1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/cred.h> 37 #include <sys/user.h> 38 #include <sys/conf.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/pathname.h> 42 #include <sys/file.h> 43 #include <sys/flock.h> 44 #include <sys/proc.h> 45 #include <sys/var.h> 46 #include <sys/cpuvar.h> 47 #include <sys/open.h> 48 #include <sys/cmn_err.h> 49 #include <sys/priocntl.h> 50 #include <sys/procset.h> 51 #include <sys/prsystm.h> 52 #include <sys/debug.h> 53 #include <sys/kmem.h> 54 #include <sys/atomic.h> 55 #include <sys/fcntl.h> 56 #include <sys/poll.h> 57 #include <sys/rctl.h> 58 #include <sys/port_impl.h> 59 #include <sys/dtrace.h> 60 61 #include <c2/audit.h> 62 #include <sys/nbmlock.h> 63 64 #ifdef DEBUG 65 66 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 67 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 68 static uint32_t afd_free; /* count of kmem_free()s */ 69 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 70 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 71 #define COUNT(x) atomic_inc_32(&x) 72 73 #else /* DEBUG */ 74 75 #define MAXFD(x) 76 #define COUNT(x) 77 78 #endif /* DEBUG */ 79 80 kmem_cache_t *file_cache; 81 82 static void port_close_fd(portfd_t *); 83 84 /* 85 * File descriptor allocation. 86 * 87 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 88 * The most common case is open(2), in which minfd = 0, but we must also 89 * support fcntl(fd, F_DUPFD, minfd). 90 * 91 * The algorithm is as follows: we keep all file descriptors in an infix 92 * binary tree in which each node records the number of descriptors 93 * allocated in its right subtree, including itself. Starting at minfd, 94 * we ascend the tree until we find a non-fully allocated right subtree. 95 * We then descend that subtree in a binary search for the smallest fd. 96 * Finally, we ascend the tree again to increment the allocation count 97 * of every subtree containing the newly-allocated fd. Freeing an fd 98 * requires only the last step: we ascend the tree to decrement allocation 99 * counts. Each of these three steps (ascent to find non-full subtree, 100 * descent to find lowest fd, ascent to update allocation counts) is 101 * O(log n), thus the algorithm as a whole is O(log n). 102 * 103 * We don't implement the fd tree using the customary left/right/parent 104 * pointers, but instead take advantage of the glorious mathematics of 105 * full infix binary trees. For reference, here's an illustration of the 106 * logical structure of such a tree, rooted at 4 (binary 100), covering 107 * the range 1-7 (binary 001-111). Our canonical trees do not include 108 * fd 0; we'll deal with that later. 109 * 110 * 100 111 * / \ 112 * / \ 113 * 010 110 114 * / \ / \ 115 * 001 011 101 111 116 * 117 * We make the following observations, all of which are easily proven by 118 * induction on the depth of the tree: 119 * 120 * (T1) The least-significant bit (LSB) of any node is equal to its level 121 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 122 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 123 * 124 * (T2) The child size (CSIZE) of node N -- that is, the total number of 125 * right-branch descendants in a child of node N, including itself -- is 126 * given by clearing all but the least significant bit of N. This 127 * follows immediately from (T1). Applying this rule to our example, we 128 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 129 * 130 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 131 * ancestor containing node N in its right child -- is given by clearing 132 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 133 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 134 * the fact that these are leftmost nodes. Note that this algorithm 135 * automatically skips generations as necessary. For example, the parent 136 * of node 101 is 110, which is a *right* ancestor (not what we want); 137 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 138 * of 101 gets us to 100 directly, skipping right past the uninteresting 139 * generation (110). 