1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/policy.h> 39 #include <sys/user.h> 40 #include <sys/systm.h> 41 #include <sys/cpuvar.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/file.h> 45 #include <sys/errno.h> 46 #include <sys/time.h> 47 #include <sys/proc.h> 48 #include <sys/cmn_err.h> 49 #include <sys/acct.h> 50 #include <sys/tuneable.h> 51 #include <sys/class.h> 52 #include <sys/kmem.h> 53 #include <sys/session.h> 54 #include <sys/ucontext.h> 55 #include <sys/stack.h> 56 #include <sys/procfs.h> 57 #include <sys/prsystm.h> 58 #include <sys/vmsystm.h> 59 #include <sys/vtrace.h> 60 #include <sys/debug.h> 61 #include <sys/shm_impl.h> 62 #include <sys/door_data.h> 63 #include <vm/as.h> 64 #include <vm/rm.h> 65 #include <c2/audit.h> 66 #include <sys/var.h> 67 #include <sys/schedctl.h> 68 #include <sys/utrap.h> 69 #include <sys/task.h> 70 #include <sys/resource.h> 71 #include <sys/cyclic.h> 72 #include <sys/lgrp.h> 73 #include <sys/rctl.h> 74 #include <sys/contract_impl.h> 75 #include <sys/contract/process_impl.h> 76 #include <sys/list.h> 77 #include <sys/dtrace.h> 78 #include <sys/pool.h> 79 #include <sys/zone.h> 80 #include <sys/sdt.h> 81 #include <sys/class.h> 82 #include <sys/corectl.h> 83 84 static int64_t cfork(int, int); 85 static int getproc(proc_t **, int); 86 static void fork_fail(proc_t *); 87 static void forklwp_fail(proc_t *); 88 89 int fork_fail_pending; 90 91 extern struct kmem_cache *process_cache; 92 93 /* 94 * forkall system call. 95 */ 96 int64_t 97 forkall(void) 98 { 99 return (cfork(0, 0)); 100 } 101 102 /* 103 * The parent is stopped until the child invokes relvm(). 104 */ 105 int64_t 106 vfork(void) 107 { 108 curthread->t_post_sys = 1; /* so vfwait() will be called */ 109 return (cfork(1, 1)); 110 } 111 112 /* 113 * fork1 system call 114 */ 115 int64_t 116 fork1(void) 117 { 118 return (cfork(0, 1)); 119 } 120 121 /* ARGSUSED */ 122 static int64_t 123 cfork(int isvfork, int isfork1) 124 { 125 proc_t *p = ttoproc(curthread); 126 struct as *as; 127 proc_t *cp, **orphpp; 128 klwp_t *clone; 129 kthread_t *t; 130 task_t *tk; 131 rval_t r; 132 int error; 133 int i; 134 rctl_set_t *dup_set; 135 rctl_alloc_gp_t *dup_gp; 136 rctl_entity_p_t e; 137 lwpdir_t *ldp; 138 lwpent_t *lep; 139 lwpent_t *clep; 140 141 /* 142 * fork is not supported for the /proc agent lwp. 143 */ 144 if (curthread == p->p_agenttp) { 145 error = ENOTSUP; 146 goto forkerr; 147 } 148 149 if ((error = secpolicy_basic_fork(CRED())) != 0) 150 goto forkerr; 151 152 /* 153 * If the calling lwp is doing a fork1() then the 154 * other lwps in this process are not duplicated and 155 * don't need to be held where their kernel stacks can be 156 * cloned. If doing forkall(), the process is held with 157 * SHOLDFORK, so that the lwps are at a point where their 158 * stacks can be copied which is on entry or exit from 159 * the kernel. 160 */ 161 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 162 aston(curthread); 163 error = EINTR; 164 goto forkerr; 165 } 166 167 #if defined(__sparc) 168 /* 169 * Ensure that the user stack is fully constructed 170 * before creating the child process structure. 171 */ 172 (void) flush_user_windows_to_stack(NULL); 173 #endif 174 175 mutex_enter(&p->p_lock); 176 /* 177 * If this is vfork(), cancel any suspend request we might 178 * have gotten from some other thread via lwp_suspend(). 179 * Otherwise we could end up with a deadlock on return 180 * from the vfork() in both the parent and the child. 181 */ 182 if (isvfork) 183 curthread->t_proc_flag &= ~TP_HOLDLWP; 184 /* 185 * Prevent our resource set associations from being changed during fork. 186 */ 187 pool_barrier_enter(); 188 mutex_exit(&p->p_lock); 189 190 /* 191 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 192 */ 193 if (getproc(&cp, 0) < 0) { 194 mutex_enter(&p->p_lock); 195 pool_barrier_exit(); 196 continuelwps(p); 197 mutex_exit(&p->p_lock); 198 error = EAGAIN; 199 goto forkerr; 200 } 201 202 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 203 204 /* 205 * Assign an address space to child 206 */ 207 if (isvfork) { 208 /* 209 * Clear any watched areas and remember the 210 * watched pages for restoring in vfwait(). 