp->bc_next;
1825 		}
1826 	} else {
1827 		bcp = KMEM_BUFCTL(cp, buf);
1828 		sp = KMEM_SLAB(cp, buf);
1829 	}
1830 
1831 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1832 		mutex_exit(&cp->cache_lock);
1833 		kmem_error(KMERR_BADADDR, cp, buf);
1834 		return;
1835 	}
1836 
1837 	if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1838 		/*
1839 		 * If this is the buffer that prevented the consolidator from
1840 		 * clearing the slab, we can reset the slab flags now that the
1841 		 * buffer is freed. (It makes sense to do this in
1842 		 * kmem_cache_free(), where the client gives up ownership of the
1843 		 * buffer, but on the hot path the test is too expensive.)
1844 		 */
1845 		kmem_slab_move_yes(cp, sp, buf);
1846 	}
1847 
1848 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1849 		if (cp->cache_flags & KMF_CONTENTS)
1850 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
1851 			    kmem_log_enter(kmem_content_log, buf,
1852 			    cp->cache_contents);
1853 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1854 	}
1855 
1856 	bcp->bc_next = sp->slab_head;
1857 	sp->slab_head = bcp;
1858 
1859 	cp->cache_bufslab++;
1860 	ASSERT(sp->slab_refcnt >= 1);
1861 
1862 	if (--sp->slab_refcnt == 0) {
1863 		/*
1864 		 * There are no outstanding allocations from this slab,
1865 		 * so we can reclaim the memory.
1866 		 */
1867 		if (sp->slab_chunks == 1) {
1868 			list_remove(&cp->cache_complete_slabs, sp);
1869 			cp->cache_complete_slab_count--;
1870 		} else {
1871 			avl_remove(&cp->cache_partial_slabs, sp);
1872 		}
1873 
1874 		cp->cache_buftotal -= sp->slab_chunks;
1875 		cp->cache_bufslab -= sp->slab_chunks;
1876 		/*
1877 		 * Defer releasing the slab to the virtual memory subsystem
1878 		 * while there is a pending move callback, since we guarantee
1879 		 * that buffers passed to the move callback have only been
1880 		 * touched by kmem or by the client itself. Since the memory
1881 		 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1882 		 * set at least one of the two lowest order bits, the client can
1883 		 * test those bits in the move callback to determine whether or
1884 		 * not it knows about the buffer (assuming that the client also
1885 		 * sets one of those low order bits whenever it frees a buffer).
1886 		 */
1887 		if (cp->cache_defrag == NULL ||
1888 		    (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1889 		    !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1890 			cp->cache_slab_destroy++;
1891 			mutex_exit(&cp->cache_lock);
1892 			kmem_slab_destroy(cp, sp);
1893 		} else {
1894 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1895 			/*
1896 			 * Slabs are inserted at both ends of the deadlist to
1897 			 * distinguish between slabs freed while move callbacks
1898 			 * are pending (list head) and a slab freed while the
1899 			 * lock is dropped in kmem_move_buffers() (list tail) so
1900 			 * that in both cases slab_destroy() is called from the
1901 			 * right context.
1902 			 */
1903 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1904 				list_insert_tail(deadlist, sp);
1905 			} else {
1906 				list_insert_head(deadlist, sp);
1907 			}
1908 			cp->cache_defrag->kmd_deadcount++;
1909 			mutex_exit(&cp->cache_lock);
1910 		}
1911 		return;
1912 	}
1913 
1914 	if (bcp->bc_next == NULL) {
1915 		/* Transition the slab from completely allocated to partial. */
1916 		ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1917 		ASSERT(sp->slab_chunks > 1);
1918 		list_remove(&cp->cache_complete_slabs, sp);
1919 		cp->cache_complete_slab_count--;
1920 		avl_add(&cp->cache_partial_slabs, sp);
1921 	} else {
1922 #ifdef	DEBUG
1923 		if (avl_update_gt(&cp->cache_partial_slabs, sp)) {
1924 			KMEM_STAT_ADD(kmem_move_stats.kms_avl_update);
1925 		} else {
1926 			KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate);
1927 		}
1928 #else
1929 		(void) avl_update_gt(&cp->cache_partial_slabs, sp);
1930 #endif
1931 	}
1932 
1933 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1934 	    (cp->cache_complete_slab_count +
1935 	    avl_numnodes(&cp->cache_partial_slabs) +
1936 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1937 	mutex_exit(&cp->cache_lock);
1938 }
1939 
1940 /*
1941  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1942  */
1943 static int
1944 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1945     caddr_t caller)
1946 {
1947 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1948 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1949 	uint32_t mtbf;
1950 
1951 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1952 		kmem_error(KMERR_BADBUFTAG, cp, buf);
1953 		return (-1);
1954 	}
1955 
1956 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1957 
1958 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1959 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1960 		return (-1);
1961 	}
1962 
1963 	if (cp->cache_flags & KMF_DEADBEEF) {
1964 		if (!construct && (cp->cache_flags & KMF_LITE)) {
1965 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1966 				kmem_error(KMERR_MODIFIED, cp, buf);
1967 				return (-1);
1968 			}
1969 			if (cp->cache_constructor != NULL)
1970 				*(uint64_t *)buf = btp->bt_redzone;
1971 			else
1972 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1973 		} else {
1974 			construct = 1;
1975 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1976 			    KMEM_UNINITIALIZED_PATTERN, buf,
1977 			    cp->cache_verify)) {
1978 				kmem_error(KMERR_MODIFIED, cp, buf);
1979 				return (-1);
1980 			}
1981 		}
1982 	}
1983 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
1984 
1985 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1986 	    gethrtime() % mtbf == 0 &&
1987 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1988 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1989 		if (!construct && cp->cache_destructor != NULL)
1990 			cp->cache_destructor(buf, cp->cache_private);
1991 	} else {
1992 		mtbf = 0;
1993 	}
1994 
1995 	if (mtbf || (construct && cp->cache_constructor != NULL &&
1996 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1997 		atomic_add_64(&cp->cache_alloc_fail, 1);
1998 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1999 		if (cp->cache_flags & KMF_DEADBEEF)
2000 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2001 		kmem_slab_free(cp, buf);
2002 		return (1);
2003 	}
2004 
2005 	if (cp->cache_flags & KMF_AUDIT) {
2006 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2007 	}
2008 
2009 	if ((cp->cache_flags & KMF_LITE) &&
2010 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2011 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2012 	}
2013 
2014 	return (0);
2015 }
2016 
2017 static int
2018 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
2019 {
2020 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2021 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
2022 	kmem_slab_t *sp;
2023 
2024 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
2025 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
2026 			kmem_error(KMERR_DUPFREE, cp, buf);
2027 			return (-1);
2028 		}
2029 		sp = kmem_findslab(cp, buf);
2030 		if (sp == NULL || sp->slab_cache != cp)
2031 			kmem_error(KMERR_BADADDR, cp, buf);
2032 		else
2033 			kmem_error(KMERR_REDZONE, cp, buf);
2034 		return (-1);
2035 	}
2036 
2037 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
2038 
2039 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
2040 		kmem_error(KMERR_BADBUFCTL, cp, buf);
2041 		return (-1);
2042 	}
2043 
2044 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
2045 		kmem_error(KMERR_REDZONE, cp, buf);
2046 		return (-1);
2047 	}
2048 
2049 	if (cp->cache_flags & KMF_AUDIT) {
2050 		if (cp->cache_flags & KMF_CONTENTS)
2051 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
2052 			    buf, cp->cache_contents);
2053 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2054 	}
2055 
2056 	if ((cp->cache_flags & KMF_LITE) &&
2057 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2058 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2059 	}
2060 
2061 	if (cp->cache_flags & KMF_DEADBEEF) {
2062 		if (cp->cache_flags & KMF_LITE)
2063 			btp->bt_redzone = *(uint64_t *)buf;
2064 		else if (cp->cache_destructor != NULL)
2065 			cp->cache_destructor(buf, cp->cache_private);
2066 
2067 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2068 	}
2069 
2070 	return (0);
2071 }
2072 
2073 /*
2074  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2075  */
2076 static void
2077 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2078 {
2079 	int round;
2080 
2081 	ASSERT(!list_link_active(&cp->cache_link) ||
2082 	    taskq_member(kmem_taskq, curthread));
2083 
2084 	for (round = 0; round < nrounds; round++) {
2085 		void *buf = mp->mag_round[round];
2086 
2087 		if (cp->cache_flags & KMF_DEADBEEF) {
2088 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
2089 			    cp->cache_verify) != NULL) {
2090 				kmem_error(KMERR_MODIFIED, cp, buf);
2091 				continue;
2092 			}
2093 			if ((cp->cache_flags & KMF_LITE) &&
2094 			    cp->cache_destructor != NULL) {
2095 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2096 				*(uint64_t *)buf = btp->bt_redzone;
2097 				cp->cache_destructor(buf, cp->cache_private);
2098 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
2099 			}
2100 		} else if (cp->cache_destructor != NULL) {
2101 			cp->cache_destructor(buf, cp->cache_private);
2102 		}
2103 
2104 		kmem_slab_free(cp, buf);
2105 	}
2106 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2107 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2108 }
2109 
2110 /*
2111  * Allocate a magazine from the depot.
2112  */
2113 static kmem_magazine_t *
2114 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2115 {
2116 	kmem_magazine_t *mp;
2117 
2118 	/*
2119 	 * If we can't get the depot lock without contention,
2120 	 * update our contention count.  We use the depot
2121 	 * contention rate to determine whether we need to
2122 	 * increase the magazine size for better scalability.
2123 	 */
2124 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
2125 		mutex_enter(&cp->cache_depot_lock);
2126 		cp->cache_depot_contention++;
2127 	}
2128 
2129 	if ((mp = mlp->ml_list) != NULL) {
2130 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2131 		mlp->ml_list = mp->mag_next;
2132 		if (--mlp->ml_total < mlp->ml_min)
2133 			mlp->ml_min = mlp->ml_total;
2134 		mlp->ml_alloc++;
2135 	}
2136 
2137 	mutex_exit(&cp->cache_depot_lock);
2138 
2139 	return (mp);
2140 }
2141 
2142 /*
2143  * Free a magazine to the depot.
2144  */
2145 static void
2146 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2147 {
2148 	mutex_enter(&cp->cache_depot_lock);
2149 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2150 	mp->mag_next = mlp->ml_list;
2151 	mlp->ml_list = mp;
2152 	mlp->ml_total++;
2153 	mutex_exit(&cp->cache_depot_lock);
2154 }
2155 
2156 /*
2157  * Update the working set statistics for cp's depot.
2158  */
2159 static void
2160 kmem_depot_ws_update(kmem_cache_t *cp)
2161 {
2162 	mutex_enter(&cp->cache_depot_lock);
2163 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2164 	cp->cache_full.ml_min = cp->cache_full.ml_total;
2165 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2166 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2167 	mutex_exit(&cp->cache_depot_lock);
2168 }
2169 
2170 /*
2171  * Reap all magazines that have fallen out of the depot's working set.
2172  */
2173 static void
2174 kmem_depot_ws_reap(kmem_cache_t *cp)
2175 {
2176 	long reap;
2177 	kmem_magazine_t *mp;
2178 
2179 	ASSERT(!list_link_active(&cp->cache_link) ||
2180 	    taskq_member(kmem_taskq, curthread));
2181 
2182 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2183 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL)
2184 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2185 
2186 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2187 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL)
2188 		kmem_magazine_destroy(cp, mp, 0);
2189 }
2190 
2191 static void
2192 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2193 {
2194 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2195 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2196 	ASSERT(ccp->cc_magsize > 0);
2197 
2198 	ccp->cc_ploaded = ccp->cc_loaded;
2199 	ccp->cc_prounds = ccp->cc_rounds;
2200 	ccp->cc_loaded = mp;
2201 	ccp->cc_rounds = rounds;
2202 }
2203 
2204 /*
2205  * Intercept kmem alloc/free calls during crash dump in order to avoid
2206  * changing kmem state while memory is being saved to the dump device.
2207  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2208  * there are no locks because only one CPU calls kmem during a crash
2209  * dump. To enable this feature, first create the associated vmem
2210  * arena with VMC_DUMPSAFE.
2211  */
2212 static void *kmem_dump_start;	/* start of pre-reserved heap */
2213 static void *kmem_dump_end;	/* end of heap area */
2214 static void *kmem_dump_curr;	/* current free heap pointer */
2215 static size_t kmem_dump_size;	/* size of heap area */
2216 
2217 /* append to each buf created in the pre-reserved heap */
2218 typedef struct kmem_dumpctl {
2219 	void	*kdc_next;	/* cache dump free list linkage */
2220 } kmem_dumpctl_t;
2221 
2222 #define	KMEM_DUMPCTL(cp, buf)	\
2223 	((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2224 	    sizeof (void *)))
2225 
2226 /* Keep some simple stats. */
2227 #define	KMEM_DUMP_LOGS	(100)
2228 
2229 typedef struct kmem_dump_log {
2230 	kmem_cache_t	*kdl_cache;
2231 	uint_t		kdl_allocs;		/* # of dump allocations */
2232 	uint_t		kdl_frees;		/* # of dump frees */
2233 	uint_t		kdl_alloc_fails;	/* # of allocation failures */
2234 	uint_t		kdl_free_nondump;	/* # of non-dump frees */
2235 	uint_t		kdl_unsafe;		/* cache was used, but unsafe */
2236 } kmem_dump_log_t;
2237 
2238 static kmem_dump_log_t *kmem_dump_log;
2239 static int kmem_dump_log_idx;
2240 
2241 #define	KDI_LOG(cp, stat) {						\
2242 	kmem_dump_log_t *kdl;						\
2243 	if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) {	\
2244 		kdl->stat++;						\
2245 	} else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) {		\
2246 		kdl = &kmem_dump_log[kmem_dump_log_idx++];		\
2247 		kdl->stat++;						\
2248 		kdl->kdl_cache = (cp);					\
2249 		(cp)->cache_dumplog = kdl;				\
2250 	}								\
2251 }
2252 
2253 /* set non zero for full report */
2254 uint_t kmem_dump_verbose = 0;
2255 
2256 /* stats for overize heap */
2257 uint_t kmem_dump_oversize_allocs = 0;
2258 uint_t kmem_dump_oversize_max = 0;
2259 
2260 static void
2261 kmem_dumppr(char **pp, char *e, const char *format, ...)
2262 {
2263 	char *p = *pp;
2264 
2265 	if (p < e) {
2266 		int n;
2267 		va_list ap;
2268 
2269 		va_start(ap, format);
2270 		n = vsnprintf(p, e - p, format, ap);
2271 		va_end(ap);
2272 		*pp = p + n;
2273 	}
2274 }
2275 
2276 /*
2277  * Called when dumpadm(1M) configures dump parameters.
2278  */
2279 void
2280 kmem_dump_init(size_t size)
2281 {
2282 	if (kmem_dump_start != NULL)
2283 		kmem_free(kmem_dump_start, kmem_dump_size);
2284 
2285 	if (kmem_dump_log == NULL)
2286 		kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2287 		    sizeof (kmem_dump_log_t), KM_SLEEP);
2288 
2289 	kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2290 
2291 	if (kmem_dump_start != NULL) {
2292 		kmem_dump_size = size;
2293 		kmem_dump_curr = kmem_dump_start;
2294 		kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2295 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2296 	} else {
2297 		kmem_dump_size = 0;
2298 		kmem_dump_curr = NULL;
2299 		kmem_dump_end = NULL;
2300 	}
2301 }
2302 
2303 /*
2304  * Set flag for each kmem_cache_t if is safe to use alternate dump
2305  * memory. Called just before panic crash dump starts. Set the flag
2306  * for the calling CPU.