140 * 141 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 142 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 143 * 144 * LPARENT(N) = N - CSIZE(N) 145 * 146 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 147 * 148 * RPARENT(N) = N + CSIZE(N) 149 * 150 * (T5) For every interior node, the children differ from their parent by 151 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 152 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 153 * 154 * Next, we'll need a few two's-complement math tricks. Suppose a number, 155 * N, has the following form: 156 * 157 * N = xxxx10...0 158 * 159 * That is, the binary representation of N consists of some string of bits, 160 * then a 1, then all zeroes. This amounts to nothing more than saying that 161 * N has a least-significant bit, which is true for any N != 0. If we look 162 * at N and N - 1 together, we see that we can combine them in useful ways: 163 * 164 * N = xxxx10...0 165 * N - 1 = xxxx01...1 166 * ------------------------ 167 * N & (N - 1) = xxxx000000 168 * N | (N - 1) = xxxx111111 169 * N ^ (N - 1) = 111111 170 * 171 * In particular, this suggests several easy ways to clear all but the LSB, 172 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 173 * We'll opt for this formulation: 174 * 175 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 176 * 177 * Similarly, we have an easy way to determine LPARENT(N), which requires 178 * that we clear the LSB of N: 179 * 180 * (L1) LPARENT(N) = N & (N - 1) 181 * 182 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 183 * When combined with (T4), this yields an easy way to compute RPARENT(N): 184 * 185 * (R1) RPARENT(N) = (N | (N - 1)) + 1 186 * 187 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 188 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 189 * so there's no need to belabor the algebra; the revised relations become: 190 * 191 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 192 * 193 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 194 * 195 * (R1a) RPARENT(N) = N | (N + 1) 196 * 197 * This completes the mathematical framework. We now have all the tools 198 * we need to implement fd_find() and fd_reserve(). 199 * 200 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 201 * It does not actually allocate the descriptor; that's done by fd_reserve(). 202 * fd_find() proceeds in two steps: 203 * 204 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 205 * We start at the right subtree rooted at minfd. If this subtree is 206 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 207 * step 1 is done. Otherwise, we know that all fds in this subtree 208 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 209 * this process until we either find a candidate subtree or exceed 210 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 211 * 212 * (2) Find the smallest fd in the subtree discovered by step 1. 213 * Starting at the root of this subtree, we descend to find the 214 * smallest available fd. Since the left children have the smaller 215 * fds, we will descend rightward only when the left child is full. 216 * 217 * We begin by comparing the number of allocated fds in the root 218 * to the number of allocated fds in its right child; if they differ 219 * by exactly CSIZE(child), we know the left subtree is full, so we 220 * descend right; that is, the right child becomes the search root. 221 * Otherwise we leave the root alone and start following the right 222 * child's left children. As fortune would have it, this is very 223 * simple computationally: by (T5), the right child of fd is just 224 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 225 * we find that the right child's left child is fd + size - (size / 2) = 226 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 227 * fd + (size / 4), and so on. In general, fd's right child's 228 * leftmost nth descendant is fd + (size >> n). Thus, to follow 229 * the right child's left descendants, we just halve the size in 230 * each iteration of the search. 231 * 232 * When we descend leftward, we must keep track of the number of fds 233 * that were allocated in all the right subtrees we rejected, so we 234 * know how many of the root fd's allocations are in the remaining 235 * (as yet unexplored) leftmost part of its right subtree. When we 236 * encounter a fully-allocated left child -- that is, when we find 237 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 238 * (as described earlier), resetting ralloc to zero. 239 * 240 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 241 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 242 * the leftmost ancestors (see (T3)) and updates the allocation counts. 243 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 244 * 245 * flist_minsize() finds the minimal tree that still covers all 246 * used fds; as long as the allocation count of a root node is zero, we 247 * don't need that node or its right subtree. 248 * 249 * flist_nalloc() counts the number of allocated fds in the tree, by starting 250 * at the top of the tree and summing the right-subtree allocation counts as 251 * it descends leftwards. 