1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * Kernel memory allocator, as described in the following two papers and a 29 * statement about the consolidator: 30 * 31 * Jeff Bonwick, 32 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 33 * Proceedings of the Summer 1994 Usenix Conference. 34 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 35 * 36 * Jeff Bonwick and Jonathan Adams, 37 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 38 * Arbitrary Resources. 39 * Proceedings of the 2001 Usenix Conference. 40 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 41 * 42 * kmem Slab Consolidator Big Theory Statement: 43 * 44 * 1. Motivation 45 * 46 * As stated in Bonwick94, slabs provide the following advantages over other 47 * allocation structures in terms of memory fragmentation: 48 * 49 * - Internal fragmentation (per-buffer wasted space) is minimal. 50 * - Severe external fragmentation (unused buffers on the free list) is 51 * unlikely. 52 * 53 * Segregating objects by size eliminates one source of external fragmentation, 54 * and according to Bonwick: 55 * 56 * The other reason that slabs reduce external fragmentation is that all 57 * objects in a slab are of the same type, so they have the same lifetime 58 * distribution. The resulting segregation of short-lived and long-lived 59 * objects at slab granularity reduces the likelihood of an entire page being 60 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 61 * 62 * While unlikely, severe external fragmentation remains possible. Clients that 63 * allocate both short- and long-lived objects from the same cache cannot 64 * anticipate the distribution of long-lived objects within the allocator's slab 65 * implementation. Even a small percentage of long-lived objects distributed 66 * randomly across many slabs can lead to a worst case scenario where the client 67 * frees the majority of its objects and the system gets back almost none of the 68 * slabs. Despite the client doing what it reasonably can to help the system 69 * reclaim memory, the allocator cannot shake free enough slabs because of 70 * lonely allocations stubbornly hanging on. Although the allocator is in a 71 * position to diagnose the fragmentation, there is nothing that the allocator 72 * by itself can do about it. It only takes a single allocated object to prevent 73 * an entire slab from being reclaimed, and any object handed out by 74 * kmem_cache_alloc() is by definition in the client's control. Conversely, 75 * although the client is in a position to move a long-lived object, it has no 76 * way of knowing if the object is causing fragmentation, and if so, where to 77 * move it. A solution necessarily requires further cooperation between the 78 * allocator and the client. 79 * 80 * 2. Move Callback 81 * 82 * The kmem slab consolidator therefore adds a move callback to the 83 * allocator/client interface, improving worst-case external fragmentation in 84 * kmem caches that supply a function to move objects from one memory location 85 * to another. In a situation of low memory kmem attempts to consolidate all of 86 * a cache's slabs at once; otherwise it works slowly to bring external 87 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 88 * thereby helping to avoid a low memory situation in the future. 89 * 90 * The callback has the following signature: 91 * 92 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 93 * 94 * It supplies the kmem client with two addresses: the allocated object that 95 * kmem wants to move and a buffer selected by kmem for the client to use as the 96 * copy destination. The callback is kmem's way of saying "Please get off of 97 * this buffer and use this one instead." kmem knows where it wants to move the 98 * object in order to best reduce fragmentation. All the client needs to know 99 * about the second argument (void *new) is that it is an allocated, constructed 100 * object ready to take the contents of the old object. When the move function 101 * is called, the system is likely to be low on memory, and the new object 102 * spares the client from having to worry about allocating memory for the 103 * requested move. The third argument supplies the size of the object, in case a 104 * single move function handles multiple caches whose objects differ only in 105 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 106 * user argument passed to the constructor, destructor, and reclaim functions is 107 * also passed to the move callback. 108 * 109 * 2.1 Setting the Move Callback 110 * 111 * The client sets the move callback after creating the cache and before 112 * allocating from it: 113 * 114 * object_cache = kmem_cache_create(...); 115 * kmem_cache_set_move(object_cache, object_move); 116 * 117 * 2.2 Move Callback Return Values 118 * 119 * Only the client knows about its own data and when is a good time to move it. 120 * The client is cooperating with kmem to return unused memory to the system, 121 * and kmem respectfully accepts this help at the client's convenience. When 122 * asked to move an object, the client can respond with any of the following: 123 * 124 * typedef enum kmem_cbrc { 125 * KMEM_CBRC_YES, 126 * KMEM_CBRC_NO, 127 * KMEM_CBRC_LATER, 128 * KMEM_CBRC_DONT_NEED, 129 * KMEM_CBRC_DONT_KNOW 130 * } kmem_cbrc_t; 131 * 132 * The client must not explicitly kmem_cache_free() either of the objects passed 133 * to the callback, since kmem wants to free them directly to the slab layer 134 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 135 * objects to free: 136 * 137 * YES: (Did it) The client moved the object, so kmem frees the old one. 138 * NO: (Never) The client refused, so kmem frees the new object (the 139 * unused copy destination). kmem also marks the slab of the old 140 * object so as not to bother the client with further callbacks for 141 * that object as long as the slab remains on the partial slab list. 142 * (The system won't be getting the slab back as long as the 143 * immovable object holds it hostage, so there's no point in moving 144 * any of its objects.) 145 * LATER: The client is using the object and cannot move it now, so kmem 146 * frees the new object (the unused copy destination). kmem still 147 * attempts to move other objects off the slab, since it expects to 148 * succeed in clearing the slab in a later callback. The client 149 * should use LATER instead of NO if the object is likely to become 150 * movable very soon. 151 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 152 * with the new object (the unused copy destination). This response 153 * is the client's opportunity to be a model citizen and give back as 154 * much as it can. 155 * DONT_KNOW: The client does not know about the object because 156 * a) the client has just allocated the object and not yet put it 157 * wherever it expects to find known objects 158 * b) the client has removed the object from wherever it expects to 159 * find known objects and is about to free it, or 160 * c) the client has freed the object. 161 * In all these cases (a, b, and c) kmem frees the new object (the 162 * unused copy destination). In the first case, the object is in 163 * use and the correct action is that for LATER; in the latter two 164 * cases, we know that the object is either freed or about to be 165 * freed, in which case it is either already in a magazine or about 166 * to be in one. In these cases, we know that the object will either 167 * be reallocated and reused, or it will end up in a full magazine 168 * that will be reaped (thereby liberating the slab). Because it 169 * is prohibitively expensive to differentiate these cases, and 170 * because the defrag code is executed when we're low on memory 171 * (thereby biasing the system to reclaim full magazines) we treat 172 * all DONT_KNOW cases as LATER and rely on cache reaping to 173 * generally clean up full magazines. While we take the same action 174 * for these cases, we maintain their semantic distinction: if 175 * defragmentation is not occurring, it is useful to know if this 176 * is due to objects in use (LATER) or objects in an unknown state 177 * of transition (DONT_KNOW). 178 * 179 * 2.3 Object States 180 * 181 * Neither kmem nor the client can be assumed to know the object's whereabouts 182 * at the time of the callback. An object belonging to a kmem cache may be in 183 * any of the following states: 184 * 185 * 1. Uninitialized on the slab 186 * 2. Allocated from the slab but not constructed (still uninitialized) 187 * 3. Allocated from the slab, constructed, but not yet ready for business 188 * (not in a valid state for the move callback) 189 * 4. In use (valid and known to the client) 190 * 5. About to be freed (no longer in a valid state for the move callback) 191 * 6. Freed to a magazine (still constructed) 192 * 7. Allocated from a magazine, not yet ready for business (not in a valid 193 * state for the move callback), and about to return to state #4 194 * 8. Deconstructed on a magazine that is about to be freed 195 * 9. Freed to the slab 196 * 197 * Since the move callback may be called at any time while the object is in any 198 * of the above states (except state #1), the client needs a safe way to 199 * determine whether or not it knows about the object. Specifically, the client 200 * needs to know whether or not the object is in state #4, the only state in 201 * which a move is valid. If the object is in any other state, the client should 202 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 203 * the object's fields. 204 * 205 * Note that although an object may be in state #4 when kmem initiates the move 206 * request, the object may no longer be in that state by the time kmem actually 207 * calls the move function. Not only does the client free objects 208 * asynchronously, kmem itself puts move requests on a queue where thay are 209 * pending until kmem processes them from another context. Also, objects freed 210 * to a magazine appear allocated from the point of view of the slab layer, so 211 * kmem may even initiate requests for objects in a state other than state #4. 212 * 213 * 2.3.1 Magazine Layer 214 * 215 * An important insight revealed by the states listed above is that the magazine 216 * layer is populated only by kmem_cache_free(). Magazines of constructed 217 * objects are never populated directly from the slab layer (which contains raw, 218 * unconstructed objects). Whenever an allocation request cannot be satisfied 219 * from the magazine layer, the magazines are bypassed and the request is 220 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 221 * the object constructor only when allocating from the slab layer, and only in 222 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 223 * the move callback. kmem does not preconstruct objects in anticipation of 224 * kmem_cache_alloc(). 225 * 226 * 2.3.2 Object Constructor and Destructor 227 * 228 * If the client supplies a destructor, it must be valid to call the destructor 229 * on a newly created object (immediately after the constructor). 230 * 231 * 2.4 Recognizing Known Objects 232 * 233 * There is a simple test to determine safely whether or not the client knows 234 * about a given object in the move callback. It relies on the fact that kmem 235 * guarantees that the object of the move callback has only been touched by the 236 * client itself or else by kmem. kmem does this by ensuring that none of the 237 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 238 * callback is pending. When the last object on a slab is freed, if there is a 239 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 240 * slabs on that list until all pending callbacks are completed. That way, 241 * clients can be certain that the object of a move callback is in one of the 242 * states listed above, making it possible to distinguish known objects (in 243 * state #4) using the two low order bits of any pointer member (with the 244 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 245 * platforms). 246 * 247 * The test works as long as the client always transitions objects from state #4 248 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 249 * order bit of the client-designated pointer member. Since kmem only writes 250 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 251 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 252 * guaranteed to set at least one of the two low order bits. Therefore, given an 253 * object with a back pointer to a 'container_t *o_container', the client can 254 * test 255 * 256 * container_t *container = object->o_container; 257 * if ((uintptr_t)container & 0x3) { 258 * return (KMEM_CBRC_DONT_KNOW); 259 * } 260 * 261 * Typically, an object will have a pointer to some structure with a list or 262 * hash where objects from the cache are kept while in use. Assuming that the 263 * client has some way of knowing that the container structure is valid and will 264 * not go away during the move, and assuming that the structure includes a lock 265 * to protect whatever collection is used, then the client would continue as 266 * follows: 267 * 268 * // Ensure that the container structure does not go away. 269 * if (container_hold(container) == 0) { 270 * return (KMEM_CBRC_DONT_KNOW); 271 * } 272 * mutex_enter(&container->c_objects_lock); 273 * if (container != object->o_container) { 274 * mutex_exit(&container->c_objects_lock); 275 * container_rele(container); 276 * return (KMEM_CBRC_DONT_KNOW); 277 * } 278 * 279 * At this point the client knows that the object cannot be freed as long as 280 * c_objects_lock is held. Note that after acquiring the lock, the client must 281 * recheck the o_container pointer in case the object was removed just before 282 * acquiring the lock. 283 * 284 * When the client is about to free an object, it must first remove that object 285 * from the list, hash, or other structure where it is kept. At that time, to 286 * mark the object so it can be distinguished from the remaining, known objects, 287 * the client sets the designated low order bit: 288 * 289 * mutex_enter(&container->c_objects_lock); 290 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 291 * list_remove(&container->c_objects, object); 292 * mutex_exit(&container->c_objects_lock); 293 * 294 * In the common case, the object is freed to the magazine layer, where it may 295 * be reused on a subsequent allocation without the overhead of calling the 296 * constructor. While in the magazine it appears allocated from the point of 297 * view of the slab layer, making it a candidate for the move callback. Most 298 * objects unrecognized by the client in the move callback fall into this 299 * category and are cheaply distinguished from known objects by the test 300 * described earlier. Because searching magazines is prohibitively expensive 301 * for kmem, clients that do not mark freed objects (and therefore return 302 * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation 303 * efficacy reduced. 304 * 305 * Invalidating the designated pointer member before freeing the object marks 306 * the object to be avoided in the callback, and conversely, assigning a valid 307 * value to the designated pointer member after allocating the object makes the 308 * object fair game for the callback: 309 * 310 * ... allocate object ... 311 * ... set any initial state not set by the constructor ... 312 * 313 * mutex_enter(&container->c_objects_lock); 314 * list_insert_tail(&container->c_objects, object); 315 * membar_producer(); 316 * object->o_container = container; 317 * mutex_exit(&container->c_objects_lock); 318 * 319 * Note that everything else must be valid before setting o_container makes the 320 * object fair game for the move callback. The membar_producer() call ensures 321 * that all the object's state is written to memory before setting the pointer 322 * that transitions the object from state #3 or #7 (allocated, constructed, not 323 * yet in use) to state #4 (in use, valid). That's important because the move 324 * function has to check the validity of the pointer before it can safely 325 * acquire the lock protecting the collection where it expects to find known 326 * objects. 327 * 328 * This method of distinguishing known objects observes the usual symmetry: 329 * invalidating the designated pointer is the first thing the client does before 330 * freeing the object, and setting the designated pointer is the last thing the 331 * client does after allocating the object. Of course, the client is not 332 * required to use this method. Fundamentally, how the client recognizes known 333 * objects is completely up to the client, but this method is recommended as an 334 * efficient and safe way to take advantage of the guarantees made by kmem. If 335 * the entire object is arbitrary data without any markable bits from a suitable 336 * pointer member, then the client must find some other method, such as 337 * searching a hash table of known objects. 338 * 339 * 2.5 Preventing Objects From Moving 340 * 341 * Besides a way to distinguish known objects, the other thing that the client 342 * needs is a strategy to ensure that an object will not move while the client 343 * is actively using it. The details of satisfying this requirement tend to be 344 * highly cache-specific. It might seem that the same rules that let a client 345 * remove an object safely should also decide when an object can be moved 346 * safely. However, any object state that makes a removal attempt invalid is 347 * likely to be long-lasting for objects that the client does not expect to 348 * remove. kmem knows nothing about the object state and is equally likely (from 349 * the client's point of view) to request a move for any object in the cache, 350 * whether prepared for removal or not. Even a low percentage of objects stuck 351 * in place by unremovability will defeat the consolidator if the stuck objects 352 * are the same long-lived allocations likely to hold slabs hostage. 353 * Fundamentally, the consolidator is not aimed at common cases. Severe external 354 * fragmentation is a worst case scenario manifested as sparsely allocated 355 * slabs, by definition a low percentage of the cache's objects. When deciding 356 * what makes an object movable, keep in mind the goal of the consolidator: to 357 * bring worst-case external fragmentation within the limits guaranteed for 358 * internal fragmentation. Removability is a poor criterion if it is likely to 359 * exclude more than an insignificant percentage of objects for long periods of 360 * time. 361 * 362 * A tricky general solution exists, and it has the advantage of letting you 363 * move any object at almost any moment, practically eliminating the likelihood 364 * that an object can hold a slab hostage. However, if there is a cache-specific 365 * way to ensure that an object is not actively in use in the vast majority of 366 * cases, a simpler solution that leverages this cache-specific knowledge is 367 * preferred. 368 * 369 * 2.5.1 Cache-Specific Solution 370 * 371 * As an example of a cache-specific solution, the ZFS znode cache takes 372 * advantage of the fact that the vast majority of znodes are only being 373 * referenced from the DNLC. (A typical case might be a few hundred in active 374 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 375 * client has established that it recognizes the znode and can access its fields 376 * safely (using the method described earlier), it then tests whether the znode 377 * is referenced by anything other than the DNLC. If so, it assumes that the 378 * znode may be in active use and is unsafe to move, so it drops its locks and 379 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 380 * else znodes are used, no change is needed to protect against the possibility 381 * of the znode moving. The disadvantage is that it remains possible for an 382 * application to hold a znode slab hostage with an open file descriptor. 383 * However, this case ought to be rare and the consolidator has a way to deal 384 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 385 * object, kmem eventually stops believing it and treats the slab as if the 386 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 387 * then focus on getting it off of the partial slab list by allocating rather 388 * than freeing all of its objects. (Either way of getting a slab off the 389 * free list reduces fragmentation.) 390 * 391 * 2.5.2 General Solution 392 * 393 * The general solution, on the other hand, requires an explicit hold everywhere 394 * the object is used to prevent it from moving. To keep the client locking 395 * strategy as uncomplicated as possible, kmem guarantees the simplifying 396 * assumption that move callbacks are sequential, even across multiple caches. 397 * Internally, a global queue processed by a single thread supports all caches 398 * implementing the callback function. No matter how many caches supply a move 399 * function, the consolidator never moves more than one object at a time, so the 400 * client does not have to worry about tricky lock ordering involving several 401 * related objects from different kmem caches. 402 * 403 * The general solution implements the explicit hold as a read-write lock, which 404 * allows multiple readers to access an object from the cache simultaneously 405 * while a single writer is excluded from moving it. A single rwlock for the 406 * entire cache would lock out all threads from using any of the cache's objects 407 * even though only a single object is being moved, so to reduce contention, 408 * the client can fan out the single rwlock into an array of rwlocks hashed by 409 * the object address, making it probable that moving one object will not 410 * prevent other threads from using a different object. The rwlock cannot be a 411 * member of the object itself, because the possibility of the object moving 412 * makes it unsafe to access any of the object's fields until the lock is 413 * acquired. 414 * 415 * Assuming a small, fixed number of locks, it's possible that multiple objects 416 * will hash to the same lock. A thread that needs to use multiple objects in 417 * the same function may acquire the same lock multiple times. Since rwlocks are 418 * reentrant for readers, and since there is never more than a single writer at 419 * a time (assuming that the client acquires the lock as a writer only when 420 * moving an object inside the callback), there would seem to be no problem. 421 * However, a client locking multiple objects in the same function must handle 422 * one case of potential deadlock: Assume that thread A needs to prevent both 423 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 424 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 425 * same lock, that thread A will acquire the lock for object 1 as a reader 426 * before thread B sets the lock's write-wanted bit, preventing thread A from 427 * reacquiring the lock for object 2 as a reader. Unable to make forward 428 * progress, thread A will never release the lock for object 1, resulting in 429 * deadlock. 