xref: /titanic_51/usr/src/uts/common/os/group.c (revision 1886f67eb9de99edbcda88765f2c603a30c87fc2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/sysmacros.h>
27 #include <sys/systm.h>
28 #include <sys/param.h>
29 #include <sys/debug.h>
30 #include <sys/kmem.h>
31 #include <sys/group.h>
32 #include <sys/cmn_err.h>
33 
34 
35 #define	GRP_SET_SIZE_DEFAULT 2
36 
37 static void group_grow_set(group_t *);
38 static void group_shrink_set(group_t *);
39 static void group_pack_set(void **, uint_t);
40 
41 /*
42  * Initialize a group_t
43  */
44 void
45 group_create(group_t *g)
46 {
47 	bzero(g, sizeof (group_t));
48 }
49 
50 /*
51  * Destroy a group_t
52  * The group must already be empty
53  */
54 void
55 group_destroy(group_t *g)
56 {
57 	ASSERT(g->grp_size == 0);
58 
59 	if (g->grp_capacity > 0) {
60 		kmem_free(g->grp_set, g->grp_capacity * sizeof (void *));
61 		g->grp_capacity = 0;
62 	}
63 	g->grp_set = NULL;
64 }
65 
66 /*
67  * Empty a group_t
68  * Capacity is preserved.
69  */
70 void
71 group_empty(group_t *g)
72 {
73 	int	i;
74 	int	sz = g->grp_size;
75 
76 	g->grp_size = 0;
77 	for (i = 0; i < sz; i++)
78 		g->grp_set[i] = NULL;
79 }
80 
81 /*
82  * Add element "e" to group "g"
83  *
84  * Returns -1 if addition would result in overcapacity, and
85  * resize operations aren't allowed, and 0 otherwise
86  */
87 int
88 group_add(group_t *g, void *e, int gflag)
89 {
90 	int	entry;
91 
92 	if ((gflag & GRP_NORESIZE) &&
93 	    g->grp_size == g->grp_capacity)
94 		return (-1);
95 
96 	ASSERT(g->grp_size != g->grp_capacity || (gflag & GRP_RESIZE));
97 
98 	entry = g->grp_size++;
99 	if (g->grp_size > g->grp_capacity)
100 		group_grow_set(g);
101 
102 	ASSERT(g->grp_set[entry] == NULL);
103 	g->grp_set[entry] = e;
104 
105 	return (0);
106 }
107 
108 /*
109  * Remove element "e" from group "g"
110  *
111  * Returns -1 if "e" was not present in "g" and 0 otherwise
112  */
113 int
114 group_remove(group_t *g, void *e, int gflag)
115 {
116 	int	i;
117 
118 	if (g->grp_size == 0)
119 		return (-1);
120 
121 	/*
122 	 * Find the element in the group's set
123 	 */
124 	for (i = 0; i < g->grp_size; i++)
125 		if (g->grp_set[i] == e)
126 			break;
127 	if (g->grp_set[i] != e)
128 		return (-1);
129 
130 	g->grp_set[i] = NULL;
131 	group_pack_set(g->grp_set, g->grp_size);
132 	g->grp_size--;
133 
134 	if ((gflag & GRP_RESIZE) &&
135 	    g->grp_size > GRP_SET_SIZE_DEFAULT && ISP2(g->grp_size))
136 		group_shrink_set(g);
137 
138 	return (0);
139 }
140 
141 /*
142  * Expand the capacity of group "g" so that it may
143  * contain at least "n" elements
144  */
145 void
146 group_expand(group_t *g, uint_t n)
147 {
148 	while (g->grp_capacity < n)
149 		group_grow_set(g);
150 }
151 
152 /*
153  * Upsize a group's holding capacity
154  */
155 static void
156 group_grow_set(group_t *g)
157 {
158 	uint_t		cap_old, cap_new;
159 	void		**set_old, **set_new;
160 
161 	cap_old = g->grp_capacity;
162 	set_old = g->grp_set;
163 
164 	/*
165 	 * The array size grows in powers of two
166 	 */
167 	if ((cap_new = (cap_old << 1)) == 0) {
168 		/*
169 		 * The set is unallocated.