211 */ 212 as = p->p_as; 213 if (avl_numnodes(&as->a_wpage) != 0) { 214 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 215 as_clearwatch(as); 216 p->p_wpage = as->a_wpage; 217 avl_create(&as->a_wpage, wp_compare, 218 sizeof (struct watched_page), 219 offsetof(struct watched_page, wp_link)); 220 AS_LOCK_EXIT(as, &as->a_lock); 221 } 222 cp->p_as = as; 223 cp->p_flag |= SVFORK; 224 } else { 225 /* 226 * We need to hold P_PR_LOCK until the address space has 227 * been duplicated and we've had a chance to remove from the 228 * child any DTrace probes that were in the parent. Holding 229 * P_PR_LOCK prevents any new probes from being added and any 230 * extant probes from being removed. 231 */ 232 mutex_enter(&p->p_lock); 233 sprlock_proc(p); 234 p->p_flag |= SFORKING; 235 mutex_exit(&p->p_lock); 236 237 error = as_dup(p->p_as, &cp->p_as); 238 if (error != 0) { 239 fork_fail(cp); 240 mutex_enter(&pidlock); 241 orphpp = &p->p_orphan; 242 while (*orphpp != cp) 243 orphpp = &(*orphpp)->p_nextorph; 244 *orphpp = cp->p_nextorph; 245 ASSERT(p->p_child == cp); 246 p->p_child = cp->p_sibling; 247 if (p->p_child) { 248 p->p_child->p_psibling = NULL; 249 } 250 mutex_enter(&cp->p_lock); 251 tk = cp->p_task; 252 task_detach(cp); 253 ASSERT(cp->p_pool->pool_ref > 0); 254 atomic_add_32(&cp->p_pool->pool_ref, -1); 255 mutex_exit(&cp->p_lock); 256 pid_exit(cp); 257 mutex_exit(&pidlock); 258 task_rele(tk); 259 260 mutex_enter(&p->p_lock); 261 p->p_flag &= ~SFORKING; 262 pool_barrier_exit(); 263 continuelwps(p); 264 sprunlock(p); 265 /* 266 * Preserve ENOMEM error condition but 267 * map all others to EAGAIN. 268 */ 269 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 270 goto forkerr; 271 } 272 /* Duplicate parent's shared memory */ 273 if (p->p_segacct) 274 shmfork(p, cp); 275 276 /* 277 * Remove all DTrace tracepoints from the child process. We 278 * need to do this _before_ duplicating USDT providers since 279 * any associated probes may be immediately enabled. 280 */ 281 if (p->p_dtrace_count > 0) 282 dtrace_fasttrap_fork(p, cp); 283 284 /* 285 * Duplicate any helper actions and providers. The SFORKING 286 * we set above informs the code to enable USDT probes that 287 * sprlock() may fail because the child is being forked. 288 */ 289 if (p->p_dtrace_helpers != NULL) { 290 ASSERT(dtrace_helpers_fork != NULL); 291 (*dtrace_helpers_fork)(p, cp); 292 } 293 294 mutex_enter(&p->p_lock); 295 p->p_flag &= ~SFORKING; 296 sprunlock(p); 297 } 298 299 /* 300 * Duplicate parent's resource controls. 301 */ 302 dup_set = rctl_set_create(); 303 for (;;) { 304 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 305 mutex_enter(&p->p_rctls->rcs_lock); 306 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 307 break; 308 mutex_exit(&p->p_rctls->rcs_lock); 309 rctl_prealloc_destroy(dup_gp); 310 } 311 e.rcep_p.proc = cp; 312 e.rcep_t = RCENTITY_PROCESS; 313 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 314 RCD_DUP | RCD_CALLBACK); 315 mutex_exit(&p->p_rctls->rcs_lock); 316 317 rctl_prealloc_destroy(dup_gp); 318 319 /* 320 * Allocate the child's lwp directory and lwpid hash table. 321 */ 322 if (isfork1) 323 cp->p_lwpdir_sz = 2; 324 else 325 cp->p_lwpdir_sz = p->p_lwpdir_sz; 326 cp->p_lwpdir = cp->p_lwpfree = ldp = 327 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 328 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 329 ldp->ld_next = ldp + 1; 330 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 331 cp->p_tidhash = 332 kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP); 333 334 /* 335 * Duplicate parent's lwps. 336 * Mutual exclusion is not needed because the process is 337 * in the hold state and only the current lwp is running. 338 */ 339 klgrpset_clear(cp->p_lgrpset); 340 if (isfork1) { 341 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 342 if (clone == NULL) 343 goto forklwperr; 344 /* 345 * Inherit only the lwp_wait()able flag, 346 * Daemon threads should not call fork1(), but oh well... 347 */ 348 lwptot(clone)->t_proc_flag |= 349 (curthread->t_proc_flag & TP_TWAIT); 350 } else { 351 /* this is forkall(), no one can be in lwp_wait() */ 352 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 353 /* for each entry in the parent's lwp directory... */ 354 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 355 klwp_t *clwp; 356 kthread_t *ct; 357 358 if ((lep = ldp->ld_entry) == NULL) 359 continue; 360 361 if ((t = lep->le_thread) != NULL) { 362 clwp = forklwp(ttolwp(t), cp, t->t_tid); 363 if (clwp == NULL) 364 goto forklwperr; 365 ct = lwptot(clwp); 366 /* 367 * Inherit lwp_wait()able and daemon flags. 