430 * 431 * There are two ways of avoiding the deadlock just described. The first is to 432 * use rw_tryenter() rather than rw_enter() in the callback function when 433 * attempting to acquire the lock as a writer. If tryenter discovers that the 434 * same object (or another object hashed to the same lock) is already in use, it 435 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 436 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 437 * since it allows a thread to acquire the lock as a reader in spite of a 438 * waiting writer. This second approach insists on moving the object now, no 439 * matter how many readers the move function must wait for in order to do so, 440 * and could delay the completion of the callback indefinitely (blocking 441 * callbacks to other clients). In practice, a less insistent callback using 442 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 443 * little reason to use anything else. 444 * 445 * Avoiding deadlock is not the only problem that an implementation using an 446 * explicit hold needs to solve. Locking the object in the first place (to 447 * prevent it from moving) remains a problem, since the object could move 448 * between the time you obtain a pointer to the object and the time you acquire 449 * the rwlock hashed to that pointer value. Therefore the client needs to 450 * recheck the value of the pointer after acquiring the lock, drop the lock if 451 * the value has changed, and try again. This requires a level of indirection: 452 * something that points to the object rather than the object itself, that the 453 * client can access safely while attempting to acquire the lock. (The object 454 * itself cannot be referenced safely because it can move at any time.) 455 * The following lock-acquisition function takes whatever is safe to reference 456 * (arg), follows its pointer to the object (using function f), and tries as 457 * often as necessary to acquire the hashed lock and verify that the object 458 * still has not moved: 459 * 460 * object_t * 461 * object_hold(object_f f, void *arg) 462 * { 463 * object_t *op; 464 * 465 * op = f(arg); 466 * if (op == NULL) { 467 * return (NULL); 468 * } 469 * 470 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 471 * while (op != f(arg)) { 472 * rw_exit(OBJECT_RWLOCK(op)); 473 * op = f(arg); 474 * if (op == NULL) { 475 * break; 476 * } 477 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 478 * } 479 * 480 * return (op); 481 * } 482 * 483 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 484 * lock reacquisition loop, while necessary, almost never executes. The function 485 * pointer f (used to obtain the object pointer from arg) has the following type 486 * definition: 487 * 488 * typedef object_t *(*object_f)(void *arg); 489 * 490 * An object_f implementation is likely to be as simple as accessing a structure 491 * member: 492 * 493 * object_t * 494 * s_object(void *arg) 495 * { 496 * something_t *sp = arg; 497 * return (sp->s_object); 498 * } 499 * 500 * The flexibility of a function pointer allows the path to the object to be 501 * arbitrarily complex and also supports the notion that depending on where you 502 * are using the object, you may need to get it from someplace different. 503 * 504 * The function that releases the explicit hold is simpler because it does not 505 * have to worry about the object moving: 506 * 507 * void 508 * object_rele(object_t *op) 509 * { 510 * rw_exit(OBJECT_RWLOCK(op)); 511 * } 512 * 513 * The caller is spared these details so that obtaining and releasing an 514 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 515 * of object_hold() only needs to know that the returned object pointer is valid 516 * if not NULL and that the object will not move until released. 517 * 518 * Although object_hold() prevents an object from moving, it does not prevent it 519 * from being freed. The caller must take measures before calling object_hold() 520 * (afterwards is too late) to ensure that the held object cannot be freed. The 521 * caller must do so without accessing the unsafe object reference, so any lock 522 * or reference count used to ensure the continued existence of the object must 523 * live outside the object itself. 524 * 525 * Obtaining a new object is a special case where an explicit hold is impossible 526 * for the caller. Any function that returns a newly allocated object (either as 527 * a return value, or as an in-out paramter) must return it already held; after 528 * the caller gets it is too late, since the object cannot be safely accessed 529 * without the level of indirection described earlier. The following 530 * object_alloc() example uses the same code shown earlier to transition a new 531 * object into the state of being recognized (by the client) as a known object. 532 * The function must acquire the hold (rw_enter) before that state transition 533 * makes the object movable: 534 * 535 * static object_t * 536 * object_alloc(container_t *container) 537 * { 538 * object_t *object = kmem_cache_alloc(object_cache, 0); 539 * ... set any initial state not set by the constructor ... 540 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 541 * mutex_enter(&container->c_objects_lock); 542 * list_insert_tail(&container->c_objects, object); 543 * membar_producer(); 544 * object->o_container = container; 545 * mutex_exit(&container->c_objects_lock); 546 * return (object); 547 * } 548 * 549 * Functions that implicitly acquire an object hold (any function that calls 550 * object_alloc() to supply an object for the caller) need to be carefully noted 551 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 552 * prevent all objects hashed to the affected rwlocks from ever being moved. 553 * 554 * The pointer to a held object can be hashed to the holding rwlock even after 555 * the object has been freed. Although it is possible to release the hold 556 * after freeing the object, you may decide to release the hold implicitly in 557 * whatever function frees the object, so as to release the hold as soon as 558 * possible, and for the sake of symmetry with the function that implicitly 559 * acquires the hold when it allocates the object. Here, object_free() releases 560 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 561 * matching pair with object_hold(): 562 * 563 * void 564 * object_free(object_t *object) 565 * { 566 * container_t *container; 567 * 568 * ASSERT(object_held(object)); 569 * container = object->o_container; 570 * mutex_enter(&container->c_objects_lock); 571 * object->o_container = 572 * (void *)((uintptr_t)object->o_container | 0x1); 573 * list_remove(&container->c_objects, object); 574 * mutex_exit(&container->c_objects_lock); 575 * object_rele(object); 576 * kmem_cache_free(object_cache, object); 577 * } 578 * 579 * Note that object_free() cannot safely accept an object pointer as an argument 580 * unless the object is already held. Any function that calls object_free() 581 * needs to be carefully noted since it similarly forms a matching pair with 582 * object_hold(). 583 * 584 * To complete the picture, the following callback function implements the 585 * general solution by moving objects only if they are currently unheld: 586 * 587 * static kmem_cbrc_t 588 * object_move(void *buf, void *newbuf, size_t size, void *arg) 589 * { 590 * object_t *op = buf, *np = newbuf; 591 * container_t *container; 592 * 593 * container = op->o_container; 594 * if ((uintptr_t)container & 0x3) { 595 * return (KMEM_CBRC_DONT_KNOW); 596 * } 597 * 598 * // Ensure that the container structure does not go away. 599 * if (container_hold(container) == 0) { 600 * return (KMEM_CBRC_DONT_KNOW); 601 * } 602 * 603 * mutex_enter(&container->c_objects_lock); 604 * if (container != op->o_container) { 605 * mutex_exit(&container->c_objects_lock); 606 * container_rele(container); 607 * return (KMEM_CBRC_DONT_KNOW); 608 * } 609 * 610 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 611 * mutex_exit(&container->c_objects_lock); 612 * container_rele(container); 613 * return (KMEM_CBRC_LATER); 614 * } 615 * 616 * object_move_impl(op, np); // critical section 617 * rw_exit(OBJECT_RWLOCK(op)); 618 * 619 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 620 * list_link_replace(&op->o_link_node, &np->o_link_node); 621 * mutex_exit(&container->c_objects_lock); 622 * container_rele(container); 623 * return (KMEM_CBRC_YES); 624 * } 625 * 626 * Note that object_move() must invalidate the designated o_container pointer of 627 * the old object in the same way that object_free() does, since kmem will free 628 * the object in response to the KMEM_CBRC_YES return value. 629 * 630 * The lock order in object_move() differs from object_alloc(), which locks 631 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 632 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 633 * not a problem. Holding the lock on the object list in the example above 634 * through the entire callback not only prevents the object from going away, it 635 * also allows you to lock the list elsewhere and know that none of its elements 636 * will move during iteration. 637 * 638 * Adding an explicit hold everywhere an object from the cache is used is tricky 639 * and involves much more change to client code than a cache-specific solution 640 * that leverages existing state to decide whether or not an object is 641 * movable. However, this approach has the advantage that no object remains 642 * immovable for any significant length of time, making it extremely unlikely 643 * that long-lived allocations can continue holding slabs hostage; and it works 644 * for any cache. 645 * 646 * 3. Consolidator Implementation 647 * 648 * Once the client supplies a move function that a) recognizes known objects and 649 * b) avoids moving objects that are actively in use, the remaining work is up 650 * to the consolidator to decide which objects to move and when to issue 651 * callbacks. 652 * 653 * The consolidator relies on the fact that a cache's slabs are ordered by 654 * usage. Each slab has a fixed number of objects. Depending on the slab's 655 * "color" (the offset of the first object from the beginning of the slab; 656 * offsets are staggered to mitigate false sharing of cache lines) it is either 657 * the maximum number of objects per slab determined at cache creation time or 658 * else the number closest to the maximum that fits within the space remaining 659 * after the initial offset. A completely allocated slab may contribute some 660 * internal fragmentation (per-slab overhead) but no external fragmentation, so 661 * it is of no interest to the consolidator. At the other extreme, slabs whose 662 * objects have all been freed to the slab are released to the virtual memory 663 * (VM) subsystem (objects freed to magazines are still allocated as far as the 664 * slab is concerned). External fragmentation exists when there are slabs 665 * somewhere between these extremes. A partial slab has at least one but not all 666 * of its objects allocated. The more partial slabs, and the fewer allocated 667 * objects on each of them, the higher the fragmentation. Hence the 668 * consolidator's overall strategy is to reduce the number of partial slabs by 669 * moving allocated objects from the least allocated slabs to the most allocated 670 * slabs. 671 * 672 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 673 * slabs are kept separately in an unordered list. Since the majority of slabs 674 * tend to be completely allocated (a typical unfragmented cache may have 675 * thousands of complete slabs and only a single partial slab), separating 676 * complete slabs improves the efficiency of partial slab ordering, since the 677 * complete slabs do not affect the depth or balance of the AVL tree. This 678 * ordered sequence of partial slabs acts as a "free list" supplying objects for 679 * allocation requests. 680 * 681 * Objects are always allocated from the first partial slab in the free list, 682 * where the allocation is most likely to eliminate a partial slab (by 683 * completely allocating it). Conversely, when a single object from a completely 684 * allocated slab is freed to the slab, that slab is added to the front of the 685 * free list. Since most free list activity involves highly allocated slabs 686 * coming and going at the front of the list, slabs tend naturally toward the 687 * ideal order: highly allocated at the front, sparsely allocated at the back. 688 * Slabs with few allocated objects are likely to become completely free if they 689 * keep a safe distance away from the front of the free list. Slab misorders 690 * interfere with the natural tendency of slabs to become completely free or 691 * completely allocated. For example, a slab with a single allocated object 692 * needs only a single free to escape the cache; its natural desire is 693 * frustrated when it finds itself at the front of the list where a second 694 * allocation happens just before the free could have released it. Another slab 695 * with all but one object allocated might have supplied the buffer instead, so 696 * that both (as opposed to neither) of the slabs would have been taken off the 697 * free list. 698 * 699 * Although slabs tend naturally toward the ideal order, misorders allowed by a 700 * simple list implementation defeat the consolidator's strategy of merging 701 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 702 * needs another way to fix misorders to optimize its callback strategy. One 703 * approach is to periodically scan a limited number of slabs, advancing a 704 * marker to hold the current scan position, and to move extreme misorders to 705 * the front or back of the free list and to the front or back of the current 706 * scan range. By making consecutive scan ranges overlap by one slab, the least 707 * allocated slab in the current range can be carried along from the end of one 708 * scan to the start of the next. 709 * 710 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 711 * task, however. Since most of the cache's activity is in the magazine layer, 712 * and allocations from the slab layer represent only a startup cost, the 713 * overhead of maintaining a balanced tree is not a significant concern compared 714 * to the opportunity of reducing complexity by eliminating the partial slab 715 * scanner just described. The overhead of an AVL tree is minimized by 716 * maintaining only partial slabs in the tree and keeping completely allocated 717 * slabs separately in a list. To avoid increasing the size of the slab 718 * structure the AVL linkage pointers are reused for the slab's list linkage, 719 * since the slab will always be either partial or complete, never stored both 720 * ways at the same time. To further minimize the overhead of the AVL tree the 721 * compare function that orders partial slabs by usage divides the range of 722 * allocated object counts into bins such that counts within the same bin are 723 * considered equal. Binning partial slabs makes it less likely that allocating 724 * or freeing a single object will change the slab's order, requiring a tree 725 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 726 * requiring some rebalancing of the tree). Allocation counts closest to 727 * completely free and completely allocated are left unbinned (finely sorted) to 728 * better support the consolidator's strategy of merging slabs at either 729 * extreme. 730 * 731 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 732 * 733 * The consolidator piggybacks on the kmem maintenance thread and is called on 734 * the same interval as kmem_cache_update(), once per cache every fifteen 735 * seconds. kmem maintains a running count of unallocated objects in the slab 736 * layer (cache_bufslab). The consolidator checks whether that number exceeds 737 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 738 * there is a significant number of slabs in the cache (arbitrarily a minimum 739 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 740 * working set are included in the assessment, and magazines in the depot are 741 * reaped if those objects would lift cache_bufslab above the fragmentation 742 * threshold. Once the consolidator decides that a cache is fragmented, it looks 743 * for a candidate slab to reclaim, starting at the end of the partial slab free 744 * list and scanning backwards. At first the consolidator is choosy: only a slab 745 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 746 * single allocated object, regardless of percentage). If there is difficulty 747 * finding a candidate slab, kmem raises the allocation threshold incrementally, 748 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 749 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 750 * even in the worst case of every slab in the cache being almost 7/8 allocated. 751 * The threshold can also be lowered incrementally when candidate slabs are easy 752 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 753 * is no longer fragmented. 754 * 755 * 3.2 Generating Callbacks 756 * 757 * Once an eligible slab is chosen, a callback is generated for every allocated 758 * object on the slab, in the hope that the client will move everything off the 759 * slab and make it reclaimable. Objects selected as move destinations are 760 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 761 * order (most allocated at the front, least allocated at the back) and a 762 * cooperative client, the consolidator will succeed in removing slabs from both 763 * ends of the free list, completely allocating on the one hand and completely 764 * freeing on the other. Objects selected as move destinations are allocated in 765 * the kmem maintenance thread where move requests are enqueued. A separate 766 * callback thread removes pending callbacks from the queue and calls the 767 * client. The separate thread ensures that client code (the move function) does 768 * not interfere with internal kmem maintenance tasks. A map of pending 769 * callbacks keyed by object address (the object to be moved) is checked to 770 * ensure that duplicate callbacks are not generated for the same object. 771 * Allocating the move destination (the object to move to) prevents subsequent 772 * callbacks from selecting the same destination as an earlier pending callback. 773 * 774 * Move requests can also be generated by kmem_cache_reap() when the system is 775 * desperate for memory and by kmem_cache_move_notify(), called by the client to 776 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 777 * The map of pending callbacks is protected by the same lock that protects the 778 * slab layer. 779 * 780 * When the system is desperate for memory, kmem does not bother to determine 781 * whether or not the cache exceeds the fragmentation threshold, but tries to 782 * consolidate as many slabs as possible. Normally, the consolidator chews 783 * slowly, one sparsely allocated slab at a time during each maintenance 784 * interval that the cache is fragmented. When desperate, the consolidator 785 * starts at the last partial slab and enqueues callbacks for every allocated 786 * object on every partial slab, working backwards until it reaches the first 787 * partial slab. The first partial slab, meanwhile, advances in pace with the 788 * consolidator as allocations to supply move destinations for the enqueued 789 * callbacks use up the highly allocated slabs at the front of the free list. 790 * Ideally, the overgrown free list collapses like an accordion, starting at 791 * both ends and ending at the center with a single partial slab. 792 * 793 * 3.3 Client Responses 794 * 795 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 796 * marks the slab that supplied the stuck object non-reclaimable and moves it to 797 * front of the free list. The slab remains marked as long as it remains on the 798 * free list, and it appears more allocated to the partial slab compare function 799 * than any unmarked slab, no matter how many of its objects are allocated. 800 * Since even one immovable object ties up the entire slab, the goal is to 801 * completely allocate any slab that cannot be completely freed. kmem does not 802 * bother generating callbacks to move objects from a marked slab unless the 803 * system is desperate. 804 * 805 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 806 * slab. If the client responds LATER too many times, kmem disbelieves and 807 * treats the response as a NO. The count is cleared when the slab is taken off 808 * the partial slab list or when the client moves one of the slab's objects. 809 * 810 * 4. Observability 811 * 812 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 813 * the ::kmem_slabs dcmd. For a complete description of the command, enter 814 * '::help kmem_slabs' at the mdb prompt. 815 */ 816 817 #include <sys/kmem_impl.h> 818 #include <sys/vmem_impl.h> 819 #include <sys/param.h> 820 #include <sys/sysmacros.h> 821 #include <sys/vm.h> 822 #include <sys/proc.h> 823 #include <sys/tuneable.h> 824 #include <sys/systm.h> 825 #include <sys/cmn_err.h> 826 #include <sys/debug.h> 827 #include <sys/sdt.h> 828 #include <sys/mutex.h> 829 #include <sys/bitmap.h> 830 #include <sys/atomic.h> 831 #include <sys/kobj.h> 832 #include <sys/disp.h> 833 #include <vm/seg_kmem.h> 834 #include <sys/log.h> 835 #include <sys/callb.h> 836 #include <sys/taskq.h> 837 #include <sys/modctl.h> 838 #include <sys/reboot.h> 839 #include <sys/id32.h> 840 #include <sys/zone.h> 841 #include <sys/netstack.h> 842 #ifdef DEBUG 843 #include <sys/random.h> 844 #endif 845 846 extern void streams_msg_init(void); 847 extern int segkp_fromheap; 848 extern void segkp_cache_free(void); 849 extern int callout_init_done; 850 851 struct kmem_cache_kstat { 852 kstat_named_t kmc_buf_size; 853 kstat_named_t kmc_align; 854 kstat_named_t kmc_chunk_size; 855 kstat_named_t kmc_slab_size; 856 kstat_named_t kmc_alloc; 857 kstat_named_t kmc_alloc_fail; 858 kstat_named_t kmc_free; 859 kstat_named_t kmc_depot_alloc; 860 kstat_named_t kmc_depot_free; 861 kstat_named_t kmc_depot_contention; 862 kstat_named_t kmc_slab_alloc; 863 kstat_named_t kmc_slab_free; 864 kstat_named_t kmc_buf_constructed; 865 kstat_named_t kmc_buf_avail; 866 kstat_named_t kmc_buf_inuse; 867 kstat_named_t kmc_buf_total; 868 kstat_named_t kmc_buf_max; 869 kstat_named_t kmc_slab_create; 870 kstat_named_t kmc_slab_destroy; 871 kstat_named_t kmc_vmem_source; 872 kstat_named_t kmc_hash_size; 873 kstat_named_t kmc_hash_lookup_depth; 874 kstat_named_t kmc_hash_rescale; 875 kstat_named_t kmc_full_magazines; 876 kstat_named_t kmc_empty_magazines; 877 kstat_named_t kmc_magazine_size; 878 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 879 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 880 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 881 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 882 kstat_named_t kmc_move_yes; 883 kstat_named_t kmc_move_no; 884 kstat_named_t kmc_move_later; 885 kstat_named_t kmc_move_dont_need; 886 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 887 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 888 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 889 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 890 } kmem_cache_kstat = { 891 { "buf_size", KSTAT_DATA_UINT64 }, 892 { "align", KSTAT_DATA_UINT64 }, 893 { "chunk_size", KSTAT_DATA_UINT64 }, 894 { "slab_size", KSTAT_DATA_UINT64 }, 895 { "alloc", KSTAT_DATA_UINT64 }, 896 { "alloc_fail", KSTAT_DATA_UINT64 }, 897 { "free", KSTAT_DATA_UINT64 }, 898 { "depot_alloc", KSTAT_DATA_UINT64 }, 899 { "depot_free", KSTAT_DATA_UINT64 }, 900 { "depot_contention", KSTAT_DATA_UINT64 }, 901 { "slab_alloc", KSTAT_DATA_UINT64 }, 902 { "slab_free", KSTAT_DATA_UINT64 }, 903 { "buf_constructed", KSTAT_DATA_UINT64 }, 904 { "buf_avail", KSTAT_DATA_UINT64 }, 905 { "buf_inuse", KSTAT_DATA_UINT64 }, 906 { "buf_total", KSTAT_DATA_UINT64 }, 907 { "buf_max", KSTAT_DATA_UINT64 }, 908 { "slab_create", KSTAT_DATA_UINT64 }, 909 { "slab_destroy", KSTAT_DATA_UINT64 }, 910 { "vmem_source", KSTAT_DATA_UINT64 }, 911 { "hash_size", KSTAT_DATA_UINT64 }, 912 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 913 { "hash_rescale", KSTAT_DATA_UINT64 }, 914 { "full_magazines", KSTAT_DATA_UINT64 }, 915 { "empty_magazines", KSTAT_DATA_UINT64 }, 916 { "magazine_size", KSTAT_DATA_UINT64 }, 917 { "reap", KSTAT_DATA_UINT64 }, 918 { "defrag", KSTAT_DATA_UINT64 }, 919 { "scan", KSTAT_DATA_UINT64 }, 920 { "move_callbacks", KSTAT_DATA_UINT64 }, 921 { "move_yes", KSTAT_DATA_UINT64 }, 922 { "move_no", KSTAT_DATA_UINT64 }, 923 { "move_later", KSTAT_DATA_UINT64 }, 924 { "move_dont_need", KSTAT_DATA_UINT64 }, 925 { "move_dont_know", KSTAT_DATA_UINT64 }, 926 { "move_hunt_found", KSTAT_DATA_UINT64 }, 927 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 928 { "move_reclaimable", KSTAT_DATA_UINT64 }, 929 }; 930 931 static kmutex_t kmem_cache_kstat_lock; 932 933 /* 934 * The default set of caches to back kmem_alloc(). 