170 		 * Allocate a default sized set.
171 		 */
172 		cap_new = GRP_SET_SIZE_DEFAULT;
173 		g->grp_set = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
174 		g->grp_capacity = cap_new;
175 	} else {
176 		/*
177 		 * Allocate a newly sized array,
178 		 * copy the data, and free the old array.
179 		 */
180 		set_new = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
181 		(void) kcopy(set_old, set_new, cap_old * sizeof (void *));
182 		g->grp_set = set_new;
183 		g->grp_capacity = cap_new;
184 		kmem_free(set_old, cap_old * sizeof (void *));
185 	}
186 	/*
187 	 * The new array size should be a power of two
188 	 */
189 	ASSERT(((cap_new - 1) & cap_new) == 0);
190 }
191 
192 /*
193  * Downsize a group's holding capacity
194  */
195 static void
196 group_shrink_set(group_t *g)
197 {
198 	uint_t		cap_old, cap_new;
199 	void		**set_old, **set_new;
200 
201 	cap_old = g->grp_capacity;
202 	set_old = g->grp_set;
203 
204 	/*
205 	 * The group's existing array size must already
206 	 * be a power of two
207 	 */
208 	ASSERT(((cap_old - 1) & cap_old) == 0);
209 	cap_new = cap_old >> 1;
210 
211 	/*
212 	 * GRP_SET_SIZE_DEFAULT is the minumum set size.
213 	 */
214 	if (cap_new < GRP_SET_SIZE_DEFAULT)
215 		return;
216 
217 	set_new = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
218 	(void) kcopy(set_old, set_new, cap_new * sizeof (void *));
219 	g->grp_capacity = cap_new;
220 	g->grp_set = set_new;
221 
222 	ASSERT(((cap_new - 1) & cap_new) == 0);
223 	kmem_free(set_old, cap_old * sizeof (void *));
224 }
225 
226 /*
227  * Pack a group's set
228  * Element order is not preserved
229  */
230 static void
231 group_pack_set(void **set, uint_t sz)
232 {
233 	uint_t	i, j, free;
234 
235 	free = (uint_t)-1;
236 
237 	for (i = 0; i < sz; i++) {
238 		if (set[i] == NULL && free == (uint_t)-1) {
239 			/*
240 			 * Found a new free slot.
241 			 * Start packing from here.
242 			 */
243 			free = i;
244 		} else if (set[i] != NULL && free != (uint_t)-1) {
245 			/*
246 			 * Found a slot to pack into
247 			 * an earlier free slot.
248 			 */
249 			ASSERT(set[free] == NULL);
250 			set[free] = set[i];
251 			set[i] = NULL;
252 
253 			/*
254 			 * Find the next free slot
255 			 */
256 			for (j = free + 1; set[j] != NULL; j++) {
257 				ASSERT(j <= i);
258 				if (j == i)
259 					break;
260 			}
261 			if (set[j] == NULL)
262 				free = j;
263 			else
264 				free = (uint_t)-1;
265 		}
266 	}
267 }
268 
269 /*
270  * Initialize a group iterator cookie
271  */
272 void
273 group_iter_init(group_iter_t *iter)
274 {
275 	*iter = 0;
276 }
277 
278 /*
279  * Iterate over the elements in a group
280  */
281 void *
282 group_iterate(group_t *g, group_iter_t *iter)
283 {
284 	uint_t	idx = *iter;
285 	void	*data = NULL;
286 
287 	while (idx < g->grp_size) {
288 		data = g->grp_set[idx++];
289 		if (data != NULL)
290 			break;
291 	}
292 	*iter = idx;
293 
294 	return (data);
295 }
296 
297 /*
298  * Indexed access to a group's elements
299  */
300 void *
301 group_access_at(group_t *g, uint_t idx)
302 {
303 	if (idx >= g->grp_capacity)
304 		return (NULL);
305 
306 	return (g->grp_set[idx]);
307 }
308 
309 /*
310  * Add a new ordered group element at specified
311  * index. The group must already be of sufficient
312  * capacity to hold an element at the specified index.