368 */ 369 ct->t_proc_flag |= 370 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 371 /* 372 * Keep track of the clone of curthread to 373 * post return values through lwp_setrval(). 374 * Mark other threads for special treatment 375 * by lwp_rtt() / post_syscall(). 376 */ 377 if (t == curthread) 378 clone = clwp; 379 else 380 ct->t_flag |= T_FORKALL; 381 } else { 382 /* 383 * Replicate zombie lwps in the child. 384 */ 385 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 386 clep->le_lwpid = lep->le_lwpid; 387 clep->le_start = lep->le_start; 388 lwp_hash_in(cp, clep); 389 } 390 } 391 } 392 393 /* 394 * Put new process in the parent's process contract, or put it 395 * in a new one if there is an active process template. Send a 396 * fork event (if requested) to whatever contract the child is 397 * a member of. Fails if the parent has been SIGKILLed. 398 */ 399 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 400 goto forklwperr; 401 402 /* 403 * No fork failures occur beyond this point. 404 */ 405 406 cp->p_lwpid = p->p_lwpid; 407 if (!isfork1) { 408 cp->p_lwpdaemon = p->p_lwpdaemon; 409 cp->p_zombcnt = p->p_zombcnt; 410 /* 411 * If the parent's lwp ids have wrapped around, so have the 412 * child's. 413 */ 414 cp->p_flag |= p->p_flag & SLWPWRAP; 415 } 416 417 corectl_path_hold(cp->p_corefile = p->p_corefile); 418 corectl_content_hold(cp->p_content = p->p_content); 419 420 /* 421 * Duplicate process context ops, if any. 422 */ 423 if (p->p_pctx) 424 forkpctx(p, cp); 425 426 #ifdef __sparc 427 utrap_dup(p, cp); 428 #endif 429 /* 430 * If the child process has been marked to stop on exit 431 * from this fork, arrange for all other lwps to stop in 432 * sympathy with the active lwp. 433 */ 434 if (PTOU(cp)->u_systrap && 435 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 436 mutex_enter(&cp->p_lock); 437 t = cp->p_tlist; 438 do { 439 t->t_proc_flag |= TP_PRSTOP; 440 aston(t); /* so TP_PRSTOP will be seen */ 441 } while ((t = t->t_forw) != cp->p_tlist); 442 mutex_exit(&cp->p_lock); 443 } 444 /* 445 * If the parent process has been marked to stop on exit 446 * from this fork, and its asynchronous-stop flag has not 447 * been set, arrange for all other lwps to stop before 448 * they return back to user level. 449 */ 450 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 451 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 452 mutex_enter(&p->p_lock); 453 t = p->p_tlist; 454 do { 455 t->t_proc_flag |= TP_PRSTOP; 456 aston(t); /* so TP_PRSTOP will be seen */ 457 } while ((t = t->t_forw) != p->p_tlist); 458 mutex_exit(&p->p_lock); 459 } 460 461 /* set return values for child */ 462 lwp_setrval(clone, p->p_pid, 1); 463 464 /* set return values for parent */ 465 r.r_val1 = (int)cp->p_pid; 466 r.r_val2 = 0; 467 468 /* 469 * pool_barrier_exit() can now be called because the child process has: 470 * - all identifying features cloned or set (p_pid, p_task, p_pool) 471 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 472 * - any other fields set which are used in resource set binding. 473 */ 474 mutex_enter(&p->p_lock); 475 pool_barrier_exit(); 476 mutex_exit(&p->p_lock); 477 478 mutex_enter(&pidlock); 479 mutex_enter(&cp->p_lock); 480 481 /* 482 * Now that there are lwps and threads attached, add the new 483 * process to the process group. 484 */ 485 pgjoin(cp, p->p_pgidp); 486 cp->p_stat = SRUN; 487 /* 488 * We are now done with all the lwps in the child process. 489 */ 490 t = cp->p_tlist; 491 do { 492 /* 493 * Set the lwp_suspend()ed lwps running. 494 * They will suspend properly at syscall exit. 495 */ 496 if (t->t_proc_flag & TP_HOLDLWP) 497 lwp_create_done(t); 498 else { 499 /* set TS_CREATE to allow continuelwps() to work */ 500 thread_lock(t); 501 ASSERT(t->t_state == TS_STOPPED && 502 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 503 t->t_schedflag |= TS_CREATE; 504 thread_unlock(t); 505 } 506 } while ((t = t->t_forw) != cp->p_tlist); 507 mutex_exit(&cp->p_lock); 508 509 if (isvfork) { 510 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 511 mutex_enter(&p->p_lock); 512 p->p_flag |= SVFWAIT; 513 DTRACE_PROC1(create, proc_t *, cp); 514 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 515 mutex_exit(&p->p_lock); 516 /* 517 * Grab child's p_lock before dropping pidlock to ensure 518 * the process will not disappear before we set it running. 