2307  */
2308 void
2309 kmem_dump_begin(void)
2310 {
2311 	ASSERT(panicstr != NULL);
2312 	if (kmem_dump_start != NULL) {
2313 		kmem_cache_t *cp;
2314 
2315 		for (cp = list_head(&kmem_caches); cp != NULL;
2316 		    cp = list_next(&kmem_caches, cp)) {
2317 			kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2318 
2319 			if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2320 				cp->cache_flags |= KMF_DUMPDIVERT;
2321 				ccp->cc_flags |= KMF_DUMPDIVERT;
2322 				ccp->cc_dump_rounds = ccp->cc_rounds;
2323 				ccp->cc_dump_prounds = ccp->cc_prounds;
2324 				ccp->cc_rounds = ccp->cc_prounds = -1;
2325 			} else {
2326 				cp->cache_flags |= KMF_DUMPUNSAFE;
2327 				ccp->cc_flags |= KMF_DUMPUNSAFE;
2328 			}
2329 		}
2330 	}
2331 }
2332 
2333 /*
2334  * finished dump intercept
2335  * print any warnings on the console
2336  * return verbose information to dumpsys() in the given buffer
2337  */
2338 size_t
2339 kmem_dump_finish(char *buf, size_t size)
2340 {
2341 	int kdi_idx;
2342 	int kdi_end = kmem_dump_log_idx;
2343 	int percent = 0;
2344 	int header = 0;
2345 	int warn = 0;
2346 	size_t used;
2347 	kmem_cache_t *cp;
2348 	kmem_dump_log_t *kdl;
2349 	char *e = buf + size;
2350 	char *p = buf;
2351 
2352 	if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2353 		return (0);
2354 
2355 	used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2356 	percent = (used * 100) / kmem_dump_size;
2357 
2358 	kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2359 	kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2360 	kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2361 	kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2362 	    kmem_dump_oversize_allocs);
2363 	kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2364 	    kmem_dump_oversize_max);
2365 
2366 	for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2367 		kdl = &kmem_dump_log[kdi_idx];
2368 		cp = kdl->kdl_cache;
2369 		if (cp == NULL)
2370 			break;
2371 		if (kdl->kdl_alloc_fails)
2372 			++warn;
2373 		if (header == 0) {
2374 			kmem_dumppr(&p, e,
2375 			    "Cache Name,Allocs,Frees,Alloc Fails,"
2376 			    "Nondump Frees,Unsafe Allocs/Frees\n");
2377 			header = 1;
2378 		}
2379 		kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2380 		    cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2381 		    kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2382 		    kdl->kdl_unsafe);
2383 	}
2384 
2385 	/* return buffer size used */
2386 	if (p < e)
2387 		bzero(p, e - p);
2388 	return (p - buf);
2389 }
2390 
2391 /*
2392  * Allocate a constructed object from alternate dump memory.
2393  */
2394 void *
2395 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2396 {
2397 	void *buf;
2398 	void *curr;
2399 	char *bufend;
2400 
2401 	/* return a constructed object */
2402 	if ((buf = cp->cache_dumpfreelist) != NULL) {
2403 		cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2404 		KDI_LOG(cp, kdl_allocs);
2405 		return (buf);
2406 	}
2407 
2408 	/* create a new constructed object */
2409 	curr = kmem_dump_curr;
2410 	buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2411 	bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2412 
2413 	/* hat layer objects cannot cross a page boundary */
2414 	if (cp->cache_align < PAGESIZE) {
2415 		char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2416 		if (bufend > page) {
2417 			bufend += page - (char *)buf;
2418 			buf = (void *)page;
2419 		}
2420 	}
2421 
2422 	/* fall back to normal alloc if reserved area is used up */
2423 	if (bufend > (char *)kmem_dump_end) {
2424 		kmem_dump_curr = kmem_dump_end;
2425 		KDI_LOG(cp, kdl_alloc_fails);
2426 		return (NULL);
2427 	}
2428 
2429 	/*
2430 	 * Must advance curr pointer before calling a constructor that
2431 	 * may also allocate memory.
2432 	 */
2433 	kmem_dump_curr = bufend;
2434 
2435 	/* run constructor */
2436 	if (cp->cache_constructor != NULL &&
2437 	    cp->cache_constructor(buf, cp->cache_private, kmflag)
2438 	    != 0) {
2439 #ifdef DEBUG
2440 		printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2441 		    cp->cache_name, (void *)cp);
2442 #endif
2443 		/* reset curr pointer iff no allocs were done */
2444 		if (kmem_dump_curr == bufend)
2445 			kmem_dump_curr = curr;
2446 
2447 		/* fall back to normal alloc if the constructor fails */
2448 		KDI_LOG(cp, kdl_alloc_fails);
2449 		return (NULL);
2450 	}
2451 
2452 	KDI_LOG(cp, kdl_allocs);
2453 	return (buf);
2454 }
2455 
2456 /*
2457  * Free a constructed object in alternate dump memory.
2458  */
2459 int
2460 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2461 {
2462 	/* save constructed buffers for next time */
2463 	if ((char *)buf >= (char *)kmem_dump_start &&
2464 	    (char *)buf < (char *)kmem_dump_end) {
2465 		KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2466 		cp->cache_dumpfreelist = buf;
2467 		KDI_LOG(cp, kdl_frees);
2468 		return (0);
2469 	}
2470 
2471 	/* count all non-dump buf frees */
2472 	KDI_LOG(cp, kdl_free_nondump);
2473 
2474 	/* just drop buffers that were allocated before dump started */
2475 	if (kmem_dump_curr < kmem_dump_end)
2476 		return (0);
2477 
2478 	/* fall back to normal free if reserved area is used up */
2479 	return (1);
2480 }
2481 
2482 /*
2483  * Allocate a constructed object from cache cp.
2484  */
2485 void *
2486 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2487 {
2488 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2489 	kmem_magazine_t *fmp;
2490 	void *buf;
2491 
2492 	mutex_enter(&ccp->cc_lock);
2493 	for (;;) {
2494 		/*
2495 		 * If there's an object available in the current CPU's
2496 		 * loaded magazine, just take it and return.
2497 		 */
2498 		if (ccp->cc_rounds > 0) {
2499 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2500 			ccp->cc_alloc++;
2501 			mutex_exit(&ccp->cc_lock);
2502 			if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2503 				if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2504 					ASSERT(!(ccp->cc_flags &
2505 					    KMF_DUMPDIVERT));
2506 					KDI_LOG(cp, kdl_unsafe);
2507 				}
2508 				if ((ccp->cc_flags & KMF_BUFTAG) &&
2509 				    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2510 				    caller()) != 0) {
2511 					if (kmflag & KM_NOSLEEP)
2512 						return (NULL);
2513 					mutex_enter(&ccp->cc_lock);
2514 					continue;
2515 				}
2516 			}
2517 			return (buf);
2518 		}
2519 
2520 		/*
2521 		 * The loaded magazine is empty.  If the previously loaded
2522 		 * magazine was full, exchange them and try again.
2523 		 */
2524 		if (ccp->cc_prounds > 0) {
2525 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2526 			continue;
2527 		}
2528 
2529 		/*
2530 		 * Return an alternate buffer at dump time to preserve
2531 		 * the heap.
2532 		 */
2533 		if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2534 			if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2535 				ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2536 				/* log it so that we can warn about it */
2537 				KDI_LOG(cp, kdl_unsafe);
2538 			} else {
2539 				if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2540 				    NULL) {
2541 					mutex_exit(&ccp->cc_lock);
2542 					return (buf);
2543 				}
2544 				break;		/* fall back to slab layer */
2545 			}
2546 		}
2547 
2548 		/*
2549 		 * If the magazine layer is disabled, break out now.
2550 		 */
2551 		if (ccp->cc_magsize == 0)
2552 			break;
2553 
2554 		/*
2555 		 * Try to get a full magazine from the depot.
2556 		 */
2557 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
2558 		if (fmp != NULL) {
2559 			if (ccp->cc_ploaded != NULL)
2560 				kmem_depot_free(cp, &cp->cache_empty,
2561 				    ccp->cc_ploaded);
2562 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2563 			continue;
2564 		}
2565 
2566 		/*
2567 		 * There are no full magazines in the depot,
2568 		 * so fall through to the slab layer.
2569 		 */
2570 		break;
2571 	}
2572 	mutex_exit(&ccp->cc_lock);
2573 
2574 	/*
2575 	 * We couldn't allocate a constructed object from the magazine layer,
2576 	 * so get a raw buffer from the slab layer and apply its constructor.
2577 	 */
2578 	buf = kmem_slab_alloc(cp, kmflag);
2579 
2580 	if (buf == NULL)
2581 		return (NULL);
2582 
2583 	if (cp->cache_flags & KMF_BUFTAG) {
2584 		/*
2585 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
2586 		 */
2587 		int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2588 		if (rc != 0) {
2589 			if (kmflag & KM_NOSLEEP)
2590 				return (NULL);
2591 			/*
2592 			 * kmem_cache_alloc_debug() detected corruption
2593 			 * but didn't panic (kmem_panic <= 0). We should not be
2594 			 * here because the constructor failed (indicated by a
2595 			 * return code of 1). Try again.
2596 			 */
2597 			ASSERT(rc == -1);
2598 			return (kmem_cache_alloc(cp, kmflag));
2599 		}
2600 		return (buf);
2601 	}
2602 
2603 	if (cp->cache_constructor != NULL &&
2604 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2605 		atomic_add_64(&cp->cache_alloc_fail, 1);
2606 		kmem_slab_free(cp, buf);
2607 		return (NULL);
2608 	}
2609 
2610 	return (buf);
2611 }
2612 
2613 /*
2614  * The freed argument tells whether or not kmem_cache_free_debug() has already
2615  * been called so that we can avoid the duplicate free error. For example, a
2616  * buffer on a magazine has already been freed by the client but is still
2617  * constructed.
2618  */
2619 static void
2620 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2621 {
2622 	if (!freed && (cp->cache_flags & KMF_BUFTAG))
2623 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2624 			return;
2625 
2626 	/*
2627 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2628 	 * kmem_cache_free_debug() will have already applied the destructor.
2629 	 */
2630 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2631 	    cp->cache_destructor != NULL) {
2632 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
2633 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2634 			*(uint64_t *)buf = btp->bt_redzone;
2635 			cp->cache_destructor(buf, cp->cache_private);
2636 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
2637 		} else {
2638 			cp->cache_destructor(buf, cp->cache_private);
2639 		}
2640 	}
2641 
2642 	kmem_slab_free(cp, buf);
2643 }
2644 
2645 /*
2646  * Used when there's no room to free a buffer to the per-CPU cache.
2647  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2648  * caller should try freeing to the per-CPU cache again.
2649  * Note that we don't directly install the magazine in the cpu cache,
2650  * since its state may have changed wildly while the lock was dropped.
2651  */
2652 static int
2653 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2654 {
2655 	kmem_magazine_t *emp;
2656 	kmem_magtype_t *mtp;
2657 
2658 	ASSERT(MUTEX_HELD(&ccp->cc_lock));
2659 	ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2660 	    ((uint_t)ccp->cc_rounds == -1)) &&
2661 	    ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2662 	    ((uint_t)ccp->cc_prounds == -1)));
2663 
2664 	emp = kmem_depot_alloc(cp, &cp->cache_empty);
2665 	if (emp != NULL) {
2666 		if (ccp->cc_ploaded != NULL)
2667 			kmem_depot_free(cp, &cp->cache_full,
2668 			    ccp->cc_ploaded);
2669 		kmem_cpu_reload(ccp, emp, 0);
2670 		return (1);
2671 	}
2672 	/*
2673 	 * There are no empty magazines in the depot,
2674 	 * so try to allocate a new one.  We must drop all locks
2675 	 * across kmem_cache_alloc() because lower layers may
2676 	 * attempt to allocate from this cache.
2677 	 */
2678 	mtp = cp->cache_magtype;
2679 	mutex_exit(&ccp->cc_lock);
2680 	emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2681 	mutex_enter(&ccp->cc_lock);
2682 
2683 	if (emp != NULL) {
2684 		/*
2685 		 * We successfully allocated an empty magazine.
2686 		 * However, we had to drop ccp->cc_lock to do it,
2687 		 * so the cache's magazine size may have changed.
2688 		 * If so, free the magazine and try again.
2689 		 */
2690 		if (ccp->cc_magsize != mtp->mt_magsize) {
2691 			mutex_exit(&ccp->cc_lock);
2692 			kmem_cache_free(mtp->mt_cache, emp);
2693 			mutex_enter(&ccp->cc_lock);
2694 			return (1);
2695 		}
2696 
2697 		/*
2698 		 * We got a magazine of the right size.  Add it to
2699 		 * the depot and try the whole dance again.
2700 		 */
2701 		kmem_depot_free(cp, &cp->cache_empty, emp);
2702 		return (1);
2703 	}
2704 
2705 	/*
2706 	 * We couldn't allocate an empty magazine,
2707 	 * so fall through to the slab layer.
2708 	 */
2709 	return (0);
2710 }
2711 
2712 /*
2713  * Free a constructed object to cache cp.
2714  */
2715 void
2716 kmem_cache_free(kmem_cache_t *cp, void *buf)
2717 {
2718 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2719 
2720 	/*
2721 	 * The client must not free either of the buffers passed to the move
2722 	 * callback function.
2723 	 */
2724 	ASSERT(cp->cache_defrag == NULL ||
2725 	    cp->cache_defrag->kmd_thread != curthread ||
2726 	    (buf != cp->cache_defrag->kmd_from_buf &&
2727 	    buf != cp->cache_defrag->kmd_to_buf));
2728 
2729 	if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2730 		if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2731 			ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2732 			/* log it so that we can warn about it */
2733 			KDI_LOG(cp, kdl_unsafe);
2734 		} else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2735 			return;
2736 		}
2737 		if (ccp->cc_flags & KMF_BUFTAG) {
2738 			if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2739 				return;
2740 		}
2741 	}
2742 
2743 	mutex_enter(&ccp->cc_lock);
2744 	/*
2745 	 * Any changes to this logic should be reflected in kmem_slab_prefill()
2746 	 */
2747 	for (;;) {
2748 		/*
2749 		 * If there's a slot available in the current CPU's
2750 		 * loaded magazine, just put the object there and return.
2751 		 */
2752 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2753 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2754 			ccp->cc_free++;
2755 			mutex_exit(&ccp->cc_lock);
2756 			return;
2757 		}
2758 
2759 		/*
2760 		 * The loaded magazine is full.  If the previously loaded
2761 		 * magazine was empty, exchange them and try again.
2762 		 */
2763 		if (ccp->cc_prounds == 0) {
2764 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2765 			continue;
2766 		}
2767 
2768 		/*
2769 		 * If the magazine layer is disabled, break out now.
2770 		 */
2771 		if (ccp->cc_magsize == 0)
2772 			break;
2773 
2774 		if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2775 			/*
2776 			 * We couldn't free our constructed object to the
2777 			 * magazine layer, so apply its destructor and free it
2778 			 * to the slab layer.
2779 			 */
2780 			break;
2781 		}
2782 	}
2783 	mutex_exit(&ccp->cc_lock);
2784 	kmem_slab_free_constructed(cp, buf, B_TRUE);
2785 }
2786 
2787 static void
2788 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2789 {
2790 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2791 	int cache_flags = cp->cache_flags;
2792 
2793 	kmem_bufctl_t *next, *head;
2794 	size_t nbufs;
2795 
2796 	/*
2797 	 * Completely allocate the newly created slab and put the pre-allocated
2798 	 * buffers in magazines. Any of the buffers that cannot be put in
2799 	 * magazines must be returned to the slab.
