1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/signal.h> 36 #include <sys/cred.h> 37 #include <sys/policy.h> 38 #include <sys/user.h> 39 #include <sys/systm.h> 40 #include <sys/cpuvar.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/errno.h> 45 #include <sys/time.h> 46 #include <sys/proc.h> 47 #include <sys/cmn_err.h> 48 #include <sys/acct.h> 49 #include <sys/tuneable.h> 50 #include <sys/class.h> 51 #include <sys/kmem.h> 52 #include <sys/session.h> 53 #include <sys/ucontext.h> 54 #include <sys/stack.h> 55 #include <sys/procfs.h> 56 #include <sys/prsystm.h> 57 #include <sys/vmsystm.h> 58 #include <sys/vtrace.h> 59 #include <sys/debug.h> 60 #include <sys/shm_impl.h> 61 #include <sys/door_data.h> 62 #include <vm/as.h> 63 #include <vm/rm.h> 64 #include <c2/audit.h> 65 #include <sys/var.h> 66 #include <sys/schedctl.h> 67 #include <sys/utrap.h> 68 #include <sys/task.h> 69 #include <sys/resource.h> 70 #include <sys/cyclic.h> 71 #include <sys/lgrp.h> 72 #include <sys/rctl.h> 73 #include <sys/contract_impl.h> 74 #include <sys/contract/process_impl.h> 75 #include <sys/list.h> 76 #include <sys/dtrace.h> 77 #include <sys/pool.h> 78 #include <sys/zone.h> 79 #include <sys/sdt.h> 80 #include <sys/class.h> 81 #include <sys/corectl.h> 82 #include <sys/brand.h> 83 #include <sys/fork.h> 84 85 static int64_t cfork(int, int, int); 86 static int getproc(proc_t **, int); 87 static void fork_fail(proc_t *); 88 static void forklwp_fail(proc_t *); 89 90 int fork_fail_pending; 91 92 extern struct kmem_cache *process_cache; 93 94 /* 95 * forkall system call. 96 */ 97 int64_t 98 forkall(void) 99 { 100 return (cfork(0, 0, 0)); 101 } 102 103 /* 104 * The parent is stopped until the child invokes relvm(). 105 */ 106 int64_t 107 vfork(void) 108 { 109 curthread->t_post_sys = 1; /* so vfwait() will be called */ 110 return (cfork(1, 1, 0)); 111 } 112 113 /* 114 * fork system call, aka fork1. 115 */ 116 int64_t 117 fork1(void) 118 { 119 return (cfork(0, 1, 0)); 120 } 121 122 /* 123 * The forkall(), vfork(), and fork1() system calls are no longer 124 * invoked by libc. They are retained only for the benefit of 125 * old statically-linked applications. They should be eliminated 126 * when we no longer care about such old and broken applications. 127 */ 128 129 /* 130 * forksys system call - forkx, forkallx, vforkx. 131 * This is the interface now invoked by libc. 132 */ 133 int64_t 134 forksys(int subcode, int flags) 135 { 136 switch (subcode) { 137 case 0: 138 return (cfork(0, 1, flags)); /* forkx(flags) */ 139 case 1: 140 return (cfork(0, 0, flags)); /* forkallx(flags) */ 141 case 2: 142 curthread->t_post_sys = 1; /* so vfwait() will be called */ 143 return (cfork(1, 1, flags)); /* vforkx(flags) */ 144 default: 145 return ((int64_t)set_errno(EINVAL)); 146 } 147 } 148 149 /* ARGSUSED */ 150 static int64_t 151 cfork(int isvfork, int isfork1, int flags) 152 { 153 proc_t *p = ttoproc(curthread); 154 struct as *as; 155 proc_t *cp, **orphpp; 156 klwp_t *clone; 157 kthread_t *t; 158 task_t *tk; 159 rval_t r; 160 int error; 161 int i; 162 rctl_set_t *dup_set; 163 rctl_alloc_gp_t *dup_gp; 164 rctl_entity_p_t e; 165 lwpdir_t *ldp; 166 lwpent_t *lep; 167 lwpent_t *clep; 168 169 /* 170 * Allow only these two flags. 171 */ 172 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 173 error = EINVAL; 174 goto forkerr; 175 } 176 177 /* 178 * fork is not supported for the /proc agent lwp. 179 */ 180 if (curthread == p->p_agenttp) { 181 error = ENOTSUP; 182 goto forkerr; 183 } 184 185 if ((error = secpolicy_basic_fork(CRED())) != 0) 186 goto forkerr; 187 188 /* 189 * If the calling lwp is doing a fork1() then the 190 * other lwps in this process are not duplicated and 191 * don't need to be held where their kernel stacks can be 192 * cloned. If doing forkall(), the process is held with 193 * SHOLDFORK, so that the lwps are at a point where their 194 * stacks can be copied which is on entry or exit from 195 * the kernel. 196 */ 197 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 198 aston(curthread); 199 error = EINTR; 200 goto forkerr; 201 } 202 203 #if defined(__sparc) 204 /* 205 * Ensure that the user stack is fully constructed 206 * before creating the child process structure. 207 */ 208 (void) flush_user_windows_to_stack(NULL); 209 #endif 210 211 mutex_enter(&p->p_lock); 212 /* 213 * If this is vfork(), cancel any suspend request we might 214 * have gotten from some other thread via lwp_suspend(). 215 * Otherwise we could end up with a deadlock on return 216 * from the vfork() in both the parent and the child. 