519 */ 520 mutex_enter(&cp->p_lock); 521 mutex_exit(&pidlock); 522 sigdefault(cp); 523 continuelwps(cp); 524 mutex_exit(&cp->p_lock); 525 } else { 526 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 527 DTRACE_PROC1(create, proc_t *, cp); 528 /* 529 * It is CL_FORKRET's job to drop pidlock. 530 * If we do it here, the process could be set running 531 * and disappear before CL_FORKRET() is called. 532 */ 533 CL_FORKRET(curthread, cp->p_tlist); 534 ASSERT(MUTEX_NOT_HELD(&pidlock)); 535 } 536 537 return (r.r_vals); 538 539 forklwperr: 540 if (isvfork) { 541 if (avl_numnodes(&p->p_wpage) != 0) { 542 /* restore watchpoints to parent */ 543 as = p->p_as; 544 AS_LOCK_ENTER(as, &as->a_lock, 545 RW_WRITER); 546 as->a_wpage = p->p_wpage; 547 avl_create(&p->p_wpage, wp_compare, 548 sizeof (struct watched_page), 549 offsetof(struct watched_page, wp_link)); 550 as_setwatch(as); 551 AS_LOCK_EXIT(as, &as->a_lock); 552 } 553 } else { 554 if (cp->p_segacct) 555 shmexit(cp); 556 as = cp->p_as; 557 cp->p_as = &kas; 558 as_free(as); 559 } 560 561 if (cp->p_lwpdir) { 562 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 563 if ((lep = ldp->ld_entry) != NULL) 564 kmem_free(lep, sizeof (*lep)); 565 kmem_free(cp->p_lwpdir, 566 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 567 } 568 cp->p_lwpdir = NULL; 569 cp->p_lwpfree = NULL; 570 cp->p_lwpdir_sz = 0; 571 572 if (cp->p_tidhash) 573 kmem_free(cp->p_tidhash, 574 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 575 cp->p_tidhash = NULL; 576 cp->p_tidhash_sz = 0; 577 578 forklwp_fail(cp); 579 fork_fail(cp); 580 rctl_set_free(cp->p_rctls); 581 mutex_enter(&pidlock); 582 583 /* 584 * Detach failed child from task. 585 */ 586 mutex_enter(&cp->p_lock); 587 tk = cp->p_task; 588 task_detach(cp); 589 ASSERT(cp->p_pool->pool_ref > 0); 590 atomic_add_32(&cp->p_pool->pool_ref, -1); 591 mutex_exit(&cp->p_lock); 592 593 orphpp = &p->p_orphan; 594 while (*orphpp != cp) 595 orphpp = &(*orphpp)->p_nextorph; 596 *orphpp = cp->p_nextorph; 597 ASSERT(p->p_child == cp); 598 p->p_child = cp->p_sibling; 599 if (p->p_child) { 600 p->p_child->p_psibling = NULL; 601 } 602 pid_exit(cp); 603 mutex_exit(&pidlock); 604 605 task_rele(tk); 606 607 mutex_enter(&p->p_lock); 608 pool_barrier_exit(); 609 continuelwps(p); 610 mutex_exit(&p->p_lock); 611 error = EAGAIN; 612 forkerr: 613 return ((int64_t)set_errno(error)); 614 } 615 616 /* 617 * Free allocated resources from getproc() if a fork failed. 618 */ 619 static void 620 fork_fail(proc_t *cp) 621 { 622 uf_info_t *fip = P_FINFO(cp); 623 624 fcnt_add(fip, -1); 625 sigdelq(cp, NULL, 0); 626 627 mutex_enter(&pidlock); 628 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 629 mutex_exit(&pidlock); 630 631 /* 632 * single threaded, so no locking needed here 633 */ 634 crfree(cp->p_cred); 635 636 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 637 638 VN_RELE(u.u_cdir); 639 if (u.u_rdir) 640 VN_RELE(u.u_rdir); 641 if (cp->p_exec) 642 VN_RELE(cp->p_exec); 643 if (cp->p_execdir) 644 VN_RELE(cp->p_execdir); 645 if (u.u_cwd) 646 refstr_rele(u.u_cwd); 647 } 648 649 /* 650 * Clean up the lwps already created for this child process. 651 * The fork failed while duplicating all the lwps of the parent 652 * and those lwps already created must be freed. 653 * This process is invisible to the rest of the system, 654 * so we don't need to hold p->p_lock to protect the list. 655 */ 656 static void 657 forklwp_fail(proc_t *p) 658 { 659 kthread_t *t; 660 task_t *tk; 661 662 while ((t = p->p_tlist) != NULL) { 663 /* 664 * First remove the lwp from the process's p_tlist. 