2800 	 */
2801 	ASSERT(MUTEX_HELD(&cp->cache_lock));
2802 	ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2803 	ASSERT(cp->cache_constructor == NULL);
2804 	ASSERT(sp->slab_cache == cp);
2805 	ASSERT(sp->slab_refcnt == 1);
2806 	ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2807 	ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2808 
2809 	head = sp->slab_head;
2810 	nbufs = (sp->slab_chunks - sp->slab_refcnt);
2811 	sp->slab_head = NULL;
2812 	sp->slab_refcnt += nbufs;
2813 	cp->cache_bufslab -= nbufs;
2814 	cp->cache_slab_alloc += nbufs;
2815 	list_insert_head(&cp->cache_complete_slabs, sp);
2816 	cp->cache_complete_slab_count++;
2817 	mutex_exit(&cp->cache_lock);
2818 	mutex_enter(&ccp->cc_lock);
2819 
2820 	while (head != NULL) {
2821 		void *buf = KMEM_BUF(cp, head);
2822 		/*
2823 		 * If there's a slot available in the current CPU's
2824 		 * loaded magazine, just put the object there and
2825 		 * continue.
2826 		 */
2827 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2828 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2829 			    buf;
2830 			ccp->cc_free++;
2831 			nbufs--;
2832 			head = head->bc_next;
2833 			continue;
2834 		}
2835 
2836 		/*
2837 		 * The loaded magazine is full.  If the previously
2838 		 * loaded magazine was empty, exchange them and try
2839 		 * again.
2840 		 */
2841 		if (ccp->cc_prounds == 0) {
2842 			kmem_cpu_reload(ccp, ccp->cc_ploaded,
2843 			    ccp->cc_prounds);
2844 			continue;
2845 		}
2846 
2847 		/*
2848 		 * If the magazine layer is disabled, break out now.
2849 		 */
2850 
2851 		if (ccp->cc_magsize == 0) {
2852 			break;
2853 		}
2854 
2855 		if (!kmem_cpucache_magazine_alloc(ccp, cp))
2856 			break;
2857 	}
2858 	mutex_exit(&ccp->cc_lock);
2859 	if (nbufs != 0) {
2860 		ASSERT(head != NULL);
2861 
2862 		/*
2863 		 * If there was a failure, return remaining objects to
2864 		 * the slab
2865 		 */
2866 		while (head != NULL) {
2867 			ASSERT(nbufs != 0);
2868 			next = head->bc_next;
2869 			head->bc_next = NULL;
2870 			kmem_slab_free(cp, KMEM_BUF(cp, head));
2871 			head = next;
2872 			nbufs--;
2873 		}
2874 	}
2875 	ASSERT(head == NULL);
2876 	ASSERT(nbufs == 0);
2877 	mutex_enter(&cp->cache_lock);
2878 }
2879 
2880 void *
2881 kmem_zalloc(size_t size, int kmflag)
2882 {
2883 	size_t index;
2884 	void *buf;
2885 
2886 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2887 		kmem_cache_t *cp = kmem_alloc_table[index];
2888 		buf = kmem_cache_alloc(cp, kmflag);
2889 		if (buf != NULL) {
2890 			if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2891 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2892 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2893 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2894 
2895 				if (cp->cache_flags & KMF_LITE) {
2896 					KMEM_BUFTAG_LITE_ENTER(btp,
2897 					    kmem_lite_count, caller());
2898 				}
2899 			}
2900 			bzero(buf, size);
2901 		}
2902 	} else {
2903 		buf = kmem_alloc(size, kmflag);
2904 		if (buf != NULL)
2905 			bzero(buf, size);
2906 	}
2907 	return (buf);
2908 }
2909 
2910 void *
2911 kmem_alloc(size_t size, int kmflag)
2912 {
2913 	size_t index;
2914 	kmem_cache_t *cp;
2915 	void *buf;
2916 
2917 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2918 		cp = kmem_alloc_table[index];
2919 		/* fall through to kmem_cache_alloc() */
2920 
2921 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2922 	    kmem_big_alloc_table_max) {
2923 		cp = kmem_big_alloc_table[index];
2924 		/* fall through to kmem_cache_alloc() */
2925 
2926 	} else {
2927 		if (size == 0)
2928 			return (NULL);
2929 
2930 		buf = vmem_alloc(kmem_oversize_arena, size,
2931 		    kmflag & KM_VMFLAGS);
2932 		if (buf == NULL)
2933 			kmem_log_event(kmem_failure_log, NULL, NULL,
2934 			    (void *)size);
2935 		else if (KMEM_DUMP(kmem_slab_cache)) {
2936 			/* stats for dump intercept */
2937 			kmem_dump_oversize_allocs++;
2938 			if (size > kmem_dump_oversize_max)
2939 				kmem_dump_oversize_max = size;
2940 		}
2941 		return (buf);
2942 	}
2943 
2944 	buf = kmem_cache_alloc(cp, kmflag);
2945 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2946 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2947 		((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2948 		((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2949 
2950 		if (cp->cache_flags & KMF_LITE) {
2951 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2952 		}
2953 	}
2954 	return (buf);
2955 }
2956 
2957 void
2958 kmem_free(void *buf, size_t size)
2959 {
2960 	size_t index;
2961 	kmem_cache_t *cp;
2962 
2963 	if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2964 		cp = kmem_alloc_table[index];
2965 		/* fall through to kmem_cache_free() */
2966 
2967 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2968 	    kmem_big_alloc_table_max) {
2969 		cp = kmem_big_alloc_table[index];
2970 		/* fall through to kmem_cache_free() */
2971 
2972 	} else {
2973 		if (buf == NULL && size == 0)
2974 			return;
2975 		vmem_free(kmem_oversize_arena, buf, size);
2976 		return;
2977 	}
2978 
2979 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2980 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2981 		uint32_t *ip = (uint32_t *)btp;
2982 		if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2983 			if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2984 				kmem_error(KMERR_DUPFREE, cp, buf);
2985 				return;
2986 			}
2987 			if (KMEM_SIZE_VALID(ip[1])) {
2988 				ip[0] = KMEM_SIZE_ENCODE(size);
2989 				kmem_error(KMERR_BADSIZE, cp, buf);
2990 			} else {
2991 				kmem_error(KMERR_REDZONE, cp, buf);
2992 			}
2993 			return;
2994 		}
2995 		if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2996 			kmem_error(KMERR_REDZONE, cp, buf);
2997 			return;
2998 		}
2999 		btp->bt_redzone = KMEM_REDZONE_PATTERN;
3000 		if (cp->cache_flags & KMF_LITE) {
3001 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
3002 			    caller());
3003 		}
3004 	}
3005 	kmem_cache_free(cp, buf);
3006 }
3007 
3008 void *
3009 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
3010 {
3011 	size_t realsize = size + vmp->vm_quantum;
3012 	void *addr;
3013 
3014 	/*
3015 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
3016 	 * vm_quantum will cause integer wraparound.  Check for this, and
3017 	 * blow off the firewall page in this case.  Note that such a
3018 	 * giant allocation (the entire kernel address space) can never
3019 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
3020 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
3021 	 * corresponding check in kmem_firewall_va_free().
3022 	 */
3023 	if (realsize < size)
3024 		realsize = size;
3025 
3026 	/*
3027 	 * While boot still owns resource management, make sure that this
3028 	 * redzone virtual address allocation is properly accounted for in
3029 	 * OBPs "virtual-memory" "available" lists because we're
3030 	 * effectively claiming them for a red zone.  If we don't do this,
3031 	 * the available lists become too fragmented and too large for the
3032 	 * current boot/kernel memory list interface.
3033 	 */
3034 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3035 
3036 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3037 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3038 
3039 	return (addr);
3040 }
3041 
3042 void
3043 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3044 {
3045 	ASSERT((kvseg.s_base == NULL ?
3046 	    va_to_pfn((char *)addr + size) :
3047 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3048 
3049 	vmem_free(vmp, addr, size + vmp->vm_quantum);
3050 }
3051 
3052 /*
3053  * Try to allocate at least `size' bytes of memory without sleeping or
3054  * panicking. Return actual allocated size in `asize'. If allocation failed,
3055  * try final allocation with sleep or panic allowed.
3056  */
3057 void *
3058 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3059 {
3060 	void *p;
3061 
3062 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
3063 	do {
3064 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3065 		if (p != NULL)
3066 			return (p);
3067 		*asize += KMEM_ALIGN;
3068 	} while (*asize <= PAGESIZE);
3069 
3070 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
3071 	return (kmem_alloc(*asize, kmflag));
3072 }
3073 
3074 /*
3075  * Reclaim all unused memory from a cache.
3076  */
3077 static void
3078 kmem_cache_reap(kmem_cache_t *cp)
3079 {
3080 	ASSERT(taskq_member(kmem_taskq, curthread));
3081 	cp->cache_reap++;
3082 
3083 	/*
3084 	 * Ask the cache's owner to free some memory if possible.
3085 	 * The idea is to handle things like the inode cache, which
3086 	 * typically sits on a bunch of memory that it doesn't truly
3087 	 * *need*.  Reclaim policy is entirely up to the owner; this
3088 	 * callback is just an advisory plea for help.
3089 	 */
3090 	if (cp->cache_reclaim != NULL) {
3091 		long delta;
3092 
3093 		/*
3094 		 * Reclaimed memory should be reapable (not included in the
3095 		 * depot's working set).
3096 		 */
3097 		delta = cp->cache_full.ml_total;
3098 		cp->cache_reclaim(cp->cache_private);
3099 		delta = cp->cache_full.ml_total - delta;
3100 		if (delta > 0) {
3101 			mutex_enter(&cp->cache_depot_lock);
3102 			cp->cache_full.ml_reaplimit += delta;
3103 			cp->cache_full.ml_min += delta;
3104 			mutex_exit(&cp->cache_depot_lock);
3105 		}
3106 	}
3107 
3108 	kmem_depot_ws_reap(cp);
3109 
3110 	if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3111 		kmem_cache_defrag(cp);
3112 	}
3113 }
3114 
3115 static void
3116 kmem_reap_timeout(void *flag_arg)
3117 {
3118 	uint32_t *flag = (uint32_t *)flag_arg;
3119 
3120 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3121 	*flag = 0;
3122 }
3123 
3124 static void
3125 kmem_reap_done(void *flag)
3126 {
3127 	(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3128 }
3129 
3130 static void
3131 kmem_reap_start(void *flag)
3132 {
3133 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3134 
3135 	if (flag == &kmem_reaping) {
3136 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3137 		/*
3138 		 * if we have segkp under heap, reap segkp cache.
3139 		 */
3140 		if (segkp_fromheap)
3141 			segkp_cache_free();
3142 	}
3143 	else
3144 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3145 
3146 	/*
3147 	 * We use taskq_dispatch() to schedule a timeout to clear
3148 	 * the flag so that kmem_reap() becomes self-throttling:
3149 	 * we won't reap again until the current reap completes *and*
3150 	 * at least kmem_reap_interval ticks have elapsed.
3151 	 */
3152 	if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3153 		kmem_reap_done(flag);
3154 }
3155 
3156 static void
3157 kmem_reap_common(void *flag_arg)
3158 {
3159 	uint32_t *flag = (uint32_t *)flag_arg;
3160 
3161 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3162 	    cas32(flag, 0, 1) != 0)
3163 		return;
3164 
3165 	/*
3166 	 * It may not be kosher to do memory allocation when a reap is called
3167 	 * is called (for example, if vmem_populate() is in the call chain).
3168 	 * So we start the reap going with a TQ_NOALLOC dispatch.  If the
3169 	 * dispatch fails, we reset the flag, and the next reap will try again.
3170 	 */
3171 	if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3172 		*flag = 0;
3173 }
3174 
3175 /*
3176  * Reclaim all unused memory from all caches.  Called from the VM system
3177  * when memory gets tight.
3178  */
3179 void
3180 kmem_reap(void)
3181 {
3182 	kmem_reap_common(&kmem_reaping);
3183 }
3184 
3185 /*
3186  * Reclaim all unused memory from identifier arenas, called when a vmem
3187  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3188  * cannot help with identifier exhaustion, we avoid both a large amount of
3189  * work and unwanted side-effects from reclaim callbacks.
3190  */
3191 void
3192 kmem_reap_idspace(void)
3193 {
3194 	kmem_reap_common(&kmem_reaping_idspace);
3195 }
3196 
3197 /*
3198  * Purge all magazines from a cache and set its magazine limit to zero.
3199  * All calls are serialized by the kmem_taskq lock, except for the final
3200  * call from kmem_cache_destroy().
3201  */
3202 static void
3203 kmem_cache_magazine_purge(kmem_cache_t *cp)
3204 {
3205 	kmem_cpu_cache_t *ccp;
3206 	kmem_magazine_t *mp, *pmp;
3207 	int rounds, prounds, cpu_seqid;
3208 
3209 	ASSERT(!list_link_active(&cp->cache_link) ||
3210 	    taskq_member(kmem_taskq, curthread));
3211 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3212 
3213 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3214 		ccp = &cp->cache_cpu[cpu_seqid];
3215 
3216 		mutex_enter(&ccp->cc_lock);
3217 		mp = ccp->cc_loaded;
3218 		pmp = ccp->cc_ploaded;
3219 		rounds = ccp->cc_rounds;
3220 		prounds = ccp->cc_prounds;
3221 		ccp->cc_loaded = NULL;
3222 		ccp->cc_ploaded = NULL;
3223 		ccp->cc_rounds = -1;
3224 		ccp->cc_prounds = -1;
3225 		ccp->cc_magsize = 0;
3226 		mutex_exit(&ccp->cc_lock);
3227 
3228 		if (mp)
3229 			kmem_magazine_destroy(cp, mp, rounds);
3230 		if (pmp)
3231 			kmem_magazine_destroy(cp, pmp, prounds);
3232 	}
3233 
3234 	/*
3235 	 * Updating the working set statistics twice in a row has the
3236 	 * effect of setting the working set size to zero, so everything
3237 	 * is eligible for reaping.
3238 	 */
3239 	kmem_depot_ws_update(cp);
3240 	kmem_depot_ws_update(cp);
3241 
3242 	kmem_depot_ws_reap(cp);
3243 }
3244 
3245 /*
3246  * Enable per-cpu magazines on a cache.
3247  */
3248 static void
3249 kmem_cache_magazine_enable(kmem_cache_t *cp)
3250 {
3251 	int cpu_seqid;
3252 
3253 	if (cp->cache_flags & KMF_NOMAGAZINE)
3254 		return;
3255 
3256 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3257 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3258 		mutex_enter(&ccp->cc_lock);
3259 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3260 		mutex_exit(&ccp->cc_lock);
3261 	}
3262 
3263 }
3264 
3265 /*
3266  * Reap (almost) everything right now.  See kmem_cache_magazine_purge()
3267  * for explanation of the back-to-back kmem_depot_ws_update() calls.
3268  */
3269 void
3270 kmem_cache_reap_now(kmem_cache_t *cp)
3271 {
3272 	ASSERT(list_link_active(&cp->cache_link));
3273 
3274 	kmem_depot_ws_update(cp);
3275 	kmem_depot_ws_update(cp);
3276 
3277 	(void) taskq_dispatch(kmem_taskq,
3278 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3279 	taskq_wait(kmem_taskq);
3280 }
3281 
3282 /*
3283  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3284  * provide a higher transfer rate with the depot, while smaller magazines
3285  * reduce memory consumption.  Magazine resizing is an expensive operation;
3286  * it should not be done frequently.
3287  *
3288  * Changes to the magazine size are serialized by the kmem_taskq lock.