252 * 253 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 254 * 2^n - 1. This ensures that the fd trees are always full, which saves 255 * quite a bit of boundary checking. 256 */ 257 static int 258 fd_find(uf_info_t *fip, int minfd) 259 { 260 int size, ralloc, fd; 261 262 ASSERT(MUTEX_HELD(&fip->fi_lock)); 263 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 264 265 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 266 size = fd ^ (fd | (fd + 1)); 267 if (fip->fi_list[fd].uf_alloc == size) 268 continue; 269 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 270 ralloc += fip->fi_list[fd + size].uf_alloc; 271 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 272 fd += size; 273 ralloc = 0; 274 } 275 } 276 return (fd); 277 } 278 return (-1); 279 } 280 281 static void 282 fd_reserve(uf_info_t *fip, int fd, int incr) 283 { 284 int pfd; 285 uf_entry_t *ufp = &fip->fi_list[fd]; 286 287 ASSERT((uint_t)fd < fip->fi_nfiles); 288 ASSERT((ufp->uf_busy == 0 && incr == 1) || 289 (ufp->uf_busy == 1 && incr == -1)); 290 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 291 ASSERT(MUTEX_HELD(&fip->fi_lock)); 292 293 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 294 fip->fi_list[pfd].uf_alloc += incr; 295 296 ufp->uf_busy += incr; 297 } 298 299 static int 300 flist_minsize(uf_info_t *fip) 301 { 302 int fd; 303 304 /* 305 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 306 * by flist_fork(), which relies on other mechanisms for mutual 307 * exclusion. 308 */ 309 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 310 311 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 312 if (fip->fi_list[fd >> 1].uf_alloc != 0) 313 break; 314 315 return (fd); 316 } 317 318 static int 319 flist_nalloc(uf_info_t *fip) 320 { 321 int fd; 322 int nalloc = 0; 323 324 ASSERT(MUTEX_HELD(&fip->fi_lock)); 325 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 326 327 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 328 nalloc += fip->fi_list[fd >> 1].uf_alloc; 329 330 return (nalloc); 331 } 332 333 /* 334 * Increase size of the fi_list array to accommodate at least maxfd. 335 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 336 */ 337 static void 338 flist_grow(int maxfd) 339 { 340 uf_info_t *fip = P_FINFO(curproc); 341 int newcnt, oldcnt; 342 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 343 uf_rlist_t *urp; 344 345 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 346 continue; 347 348 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 349 350 mutex_enter(&fip->fi_lock); 351 oldcnt = fip->fi_nfiles; 352 if (newcnt <= oldcnt) { 353 mutex_exit(&fip->fi_lock); 354 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 355 return; 356 } 357 ASSERT((newcnt & (newcnt + 1)) == 0); 358 oldlist = fip->fi_list; 359 oldend = oldlist + oldcnt; 360 newend = newlist + oldcnt; /* no need to lock beyond old end */ 361 362 /* 363 * fi_list and fi_nfiles cannot change while any uf_lock is held, 364 * so we must grab all the old locks *and* the new locks up to oldcnt. 365 * (Locks beyond the end of oldcnt aren't visible until we store 366 * the new fi_nfiles, which is the last thing we do before dropping 367 * all the locks, so there's no need to acquire these locks). 368 * Holding the new locks is necessary because when fi_list changes 369 * to point to the new list, fi_nfiles won't have been stored yet. 370 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 371 * could see the new fi_list, grab the new uf_lock, and then see 372 * fi_nfiles change while the lock is held -- in violation of 373 * UF_ENTER() semantics. 374 */ 375 for (src = oldlist; src < oldend; src++) 376 mutex_enter(&src->uf_lock); 377 378 for (dst = newlist; dst < newend; dst++) 379 mutex_enter(&dst->uf_lock); 380 381 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 382 dst->uf_file = src->uf_file; 383 dst->uf_fpollinfo = src->uf_fpollinfo; 384 dst->uf_refcnt = src->uf_refcnt; 385 dst->uf_alloc = src->uf_alloc; 386 dst->uf_flag = src->uf_flag; 387 dst->uf_busy = src->uf_busy; 388 dst->uf_portfd = src->uf_portfd; 389 } 390 391 /* 392 * As soon as we store the new flist, future locking operations 393 * will use it. Therefore, we must ensure that all the state 394 * we've just established reaches global visibility before the 395 * new flist does. 396 */ 397 membar_producer(); 398 fip->fi_list = newlist; 399 400 /* 401 * Routines like getf() make an optimistic check on the validity 402 * of the supplied file descriptor: if it's less than the current 403 * value of fi_nfiles -- examined without any locks -- then it's 404 * safe to attempt a UF_ENTER() on that fd (which is a valid 405 * assumption because fi_nfiles only increases). Therefore, it 406 * is critical that the new value of fi_nfiles not reach global 407 * visibility until after the new fi_list: if it happened the 408 * other way around, getf() could see the new fi_nfiles and attempt 409 * a UF_ENTER() on the old fi_list, which would write beyond its 410 * end if the fd exceeded the old fi_nfiles. 