217 */ 218 if (isvfork) 219 curthread->t_proc_flag &= ~TP_HOLDLWP; 220 /* 221 * Prevent our resource set associations from being changed during fork. 222 */ 223 pool_barrier_enter(); 224 mutex_exit(&p->p_lock); 225 226 /* 227 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 228 */ 229 if (getproc(&cp, 0) < 0) { 230 mutex_enter(&p->p_lock); 231 pool_barrier_exit(); 232 continuelwps(p); 233 mutex_exit(&p->p_lock); 234 error = EAGAIN; 235 goto forkerr; 236 } 237 238 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 239 240 /* 241 * Assign an address space to child 242 */ 243 if (isvfork) { 244 /* 245 * Clear any watched areas and remember the 246 * watched pages for restoring in vfwait(). 247 */ 248 as = p->p_as; 249 if (avl_numnodes(&as->a_wpage) != 0) { 250 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 251 as_clearwatch(as); 252 p->p_wpage = as->a_wpage; 253 avl_create(&as->a_wpage, wp_compare, 254 sizeof (struct watched_page), 255 offsetof(struct watched_page, wp_link)); 256 AS_LOCK_EXIT(as, &as->a_lock); 257 } 258 cp->p_as = as; 259 cp->p_flag |= SVFORK; 260 } else { 261 /* 262 * We need to hold P_PR_LOCK until the address space has 263 * been duplicated and we've had a chance to remove from the 264 * child any DTrace probes that were in the parent. Holding 265 * P_PR_LOCK prevents any new probes from being added and any 266 * extant probes from being removed. 267 */ 268 mutex_enter(&p->p_lock); 269 sprlock_proc(p); 270 p->p_flag |= SFORKING; 271 mutex_exit(&p->p_lock); 272 273 error = as_dup(p->p_as, &cp->p_as); 274 if (error != 0) { 275 mutex_enter(&p->p_lock); 276 sprunlock(p); 277 fork_fail(cp); 278 mutex_enter(&pidlock); 279 orphpp = &p->p_orphan; 280 while (*orphpp != cp) 281 orphpp = &(*orphpp)->p_nextorph; 282 *orphpp = cp->p_nextorph; 283 if (p->p_child == cp) 284 p->p_child = cp->p_sibling; 285 if (cp->p_sibling) 286 cp->p_sibling->p_psibling = cp->p_psibling; 287 if (cp->p_psibling) 288 cp->p_psibling->p_sibling = cp->p_sibling; 289 mutex_enter(&cp->p_lock); 290 tk = cp->p_task; 291 task_detach(cp); 292 ASSERT(cp->p_pool->pool_ref > 0); 293 atomic_add_32(&cp->p_pool->pool_ref, -1); 294 mutex_exit(&cp->p_lock); 295 pid_exit(cp); 296 mutex_exit(&pidlock); 297 task_rele(tk); 298 299 mutex_enter(&p->p_lock); 300 p->p_flag &= ~SFORKING; 301 pool_barrier_exit(); 302 continuelwps(p); 303 mutex_exit(&p->p_lock); 304 /* 305 * Preserve ENOMEM error condition but 306 * map all others to EAGAIN. 307 */ 308 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 309 goto forkerr; 310 } 311 cp->p_as->a_proc = cp; 312 313 /* Duplicate parent's shared memory */ 314 if (p->p_segacct) 315 shmfork(p, cp); 316 317 /* 318 * Remove all DTrace tracepoints from the child process. We 319 * need to do this _before_ duplicating USDT providers since 320 * any associated probes may be immediately enabled. 321 */ 322 if (p->p_dtrace_count > 0) 323 dtrace_fasttrap_fork(p, cp); 324 325 /* 326 * Duplicate any helper actions and providers. The SFORKING 327 * we set above informs the code to enable USDT probes that 328 * sprlock() may fail because the child is being forked. 329 */ 330 if (p->p_dtrace_helpers != NULL) { 331 ASSERT(dtrace_helpers_fork != NULL); 332 (*dtrace_helpers_fork)(p, cp); 333 } 334 335 mutex_enter(&p->p_lock); 336 p->p_flag &= ~SFORKING; 337 sprunlock(p); 338 } 339 340 /* 341 * Duplicate parent's resource controls. 342 */ 343 dup_set = rctl_set_create(); 344 for (;;) { 345 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 346 mutex_enter(&p->p_rctls->rcs_lock); 347 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 348 break; 349 mutex_exit(&p->p_rctls->rcs_lock); 350 rctl_prealloc_destroy(dup_gp); 351 } 352 e.rcep_p.proc = cp; 353 e.rcep_t = RCENTITY_PROCESS; 354 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 355 RCD_DUP | RCD_CALLBACK); 356 mutex_exit(&p->p_rctls->rcs_lock); 357 358 rctl_prealloc_destroy(dup_gp); 359 360 /* 361 * Allocate the child's lwp directory and lwpid hash table. 362 */ 363 if (isfork1) 364 cp->p_lwpdir_sz = 2; 365 else 366 cp->p_lwpdir_sz = p->p_lwpdir_sz; 367 cp->p_lwpdir = cp->p_lwpfree = ldp = 368 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 369 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 370 ldp->ld_next = ldp + 1; 371 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 372 cp->p_tidhash = 373 kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP); 374 375 /* 376 * Duplicate parent's lwps. 377 * Mutual exclusion is not needed because the process is 378 * in the hold state and only the current lwp is running. 