935 * These sizes should be reevaluated periodically. 936 * 937 * We want allocations that are multiples of the coherency granularity 938 * (64 bytes) to be satisfied from a cache which is a multiple of 64 939 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 940 * the next kmem_cache_size greater than or equal to it must be a 941 * multiple of 64. 942 * 943 * We split the table into two sections: size <= 4k and size > 4k. This 944 * saves a lot of space and cache footprint in our cache tables. 945 */ 946 static const int kmem_alloc_sizes[] = { 947 1 * 8, 948 2 * 8, 949 3 * 8, 950 4 * 8, 5 * 8, 6 * 8, 7 * 8, 951 4 * 16, 5 * 16, 6 * 16, 7 * 16, 952 4 * 32, 5 * 32, 6 * 32, 7 * 32, 953 4 * 64, 5 * 64, 6 * 64, 7 * 64, 954 4 * 128, 5 * 128, 6 * 128, 7 * 128, 955 P2ALIGN(8192 / 7, 64), 956 P2ALIGN(8192 / 6, 64), 957 P2ALIGN(8192 / 5, 64), 958 P2ALIGN(8192 / 4, 64), 959 P2ALIGN(8192 / 3, 64), 960 P2ALIGN(8192 / 2, 64), 961 }; 962 963 static const int kmem_big_alloc_sizes[] = { 964 2 * 4096, 3 * 4096, 965 2 * 8192, 3 * 8192, 966 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 967 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 968 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 969 16 * 8192 970 }; 971 972 #define KMEM_MAXBUF 4096 973 #define KMEM_BIG_MAXBUF_32BIT 32768 974 #define KMEM_BIG_MAXBUF 131072 975 976 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 977 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 978 979 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 980 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 981 982 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 983 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 984 985 static kmem_magtype_t kmem_magtype[] = { 986 { 1, 8, 3200, 65536 }, 987 { 3, 16, 256, 32768 }, 988 { 7, 32, 64, 16384 }, 989 { 15, 64, 0, 8192 }, 990 { 31, 64, 0, 4096 }, 991 { 47, 64, 0, 2048 }, 992 { 63, 64, 0, 1024 }, 993 { 95, 64, 0, 512 }, 994 { 143, 64, 0, 0 }, 995 }; 996 997 static uint32_t kmem_reaping; 998 static uint32_t kmem_reaping_idspace; 999 1000 /* 1001 * kmem tunables 1002 */ 1003 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 1004 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 1005 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 1006 int kmem_panic = 1; /* whether to panic on error */ 1007 int kmem_logging = 1; /* kmem_log_enter() override */ 1008 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 1009 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 1010 size_t kmem_content_log_size; /* content log size [2% of memory] */ 1011 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 1012 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 1013 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1014 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1015 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1016 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1017 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1018 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1019 1020 #ifdef _LP64 1021 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1022 #else 1023 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1024 #endif 1025 1026 #ifdef DEBUG 1027 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1028 #else 1029 int kmem_flags = 0; 1030 #endif 1031 int kmem_ready; 1032 1033 static kmem_cache_t *kmem_slab_cache; 1034 static kmem_cache_t *kmem_bufctl_cache; 1035 static kmem_cache_t *kmem_bufctl_audit_cache; 1036 1037 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1038 static list_t kmem_caches; 1039 1040 static taskq_t *kmem_taskq; 1041 static kmutex_t kmem_flags_lock; 1042 static vmem_t *kmem_metadata_arena; 1043 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1044 static vmem_t *kmem_cache_arena; 1045 static vmem_t *kmem_hash_arena; 1046 static vmem_t *kmem_log_arena; 1047 static vmem_t *kmem_oversize_arena; 1048 static vmem_t *kmem_va_arena; 1049 static vmem_t *kmem_default_arena; 1050 static vmem_t *kmem_firewall_va_arena; 1051 static vmem_t *kmem_firewall_arena; 1052 1053 /* 1054 * kmem slab consolidator thresholds (tunables) 1055 */ 1056 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1057 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1058 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1059 /* 1060 * Maximum number of slabs from which to move buffers during a single 1061 * maintenance interval while the system is not low on memory. 1062 */ 1063 size_t kmem_reclaim_max_slabs = 1; 1064 /* 1065 * Number of slabs to scan backwards from the end of the partial slab list 1066 * when searching for buffers to relocate. 1067 */ 1068 size_t kmem_reclaim_scan_range = 12; 1069 1070 /* consolidator knobs */ 1071 static boolean_t kmem_move_noreap; 1072 static boolean_t kmem_move_blocked; 1073 static boolean_t kmem_move_fulltilt; 1074 static boolean_t kmem_move_any_partial; 1075 1076 #ifdef DEBUG 1077 /* 1078 * kmem consolidator debug tunables: 1079 * Ensure code coverage by occasionally running the consolidator even when the 1080 * caches are not fragmented (they may never be). These intervals are mean time 1081 * in cache maintenance intervals (kmem_cache_update). 1082 */ 1083 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1084 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1085 #endif /* DEBUG */ 1086 1087 static kmem_cache_t *kmem_defrag_cache; 1088 static kmem_cache_t *kmem_move_cache; 1089 static taskq_t *kmem_move_taskq; 1090 1091 static void kmem_cache_scan(kmem_cache_t *); 1092 static void kmem_cache_defrag(kmem_cache_t *); 1093 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1094 1095 1096 kmem_log_header_t *kmem_transaction_log; 1097 kmem_log_header_t *kmem_content_log; 1098 kmem_log_header_t *kmem_failure_log; 1099 kmem_log_header_t *kmem_slab_log; 1100 1101 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1102 1103 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1104 if ((count) > 0) { \ 1105 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1106 pc_t *_e; \ 1107 /* memmove() the old entries down one notch */ \ 1108 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1109 *_e = *(_e - 1); \ 1110 *_s = (uintptr_t)(caller); \ 1111 } 1112 1113 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1114 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1115 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1116 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1117 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1118 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1119 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1120 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1121 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1122 1123 struct { 1124 hrtime_t kmp_timestamp; /* timestamp of panic */ 1125 int kmp_error; /* type of kmem error */ 1126 void *kmp_buffer; /* buffer that induced panic */ 1127 void *kmp_realbuf; /* real start address for buffer */ 1128 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1129 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1130 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1131 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1132 } kmem_panic_info; 1133 1134 1135 static void 1136 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1137 { 1138 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1139 uint64_t *buf = buf_arg; 1140 1141 while (buf < bufend) 1142 *buf++ = pattern; 1143 } 1144 1145 static void * 1146 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1147 { 1148 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1149 uint64_t *buf; 1150 1151 for (buf = buf_arg; buf < bufend; buf++) 1152 if (*buf != pattern) 1153 return (buf); 1154 return (NULL); 1155 } 1156 1157 static void * 1158 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1159 { 1160 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1161 uint64_t *buf; 1162 1163 for (buf = buf_arg; buf < bufend; buf++) { 1164 if (*buf != old) { 1165 copy_pattern(old, buf_arg, 1166 (char *)buf - (char *)buf_arg); 1167 return (buf); 1168 } 1169 *buf = new; 1170 } 1171 1172 return (NULL); 1173 } 1174 1175 static void 1176 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1177 { 1178 kmem_cache_t *cp; 1179 1180 mutex_enter(&kmem_cache_lock); 1181 for (cp = list_head(&kmem_caches); cp != NULL; 1182 cp = list_next(&kmem_caches, cp)) 1183 if (tq != NULL) 1184 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1185 tqflag); 1186 else 1187 func(cp); 1188 mutex_exit(&kmem_cache_lock); 1189 } 1190 1191 static void 1192 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1193 { 1194 kmem_cache_t *cp; 1195 1196 mutex_enter(&kmem_cache_lock); 1197 for (cp = list_head(&kmem_caches); cp != NULL; 1198 cp = list_next(&kmem_caches, cp)) { 1199 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1200 continue; 1201 if (tq != NULL) 1202 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1203 tqflag); 1204 else 1205 func(cp); 1206 } 1207 mutex_exit(&kmem_cache_lock); 1208 } 1209 1210 /* 1211 * Debugging support. Given a buffer address, find its slab. 1212 */ 1213 static kmem_slab_t * 1214 kmem_findslab(kmem_cache_t *cp, void *buf) 1215 { 1216 kmem_slab_t *sp; 1217 1218 mutex_enter(&cp->cache_lock); 1219 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1220 sp = list_next(&cp->cache_complete_slabs, sp)) { 1221 if (KMEM_SLAB_MEMBER(sp, buf)) { 1222 mutex_exit(&cp->cache_lock); 1223 return (sp); 1224 } 1225 } 1226 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1227 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1228 if (KMEM_SLAB_MEMBER(sp, buf)) { 1229 mutex_exit(&cp->cache_lock); 1230 return (sp); 1231 } 1232 } 1233 mutex_exit(&cp->cache_lock); 1234 1235 return (NULL); 1236 } 1237 1238 static void 1239 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1240 { 1241 kmem_buftag_t *btp = NULL; 1242 kmem_bufctl_t *bcp = NULL; 1243 kmem_cache_t *cp = cparg; 1244 kmem_slab_t *sp; 1245 uint64_t *off; 1246 void *buf = bufarg; 1247 1248 kmem_logging = 0; /* stop logging when a bad thing happens */ 1249 1250 kmem_panic_info.kmp_timestamp = gethrtime(); 1251 1252 sp = kmem_findslab(cp, buf); 1253 if (sp == NULL) { 1254 for (cp = list_tail(&kmem_caches); cp != NULL; 1255 cp = list_prev(&kmem_caches, cp)) { 1256 if ((sp = kmem_findslab(cp, buf)) != NULL) 1257 break; 1258 } 1259 } 1260 1261 if (sp == NULL) { 1262 cp = NULL; 1263 error = KMERR_BADADDR; 1264 } else { 1265 if (cp != cparg) 1266 error = KMERR_BADCACHE; 1267 else 1268 buf = (char *)bufarg - ((uintptr_t)bufarg - 1269 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1270 if (buf != bufarg) 1271 error = KMERR_BADBASE; 1272 if (cp->cache_flags & KMF_BUFTAG) 1273 btp = KMEM_BUFTAG(cp, buf); 1274 if (cp->cache_flags & KMF_HASH) { 1275 mutex_enter(&cp->cache_lock); 1276 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1277 if (bcp->bc_addr == buf) 1278 break; 1279 mutex_exit(&cp->cache_lock); 1280 if (bcp == NULL && btp != NULL) 1281 bcp = btp->bt_bufctl; 1282 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1283 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1284 bcp->bc_addr != buf) { 1285 error = KMERR_BADBUFCTL; 1286 bcp = NULL; 1287 } 1288 } 1289 } 1290 1291 kmem_panic_info.kmp_error = error; 1292 kmem_panic_info.kmp_buffer = bufarg; 1293 kmem_panic_info.kmp_realbuf = buf; 1294 kmem_panic_info.kmp_cache = cparg; 1295 kmem_panic_info.kmp_realcache = cp; 1296 kmem_panic_info.kmp_slab = sp; 1297 kmem_panic_info.kmp_bufctl = bcp; 1298 1299 printf("kernel memory allocator: "); 1300 1301 switch (error) { 1302 1303 case KMERR_MODIFIED: 1304 printf("buffer modified after being freed\n"); 1305 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1306 if (off == NULL) /* shouldn't happen */ 1307 off = buf; 1308 printf("modification occurred at offset 0x%lx " 1309 "(0x%llx replaced by 0x%llx)\n", 1310 (uintptr_t)off - (uintptr_t)buf, 1311 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1312 break; 1313 1314 case KMERR_REDZONE: 1315 printf("redzone violation: write past end of buffer\n"); 1316 break; 1317 1318 case KMERR_BADADDR: 1319 printf("invalid free: buffer not in cache\n"); 1320 break; 1321 1322 case KMERR_DUPFREE: 1323 printf("duplicate free: buffer freed twice\n"); 1324 break; 1325 1326 case KMERR_BADBUFTAG: 1327 printf("boundary tag corrupted\n"); 1328 printf("bcp ^ bxstat = %lx, should be %lx\n", 1329 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1330 KMEM_BUFTAG_FREE); 1331 break; 1332 1333 case KMERR_BADBUFCTL: 1334 printf("bufctl corrupted\n"); 1335 break; 1336 1337 case KMERR_BADCACHE: 1338 printf("buffer freed to wrong cache\n"); 1339 printf("buffer was allocated from %s,\n", cp->cache_name); 1340 printf("caller attempting free to %s.\n", cparg->cache_name); 1341 break; 1342 1343 case KMERR_BADSIZE: 1344 printf("bad free: free size (%u) != alloc size (%u)\n", 1345 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1346 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1347 break; 1348 1349 case KMERR_BADBASE: 1350 printf("bad free: free address (%p) != alloc address (%p)\n", 1351 bufarg, buf); 1352 break; 1353 } 1354 1355 printf("buffer=%p bufctl=%p cache: %s\n", 1356 bufarg, (void *)bcp, cparg->cache_name); 1357 1358 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1359 error != KMERR_BADBUFCTL) { 1360 int d; 1361 timestruc_t ts; 1362 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1363 1364 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1365 printf("previous transaction on buffer %p:\n", buf); 1366 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1367 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1368 (void *)sp, cp->cache_name); 1369 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1370 ulong_t off; 1371 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1372 printf("%s+%lx\n", sym ? sym : "?", off); 1373 } 1374 } 1375 if (kmem_panic > 0) 1376 panic("kernel heap corruption detected"); 1377 if (kmem_panic == 0) 1378 debug_enter(NULL); 1379 kmem_logging = 1; /* resume logging */ 1380 } 1381 1382 static kmem_log_header_t * 1383 kmem_log_init(size_t logsize) 1384 { 1385 kmem_log_header_t *lhp; 1386 int nchunks = 4 * max_ncpus; 1387 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1388 int i; 1389 1390 /* 1391 * Make sure that lhp->lh_cpu[] is nicely aligned 1392 * to prevent false sharing of cache lines. 1393 */ 1394 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1395 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1396 NULL, NULL, VM_SLEEP); 1397 bzero(lhp, lhsize); 1398 1399 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1400 lhp->lh_nchunks = nchunks; 1401 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1402 lhp->lh_base = vmem_alloc(kmem_log_arena, 1403 lhp->lh_chunksize * nchunks, VM_SLEEP); 1404 lhp->lh_free = vmem_alloc(kmem_log_arena, 1405 nchunks * sizeof (int), VM_SLEEP); 1406 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1407 1408 for (i = 0; i < max_ncpus; i++) { 1409 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1410 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1411 clhp->clh_chunk = i; 1412 } 1413 1414 for (i = max_ncpus; i < nchunks; i++) 1415 lhp->lh_free[i] = i; 1416 1417 lhp->lh_head = max_ncpus; 1418 lhp->lh_tail = 0; 1419 1420 return (lhp); 1421 } 1422 1423 static void * 1424 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1425 { 1426 void *logspace; 1427 kmem_cpu_log_header_t *clhp; 1428 1429 if (lhp == NULL || kmem_logging == 0 || panicstr) 1430 return (NULL); 1431 1432 clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1433 1434 mutex_enter(&clhp->clh_lock); 1435 clhp->clh_hits++; 1436 if (size > clhp->clh_avail) { 1437 mutex_enter(&lhp->lh_lock); 1438 lhp->lh_hits++; 1439 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1440 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1441 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1442 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1443 clhp->clh_current = lhp->lh_base + 1444 clhp->clh_chunk * lhp->lh_chunksize; 1445 clhp->clh_avail = lhp->lh_chunksize; 1446 if (size > lhp->lh_chunksize) 1447 size = lhp->lh_chunksize; 1448 mutex_exit(&lhp->lh_lock); 1449 } 1450 logspace = clhp->clh_current; 1451 clhp->clh_current += size; 1452 clhp->clh_avail -= size; 1453 bcopy(data, logspace, size); 1454 mutex_exit(&clhp->clh_lock); 1455 return (logspace); 1456 } 1457 1458 #define KMEM_AUDIT(lp, cp, bcp) \ 1459 { \ 1460 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1461 _bcp->bc_timestamp = gethrtime(); \ 1462 _bcp->bc_thread = curthread; \ 1463 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1464 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1465 } 1466 1467 static void 1468 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1469 kmem_slab_t *sp, void *addr) 1470 { 1471 kmem_bufctl_audit_t bca; 1472 1473 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1474 bca.bc_addr = addr; 1475 bca.bc_slab = sp; 1476 bca.bc_cache = cp; 1477 KMEM_AUDIT(lp, cp, &bca); 1478 } 1479 1480 /* 1481 * Create a new slab for cache cp. 1482 */ 1483 static kmem_slab_t * 1484 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1485 { 1486 size_t slabsize = cp->cache_slabsize; 1487 size_t chunksize = cp->cache_chunksize; 1488 int cache_flags = cp->cache_flags; 1489 size_t color, chunks; 1490 char *buf, *slab; 1491 kmem_slab_t *sp; 1492 kmem_bufctl_t *bcp; 1493 vmem_t *vmp = cp->cache_arena; 1494 1495 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1496 1497 color = cp->cache_color + cp->cache_align; 1498 if (color > cp->cache_maxcolor) 1499 color = cp->cache_mincolor; 1500 cp->cache_color = color; 1501 1502 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1503 1504 if (slab == NULL) 1505 goto vmem_alloc_failure; 1506 1507 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1508 1509 /* 1510 * Reverify what was already checked in kmem_cache_set_move(), since the 1511 * consolidator depends (for correctness) on slabs being initialized 1512 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1513 * clients to distinguish uninitialized memory from known objects). 1514 */ 1515 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1516 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1517 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1518 1519 if (cache_flags & KMF_HASH) { 1520 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1521 goto slab_alloc_failure; 1522 chunks = (slabsize - color) / chunksize; 1523 } else { 1524 sp = KMEM_SLAB(cp, slab); 1525 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1526 } 1527 1528 sp->slab_cache = cp; 1529 sp->slab_head = NULL; 1530 sp->slab_refcnt = 0; 1531 sp->slab_base = buf = slab + color; 1532 sp->slab_chunks = chunks; 1533 sp->slab_stuck_offset = (uint32_t)-1; 1534 sp->slab_later_count = 0; 1535 sp->slab_flags = 0; 1536 1537 ASSERT(chunks > 0); 1538 while (chunks-- != 0) { 1539 if (cache_flags & KMF_HASH) { 1540 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1541 if (bcp == NULL) 1542 goto bufctl_alloc_failure; 1543 if (cache_flags & KMF_AUDIT) { 1544 kmem_bufctl_audit_t *bcap = 1545 (kmem_bufctl_audit_t *)bcp; 1546 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1547 bcap->bc_cache = cp; 1548 } 1549 bcp->bc_addr = buf; 1550 bcp->bc_slab = sp; 1551 } else { 1552 bcp = KMEM_BUFCTL(cp, buf); 1553 } 1554 if (cache_flags & KMF_BUFTAG) { 1555 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1556 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1557 btp->bt_bufctl = bcp; 1558 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1559 if (cache_flags & KMF_DEADBEEF) { 1560 copy_pattern(KMEM_FREE_PATTERN, buf, 1561 cp->cache_verify); 1562 } 1563 } 1564 bcp->bc_next = sp->slab_head; 1565 sp->slab_head = bcp; 1566 buf += chunksize; 1567 } 1568 1569 kmem_log_event(kmem_slab_log, cp, sp, slab); 1570 1571 return (sp); 1572 1573 bufctl_alloc_failure: 1574 1575 while ((bcp = sp->slab_head) != NULL) { 1576 sp->slab_head = bcp->bc_next; 1577 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1578 } 1579 kmem_cache_free(kmem_slab_cache, sp); 1580 1581 slab_alloc_failure: 1582 1583 vmem_free(vmp, slab, slabsize); 1584 1585 vmem_alloc_failure: 1586 1587 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1588 atomic_inc_64(&cp->cache_alloc_fail); 1589 1590 return (NULL); 1591 } 1592 1593 /* 1594 * Destroy a slab. 1595 */ 1596 static void 1597 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1598 { 1599 vmem_t *vmp = cp->cache_arena; 1600 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1601 1602 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1603 ASSERT(sp->slab_refcnt == 0); 1604 1605 if (cp->cache_flags & KMF_HASH) { 1606 kmem_bufctl_t *bcp; 1607 while ((bcp = sp->slab_head) != NULL) { 1608 sp->slab_head = bcp->bc_next; 1609 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1610 } 1611 kmem_cache_free(kmem_slab_cache, sp); 1612 } 1613 vmem_free(vmp, slab, cp->cache_slabsize); 1614 } 1615 1616 static void * 1617 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 1618 { 1619 kmem_bufctl_t *bcp, **hash_bucket; 1620 void *buf; 1621 boolean_t new_slab = (sp->slab_refcnt == 0); 1622 1623 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1624 /* 1625 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1626 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1627 * slab is newly created. 1628 */ 1629 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1630 (sp == avl_first(&cp->cache_partial_slabs)))); 1631 ASSERT(sp->slab_cache == cp); 1632 1633 cp->cache_slab_alloc++; 1634 cp->cache_bufslab--; 1635 sp->slab_refcnt++; 1636 1637 bcp = sp->slab_head; 1638 sp->slab_head = bcp->bc_next; 1639 1640 if (cp->cache_flags & KMF_HASH) { 1641 /* 1642 * Add buffer to allocated-address hash table. 