411 */ 412 membar_producer(); 413 fip->fi_nfiles = newcnt; 414 415 /* 416 * The new state is consistent now, so we can drop all the locks. 417 */ 418 for (dst = newlist; dst < newend; dst++) 419 mutex_exit(&dst->uf_lock); 420 421 for (src = oldlist; src < oldend; src++) { 422 /* 423 * If any threads are blocked on the old cvs, wake them. 424 * This will force them to wake up, discover that fi_list 425 * has changed, and go back to sleep on the new cvs. 426 */ 427 cv_broadcast(&src->uf_wanted_cv); 428 cv_broadcast(&src->uf_closing_cv); 429 mutex_exit(&src->uf_lock); 430 } 431 432 mutex_exit(&fip->fi_lock); 433 434 /* 435 * Retire the old flist. We can't actually kmem_free() it now 436 * because someone may still have a pointer to it. Instead, 437 * we link it onto a list of retired flists. The new flist 438 * is at least double the size of the previous flist, so the 439 * total size of all retired flists will be less than the size 440 * of the current one (to prove, consider the sum of a geometric 441 * series in powers of 2). exit() frees the retired flists. 442 */ 443 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 444 urp->ur_list = oldlist; 445 urp->ur_nfiles = oldcnt; 446 447 mutex_enter(&fip->fi_lock); 448 urp->ur_next = fip->fi_rlist; 449 fip->fi_rlist = urp; 450 mutex_exit(&fip->fi_lock); 451 } 452 453 /* 454 * Utility functions for keeping track of the active file descriptors. 455 */ 456 void 457 clear_stale_fd() /* called from post_syscall() */ 458 { 459 afd_t *afd = &curthread->t_activefd; 460 int i; 461 462 /* uninitialized is ok here, a_nfd is then zero */ 463 for (i = 0; i < afd->a_nfd; i++) { 464 /* assert that this should not be necessary */ 465 ASSERT(afd->a_fd[i] == -1); 466 afd->a_fd[i] = -1; 467 } 468 afd->a_stale = 0; 469 } 470 471 void 472 free_afd(afd_t *afd) /* called below and from thread_free() */ 473 { 474 int i; 475 476 /* free the buffer if it was kmem_alloc()ed */ 477 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 478 COUNT(afd_free); 479 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 480 } 481 482 /* (re)initialize the structure */ 483 afd->a_fd = &afd->a_buf[0]; 484 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 485 afd->a_stale = 0; 486 for (i = 0; i < afd->a_nfd; i++) 487 afd->a_fd[i] = -1; 488 } 489 490 static void 491 set_active_fd(int fd) 492 { 493 afd_t *afd = &curthread->t_activefd; 494 int i; 495 int *old_fd; 496 int old_nfd; 497 int *new_fd; 498 int new_nfd; 499 500 if (afd->a_nfd == 0) { /* first time initialization */ 501 ASSERT(fd == -1); 502 mutex_enter(&afd->a_fdlock); 503 free_afd(afd); 504 mutex_exit(&afd->a_fdlock); 505 } 506 507 /* insert fd into vacant slot, if any */ 508 for (i = 0; i < afd->a_nfd; i++) { 509 if (afd->a_fd[i] == -1) { 510 afd->a_fd[i] = fd; 511 return; 512 } 513 } 514 515 /* 516 * Reallocate the a_fd[] array to add one more slot. 517 */ 518 ASSERT(fd == -1); 519 old_nfd = afd->a_nfd; 520 old_fd = afd->a_fd; 521 new_nfd = old_nfd + 1; 522 new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 523 MAXFD(new_nfd); 524 COUNT(afd_alloc); 525 526 mutex_enter(&afd->a_fdlock); 527 afd->a_fd = new_fd; 528 afd->a_nfd = new_nfd; 529 for (i = 0; i < old_nfd; i++) 530 afd->a_fd[i] = old_fd[i]; 531 afd->a_fd[i] = fd; 532 mutex_exit(&afd->a_fdlock); 533 534 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 535 COUNT(afd_free); 536 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 537 } 538 } 539 540 void 541 clear_active_fd(int fd) /* called below and from aio.c */ 542 { 543 afd_t *afd = &curthread->t_activefd; 544 int i; 545 546 for (i = 0; i < afd->a_nfd; i++) { 547 if (afd->a_fd[i] == fd) { 548 afd->a_fd[i] = -1; 549 break; 550 } 551 } 552 ASSERT(i < afd->a_nfd); /* not found is not ok */ 553 } 554 555 /* 556 * Does this thread have this fd active? 557 */ 558 static int 559 is_active_fd(kthread_t *t, int fd) 560 { 561 afd_t *afd = &t->t_activefd; 562 int i; 563 564 ASSERT(t != curthread); 565 mutex_enter(&afd->a_fdlock); 566 /* uninitialized is ok here, a_nfd is then zero */ 567 for (i = 0; i < afd->a_nfd; i++) { 568 if (afd->a_fd[i] == fd) { 569 mutex_exit(&afd->a_fdlock); 570 return (1); 571 } 572 } 573 mutex_exit(&afd->a_fdlock); 574 return (0); 575 } 576 577 /* 578 * Convert a user supplied file descriptor into a pointer to a file 579 * structure. Only task is to check range of the descriptor (soft 580 * resource limit was enforced at open time and shouldn't be checked 581 * here). 