3289  *
3290  * Note: at present this only grows the magazine size.  It might be useful
3291  * to allow shrinkage too.
3292  */
3293 static void
3294 kmem_cache_magazine_resize(kmem_cache_t *cp)
3295 {
3296 	kmem_magtype_t *mtp = cp->cache_magtype;
3297 
3298 	ASSERT(taskq_member(kmem_taskq, curthread));
3299 
3300 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
3301 		kmem_cache_magazine_purge(cp);
3302 		mutex_enter(&cp->cache_depot_lock);
3303 		cp->cache_magtype = ++mtp;
3304 		cp->cache_depot_contention_prev =
3305 		    cp->cache_depot_contention + INT_MAX;
3306 		mutex_exit(&cp->cache_depot_lock);
3307 		kmem_cache_magazine_enable(cp);
3308 	}
3309 }
3310 
3311 /*
3312  * Rescale a cache's hash table, so that the table size is roughly the
3313  * cache size.  We want the average lookup time to be extremely small.
3314  */
3315 static void
3316 kmem_hash_rescale(kmem_cache_t *cp)
3317 {
3318 	kmem_bufctl_t **old_table, **new_table, *bcp;
3319 	size_t old_size, new_size, h;
3320 
3321 	ASSERT(taskq_member(kmem_taskq, curthread));
3322 
3323 	new_size = MAX(KMEM_HASH_INITIAL,
3324 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3325 	old_size = cp->cache_hash_mask + 1;
3326 
3327 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3328 		return;
3329 
3330 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3331 	    VM_NOSLEEP);
3332 	if (new_table == NULL)
3333 		return;
3334 	bzero(new_table, new_size * sizeof (void *));
3335 
3336 	mutex_enter(&cp->cache_lock);
3337 
3338 	old_size = cp->cache_hash_mask + 1;
3339 	old_table = cp->cache_hash_table;
3340 
3341 	cp->cache_hash_mask = new_size - 1;
3342 	cp->cache_hash_table = new_table;
3343 	cp->cache_rescale++;
3344 
3345 	for (h = 0; h < old_size; h++) {
3346 		bcp = old_table[h];
3347 		while (bcp != NULL) {
3348 			void *addr = bcp->bc_addr;
3349 			kmem_bufctl_t *next_bcp = bcp->bc_next;
3350 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3351 			bcp->bc_next = *hash_bucket;
3352 			*hash_bucket = bcp;
3353 			bcp = next_bcp;
3354 		}
3355 	}
3356 
3357 	mutex_exit(&cp->cache_lock);
3358 
3359 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3360 }
3361 
3362 /*
3363  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3364  * update, magazine resizing, and slab consolidation.
3365  */
3366 static void
3367 kmem_cache_update(kmem_cache_t *cp)
3368 {
3369 	int need_hash_rescale = 0;
3370 	int need_magazine_resize = 0;
3371 
3372 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
3373 
3374 	/*
3375 	 * If the cache has become much larger or smaller than its hash table,
3376 	 * fire off a request to rescale the hash table.
3377 	 */
3378 	mutex_enter(&cp->cache_lock);
3379 
3380 	if ((cp->cache_flags & KMF_HASH) &&
3381 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3382 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3383 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3384 		need_hash_rescale = 1;
3385 
3386 	mutex_exit(&cp->cache_lock);
3387 
3388 	/*
3389 	 * Update the depot working set statistics.
3390 	 */
3391 	kmem_depot_ws_update(cp);
3392 
3393 	/*
3394 	 * If there's a lot of contention in the depot,
3395 	 * increase the magazine size.
3396 	 */
3397 	mutex_enter(&cp->cache_depot_lock);
3398 
3399 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3400 	    (int)(cp->cache_depot_contention -
3401 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
3402 		need_magazine_resize = 1;
3403 
3404 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
3405 
3406 	mutex_exit(&cp->cache_depot_lock);
3407 
3408 	if (need_hash_rescale)
3409 		(void) taskq_dispatch(kmem_taskq,
3410 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3411 
3412 	if (need_magazine_resize)
3413 		(void) taskq_dispatch(kmem_taskq,
3414 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3415 
3416 	if (cp->cache_defrag != NULL)
3417 		(void) taskq_dispatch(kmem_taskq,
3418 		    (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3419 }
3420 
3421 static void kmem_update(void *);
3422 
3423 static void
3424 kmem_update_timeout(void *dummy)
3425 {
3426 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
3427 }
3428 
3429 static void
3430 kmem_update(void *dummy)
3431 {
3432 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3433 
3434 	/*
3435 	 * We use taskq_dispatch() to reschedule the timeout so that
3436 	 * kmem_update() becomes self-throttling: it won't schedule
3437 	 * new tasks until all previous tasks have completed.
3438 	 */
3439 	if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3440 		kmem_update_timeout(NULL);
3441 }
3442 
3443 static int
3444 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3445 {
3446 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3447 	kmem_cache_t *cp = ksp->ks_private;
3448 	uint64_t cpu_buf_avail;
3449 	uint64_t buf_avail = 0;
3450 	int cpu_seqid;
3451 	long reap;
3452 
3453 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3454 
3455 	if (rw == KSTAT_WRITE)
3456 		return (EACCES);
3457 
3458 	mutex_enter(&cp->cache_lock);
3459 
3460 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
3461 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
3462 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
3463 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
3464 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
3465 
3466 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3467 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3468 
3469 		mutex_enter(&ccp->cc_lock);
3470 
3471 		cpu_buf_avail = 0;
3472 		if (ccp->cc_rounds > 0)
3473 			cpu_buf_avail += ccp->cc_rounds;
3474 		if (ccp->cc_prounds > 0)
3475 			cpu_buf_avail += ccp->cc_prounds;
3476 
3477 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
3478 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
3479 		buf_avail			+= cpu_buf_avail;
3480 
3481 		mutex_exit(&ccp->cc_lock);
3482 	}
3483 
3484 	mutex_enter(&cp->cache_depot_lock);
3485 
3486 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
3487 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
3488 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
3489 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
3490 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
3491 	kmcp->kmc_magazine_size.value.ui64	=
3492 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
3493 	    0 : cp->cache_magtype->mt_magsize;
3494 
3495 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
3496 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
3497 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3498 
3499 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3500 	reap = MIN(reap, cp->cache_full.ml_total);
3501 
3502 	mutex_exit(&cp->cache_depot_lock);
3503 
3504 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
3505 	kmcp->kmc_align.value.ui64	= cp->cache_align;
3506 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
3507 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
3508 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3509 	buf_avail += cp->cache_bufslab;
3510 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
3511 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
3512 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
3513 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
3514 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
3515 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
3516 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
3517 	    cp->cache_hash_mask + 1 : 0;
3518 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
3519 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
3520 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
3521 	kmcp->kmc_reap.value.ui64	= cp->cache_reap;
3522 
3523 	if (cp->cache_defrag == NULL) {
3524 		kmcp->kmc_move_callbacks.value.ui64	= 0;
3525 		kmcp->kmc_move_yes.value.ui64		= 0;
3526 		kmcp->kmc_move_no.value.ui64		= 0;
3527 		kmcp->kmc_move_later.value.ui64		= 0;
3528 		kmcp->kmc_move_dont_need.value.ui64	= 0;
3529 		kmcp->kmc_move_dont_know.value.ui64	= 0;
3530 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3531 		kmcp->kmc_move_slabs_freed.value.ui64	= 0;
3532 		kmcp->kmc_defrag.value.ui64		= 0;
3533 		kmcp->kmc_scan.value.ui64		= 0;
3534 		kmcp->kmc_move_reclaimable.value.ui64	= 0;
3535 	} else {
3536 		int64_t reclaimable;
3537 
3538 		kmem_defrag_t *kd = cp->cache_defrag;
3539 		kmcp->kmc_move_callbacks.value.ui64	= kd->kmd_callbacks;
3540 		kmcp->kmc_move_yes.value.ui64		= kd->kmd_yes;
3541 		kmcp->kmc_move_no.value.ui64		= kd->kmd_no;
3542 		kmcp->kmc_move_later.value.ui64		= kd->kmd_later;
3543 		kmcp->kmc_move_dont_need.value.ui64	= kd->kmd_dont_need;
3544 		kmcp->kmc_move_dont_know.value.ui64	= kd->kmd_dont_know;
3545 		kmcp->kmc_move_hunt_found.value.ui64	= kd->kmd_hunt_found;
3546 		kmcp->kmc_move_slabs_freed.value.ui64	= kd->kmd_slabs_freed;
3547 		kmcp->kmc_defrag.value.ui64		= kd->kmd_defrags;
3548 		kmcp->kmc_scan.value.ui64		= kd->kmd_scans;
3549 
3550 		reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3551 		reclaimable = MAX(reclaimable, 0);
3552 		reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3553 		kmcp->kmc_move_reclaimable.value.ui64	= reclaimable;
3554 	}
3555 
3556 	mutex_exit(&cp->cache_lock);
3557 	return (0);
3558 }
3559 
3560 /*
3561  * Return a named statistic about a particular cache.
3562  * This shouldn't be called very often, so it's currently designed for
3563  * simplicity (leverages existing kstat support) rather than efficiency.
3564  */
3565 uint64_t
3566 kmem_cache_stat(kmem_cache_t *cp, char *name)
3567 {
3568 	int i;
3569 	kstat_t *ksp = cp->cache_kstat;
3570 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3571 	uint64_t value = 0;
3572 
3573 	if (ksp != NULL) {
3574 		mutex_enter(&kmem_cache_kstat_lock);
3575 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3576 		for (i = 0; i < ksp->ks_ndata; i++) {
3577 			if (strcmp(knp[i].name, name) == 0) {
3578 				value = knp[i].value.ui64;
3579 				break;
3580 			}
3581 		}
3582 		mutex_exit(&kmem_cache_kstat_lock);
3583 	}
3584 	return (value);
3585 }
3586 
3587 /*
3588  * Return an estimate of currently available kernel heap memory.
3589  * On 32-bit systems, physical memory may exceed virtual memory,
3590  * we just truncate the result at 1GB.
3591  */
3592 size_t
3593 kmem_avail(void)
3594 {
3595 	spgcnt_t rmem = availrmem - tune.t_minarmem;
3596 	spgcnt_t fmem = freemem - minfree;
3597 
3598 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3599 	    1 << (30 - PAGESHIFT))));
3600 }
3601 
3602 /*
3603  * Return the maximum amount of memory that is (in theory) allocatable
3604  * from the heap. This may be used as an estimate only since there
3605  * is no guarentee this space will still be available when an allocation
3606  * request is made, nor that the space may be allocated in one big request
3607  * due to kernel heap fragmentation.
3608  */
3609 size_t
3610 kmem_maxavail(void)
3611 {
3612 	spgcnt_t pmem = availrmem - tune.t_minarmem;
3613 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3614 
3615 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3616 }
3617 
3618 /*
3619  * Indicate whether memory-intensive kmem debugging is enabled.
3620  */
3621 int
3622 kmem_debugging(void)
3623 {
3624 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3625 }
3626 
3627 /* binning function, sorts finely at the two extremes */
3628 #define	KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)				\
3629 	((((sp)->slab_refcnt <= (binshift)) ||				\
3630 	    (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))	\
3631 	    ? -(sp)->slab_refcnt					\
3632 	    : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3633 
3634 /*
3635  * Minimizing the number of partial slabs on the freelist minimizes
3636  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3637  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3638  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3639  * the most-used slabs at the front of the list where they have the best chance
3640  * of being completely allocated, and the least-used slabs at a safe distance
3641  * from the front to improve the odds that the few remaining buffers will all be
3642  * freed before another allocation can tie up the slab. For that reason a slab
3643  * with a higher slab_refcnt sorts less than than a slab with a lower
3644  * slab_refcnt.
3645  *
3646  * However, if a slab has at least one buffer that is deemed unfreeable, we
3647  * would rather have that slab at the front of the list regardless of
3648  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3649  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3650  * callback, the slab is marked unfreeable for as long as it remains on the
3651  * freelist.
3652  */
3653 static int
3654 kmem_partial_slab_cmp(const void *p0, const void *p1)
3655 {
3656 	const kmem_cache_t *cp;
3657 	const kmem_slab_t *s0 = p0;
3658 	const kmem_slab_t *s1 = p1;
3659 	int w0, w1;
3660 	size_t binshift;
3661 
3662 	ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3663 	ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3664 	ASSERT(s0->slab_cache == s1->slab_cache);
3665 	cp = s1->slab_cache;
3666 	ASSERT(MUTEX_HELD(&cp->cache_lock));
3667 	binshift = cp->cache_partial_binshift;
3668 
3669 	/* weight of first slab */
3670 	w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3671 	if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3672 		w0 -= cp->cache_maxchunks;
3673 	}
3674 
3675 	/* weight of second slab */
3676 	w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3677 	if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3678 		w1 -= cp->cache_maxchunks;
3679 	}
3680 
3681 	if (w0 < w1)
3682 		return (-1);
3683 	if (w0 > w1)
3684 		return (1);
3685 
3686 	/* compare pointer values */
3687 	if ((uintptr_t)s0 < (uintptr_t)s1)
3688 		return (-1);
3689 	if ((uintptr_t)s0 > (uintptr_t)s1)
3690 		return (1);
3691 
3692 	return (0);
3693 }
3694 
3695 /*
3696  * It must be valid to call the destructor (if any) on a newly created object.
3697  * That is, the constructor (if any) must leave the object in a valid state for
3698  * the destructor.
3699  */
3700 kmem_cache_t *
3701 kmem_cache_create(
3702 	char *name,		/* descriptive name for this cache */
3703 	size_t bufsize,		/* size of the objects it manages */
3704 	size_t align,		/* required object alignment */
3705 	int (*constructor)(void *, void *, int), /* object constructor */
3706 	void (*destructor)(void *, void *),	/* object destructor */
3707 	void (*reclaim)(void *), /* memory reclaim callback */
3708 	void *private,		/* pass-thru arg for constr/destr/reclaim */
3709 	vmem_t *vmp,		/* vmem source for slab allocation */
3710 	int cflags)		/* cache creation flags */
3711 {
3712 	int cpu_seqid;
3713 	size_t chunksize;
3714 	kmem_cache_t *cp;
3715 	kmem_magtype_t *mtp;
3716 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3717 
3718 #ifdef	DEBUG
3719 	/*
3720 	 * Cache names should conform to the rules for valid C identifiers
3721 	 */
3722 	if (!strident_valid(name)) {
3723 		cmn_err(CE_CONT,
3724 		    "kmem_cache_create: '%s' is an invalid cache name\n"
3725 		    "cache names must conform to the rules for "
3726 		    "C identifiers\n", name);
3727 	}
3728 #endif	/* DEBUG */
3729 
3730 	if (vmp == NULL)
3731 		vmp = kmem_default_arena;
3732 
3733 	/*
3734 	 * If this kmem cache has an identifier vmem arena as its source, mark
3735 	 * it such to allow kmem_reap_idspace().
3736 	 */
3737 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3738 	if (vmp->vm_cflags & VMC_IDENTIFIER)
3739 		cflags |= KMC_IDENTIFIER;
3740 
3741 	/*
3742 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3743 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3744 	 * false sharing of per-CPU data.
3745 	 */
3746 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3747 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3748 	bzero(cp, csize);
3749 	list_link_init(&cp->cache_link);
3750 
3751 	if (align == 0)
3752 		align = KMEM_ALIGN;
3753 
3754 	/*
3755 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
3756 	 * memory to hold bufctl information (because we can't safely
3757 	 * perform word loads and stores on it).