1643 */ 1644 buf = bcp->bc_addr; 1645 hash_bucket = KMEM_HASH(cp, buf); 1646 bcp->bc_next = *hash_bucket; 1647 *hash_bucket = bcp; 1648 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1649 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1650 } 1651 } else { 1652 buf = KMEM_BUF(cp, bcp); 1653 } 1654 1655 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1656 1657 if (sp->slab_head == NULL) { 1658 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1659 if (new_slab) { 1660 ASSERT(sp->slab_chunks == 1); 1661 } else { 1662 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1663 avl_remove(&cp->cache_partial_slabs, sp); 1664 sp->slab_later_count = 0; /* clear history */ 1665 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1666 sp->slab_stuck_offset = (uint32_t)-1; 1667 } 1668 list_insert_head(&cp->cache_complete_slabs, sp); 1669 cp->cache_complete_slab_count++; 1670 return (buf); 1671 } 1672 1673 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1674 /* 1675 * Peek to see if the magazine layer is enabled before 1676 * we prefill. We're not holding the cpu cache lock, 1677 * so the peek could be wrong, but there's no harm in it. 1678 */ 1679 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1680 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1681 kmem_slab_prefill(cp, sp); 1682 return (buf); 1683 } 1684 1685 if (new_slab) { 1686 avl_add(&cp->cache_partial_slabs, sp); 1687 return (buf); 1688 } 1689 1690 /* 1691 * The slab is now more allocated than it was, so the 1692 * order remains unchanged. 1693 */ 1694 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1695 return (buf); 1696 } 1697 1698 /* 1699 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1700 */ 1701 static void * 1702 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1703 { 1704 kmem_slab_t *sp; 1705 void *buf; 1706 boolean_t test_destructor; 1707 1708 mutex_enter(&cp->cache_lock); 1709 test_destructor = (cp->cache_slab_alloc == 0); 1710 sp = avl_first(&cp->cache_partial_slabs); 1711 if (sp == NULL) { 1712 ASSERT(cp->cache_bufslab == 0); 1713 1714 /* 1715 * The freelist is empty. Create a new slab. 1716 */ 1717 mutex_exit(&cp->cache_lock); 1718 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1719 return (NULL); 1720 } 1721 mutex_enter(&cp->cache_lock); 1722 cp->cache_slab_create++; 1723 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1724 cp->cache_bufmax = cp->cache_buftotal; 1725 cp->cache_bufslab += sp->slab_chunks; 1726 } 1727 1728 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1729 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1730 (cp->cache_complete_slab_count + 1731 avl_numnodes(&cp->cache_partial_slabs) + 1732 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1733 mutex_exit(&cp->cache_lock); 1734 1735 if (test_destructor && cp->cache_destructor != NULL) { 1736 /* 1737 * On the first kmem_slab_alloc(), assert that it is valid to 1738 * call the destructor on a newly constructed object without any 1739 * client involvement. 1740 */ 1741 if ((cp->cache_constructor == NULL) || 1742 cp->cache_constructor(buf, cp->cache_private, 1743 kmflag) == 0) { 1744 cp->cache_destructor(buf, cp->cache_private); 1745 } 1746 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1747 cp->cache_bufsize); 1748 if (cp->cache_flags & KMF_DEADBEEF) { 1749 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1750 } 1751 } 1752 1753 return (buf); 1754 } 1755 1756 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1757 1758 /* 1759 * Free a raw (unconstructed) buffer to cp's slab layer. 1760 */ 1761 static void 1762 kmem_slab_free(kmem_cache_t *cp, void *buf) 1763 { 1764 kmem_slab_t *sp; 1765 kmem_bufctl_t *bcp, **prev_bcpp; 1766 1767 ASSERT(buf != NULL); 1768 1769 mutex_enter(&cp->cache_lock); 1770 cp->cache_slab_free++; 1771 1772 if (cp->cache_flags & KMF_HASH) { 1773 /* 1774 * Look up buffer in allocated-address hash table. 1775 */ 1776 prev_bcpp = KMEM_HASH(cp, buf); 1777 while ((bcp = *prev_bcpp) != NULL) { 1778 if (bcp->bc_addr == buf) { 1779 *prev_bcpp = bcp->bc_next; 1780 sp = bcp->bc_slab; 1781 break; 1782 } 1783 cp->cache_lookup_depth++; 1784 prev_bcpp = &bcp->bc_next; 1785 } 1786 } else { 1787 bcp = KMEM_BUFCTL(cp, buf); 1788 sp = KMEM_SLAB(cp, buf); 1789 } 1790 1791 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1792 mutex_exit(&cp->cache_lock); 1793 kmem_error(KMERR_BADADDR, cp, buf); 1794 return; 1795 } 1796 1797 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1798 /* 1799 * If this is the buffer that prevented the consolidator from 1800 * clearing the slab, we can reset the slab flags now that the 1801 * buffer is freed. (It makes sense to do this in 1802 * kmem_cache_free(), where the client gives up ownership of the 1803 * buffer, but on the hot path the test is too expensive.) 1804 */ 1805 kmem_slab_move_yes(cp, sp, buf); 1806 } 1807 1808 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1809 if (cp->cache_flags & KMF_CONTENTS) 1810 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1811 kmem_log_enter(kmem_content_log, buf, 1812 cp->cache_contents); 1813 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1814 } 1815 1816 bcp->bc_next = sp->slab_head; 1817 sp->slab_head = bcp; 1818 1819 cp->cache_bufslab++; 1820 ASSERT(sp->slab_refcnt >= 1); 1821 1822 if (--sp->slab_refcnt == 0) { 1823 /* 1824 * There are no outstanding allocations from this slab, 1825 * so we can reclaim the memory. 1826 */ 1827 if (sp->slab_chunks == 1) { 1828 list_remove(&cp->cache_complete_slabs, sp); 1829 cp->cache_complete_slab_count--; 1830 } else { 1831 avl_remove(&cp->cache_partial_slabs, sp); 1832 } 1833 1834 cp->cache_buftotal -= sp->slab_chunks; 1835 cp->cache_bufslab -= sp->slab_chunks; 1836 /* 1837 * Defer releasing the slab to the virtual memory subsystem 1838 * while there is a pending move callback, since we guarantee 1839 * that buffers passed to the move callback have only been 1840 * touched by kmem or by the client itself. Since the memory 1841 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1842 * set at least one of the two lowest order bits, the client can 1843 * test those bits in the move callback to determine whether or 1844 * not it knows about the buffer (assuming that the client also 1845 * sets one of those low order bits whenever it frees a buffer). 1846 */ 1847 if (cp->cache_defrag == NULL || 1848 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1849 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1850 cp->cache_slab_destroy++; 1851 mutex_exit(&cp->cache_lock); 1852 kmem_slab_destroy(cp, sp); 1853 } else { 1854 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1855 /* 1856 * Slabs are inserted at both ends of the deadlist to 1857 * distinguish between slabs freed while move callbacks 1858 * are pending (list head) and a slab freed while the 1859 * lock is dropped in kmem_move_buffers() (list tail) so 1860 * that in both cases slab_destroy() is called from the 1861 * right context. 1862 */ 1863 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1864 list_insert_tail(deadlist, sp); 1865 } else { 1866 list_insert_head(deadlist, sp); 1867 } 1868 cp->cache_defrag->kmd_deadcount++; 1869 mutex_exit(&cp->cache_lock); 1870 } 1871 return; 1872 } 1873 1874 if (bcp->bc_next == NULL) { 1875 /* Transition the slab from completely allocated to partial. */ 1876 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1877 ASSERT(sp->slab_chunks > 1); 1878 list_remove(&cp->cache_complete_slabs, sp); 1879 cp->cache_complete_slab_count--; 1880 avl_add(&cp->cache_partial_slabs, sp); 1881 } else { 1882 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1883 } 1884 1885 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1886 (cp->cache_complete_slab_count + 1887 avl_numnodes(&cp->cache_partial_slabs) + 1888 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1889 mutex_exit(&cp->cache_lock); 1890 } 1891 1892 /* 1893 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1894 */ 1895 static int 1896 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1897 caddr_t caller) 1898 { 1899 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1900 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1901 uint32_t mtbf; 1902 1903 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1904 kmem_error(KMERR_BADBUFTAG, cp, buf); 1905 return (-1); 1906 } 1907 1908 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1909 1910 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1911 kmem_error(KMERR_BADBUFCTL, cp, buf); 1912 return (-1); 1913 } 1914 1915 if (cp->cache_flags & KMF_DEADBEEF) { 1916 if (!construct && (cp->cache_flags & KMF_LITE)) { 1917 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1918 kmem_error(KMERR_MODIFIED, cp, buf); 1919 return (-1); 1920 } 1921 if (cp->cache_constructor != NULL) 1922 *(uint64_t *)buf = btp->bt_redzone; 1923 else 1924 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1925 } else { 1926 construct = 1; 1927 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1928 KMEM_UNINITIALIZED_PATTERN, buf, 1929 cp->cache_verify)) { 1930 kmem_error(KMERR_MODIFIED, cp, buf); 1931 return (-1); 1932 } 1933 } 1934 } 1935 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1936 1937 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1938 gethrtime() % mtbf == 0 && 1939 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1940 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1941 if (!construct && cp->cache_destructor != NULL) 1942 cp->cache_destructor(buf, cp->cache_private); 1943 } else { 1944 mtbf = 0; 1945 } 1946 1947 if (mtbf || (construct && cp->cache_constructor != NULL && 1948 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1949 atomic_inc_64(&cp->cache_alloc_fail); 1950 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1951 if (cp->cache_flags & KMF_DEADBEEF) 1952 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1953 kmem_slab_free(cp, buf); 1954 return (1); 1955 } 1956 1957 if (cp->cache_flags & KMF_AUDIT) { 1958 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1959 } 1960 1961 if ((cp->cache_flags & KMF_LITE) && 1962 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1963 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1964 } 1965 1966 return (0); 1967 } 1968 1969 static int 1970 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1971 { 1972 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1973 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1974 kmem_slab_t *sp; 1975 1976 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1977 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1978 kmem_error(KMERR_DUPFREE, cp, buf); 1979 return (-1); 1980 } 1981 sp = kmem_findslab(cp, buf); 1982 if (sp == NULL || sp->slab_cache != cp) 1983 kmem_error(KMERR_BADADDR, cp, buf); 1984 else 1985 kmem_error(KMERR_REDZONE, cp, buf); 1986 return (-1); 1987 } 1988 1989 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1990 1991 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1992 kmem_error(KMERR_BADBUFCTL, cp, buf); 1993 return (-1); 1994 } 1995 1996 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 1997 kmem_error(KMERR_REDZONE, cp, buf); 1998 return (-1); 1999 } 2000 2001 if (cp->cache_flags & KMF_AUDIT) { 2002 if (cp->cache_flags & KMF_CONTENTS) 2003 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2004 buf, cp->cache_contents); 2005 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2006 } 2007 2008 if ((cp->cache_flags & KMF_LITE) && 2009 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2010 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2011 } 2012 2013 if (cp->cache_flags & KMF_DEADBEEF) { 2014 if (cp->cache_flags & KMF_LITE) 2015 btp->bt_redzone = *(uint64_t *)buf; 2016 else if (cp->cache_destructor != NULL) 2017 cp->cache_destructor(buf, cp->cache_private); 2018 2019 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2020 } 2021 2022 return (0); 2023 } 2024 2025 /* 2026 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2027 */ 2028 static void 2029 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2030 { 2031 int round; 2032 2033 ASSERT(!list_link_active(&cp->cache_link) || 2034 taskq_member(kmem_taskq, curthread)); 2035 2036 for (round = 0; round < nrounds; round++) { 2037 void *buf = mp->mag_round[round]; 2038 2039 if (cp->cache_flags & KMF_DEADBEEF) { 2040 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2041 cp->cache_verify) != NULL) { 2042 kmem_error(KMERR_MODIFIED, cp, buf); 2043 continue; 2044 } 2045 if ((cp->cache_flags & KMF_LITE) && 2046 cp->cache_destructor != NULL) { 2047 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2048 *(uint64_t *)buf = btp->bt_redzone; 2049 cp->cache_destructor(buf, cp->cache_private); 2050 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2051 } 2052 } else if (cp->cache_destructor != NULL) { 2053 cp->cache_destructor(buf, cp->cache_private); 2054 } 2055 2056 kmem_slab_free(cp, buf); 2057 } 2058 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2059 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2060 } 2061 2062 /* 2063 * Allocate a magazine from the depot. 2064 */ 2065 static kmem_magazine_t * 2066 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2067 { 2068 kmem_magazine_t *mp; 2069 2070 /* 2071 * If we can't get the depot lock without contention, 2072 * update our contention count. We use the depot 2073 * contention rate to determine whether we need to 2074 * increase the magazine size for better scalability. 2075 */ 2076 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2077 mutex_enter(&cp->cache_depot_lock); 2078 cp->cache_depot_contention++; 2079 } 2080 2081 if ((mp = mlp->ml_list) != NULL) { 2082 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2083 mlp->ml_list = mp->mag_next; 2084 if (--mlp->ml_total < mlp->ml_min) 2085 mlp->ml_min = mlp->ml_total; 2086 mlp->ml_alloc++; 2087 } 2088 2089 mutex_exit(&cp->cache_depot_lock); 2090 2091 return (mp); 2092 } 2093 2094 /* 2095 * Free a magazine to the depot. 2096 */ 2097 static void 2098 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2099 { 2100 mutex_enter(&cp->cache_depot_lock); 2101 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2102 mp->mag_next = mlp->ml_list; 2103 mlp->ml_list = mp; 2104 mlp->ml_total++; 2105 mutex_exit(&cp->cache_depot_lock); 2106 } 2107 2108 /* 2109 * Update the working set statistics for cp's depot. 2110 */ 2111 static void 2112 kmem_depot_ws_update(kmem_cache_t *cp) 2113 { 2114 mutex_enter(&cp->cache_depot_lock); 2115 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2116 cp->cache_full.ml_min = cp->cache_full.ml_total; 2117 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2118 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2119 mutex_exit(&cp->cache_depot_lock); 2120 } 2121 2122 /* 2123 * Set the working set statistics for cp's depot to zero. (Everything is 2124 * eligible for reaping.) 2125 */ 2126 static void 2127 kmem_depot_ws_zero(kmem_cache_t *cp) 2128 { 2129 mutex_enter(&cp->cache_depot_lock); 2130 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; 2131 cp->cache_full.ml_min = cp->cache_full.ml_total; 2132 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; 2133 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2134 mutex_exit(&cp->cache_depot_lock); 2135 } 2136 2137 /* 2138 * The number of bytes to reap before we call kpreempt(). The default (1MB) 2139 * causes us to preempt reaping up to hundreds of times per second. Using a 2140 * larger value (1GB) causes this to have virtually no effect. 2141 */ 2142 size_t kmem_reap_preempt_bytes = 1024 * 1024; 2143 2144 /* 2145 * Reap all magazines that have fallen out of the depot's working set. 2146 */ 2147 static void 2148 kmem_depot_ws_reap(kmem_cache_t *cp) 2149 { 2150 size_t bytes = 0; 2151 long reap; 2152 kmem_magazine_t *mp; 2153 2154 ASSERT(!list_link_active(&cp->cache_link) || 2155 taskq_member(kmem_taskq, curthread)); 2156 2157 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2158 while (reap-- && 2159 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { 2160 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2161 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2162 if (bytes > kmem_reap_preempt_bytes) { 2163 kpreempt(KPREEMPT_SYNC); 2164 bytes = 0; 2165 } 2166 } 2167 2168 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2169 while (reap-- && 2170 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { 2171 kmem_magazine_destroy(cp, mp, 0); 2172 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2173 if (bytes > kmem_reap_preempt_bytes) { 2174 kpreempt(KPREEMPT_SYNC); 2175 bytes = 0; 2176 } 2177 } 2178 } 2179 2180 static void 2181 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2182 { 2183 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2184 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2185 ASSERT(ccp->cc_magsize > 0); 2186 2187 ccp->cc_ploaded = ccp->cc_loaded; 2188 ccp->cc_prounds = ccp->cc_rounds; 2189 ccp->cc_loaded = mp; 2190 ccp->cc_rounds = rounds; 2191 } 2192 2193 /* 2194 * Intercept kmem alloc/free calls during crash dump in order to avoid 2195 * changing kmem state while memory is being saved to the dump device. 2196 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2197 * there are no locks because only one CPU calls kmem during a crash 2198 * dump. To enable this feature, first create the associated vmem 2199 * arena with VMC_DUMPSAFE. 2200 */ 2201 static void *kmem_dump_start; /* start of pre-reserved heap */ 2202 static void *kmem_dump_end; /* end of heap area */ 2203 static void *kmem_dump_curr; /* current free heap pointer */ 2204 static size_t kmem_dump_size; /* size of heap area */ 2205 2206 /* append to each buf created in the pre-reserved heap */ 2207 typedef struct kmem_dumpctl { 2208 void *kdc_next; /* cache dump free list linkage */ 2209 } kmem_dumpctl_t; 2210 2211 #define KMEM_DUMPCTL(cp, buf) \ 2212 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2213 sizeof (void *))) 2214 2215 /* set non zero for full report */ 2216 uint_t kmem_dump_verbose = 0; 2217 2218 /* stats for overize heap */ 2219 uint_t kmem_dump_oversize_allocs = 0; 2220 uint_t kmem_dump_oversize_max = 0; 2221 2222 static void 2223 kmem_dumppr(char **pp, char *e, const char *format, ...) 2224 { 2225 char *p = *pp; 2226 2227 if (p < e) { 2228 int n; 2229 va_list ap; 2230 2231 va_start(ap, format); 2232 n = vsnprintf(p, e - p, format, ap); 2233 va_end(ap); 2234 *pp = p + n; 2235 } 2236 } 2237 2238 /* 2239 * Called when dumpadm(1M) configures dump parameters. 2240 */ 2241 void 2242 kmem_dump_init(size_t size) 2243 { 2244 /* Our caller ensures size is always set. */ 2245 ASSERT3U(size, >, 0); 2246 2247 if (kmem_dump_start != NULL) 2248 kmem_free(kmem_dump_start, kmem_dump_size); 2249 2250 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2251 kmem_dump_size = size; 2252 kmem_dump_curr = kmem_dump_start; 2253 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2254 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2255 } 2256 2257 /* 2258 * Set flag for each kmem_cache_t if is safe to use alternate dump 2259 * memory. Called just before panic crash dump starts. Set the flag 2260 * for the calling CPU. 2261 */ 2262 void 2263 kmem_dump_begin(void) 2264 { 2265 kmem_cache_t *cp; 2266 2267 ASSERT(panicstr != NULL); 2268 2269 for (cp = list_head(&kmem_caches); cp != NULL; 2270 cp = list_next(&kmem_caches, cp)) { 2271 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2272 2273 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2274 cp->cache_flags |= KMF_DUMPDIVERT; 2275 ccp->cc_flags |= KMF_DUMPDIVERT; 2276 ccp->cc_dump_rounds = ccp->cc_rounds; 2277 ccp->cc_dump_prounds = ccp->cc_prounds; 2278 ccp->cc_rounds = ccp->cc_prounds = -1; 2279 } else { 2280 cp->cache_flags |= KMF_DUMPUNSAFE; 2281 ccp->cc_flags |= KMF_DUMPUNSAFE; 2282 } 2283 } 2284 } 2285 2286 /* 2287 * finished dump intercept 2288 * print any warnings on the console 2289 * return verbose information to dumpsys() in the given buffer 2290 */ 2291 size_t 2292 kmem_dump_finish(char *buf, size_t size) 2293 { 2294 int percent = 0; 2295 size_t used; 2296 char *e = buf + size; 2297 char *p = buf; 2298 2299 if (kmem_dump_curr == kmem_dump_end) { 2300 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu " 2301 "bytes: kmem state in dump may be inconsistent", 2302 kmem_dump_size); 2303 } 2304 2305 if (kmem_dump_verbose == 0) 2306 return (0); 2307 2308 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2309 percent = (used * 100) / kmem_dump_size; 2310 2311 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2312 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2313 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2314 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2315 kmem_dump_oversize_allocs); 2316 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2317 kmem_dump_oversize_max); 2318 2319 /* return buffer size used */ 2320 if (p < e) 2321 bzero(p, e - p); 2322 return (p - buf); 2323 } 2324 2325 /* 2326 * Allocate a constructed object from alternate dump memory. 2327 */ 2328 void * 2329 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2330 { 2331 void *buf; 2332 void *curr; 2333 char *bufend; 2334 2335 /* return a constructed object */ 2336 if ((buf = cp->cache_dump.kd_freelist) != NULL) { 2337 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2338 return (buf); 2339 } 2340 2341 /* create a new constructed object */ 2342 curr = kmem_dump_curr; 2343 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2344 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2345 2346 /* hat layer objects cannot cross a page boundary */ 2347 if (cp->cache_align < PAGESIZE) { 2348 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2349 if (bufend > page) { 2350 bufend += page - (char *)buf; 2351 buf = (void *)page; 2352 } 2353 } 2354 2355 /* fall back to normal alloc if reserved area is used up */ 2356 if (bufend > (char *)kmem_dump_end) { 2357 kmem_dump_curr = kmem_dump_end; 2358 cp->cache_dump.kd_alloc_fails++; 2359 return (NULL); 2360 } 2361 2362 /* 2363 * Must advance curr pointer before calling a constructor that 2364 * may also allocate memory. 2365 */ 2366 kmem_dump_curr = bufend; 2367 2368 /* run constructor */ 2369 if (cp->cache_constructor != NULL && 2370 cp->cache_constructor(buf, cp->cache_private, kmflag) 2371 != 0) { 2372 #ifdef DEBUG 2373 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2374 cp->cache_name, (void *)cp); 2375 #endif 2376 /* reset curr pointer iff no allocs were done */ 2377 if (kmem_dump_curr == bufend) 2378 kmem_dump_curr = curr; 2379 2380 cp->cache_dump.kd_alloc_fails++; 2381 /* fall back to normal alloc if the constructor fails */ 2382 return (NULL); 2383 } 2384 2385 return (buf); 2386 } 2387 2388 /* 2389 * Free a constructed object in alternate dump memory. 2390 */ 2391 int 2392 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2393 { 2394 /* save constructed buffers for next time */ 2395 if ((char *)buf >= (char *)kmem_dump_start && 2396 (char *)buf < (char *)kmem_dump_end) { 2397 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist; 2398 cp->cache_dump.kd_freelist = buf; 2399 return (0); 2400 } 2401 2402 /* just drop buffers that were allocated before dump started */ 2403 if (kmem_dump_curr < kmem_dump_end) 2404 return (0); 2405 2406 /* fall back to normal free if reserved area is used up */ 2407 return (1); 2408 } 2409 2410 /* 2411 * Allocate a constructed object from cache cp. 2412 */ 2413 void * 2414 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2415 { 2416 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2417 kmem_magazine_t *fmp; 2418 void *buf; 2419 2420 mutex_enter(&ccp->cc_lock); 2421 for (;;) { 2422 /* 2423 * If there's an object available in the current CPU's 2424 * loaded magazine, just take it and return. 