582 */ 583 file_t * 584 getf(int fd) 585 { 586 uf_info_t *fip = P_FINFO(curproc); 587 uf_entry_t *ufp; 588 file_t *fp; 589 590 if ((uint_t)fd >= fip->fi_nfiles) 591 return (NULL); 592 593 /* 594 * Reserve a slot in the active fd array now so we can call 595 * set_active_fd(fd) for real below, while still inside UF_ENTER(). 596 */ 597 set_active_fd(-1); 598 599 UF_ENTER(ufp, fip, fd); 600 601 if ((fp = ufp->uf_file) == NULL) { 602 UF_EXIT(ufp); 603 604 if (fd == fip->fi_badfd && fip->fi_action > 0) 605 tsignal(curthread, fip->fi_action); 606 607 return (NULL); 608 } 609 ufp->uf_refcnt++; 610 611 set_active_fd(fd); /* record the active file descriptor */ 612 613 UF_EXIT(ufp); 614 615 return (fp); 616 } 617 618 /* 619 * Close whatever file currently occupies the file descriptor slot 620 * and install the new file, usually NULL, in the file descriptor slot. 621 * The close must complete before we release the file descriptor slot. 622 * If newfp != NULL we only return an error if we can't allocate the 623 * slot so the caller knows that it needs to free the filep; 624 * in the other cases we return the error number from closef(). 625 */ 626 int 627 closeandsetf(int fd, file_t *newfp) 628 { 629 proc_t *p = curproc; 630 uf_info_t *fip = P_FINFO(p); 631 uf_entry_t *ufp; 632 file_t *fp; 633 fpollinfo_t *fpip; 634 portfd_t *pfd; 635 int error; 636 637 if ((uint_t)fd >= fip->fi_nfiles) { 638 if (newfp == NULL) 639 return (EBADF); 640 flist_grow(fd); 641 } 642 643 if (newfp != NULL) { 644 /* 645 * If ufp is reserved but has no file pointer, it's in the 646 * transition between ufalloc() and setf(). We must wait 647 * for this transition to complete before assigning the 648 * new non-NULL file pointer. 649 */ 650 mutex_enter(&fip->fi_lock); 651 if (fd == fip->fi_badfd) { 652 mutex_exit(&fip->fi_lock); 653 if (fip->fi_action > 0) 654 tsignal(curthread, fip->fi_action); 655 return (EBADF); 656 } 657 UF_ENTER(ufp, fip, fd); 658 while (ufp->uf_busy && ufp->uf_file == NULL) { 659 mutex_exit(&fip->fi_lock); 660 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 661 UF_EXIT(ufp); 662 mutex_enter(&fip->fi_lock); 663 UF_ENTER(ufp, fip, fd); 664 } 665 if ((fp = ufp->uf_file) == NULL) { 666 ASSERT(ufp->uf_fpollinfo == NULL); 667 ASSERT(ufp->uf_flag == 0); 668 fd_reserve(fip, fd, 1); 669 ufp->uf_file = newfp; 670 UF_EXIT(ufp); 671 mutex_exit(&fip->fi_lock); 672 return (0); 673 } 674 mutex_exit(&fip->fi_lock); 675 } else { 676 UF_ENTER(ufp, fip, fd); 677 if ((fp = ufp->uf_file) == NULL) { 678 UF_EXIT(ufp); 679 return (EBADF); 680 } 681 } 682 683 ASSERT(ufp->uf_busy); 684 ufp->uf_file = NULL; 685 ufp->uf_flag = 0; 686 687 /* 688 * If the file descriptor reference count is non-zero, then 689 * some other lwp in the process is performing system call 690 * activity on the file. To avoid blocking here for a long 691 * time (the other lwp might be in a long term sleep in its 692 * system call), we scan all other lwps in the process to 693 * find the ones with this fd as one of their active fds, 694 * set their a_stale flag, and set them running if they 695 * are in an interruptible sleep so they will emerge from 696 * their system calls immediately. post_syscall() will 697 * test the a_stale flag and set errno to EBADF. 698 */ 699 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 700 if (ufp->uf_refcnt > 0) { 701 kthread_t *t; 702 703 /* 704 * We call sprlock_proc(p) to ensure that the thread 705 * list will not change while we are scanning it. 706 * To do this, we must drop ufp->uf_lock and then 707 * reacquire it (so we are not holding both p->p_lock 708 * and ufp->uf_lock at the same time). ufp->uf_lock 709 * must be held for is_active_fd() to be correct 710 * (set_active_fd() is called while holding ufp->uf_lock). 711 * 712 * This is a convoluted dance, but it is better than 713 * the old brute-force method of stopping every thread 714 * in the process by calling holdlwps(SHOLDFORK1). 715 */ 716 717 UF_EXIT(ufp); 718 COUNT(afd_wait); 719 720 mutex_enter(&p->p_lock); 721 sprlock_proc(p); 722 mutex_exit(&p->p_lock); 723 724 UF_ENTER(ufp, fip, fd); 725 ASSERT(ufp->uf_file == NULL); 726 727 if (ufp->uf_refcnt > 0) { 728 for (t = curthread->t_forw; 729 t != curthread; 730 t = t->t_forw) { 731 if (is_active_fd(t, fd)) { 732 thread_lock(t); 733 t->t_activefd.a_stale = 1; 734 t->t_post_sys = 1; 735 if (ISWAKEABLE(t)) 736 setrun_locked(t); 737 thread_unlock(t); 738 } 739 } 740 } 741 742 UF_EXIT(ufp); 743 744 mutex_enter(&p->p_lock); 745 sprunlock(p); 746 747 UF_ENTER(ufp, fip, fd); 748 ASSERT(ufp->uf_file == NULL); 749 } 750 751 /* 752 * Wait for other lwps to stop using this file descriptor. 