3758 	 */
3759 	if (align < KMEM_ALIGN)
3760 		cflags |= KMC_NOTOUCH;
3761 
3762 	if ((align & (align - 1)) != 0 || align > vmp->vm_quantum)
3763 		panic("kmem_cache_create: bad alignment %lu", align);
3764 
3765 	mutex_enter(&kmem_flags_lock);
3766 	if (kmem_flags & KMF_RANDOMIZE)
3767 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3768 		    KMF_RANDOMIZE;
3769 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3770 	mutex_exit(&kmem_flags_lock);
3771 
3772 	/*
3773 	 * Make sure all the various flags are reasonable.
3774 	 */
3775 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3776 
3777 	if (cp->cache_flags & KMF_LITE) {
3778 		if (bufsize >= kmem_lite_minsize &&
3779 		    align <= kmem_lite_maxalign &&
3780 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3781 			cp->cache_flags |= KMF_BUFTAG;
3782 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3783 		} else {
3784 			cp->cache_flags &= ~KMF_DEBUG;
3785 		}
3786 	}
3787 
3788 	if (cp->cache_flags & KMF_DEADBEEF)
3789 		cp->cache_flags |= KMF_REDZONE;
3790 
3791 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3792 		cp->cache_flags |= KMF_NOMAGAZINE;
3793 
3794 	if (cflags & KMC_NODEBUG)
3795 		cp->cache_flags &= ~KMF_DEBUG;
3796 
3797 	if (cflags & KMC_NOTOUCH)
3798 		cp->cache_flags &= ~KMF_TOUCH;
3799 
3800 	if (cflags & KMC_PREFILL)
3801 		cp->cache_flags |= KMF_PREFILL;
3802 
3803 	if (cflags & KMC_NOHASH)
3804 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3805 
3806 	if (cflags & KMC_NOMAGAZINE)
3807 		cp->cache_flags |= KMF_NOMAGAZINE;
3808 
3809 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3810 		cp->cache_flags |= KMF_REDZONE;
3811 
3812 	if (!(cp->cache_flags & KMF_AUDIT))
3813 		cp->cache_flags &= ~KMF_CONTENTS;
3814 
3815 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3816 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3817 		cp->cache_flags |= KMF_FIREWALL;
3818 
3819 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3820 		cp->cache_flags &= ~KMF_FIREWALL;
3821 
3822 	if (cp->cache_flags & KMF_FIREWALL) {
3823 		cp->cache_flags &= ~KMF_BUFTAG;
3824 		cp->cache_flags |= KMF_NOMAGAZINE;
3825 		ASSERT(vmp == kmem_default_arena);
3826 		vmp = kmem_firewall_arena;
3827 	}
3828 
3829 	/*
3830 	 * Set cache properties.
3831 	 */
3832 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3833 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3834 	cp->cache_bufsize = bufsize;
3835 	cp->cache_align = align;
3836 	cp->cache_constructor = constructor;
3837 	cp->cache_destructor = destructor;
3838 	cp->cache_reclaim = reclaim;
3839 	cp->cache_private = private;
3840 	cp->cache_arena = vmp;
3841 	cp->cache_cflags = cflags;
3842 
3843 	/*
3844 	 * Determine the chunk size.
3845 	 */
3846 	chunksize = bufsize;
3847 
3848 	if (align >= KMEM_ALIGN) {
3849 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3850 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
3851 	}
3852 
3853 	if (cp->cache_flags & KMF_BUFTAG) {
3854 		cp->cache_bufctl = chunksize;
3855 		cp->cache_buftag = chunksize;
3856 		if (cp->cache_flags & KMF_LITE)
3857 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3858 		else
3859 			chunksize += sizeof (kmem_buftag_t);
3860 	}
3861 
3862 	if (cp->cache_flags & KMF_DEADBEEF) {
3863 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3864 		if (cp->cache_flags & KMF_LITE)
3865 			cp->cache_verify = sizeof (uint64_t);
3866 	}
3867 
3868 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3869 
3870 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3871 
3872 	/*
3873 	 * Now that we know the chunk size, determine the optimal slab size.
3874 	 */
3875 	if (vmp == kmem_firewall_arena) {
3876 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3877 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
3878 		cp->cache_maxcolor = cp->cache_mincolor;
3879 		cp->cache_flags |= KMF_HASH;
3880 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3881 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3882 	    !(cp->cache_flags & KMF_AUDIT) &&
3883 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3884 		cp->cache_slabsize = vmp->vm_quantum;
3885 		cp->cache_mincolor = 0;
3886 		cp->cache_maxcolor =
3887 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3888 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3889 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
3890 	} else {
3891 		size_t chunks, bestfit, waste, slabsize;
3892 		size_t minwaste = LONG_MAX;
3893 
3894 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3895 			slabsize = P2ROUNDUP(chunksize * chunks,
3896 			    vmp->vm_quantum);
3897 			chunks = slabsize / chunksize;
3898 			waste = (slabsize % chunksize) / chunks;
3899 			if (waste < minwaste) {
3900 				minwaste = waste;
3901 				bestfit = slabsize;
3902 			}
3903 		}
3904 		if (cflags & KMC_QCACHE)
3905 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3906 		cp->cache_slabsize = bestfit;
3907 		cp->cache_mincolor = 0;
3908 		cp->cache_maxcolor = bestfit % chunksize;
3909 		cp->cache_flags |= KMF_HASH;
3910 	}
3911 
3912 	cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3913 	cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3914 
3915 	/*
3916 	 * Disallowing prefill when either the DEBUG or HASH flag is set or when
3917 	 * there is a constructor avoids some tricky issues with debug setup
3918 	 * that may be revisited later. We cannot allow prefill in a
3919 	 * metadata cache because of potential recursion.
3920 	 */
3921 	if (vmp == kmem_msb_arena ||
3922 	    cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3923 	    cp->cache_constructor != NULL)
3924 		cp->cache_flags &= ~KMF_PREFILL;
3925 
3926 	if (cp->cache_flags & KMF_HASH) {
3927 		ASSERT(!(cflags & KMC_NOHASH));
3928 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3929 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
3930 	}
3931 
3932 	if (cp->cache_maxcolor >= vmp->vm_quantum)
3933 		cp->cache_maxcolor = vmp->vm_quantum - 1;
3934 
3935 	cp->cache_color = cp->cache_mincolor;
3936 
3937 	/*
3938 	 * Initialize the rest of the slab layer.
3939 	 */
3940 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3941 
3942 	avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3943 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3944 	/* LINTED: E_TRUE_LOGICAL_EXPR */
3945 	ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3946 	/* reuse partial slab AVL linkage for complete slab list linkage */
3947 	list_create(&cp->cache_complete_slabs,
3948 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3949 
3950 	if (cp->cache_flags & KMF_HASH) {
3951 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3952 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3953 		bzero(cp->cache_hash_table,
3954 		    KMEM_HASH_INITIAL * sizeof (void *));
3955 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3956 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3957 	}
3958 
3959 	/*
3960 	 * Initialize the depot.
3961 	 */
3962 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3963 
3964 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3965 		continue;
3966 
3967 	cp->cache_magtype = mtp;
3968 
3969 	/*
3970 	 * Initialize the CPU layer.
3971 	 */
3972 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3973 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3974 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3975 		ccp->cc_flags = cp->cache_flags;
3976 		ccp->cc_rounds = -1;
3977 		ccp->cc_prounds = -1;
3978 	}
3979 
3980 	/*
3981 	 * Create the cache's kstats.
3982 	 */
3983 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3984 	    "kmem_cache", KSTAT_TYPE_NAMED,
3985 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3986 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
3987 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
3988 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3989 		cp->cache_kstat->ks_private = cp;
3990 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3991 		kstat_install(cp->cache_kstat);
3992 	}
3993 
3994 	/*
3995 	 * Add the cache to the global list.  This makes it visible
3996 	 * to kmem_update(), so the cache must be ready for business.
3997 	 */
3998 	mutex_enter(&kmem_cache_lock);
3999 	list_insert_tail(&kmem_caches, cp);
4000 	mutex_exit(&kmem_cache_lock);
4001 
4002 	if (kmem_ready)
4003 		kmem_cache_magazine_enable(cp);
4004 
4005 	return (cp);
4006 }
4007 
4008 static int
4009 kmem_move_cmp(const void *buf, const void *p)
4010 {
4011 	const kmem_move_t *kmm = p;
4012 	uintptr_t v1 = (uintptr_t)buf;
4013 	uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
4014 	return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
4015 }
4016 
4017 static void
4018 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
4019 {
4020 	kmd->kmd_reclaim_numer = 1;
4021 }
4022 
4023 /*
4024  * Initially, when choosing candidate slabs for buffers to move, we want to be
4025  * very selective and take only slabs that are less than
4026  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
4027  * slabs, then we raise the allocation ceiling incrementally. The reclaim
4028  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4029  * longer fragmented.
4030  */
4031 static void
4032 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4033 {
4034 	if (direction > 0) {
4035 		/* make it easier to find a candidate slab */
4036 		if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4037 			kmd->kmd_reclaim_numer++;
4038 		}
4039 	} else {
4040 		/* be more selective */
4041 		if (kmd->kmd_reclaim_numer > 1) {
4042 			kmd->kmd_reclaim_numer--;
4043 		}
4044 	}
4045 }
4046 
4047 void
4048 kmem_cache_set_move(kmem_cache_t *cp,
4049     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4050 {
4051 	kmem_defrag_t *defrag;
4052 
4053 	ASSERT(move != NULL);
4054 	/*
4055 	 * The consolidator does not support NOTOUCH caches because kmem cannot
4056 	 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4057 	 * a low order bit usable by clients to distinguish uninitialized memory
4058 	 * from known objects (see kmem_slab_create).
4059 	 */
4060 	ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4061 	ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4062 
4063 	/*
4064 	 * We should not be holding anyone's cache lock when calling
4065 	 * kmem_cache_alloc(), so allocate in all cases before acquiring the
4066 	 * lock.
4067 	 */
4068 	defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4069 
4070 	mutex_enter(&cp->cache_lock);
4071 
4072 	if (KMEM_IS_MOVABLE(cp)) {
4073 		if (cp->cache_move == NULL) {
4074 			ASSERT(cp->cache_slab_alloc == 0);
4075 
4076 			cp->cache_defrag = defrag;
4077 			defrag = NULL; /* nothing to free */
4078 			bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4079 			avl_create(&cp->cache_defrag->kmd_moves_pending,
4080 			    kmem_move_cmp, sizeof (kmem_move_t),
4081 			    offsetof(kmem_move_t, kmm_entry));
4082 			/* LINTED: E_TRUE_LOGICAL_EXPR */
4083 			ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4084 			/* reuse the slab's AVL linkage for deadlist linkage */
4085 			list_create(&cp->cache_defrag->kmd_deadlist,
4086 			    sizeof (kmem_slab_t),
4087 			    offsetof(kmem_slab_t, slab_link));
4088 			kmem_reset_reclaim_threshold(cp->cache_defrag);
4089 		}
4090 		cp->cache_move = move;
4091 	}
4092 
4093 	mutex_exit(&cp->cache_lock);
4094 
4095 	if (defrag != NULL) {
4096 		kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4097 	}
4098 }
4099 
4100 void
4101 kmem_cache_destroy(kmem_cache_t *cp)
4102 {
4103 	int cpu_seqid;
4104 
4105 	/*
4106 	 * Remove the cache from the global cache list so that no one else
4107 	 * can schedule tasks on its behalf, wait for any pending tasks to
4108 	 * complete, purge the cache, and then destroy it.
4109 	 */
4110 	mutex_enter(&kmem_cache_lock);
4111 	list_remove(&kmem_caches, cp);
4112 	mutex_exit(&kmem_cache_lock);
4113 
4114 	if (kmem_taskq != NULL)
4115 		taskq_wait(kmem_taskq);
4116 	if (kmem_move_taskq != NULL)
4117 		taskq_wait(kmem_move_taskq);
4118 
4119 	kmem_cache_magazine_purge(cp);
4120 
4121 	mutex_enter(&cp->cache_lock);
4122 	if (cp->cache_buftotal != 0)
4123 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4124 		    cp->cache_name, (void *)cp);
4125 	if (cp->cache_defrag != NULL) {
4126 		avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4127 		list_destroy(&cp->cache_defrag->kmd_deadlist);
4128 		kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4129 		cp->cache_defrag = NULL;
4130 	}
4131 	/*
4132 	 * The cache is now dead.  There should be no further activity.  We
4133 	 * enforce this by setting land mines in the constructor, destructor,
4134 	 * reclaim, and move routines that induce a kernel text fault if
4135 	 * invoked.
4136 	 */
4137 	cp->cache_constructor = (int (*)(void *, void *, int))1;
4138 	cp->cache_destructor = (void (*)(void *, void *))2;
4139 	cp->cache_reclaim = (void (*)(void *))3;
4140 	cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4141 	mutex_exit(&cp->cache_lock);
4142 
4143 	kstat_delete(cp->cache_kstat);
4144 
4145 	if (cp->cache_hash_table != NULL)
4146 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
4147 		    (cp->cache_hash_mask + 1) * sizeof (void *));
4148 
4149 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4150 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4151 
4152 	mutex_destroy(&cp->cache_depot_lock);
4153 	mutex_destroy(&cp->cache_lock);
4154 
4155 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4156 }
4157 
4158 /*ARGSUSED*/
4159 static int
4160 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4161 {
4162 	ASSERT(MUTEX_HELD(&cpu_lock));
4163 	if (what == CPU_UNCONFIG) {
4164 		kmem_cache_applyall(kmem_cache_magazine_purge,
4165 		    kmem_taskq, TQ_SLEEP);
4166 		kmem_cache_applyall(kmem_cache_magazine_enable,
4167 		    kmem_taskq, TQ_SLEEP);
4168 	}
4169 	return (0);
4170 }
4171 
4172 static void
4173 kmem_alloc_caches_create(const int *array, size_t count,
4174     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4175 {
4176 	char name[KMEM_CACHE_NAMELEN + 1];
4177 	size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4178 	size_t size = table_unit;
4179 	int i;
4180 
4181 	for (i = 0; i < count; i++) {
4182 		size_t cache_size = array[i];
4183 		size_t align = KMEM_ALIGN;
4184 		kmem_cache_t *cp;
4185 
4186 		/* if the table has an entry for maxbuf, we're done */
4187 		if (size > maxbuf)
4188 			break;
4189 
4190 		/* cache size must be a multiple of the table unit */
4191 		ASSERT(P2PHASE(cache_size, table_unit) == 0);
4192 
4193 		/*
4194 		 * If they allocate a multiple of the coherency granularity,
4195 		 * they get a coherency-granularity-aligned address.