665 */ 666 if (t != t->t_forw) 667 p->p_tlist = t->t_forw; 668 else 669 p->p_tlist = NULL; 670 p->p_lwpcnt--; 671 t->t_forw->t_back = t->t_back; 672 t->t_back->t_forw = t->t_forw; 673 674 tk = p->p_task; 675 mutex_enter(&p->p_zone->zone_nlwps_lock); 676 tk->tk_nlwps--; 677 tk->tk_proj->kpj_nlwps--; 678 p->p_zone->zone_nlwps--; 679 mutex_exit(&p->p_zone->zone_nlwps_lock); 680 681 ASSERT(t->t_schedctl == NULL); 682 683 if (t->t_door != NULL) { 684 kmem_free(t->t_door, sizeof (door_data_t)); 685 t->t_door = NULL; 686 } 687 lwp_ctmpl_clear(ttolwp(t)); 688 689 /* 690 * Remove the thread from the all threads list. 691 * We need to hold pidlock for this. 692 */ 693 mutex_enter(&pidlock); 694 t->t_next->t_prev = t->t_prev; 695 t->t_prev->t_next = t->t_next; 696 CL_EXIT(t); /* tell the scheduler that we're exiting */ 697 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 698 mutex_exit(&pidlock); 699 700 /* 701 * Let the lgroup load averages know that this thread isn't 702 * going to show up (i.e. un-do what was done on behalf of 703 * this thread by the earlier lgrp_move_thread()). 704 */ 705 kpreempt_disable(); 706 lgrp_move_thread(t, NULL, 1); 707 kpreempt_enable(); 708 709 /* 710 * The thread was created TS_STOPPED. 711 * We change it to TS_FREE to avoid an 712 * ASSERT() panic in thread_free(). 713 */ 714 t->t_state = TS_FREE; 715 thread_rele(t); 716 thread_free(t); 717 } 718 } 719 720 extern struct as kas; 721 722 /* 723 * fork a kernel process. 724 */ 725 int 726 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 727 { 728 proc_t *p; 729 struct user *up; 730 klwp_t *lwp; 731 cont_process_t *ctp = NULL; 732 rctl_entity_p_t e; 733 734 ASSERT(!(cid == syscid && ct != NULL)); 735 if (cid == syscid) { 736 rctl_alloc_gp_t *init_gp; 737 rctl_set_t *init_set; 738 739 if (getproc(&p, 1) < 0) 740 return (EAGAIN); 741 742 p->p_flag |= SNOWAIT; 743 p->p_exec = NULL; 744 p->p_execdir = NULL; 745 746 init_set = rctl_set_create(); 747 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 748 749 /* 750 * kernel processes do not inherit /proc tracing flags. 751 */ 752 sigemptyset(&p->p_sigmask); 753 premptyset(&p->p_fltmask); 754 up = PTOU(p); 755 up->u_systrap = 0; 756 premptyset(&(up->u_entrymask)); 757 premptyset(&(up->u_exitmask)); 758 mutex_enter(&p->p_lock); 759 e.rcep_p.proc = p; 760 e.rcep_t = RCENTITY_PROCESS; 761 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 762 init_gp); 763 mutex_exit(&p->p_lock); 764 765 rctl_prealloc_destroy(init_gp); 766 } else { 767 rctl_alloc_gp_t *init_gp, *default_gp; 768 rctl_set_t *init_set; 769 task_t *tk, *tk_old; 770 771 if (getproc(&p, 0) < 0) 772 return (EAGAIN); 773 /* 774 * init creates a new task, distinct from the task 775 * containing kernel "processes". 776 */ 777 tk = task_create(0, p->p_zone); 778 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 779 tk->tk_proj->kpj_ntasks++; 780 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 781 782 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 783 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 784 init_set = rctl_set_create(); 785 786 mutex_enter(&pidlock); 787 mutex_enter(&p->p_lock); 788 tk_old = p->p_task; /* switch to new task */ 789 790 task_detach(p); 791 task_begin(tk, p); 792 mutex_exit(&pidlock); 793 794 e.rcep_p.proc = p; 795 e.rcep_t = RCENTITY_PROCESS; 796 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 797 init_gp); 798 rctlproc_default_init(p, default_gp); 799 mutex_exit(&p->p_lock); 800 801 task_rele(tk_old); 802 rctl_prealloc_destroy(default_gp); 803 rctl_prealloc_destroy(init_gp); 804 } 805 806 p->p_as = &kas; 807 808 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 809 &curthread->t_hold, cid, 1)) == NULL) { 810 task_t *tk; 811 fork_fail(p); 812 mutex_enter(&pidlock); 813 mutex_enter(&p->p_lock); 814 tk = p->p_task; 815 task_detach(p); 816 ASSERT(p->p_pool->pool_ref > 0); 817 atomic_add_32(&p->p_pool->pool_ref, -1); 818 mutex_exit(&p->p_lock); 819 pid_exit(p); 820 mutex_exit(&pidlock); 821 task_rele(tk); 822 823 return (EAGAIN); 824 } 825 826 if (cid != syscid) { 827 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 828 B_FALSE); 829 ASSERT(ctp != NULL); 830 if (ct != NULL) 831 *ct = &ctp->conp_contract; 832 } 833 834 p->p_lwpid = 1; 835 mutex_enter(&pidlock); 836 pgjoin(p, curproc->p_pgidp); 837 p->p_stat = SRUN; 838 mutex_enter(&p->p_lock); 839 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 840 lwp_create_done(lwptot(lwp)); 841 mutex_exit(&p->p_lock); 842 mutex_exit(&pidlock); 843 return (0); 844 } 845 846 /* 847 * create a child proc struct. 