2425 */ 2426 if (ccp->cc_rounds > 0) { 2427 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2428 ccp->cc_alloc++; 2429 mutex_exit(&ccp->cc_lock); 2430 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2431 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2432 ASSERT(!(ccp->cc_flags & 2433 KMF_DUMPDIVERT)); 2434 cp->cache_dump.kd_unsafe++; 2435 } 2436 if ((ccp->cc_flags & KMF_BUFTAG) && 2437 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2438 caller()) != 0) { 2439 if (kmflag & KM_NOSLEEP) 2440 return (NULL); 2441 mutex_enter(&ccp->cc_lock); 2442 continue; 2443 } 2444 } 2445 return (buf); 2446 } 2447 2448 /* 2449 * The loaded magazine is empty. If the previously loaded 2450 * magazine was full, exchange them and try again. 2451 */ 2452 if (ccp->cc_prounds > 0) { 2453 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2454 continue; 2455 } 2456 2457 /* 2458 * Return an alternate buffer at dump time to preserve 2459 * the heap. 2460 */ 2461 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2462 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2463 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2464 /* log it so that we can warn about it */ 2465 cp->cache_dump.kd_unsafe++; 2466 } else { 2467 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2468 NULL) { 2469 mutex_exit(&ccp->cc_lock); 2470 return (buf); 2471 } 2472 break; /* fall back to slab layer */ 2473 } 2474 } 2475 2476 /* 2477 * If the magazine layer is disabled, break out now. 2478 */ 2479 if (ccp->cc_magsize == 0) 2480 break; 2481 2482 /* 2483 * Try to get a full magazine from the depot. 2484 */ 2485 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2486 if (fmp != NULL) { 2487 if (ccp->cc_ploaded != NULL) 2488 kmem_depot_free(cp, &cp->cache_empty, 2489 ccp->cc_ploaded); 2490 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2491 continue; 2492 } 2493 2494 /* 2495 * There are no full magazines in the depot, 2496 * so fall through to the slab layer. 2497 */ 2498 break; 2499 } 2500 mutex_exit(&ccp->cc_lock); 2501 2502 /* 2503 * We couldn't allocate a constructed object from the magazine layer, 2504 * so get a raw buffer from the slab layer and apply its constructor. 2505 */ 2506 buf = kmem_slab_alloc(cp, kmflag); 2507 2508 if (buf == NULL) 2509 return (NULL); 2510 2511 if (cp->cache_flags & KMF_BUFTAG) { 2512 /* 2513 * Make kmem_cache_alloc_debug() apply the constructor for us. 2514 */ 2515 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2516 if (rc != 0) { 2517 if (kmflag & KM_NOSLEEP) 2518 return (NULL); 2519 /* 2520 * kmem_cache_alloc_debug() detected corruption 2521 * but didn't panic (kmem_panic <= 0). We should not be 2522 * here because the constructor failed (indicated by a 2523 * return code of 1). Try again. 2524 */ 2525 ASSERT(rc == -1); 2526 return (kmem_cache_alloc(cp, kmflag)); 2527 } 2528 return (buf); 2529 } 2530 2531 if (cp->cache_constructor != NULL && 2532 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2533 atomic_inc_64(&cp->cache_alloc_fail); 2534 kmem_slab_free(cp, buf); 2535 return (NULL); 2536 } 2537 2538 return (buf); 2539 } 2540 2541 /* 2542 * The freed argument tells whether or not kmem_cache_free_debug() has already 2543 * been called so that we can avoid the duplicate free error. For example, a 2544 * buffer on a magazine has already been freed by the client but is still 2545 * constructed. 2546 */ 2547 static void 2548 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2549 { 2550 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2551 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2552 return; 2553 2554 /* 2555 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2556 * kmem_cache_free_debug() will have already applied the destructor. 2557 */ 2558 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2559 cp->cache_destructor != NULL) { 2560 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2561 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2562 *(uint64_t *)buf = btp->bt_redzone; 2563 cp->cache_destructor(buf, cp->cache_private); 2564 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2565 } else { 2566 cp->cache_destructor(buf, cp->cache_private); 2567 } 2568 } 2569 2570 kmem_slab_free(cp, buf); 2571 } 2572 2573 /* 2574 * Used when there's no room to free a buffer to the per-CPU cache. 2575 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2576 * caller should try freeing to the per-CPU cache again. 2577 * Note that we don't directly install the magazine in the cpu cache, 2578 * since its state may have changed wildly while the lock was dropped. 2579 */ 2580 static int 2581 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2582 { 2583 kmem_magazine_t *emp; 2584 kmem_magtype_t *mtp; 2585 2586 ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2587 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2588 ((uint_t)ccp->cc_rounds == -1)) && 2589 ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2590 ((uint_t)ccp->cc_prounds == -1))); 2591 2592 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2593 if (emp != NULL) { 2594 if (ccp->cc_ploaded != NULL) 2595 kmem_depot_free(cp, &cp->cache_full, 2596 ccp->cc_ploaded); 2597 kmem_cpu_reload(ccp, emp, 0); 2598 return (1); 2599 } 2600 /* 2601 * There are no empty magazines in the depot, 2602 * so try to allocate a new one. We must drop all locks 2603 * across kmem_cache_alloc() because lower layers may 2604 * attempt to allocate from this cache. 2605 */ 2606 mtp = cp->cache_magtype; 2607 mutex_exit(&ccp->cc_lock); 2608 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2609 mutex_enter(&ccp->cc_lock); 2610 2611 if (emp != NULL) { 2612 /* 2613 * We successfully allocated an empty magazine. 2614 * However, we had to drop ccp->cc_lock to do it, 2615 * so the cache's magazine size may have changed. 2616 * If so, free the magazine and try again. 2617 */ 2618 if (ccp->cc_magsize != mtp->mt_magsize) { 2619 mutex_exit(&ccp->cc_lock); 2620 kmem_cache_free(mtp->mt_cache, emp); 2621 mutex_enter(&ccp->cc_lock); 2622 return (1); 2623 } 2624 2625 /* 2626 * We got a magazine of the right size. Add it to 2627 * the depot and try the whole dance again. 2628 */ 2629 kmem_depot_free(cp, &cp->cache_empty, emp); 2630 return (1); 2631 } 2632 2633 /* 2634 * We couldn't allocate an empty magazine, 2635 * so fall through to the slab layer. 2636 */ 2637 return (0); 2638 } 2639 2640 /* 2641 * Free a constructed object to cache cp. 2642 */ 2643 void 2644 kmem_cache_free(kmem_cache_t *cp, void *buf) 2645 { 2646 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2647 2648 /* 2649 * The client must not free either of the buffers passed to the move 2650 * callback function. 2651 */ 2652 ASSERT(cp->cache_defrag == NULL || 2653 cp->cache_defrag->kmd_thread != curthread || 2654 (buf != cp->cache_defrag->kmd_from_buf && 2655 buf != cp->cache_defrag->kmd_to_buf)); 2656 2657 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2658 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2659 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2660 /* log it so that we can warn about it */ 2661 cp->cache_dump.kd_unsafe++; 2662 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2663 return; 2664 } 2665 if (ccp->cc_flags & KMF_BUFTAG) { 2666 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2667 return; 2668 } 2669 } 2670 2671 mutex_enter(&ccp->cc_lock); 2672 /* 2673 * Any changes to this logic should be reflected in kmem_slab_prefill() 2674 */ 2675 for (;;) { 2676 /* 2677 * If there's a slot available in the current CPU's 2678 * loaded magazine, just put the object there and return. 2679 */ 2680 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2681 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2682 ccp->cc_free++; 2683 mutex_exit(&ccp->cc_lock); 2684 return; 2685 } 2686 2687 /* 2688 * The loaded magazine is full. If the previously loaded 2689 * magazine was empty, exchange them and try again. 2690 */ 2691 if (ccp->cc_prounds == 0) { 2692 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2693 continue; 2694 } 2695 2696 /* 2697 * If the magazine layer is disabled, break out now. 2698 */ 2699 if (ccp->cc_magsize == 0) 2700 break; 2701 2702 if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 2703 /* 2704 * We couldn't free our constructed object to the 2705 * magazine layer, so apply its destructor and free it 2706 * to the slab layer. 2707 */ 2708 break; 2709 } 2710 } 2711 mutex_exit(&ccp->cc_lock); 2712 kmem_slab_free_constructed(cp, buf, B_TRUE); 2713 } 2714 2715 static void 2716 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2717 { 2718 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2719 int cache_flags = cp->cache_flags; 2720 2721 kmem_bufctl_t *next, *head; 2722 size_t nbufs; 2723 2724 /* 2725 * Completely allocate the newly created slab and put the pre-allocated 2726 * buffers in magazines. Any of the buffers that cannot be put in 2727 * magazines must be returned to the slab. 2728 */ 2729 ASSERT(MUTEX_HELD(&cp->cache_lock)); 2730 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2731 ASSERT(cp->cache_constructor == NULL); 2732 ASSERT(sp->slab_cache == cp); 2733 ASSERT(sp->slab_refcnt == 1); 2734 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2735 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2736 2737 head = sp->slab_head; 2738 nbufs = (sp->slab_chunks - sp->slab_refcnt); 2739 sp->slab_head = NULL; 2740 sp->slab_refcnt += nbufs; 2741 cp->cache_bufslab -= nbufs; 2742 cp->cache_slab_alloc += nbufs; 2743 list_insert_head(&cp->cache_complete_slabs, sp); 2744 cp->cache_complete_slab_count++; 2745 mutex_exit(&cp->cache_lock); 2746 mutex_enter(&ccp->cc_lock); 2747 2748 while (head != NULL) { 2749 void *buf = KMEM_BUF(cp, head); 2750 /* 2751 * If there's a slot available in the current CPU's 2752 * loaded magazine, just put the object there and 2753 * continue. 2754 */ 2755 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2756 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2757 buf; 2758 ccp->cc_free++; 2759 nbufs--; 2760 head = head->bc_next; 2761 continue; 2762 } 2763 2764 /* 2765 * The loaded magazine is full. If the previously 2766 * loaded magazine was empty, exchange them and try 2767 * again. 2768 */ 2769 if (ccp->cc_prounds == 0) { 2770 kmem_cpu_reload(ccp, ccp->cc_ploaded, 2771 ccp->cc_prounds); 2772 continue; 2773 } 2774 2775 /* 2776 * If the magazine layer is disabled, break out now. 2777 */ 2778 2779 if (ccp->cc_magsize == 0) { 2780 break; 2781 } 2782 2783 if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2784 break; 2785 } 2786 mutex_exit(&ccp->cc_lock); 2787 if (nbufs != 0) { 2788 ASSERT(head != NULL); 2789 2790 /* 2791 * If there was a failure, return remaining objects to 2792 * the slab 2793 */ 2794 while (head != NULL) { 2795 ASSERT(nbufs != 0); 2796 next = head->bc_next; 2797 head->bc_next = NULL; 2798 kmem_slab_free(cp, KMEM_BUF(cp, head)); 2799 head = next; 2800 nbufs--; 2801 } 2802 } 2803 ASSERT(head == NULL); 2804 ASSERT(nbufs == 0); 2805 mutex_enter(&cp->cache_lock); 2806 } 2807 2808 void * 2809 kmem_zalloc(size_t size, int kmflag) 2810 { 2811 size_t index; 2812 void *buf; 2813 2814 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2815 kmem_cache_t *cp = kmem_alloc_table[index]; 2816 buf = kmem_cache_alloc(cp, kmflag); 2817 if (buf != NULL) { 2818 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2819 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2820 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2821 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2822 2823 if (cp->cache_flags & KMF_LITE) { 2824 KMEM_BUFTAG_LITE_ENTER(btp, 2825 kmem_lite_count, caller()); 2826 } 2827 } 2828 bzero(buf, size); 2829 } 2830 } else { 2831 buf = kmem_alloc(size, kmflag); 2832 if (buf != NULL) 2833 bzero(buf, size); 2834 } 2835 return (buf); 2836 } 2837 2838 void * 2839 kmem_alloc(size_t size, int kmflag) 2840 { 2841 size_t index; 2842 kmem_cache_t *cp; 2843 void *buf; 2844 2845 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2846 cp = kmem_alloc_table[index]; 2847 /* fall through to kmem_cache_alloc() */ 2848 2849 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2850 kmem_big_alloc_table_max) { 2851 cp = kmem_big_alloc_table[index]; 2852 /* fall through to kmem_cache_alloc() */ 2853 2854 } else { 2855 if (size == 0) 2856 return (NULL); 2857 2858 buf = vmem_alloc(kmem_oversize_arena, size, 2859 kmflag & KM_VMFLAGS); 2860 if (buf == NULL) 2861 kmem_log_event(kmem_failure_log, NULL, NULL, 2862 (void *)size); 2863 else if (KMEM_DUMP(kmem_slab_cache)) { 2864 /* stats for dump intercept */ 2865 kmem_dump_oversize_allocs++; 2866 if (size > kmem_dump_oversize_max) 2867 kmem_dump_oversize_max = size; 2868 } 2869 return (buf); 2870 } 2871 2872 buf = kmem_cache_alloc(cp, kmflag); 2873 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2874 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2875 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2876 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2877 2878 if (cp->cache_flags & KMF_LITE) { 2879 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2880 } 2881 } 2882 return (buf); 2883 } 2884 2885 void 2886 kmem_free(void *buf, size_t size) 2887 { 2888 size_t index; 2889 kmem_cache_t *cp; 2890 2891 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2892 cp = kmem_alloc_table[index]; 2893 /* fall through to kmem_cache_free() */ 2894 2895 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2896 kmem_big_alloc_table_max) { 2897 cp = kmem_big_alloc_table[index]; 2898 /* fall through to kmem_cache_free() */ 2899 2900 } else { 2901 EQUIV(buf == NULL, size == 0); 2902 if (buf == NULL && size == 0) 2903 return; 2904 vmem_free(kmem_oversize_arena, buf, size); 2905 return; 2906 } 2907 2908 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2909 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2910 uint32_t *ip = (uint32_t *)btp; 2911 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2912 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2913 kmem_error(KMERR_DUPFREE, cp, buf); 2914 return; 2915 } 2916 if (KMEM_SIZE_VALID(ip[1])) { 2917 ip[0] = KMEM_SIZE_ENCODE(size); 2918 kmem_error(KMERR_BADSIZE, cp, buf); 2919 } else { 2920 kmem_error(KMERR_REDZONE, cp, buf); 2921 } 2922 return; 2923 } 2924 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2925 kmem_error(KMERR_REDZONE, cp, buf); 2926 return; 2927 } 2928 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2929 if (cp->cache_flags & KMF_LITE) { 2930 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2931 caller()); 2932 } 2933 } 2934 kmem_cache_free(cp, buf); 2935 } 2936 2937 void * 2938 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2939 { 2940 size_t realsize = size + vmp->vm_quantum; 2941 void *addr; 2942 2943 /* 2944 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2945 * vm_quantum will cause integer wraparound. Check for this, and 2946 * blow off the firewall page in this case. Note that such a 2947 * giant allocation (the entire kernel address space) can never 2948 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2949 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2950 * corresponding check in kmem_firewall_va_free(). 2951 */ 2952 if (realsize < size) 2953 realsize = size; 2954 2955 /* 2956 * While boot still owns resource management, make sure that this 2957 * redzone virtual address allocation is properly accounted for in 2958 * OBPs "virtual-memory" "available" lists because we're 2959 * effectively claiming them for a red zone. If we don't do this, 2960 * the available lists become too fragmented and too large for the 2961 * current boot/kernel memory list interface. 2962 */ 2963 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 2964 2965 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 2966 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 2967 2968 return (addr); 2969 } 2970 2971 void 2972 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2973 { 2974 ASSERT((kvseg.s_base == NULL ? 2975 va_to_pfn((char *)addr + size) : 2976 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 2977 2978 vmem_free(vmp, addr, size + vmp->vm_quantum); 2979 } 2980 2981 /* 2982 * Try to allocate at least `size' bytes of memory without sleeping or 2983 * panicking. Return actual allocated size in `asize'. If allocation failed, 2984 * try final allocation with sleep or panic allowed. 2985 */ 2986 void * 2987 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 2988 { 2989 void *p; 2990 2991 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2992 do { 2993 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 2994 if (p != NULL) 2995 return (p); 2996 *asize += KMEM_ALIGN; 2997 } while (*asize <= PAGESIZE); 2998 2999 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3000 return (kmem_alloc(*asize, kmflag)); 3001 } 3002 3003 /* 3004 * Reclaim all unused memory from a cache. 3005 */ 3006 static void 3007 kmem_cache_reap(kmem_cache_t *cp) 3008 { 3009 ASSERT(taskq_member(kmem_taskq, curthread)); 3010 cp->cache_reap++; 3011 3012 /* 3013 * Ask the cache's owner to free some memory if possible. 3014 * The idea is to handle things like the inode cache, which 3015 * typically sits on a bunch of memory that it doesn't truly 3016 * *need*. Reclaim policy is entirely up to the owner; this 3017 * callback is just an advisory plea for help. 3018 */ 3019 if (cp->cache_reclaim != NULL) { 3020 long delta; 3021 3022 /* 3023 * Reclaimed memory should be reapable (not included in the 3024 * depot's working set). 3025 */ 3026 delta = cp->cache_full.ml_total; 3027 cp->cache_reclaim(cp->cache_private); 3028 delta = cp->cache_full.ml_total - delta; 3029 if (delta > 0) { 3030 mutex_enter(&cp->cache_depot_lock); 3031 cp->cache_full.ml_reaplimit += delta; 3032 cp->cache_full.ml_min += delta; 3033 mutex_exit(&cp->cache_depot_lock); 3034 } 3035 } 3036 3037 kmem_depot_ws_reap(cp); 3038 3039 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3040 kmem_cache_defrag(cp); 3041 } 3042 } 3043 3044 static void 3045 kmem_reap_timeout(void *flag_arg) 3046 { 3047 uint32_t *flag = (uint32_t *)flag_arg; 3048 3049 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3050 *flag = 0; 3051 } 3052 3053 static void 3054 kmem_reap_done(void *flag) 3055 { 3056 if (!callout_init_done) { 3057 /* can't schedule a timeout at this point */ 3058 kmem_reap_timeout(flag); 3059 } else { 3060 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 3061 } 3062 } 3063 3064 static void 3065 kmem_reap_start(void *flag) 3066 { 3067 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3068 3069 if (flag == &kmem_reaping) { 3070 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3071 /* 3072 * if we have segkp under heap, reap segkp cache. 3073 */ 3074 if (segkp_fromheap) 3075 segkp_cache_free(); 3076 } 3077 else 3078 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3079 3080 /* 3081 * We use taskq_dispatch() to schedule a timeout to clear 3082 * the flag so that kmem_reap() becomes self-throttling: 3083 * we won't reap again until the current reap completes *and* 3084 * at least kmem_reap_interval ticks have elapsed. 3085 */ 3086 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 3087 kmem_reap_done(flag); 3088 } 3089 3090 static void 3091 kmem_reap_common(void *flag_arg) 3092 { 3093 uint32_t *flag = (uint32_t *)flag_arg; 3094 3095 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3096 atomic_cas_32(flag, 0, 1) != 0) 3097 return; 3098 3099 /* 3100 * It may not be kosher to do memory allocation when a reap is called 3101 * (for example, if vmem_populate() is in the call chain). So we 3102 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch 3103 * fails, we reset the flag, and the next reap will try again. 3104 */ 3105 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 3106 *flag = 0; 3107 } 3108 3109 /* 3110 * Reclaim all unused memory from all caches. Called from the VM system 3111 * when memory gets tight. 3112 */ 3113 void 3114 kmem_reap(void) 3115 { 3116 kmem_reap_common(&kmem_reaping); 3117 } 3118 3119 /* 3120 * Reclaim all unused memory from identifier arenas, called when a vmem 3121 * arena not back by memory is exhausted. Since reaping memory-backed caches 3122 * cannot help with identifier exhaustion, we avoid both a large amount of 3123 * work and unwanted side-effects from reclaim callbacks. 3124 */ 3125 void 3126 kmem_reap_idspace(void) 3127 { 3128 kmem_reap_common(&kmem_reaping_idspace); 3129 } 3130 3131 /* 3132 * Purge all magazines from a cache and set its magazine limit to zero. 3133 * All calls are serialized by the kmem_taskq lock, except for the final 3134 * call from kmem_cache_destroy(). 3135 */ 3136 static void 3137 kmem_cache_magazine_purge(kmem_cache_t *cp) 3138 { 3139 kmem_cpu_cache_t *ccp; 3140 kmem_magazine_t *mp, *pmp; 3141 int rounds, prounds, cpu_seqid; 3142 3143 ASSERT(!list_link_active(&cp->cache_link) || 3144 taskq_member(kmem_taskq, curthread)); 3145 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3146 3147 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3148 ccp = &cp->cache_cpu[cpu_seqid]; 3149 3150 mutex_enter(&ccp->cc_lock); 3151 mp = ccp->cc_loaded; 3152 pmp = ccp->cc_ploaded; 3153 rounds = ccp->cc_rounds; 3154 prounds = ccp->cc_prounds; 3155 ccp->cc_loaded = NULL; 3156 ccp->cc_ploaded = NULL; 3157 ccp->cc_rounds = -1; 3158 ccp->cc_prounds = -1; 3159 ccp->cc_magsize = 0; 3160 mutex_exit(&ccp->cc_lock); 3161 3162 if (mp) 3163 kmem_magazine_destroy(cp, mp, rounds); 3164 if (pmp) 3165 kmem_magazine_destroy(cp, pmp, prounds); 3166 } 3167 3168 kmem_depot_ws_zero(cp); 3169 kmem_depot_ws_reap(cp); 3170 } 3171 3172 /* 3173 * Enable per-cpu magazines on a cache. 3174 */ 3175 static void 3176 kmem_cache_magazine_enable(kmem_cache_t *cp) 3177 { 3178 int cpu_seqid; 3179 3180 if (cp->cache_flags & KMF_NOMAGAZINE) 3181 return; 3182 3183 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3184 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3185 mutex_enter(&ccp->cc_lock); 3186 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3187 mutex_exit(&ccp->cc_lock); 3188 } 3189 3190 } 3191 3192 /* 3193 * Reap (almost) everything right now. 3194 */ 3195 void 3196 kmem_cache_reap_now(kmem_cache_t *cp) 3197 { 3198 ASSERT(list_link_active(&cp->cache_link)); 3199 3200 kmem_depot_ws_zero(cp); 3201 3202 (void) taskq_dispatch(kmem_taskq, 3203 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3204 taskq_wait(kmem_taskq); 3205 } 3206 3207 /* 3208 * Recompute a cache's magazine size. The trade-off is that larger magazines 3209 * provide a higher transfer rate with the depot, while smaller magazines 3210 * reduce memory consumption. Magazine resizing is an expensive operation; 3211 * it should not be done frequently. 