4196 		 */
4197 		if (IS_P2ALIGNED(cache_size, 64))
4198 			align = 64;
4199 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
4200 			align = PAGESIZE;
4201 		(void) snprintf(name, sizeof (name),
4202 		    "kmem_alloc_%lu", cache_size);
4203 		cp = kmem_cache_create(name, cache_size, align,
4204 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4205 
4206 		while (size <= cache_size) {
4207 			alloc_table[(size - 1) >> shift] = cp;
4208 			size += table_unit;
4209 		}
4210 	}
4211 
4212 	ASSERT(size > maxbuf);		/* i.e. maxbuf <= max(cache_size) */
4213 }
4214 
4215 static void
4216 kmem_cache_init(int pass, int use_large_pages)
4217 {
4218 	int i;
4219 	size_t maxbuf;
4220 	kmem_magtype_t *mtp;
4221 
4222 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4223 		char name[KMEM_CACHE_NAMELEN + 1];
4224 
4225 		mtp = &kmem_magtype[i];
4226 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4227 		mtp->mt_cache = kmem_cache_create(name,
4228 		    (mtp->mt_magsize + 1) * sizeof (void *),
4229 		    mtp->mt_align, NULL, NULL, NULL, NULL,
4230 		    kmem_msb_arena, KMC_NOHASH);
4231 	}
4232 
4233 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4234 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4235 	    kmem_msb_arena, KMC_NOHASH);
4236 
4237 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4238 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4239 	    kmem_msb_arena, KMC_NOHASH);
4240 
4241 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4242 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4243 	    kmem_msb_arena, KMC_NOHASH);
4244 
4245 	if (pass == 2) {
4246 		kmem_va_arena = vmem_create("kmem_va",
4247 		    NULL, 0, PAGESIZE,
4248 		    vmem_alloc, vmem_free, heap_arena,
4249 		    8 * PAGESIZE, VM_SLEEP);
4250 
4251 		if (use_large_pages) {
4252 			kmem_default_arena = vmem_xcreate("kmem_default",
4253 			    NULL, 0, PAGESIZE,
4254 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4255 			    0, VMC_DUMPSAFE | VM_SLEEP);
4256 		} else {
4257 			kmem_default_arena = vmem_create("kmem_default",
4258 			    NULL, 0, PAGESIZE,
4259 			    segkmem_alloc, segkmem_free, kmem_va_arena,
4260 			    0, VMC_DUMPSAFE | VM_SLEEP);
4261 		}
4262 
4263 		/* Figure out what our maximum cache size is */
4264 		maxbuf = kmem_max_cached;
4265 		if (maxbuf <= KMEM_MAXBUF) {
4266 			maxbuf = 0;
4267 			kmem_max_cached = KMEM_MAXBUF;
4268 		} else {
4269 			size_t size = 0;
4270 			size_t max =
4271 			    sizeof (kmem_big_alloc_sizes) / sizeof (int);
4272 			/*
4273 			 * Round maxbuf up to an existing cache size.  If maxbuf
4274 			 * is larger than the largest cache, we truncate it to
4275 			 * the largest cache's size.
4276 			 */
4277 			for (i = 0; i < max; i++) {
4278 				size = kmem_big_alloc_sizes[i];
4279 				if (maxbuf <= size)
4280 					break;
4281 			}
4282 			kmem_max_cached = maxbuf = size;
4283 		}
4284 
4285 		/*
4286 		 * The big alloc table may not be completely overwritten, so
4287 		 * we clear out any stale cache pointers from the first pass.
4288 		 */
4289 		bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4290 	} else {
4291 		/*
4292 		 * During the first pass, the kmem_alloc_* caches
4293 		 * are treated as metadata.
4294 		 */
4295 		kmem_default_arena = kmem_msb_arena;
4296 		maxbuf = KMEM_BIG_MAXBUF_32BIT;
4297 	}
4298 
4299 	/*
4300 	 * Set up the default caches to back kmem_alloc()
4301 	 */
4302 	kmem_alloc_caches_create(
4303 	    kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4304 	    kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4305 
4306 	kmem_alloc_caches_create(
4307 	    kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4308 	    kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4309 
4310 	kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4311 }
4312 
4313 void
4314 kmem_init(void)
4315 {
4316 	kmem_cache_t *cp;
4317 	int old_kmem_flags = kmem_flags;
4318 	int use_large_pages = 0;
4319 	size_t maxverify, minfirewall;
4320 
4321 	kstat_init();
4322 
4323 	/*
4324 	 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead.
4325 	 */
4326 	if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY))
4327 		kmem_flags = 0;
4328 
4329 	/*
4330 	 * Don't do firewalled allocations if the heap is less than 1TB
4331 	 * (i.e. on a 32-bit kernel)
4332 	 * The resulting VM_NEXTFIT allocations would create too much
4333 	 * fragmentation in a small heap.
4334 	 */
4335 #if defined(_LP64)
4336 	maxverify = minfirewall = PAGESIZE / 2;
4337 #else
4338 	maxverify = minfirewall = ULONG_MAX;
4339 #endif
4340 
4341 	/* LINTED */
4342 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4343 
4344 	list_create(&kmem_caches, sizeof (kmem_cache_t),
4345 	    offsetof(kmem_cache_t, cache_link));
4346 
4347 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4348 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4349 	    VM_SLEEP | VMC_NO_QCACHE);
4350 
4351 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4352 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4353 	    VMC_DUMPSAFE | VM_SLEEP);
4354 
4355 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4356 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4357 
4358 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4359 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4360 
4361 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4362 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4363 
4364 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4365 	    NULL, 0, PAGESIZE,
4366 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4367 	    0, VM_SLEEP);
4368 
4369 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4370 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4371 	    VMC_DUMPSAFE | VM_SLEEP);
4372 
4373 	/* temporary oversize arena for mod_read_system_file */
4374 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4375 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4376 
4377 	kmem_reap_interval = 15 * hz;
4378 
4379 	/*
4380 	 * Read /etc/system.  This is a chicken-and-egg problem because
4381 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
4382 	 * needs to use the allocator.  The simplest solution is to create
4383 	 * all the standard kmem caches, read /etc/system, destroy all the
4384 	 * caches we just created, and then create them all again in light
4385 	 * of the (possibly) new kmem_flags and other kmem tunables.
4386 	 */
4387 	kmem_cache_init(1, 0);
4388 
4389 	mod_read_system_file(boothowto & RB_ASKNAME);
4390 
4391 	while ((cp = list_tail(&kmem_caches)) != NULL)
4392 		kmem_cache_destroy(cp);
4393 
4394 	vmem_destroy(kmem_oversize_arena);
4395 
4396 	if (old_kmem_flags & KMF_STICKY)
4397 		kmem_flags = old_kmem_flags;
4398 
4399 	if (!(kmem_flags & KMF_AUDIT))
4400 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4401 
4402 	if (kmem_maxverify == 0)
4403 		kmem_maxverify = maxverify;
4404 
4405 	if (kmem_minfirewall == 0)
4406 		kmem_minfirewall = minfirewall;
4407 
4408 	/*
4409 	 * give segkmem a chance to figure out if we are using large pages
4410 	 * for the kernel heap
4411 	 */
4412 	use_large_pages = segkmem_lpsetup();
4413 
4414 	/*
4415 	 * To protect against corruption, we keep the actual number of callers
4416 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4417 	 * to 16, since the overhead for small buffers quickly gets out of
4418 	 * hand.
4419 	 *
4420 	 * The real limit would depend on the needs of the largest KMC_NOHASH
4421 	 * cache.
4422 	 */
4423 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4424 	kmem_lite_pcs = kmem_lite_count;
4425 
4426 	/*
4427 	 * Normally, we firewall oversized allocations when possible, but
4428 	 * if we are using large pages for kernel memory, and we don't have
4429 	 * any non-LITE debugging flags set, we want to allocate oversized
4430 	 * buffers from large pages, and so skip the firewalling.
4431 	 */
4432 	if (use_large_pages &&
4433 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4434 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4435 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4436 		    0, VMC_DUMPSAFE | VM_SLEEP);
4437 	} else {
4438 		kmem_oversize_arena = vmem_create("kmem_oversize",
4439 		    NULL, 0, PAGESIZE,
4440 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4441 		    kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4442 		    VM_SLEEP);
4443 	}
4444 
4445 	kmem_cache_init(2, use_large_pages);
4446 
4447 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4448 		if (kmem_transaction_log_size == 0)
4449 			kmem_transaction_log_size = kmem_maxavail() / 50;
4450 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4451 	}
4452 
4453 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4454 		if (kmem_content_log_size == 0)
4455 			kmem_content_log_size = kmem_maxavail() / 50;
4456 		kmem_content_log = kmem_log_init(kmem_content_log_size);
4457 	}
4458 
4459 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4460 
4461 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4462 
4463 	/*
4464 	 * Initialize STREAMS message caches so allocb() is available.
4465 	 * This allows us to initialize the logging framework (cmn_err(9F),
4466 	 * strlog(9F), etc) so we can start recording messages.
4467 	 */
4468 	streams_msg_init();
4469 
4470 	/*
4471 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
4472 	 * can register their callbacks.
4473 	 */
4474 	zone_zsd_init();
4475 
4476 	log_init();
4477 	taskq_init();
4478 
4479 	/*
4480 	 * Warn about invalid or dangerous values of kmem_flags.
4481 	 * Always warn about unsupported values.
4482 	 */
4483 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4484 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
4485 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4486 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4487 		    "See the Solaris Tunable Parameters Reference Manual.",
4488 		    kmem_flags);
4489 
4490 #ifdef DEBUG
4491 	if ((kmem_flags & KMF_DEBUG) == 0)
4492 		cmn_err(CE_NOTE, "kmem debugging disabled.");
4493 #else
4494 	/*
4495 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4496 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4497 	 * if KMF_AUDIT is set). We should warn the user about the performance
4498 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4499 	 * isn't set (since that disables AUDIT).
4500 	 */
4501 	if (!(kmem_flags & KMF_LITE) &&
4502 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4503 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
4504 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
4505 		    "and large memory overhead possible. See the Solaris "
4506 		    "Tunable Parameters Reference Manual.", kmem_flags);
4507 #endif /* not DEBUG */
4508 
4509 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4510 
4511 	kmem_ready = 1;
4512 
4513 	/*
4514 	 * Initialize the platform-specific aligned/DMA memory allocator.
4515 	 */
4516 	ka_init();
4517 
4518 	/*
4519 	 * Initialize 32-bit ID cache.
4520 	 */
4521 	id32_init();
4522 
4523 	/*
4524 	 * Initialize the networking stack so modules loaded can
4525 	 * register their callbacks.
4526 	 */
4527 	netstack_init();
4528 }
4529 
4530 static void
4531 kmem_move_init(void)
4532 {
4533 	kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4534 	    sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4535 	    kmem_msb_arena, KMC_NOHASH);
4536 	kmem_move_cache = kmem_cache_create("kmem_move_cache",
4537 	    sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4538 	    kmem_msb_arena, KMC_NOHASH);
4539 
4540 	/*
4541 	 * kmem guarantees that move callbacks are sequential and that even
4542 	 * across multiple caches no two moves ever execute simultaneously.
4543 	 * Move callbacks are processed on a separate taskq so that client code
4544 	 * does not interfere with internal maintenance tasks.
4545 	 */
4546 	kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4547 	    minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4548 }
4549 
4550 void
4551 kmem_thread_init(void)
4552 {
4553 	kmem_move_init();
4554 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4555 	    300, INT_MAX, TASKQ_PREPOPULATE);
4556 }
4557 
4558 void
4559 kmem_mp_init(void)
4560 {
4561 	mutex_enter(&cpu_lock);
4562 	register_cpu_setup_func(kmem_cpu_setup, NULL);
4563 	mutex_exit(&cpu_lock);
4564 
4565 	kmem_update_timeout(NULL);
4566 
4567 	taskq_mp_init();
4568 }
4569 
4570 /*
4571  * Return the slab of the allocated buffer, or NULL if the buffer is not
4572  * allocated. This function may be called with a known slab address to determine
4573  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4574  * an allocated buffer's slab.
4575  */
4576 static kmem_slab_t *
4577 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4578 {
4579 	kmem_bufctl_t *bcp, *bufbcp;
4580 
4581 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4582 	ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4583 
4584 	if (cp->cache_flags & KMF_HASH) {
4585 		for (bcp = *KMEM_HASH(cp, buf);
4586 		    (bcp != NULL) && (bcp->bc_addr != buf);
4587 		    bcp = bcp->bc_next) {
4588 			continue;
4589 		}
4590 		ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4591 		return (bcp == NULL ? NULL : bcp->bc_slab);
4592 	}
4593 
4594 	if (sp == NULL) {
4595 		sp = KMEM_SLAB(cp, buf);
4596 	}
4597 	bufbcp = KMEM_BUFCTL(cp, buf);
4598 	for (bcp = sp->slab_head;
4599 	    (bcp != NULL) && (bcp != bufbcp);
4600 	    bcp = bcp->bc_next) {
4601 		continue;
4602 	}
4603 	return (bcp == NULL ? sp : NULL);
4604 }
4605 
4606 static boolean_t
4607 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4608 {
4609 	long refcnt = sp->slab_refcnt;
4610 
4611 	ASSERT(cp->cache_defrag != NULL);
4612 
4613 	/*
4614 	 * For code coverage we want to be able to move an object within the
4615 	 * same slab (the only partial slab) even if allocating the destination
4616 	 * buffer resulted in a completely allocated slab.
4617 	 */
4618 	if (flags & KMM_DEBUG) {
4619 		return ((flags & KMM_DESPERATE) ||
4620 		    ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4621 	}
4622 
4623 	/* If we're desperate, we don't care if the client said NO. */
4624 	if (flags & KMM_DESPERATE) {
4625 		return (refcnt < sp->slab_chunks); /* any partial */
4626 	}
4627 
4628 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4629 		return (B_FALSE);
4630 	}
4631 
4632 	if ((refcnt == 1) || kmem_move_any_partial) {
4633 		return (refcnt < sp->slab_chunks);
4634 	}
4635 
4636 	/*
4637 	 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4638 	 * slabs with a progressively higher percentage of used buffers can be
4639 	 * reclaimed until the cache as a whole is no longer fragmented.
4640 	 *
4641 	 *	sp->slab_refcnt   kmd_reclaim_numer
4642 	 *	--------------- < ------------------
4643 	 *	sp->slab_chunks   KMEM_VOID_FRACTION
4644 	 */
4645 	return ((refcnt * KMEM_VOID_FRACTION) <
4646 	    (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4647 }
4648 
4649 static void *
4650 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf,
4651     void *tbuf)
4652 {
4653 	int i;		/* magazine round index */
4654 
4655 	for (i = 0; i < n; i++) {
4656 		if (buf == m->mag_round[i]) {
4657 			if (cp->cache_flags & KMF_BUFTAG) {
4658 				(void) kmem_cache_free_debug(cp, tbuf,
4659 				    caller());
4660 			}
4661 			m->mag_round[i] = tbuf;
4662 			return (buf);
4663 		}
4664 	}
4665 
4666 	return (NULL);
4667 }
4668 
4669 /*
4670  * Hunt the magazine layer for the given buffer. If found, the buffer is
4671  * removed from the magazine layer and returned, otherwise NULL is returned.
4672  * The state of the returned buffer is freed and constructed.
4673  */
4674 static void *
4675 kmem_hunt_mags(kmem_cache_t *cp, void *buf)
4676 {
4677 	kmem_cpu_cache_t *ccp;
4678 	kmem_magazine_t	*m;
4679 	int cpu_seqid;
4680 	int n;		/* magazine rounds */
4681 	void *tbuf;	/* temporary swap buffer */
4682 
4683 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4684 
4685 	/*
4686 	 * Allocated a buffer to swap with the one we hope to pull out of a
4687 	 * magazine when found.