848 */ 849 static int 850 getproc(proc_t **cpp, int kernel) 851 { 852 proc_t *pp, *cp; 853 pid_t newpid; 854 struct user *uarea; 855 extern uint_t nproc; 856 struct cred *cr; 857 uid_t ruid; 858 zoneid_t zoneid; 859 860 if (!page_mem_avail(tune.t_minarmem)) 861 return (-1); 862 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 863 return (-1); /* no point in starting new processes */ 864 865 pp = curproc; 866 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 867 bzero(cp, sizeof (proc_t)); 868 869 /* 870 * Make proc entry for child process 871 */ 872 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 873 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 874 #if defined(__x86) 875 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 876 #endif 877 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 878 cp->p_stat = SIDL; 879 cp->p_mstart = gethrtime(); 880 881 if ((newpid = pid_assign(cp)) == -1) { 882 if (nproc == v.v_proc) { 883 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 884 cmn_err(CE_WARN, "out of processes"); 885 } 886 goto bad; 887 } 888 889 /* 890 * If not privileged make sure that this user hasn't exceeded 891 * v.v_maxup processes, and that users collectively haven't 892 * exceeded v.v_maxupttl processes. 893 */ 894 mutex_enter(&pidlock); 895 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 896 cr = CRED(); 897 ruid = crgetruid(cr); 898 zoneid = crgetzoneid(cr); 899 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 900 (nproc >= v.v_maxupttl || 901 upcount_get(ruid, zoneid) >= v.v_maxup) && 902 secpolicy_newproc(cr) != 0) { 903 mutex_exit(&pidlock); 904 zcmn_err(zoneid, CE_NOTE, 905 "out of per-user processes for uid %d", ruid); 906 goto bad; 907 } 908 909 /* 910 * Everything is cool, put the new proc on the active process list. 911 * It is already on the pid list and in /proc. 912 * Increment the per uid process count (upcount). 913 */ 914 nproc++; 915 upcount_inc(ruid, zoneid); 916 917 cp->p_next = practive; 918 practive->p_prev = cp; 919 practive = cp; 920 921 cp->p_ignore = pp->p_ignore; 922 cp->p_siginfo = pp->p_siginfo; 923 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 924 cp->p_sessp = pp->p_sessp; 925 SESS_HOLD(pp->p_sessp); 926 cp->p_exec = pp->p_exec; 927 cp->p_execdir = pp->p_execdir; 928 cp->p_zone = pp->p_zone; 929 930 cp->p_bssbase = pp->p_bssbase; 931 cp->p_brkbase = pp->p_brkbase; 932 cp->p_brksize = pp->p_brksize; 933 cp->p_brkpageszc = pp->p_brkpageszc; 934 cp->p_stksize = pp->p_stksize; 935 cp->p_stkpageszc = pp->p_stkpageszc; 936 cp->p_stkprot = pp->p_stkprot; 937 cp->p_datprot = pp->p_datprot; 938 cp->p_usrstack = pp->p_usrstack; 939 cp->p_model = pp->p_model; 940 cp->p_ppid = pp->p_pid; 941 cp->p_ancpid = pp->p_pid; 942 cp->p_portcnt = pp->p_portcnt; 943 944 /* 945 * Initialize watchpoint structures 946 */ 947 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 948 offsetof(struct watched_area, wa_link)); 949 950 /* 951 * Initialize immediate resource control values. 952 */ 953 cp->p_stk_ctl = pp->p_stk_ctl; 954 cp->p_fsz_ctl = pp->p_fsz_ctl; 955 cp->p_vmem_ctl = pp->p_vmem_ctl; 956 cp->p_fno_ctl = pp->p_fno_ctl; 957 958 /* 959 * Link up to parent-child-sibling chain. No need to lock 960 * in general since only a call to freeproc() (done by the 961 * same parent as newproc()) diddles with the child chain. 962 */ 963 cp->p_sibling = pp->p_child; 964 if (pp->p_child) 965 pp->p_child->p_psibling = cp; 966 967 cp->p_parent = pp; 968 pp->p_child = cp; 969 970 cp->p_child_ns = NULL; 971 cp->p_sibling_ns = NULL; 972 973 cp->p_nextorph = pp->p_orphan; 974 cp->p_nextofkin = pp; 975 pp->p_orphan = cp; 976 977 /* 978 * Inherit profiling state; do not inherit REALPROF profiling state. 979 */ 980 cp->p_prof = pp->p_prof; 981 cp->p_rprof_cyclic = CYCLIC_NONE; 982 983 /* 984 * Inherit pool pointer from the parent. Kernel processes are 985 * always bound to the default pool. 986 */ 987 mutex_enter(&pp->p_lock); 988 if (kernel) { 989 cp->p_pool = pool_default; 990 cp->p_flag |= SSYS; 991 } else { 992 cp->p_pool = pp->p_pool; 993 } 994 atomic_add_32(&cp->p_pool->pool_ref, 1); 995 mutex_exit(&pp->p_lock); 996 997 /* 998 * Add the child process to the current task. Kernel processes 999 * are always attached to task0. 