379 */ 380 klgrpset_clear(cp->p_lgrpset); 381 if (isfork1) { 382 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 383 if (clone == NULL) 384 goto forklwperr; 385 /* 386 * Inherit only the lwp_wait()able flag, 387 * Daemon threads should not call fork1(), but oh well... 388 */ 389 lwptot(clone)->t_proc_flag |= 390 (curthread->t_proc_flag & TP_TWAIT); 391 } else { 392 /* this is forkall(), no one can be in lwp_wait() */ 393 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 394 /* for each entry in the parent's lwp directory... */ 395 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 396 klwp_t *clwp; 397 kthread_t *ct; 398 399 if ((lep = ldp->ld_entry) == NULL) 400 continue; 401 402 if ((t = lep->le_thread) != NULL) { 403 clwp = forklwp(ttolwp(t), cp, t->t_tid); 404 if (clwp == NULL) 405 goto forklwperr; 406 ct = lwptot(clwp); 407 /* 408 * Inherit lwp_wait()able and daemon flags. 409 */ 410 ct->t_proc_flag |= 411 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 412 /* 413 * Keep track of the clone of curthread to 414 * post return values through lwp_setrval(). 415 * Mark other threads for special treatment 416 * by lwp_rtt() / post_syscall(). 417 */ 418 if (t == curthread) 419 clone = clwp; 420 else 421 ct->t_flag |= T_FORKALL; 422 } else { 423 /* 424 * Replicate zombie lwps in the child. 425 */ 426 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 427 clep->le_lwpid = lep->le_lwpid; 428 clep->le_start = lep->le_start; 429 lwp_hash_in(cp, clep); 430 } 431 } 432 } 433 434 /* 435 * Put new process in the parent's process contract, or put it 436 * in a new one if there is an active process template. Send a 437 * fork event (if requested) to whatever contract the child is 438 * a member of. Fails if the parent has been SIGKILLed. 439 */ 440 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 441 goto forklwperr; 442 443 /* 444 * No fork failures occur beyond this point. 445 */ 446 447 cp->p_lwpid = p->p_lwpid; 448 if (!isfork1) { 449 cp->p_lwpdaemon = p->p_lwpdaemon; 450 cp->p_zombcnt = p->p_zombcnt; 451 /* 452 * If the parent's lwp ids have wrapped around, so have the 453 * child's. 454 */ 455 cp->p_flag |= p->p_flag & SLWPWRAP; 456 } 457 458 mutex_enter(&p->p_lock); 459 corectl_path_hold(cp->p_corefile = p->p_corefile); 460 corectl_content_hold(cp->p_content = p->p_content); 461 mutex_exit(&p->p_lock); 462 463 /* 464 * Duplicate process context ops, if any. 465 */ 466 if (p->p_pctx) 467 forkpctx(p, cp); 468 469 #ifdef __sparc 470 utrap_dup(p, cp); 471 #endif 472 /* 473 * If the child process has been marked to stop on exit 474 * from this fork, arrange for all other lwps to stop in 475 * sympathy with the active lwp. 476 */ 477 if (PTOU(cp)->u_systrap && 478 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 479 mutex_enter(&cp->p_lock); 480 t = cp->p_tlist; 481 do { 482 t->t_proc_flag |= TP_PRSTOP; 483 aston(t); /* so TP_PRSTOP will be seen */ 484 } while ((t = t->t_forw) != cp->p_tlist); 485 mutex_exit(&cp->p_lock); 486 } 487 /* 488 * If the parent process has been marked to stop on exit 489 * from this fork, and its asynchronous-stop flag has not 490 * been set, arrange for all other lwps to stop before 491 * they return back to user level. 492 */ 493 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 494 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 495 mutex_enter(&p->p_lock); 496 t = p->p_tlist; 497 do { 498 t->t_proc_flag |= TP_PRSTOP; 499 aston(t); /* so TP_PRSTOP will be seen */ 500 } while ((t = t->t_forw) != p->p_tlist); 501 mutex_exit(&p->p_lock); 502 } 503 504 if (PROC_IS_BRANDED(p)) 505 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 506 else 507 lwp_setrval(clone, p->p_pid, 1); 508 509 /* set return values for parent */ 510 r.r_val1 = (int)cp->p_pid; 511 r.r_val2 = 0; 512 513 /* 514 * pool_barrier_exit() can now be called because the child process has: 515 * - all identifying features cloned or set (p_pid, p_task, p_pool) 516 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 517 * - any other fields set which are used in resource set binding. 518 */ 519 mutex_enter(&p->p_lock); 520 pool_barrier_exit(); 521 mutex_exit(&p->p_lock); 522 523 mutex_enter(&pidlock); 524 mutex_enter(&cp->p_lock); 525 526 /* 527 * Set flags telling the child what (not) to do on exit. 528 */ 529 if (flags & FORK_NOSIGCHLD) 530 cp->p_pidflag |= CLDNOSIGCHLD; 531 if (flags & FORK_WAITPID) 532 cp->p_pidflag |= CLDWAITPID; 533 534 /* 535 * Now that there are lwps and threads attached, add the new 536 * process to the process group. 