3212 * 3213 * Changes to the magazine size are serialized by the kmem_taskq lock. 3214 * 3215 * Note: at present this only grows the magazine size. It might be useful 3216 * to allow shrinkage too. 3217 */ 3218 static void 3219 kmem_cache_magazine_resize(kmem_cache_t *cp) 3220 { 3221 kmem_magtype_t *mtp = cp->cache_magtype; 3222 3223 ASSERT(taskq_member(kmem_taskq, curthread)); 3224 3225 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3226 kmem_cache_magazine_purge(cp); 3227 mutex_enter(&cp->cache_depot_lock); 3228 cp->cache_magtype = ++mtp; 3229 cp->cache_depot_contention_prev = 3230 cp->cache_depot_contention + INT_MAX; 3231 mutex_exit(&cp->cache_depot_lock); 3232 kmem_cache_magazine_enable(cp); 3233 } 3234 } 3235 3236 /* 3237 * Rescale a cache's hash table, so that the table size is roughly the 3238 * cache size. We want the average lookup time to be extremely small. 3239 */ 3240 static void 3241 kmem_hash_rescale(kmem_cache_t *cp) 3242 { 3243 kmem_bufctl_t **old_table, **new_table, *bcp; 3244 size_t old_size, new_size, h; 3245 3246 ASSERT(taskq_member(kmem_taskq, curthread)); 3247 3248 new_size = MAX(KMEM_HASH_INITIAL, 3249 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3250 old_size = cp->cache_hash_mask + 1; 3251 3252 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3253 return; 3254 3255 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3256 VM_NOSLEEP); 3257 if (new_table == NULL) 3258 return; 3259 bzero(new_table, new_size * sizeof (void *)); 3260 3261 mutex_enter(&cp->cache_lock); 3262 3263 old_size = cp->cache_hash_mask + 1; 3264 old_table = cp->cache_hash_table; 3265 3266 cp->cache_hash_mask = new_size - 1; 3267 cp->cache_hash_table = new_table; 3268 cp->cache_rescale++; 3269 3270 for (h = 0; h < old_size; h++) { 3271 bcp = old_table[h]; 3272 while (bcp != NULL) { 3273 void *addr = bcp->bc_addr; 3274 kmem_bufctl_t *next_bcp = bcp->bc_next; 3275 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3276 bcp->bc_next = *hash_bucket; 3277 *hash_bucket = bcp; 3278 bcp = next_bcp; 3279 } 3280 } 3281 3282 mutex_exit(&cp->cache_lock); 3283 3284 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3285 } 3286 3287 /* 3288 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3289 * update, magazine resizing, and slab consolidation. 3290 */ 3291 static void 3292 kmem_cache_update(kmem_cache_t *cp) 3293 { 3294 int need_hash_rescale = 0; 3295 int need_magazine_resize = 0; 3296 3297 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3298 3299 /* 3300 * If the cache has become much larger or smaller than its hash table, 3301 * fire off a request to rescale the hash table. 3302 */ 3303 mutex_enter(&cp->cache_lock); 3304 3305 if ((cp->cache_flags & KMF_HASH) && 3306 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3307 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3308 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3309 need_hash_rescale = 1; 3310 3311 mutex_exit(&cp->cache_lock); 3312 3313 /* 3314 * Update the depot working set statistics. 3315 */ 3316 kmem_depot_ws_update(cp); 3317 3318 /* 3319 * If there's a lot of contention in the depot, 3320 * increase the magazine size. 3321 */ 3322 mutex_enter(&cp->cache_depot_lock); 3323 3324 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3325 (int)(cp->cache_depot_contention - 3326 cp->cache_depot_contention_prev) > kmem_depot_contention) 3327 need_magazine_resize = 1; 3328 3329 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3330 3331 mutex_exit(&cp->cache_depot_lock); 3332 3333 if (need_hash_rescale) 3334 (void) taskq_dispatch(kmem_taskq, 3335 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3336 3337 if (need_magazine_resize) 3338 (void) taskq_dispatch(kmem_taskq, 3339 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3340 3341 if (cp->cache_defrag != NULL) 3342 (void) taskq_dispatch(kmem_taskq, 3343 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3344 } 3345 3346 static void kmem_update(void *); 3347 3348 static void 3349 kmem_update_timeout(void *dummy) 3350 { 3351 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3352 } 3353 3354 static void 3355 kmem_update(void *dummy) 3356 { 3357 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3358 3359 /* 3360 * We use taskq_dispatch() to reschedule the timeout so that 3361 * kmem_update() becomes self-throttling: it won't schedule 3362 * new tasks until all previous tasks have completed. 3363 */ 3364 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 3365 kmem_update_timeout(NULL); 3366 } 3367 3368 static int 3369 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3370 { 3371 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3372 kmem_cache_t *cp = ksp->ks_private; 3373 uint64_t cpu_buf_avail; 3374 uint64_t buf_avail = 0; 3375 int cpu_seqid; 3376 long reap; 3377 3378 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3379 3380 if (rw == KSTAT_WRITE) 3381 return (EACCES); 3382 3383 mutex_enter(&cp->cache_lock); 3384 3385 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3386 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3387 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3388 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3389 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3390 3391 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3392 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3393 3394 mutex_enter(&ccp->cc_lock); 3395 3396 cpu_buf_avail = 0; 3397 if (ccp->cc_rounds > 0) 3398 cpu_buf_avail += ccp->cc_rounds; 3399 if (ccp->cc_prounds > 0) 3400 cpu_buf_avail += ccp->cc_prounds; 3401 3402 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3403 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3404 buf_avail += cpu_buf_avail; 3405 3406 mutex_exit(&ccp->cc_lock); 3407 } 3408 3409 mutex_enter(&cp->cache_depot_lock); 3410 3411 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3412 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3413 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3414 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3415 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3416 kmcp->kmc_magazine_size.value.ui64 = 3417 (cp->cache_flags & KMF_NOMAGAZINE) ? 3418 0 : cp->cache_magtype->mt_magsize; 3419 3420 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3421 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3422 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3423 3424 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3425 reap = MIN(reap, cp->cache_full.ml_total); 3426 3427 mutex_exit(&cp->cache_depot_lock); 3428 3429 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3430 kmcp->kmc_align.value.ui64 = cp->cache_align; 3431 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3432 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3433 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3434 buf_avail += cp->cache_bufslab; 3435 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3436 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3437 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3438 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3439 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3440 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3441 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3442 cp->cache_hash_mask + 1 : 0; 3443 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3444 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3445 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3446 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3447 3448 if (cp->cache_defrag == NULL) { 3449 kmcp->kmc_move_callbacks.value.ui64 = 0; 3450 kmcp->kmc_move_yes.value.ui64 = 0; 3451 kmcp->kmc_move_no.value.ui64 = 0; 3452 kmcp->kmc_move_later.value.ui64 = 0; 3453 kmcp->kmc_move_dont_need.value.ui64 = 0; 3454 kmcp->kmc_move_dont_know.value.ui64 = 0; 3455 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3456 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3457 kmcp->kmc_defrag.value.ui64 = 0; 3458 kmcp->kmc_scan.value.ui64 = 0; 3459 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3460 } else { 3461 int64_t reclaimable; 3462 3463 kmem_defrag_t *kd = cp->cache_defrag; 3464 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3465 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3466 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3467 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3468 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3469 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3470 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3471 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3472 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3473 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3474 3475 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3476 reclaimable = MAX(reclaimable, 0); 3477 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3478 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3479 } 3480 3481 mutex_exit(&cp->cache_lock); 3482 return (0); 3483 } 3484 3485 /* 3486 * Return a named statistic about a particular cache. 3487 * This shouldn't be called very often, so it's currently designed for 3488 * simplicity (leverages existing kstat support) rather than efficiency. 3489 */ 3490 uint64_t 3491 kmem_cache_stat(kmem_cache_t *cp, char *name) 3492 { 3493 int i; 3494 kstat_t *ksp = cp->cache_kstat; 3495 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3496 uint64_t value = 0; 3497 3498 if (ksp != NULL) { 3499 mutex_enter(&kmem_cache_kstat_lock); 3500 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3501 for (i = 0; i < ksp->ks_ndata; i++) { 3502 if (strcmp(knp[i].name, name) == 0) { 3503 value = knp[i].value.ui64; 3504 break; 3505 } 3506 } 3507 mutex_exit(&kmem_cache_kstat_lock); 3508 } 3509 return (value); 3510 } 3511 3512 /* 3513 * Return an estimate of currently available kernel heap memory. 3514 * On 32-bit systems, physical memory may exceed virtual memory, 3515 * we just truncate the result at 1GB. 3516 */ 3517 size_t 3518 kmem_avail(void) 3519 { 3520 spgcnt_t rmem = availrmem - tune.t_minarmem; 3521 spgcnt_t fmem = freemem - minfree; 3522 3523 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3524 1 << (30 - PAGESHIFT)))); 3525 } 3526 3527 /* 3528 * Return the maximum amount of memory that is (in theory) allocatable 3529 * from the heap. This may be used as an estimate only since there 3530 * is no guarentee this space will still be available when an allocation 3531 * request is made, nor that the space may be allocated in one big request 3532 * due to kernel heap fragmentation. 3533 */ 3534 size_t 3535 kmem_maxavail(void) 3536 { 3537 spgcnt_t pmem = availrmem - tune.t_minarmem; 3538 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3539 3540 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3541 } 3542 3543 /* 3544 * Indicate whether memory-intensive kmem debugging is enabled. 3545 */ 3546 int 3547 kmem_debugging(void) 3548 { 3549 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3550 } 3551 3552 /* binning function, sorts finely at the two extremes */ 3553 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3554 ((((sp)->slab_refcnt <= (binshift)) || \ 3555 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3556 ? -(sp)->slab_refcnt \ 3557 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3558 3559 /* 3560 * Minimizing the number of partial slabs on the freelist minimizes 3561 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3562 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3563 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3564 * the most-used slabs at the front of the list where they have the best chance 3565 * of being completely allocated, and the least-used slabs at a safe distance 3566 * from the front to improve the odds that the few remaining buffers will all be 3567 * freed before another allocation can tie up the slab. For that reason a slab 3568 * with a higher slab_refcnt sorts less than than a slab with a lower 3569 * slab_refcnt. 3570 * 3571 * However, if a slab has at least one buffer that is deemed unfreeable, we 3572 * would rather have that slab at the front of the list regardless of 3573 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3574 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3575 * callback, the slab is marked unfreeable for as long as it remains on the 3576 * freelist. 3577 */ 3578 static int 3579 kmem_partial_slab_cmp(const void *p0, const void *p1) 3580 { 3581 const kmem_cache_t *cp; 3582 const kmem_slab_t *s0 = p0; 3583 const kmem_slab_t *s1 = p1; 3584 int w0, w1; 3585 size_t binshift; 3586 3587 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3588 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3589 ASSERT(s0->slab_cache == s1->slab_cache); 3590 cp = s1->slab_cache; 3591 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3592 binshift = cp->cache_partial_binshift; 3593 3594 /* weight of first slab */ 3595 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3596 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3597 w0 -= cp->cache_maxchunks; 3598 } 3599 3600 /* weight of second slab */ 3601 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3602 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3603 w1 -= cp->cache_maxchunks; 3604 } 3605 3606 if (w0 < w1) 3607 return (-1); 3608 if (w0 > w1) 3609 return (1); 3610 3611 /* compare pointer values */ 3612 if ((uintptr_t)s0 < (uintptr_t)s1) 3613 return (-1); 3614 if ((uintptr_t)s0 > (uintptr_t)s1) 3615 return (1); 3616 3617 return (0); 3618 } 3619 3620 /* 3621 * It must be valid to call the destructor (if any) on a newly created object. 3622 * That is, the constructor (if any) must leave the object in a valid state for 3623 * the destructor. 3624 */ 3625 kmem_cache_t * 3626 kmem_cache_create( 3627 char *name, /* descriptive name for this cache */ 3628 size_t bufsize, /* size of the objects it manages */ 3629 size_t align, /* required object alignment */ 3630 int (*constructor)(void *, void *, int), /* object constructor */ 3631 void (*destructor)(void *, void *), /* object destructor */ 3632 void (*reclaim)(void *), /* memory reclaim callback */ 3633 void *private, /* pass-thru arg for constr/destr/reclaim */ 3634 vmem_t *vmp, /* vmem source for slab allocation */ 3635 int cflags) /* cache creation flags */ 3636 { 3637 int cpu_seqid; 3638 size_t chunksize; 3639 kmem_cache_t *cp; 3640 kmem_magtype_t *mtp; 3641 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3642 3643 #ifdef DEBUG 3644 /* 3645 * Cache names should conform to the rules for valid C identifiers 3646 */ 3647 if (!strident_valid(name)) { 3648 cmn_err(CE_CONT, 3649 "kmem_cache_create: '%s' is an invalid cache name\n" 3650 "cache names must conform to the rules for " 3651 "C identifiers\n", name); 3652 } 3653 #endif /* DEBUG */ 3654 3655 if (vmp == NULL) 3656 vmp = kmem_default_arena; 3657 3658 /* 3659 * If this kmem cache has an identifier vmem arena as its source, mark 3660 * it such to allow kmem_reap_idspace(). 3661 */ 3662 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3663 if (vmp->vm_cflags & VMC_IDENTIFIER) 3664 cflags |= KMC_IDENTIFIER; 3665 3666 /* 3667 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3668 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3669 * false sharing of per-CPU data. 3670 */ 3671 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3672 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3673 bzero(cp, csize); 3674 list_link_init(&cp->cache_link); 3675 3676 if (align == 0) 3677 align = KMEM_ALIGN; 3678 3679 /* 3680 * If we're not at least KMEM_ALIGN aligned, we can't use free 3681 * memory to hold bufctl information (because we can't safely 3682 * perform word loads and stores on it). 3683 */ 3684 if (align < KMEM_ALIGN) 3685 cflags |= KMC_NOTOUCH; 3686 3687 if (!ISP2(align) || align > vmp->vm_quantum) 3688 panic("kmem_cache_create: bad alignment %lu", align); 3689 3690 mutex_enter(&kmem_flags_lock); 3691 if (kmem_flags & KMF_RANDOMIZE) 3692 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3693 KMF_RANDOMIZE; 3694 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3695 mutex_exit(&kmem_flags_lock); 3696 3697 /* 3698 * Make sure all the various flags are reasonable. 3699 */ 3700 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3701 3702 if (cp->cache_flags & KMF_LITE) { 3703 if (bufsize >= kmem_lite_minsize && 3704 align <= kmem_lite_maxalign && 3705 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3706 cp->cache_flags |= KMF_BUFTAG; 3707 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3708 } else { 3709 cp->cache_flags &= ~KMF_DEBUG; 3710 } 3711 } 3712 3713 if (cp->cache_flags & KMF_DEADBEEF) 3714 cp->cache_flags |= KMF_REDZONE; 3715 3716 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3717 cp->cache_flags |= KMF_NOMAGAZINE; 3718 3719 if (cflags & KMC_NODEBUG) 3720 cp->cache_flags &= ~KMF_DEBUG; 3721 3722 if (cflags & KMC_NOTOUCH) 3723 cp->cache_flags &= ~KMF_TOUCH; 3724 3725 if (cflags & KMC_PREFILL) 3726 cp->cache_flags |= KMF_PREFILL; 3727 3728 if (cflags & KMC_NOHASH) 3729 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3730 3731 if (cflags & KMC_NOMAGAZINE) 3732 cp->cache_flags |= KMF_NOMAGAZINE; 3733 3734 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3735 cp->cache_flags |= KMF_REDZONE; 3736 3737 if (!(cp->cache_flags & KMF_AUDIT)) 3738 cp->cache_flags &= ~KMF_CONTENTS; 3739 3740 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3741 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3742 cp->cache_flags |= KMF_FIREWALL; 3743 3744 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3745 cp->cache_flags &= ~KMF_FIREWALL; 3746 3747 if (cp->cache_flags & KMF_FIREWALL) { 3748 cp->cache_flags &= ~KMF_BUFTAG; 3749 cp->cache_flags |= KMF_NOMAGAZINE; 3750 ASSERT(vmp == kmem_default_arena); 3751 vmp = kmem_firewall_arena; 3752 } 3753 3754 /* 3755 * Set cache properties. 3756 */ 3757 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3758 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3759 cp->cache_bufsize = bufsize; 3760 cp->cache_align = align; 3761 cp->cache_constructor = constructor; 3762 cp->cache_destructor = destructor; 3763 cp->cache_reclaim = reclaim; 3764 cp->cache_private = private; 3765 cp->cache_arena = vmp; 3766 cp->cache_cflags = cflags; 3767 3768 /* 3769 * Determine the chunk size. 3770 */ 3771 chunksize = bufsize; 3772 3773 if (align >= KMEM_ALIGN) { 3774 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3775 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3776 } 3777 3778 if (cp->cache_flags & KMF_BUFTAG) { 3779 cp->cache_bufctl = chunksize; 3780 cp->cache_buftag = chunksize; 3781 if (cp->cache_flags & KMF_LITE) 3782 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3783 else 3784 chunksize += sizeof (kmem_buftag_t); 3785 } 3786 3787 if (cp->cache_flags & KMF_DEADBEEF) { 3788 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3789 if (cp->cache_flags & KMF_LITE) 3790 cp->cache_verify = sizeof (uint64_t); 3791 } 3792 3793 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3794 3795 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3796 3797 /* 3798 * Now that we know the chunk size, determine the optimal slab size. 3799 */ 3800 if (vmp == kmem_firewall_arena) { 3801 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3802 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3803 cp->cache_maxcolor = cp->cache_mincolor; 3804 cp->cache_flags |= KMF_HASH; 3805 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3806 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3807 !(cp->cache_flags & KMF_AUDIT) && 3808 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3809 cp->cache_slabsize = vmp->vm_quantum; 3810 cp->cache_mincolor = 0; 3811 cp->cache_maxcolor = 3812 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3813 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3814 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3815 } else { 3816 size_t chunks, bestfit, waste, slabsize; 3817 size_t minwaste = LONG_MAX; 3818 3819 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3820 slabsize = P2ROUNDUP(chunksize * chunks, 3821 vmp->vm_quantum); 3822 chunks = slabsize / chunksize; 3823 waste = (slabsize % chunksize) / chunks; 3824 if (waste < minwaste) { 3825 minwaste = waste; 3826 bestfit = slabsize; 3827 } 3828 } 3829 if (cflags & KMC_QCACHE) 3830 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3831 cp->cache_slabsize = bestfit; 3832 cp->cache_mincolor = 0; 3833 cp->cache_maxcolor = bestfit % chunksize; 3834 cp->cache_flags |= KMF_HASH; 3835 } 3836 3837 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3838 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3839 3840 /* 3841 * Disallowing prefill when either the DEBUG or HASH flag is set or when 3842 * there is a constructor avoids some tricky issues with debug setup 3843 * that may be revisited later. We cannot allow prefill in a 3844 * metadata cache because of potential recursion. 3845 */ 3846 if (vmp == kmem_msb_arena || 3847 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) || 3848 cp->cache_constructor != NULL) 3849 cp->cache_flags &= ~KMF_PREFILL; 3850 3851 if (cp->cache_flags & KMF_HASH) { 3852 ASSERT(!(cflags & KMC_NOHASH)); 3853 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3854 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3855 } 3856 3857 if (cp->cache_maxcolor >= vmp->vm_quantum) 3858 cp->cache_maxcolor = vmp->vm_quantum - 1; 3859 3860 cp->cache_color = cp->cache_mincolor; 3861 3862 /* 3863 * Initialize the rest of the slab layer. 3864 */ 3865 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3866 3867 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3868 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3869 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3870 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3871 /* reuse partial slab AVL linkage for complete slab list linkage */ 3872 list_create(&cp->cache_complete_slabs, 3873 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3874 3875 if (cp->cache_flags & KMF_HASH) { 3876 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3877 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3878 bzero(cp->cache_hash_table, 3879 KMEM_HASH_INITIAL * sizeof (void *)); 3880 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3881 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3882 } 3883 3884 /* 3885 * Initialize the depot. 3886 */ 3887 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3888 3889 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3890 continue; 3891 3892 cp->cache_magtype = mtp; 3893 3894 /* 3895 * Initialize the CPU layer. 3896 */ 3897 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3898 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3899 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3900 ccp->cc_flags = cp->cache_flags; 3901 ccp->cc_rounds = -1; 3902 ccp->cc_prounds = -1; 3903 } 3904 3905 /* 3906 * Create the cache's kstats. 3907 */ 3908 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3909 "kmem_cache", KSTAT_TYPE_NAMED, 3910 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3911 KSTAT_FLAG_VIRTUAL)) != NULL) { 3912 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3913 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3914 cp->cache_kstat->ks_private = cp; 3915 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3916 kstat_install(cp->cache_kstat); 3917 } 3918 3919 /* 3920 * Add the cache to the global list. This makes it visible 3921 * to kmem_update(), so the cache must be ready for business. 