4688 	 */
4689 	tbuf = kmem_cache_alloc(cp, KM_NOSLEEP);
4690 	if (tbuf == NULL) {
4691 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail);
4692 		return (NULL);
4693 	}
4694 	if (tbuf == buf) {
4695 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky);
4696 		if (cp->cache_flags & KMF_BUFTAG) {
4697 			(void) kmem_cache_free_debug(cp, buf, caller());
4698 		}
4699 		return (buf);
4700 	}
4701 
4702 	/* Hunt the depot. */
4703 	mutex_enter(&cp->cache_depot_lock);
4704 	n = cp->cache_magtype->mt_magsize;
4705 	for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) {
4706 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4707 			mutex_exit(&cp->cache_depot_lock);
4708 			return (buf);
4709 		}
4710 	}
4711 	mutex_exit(&cp->cache_depot_lock);
4712 
4713 	/* Hunt the per-CPU magazines. */
4714 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4715 		ccp = &cp->cache_cpu[cpu_seqid];
4716 
4717 		mutex_enter(&ccp->cc_lock);
4718 		m = ccp->cc_loaded;
4719 		n = ccp->cc_rounds;
4720 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4721 			mutex_exit(&ccp->cc_lock);
4722 			return (buf);
4723 		}
4724 		m = ccp->cc_ploaded;
4725 		n = ccp->cc_prounds;
4726 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4727 			mutex_exit(&ccp->cc_lock);
4728 			return (buf);
4729 		}
4730 		mutex_exit(&ccp->cc_lock);
4731 	}
4732 
4733 	kmem_cache_free(cp, tbuf);
4734 	return (NULL);
4735 }
4736 
4737 /*
4738  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4739  * or when the buffer is freed.
4740  */
4741 static void
4742 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4743 {
4744 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4745 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4746 
4747 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4748 		return;
4749 	}
4750 
4751 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4752 		if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4753 			avl_remove(&cp->cache_partial_slabs, sp);
4754 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4755 			sp->slab_stuck_offset = (uint32_t)-1;
4756 			avl_add(&cp->cache_partial_slabs, sp);
4757 		}
4758 	} else {
4759 		sp->slab_later_count = 0;
4760 		sp->slab_stuck_offset = (uint32_t)-1;
4761 	}
4762 }
4763 
4764 static void
4765 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4766 {
4767 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4768 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4769 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4770 
4771 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4772 		return;
4773 	}
4774 
4775 	avl_remove(&cp->cache_partial_slabs, sp);
4776 	sp->slab_later_count = 0;
4777 	sp->slab_flags |= KMEM_SLAB_NOMOVE;
4778 	sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4779 	avl_add(&cp->cache_partial_slabs, sp);
4780 }
4781 
4782 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4783 
4784 /*
4785  * The move callback takes two buffer addresses, the buffer to be moved, and a
4786  * newly allocated and constructed buffer selected by kmem as the destination.
4787  * It also takes the size of the buffer and an optional user argument specified
4788  * at cache creation time. kmem guarantees that the buffer to be moved has not
4789  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4790  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4791  * the client to safely determine whether or not it is still using the buffer.
4792  * The client must not free either of the buffers passed to the move callback,
4793  * since kmem wants to free them directly to the slab layer. The client response
4794  * tells kmem which of the two buffers to free:
4795  *
4796  * YES		kmem frees the old buffer (the move was successful)
4797  * NO		kmem frees the new buffer, marks the slab of the old buffer
4798  *              non-reclaimable to avoid bothering the client again
4799  * LATER	kmem frees the new buffer, increments slab_later_count
4800  * DONT_KNOW	kmem frees the new buffer, searches mags for the old buffer
4801  * DONT_NEED	kmem frees both the old buffer and the new buffer
4802  *
4803  * The pending callback argument now being processed contains both of the
4804  * buffers (old and new) passed to the move callback function, the slab of the
4805  * old buffer, and flags related to the move request, such as whether or not the
4806  * system was desperate for memory.
4807  *
4808  * Slabs are not freed while there is a pending callback, but instead are kept
4809  * on a deadlist, which is drained after the last callback completes. This means
4810  * that slabs are safe to access until kmem_move_end(), no matter how many of
4811  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4812  * zero for as long as the slab remains on the deadlist and until the slab is
4813  * freed.
4814  */
4815 static void
4816 kmem_move_buffer(kmem_move_t *callback)
4817 {
4818 	kmem_cbrc_t response;
4819 	kmem_slab_t *sp = callback->kmm_from_slab;
4820 	kmem_cache_t *cp = sp->slab_cache;
4821 	boolean_t free_on_slab;
4822 
4823 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4824 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4825 	ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4826 
4827 	/*
4828 	 * The number of allocated buffers on the slab may have changed since we
4829 	 * last checked the slab's reclaimability (when the pending move was
4830 	 * enqueued), or the client may have responded NO when asked to move
4831 	 * another buffer on the same slab.
4832 	 */
4833 	if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4834 		KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable);
4835 		KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4836 		    kmem_move_stats.kms_notify_no_longer_reclaimable);
4837 		kmem_slab_free(cp, callback->kmm_to_buf);
4838 		kmem_move_end(cp, callback);
4839 		return;
4840 	}
4841 
4842 	/*
4843 	 * Hunting magazines is expensive, so we'll wait to do that until the
4844 	 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer
4845 	 * is cheap, so we might as well do that here in case we can avoid
4846 	 * bothering the client.
4847 	 */
4848 	mutex_enter(&cp->cache_lock);
4849 	free_on_slab = (kmem_slab_allocated(cp, sp,
4850 	    callback->kmm_from_buf) == NULL);
4851 	mutex_exit(&cp->cache_lock);
4852 
4853 	if (free_on_slab) {
4854 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab);
4855 		kmem_slab_free(cp, callback->kmm_to_buf);
4856 		kmem_move_end(cp, callback);
4857 		return;
4858 	}
4859 
4860 	if (cp->cache_flags & KMF_BUFTAG) {
4861 		/*
4862 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
4863 		 */
4864 		if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4865 		    KM_NOSLEEP, 1, caller()) != 0) {
4866 			KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail);
4867 			kmem_move_end(cp, callback);
4868 			return;
4869 		}
4870 	} else if (cp->cache_constructor != NULL &&
4871 	    cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4872 	    KM_NOSLEEP) != 0) {
4873 		atomic_add_64(&cp->cache_alloc_fail, 1);
4874 		KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail);
4875 		kmem_slab_free(cp, callback->kmm_to_buf);
4876 		kmem_move_end(cp, callback);
4877 		return;
4878 	}
4879 
4880 	KMEM_STAT_ADD(kmem_move_stats.kms_callbacks);
4881 	KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4882 	    kmem_move_stats.kms_notify_callbacks);
4883 	cp->cache_defrag->kmd_callbacks++;
4884 	cp->cache_defrag->kmd_thread = curthread;
4885 	cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4886 	cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4887 	DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4888 	    callback);
4889 
4890 	response = cp->cache_move(callback->kmm_from_buf,
4891 	    callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4892 
4893 	DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4894 	    callback, kmem_cbrc_t, response);
4895 	cp->cache_defrag->kmd_thread = NULL;
4896 	cp->cache_defrag->kmd_from_buf = NULL;
4897 	cp->cache_defrag->kmd_to_buf = NULL;
4898 
4899 	if (response == KMEM_CBRC_YES) {
4900 		KMEM_STAT_ADD(kmem_move_stats.kms_yes);
4901 		cp->cache_defrag->kmd_yes++;
4902 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4903 		/* slab safe to access until kmem_move_end() */
4904 		if (sp->slab_refcnt == 0)
4905 			cp->cache_defrag->kmd_slabs_freed++;
4906 		mutex_enter(&cp->cache_lock);
4907 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4908 		mutex_exit(&cp->cache_lock);
4909 		kmem_move_end(cp, callback);
4910 		return;
4911 	}
4912 
4913 	switch (response) {
4914 	case KMEM_CBRC_NO:
4915 		KMEM_STAT_ADD(kmem_move_stats.kms_no);
4916 		cp->cache_defrag->kmd_no++;
4917 		mutex_enter(&cp->cache_lock);
4918 		kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4919 		mutex_exit(&cp->cache_lock);
4920 		break;
4921 	case KMEM_CBRC_LATER:
4922 		KMEM_STAT_ADD(kmem_move_stats.kms_later);
4923 		cp->cache_defrag->kmd_later++;
4924 		mutex_enter(&cp->cache_lock);
4925 		if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4926 			mutex_exit(&cp->cache_lock);
4927 			break;
4928 		}
4929 
4930 		if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4931 			KMEM_STAT_ADD(kmem_move_stats.kms_disbelief);
4932 			kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4933 		} else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4934 			sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4935 			    callback->kmm_from_buf);
4936 		}
4937 		mutex_exit(&cp->cache_lock);
4938 		break;
4939 	case KMEM_CBRC_DONT_NEED:
4940 		KMEM_STAT_ADD(kmem_move_stats.kms_dont_need);
4941 		cp->cache_defrag->kmd_dont_need++;
4942 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4943 		if (sp->slab_refcnt == 0)
4944 			cp->cache_defrag->kmd_slabs_freed++;
4945 		mutex_enter(&cp->cache_lock);
4946 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4947 		mutex_exit(&cp->cache_lock);
4948 		break;
4949 	case KMEM_CBRC_DONT_KNOW:
4950 		KMEM_STAT_ADD(kmem_move_stats.kms_dont_know);
4951 		cp->cache_defrag->kmd_dont_know++;
4952 		if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) {
4953 			KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag);
4954 			cp->cache_defrag->kmd_hunt_found++;
4955 			kmem_slab_free_constructed(cp, callback->kmm_from_buf,
4956 			    B_TRUE);
4957 			if (sp->slab_refcnt == 0)
4958 				cp->cache_defrag->kmd_slabs_freed++;
4959 			mutex_enter(&cp->cache_lock);
4960 			kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4961 			mutex_exit(&cp->cache_lock);
4962 		}
4963 		break;
4964 	default:
4965 		panic("'%s' (%p) unexpected move callback response %d\n",
4966 		    cp->cache_name, (void *)cp, response);
4967 	}
4968 
4969 	kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4970 	kmem_move_end(cp, callback);
4971 }
4972 
4973 /* Return B_FALSE if there is insufficient memory for the move request. */
4974 static boolean_t
4975 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4976 {
4977 	void *to_buf;
4978 	avl_index_t index;
4979 	kmem_move_t *callback, *pending;
4980 	ulong_t n;
4981 
4982 	ASSERT(taskq_member(kmem_taskq, curthread));
4983 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4984 	ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4985 
4986 	callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4987 	if (callback == NULL) {
4988 		KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail);
4989 		return (B_FALSE);
4990 	}
4991 
4992 	callback->kmm_from_slab = sp;
4993 	callback->kmm_from_buf = buf;
4994 	callback->kmm_flags = flags;
4995 
4996 	mutex_enter(&cp->cache_lock);
4997 
4998 	n = avl_numnodes(&cp->cache_partial_slabs);
4999 	if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
5000 		mutex_exit(&cp->cache_lock);
5001 		kmem_cache_free(kmem_move_cache, callback);
5002 		return (B_TRUE); /* there is no need for the move request */
5003 	}
5004 
5005 	pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
5006 	if (pending != NULL) {
5007 		/*
5008 		 * If the move is already pending and we're desperate now,
5009 		 * update the move flags.
5010 		 */
5011 		if (flags & KMM_DESPERATE) {
5012 			pending->kmm_flags |= KMM_DESPERATE;
5013 		}
5014 		mutex_exit(&cp->cache_lock);
5015 		KMEM_STAT_ADD(kmem_move_stats.kms_already_pending);
5016 		kmem_cache_free(kmem_move_cache, callback);
5017 		return (B_TRUE);
5018 	}
5019 
5020 	to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
5021 	    B_FALSE);
5022 	callback->kmm_to_buf = to_buf;
5023 	avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
5024 
5025 	mutex_exit(&cp->cache_lock);
5026 
5027 	if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
5028 	    callback, TQ_NOSLEEP)) {
5029 		KMEM_STAT_ADD(kmem_move_stats.kms_callback_taskq_fail);
5030 		mutex_enter(&cp->cache_lock);
5031 		avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
5032 		mutex_exit(&cp->cache_lock);
5033 		kmem_slab_free(cp, to_buf);
5034 		kmem_cache_free(kmem_move_cache, callback);
5035 		return (B_FALSE);
5036 	}
5037 
5038 	return (B_TRUE);
5039 }
5040 
5041 static void
5042 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
5043 {
5044 	avl_index_t index;
5045 
5046 	ASSERT(cp->cache_defrag != NULL);
5047 	ASSERT(taskq_member(kmem_move_taskq, curthread));
5048 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
5049 
5050 	mutex_enter(&cp->cache_lock);
5051 	VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
5052 	    callback->kmm_from_buf, &index) != NULL);
5053 	avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
5054 	if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
5055 		list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5056 		kmem_slab_t *sp;
5057 
5058 		/*
5059 		 * The last pending move completed. Release all slabs from the
5060 		 * front of the dead list except for any slab at the tail that
5061 		 * needs to be released from the context of kmem_move_buffers().
5062 		 * kmem deferred unmapping the buffers on these slabs in order
5063 		 * to guarantee that buffers passed to the move callback have
5064 		 * been touched only by kmem or by the client itself.
5065 		 */
5066 		while ((sp = list_remove_head(deadlist)) != NULL) {
5067 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
5068 				list_insert_tail(deadlist, sp);
5069 				break;
5070 			}
5071 			cp->cache_defrag->kmd_deadcount--;
5072 			cp->cache_slab_destroy++;
5073 			mutex_exit(&cp->cache_lock);
5074 			kmem_slab_destroy(cp, sp);
5075 			KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
5076 			mutex_enter(&cp->cache_lock);
5077 		}
5078 	}
5079 	mutex_exit(&cp->cache_lock);
5080 	kmem_cache_free(kmem_move_cache, callback);
5081 }
5082 
5083 /*
5084  * Move buffers from least used slabs first by scanning backwards from the end
5085  * of the partial slab list. Scan at most max_scan candidate slabs and move
5086  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
5087  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
5088  * skip slabs with a ratio of allocated buffers at or above the current
5089  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
5090  * scan is aborted) so that the caller can adjust the reclaimability threshold
5091  * depending on how many reclaimable slabs it finds.
5092  *
5093  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
5094  * move request, since it is not valid for kmem_move_begin() to call
5095  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
5096  */
5097 static int
5098 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
5099     int flags)
5100 {
5101 	kmem_slab_t *sp;
5102 	void *buf;
5103 	int i, j; /* slab index, buffer index */
5104 	int s; /* reclaimable slabs */
5105 	int b; /* allocated (movable) buffers on reclaimable slab */
5106 	boolean_t success;
5107 	int refcnt;
5108 	int nomove;
5109 
5110 	ASSERT(taskq_member(kmem_taskq, curthread));
5111 	ASSERT(MUTEX_HELD(&cp->cache_lock));
5112 	ASSERT(kmem_move_cache != NULL);
5113 	ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
5114 	ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
5115 	    avl_numnodes(&cp->cache_partial_slabs) > 1);
5116 
5117 	if (kmem_move_blocked) {
5118 		return (0);
5119 	}
5120 
5121 	if (kmem_move_fulltilt) {
5122 		flags |= KMM_DESPERATE;
5123 	}
5124 
5125 	if (max_scan == 0 || (flags & KMM_DESPERATE)) {
5126 		/*
5127 		 * Scan as many slabs as needed to find the desired number of
5128 		 * candidate slabs.
5129 		 */
5130 		max_scan = (size_t)-1;
5131 	}
5132 
5133 	if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
5134 		/* Find as many candidate slabs as possible. */
5135 		max_slabs = (size_t)-1;
5136 	}
5137 
5138 	sp = avl_last(&cp->cache_partial_slabs);
5139 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
5140 	for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
5141 	    ((sp != avl_first(&cp->cache_partial_slabs)) ||
5142 	    (flags & KMM_DEBUG));
5143 	    sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5144 
5145 		if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5146 			continue;
5147 		}
5148 		s++;
5149 
5150 		/* Look for allocated buffers to move. */
5151 		for (j = 0, b = 0, buf = sp->slab_base;
5152 		    (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5153 		    buf = (((char *)buf) + cp->cache_chunksize), j++) {
5154 
5155 			if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5156 				continue;
5157 			}
5158 
5159 			b++;
5160 
5161 			/*
5162 			 * Prevent the slab from being destroyed while we drop
5163 			 * cache_lock and while the pending move is not yet
5164 			 * registered. Flag the pending move while
5165 			 * kmd_moves_pending may still be empty, since we can't
5166 			 * yet rely on a non-zero pending move count to prevent
5167 			 * the slab from being destroyed.