537 */ 538 pgjoin(cp, p->p_pgidp); 539 cp->p_stat = SRUN; 540 /* 541 * We are now done with all the lwps in the child process. 542 */ 543 t = cp->p_tlist; 544 do { 545 /* 546 * Set the lwp_suspend()ed lwps running. 547 * They will suspend properly at syscall exit. 548 */ 549 if (t->t_proc_flag & TP_HOLDLWP) 550 lwp_create_done(t); 551 else { 552 /* set TS_CREATE to allow continuelwps() to work */ 553 thread_lock(t); 554 ASSERT(t->t_state == TS_STOPPED && 555 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 556 t->t_schedflag |= TS_CREATE; 557 thread_unlock(t); 558 } 559 } while ((t = t->t_forw) != cp->p_tlist); 560 mutex_exit(&cp->p_lock); 561 562 if (isvfork) { 563 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 564 mutex_enter(&p->p_lock); 565 p->p_flag |= SVFWAIT; 566 curthread->t_flag |= T_VFPARENT; 567 DTRACE_PROC1(create, proc_t *, cp); 568 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 569 mutex_exit(&p->p_lock); 570 /* 571 * Grab child's p_lock before dropping pidlock to ensure 572 * the process will not disappear before we set it running. 573 */ 574 mutex_enter(&cp->p_lock); 575 mutex_exit(&pidlock); 576 sigdefault(cp); 577 continuelwps(cp); 578 mutex_exit(&cp->p_lock); 579 } else { 580 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 581 DTRACE_PROC1(create, proc_t *, cp); 582 /* 583 * It is CL_FORKRET's job to drop pidlock. 584 * If we do it here, the process could be set running 585 * and disappear before CL_FORKRET() is called. 586 */ 587 CL_FORKRET(curthread, cp->p_tlist); 588 ASSERT(MUTEX_NOT_HELD(&pidlock)); 589 } 590 591 return (r.r_vals); 592 593 forklwperr: 594 if (isvfork) { 595 if (avl_numnodes(&p->p_wpage) != 0) { 596 /* restore watchpoints to parent */ 597 as = p->p_as; 598 AS_LOCK_ENTER(as, &as->a_lock, 599 RW_WRITER); 600 as->a_wpage = p->p_wpage; 601 avl_create(&p->p_wpage, wp_compare, 602 sizeof (struct watched_page), 603 offsetof(struct watched_page, wp_link)); 604 as_setwatch(as); 605 AS_LOCK_EXIT(as, &as->a_lock); 606 } 607 } else { 608 if (cp->p_segacct) 609 shmexit(cp); 610 as = cp->p_as; 611 cp->p_as = &kas; 612 as_free(as); 613 } 614 615 if (cp->p_lwpdir) { 616 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 617 if ((lep = ldp->ld_entry) != NULL) 618 kmem_free(lep, sizeof (*lep)); 619 kmem_free(cp->p_lwpdir, 620 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 621 } 622 cp->p_lwpdir = NULL; 623 cp->p_lwpfree = NULL; 624 cp->p_lwpdir_sz = 0; 625 626 if (cp->p_tidhash) 627 kmem_free(cp->p_tidhash, 628 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 629 cp->p_tidhash = NULL; 630 cp->p_tidhash_sz = 0; 631 632 forklwp_fail(cp); 633 fork_fail(cp); 634 rctl_set_free(cp->p_rctls); 635 mutex_enter(&pidlock); 636 637 /* 638 * Detach failed child from task. 639 */ 640 mutex_enter(&cp->p_lock); 641 tk = cp->p_task; 642 task_detach(cp); 643 ASSERT(cp->p_pool->pool_ref > 0); 644 atomic_add_32(&cp->p_pool->pool_ref, -1); 645 mutex_exit(&cp->p_lock); 646 647 orphpp = &p->p_orphan; 648 while (*orphpp != cp) 649 orphpp = &(*orphpp)->p_nextorph; 650 *orphpp = cp->p_nextorph; 651 if (p->p_child == cp) 652 p->p_child = cp->p_sibling; 653 if (cp->p_sibling) 654 cp->p_sibling->p_psibling = cp->p_psibling; 655 if (cp->p_psibling) 656 cp->p_psibling->p_sibling = cp->p_sibling; 657 pid_exit(cp); 658 mutex_exit(&pidlock); 659 660 task_rele(tk); 661 662 mutex_enter(&p->p_lock); 663 pool_barrier_exit(); 664 continuelwps(p); 665 mutex_exit(&p->p_lock); 666 error = EAGAIN; 667 forkerr: 668 return ((int64_t)set_errno(error)); 669 } 670 671 /* 672 * Free allocated resources from getproc() if a fork failed. 673 */ 674 static void 675 fork_fail(proc_t *cp) 676 { 677 uf_info_t *fip = P_FINFO(cp); 678 679 fcnt_add(fip, -1); 680 sigdelq(cp, NULL, 0); 681 682 mutex_enter(&pidlock); 683 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 684 mutex_exit(&pidlock); 685 686 /* 687 * single threaded, so no locking needed here 688 */ 689 crfree(cp->p_cred); 690 691 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 692 693 VN_RELE(PTOU(curproc)->u_cdir); 694 if (PTOU(curproc)->u_rdir) 695 VN_RELE(PTOU(curproc)->u_rdir); 696 if (cp->p_exec) 697 VN_RELE(cp->p_exec); 698 if (cp->p_execdir) 699 VN_RELE(cp->p_execdir); 700 if (PTOU(curproc)->u_cwd) 701 refstr_rele(PTOU(curproc)->u_cwd); 702 } 703 704 /* 705 * Clean up the lwps already created for this child process. 706 * The fork failed while duplicating all the lwps of the parent 707 * and those lwps already created must be freed. 