3922 */ 3923 mutex_enter(&kmem_cache_lock); 3924 list_insert_tail(&kmem_caches, cp); 3925 mutex_exit(&kmem_cache_lock); 3926 3927 if (kmem_ready) 3928 kmem_cache_magazine_enable(cp); 3929 3930 return (cp); 3931 } 3932 3933 static int 3934 kmem_move_cmp(const void *buf, const void *p) 3935 { 3936 const kmem_move_t *kmm = p; 3937 uintptr_t v1 = (uintptr_t)buf; 3938 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3939 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3940 } 3941 3942 static void 3943 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3944 { 3945 kmd->kmd_reclaim_numer = 1; 3946 } 3947 3948 /* 3949 * Initially, when choosing candidate slabs for buffers to move, we want to be 3950 * very selective and take only slabs that are less than 3951 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 3952 * slabs, then we raise the allocation ceiling incrementally. The reclaim 3953 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 3954 * longer fragmented. 3955 */ 3956 static void 3957 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 3958 { 3959 if (direction > 0) { 3960 /* make it easier to find a candidate slab */ 3961 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 3962 kmd->kmd_reclaim_numer++; 3963 } 3964 } else { 3965 /* be more selective */ 3966 if (kmd->kmd_reclaim_numer > 1) { 3967 kmd->kmd_reclaim_numer--; 3968 } 3969 } 3970 } 3971 3972 void 3973 kmem_cache_set_move(kmem_cache_t *cp, 3974 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 3975 { 3976 kmem_defrag_t *defrag; 3977 3978 ASSERT(move != NULL); 3979 /* 3980 * The consolidator does not support NOTOUCH caches because kmem cannot 3981 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 3982 * a low order bit usable by clients to distinguish uninitialized memory 3983 * from known objects (see kmem_slab_create). 3984 */ 3985 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 3986 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 3987 3988 /* 3989 * We should not be holding anyone's cache lock when calling 3990 * kmem_cache_alloc(), so allocate in all cases before acquiring the 3991 * lock. 3992 */ 3993 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 3994 3995 mutex_enter(&cp->cache_lock); 3996 3997 if (KMEM_IS_MOVABLE(cp)) { 3998 if (cp->cache_move == NULL) { 3999 ASSERT(cp->cache_slab_alloc == 0); 4000 4001 cp->cache_defrag = defrag; 4002 defrag = NULL; /* nothing to free */ 4003 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 4004 avl_create(&cp->cache_defrag->kmd_moves_pending, 4005 kmem_move_cmp, sizeof (kmem_move_t), 4006 offsetof(kmem_move_t, kmm_entry)); 4007 /* LINTED: E_TRUE_LOGICAL_EXPR */ 4008 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 4009 /* reuse the slab's AVL linkage for deadlist linkage */ 4010 list_create(&cp->cache_defrag->kmd_deadlist, 4011 sizeof (kmem_slab_t), 4012 offsetof(kmem_slab_t, slab_link)); 4013 kmem_reset_reclaim_threshold(cp->cache_defrag); 4014 } 4015 cp->cache_move = move; 4016 } 4017 4018 mutex_exit(&cp->cache_lock); 4019 4020 if (defrag != NULL) { 4021 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 4022 } 4023 } 4024 4025 void 4026 kmem_cache_destroy(kmem_cache_t *cp) 4027 { 4028 int cpu_seqid; 4029 4030 /* 4031 * Remove the cache from the global cache list so that no one else 4032 * can schedule tasks on its behalf, wait for any pending tasks to 4033 * complete, purge the cache, and then destroy it. 4034 */ 4035 mutex_enter(&kmem_cache_lock); 4036 list_remove(&kmem_caches, cp); 4037 mutex_exit(&kmem_cache_lock); 4038 4039 if (kmem_taskq != NULL) 4040 taskq_wait(kmem_taskq); 4041 4042 if (kmem_move_taskq != NULL && cp->cache_defrag != NULL) 4043 taskq_wait(kmem_move_taskq); 4044 4045 kmem_cache_magazine_purge(cp); 4046 4047 mutex_enter(&cp->cache_lock); 4048 if (cp->cache_buftotal != 0) 4049 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 4050 cp->cache_name, (void *)cp); 4051 if (cp->cache_defrag != NULL) { 4052 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 4053 list_destroy(&cp->cache_defrag->kmd_deadlist); 4054 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 4055 cp->cache_defrag = NULL; 4056 } 4057 /* 4058 * The cache is now dead. There should be no further activity. We 4059 * enforce this by setting land mines in the constructor, destructor, 4060 * reclaim, and move routines that induce a kernel text fault if 4061 * invoked. 4062 */ 4063 cp->cache_constructor = (int (*)(void *, void *, int))1; 4064 cp->cache_destructor = (void (*)(void *, void *))2; 4065 cp->cache_reclaim = (void (*)(void *))3; 4066 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 4067 mutex_exit(&cp->cache_lock); 4068 4069 kstat_delete(cp->cache_kstat); 4070 4071 if (cp->cache_hash_table != NULL) 4072 vmem_free(kmem_hash_arena, cp->cache_hash_table, 4073 (cp->cache_hash_mask + 1) * sizeof (void *)); 4074 4075 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 4076 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 4077 4078 mutex_destroy(&cp->cache_depot_lock); 4079 mutex_destroy(&cp->cache_lock); 4080 4081 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 4082 } 4083 4084 /*ARGSUSED*/ 4085 static int 4086 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 4087 { 4088 ASSERT(MUTEX_HELD(&cpu_lock)); 4089 if (what == CPU_UNCONFIG) { 4090 kmem_cache_applyall(kmem_cache_magazine_purge, 4091 kmem_taskq, TQ_SLEEP); 4092 kmem_cache_applyall(kmem_cache_magazine_enable, 4093 kmem_taskq, TQ_SLEEP); 4094 } 4095 return (0); 4096 } 4097 4098 static void 4099 kmem_alloc_caches_create(const int *array, size_t count, 4100 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 4101 { 4102 char name[KMEM_CACHE_NAMELEN + 1]; 4103 size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 4104 size_t size = table_unit; 4105 int i; 4106 4107 for (i = 0; i < count; i++) { 4108 size_t cache_size = array[i]; 4109 size_t align = KMEM_ALIGN; 4110 kmem_cache_t *cp; 4111 4112 /* if the table has an entry for maxbuf, we're done */ 4113 if (size > maxbuf) 4114 break; 4115 4116 /* cache size must be a multiple of the table unit */ 4117 ASSERT(P2PHASE(cache_size, table_unit) == 0); 4118 4119 /* 4120 * If they allocate a multiple of the coherency granularity, 4121 * they get a coherency-granularity-aligned address. 4122 */ 4123 if (IS_P2ALIGNED(cache_size, 64)) 4124 align = 64; 4125 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 4126 align = PAGESIZE; 4127 (void) snprintf(name, sizeof (name), 4128 "kmem_alloc_%lu", cache_size); 4129 cp = kmem_cache_create(name, cache_size, align, 4130 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 4131 4132 while (size <= cache_size) { 4133 alloc_table[(size - 1) >> shift] = cp; 4134 size += table_unit; 4135 } 4136 } 4137 4138 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 4139 } 4140 4141 static void 4142 kmem_cache_init(int pass, int use_large_pages) 4143 { 4144 int i; 4145 size_t maxbuf; 4146 kmem_magtype_t *mtp; 4147 4148 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 4149 char name[KMEM_CACHE_NAMELEN + 1]; 4150 4151 mtp = &kmem_magtype[i]; 4152 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 4153 mtp->mt_cache = kmem_cache_create(name, 4154 (mtp->mt_magsize + 1) * sizeof (void *), 4155 mtp->mt_align, NULL, NULL, NULL, NULL, 4156 kmem_msb_arena, KMC_NOHASH); 4157 } 4158 4159 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 4160 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 4161 kmem_msb_arena, KMC_NOHASH); 4162 4163 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 4164 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 4165 kmem_msb_arena, KMC_NOHASH); 4166 4167 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 4168 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 4169 kmem_msb_arena, KMC_NOHASH); 4170 4171 if (pass == 2) { 4172 kmem_va_arena = vmem_create("kmem_va", 4173 NULL, 0, PAGESIZE, 4174 vmem_alloc, vmem_free, heap_arena, 4175 8 * PAGESIZE, VM_SLEEP); 4176 4177 if (use_large_pages) { 4178 kmem_default_arena = vmem_xcreate("kmem_default", 4179 NULL, 0, PAGESIZE, 4180 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 4181 0, VMC_DUMPSAFE | VM_SLEEP); 4182 } else { 4183 kmem_default_arena = vmem_create("kmem_default", 4184 NULL, 0, PAGESIZE, 4185 segkmem_alloc, segkmem_free, kmem_va_arena, 4186 0, VMC_DUMPSAFE | VM_SLEEP); 4187 } 4188 4189 /* Figure out what our maximum cache size is */ 4190 maxbuf = kmem_max_cached; 4191 if (maxbuf <= KMEM_MAXBUF) { 4192 maxbuf = 0; 4193 kmem_max_cached = KMEM_MAXBUF; 4194 } else { 4195 size_t size = 0; 4196 size_t max = 4197 sizeof (kmem_big_alloc_sizes) / sizeof (int); 4198 /* 4199 * Round maxbuf up to an existing cache size. If maxbuf 4200 * is larger than the largest cache, we truncate it to 4201 * the largest cache's size. 4202 */ 4203 for (i = 0; i < max; i++) { 4204 size = kmem_big_alloc_sizes[i]; 4205 if (maxbuf <= size) 4206 break; 4207 } 4208 kmem_max_cached = maxbuf = size; 4209 } 4210 4211 /* 4212 * The big alloc table may not be completely overwritten, so 4213 * we clear out any stale cache pointers from the first pass. 4214 */ 4215 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 4216 } else { 4217 /* 4218 * During the first pass, the kmem_alloc_* caches 4219 * are treated as metadata. 4220 */ 4221 kmem_default_arena = kmem_msb_arena; 4222 maxbuf = KMEM_BIG_MAXBUF_32BIT; 4223 } 4224 4225 /* 4226 * Set up the default caches to back kmem_alloc() 4227 */ 4228 kmem_alloc_caches_create( 4229 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 4230 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 4231 4232 kmem_alloc_caches_create( 4233 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 4234 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 4235 4236 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 4237 } 4238 4239 void 4240 kmem_init(void) 4241 { 4242 kmem_cache_t *cp; 4243 int old_kmem_flags = kmem_flags; 4244 int use_large_pages = 0; 4245 size_t maxverify, minfirewall; 4246 4247 kstat_init(); 4248 4249 /* 4250 * Don't do firewalled allocations if the heap is less than 1TB 4251 * (i.e. on a 32-bit kernel) 4252 * The resulting VM_NEXTFIT allocations would create too much 4253 * fragmentation in a small heap. 4254 */ 4255 #if defined(_LP64) 4256 maxverify = minfirewall = PAGESIZE / 2; 4257 #else 4258 maxverify = minfirewall = ULONG_MAX; 4259 #endif 4260 4261 /* LINTED */ 4262 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 4263 4264 list_create(&kmem_caches, sizeof (kmem_cache_t), 4265 offsetof(kmem_cache_t, cache_link)); 4266 4267 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 4268 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 4269 VM_SLEEP | VMC_NO_QCACHE); 4270 4271 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 4272 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 4273 VMC_DUMPSAFE | VM_SLEEP); 4274 4275 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 4276 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4277 4278 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 4279 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4280 4281 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 4282 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4283 4284 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 4285 NULL, 0, PAGESIZE, 4286 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 4287 0, VM_SLEEP); 4288 4289 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 4290 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, 4291 VMC_DUMPSAFE | VM_SLEEP); 4292 4293 /* temporary oversize arena for mod_read_system_file */ 4294 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 4295 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4296 4297 kmem_reap_interval = 15 * hz; 4298 4299 /* 4300 * Read /etc/system. This is a chicken-and-egg problem because 4301 * kmem_flags may be set in /etc/system, but mod_read_system_file() 4302 * needs to use the allocator. The simplest solution is to create 4303 * all the standard kmem caches, read /etc/system, destroy all the 4304 * caches we just created, and then create them all again in light 4305 * of the (possibly) new kmem_flags and other kmem tunables. 4306 */ 4307 kmem_cache_init(1, 0); 4308 4309 mod_read_system_file(boothowto & RB_ASKNAME); 4310 4311 while ((cp = list_tail(&kmem_caches)) != NULL) 4312 kmem_cache_destroy(cp); 4313 4314 vmem_destroy(kmem_oversize_arena); 4315 4316 if (old_kmem_flags & KMF_STICKY) 4317 kmem_flags = old_kmem_flags; 4318 4319 if (!(kmem_flags & KMF_AUDIT)) 4320 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 4321 4322 if (kmem_maxverify == 0) 4323 kmem_maxverify = maxverify; 4324 4325 if (kmem_minfirewall == 0) 4326 kmem_minfirewall = minfirewall; 4327 4328 /* 4329 * give segkmem a chance to figure out if we are using large pages 4330 * for the kernel heap 4331 */ 4332 use_large_pages = segkmem_lpsetup(); 4333 4334 /* 4335 * To protect against corruption, we keep the actual number of callers 4336 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 4337 * to 16, since the overhead for small buffers quickly gets out of 4338 * hand. 4339 * 4340 * The real limit would depend on the needs of the largest KMC_NOHASH 4341 * cache. 4342 */ 4343 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 4344 kmem_lite_pcs = kmem_lite_count; 4345 4346 /* 4347 * Normally, we firewall oversized allocations when possible, but 4348 * if we are using large pages for kernel memory, and we don't have 4349 * any non-LITE debugging flags set, we want to allocate oversized 4350 * buffers from large pages, and so skip the firewalling. 4351 */ 4352 if (use_large_pages && 4353 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 4354 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 4355 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 4356 0, VMC_DUMPSAFE | VM_SLEEP); 4357 } else { 4358 kmem_oversize_arena = vmem_create("kmem_oversize", 4359 NULL, 0, PAGESIZE, 4360 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 4361 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | 4362 VM_SLEEP); 4363 } 4364 4365 kmem_cache_init(2, use_large_pages); 4366 4367 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 4368 if (kmem_transaction_log_size == 0) 4369 kmem_transaction_log_size = kmem_maxavail() / 50; 4370 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 4371 } 4372 4373 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 4374 if (kmem_content_log_size == 0) 4375 kmem_content_log_size = kmem_maxavail() / 50; 4376 kmem_content_log = kmem_log_init(kmem_content_log_size); 4377 } 4378 4379 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 4380 4381 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 4382 4383 /* 4384 * Initialize STREAMS message caches so allocb() is available. 4385 * This allows us to initialize the logging framework (cmn_err(9F), 4386 * strlog(9F), etc) so we can start recording messages. 4387 */ 4388 streams_msg_init(); 4389 4390 /* 4391 * Initialize the ZSD framework in Zones so modules loaded henceforth 4392 * can register their callbacks. 4393 */ 4394 zone_zsd_init(); 4395 4396 log_init(); 4397 taskq_init(); 4398 4399 /* 4400 * Warn about invalid or dangerous values of kmem_flags. 4401 * Always warn about unsupported values. 4402 */ 4403 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 4404 KMF_CONTENTS | KMF_LITE)) != 0) || 4405 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 4406 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 4407 "See the Solaris Tunable Parameters Reference Manual.", 4408 kmem_flags); 4409 4410 #ifdef DEBUG 4411 if ((kmem_flags & KMF_DEBUG) == 0) 4412 cmn_err(CE_NOTE, "kmem debugging disabled."); 4413 #else 4414 /* 4415 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 4416 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 4417 * if KMF_AUDIT is set). We should warn the user about the performance 4418 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 4419 * isn't set (since that disables AUDIT). 4420 */ 4421 if (!(kmem_flags & KMF_LITE) && 4422 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 4423 cmn_err(CE_WARN, "High-overhead kmem debugging features " 4424 "enabled (kmem_flags = 0x%x). Performance degradation " 4425 "and large memory overhead possible. See the Solaris " 4426 "Tunable Parameters Reference Manual.", kmem_flags); 4427 #endif /* not DEBUG */ 4428 4429 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 4430 4431 kmem_ready = 1; 4432 4433 /* 4434 * Initialize the platform-specific aligned/DMA memory allocator. 4435 */ 4436 ka_init(); 4437 4438 /* 4439 * Initialize 32-bit ID cache. 4440 */ 4441 id32_init(); 4442 4443 /* 4444 * Initialize the networking stack so modules loaded can 4445 * register their callbacks. 4446 */ 4447 netstack_init(); 4448 } 4449 4450 static void 4451 kmem_move_init(void) 4452 { 4453 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4454 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4455 kmem_msb_arena, KMC_NOHASH); 4456 kmem_move_cache = kmem_cache_create("kmem_move_cache", 4457 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4458 kmem_msb_arena, KMC_NOHASH); 4459 4460 /* 4461 * kmem guarantees that move callbacks are sequential and that even 4462 * across multiple caches no two moves ever execute simultaneously. 4463 * Move callbacks are processed on a separate taskq so that client code 4464 * does not interfere with internal maintenance tasks. 4465 */ 4466 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4467 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4468 } 4469 4470 void 4471 kmem_thread_init(void) 4472 { 4473 kmem_move_init(); 4474 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4475 300, INT_MAX, TASKQ_PREPOPULATE); 4476 } 4477 4478 void 4479 kmem_mp_init(void) 4480 { 4481 mutex_enter(&cpu_lock); 4482 register_cpu_setup_func(kmem_cpu_setup, NULL); 4483 mutex_exit(&cpu_lock); 4484 4485 kmem_update_timeout(NULL); 4486 4487 taskq_mp_init(); 4488 } 4489 4490 /* 4491 * Return the slab of the allocated buffer, or NULL if the buffer is not 4492 * allocated. This function may be called with a known slab address to determine 4493 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4494 * an allocated buffer's slab. 4495 */ 4496 static kmem_slab_t * 4497 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4498 { 4499 kmem_bufctl_t *bcp, *bufbcp; 4500 4501 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4502 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4503 4504 if (cp->cache_flags & KMF_HASH) { 4505 for (bcp = *KMEM_HASH(cp, buf); 4506 (bcp != NULL) && (bcp->bc_addr != buf); 4507 bcp = bcp->bc_next) { 4508 continue; 4509 } 4510 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4511 return (bcp == NULL ? NULL : bcp->bc_slab); 4512 } 4513 4514 if (sp == NULL) { 4515 sp = KMEM_SLAB(cp, buf); 4516 } 4517 bufbcp = KMEM_BUFCTL(cp, buf); 4518 for (bcp = sp->slab_head; 4519 (bcp != NULL) && (bcp != bufbcp); 4520 bcp = bcp->bc_next) { 4521 continue; 4522 } 4523 return (bcp == NULL ? sp : NULL); 4524 } 4525 4526 static boolean_t 4527 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4528 { 4529 long refcnt = sp->slab_refcnt; 4530 4531 ASSERT(cp->cache_defrag != NULL); 4532 4533 /* 4534 * For code coverage we want to be able to move an object within the 4535 * same slab (the only partial slab) even if allocating the destination 4536 * buffer resulted in a completely allocated slab. 4537 */ 4538 if (flags & KMM_DEBUG) { 4539 return ((flags & KMM_DESPERATE) || 4540 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4541 } 4542 4543 /* If we're desperate, we don't care if the client said NO. */ 4544 if (flags & KMM_DESPERATE) { 4545 return (refcnt < sp->slab_chunks); /* any partial */ 4546 } 4547 4548 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4549 return (B_FALSE); 4550 } 4551 4552 if ((refcnt == 1) || kmem_move_any_partial) { 4553 return (refcnt < sp->slab_chunks); 4554 } 4555 4556 /* 4557 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4558 * slabs with a progressively higher percentage of used buffers can be 4559 * reclaimed until the cache as a whole is no longer fragmented. 4560 * 4561 * sp->slab_refcnt kmd_reclaim_numer 4562 * --------------- < ------------------ 4563 * sp->slab_chunks KMEM_VOID_FRACTION 4564 */ 4565 return ((refcnt * KMEM_VOID_FRACTION) < 4566 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4567 } 4568 4569 /* 4570 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4571 * or when the buffer is freed. 4572 */ 4573 static void 4574 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4575 { 4576 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4577 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4578 4579 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4580 return; 4581 } 4582 4583 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4584 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4585 avl_remove(&cp->cache_partial_slabs, sp); 4586 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4587 sp->slab_stuck_offset = (uint32_t)-1; 4588 avl_add(&cp->cache_partial_slabs, sp); 4589 } 4590 } else { 4591 sp->slab_later_count = 0; 4592 sp->slab_stuck_offset = (uint32_t)-1; 4593 } 4594 } 4595 4596 static void 4597 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4598 { 4599 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4600 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4601 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4602 4603 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4604 return; 4605 } 4606 4607 avl_remove(&cp->cache_partial_slabs, sp); 4608 sp->slab_later_count = 0; 4609 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4610 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4611 avl_add(&cp->cache_partial_slabs, sp); 4612 } 4613 4614 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4615 4616 /* 4617 * The move callback takes two buffer addresses, the buffer to be moved, and a 4618 * newly allocated and constructed buffer selected by kmem as the destination. 4619 * It also takes the size of the buffer and an optional user argument specified 4620 * at cache creation time. kmem guarantees that the buffer to be moved has not 4621 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4622 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4623 * the client to safely determine whether or not it is still using the buffer. 4624 * The client must not free either of the buffers passed to the move callback, 4625 * since kmem wants to free them directly to the slab layer. The client response 4626 * tells kmem which of the two buffers to free: 4627 * 4628 * YES kmem frees the old buffer (the move was successful) 4629 * NO kmem frees the new buffer, marks the slab of the old buffer 4630 * non-reclaimable to avoid bothering the client again 4631 * LATER kmem frees the new buffer, increments slab_later_count 4632 * DONT_KNOW kmem frees the new buffer 4633 * DONT_NEED kmem frees both the old buffer and the new buffer 4634 * 4635 * The pending callback argument now being processed contains both of the 4636 * buffers (old and new) passed to the move callback function, the slab of the 4637 * old buffer, and flags related to the move request, such as whether or not the 4638 * system was desperate for memory. 