5168 			 */
5169 			ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5170 			sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5171 			/*
5172 			 * Recheck refcnt and nomove after reacquiring the lock,
5173 			 * since these control the order of partial slabs, and
5174 			 * we want to know if we can pick up the scan where we
5175 			 * left off.
5176 			 */
5177 			refcnt = sp->slab_refcnt;
5178 			nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5179 			mutex_exit(&cp->cache_lock);
5180 
5181 			success = kmem_move_begin(cp, sp, buf, flags);
5182 
5183 			/*
5184 			 * Now, before the lock is reacquired, kmem could
5185 			 * process all pending move requests and purge the
5186 			 * deadlist, so that upon reacquiring the lock, sp has
5187 			 * been remapped. Or, the client may free all the
5188 			 * objects on the slab while the pending moves are still
5189 			 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5190 			 * flag causes the slab to be put at the end of the
5191 			 * deadlist and prevents it from being destroyed, since
5192 			 * we plan to destroy it here after reacquiring the
5193 			 * lock.
5194 			 */
5195 			mutex_enter(&cp->cache_lock);
5196 			ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5197 			sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5198 
5199 			if (sp->slab_refcnt == 0) {
5200 				list_t *deadlist =
5201 				    &cp->cache_defrag->kmd_deadlist;
5202 				list_remove(deadlist, sp);
5203 
5204 				if (!avl_is_empty(
5205 				    &cp->cache_defrag->kmd_moves_pending)) {
5206 					/*
5207 					 * A pending move makes it unsafe to
5208 					 * destroy the slab, because even though
5209 					 * the move is no longer needed, the
5210 					 * context where that is determined
5211 					 * requires the slab to exist.
5212 					 * Fortunately, a pending move also
5213 					 * means we don't need to destroy the
5214 					 * slab here, since it will get
5215 					 * destroyed along with any other slabs
5216 					 * on the deadlist after the last
5217 					 * pending move completes.
5218 					 */
5219 					list_insert_head(deadlist, sp);
5220 					KMEM_STAT_ADD(kmem_move_stats.
5221 					    kms_endscan_slab_dead);
5222 					return (-1);
5223 				}
5224 
5225 				/*
5226 				 * Destroy the slab now if it was completely
5227 				 * freed while we dropped cache_lock and there
5228 				 * are no pending moves. Since slab_refcnt
5229 				 * cannot change once it reaches zero, no new
5230 				 * pending moves from that slab are possible.
5231 				 */
5232 				cp->cache_defrag->kmd_deadcount--;
5233 				cp->cache_slab_destroy++;
5234 				mutex_exit(&cp->cache_lock);
5235 				kmem_slab_destroy(cp, sp);
5236 				KMEM_STAT_ADD(kmem_move_stats.
5237 				    kms_dead_slabs_freed);
5238 				KMEM_STAT_ADD(kmem_move_stats.
5239 				    kms_endscan_slab_destroyed);
5240 				mutex_enter(&cp->cache_lock);
5241 				/*
5242 				 * Since we can't pick up the scan where we left
5243 				 * off, abort the scan and say nothing about the
5244 				 * number of reclaimable slabs.
5245 				 */
5246 				return (-1);
5247 			}
5248 
5249 			if (!success) {
5250 				/*
5251 				 * Abort the scan if there is not enough memory
5252 				 * for the request and say nothing about the
5253 				 * number of reclaimable slabs.
5254 				 */
5255 				KMEM_STAT_COND_ADD(s < max_slabs,
5256 				    kmem_move_stats.kms_endscan_nomem);
5257 				return (-1);
5258 			}
5259 
5260 			/*
5261 			 * The slab's position changed while the lock was
5262 			 * dropped, so we don't know where we are in the
5263 			 * sequence any more.
5264 			 */
5265 			if (sp->slab_refcnt != refcnt) {
5266 				/*
5267 				 * If this is a KMM_DEBUG move, the slab_refcnt
5268 				 * may have changed because we allocated a
5269 				 * destination buffer on the same slab. In that
5270 				 * case, we're not interested in counting it.
5271 				 */
5272 				KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
5273 				    (s < max_slabs),
5274 				    kmem_move_stats.kms_endscan_refcnt_changed);
5275 				return (-1);
5276 			}
5277 			if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) {
5278 				KMEM_STAT_COND_ADD(s < max_slabs,
5279 				    kmem_move_stats.kms_endscan_nomove_changed);
5280 				return (-1);
5281 			}
5282 
5283 			/*
5284 			 * Generating a move request allocates a destination
5285 			 * buffer from the slab layer, bumping the first partial
5286 			 * slab if it is completely allocated. If the current
5287 			 * slab becomes the first partial slab as a result, we
5288 			 * can't continue to scan backwards.
5289 			 *
5290 			 * If this is a KMM_DEBUG move and we allocated the
5291 			 * destination buffer from the last partial slab, then
5292 			 * the buffer we're moving is on the same slab and our
5293 			 * slab_refcnt has changed, causing us to return before
5294 			 * reaching here if there are no partial slabs left.
5295 			 */
5296 			ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5297 			if (sp == avl_first(&cp->cache_partial_slabs)) {
5298 				/*
5299 				 * We're not interested in a second KMM_DEBUG
5300 				 * move.
5301 				 */
5302 				goto end_scan;
5303 			}
5304 		}
5305 	}
5306 end_scan:
5307 
5308 	KMEM_STAT_COND_ADD(!(flags & KMM_DEBUG) &&
5309 	    (s < max_slabs) &&
5310 	    (sp == avl_first(&cp->cache_partial_slabs)),
5311 	    kmem_move_stats.kms_endscan_freelist);
5312 
5313 	return (s);
5314 }
5315 
5316 typedef struct kmem_move_notify_args {
5317 	kmem_cache_t *kmna_cache;
5318 	void *kmna_buf;
5319 } kmem_move_notify_args_t;
5320 
5321 static void
5322 kmem_cache_move_notify_task(void *arg)
5323 {
5324 	kmem_move_notify_args_t *args = arg;
5325 	kmem_cache_t *cp = args->kmna_cache;
5326 	void *buf = args->kmna_buf;
5327 	kmem_slab_t *sp;
5328 
5329 	ASSERT(taskq_member(kmem_taskq, curthread));
5330 	ASSERT(list_link_active(&cp->cache_link));
5331 
5332 	kmem_free(args, sizeof (kmem_move_notify_args_t));
5333 	mutex_enter(&cp->cache_lock);
5334 	sp = kmem_slab_allocated(cp, NULL, buf);
5335 
5336 	/* Ignore the notification if the buffer is no longer allocated. */
5337 	if (sp == NULL) {
5338 		mutex_exit(&cp->cache_lock);
5339 		return;
5340 	}
5341 
5342 	/* Ignore the notification if there's no reason to move the buffer. */
5343 	if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5344 		/*
5345 		 * So far the notification is not ignored. Ignore the
5346 		 * notification if the slab is not marked by an earlier refusal
5347 		 * to move a buffer.
5348 		 */
5349 		if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5350 		    (sp->slab_later_count == 0)) {
5351 			mutex_exit(&cp->cache_lock);
5352 			return;
5353 		}
5354 
5355 		kmem_slab_move_yes(cp, sp, buf);
5356 		ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5357 		sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5358 		mutex_exit(&cp->cache_lock);
5359 		/* see kmem_move_buffers() about dropping the lock */
5360 		(void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5361 		mutex_enter(&cp->cache_lock);
5362 		ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5363 		sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5364 		if (sp->slab_refcnt == 0) {
5365 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5366 			list_remove(deadlist, sp);
5367 
5368 			if (!avl_is_empty(
5369 			    &cp->cache_defrag->kmd_moves_pending)) {
5370 				list_insert_head(deadlist, sp);
5371 				mutex_exit(&cp->cache_lock);
5372 				KMEM_STAT_ADD(kmem_move_stats.
5373 				    kms_notify_slab_dead);
5374 				return;
5375 			}
5376 
5377 			cp->cache_defrag->kmd_deadcount--;
5378 			cp->cache_slab_destroy++;
5379 			mutex_exit(&cp->cache_lock);
5380 			kmem_slab_destroy(cp, sp);
5381 			KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
5382 			KMEM_STAT_ADD(kmem_move_stats.
5383 			    kms_notify_slab_destroyed);
5384 			return;
5385 		}
5386 	} else {
5387 		kmem_slab_move_yes(cp, sp, buf);
5388 	}
5389 	mutex_exit(&cp->cache_lock);
5390 }
5391 
5392 void
5393 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5394 {
5395 	kmem_move_notify_args_t *args;
5396 
5397 	KMEM_STAT_ADD(kmem_move_stats.kms_notify);
5398 	args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5399 	if (args != NULL) {
5400 		args->kmna_cache = cp;
5401 		args->kmna_buf = buf;
5402 		if (!taskq_dispatch(kmem_taskq,
5403 		    (task_func_t *)kmem_cache_move_notify_task, args,
5404 		    TQ_NOSLEEP))
5405 			kmem_free(args, sizeof (kmem_move_notify_args_t));
5406 	}
5407 }
5408 
5409 static void
5410 kmem_cache_defrag(kmem_cache_t *cp)
5411 {
5412 	size_t n;
5413 
5414 	ASSERT(cp->cache_defrag != NULL);
5415 
5416 	mutex_enter(&cp->cache_lock);
5417 	n = avl_numnodes(&cp->cache_partial_slabs);
5418 	if (n > 1) {
5419 		/* kmem_move_buffers() drops and reacquires cache_lock */
5420 		KMEM_STAT_ADD(kmem_move_stats.kms_defrags);
5421 		cp->cache_defrag->kmd_defrags++;
5422 		(void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5423 	}
5424 	mutex_exit(&cp->cache_lock);
5425 }
5426 
5427 /* Is this cache above the fragmentation threshold? */
5428 static boolean_t
5429 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5430 {
5431 	/*
5432 	 *	nfree		kmem_frag_numer
5433 	 * ------------------ > ---------------
5434 	 * cp->cache_buftotal	kmem_frag_denom
5435 	 */
5436 	return ((nfree * kmem_frag_denom) >
5437 	    (cp->cache_buftotal * kmem_frag_numer));
5438 }
5439 
5440 static boolean_t
5441 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5442 {
5443 	boolean_t fragmented;
5444 	uint64_t nfree;
5445 
5446 	ASSERT(MUTEX_HELD(&cp->cache_lock));
5447 	*doreap = B_FALSE;
5448 
5449 	if (kmem_move_fulltilt) {
5450 		if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5451 			return (B_TRUE);
5452 		}
5453 	} else {
5454 		if ((cp->cache_complete_slab_count + avl_numnodes(
5455 		    &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5456 			return (B_FALSE);
5457 		}
5458 	}
5459 
5460 	nfree = cp->cache_bufslab;
5461 	fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5462 	    kmem_cache_frag_threshold(cp, nfree));
5463 
5464 	/*
5465 	 * Free buffers in the magazine layer appear allocated from the point of
5466 	 * view of the slab layer. We want to know if the slab layer would
5467 	 * appear fragmented if we included free buffers from magazines that
5468 	 * have fallen out of the working set.
5469 	 */
5470 	if (!fragmented) {
5471 		long reap;
5472 
5473 		mutex_enter(&cp->cache_depot_lock);
5474 		reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5475 		reap = MIN(reap, cp->cache_full.ml_total);
5476 		mutex_exit(&cp->cache_depot_lock);
5477 
5478 		nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5479 		if (kmem_cache_frag_threshold(cp, nfree)) {
5480 			*doreap = B_TRUE;
5481 		}
5482 	}
5483 
5484 	return (fragmented);
5485 }
5486 
5487 /* Called periodically from kmem_taskq */
5488 static void
5489 kmem_cache_scan(kmem_cache_t *cp)
5490 {
5491 	boolean_t reap = B_FALSE;
5492 	kmem_defrag_t *kmd;
5493 
5494 	ASSERT(taskq_member(kmem_taskq, curthread));
5495 
5496 	mutex_enter(&cp->cache_lock);
5497 
5498 	kmd = cp->cache_defrag;
5499 	if (kmd->kmd_consolidate > 0) {
5500 		kmd->kmd_consolidate--;
5501 		mutex_exit(&cp->cache_lock);
5502 		kmem_cache_reap(cp);
5503 		return;
5504 	}
5505 
5506 	if (kmem_cache_is_fragmented(cp, &reap)) {
5507 		size_t slabs_found;
5508 
5509 		/*
5510 		 * Consolidate reclaimable slabs from the end of the partial
5511 		 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5512 		 * reclaimable slabs). Keep track of how many candidate slabs we
5513 		 * looked for and how many we actually found so we can adjust
5514 		 * the definition of a candidate slab if we're having trouble
5515 		 * finding them.
5516 		 *
5517 		 * kmem_move_buffers() drops and reacquires cache_lock.
5518 		 */
5519 		KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5520 		kmd->kmd_scans++;
5521 		slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5522 		    kmem_reclaim_max_slabs, 0);
5523 		if (slabs_found >= 0) {
5524 			kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5525 			kmd->kmd_slabs_found += slabs_found;
5526 		}
5527 
5528 		if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5529 			kmd->kmd_tries = 0;
5530 
5531 			/*
5532 			 * If we had difficulty finding candidate slabs in
5533 			 * previous scans, adjust the threshold so that
5534 			 * candidates are easier to find.
5535 			 */
5536 			if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5537 				kmem_adjust_reclaim_threshold(kmd, -1);
5538 			} else if ((kmd->kmd_slabs_found * 2) <
5539 			    kmd->kmd_slabs_sought) {
5540 				kmem_adjust_reclaim_threshold(kmd, 1);
5541 			}
5542 			kmd->kmd_slabs_sought = 0;
5543 			kmd->kmd_slabs_found = 0;
5544 		}
5545 	} else {
5546 		kmem_reset_reclaim_threshold(cp->cache_defrag);
5547 #ifdef	DEBUG
5548 		if (!avl_is_empty(&cp->cache_partial_slabs)) {
5549 			/*
5550 			 * In a debug kernel we want the consolidator to
5551 			 * run occasionally even when there is plenty of
5552 			 * memory.
5553 			 */
5554 			uint16_t debug_rand;
5555 
5556 			(void) random_get_bytes((uint8_t *)&debug_rand, 2);
5557 			if (!kmem_move_noreap &&
5558 			    ((debug_rand % kmem_mtb_reap) == 0)) {
5559 				mutex_exit(&cp->cache_lock);
5560 				KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps);
5561 				kmem_cache_reap(cp);
5562 				return;
5563 			} else if ((debug_rand % kmem_mtb_move) == 0) {
5564 				KMEM_STAT_ADD(kmem_move_stats.kms_scans);
5565 				KMEM_STAT_ADD(kmem_move_stats.kms_debug_scans);
5566 				kmd->kmd_scans++;
5567 				(void) kmem_move_buffers(cp,
5568 				    kmem_reclaim_scan_range, 1, KMM_DEBUG);
5569 			}
5570 		}
5571 #endif	/* DEBUG */
5572 	}
5573 
5574 	mutex_exit(&cp->cache_lock);
5575 
5576 	if (reap) {
5577 		KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps);
5578 		kmem_depot_ws_reap(cp);
5579 	}
5580 }
5581