708 * This process is invisible to the rest of the system, 709 * so we don't need to hold p->p_lock to protect the list. 710 */ 711 static void 712 forklwp_fail(proc_t *p) 713 { 714 kthread_t *t; 715 task_t *tk; 716 717 while ((t = p->p_tlist) != NULL) { 718 /* 719 * First remove the lwp from the process's p_tlist. 720 */ 721 if (t != t->t_forw) 722 p->p_tlist = t->t_forw; 723 else 724 p->p_tlist = NULL; 725 p->p_lwpcnt--; 726 t->t_forw->t_back = t->t_back; 727 t->t_back->t_forw = t->t_forw; 728 729 tk = p->p_task; 730 mutex_enter(&p->p_zone->zone_nlwps_lock); 731 tk->tk_nlwps--; 732 tk->tk_proj->kpj_nlwps--; 733 p->p_zone->zone_nlwps--; 734 mutex_exit(&p->p_zone->zone_nlwps_lock); 735 736 ASSERT(t->t_schedctl == NULL); 737 738 if (t->t_door != NULL) { 739 kmem_free(t->t_door, sizeof (door_data_t)); 740 t->t_door = NULL; 741 } 742 lwp_ctmpl_clear(ttolwp(t)); 743 744 /* 745 * Remove the thread from the all threads list. 746 * We need to hold pidlock for this. 747 */ 748 mutex_enter(&pidlock); 749 t->t_next->t_prev = t->t_prev; 750 t->t_prev->t_next = t->t_next; 751 CL_EXIT(t); /* tell the scheduler that we're exiting */ 752 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 753 mutex_exit(&pidlock); 754 755 /* 756 * Let the lgroup load averages know that this thread isn't 757 * going to show up (i.e. un-do what was done on behalf of 758 * this thread by the earlier lgrp_move_thread()). 759 */ 760 kpreempt_disable(); 761 lgrp_move_thread(t, NULL, 1); 762 kpreempt_enable(); 763 764 /* 765 * The thread was created TS_STOPPED. 766 * We change it to TS_FREE to avoid an 767 * ASSERT() panic in thread_free(). 768 */ 769 t->t_state = TS_FREE; 770 thread_rele(t); 771 thread_free(t); 772 } 773 } 774 775 extern struct as kas; 776 777 /* 778 * fork a kernel process. 779 */ 780 int 781 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 782 { 783 proc_t *p; 784 struct user *up; 785 klwp_t *lwp; 786 cont_process_t *ctp = NULL; 787 rctl_entity_p_t e; 788 789 ASSERT(!(cid == syscid && ct != NULL)); 790 if (cid == syscid) { 791 rctl_alloc_gp_t *init_gp; 792 rctl_set_t *init_set; 793 794 if (getproc(&p, 1) < 0) 795 return (EAGAIN); 796 797 p->p_flag |= SNOWAIT; 798 p->p_exec = NULL; 799 p->p_execdir = NULL; 800 801 init_set = rctl_set_create(); 802 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 803 804 /* 805 * kernel processes do not inherit /proc tracing flags. 806 */ 807 sigemptyset(&p->p_sigmask); 808 premptyset(&p->p_fltmask); 809 up = PTOU(p); 810 up->u_systrap = 0; 811 premptyset(&(up->u_entrymask)); 812 premptyset(&(up->u_exitmask)); 813 mutex_enter(&p->p_lock); 814 e.rcep_p.proc = p; 815 e.rcep_t = RCENTITY_PROCESS; 816 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 817 init_gp); 818 mutex_exit(&p->p_lock); 819 820 rctl_prealloc_destroy(init_gp); 821 } else { 822 rctl_alloc_gp_t *init_gp, *default_gp; 823 rctl_set_t *init_set; 824 task_t *tk, *tk_old; 825 826 if (getproc(&p, 0) < 0) 827 return (EAGAIN); 828 /* 829 * init creates a new task, distinct from the task 830 * containing kernel "processes". 831 */ 832 tk = task_create(0, p->p_zone); 833 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 834 tk->tk_proj->kpj_ntasks++; 835 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 836 837 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 838 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 839 init_set = rctl_set_create(); 840 841 mutex_enter(&pidlock); 842 mutex_enter(&p->p_lock); 843 tk_old = p->p_task; /* switch to new task */ 844 845 task_detach(p); 846 task_begin(tk, p); 847 mutex_exit(&pidlock); 848 849 e.rcep_p.proc = p; 850 e.rcep_t = RCENTITY_PROCESS; 851 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 852 init_gp); 853 rctlproc_default_init(p, default_gp); 854 mutex_exit(&p->p_lock); 855 856 task_rele(tk_old); 857 rctl_prealloc_destroy(default_gp); 858 rctl_prealloc_destroy(init_gp); 859 } 860 861 p->p_as = &kas; 862 863 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 864 &curthread->t_hold, cid, 1)) == NULL) { 865 task_t *tk; 866 fork_fail(p); 867 mutex_enter(&pidlock); 868 mutex_enter(&p->p_lock); 869 tk = p->p_task; 870 task_detach(p); 871 ASSERT(p->p_pool->pool_ref > 0); 872 atomic_add_32(&p->p_pool->pool_ref, -1); 873 mutex_exit(&p->p_lock); 874 pid_exit(p); 875 mutex_exit(&pidlock); 876 task_rele(tk); 877 878 return (EAGAIN); 879 } 880 881 if (cid != syscid) { 882 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 883 B_FALSE); 884 ASSERT(ctp != NULL); 885 if (ct != NULL) 886 *ct = &ctp->conp_contract; 887 } 888 889 p->p_lwpid = 1; 890 mutex_enter(&pidlock); 891 pgjoin(p, curproc->p_pgidp); 892 p->p_stat = SRUN; 893 mutex_enter(&p->p_lock); 894 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 895 lwp_create_done(lwptot(lwp)); 896 mutex_exit(&p->p_lock); 897 mutex_exit(&pidlock); 898 return (0); 899 } 900 901 /* 902 * create a child proc struct. 