753 */ 754 while (ufp->uf_refcnt > 0) { 755 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 756 /* 757 * cv_wait_stop() drops ufp->uf_lock, so the file list 758 * can change. Drop the lock on our (possibly) stale 759 * ufp and let UF_ENTER() find and lock the current ufp. 760 */ 761 UF_EXIT(ufp); 762 UF_ENTER(ufp, fip, fd); 763 } 764 765 #ifdef DEBUG 766 /* 767 * catch a watchfd on device's pollhead list but not on fpollinfo list 768 */ 769 if (ufp->uf_fpollinfo != NULL) 770 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 771 #endif /* DEBUG */ 772 773 /* 774 * We may need to cleanup some cached poll states in t_pollstate 775 * before the fd can be reused. It is important that we don't 776 * access a stale thread structure. We will do the cleanup in two 777 * phases to avoid deadlock and holding uf_lock for too long. 778 * In phase 1, hold the uf_lock and call pollblockexit() to set 779 * state in t_pollstate struct so that a thread does not exit on 780 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 781 */ 782 pfd = ufp->uf_portfd; 783 ufp->uf_portfd = NULL; 784 fpip = ufp->uf_fpollinfo; 785 ufp->uf_fpollinfo = NULL; 786 if (fpip != NULL) 787 pollblockexit(fpip); 788 UF_EXIT(ufp); 789 if (fpip != NULL) 790 pollcacheclean(fpip, fd); 791 if (pfd) 792 port_close_fd(pfd); 793 794 /* 795 * Keep the file descriptor entry reserved across the closef(). 796 */ 797 error = closef(fp); 798 799 setf(fd, newfp); 800 801 /* Only return closef() error when closing is all we do */ 802 return (newfp == NULL ? error : 0); 803 } 804 805 /* 806 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 807 */ 808 void 809 releasef(int fd) 810 { 811 uf_info_t *fip = P_FINFO(curproc); 812 uf_entry_t *ufp; 813 814 UF_ENTER(ufp, fip, fd); 815 ASSERT(ufp->uf_refcnt > 0); 816 clear_active_fd(fd); /* clear the active file descriptor */ 817 if (--ufp->uf_refcnt == 0) 818 cv_broadcast(&ufp->uf_closing_cv); 819 UF_EXIT(ufp); 820 } 821 822 /* 823 * Identical to releasef() but can be called from another process. 824 */ 825 void 826 areleasef(int fd, uf_info_t *fip) 827 { 828 uf_entry_t *ufp; 829 830 UF_ENTER(ufp, fip, fd); 831 ASSERT(ufp->uf_refcnt > 0); 832 if (--ufp->uf_refcnt == 0) 833 cv_broadcast(&ufp->uf_closing_cv); 834 UF_EXIT(ufp); 835 } 836 837 /* 838 * Duplicate all file descriptors across a fork. 839 */ 840 void 841 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 842 { 843 int fd, nfiles; 844 uf_entry_t *pufp, *cufp; 845 846 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 847 cfip->fi_rlist = NULL; 848 849 /* 850 * We don't need to hold fi_lock because all other lwp's in the 851 * parent have been held. 852 */ 853 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 854 855 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 856 857 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 858 fd++, pufp++, cufp++) { 859 cufp->uf_file = pufp->uf_file; 860 cufp->uf_alloc = pufp->uf_alloc; 861 cufp->uf_flag = pufp->uf_flag; 862 cufp->uf_busy = pufp->uf_busy; 863 if (pufp->uf_file == NULL) { 864 ASSERT(pufp->uf_flag == 0); 865 if (pufp->uf_busy) { 866 /* 867 * Grab locks to appease ASSERTs in fd_reserve 868 */ 869 mutex_enter(&cfip->fi_lock); 870 mutex_enter(&cufp->uf_lock); 871 fd_reserve(cfip, fd, -1); 872 mutex_exit(&cufp->uf_lock); 873 mutex_exit(&cfip->fi_lock); 874 } 875 } 876 } 877 } 878 879 /* 880 * Close all open file descriptors for the current process. 881 * This is only called from exit(), which is single-threaded, 882 * so we don't need any locking. 883 */ 884 void 885 closeall(uf_info_t *fip) 886 { 887 int fd; 888 file_t *fp; 889 uf_entry_t *ufp; 890 891 ufp = fip->fi_list; 892 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 893 if ((fp = ufp->uf_file) != NULL) { 894 ufp->uf_file = NULL; 895 if (ufp->uf_portfd != NULL) { 896 portfd_t *pfd; 897 /* remove event port association */ 898 pfd = ufp->uf_portfd; 899 ufp->uf_portfd = NULL; 900 port_close_fd(pfd); 901 } 902 ASSERT(ufp->uf_fpollinfo == NULL); 903 (void) closef(fp); 904 } 905 } 906 907 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 908 fip->fi_list = NULL; 909 fip->fi_nfiles = 0; 910 while (fip->fi_rlist != NULL) { 911 uf_rlist_t *urp = fip->fi_rlist; 912 fip->fi_rlist = urp->ur_next; 913 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 914 kmem_free(urp, sizeof (uf_rlist_t)); 915 } 916 } 917 918 /* 919 * Internal form of close. Decrement reference count on file 920 * structure. Decrement reference count on the vnode following 921 * removal of the referencing file structure. 