1000 */ 1001 mutex_enter(&cp->p_lock); 1002 if (kernel) 1003 task_attach(task0p, cp); 1004 else 1005 task_attach(pp->p_task, cp); 1006 mutex_exit(&cp->p_lock); 1007 mutex_exit(&pidlock); 1008 1009 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1010 offsetof(contract_t, ct_ctlist)); 1011 1012 /* 1013 * Duplicate any audit information kept in the process table 1014 */ 1015 #ifdef C2_AUDIT 1016 if (audit_active) /* copy audit data to cp */ 1017 audit_newproc(cp); 1018 #endif 1019 1020 crhold(cp->p_cred = cr); 1021 1022 /* 1023 * Bump up the counts on the file structures pointed at by the 1024 * parent's file table since the child will point at them too. 1025 */ 1026 fcnt_add(P_FINFO(pp), 1); 1027 1028 VN_HOLD(u.u_cdir); 1029 if (u.u_rdir) 1030 VN_HOLD(u.u_rdir); 1031 if (u.u_cwd) 1032 refstr_hold(u.u_cwd); 1033 1034 /* 1035 * copy the parent's uarea. 1036 */ 1037 uarea = PTOU(cp); 1038 bcopy(PTOU(pp), uarea, sizeof (user_t)); 1039 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1040 1041 gethrestime(&uarea->u_start); 1042 uarea->u_ticks = lbolt; 1043 uarea->u_mem = rm_asrss(pp->p_as); 1044 uarea->u_acflag = AFORK; 1045 1046 /* 1047 * If inherit-on-fork, copy /proc tracing flags to child. 1048 */ 1049 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1050 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1051 cp->p_sigmask = pp->p_sigmask; 1052 cp->p_fltmask = pp->p_fltmask; 1053 } else { 1054 sigemptyset(&cp->p_sigmask); 1055 premptyset(&cp->p_fltmask); 1056 uarea->u_systrap = 0; 1057 premptyset(&uarea->u_entrymask); 1058 premptyset(&uarea->u_exitmask); 1059 } 1060 /* 1061 * If microstate accounting is being inherited, mark child 1062 */ 1063 if ((pp->p_flag & SMSFORK) != 0) 1064 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1065 1066 /* 1067 * Inherit fixalignment flag from the parent 1068 */ 1069 cp->p_fixalignment = pp->p_fixalignment; 1070 1071 if (cp->p_exec) 1072 VN_HOLD(cp->p_exec); 1073 if (cp->p_execdir) 1074 VN_HOLD(cp->p_execdir); 1075 *cpp = cp; 1076 return (0); 1077 1078 bad: 1079 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1080 1081 mutex_destroy(&cp->p_crlock); 1082 mutex_destroy(&cp->p_pflock); 1083 #if defined(__x86) 1084 mutex_destroy(&cp->p_ldtlock); 1085 #endif 1086 if (newpid != -1) { 1087 proc_entry_free(cp->p_pidp); 1088 (void) pid_rele(cp->p_pidp); 1089 } 1090 kmem_cache_free(process_cache, cp); 1091 1092 /* 1093 * We most likely got into this situation because some process is 1094 * forking out of control. As punishment, put it to sleep for a 1095 * bit so it can't eat the machine alive. Sleep interval is chosen 1096 * to allow no more than one fork failure per cpu per clock tick 1097 * on average (yes, I just made this up). This has two desirable 1098 * properties: (1) it sets a constant limit on the fork failure 1099 * rate, and (2) the busier the system is, the harsher the penalty 1100 * for abusing it becomes. 1101 */ 1102 INCR_COUNT(&fork_fail_pending, &pidlock); 1103 delay(fork_fail_pending / ncpus + 1); 1104 DECR_COUNT(&fork_fail_pending, &pidlock); 1105 1106 return (-1); /* out of memory or proc slots */ 1107 } 1108 1109 /* 1110 * Release virtual memory. 1111 * In the case of vfork(), the child was given exclusive access to its 1112 * parent's address space. The parent is waiting in vfwait() for the 1113 * child to release its exclusive claim via relvm(). 1114 */ 1115 void 1116 relvm() 1117 { 1118 proc_t *p = curproc; 1119 1120 ASSERT((unsigned)p->p_lwpcnt <= 1); 1121 1122 prrelvm(); /* inform /proc */ 1123 1124 if (p->p_flag & SVFORK) { 1125 proc_t *pp = p->p_parent; 1126 /* 1127 * The child process is either exec'ing or exit'ing. 1128 * The child is now separated from the parent's address 1129 * space. The parent process is made dispatchable. 1130 * 1131 * This is a delicate locking maneuver, involving 1132 * both the parent's p_lock and the child's p_lock. 1133 * As soon as the SVFORK flag is turned off, the 1134 * parent is free to run, but it must not run until 1135 * we wake it up using its p_cv because it might 1136 * exit and we would be referencing invalid memory. 