903 */ 904 static int 905 getproc(proc_t **cpp, int kernel) 906 { 907 proc_t *pp, *cp; 908 pid_t newpid; 909 struct user *uarea; 910 extern uint_t nproc; 911 struct cred *cr; 912 uid_t ruid; 913 zoneid_t zoneid; 914 915 if (!page_mem_avail(tune.t_minarmem)) 916 return (-1); 917 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 918 return (-1); /* no point in starting new processes */ 919 920 pp = curproc; 921 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 922 bzero(cp, sizeof (proc_t)); 923 924 /* 925 * Make proc entry for child process 926 */ 927 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 928 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 929 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 930 #if defined(__x86) 931 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 932 #endif 933 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 934 cp->p_stat = SIDL; 935 cp->p_mstart = gethrtime(); 936 /* 937 * p_zone must be set before we call pid_allocate since the process 938 * will be visible after that and code such as prfind_zone will 939 * look at the p_zone field. 940 */ 941 cp->p_zone = pp->p_zone; 942 943 if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) { 944 if (nproc == v.v_proc) { 945 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 946 cmn_err(CE_WARN, "out of processes"); 947 } 948 goto bad; 949 } 950 951 /* 952 * If not privileged make sure that this user hasn't exceeded 953 * v.v_maxup processes, and that users collectively haven't 954 * exceeded v.v_maxupttl processes. 955 */ 956 mutex_enter(&pidlock); 957 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 958 cr = CRED(); 959 ruid = crgetruid(cr); 960 zoneid = crgetzoneid(cr); 961 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 962 (nproc >= v.v_maxupttl || 963 upcount_get(ruid, zoneid) >= v.v_maxup) && 964 secpolicy_newproc(cr) != 0) { 965 mutex_exit(&pidlock); 966 zcmn_err(zoneid, CE_NOTE, 967 "out of per-user processes for uid %d", ruid); 968 goto bad; 969 } 970 971 /* 972 * Everything is cool, put the new proc on the active process list. 973 * It is already on the pid list and in /proc. 974 * Increment the per uid process count (upcount). 975 */ 976 nproc++; 977 upcount_inc(ruid, zoneid); 978 979 cp->p_next = practive; 980 practive->p_prev = cp; 981 practive = cp; 982 983 cp->p_ignore = pp->p_ignore; 984 cp->p_siginfo = pp->p_siginfo; 985 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 986 cp->p_sessp = pp->p_sessp; 987 sess_hold(pp); 988 cp->p_exec = pp->p_exec; 989 cp->p_execdir = pp->p_execdir; 990 cp->p_brand = pp->p_brand; 991 if (PROC_IS_BRANDED(pp)) 992 BROP(pp)->b_copy_procdata(cp, pp); 993 994 cp->p_bssbase = pp->p_bssbase; 995 cp->p_brkbase = pp->p_brkbase; 996 cp->p_brksize = pp->p_brksize; 997 cp->p_brkpageszc = pp->p_brkpageszc; 998 cp->p_stksize = pp->p_stksize; 999 cp->p_stkpageszc = pp->p_stkpageszc; 1000 cp->p_stkprot = pp->p_stkprot; 1001 cp->p_datprot = pp->p_datprot; 1002 cp->p_usrstack = pp->p_usrstack; 1003 cp->p_model = pp->p_model; 1004 cp->p_ppid = pp->p_pid; 1005 cp->p_ancpid = pp->p_pid; 1006 cp->p_portcnt = pp->p_portcnt; 1007 1008 /* 1009 * Initialize watchpoint structures 1010 */ 1011 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1012 offsetof(struct watched_area, wa_link)); 1013 1014 /* 1015 * Initialize immediate resource control values. 1016 */ 1017 cp->p_stk_ctl = pp->p_stk_ctl; 1018 cp->p_fsz_ctl = pp->p_fsz_ctl; 1019 cp->p_vmem_ctl = pp->p_vmem_ctl; 1020 cp->p_fno_ctl = pp->p_fno_ctl; 1021 1022 /* 1023 * Link up to parent-child-sibling chain. No need to lock 1024 * in general since only a call to freeproc() (done by the 1025 * same parent as newproc()) diddles with the child chain. 1026 */ 1027 cp->p_sibling = pp->p_child; 1028 if (pp->p_child) 1029 pp->p_child->p_psibling = cp; 1030 1031 cp->p_parent = pp; 1032 pp->p_child = cp; 1033 1034 cp->p_child_ns = NULL; 1035 cp->p_sibling_ns = NULL; 1036 1037 cp->p_nextorph = pp->p_orphan; 1038 cp->p_nextofkin = pp; 1039 pp->p_orphan = cp; 1040 1041 /* 1042 * Inherit profiling state; do not inherit REALPROF profiling state. 