922 */ 923 int 924 closef(file_t *fp) 925 { 926 vnode_t *vp; 927 int error; 928 int count; 929 int flag; 930 offset_t offset; 931 932 /* 933 * audit close of file (may be exit) 934 */ 935 if (AU_AUDITING()) 936 audit_closef(fp); 937 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 938 939 mutex_enter(&fp->f_tlock); 940 941 ASSERT(fp->f_count > 0); 942 943 count = fp->f_count--; 944 flag = fp->f_flag; 945 offset = fp->f_offset; 946 947 vp = fp->f_vnode; 948 949 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); 950 951 if (count > 1) { 952 mutex_exit(&fp->f_tlock); 953 return (error); 954 } 955 ASSERT(fp->f_count == 0); 956 /* Last reference, remove any OFD style lock for the file_t */ 957 ofdcleanlock(fp); 958 mutex_exit(&fp->f_tlock); 959 960 /* 961 * If DTrace has getf() subroutines active, it will set dtrace_closef 962 * to point to code that implements a barrier with respect to probe 963 * context. This must be called before the file_t is freed (and the 964 * vnode that it refers to is released) -- but it must be after the 965 * file_t has been removed from the uf_entry_t. That is, there must 966 * be no way for a racing getf() in probe context to yield the fp that 967 * we're operating upon. 968 */ 969 if (dtrace_closef != NULL) 970 (*dtrace_closef)(); 971 972 VN_RELE(vp); 973 /* 974 * deallocate resources to audit_data 975 */ 976 if (audit_active) 977 audit_unfalloc(fp); 978 crfree(fp->f_cred); 979 kmem_cache_free(file_cache, fp); 980 return (error); 981 } 982 983 /* 984 * This is a combination of ufalloc() and setf(). 985 */ 986 int 987 ufalloc_file(int start, file_t *fp) 988 { 989 proc_t *p = curproc; 990 uf_info_t *fip = P_FINFO(p); 991 int filelimit; 992 uf_entry_t *ufp; 993 int nfiles; 994 int fd; 995 996 /* 997 * Assertion is to convince the correctness of the following 998 * assignment for filelimit after casting to int. 999 */ 1000 ASSERT(p->p_fno_ctl <= INT_MAX); 1001 filelimit = (int)p->p_fno_ctl; 1002 1003 for (;;) { 1004 mutex_enter(&fip->fi_lock); 1005 fd = fd_find(fip, start); 1006 if (fd >= 0 && fd == fip->fi_badfd) { 1007 start = fd + 1; 1008 mutex_exit(&fip->fi_lock); 1009 continue; 1010 } 1011 if ((uint_t)fd < filelimit) 1012 break; 1013 if (fd >= filelimit) { 1014 mutex_exit(&fip->fi_lock); 1015 mutex_enter(&p->p_lock); 1016 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1017 p->p_rctls, p, RCA_SAFE); 1018 mutex_exit(&p->p_lock); 1019 return (-1); 1020 } 1021 /* fd_find() returned -1 */ 1022 nfiles = fip->fi_nfiles; 1023 mutex_exit(&fip->fi_lock); 1024 flist_grow(MAX(start, nfiles)); 1025 } 1026 1027 UF_ENTER(ufp, fip, fd); 1028 fd_reserve(fip, fd, 1); 1029 ASSERT(ufp->uf_file == NULL); 1030 ufp->uf_file = fp; 1031 UF_EXIT(ufp); 1032 mutex_exit(&fip->fi_lock); 1033 return (fd); 1034 } 1035 1036 /* 1037 * Allocate a user file descriptor greater than or equal to "start". 1038 */ 1039 int 1040 ufalloc(int start) 1041 { 1042 return (ufalloc_file(start, NULL)); 1043 } 1044 1045 /* 1046 * Check that a future allocation of count fds on proc p has a good 1047 * chance of succeeding. If not, do rctl processing as if we'd failed 1048 * the allocation. 1049 * 1050 * Our caller must guarantee that p cannot disappear underneath us. 1051 */ 1052 int 1053 ufcanalloc(proc_t *p, uint_t count) 1054 { 1055 uf_info_t *fip = P_FINFO(p); 1056 int filelimit; 1057 int current; 1058 1059 if (count == 0) 1060 return (1); 1061 1062 ASSERT(p->p_fno_ctl <= INT_MAX); 1063 filelimit = (int)p->p_fno_ctl; 1064 1065 mutex_enter(&fip->fi_lock); 1066 current = flist_nalloc(fip); /* # of in-use descriptors */ 1067 mutex_exit(&fip->fi_lock); 1068 1069 /* 1070 * If count is a positive integer, the worst that can happen is 1071 * an overflow to a negative value, which is caught by the >= 0 check. 1072 */ 1073 current += count; 1074 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1075 return (1); 1076 1077 mutex_enter(&p->p_lock); 1078 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1079 p->p_rctls, p, RCA_SAFE); 1080 mutex_exit(&p->p_lock); 1081 return (0); 1082 } 1083 1084 /* 1085 * Allocate a user file descriptor and a file structure. 1086 * Initialize the descriptor to point at the file structure. 1087 * If fdp is NULL, the user file descriptor will not be allocated. 