313  *
314  * Returns 0 if addition was sucessful, and -1 if the
315  * addition failed because the table was too small
316  */
317 int
318 group_add_at(group_t *g, void *e, uint_t idx)
319 {
320 	if (idx >= g->grp_capacity)
321 		return (-1);
322 
323 	if (idx >= g->grp_size)
324 		g->grp_size = idx + 1;
325 
326 	ASSERT(g->grp_set[idx] == NULL);
327 	g->grp_set[idx] = e;
328 	return (0);
329 }
330 
331 /*
332  * Remove the element at the specified index
333  */
334 void
335 group_remove_at(group_t *g, uint_t idx)
336 {
337 	ASSERT(idx < g->grp_capacity);
338 	g->grp_set[idx] = NULL;
339 }
340 
341 /*
342  * Find an element in the group, and return its index
343  * Returns -1 if the element could not be found.
344  */
345 uint_t
346 group_find(group_t *g, void *e)
347 {
348 	uint_t	idx;
349 
350 	for (idx = 0; idx < g->grp_capacity; idx++) {
351 		if (g->grp_set[idx] == e)
352 			return (idx);
353 	}
354 	return ((uint_t)-1);
355 }
356 
357 /*
358  * Return a string in a given buffer with list of integer entries in a group.
359  * The string concatenates consecutive integer ranges ax x-y.
360  * The resulting string looks like "1,2-5,8"
361  *
362  * The convert argument is used to map group elements to integer IDs.
363  */
364 char *
365 group2intlist(group_t *group, char *buffer, size_t len, int (convert)(void*))
366 {
367 	char		*ptr = buffer;
368 	void		*v;
369 	group_iter_t	iter;
370 	boolean_t	first_iteration = B_TRUE;
371 	boolean_t	first_value = B_TRUE;
372 	int		start = 0, end = 0;
373 
374 	/*
375 	 * Allow for the terminating NULL-byte
376 	 */
377 	len = len -1;
378 
379 	group_iter_init(&iter);
380 	while ((v = group_iterate(group, &iter)) != NULL && len > 0) {
381 		int id = convert(v);
382 		int nbytes = 0;
383 
384 		if (first_iteration) {
385 			start = end = id;
386 			first_iteration = B_FALSE;
387 		} else if (end + 1 == id) {
388 			/*
389 			 * Got consecutive ID, so extend end of range without
390 			 * doing anything since the range may extend further
391 			 */
392 			end = id;
393 		} else {
394 			if (first_value) {
395 				first_value = B_FALSE;
396 			} else {
397 				*ptr++ = ',';
398 				len--;
399 			}
400 
401 			if (len == 0)
402 				break;
403 
404 			/*
405 			 * Next ID is not consecutive, so dump IDs gotten so
406 			 * far.
407 			 */
408 			if (end > start + 1) /* range */
409 				nbytes = snprintf(ptr, len, "%d-%d",
410 				    start, end);
411 			else if (end > start) /* different values */
412 				nbytes = snprintf(ptr, len, "%d,%d",
413 				    start, end);
414 			else /* same value */
415 				nbytes = snprintf(ptr, len, "%d", start);
416 
417 			if (nbytes <= 0) {
418 				len = 0;
419 				break;
420 			}
421 
422 			/*
423 			 * Advance position in the string
424 			 */
425 			ptr += nbytes;
426 			len -= nbytes;
427 
428 			/*
429 			 * Try finding consecutive range starting from current
430 			 * ID.
431 			 */
432 			start = end = id;
433 		}
434 	}
435 
436 	if (!first_value) {
437 		*ptr++ = ',';
438 		len--;
439 	}
440 	/*
441 	 * Print last ID(s)
442 	 */
443 	if (len > 0) {
444 		if (end > start + 1) {
445 			(void) snprintf(ptr, len, "%d-%d", start, end);
446 		} else if (end != start) {
447 			(void) snprintf(ptr, len, "%d,%d", start, end);
448 		} else {
449 			(void) snprintf(ptr, len, "%d", start);
450 		}
451 	}
452 
453 	return (buffer);
454 }
455