1043 */ 1044 cp->p_prof = pp->p_prof; 1045 cp->p_rprof_cyclic = CYCLIC_NONE; 1046 1047 /* 1048 * Inherit pool pointer from the parent. Kernel processes are 1049 * always bound to the default pool. 1050 */ 1051 mutex_enter(&pp->p_lock); 1052 if (kernel) { 1053 cp->p_pool = pool_default; 1054 cp->p_flag |= SSYS; 1055 } else { 1056 cp->p_pool = pp->p_pool; 1057 } 1058 atomic_add_32(&cp->p_pool->pool_ref, 1); 1059 mutex_exit(&pp->p_lock); 1060 1061 /* 1062 * Add the child process to the current task. Kernel processes 1063 * are always attached to task0. 1064 */ 1065 mutex_enter(&cp->p_lock); 1066 if (kernel) 1067 task_attach(task0p, cp); 1068 else 1069 task_attach(pp->p_task, cp); 1070 mutex_exit(&cp->p_lock); 1071 mutex_exit(&pidlock); 1072 1073 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1074 offsetof(contract_t, ct_ctlist)); 1075 1076 /* 1077 * Duplicate any audit information kept in the process table 1078 */ 1079 #ifdef C2_AUDIT 1080 if (audit_active) /* copy audit data to cp */ 1081 audit_newproc(cp); 1082 #endif 1083 1084 crhold(cp->p_cred = cr); 1085 1086 /* 1087 * Bump up the counts on the file structures pointed at by the 1088 * parent's file table since the child will point at them too. 1089 */ 1090 fcnt_add(P_FINFO(pp), 1); 1091 1092 VN_HOLD(PTOU(pp)->u_cdir); 1093 if (PTOU(pp)->u_rdir) 1094 VN_HOLD(PTOU(pp)->u_rdir); 1095 if (PTOU(pp)->u_cwd) 1096 refstr_hold(PTOU(pp)->u_cwd); 1097 1098 /* 1099 * copy the parent's uarea. 1100 */ 1101 uarea = PTOU(cp); 1102 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1103 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1104 1105 gethrestime(&uarea->u_start); 1106 uarea->u_ticks = lbolt; 1107 uarea->u_mem = rm_asrss(pp->p_as); 1108 uarea->u_acflag = AFORK; 1109 1110 /* 1111 * If inherit-on-fork, copy /proc tracing flags to child. 1112 */ 1113 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1114 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1115 cp->p_sigmask = pp->p_sigmask; 1116 cp->p_fltmask = pp->p_fltmask; 1117 } else { 1118 sigemptyset(&cp->p_sigmask); 1119 premptyset(&cp->p_fltmask); 1120 uarea->u_systrap = 0; 1121 premptyset(&uarea->u_entrymask); 1122 premptyset(&uarea->u_exitmask); 1123 } 1124 /* 1125 * If microstate accounting is being inherited, mark child 1126 */ 1127 if ((pp->p_flag & SMSFORK) != 0) 1128 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1129 1130 /* 1131 * Inherit fixalignment flag from the parent 1132 */ 1133 cp->p_fixalignment = pp->p_fixalignment; 1134 1135 if (cp->p_exec) 1136 VN_HOLD(cp->p_exec); 1137 if (cp->p_execdir) 1138 VN_HOLD(cp->p_execdir); 1139 *cpp = cp; 1140 return (0); 1141 1142 bad: 1143 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1144 1145 mutex_destroy(&cp->p_crlock); 1146 mutex_destroy(&cp->p_pflock); 1147 #if defined(__x86) 1148 mutex_destroy(&cp->p_ldtlock); 1149 #endif 1150 if (newpid != -1) { 1151 proc_entry_free(cp->p_pidp); 1152 (void) pid_rele(cp->p_pidp); 1153 } 1154 kmem_cache_free(process_cache, cp); 1155 1156 /* 1157 * We most likely got into this situation because some process is 1158 * forking out of control. As punishment, put it to sleep for a 1159 * bit so it can't eat the machine alive. Sleep interval is chosen 1160 * to allow no more than one fork failure per cpu per clock tick 1161 * on average (yes, I just made this up). This has two desirable 1162 * properties: (1) it sets a constant limit on the fork failure 1163 * rate, and (2) the busier the system is, the harsher the penalty 1164 * for abusing it becomes. 1165 */ 1166 INCR_COUNT(&fork_fail_pending, &pidlock); 1167 delay(fork_fail_pending / ncpus + 1); 1168 DECR_COUNT(&fork_fail_pending, &pidlock); 1169 1170 return (-1); /* out of memory or proc slots */ 1171 } 1172 1173 /* 1174 * Release virtual memory. 1175 * In the case of vfork(), the child was given exclusive access to its 1176 * parent's address space. The parent is waiting in vfwait() for the 1177 * child to release its exclusive claim via relvm(). 1178 */ 1179 void 1180 relvm() 1181 { 1182 proc_t *p = curproc; 1183 1184 ASSERT((unsigned)p->p_lwpcnt <= 1); 1185 1186 prrelvm(); /* inform /proc */ 1187 1188 if (p->p_flag & SVFORK) { 1189 proc_t *pp = p->p_parent; 1190 /* 1191 * The child process is either exec'ing or exit'ing. 1192 * The child is now separated from the parent's address 1193 * space. The parent process is made dispatchable. 1194 * 1195 * This is a delicate locking maneuver, involving 1196 * both the parent's p_lock and the child's p_lock. 1197 * As soon as the SVFORK flag is turned off, the 1198 * parent is free to run, but it must not run until 1199 * we wake it up using its p_cv because it might 1200 * exit and we would be referencing invalid memory. 