1137 * Therefore, we hold the parent with its p_lock 1138 * while protecting our p_flags with our own p_lock. 1139 */ 1140 try_again: 1141 mutex_enter(&p->p_lock); /* grab child's lock first */ 1142 prbarrier(p); /* make sure /proc is blocked out */ 1143 mutex_enter(&pp->p_lock); 1144 1145 /* 1146 * Check if parent is locked by /proc. 1147 */ 1148 if (pp->p_proc_flag & P_PR_LOCK) { 1149 /* 1150 * Delay until /proc is done with the parent. 1151 * We must drop our (the child's) p->p_lock, wait 1152 * via prbarrier() on the parent, then start over. 1153 */ 1154 mutex_exit(&p->p_lock); 1155 prbarrier(pp); 1156 mutex_exit(&pp->p_lock); 1157 goto try_again; 1158 } 1159 p->p_flag &= ~SVFORK; 1160 kpreempt_disable(); 1161 p->p_as = &kas; 1162 1163 /* 1164 * notify hat of change in thread's address space 1165 */ 1166 hat_thread_exit(curthread); 1167 kpreempt_enable(); 1168 1169 /* 1170 * child sizes are copied back to parent because 1171 * child may have grown. 1172 */ 1173 pp->p_brkbase = p->p_brkbase; 1174 pp->p_brksize = p->p_brksize; 1175 pp->p_stksize = p->p_stksize; 1176 /* 1177 * The parent is no longer waiting for the vfork()d child. 1178 * Restore the parent's watched pages, if any. This is 1179 * safe because we know the parent is not locked by /proc 1180 */ 1181 pp->p_flag &= ~SVFWAIT; 1182 if (avl_numnodes(&pp->p_wpage) != 0) { 1183 pp->p_as->a_wpage = pp->p_wpage; 1184 avl_create(&pp->p_wpage, wp_compare, 1185 sizeof (struct watched_page), 1186 offsetof(struct watched_page, wp_link)); 1187 } 1188 cv_signal(&pp->p_cv); 1189 mutex_exit(&pp->p_lock); 1190 mutex_exit(&p->p_lock); 1191 } else { 1192 if (p->p_as != &kas) { 1193 struct as *as; 1194 1195 if (p->p_segacct) 1196 shmexit(p); 1197 /* 1198 * We grab p_lock for the benefit of /proc 1199 */ 1200 kpreempt_disable(); 1201 mutex_enter(&p->p_lock); 1202 prbarrier(p); /* make sure /proc is blocked out */ 1203 as = p->p_as; 1204 p->p_as = &kas; 1205 mutex_exit(&p->p_lock); 1206 1207 /* 1208 * notify hat of change in thread's address space 1209 */ 1210 hat_thread_exit(curthread); 1211 kpreempt_enable(); 1212 1213 as_free(as); 1214 } 1215 } 1216 } 1217 1218 /* 1219 * Wait for child to exec or exit. 1220 * Called by parent of vfork'ed process. 1221 * See important comments in relvm(), above. 1222 */ 1223 void 1224 vfwait(pid_t pid) 1225 { 1226 int signalled = 0; 1227 proc_t *pp = ttoproc(curthread); 1228 proc_t *cp; 1229 1230 /* 1231 * Wait for child to exec or exit. 1232 */ 1233 for (;;) { 1234 mutex_enter(&pidlock); 1235 cp = prfind(pid); 1236 if (cp == NULL || cp->p_parent != pp) { 1237 /* 1238 * Child has exit()ed. 1239 */ 1240 mutex_exit(&pidlock); 1241 break; 1242 } 1243 /* 1244 * Grab the child's p_lock before releasing pidlock. 1245 * Otherwise, the child could exit and we would be 1246 * referencing invalid memory. 1247 */ 1248 mutex_enter(&cp->p_lock); 1249 mutex_exit(&pidlock); 1250 if (!(cp->p_flag & SVFORK)) { 1251 /* 1252 * Child has exec()ed or is exit()ing. 1253 */ 1254 mutex_exit(&cp->p_lock); 1255 break; 1256 } 1257 mutex_enter(&pp->p_lock); 1258 mutex_exit(&cp->p_lock); 1259 /* 1260 * We might be waked up spuriously from the cv_wait(). 1261 * We have to do the whole operation over again to be 1262 * sure the child's SVFORK flag really is turned off. 1263 * We cannot make reference to the child because it can 1264 * exit before we return and we would be referencing 1265 * invalid memory. 1266 * 1267 * Because this is potentially a very long-term wait, 1268 * we call cv_wait_sig() (for its jobcontrol and /proc 1269 * side-effects) unless there is a current signal, in 1270 * which case we use cv_wait() because we cannot return 1271 * from this function until the child has released the 1272 * address space. Calling cv_wait_sig() with a current 1273 * signal would lead to an indefinite loop here because 1274 * cv_wait_sig() returns immediately in this case. 1275 */ 1276 if (signalled) 1277 cv_wait(&pp->p_cv, &pp->p_lock); 1278 else 1279 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1280 mutex_exit(&pp->p_lock); 1281 } 1282 1283 /* restore watchpoints to parent */ 1284 if (pr_watch_active(pp)) { 1285 struct as *as = pp->p_as; 1286 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1287 as_setwatch(as); 1288 AS_LOCK_EXIT(as, &as->a_lock); 1289 } 1290 1291 mutex_enter(&pp->p_lock); 1292 prbarrier(pp); /* barrier against /proc locking */ 1293 continuelwps(pp); 1294 mutex_exit(&pp->p_lock); 1295 } 1296