4639 * 4640 * Slabs are not freed while there is a pending callback, but instead are kept 4641 * on a deadlist, which is drained after the last callback completes. This means 4642 * that slabs are safe to access until kmem_move_end(), no matter how many of 4643 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4644 * zero for as long as the slab remains on the deadlist and until the slab is 4645 * freed. 4646 */ 4647 static void 4648 kmem_move_buffer(kmem_move_t *callback) 4649 { 4650 kmem_cbrc_t response; 4651 kmem_slab_t *sp = callback->kmm_from_slab; 4652 kmem_cache_t *cp = sp->slab_cache; 4653 boolean_t free_on_slab; 4654 4655 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4656 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4657 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4658 4659 /* 4660 * The number of allocated buffers on the slab may have changed since we 4661 * last checked the slab's reclaimability (when the pending move was 4662 * enqueued), or the client may have responded NO when asked to move 4663 * another buffer on the same slab. 4664 */ 4665 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4666 kmem_slab_free(cp, callback->kmm_to_buf); 4667 kmem_move_end(cp, callback); 4668 return; 4669 } 4670 4671 /* 4672 * Checking the slab layer is easy, so we might as well do that here 4673 * in case we can avoid bothering the client. 4674 */ 4675 mutex_enter(&cp->cache_lock); 4676 free_on_slab = (kmem_slab_allocated(cp, sp, 4677 callback->kmm_from_buf) == NULL); 4678 mutex_exit(&cp->cache_lock); 4679 4680 if (free_on_slab) { 4681 kmem_slab_free(cp, callback->kmm_to_buf); 4682 kmem_move_end(cp, callback); 4683 return; 4684 } 4685 4686 if (cp->cache_flags & KMF_BUFTAG) { 4687 /* 4688 * Make kmem_cache_alloc_debug() apply the constructor for us. 4689 */ 4690 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4691 KM_NOSLEEP, 1, caller()) != 0) { 4692 kmem_move_end(cp, callback); 4693 return; 4694 } 4695 } else if (cp->cache_constructor != NULL && 4696 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4697 KM_NOSLEEP) != 0) { 4698 atomic_inc_64(&cp->cache_alloc_fail); 4699 kmem_slab_free(cp, callback->kmm_to_buf); 4700 kmem_move_end(cp, callback); 4701 return; 4702 } 4703 4704 cp->cache_defrag->kmd_callbacks++; 4705 cp->cache_defrag->kmd_thread = curthread; 4706 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4707 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4708 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4709 callback); 4710 4711 response = cp->cache_move(callback->kmm_from_buf, 4712 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4713 4714 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4715 callback, kmem_cbrc_t, response); 4716 cp->cache_defrag->kmd_thread = NULL; 4717 cp->cache_defrag->kmd_from_buf = NULL; 4718 cp->cache_defrag->kmd_to_buf = NULL; 4719 4720 if (response == KMEM_CBRC_YES) { 4721 cp->cache_defrag->kmd_yes++; 4722 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4723 /* slab safe to access until kmem_move_end() */ 4724 if (sp->slab_refcnt == 0) 4725 cp->cache_defrag->kmd_slabs_freed++; 4726 mutex_enter(&cp->cache_lock); 4727 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4728 mutex_exit(&cp->cache_lock); 4729 kmem_move_end(cp, callback); 4730 return; 4731 } 4732 4733 switch (response) { 4734 case KMEM_CBRC_NO: 4735 cp->cache_defrag->kmd_no++; 4736 mutex_enter(&cp->cache_lock); 4737 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4738 mutex_exit(&cp->cache_lock); 4739 break; 4740 case KMEM_CBRC_LATER: 4741 cp->cache_defrag->kmd_later++; 4742 mutex_enter(&cp->cache_lock); 4743 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4744 mutex_exit(&cp->cache_lock); 4745 break; 4746 } 4747 4748 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4749 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4750 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4751 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4752 callback->kmm_from_buf); 4753 } 4754 mutex_exit(&cp->cache_lock); 4755 break; 4756 case KMEM_CBRC_DONT_NEED: 4757 cp->cache_defrag->kmd_dont_need++; 4758 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4759 if (sp->slab_refcnt == 0) 4760 cp->cache_defrag->kmd_slabs_freed++; 4761 mutex_enter(&cp->cache_lock); 4762 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4763 mutex_exit(&cp->cache_lock); 4764 break; 4765 case KMEM_CBRC_DONT_KNOW: 4766 /* 4767 * If we don't know if we can move this buffer or not, we'll 4768 * just assume that we can't: if the buffer is in fact free, 4769 * then it is sitting in one of the per-CPU magazines or in 4770 * a full magazine in the depot layer. Either way, because 4771 * defrag is induced in the same logic that reaps a cache, 4772 * it's likely that full magazines will be returned to the 4773 * system soon (thereby accomplishing what we're trying to 4774 * accomplish here: return those magazines to their slabs). 4775 * Given this, any work that we might do now to locate a buffer 4776 * in a magazine is wasted (and expensive!) work; we bump 4777 * a counter in this case and otherwise assume that we can't 4778 * move it. 4779 */ 4780 cp->cache_defrag->kmd_dont_know++; 4781 break; 4782 default: 4783 panic("'%s' (%p) unexpected move callback response %d\n", 4784 cp->cache_name, (void *)cp, response); 4785 } 4786 4787 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4788 kmem_move_end(cp, callback); 4789 } 4790 4791 /* Return B_FALSE if there is insufficient memory for the move request. */ 4792 static boolean_t 4793 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4794 { 4795 void *to_buf; 4796 avl_index_t index; 4797 kmem_move_t *callback, *pending; 4798 ulong_t n; 4799 4800 ASSERT(taskq_member(kmem_taskq, curthread)); 4801 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4802 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4803 4804 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4805 4806 if (callback == NULL) 4807 return (B_FALSE); 4808 4809 callback->kmm_from_slab = sp; 4810 callback->kmm_from_buf = buf; 4811 callback->kmm_flags = flags; 4812 4813 mutex_enter(&cp->cache_lock); 4814 4815 n = avl_numnodes(&cp->cache_partial_slabs); 4816 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4817 mutex_exit(&cp->cache_lock); 4818 kmem_cache_free(kmem_move_cache, callback); 4819 return (B_TRUE); /* there is no need for the move request */ 4820 } 4821 4822 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4823 if (pending != NULL) { 4824 /* 4825 * If the move is already pending and we're desperate now, 4826 * update the move flags. 4827 */ 4828 if (flags & KMM_DESPERATE) { 4829 pending->kmm_flags |= KMM_DESPERATE; 4830 } 4831 mutex_exit(&cp->cache_lock); 4832 kmem_cache_free(kmem_move_cache, callback); 4833 return (B_TRUE); 4834 } 4835 4836 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs), 4837 B_FALSE); 4838 callback->kmm_to_buf = to_buf; 4839 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4840 4841 mutex_exit(&cp->cache_lock); 4842 4843 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4844 callback, TQ_NOSLEEP)) { 4845 mutex_enter(&cp->cache_lock); 4846 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4847 mutex_exit(&cp->cache_lock); 4848 kmem_slab_free(cp, to_buf); 4849 kmem_cache_free(kmem_move_cache, callback); 4850 return (B_FALSE); 4851 } 4852 4853 return (B_TRUE); 4854 } 4855 4856 static void 4857 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4858 { 4859 avl_index_t index; 4860 4861 ASSERT(cp->cache_defrag != NULL); 4862 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4863 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4864 4865 mutex_enter(&cp->cache_lock); 4866 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4867 callback->kmm_from_buf, &index) != NULL); 4868 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4869 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4870 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4871 kmem_slab_t *sp; 4872 4873 /* 4874 * The last pending move completed. Release all slabs from the 4875 * front of the dead list except for any slab at the tail that 4876 * needs to be released from the context of kmem_move_buffers(). 4877 * kmem deferred unmapping the buffers on these slabs in order 4878 * to guarantee that buffers passed to the move callback have 4879 * been touched only by kmem or by the client itself. 4880 */ 4881 while ((sp = list_remove_head(deadlist)) != NULL) { 4882 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4883 list_insert_tail(deadlist, sp); 4884 break; 4885 } 4886 cp->cache_defrag->kmd_deadcount--; 4887 cp->cache_slab_destroy++; 4888 mutex_exit(&cp->cache_lock); 4889 kmem_slab_destroy(cp, sp); 4890 mutex_enter(&cp->cache_lock); 4891 } 4892 } 4893 mutex_exit(&cp->cache_lock); 4894 kmem_cache_free(kmem_move_cache, callback); 4895 } 4896 4897 /* 4898 * Move buffers from least used slabs first by scanning backwards from the end 4899 * of the partial slab list. Scan at most max_scan candidate slabs and move 4900 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4901 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4902 * skip slabs with a ratio of allocated buffers at or above the current 4903 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4904 * scan is aborted) so that the caller can adjust the reclaimability threshold 4905 * depending on how many reclaimable slabs it finds. 4906 * 4907 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4908 * move request, since it is not valid for kmem_move_begin() to call 4909 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4910 */ 4911 static int 4912 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4913 int flags) 4914 { 4915 kmem_slab_t *sp; 4916 void *buf; 4917 int i, j; /* slab index, buffer index */ 4918 int s; /* reclaimable slabs */ 4919 int b; /* allocated (movable) buffers on reclaimable slab */ 4920 boolean_t success; 4921 int refcnt; 4922 int nomove; 4923 4924 ASSERT(taskq_member(kmem_taskq, curthread)); 4925 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4926 ASSERT(kmem_move_cache != NULL); 4927 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4928 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 4929 avl_numnodes(&cp->cache_partial_slabs) > 1); 4930 4931 if (kmem_move_blocked) { 4932 return (0); 4933 } 4934 4935 if (kmem_move_fulltilt) { 4936 flags |= KMM_DESPERATE; 4937 } 4938 4939 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 4940 /* 4941 * Scan as many slabs as needed to find the desired number of 4942 * candidate slabs. 4943 */ 4944 max_scan = (size_t)-1; 4945 } 4946 4947 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 4948 /* Find as many candidate slabs as possible. */ 4949 max_slabs = (size_t)-1; 4950 } 4951 4952 sp = avl_last(&cp->cache_partial_slabs); 4953 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 4954 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 4955 ((sp != avl_first(&cp->cache_partial_slabs)) || 4956 (flags & KMM_DEBUG)); 4957 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 4958 4959 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 4960 continue; 4961 } 4962 s++; 4963 4964 /* Look for allocated buffers to move. */ 4965 for (j = 0, b = 0, buf = sp->slab_base; 4966 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 4967 buf = (((char *)buf) + cp->cache_chunksize), j++) { 4968 4969 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 4970 continue; 4971 } 4972 4973 b++; 4974 4975 /* 4976 * Prevent the slab from being destroyed while we drop 4977 * cache_lock and while the pending move is not yet 4978 * registered. Flag the pending move while 4979 * kmd_moves_pending may still be empty, since we can't 4980 * yet rely on a non-zero pending move count to prevent 4981 * the slab from being destroyed. 4982 */ 4983 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4984 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4985 /* 4986 * Recheck refcnt and nomove after reacquiring the lock, 4987 * since these control the order of partial slabs, and 4988 * we want to know if we can pick up the scan where we 4989 * left off. 4990 */ 4991 refcnt = sp->slab_refcnt; 4992 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 4993 mutex_exit(&cp->cache_lock); 4994 4995 success = kmem_move_begin(cp, sp, buf, flags); 4996 4997 /* 4998 * Now, before the lock is reacquired, kmem could 4999 * process all pending move requests and purge the 5000 * deadlist, so that upon reacquiring the lock, sp has 5001 * been remapped. Or, the client may free all the 5002 * objects on the slab while the pending moves are still 5003 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 5004 * flag causes the slab to be put at the end of the 5005 * deadlist and prevents it from being destroyed, since 5006 * we plan to destroy it here after reacquiring the 5007 * lock. 5008 */ 5009 mutex_enter(&cp->cache_lock); 5010 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5011 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5012 5013 if (sp->slab_refcnt == 0) { 5014 list_t *deadlist = 5015 &cp->cache_defrag->kmd_deadlist; 5016 list_remove(deadlist, sp); 5017 5018 if (!avl_is_empty( 5019 &cp->cache_defrag->kmd_moves_pending)) { 5020 /* 5021 * A pending move makes it unsafe to 5022 * destroy the slab, because even though 5023 * the move is no longer needed, the 5024 * context where that is determined 5025 * requires the slab to exist. 5026 * Fortunately, a pending move also 5027 * means we don't need to destroy the 5028 * slab here, since it will get 5029 * destroyed along with any other slabs 5030 * on the deadlist after the last 5031 * pending move completes. 5032 */ 5033 list_insert_head(deadlist, sp); 5034 return (-1); 5035 } 5036 5037 /* 5038 * Destroy the slab now if it was completely 5039 * freed while we dropped cache_lock and there 5040 * are no pending moves. Since slab_refcnt 5041 * cannot change once it reaches zero, no new 5042 * pending moves from that slab are possible. 5043 */ 5044 cp->cache_defrag->kmd_deadcount--; 5045 cp->cache_slab_destroy++; 5046 mutex_exit(&cp->cache_lock); 5047 kmem_slab_destroy(cp, sp); 5048 mutex_enter(&cp->cache_lock); 5049 /* 5050 * Since we can't pick up the scan where we left 5051 * off, abort the scan and say nothing about the 5052 * number of reclaimable slabs. 5053 */ 5054 return (-1); 5055 } 5056 5057 if (!success) { 5058 /* 5059 * Abort the scan if there is not enough memory 5060 * for the request and say nothing about the 5061 * number of reclaimable slabs. 5062 */ 5063 return (-1); 5064 } 5065 5066 /* 5067 * The slab's position changed while the lock was 5068 * dropped, so we don't know where we are in the 5069 * sequence any more. 5070 */ 5071 if (sp->slab_refcnt != refcnt) { 5072 /* 5073 * If this is a KMM_DEBUG move, the slab_refcnt 5074 * may have changed because we allocated a 5075 * destination buffer on the same slab. In that 5076 * case, we're not interested in counting it. 5077 */ 5078 return (-1); 5079 } 5080 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) 5081 return (-1); 5082 5083 /* 5084 * Generating a move request allocates a destination 5085 * buffer from the slab layer, bumping the first partial 5086 * slab if it is completely allocated. If the current 5087 * slab becomes the first partial slab as a result, we 5088 * can't continue to scan backwards. 5089 * 5090 * If this is a KMM_DEBUG move and we allocated the 5091 * destination buffer from the last partial slab, then 5092 * the buffer we're moving is on the same slab and our 5093 * slab_refcnt has changed, causing us to return before 5094 * reaching here if there are no partial slabs left. 5095 */ 5096 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 5097 if (sp == avl_first(&cp->cache_partial_slabs)) { 5098 /* 5099 * We're not interested in a second KMM_DEBUG 5100 * move. 5101 */ 5102 goto end_scan; 5103 } 5104 } 5105 } 5106 end_scan: 5107 5108 return (s); 5109 } 5110 5111 typedef struct kmem_move_notify_args { 5112 kmem_cache_t *kmna_cache; 5113 void *kmna_buf; 5114 } kmem_move_notify_args_t; 5115 5116 static void 5117 kmem_cache_move_notify_task(void *arg) 5118 { 5119 kmem_move_notify_args_t *args = arg; 5120 kmem_cache_t *cp = args->kmna_cache; 5121 void *buf = args->kmna_buf; 5122 kmem_slab_t *sp; 5123 5124 ASSERT(taskq_member(kmem_taskq, curthread)); 5125 ASSERT(list_link_active(&cp->cache_link)); 5126 5127 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5128 mutex_enter(&cp->cache_lock); 5129 sp = kmem_slab_allocated(cp, NULL, buf); 5130 5131 /* Ignore the notification if the buffer is no longer allocated. */ 5132 if (sp == NULL) { 5133 mutex_exit(&cp->cache_lock); 5134 return; 5135 } 5136 5137 /* Ignore the notification if there's no reason to move the buffer. */ 5138 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5139 /* 5140 * So far the notification is not ignored. Ignore the 5141 * notification if the slab is not marked by an earlier refusal 5142 * to move a buffer. 5143 */ 5144 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 5145 (sp->slab_later_count == 0)) { 5146 mutex_exit(&cp->cache_lock); 5147 return; 5148 } 5149 5150 kmem_slab_move_yes(cp, sp, buf); 5151 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5152 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5153 mutex_exit(&cp->cache_lock); 5154 /* see kmem_move_buffers() about dropping the lock */ 5155 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 5156 mutex_enter(&cp->cache_lock); 5157 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5158 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5159 if (sp->slab_refcnt == 0) { 5160 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5161 list_remove(deadlist, sp); 5162 5163 if (!avl_is_empty( 5164 &cp->cache_defrag->kmd_moves_pending)) { 5165 list_insert_head(deadlist, sp); 5166 mutex_exit(&cp->cache_lock); 5167 return; 5168 } 5169 5170 cp->cache_defrag->kmd_deadcount--; 5171 cp->cache_slab_destroy++; 5172 mutex_exit(&cp->cache_lock); 5173 kmem_slab_destroy(cp, sp); 5174 return; 5175 } 5176 } else { 5177 kmem_slab_move_yes(cp, sp, buf); 5178 } 5179 mutex_exit(&cp->cache_lock); 5180 } 5181 5182 void 5183 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 5184 { 5185 kmem_move_notify_args_t *args; 5186 5187 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 5188 if (args != NULL) { 5189 args->kmna_cache = cp; 5190 args->kmna_buf = buf; 5191 if (!taskq_dispatch(kmem_taskq, 5192 (task_func_t *)kmem_cache_move_notify_task, args, 5193 TQ_NOSLEEP)) 5194 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5195 } 5196 } 5197 5198 static void 5199 kmem_cache_defrag(kmem_cache_t *cp) 5200 { 5201 size_t n; 5202 5203 ASSERT(cp->cache_defrag != NULL); 5204 5205 mutex_enter(&cp->cache_lock); 5206 n = avl_numnodes(&cp->cache_partial_slabs); 5207 if (n > 1) { 5208 /* kmem_move_buffers() drops and reacquires cache_lock */ 5209 cp->cache_defrag->kmd_defrags++; 5210 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 5211 } 5212 mutex_exit(&cp->cache_lock); 5213 } 5214 5215 /* Is this cache above the fragmentation threshold? */ 5216 static boolean_t 5217 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 5218 { 5219 /* 5220 * nfree kmem_frag_numer 5221 * ------------------ > --------------- 5222 * cp->cache_buftotal kmem_frag_denom 5223 */ 5224 return ((nfree * kmem_frag_denom) > 5225 (cp->cache_buftotal * kmem_frag_numer)); 5226 } 5227 5228 static boolean_t 5229 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 5230 { 5231 boolean_t fragmented; 5232 uint64_t nfree; 5233 5234 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5235 *doreap = B_FALSE; 5236 5237 if (kmem_move_fulltilt) { 5238 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5239 return (B_TRUE); 5240 } 5241 } else { 5242 if ((cp->cache_complete_slab_count + avl_numnodes( 5243 &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 5244 return (B_FALSE); 5245 } 5246 } 5247 5248 nfree = cp->cache_bufslab; 5249 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 5250 kmem_cache_frag_threshold(cp, nfree)); 5251 5252 /* 5253 * Free buffers in the magazine layer appear allocated from the point of 5254 * view of the slab layer. We want to know if the slab layer would 5255 * appear fragmented if we included free buffers from magazines that 5256 * have fallen out of the working set. 5257 */ 5258 if (!fragmented) { 5259 long reap; 5260 5261 mutex_enter(&cp->cache_depot_lock); 5262 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5263 reap = MIN(reap, cp->cache_full.ml_total); 5264 mutex_exit(&cp->cache_depot_lock); 5265 5266 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5267 if (kmem_cache_frag_threshold(cp, nfree)) { 5268 *doreap = B_TRUE; 5269 } 5270 } 5271 5272 return (fragmented); 5273 } 5274 5275 /* Called periodically from kmem_taskq */ 5276 static void 5277 kmem_cache_scan(kmem_cache_t *cp) 5278 { 5279 boolean_t reap = B_FALSE; 5280 kmem_defrag_t *kmd; 5281 5282 ASSERT(taskq_member(kmem_taskq, curthread)); 5283 5284 mutex_enter(&cp->cache_lock); 5285 5286 kmd = cp->cache_defrag; 5287 if (kmd->kmd_consolidate > 0) { 5288 kmd->kmd_consolidate--; 5289 mutex_exit(&cp->cache_lock); 5290 kmem_cache_reap(cp); 5291 return; 5292 } 5293 5294 if (kmem_cache_is_fragmented(cp, &reap)) { 5295 size_t slabs_found; 5296 5297 /* 5298 * Consolidate reclaimable slabs from the end of the partial 5299 * slab list (scan at most kmem_reclaim_scan_range slabs to find 5300 * reclaimable slabs). Keep track of how many candidate slabs we 5301 * looked for and how many we actually found so we can adjust 5302 * the definition of a candidate slab if we're having trouble 5303 * finding them. 5304 * 5305 * kmem_move_buffers() drops and reacquires cache_lock. 5306 */ 5307 kmd->kmd_scans++; 5308 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5309 kmem_reclaim_max_slabs, 0); 5310 if (slabs_found >= 0) { 5311 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5312 kmd->kmd_slabs_found += slabs_found; 5313 } 5314 5315 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5316 kmd->kmd_tries = 0; 5317 5318 /* 5319 * If we had difficulty finding candidate slabs in 5320 * previous scans, adjust the threshold so that 5321 * candidates are easier to find. 5322 */ 5323 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5324 kmem_adjust_reclaim_threshold(kmd, -1); 5325 } else if ((kmd->kmd_slabs_found * 2) < 5326 kmd->kmd_slabs_sought) { 5327 kmem_adjust_reclaim_threshold(kmd, 1); 5328 } 5329 kmd->kmd_slabs_sought = 0; 5330 kmd->kmd_slabs_found = 0; 5331 } 5332 } else { 5333 kmem_reset_reclaim_threshold(cp->cache_defrag); 5334 #ifdef DEBUG 5335 if (!avl_is_empty(&cp->cache_partial_slabs)) { 5336 /* 5337 * In a debug kernel we want the consolidator to 5338 * run occasionally even when there is plenty of 5339 * memory. 5340 */ 5341 uint16_t debug_rand; 5342 5343 (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5344 if (!kmem_move_noreap && 5345 ((debug_rand % kmem_mtb_reap) == 0)) { 5346 mutex_exit(&cp->cache_lock); 5347 kmem_cache_reap(cp); 5348 return; 5349 } else if ((debug_rand % kmem_mtb_move) == 0) { 5350 kmd->kmd_scans++; 5351 (void) kmem_move_buffers(cp, 5352 kmem_reclaim_scan_range, 1, KMM_DEBUG); 5353 } 5354 } 5355 #endif /* DEBUG */ 5356 } 5357 5358 mutex_exit(&cp->cache_lock); 5359 5360 if (reap) 5361 kmem_depot_ws_reap(cp); 5362 } 5363