1201 * Therefore, we hold the parent with its p_lock 1202 * while protecting our p_flags with our own p_lock. 1203 */ 1204 try_again: 1205 mutex_enter(&p->p_lock); /* grab child's lock first */ 1206 prbarrier(p); /* make sure /proc is blocked out */ 1207 mutex_enter(&pp->p_lock); 1208 1209 /* 1210 * Check if parent is locked by /proc. 1211 */ 1212 if (pp->p_proc_flag & P_PR_LOCK) { 1213 /* 1214 * Delay until /proc is done with the parent. 1215 * We must drop our (the child's) p->p_lock, wait 1216 * via prbarrier() on the parent, then start over. 1217 */ 1218 mutex_exit(&p->p_lock); 1219 prbarrier(pp); 1220 mutex_exit(&pp->p_lock); 1221 goto try_again; 1222 } 1223 p->p_flag &= ~SVFORK; 1224 kpreempt_disable(); 1225 p->p_as = &kas; 1226 1227 /* 1228 * notify hat of change in thread's address space 1229 */ 1230 hat_thread_exit(curthread); 1231 kpreempt_enable(); 1232 1233 /* 1234 * child sizes are copied back to parent because 1235 * child may have grown. 1236 */ 1237 pp->p_brkbase = p->p_brkbase; 1238 pp->p_brksize = p->p_brksize; 1239 pp->p_stksize = p->p_stksize; 1240 /* 1241 * The parent is no longer waiting for the vfork()d child. 1242 * Restore the parent's watched pages, if any. This is 1243 * safe because we know the parent is not locked by /proc 1244 */ 1245 pp->p_flag &= ~SVFWAIT; 1246 if (avl_numnodes(&pp->p_wpage) != 0) { 1247 pp->p_as->a_wpage = pp->p_wpage; 1248 avl_create(&pp->p_wpage, wp_compare, 1249 sizeof (struct watched_page), 1250 offsetof(struct watched_page, wp_link)); 1251 } 1252 cv_signal(&pp->p_cv); 1253 mutex_exit(&pp->p_lock); 1254 mutex_exit(&p->p_lock); 1255 } else { 1256 if (p->p_as != &kas) { 1257 struct as *as; 1258 1259 if (p->p_segacct) 1260 shmexit(p); 1261 1262 /* 1263 * We grab p_lock for the benefit of /proc 1264 */ 1265 kpreempt_disable(); 1266 mutex_enter(&p->p_lock); 1267 prbarrier(p); /* make sure /proc is blocked out */ 1268 as = p->p_as; 1269 p->p_as = &kas; 1270 mutex_exit(&p->p_lock); 1271 1272 /* 1273 * notify hat of change in thread's address space 1274 */ 1275 hat_thread_exit(curthread); 1276 kpreempt_enable(); 1277 1278 as_free(as); 1279 } 1280 } 1281 } 1282 1283 /* 1284 * Wait for child to exec or exit. 1285 * Called by parent of vfork'ed process. 1286 * See important comments in relvm(), above. 1287 */ 1288 void 1289 vfwait(pid_t pid) 1290 { 1291 int signalled = 0; 1292 proc_t *pp = ttoproc(curthread); 1293 proc_t *cp; 1294 1295 /* 1296 * Wait for child to exec or exit. 1297 */ 1298 for (;;) { 1299 mutex_enter(&pidlock); 1300 cp = prfind(pid); 1301 if (cp == NULL || cp->p_parent != pp) { 1302 /* 1303 * Child has exit()ed. 1304 */ 1305 mutex_exit(&pidlock); 1306 break; 1307 } 1308 /* 1309 * Grab the child's p_lock before releasing pidlock. 1310 * Otherwise, the child could exit and we would be 1311 * referencing invalid memory. 1312 */ 1313 mutex_enter(&cp->p_lock); 1314 mutex_exit(&pidlock); 1315 if (!(cp->p_flag & SVFORK)) { 1316 /* 1317 * Child has exec()ed or is exit()ing. 1318 */ 1319 mutex_exit(&cp->p_lock); 1320 break; 1321 } 1322 mutex_enter(&pp->p_lock); 1323 mutex_exit(&cp->p_lock); 1324 /* 1325 * We might be waked up spuriously from the cv_wait(). 1326 * We have to do the whole operation over again to be 1327 * sure the child's SVFORK flag really is turned off. 1328 * We cannot make reference to the child because it can 1329 * exit before we return and we would be referencing 1330 * invalid memory. 1331 * 1332 * Because this is potentially a very long-term wait, 1333 * we call cv_wait_sig() (for its jobcontrol and /proc 1334 * side-effects) unless there is a current signal, in 1335 * which case we use cv_wait() because we cannot return 1336 * from this function until the child has released the 1337 * address space. Calling cv_wait_sig() with a current 1338 * signal would lead to an indefinite loop here because 1339 * cv_wait_sig() returns immediately in this case. 1340 */ 1341 if (signalled) 1342 cv_wait(&pp->p_cv, &pp->p_lock); 1343 else 1344 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1345 mutex_exit(&pp->p_lock); 1346 } 1347 1348 /* restore watchpoints to parent */ 1349 if (pr_watch_active(pp)) { 1350 struct as *as = pp->p_as; 1351 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1352 as_setwatch(as); 1353 AS_LOCK_EXIT(as, &as->a_lock); 1354 } 1355 1356 mutex_enter(&pp->p_lock); 1357 prbarrier(pp); /* barrier against /proc locking */ 1358 continuelwps(pp); 1359 mutex_exit(&pp->p_lock); 1360 } 1361