1088 */ 1089 int 1090 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1091 { 1092 file_t *fp; 1093 int fd; 1094 1095 if (fdp) { 1096 if ((fd = ufalloc(0)) == -1) 1097 return (EMFILE); 1098 } 1099 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1100 /* 1101 * Note: falloc returns the fp locked 1102 */ 1103 mutex_enter(&fp->f_tlock); 1104 fp->f_count = 1; 1105 fp->f_flag = (ushort_t)flag; 1106 fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16; 1107 fp->f_vnode = vp; 1108 fp->f_offset = 0; 1109 fp->f_audit_data = 0; 1110 crhold(fp->f_cred = CRED()); 1111 /* 1112 * allocate resources to audit_data 1113 */ 1114 if (audit_active) 1115 audit_falloc(fp); 1116 *fpp = fp; 1117 if (fdp) 1118 *fdp = fd; 1119 return (0); 1120 } 1121 1122 /*ARGSUSED*/ 1123 static int 1124 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1125 { 1126 file_t *fp = buf; 1127 1128 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1129 return (0); 1130 } 1131 1132 /*ARGSUSED*/ 1133 static void 1134 file_cache_destructor(void *buf, void *cdrarg) 1135 { 1136 file_t *fp = buf; 1137 1138 mutex_destroy(&fp->f_tlock); 1139 } 1140 1141 void 1142 finit() 1143 { 1144 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1145 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1146 } 1147 1148 void 1149 unfalloc(file_t *fp) 1150 { 1151 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1152 if (--fp->f_count <= 0) { 1153 /* 1154 * deallocate resources to audit_data 1155 */ 1156 if (audit_active) 1157 audit_unfalloc(fp); 1158 crfree(fp->f_cred); 1159 mutex_exit(&fp->f_tlock); 1160 kmem_cache_free(file_cache, fp); 1161 } else 1162 mutex_exit(&fp->f_tlock); 1163 } 1164 1165 /* 1166 * Given a file descriptor, set the user's 1167 * file pointer to the given parameter. 1168 */ 1169 void 1170 setf(int fd, file_t *fp) 1171 { 1172 uf_info_t *fip = P_FINFO(curproc); 1173 uf_entry_t *ufp; 1174 1175 if (AU_AUDITING()) 1176 audit_setf(fp, fd); 1177 1178 if (fp == NULL) { 1179 mutex_enter(&fip->fi_lock); 1180 UF_ENTER(ufp, fip, fd); 1181 fd_reserve(fip, fd, -1); 1182 mutex_exit(&fip->fi_lock); 1183 } else { 1184 UF_ENTER(ufp, fip, fd); 1185 ASSERT(ufp->uf_busy); 1186 } 1187 ASSERT(ufp->uf_fpollinfo == NULL); 1188 ASSERT(ufp->uf_flag == 0); 1189 ufp->uf_file = fp; 1190 cv_broadcast(&ufp->uf_wanted_cv); 1191 UF_EXIT(ufp); 1192 } 1193 1194 /* 1195 * Given a file descriptor, return the file table flags, plus, 1196 * if this is a socket in asynchronous mode, the FASYNC flag. 1197 * getf() may or may not have been called before calling f_getfl(). 1198 */ 1199 int 1200 f_getfl(int fd, int *flagp) 1201 { 1202 uf_info_t *fip = P_FINFO(curproc); 1203 uf_entry_t *ufp; 1204 file_t *fp; 1205 int error; 1206 1207 if ((uint_t)fd >= fip->fi_nfiles) 1208 error = EBADF; 1209 else { 1210 UF_ENTER(ufp, fip, fd); 1211 if ((fp = ufp->uf_file) == NULL) 1212 error = EBADF; 1213 else { 1214 vnode_t *vp = fp->f_vnode; 1215 int flag = fp->f_flag | 1216 ((fp->f_flag2 & ~FEPOLLED) << 16); 1217 1218 /* 1219 * BSD fcntl() FASYNC compatibility. 1220 */ 1221 if (vp->v_type == VSOCK) 1222 flag |= sock_getfasync(vp); 1223 *flagp = flag; 1224 error = 0; 1225 } 1226 UF_EXIT(ufp); 1227 } 1228 1229 return (error); 1230 } 1231 1232 /* 1233 * Given a file descriptor, return the user's file flags. 1234 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1235 * getf() may or may not have been called before calling f_getfd_error(). 1236 */ 1237 int 1238 f_getfd_error(int fd, int *flagp) 1239 { 1240 uf_info_t *fip = P_FINFO(curproc); 1241 uf_entry_t *ufp; 1242 file_t *fp; 1243 int flag; 1244 int error; 1245 1246 if ((uint_t)fd >= fip->fi_nfiles) 1247 error = EBADF; 1248 else { 1249 UF_ENTER(ufp, fip, fd); 1250 if ((fp = ufp->uf_file) == NULL) 1251 error = EBADF; 1252 else { 1253 flag = ufp->uf_flag; 1254 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1255 flag |= FD_CLOEXEC; 1256 *flagp = flag; 1257 error = 0; 1258 } 1259 UF_EXIT(ufp); 1260 } 1261 1262 return (error); 1263 } 1264 1265 /* 1266 * getf() must have been called before calling f_getfd(). 1267 */ 1268 char 1269 f_getfd(int fd) 1270 { 1271 int flag = 0; 1272 (void) f_getfd_error(fd, &flag); 1273 return ((char)flag); 1274 } 1275 1276 /* 1277 * Given a file descriptor and file flags, set the user's file flags. 1278 * At present, the only valid flag is FD_CLOEXEC. 1279 * getf() may or may not have been called before calling f_setfd_error(). 1280 */ 1281 int 1282 f_setfd_error(int fd, int flags) 1283 { 1284 uf_info_t *fip = P_FINFO(curproc); 1285 uf_entry_t *ufp; 1286 int error; 1287 1288 if ((uint_t)fd >= fip->fi_nfiles) 1289 error = EBADF; 1290 else { 1291 UF_ENTER(ufp, fip, fd); 1292 if (ufp->uf_file == NULL) 1293 error = EBADF; 1294 else { 1295 ufp->uf_flag = flags & FD_CLOEXEC; 1296 error = 0; 1297 } 1298 UF_EXIT(ufp); 1299 } 1300 return (error); 1301 } 1302 1303 void 1304 f_setfd(int fd, char flags) 1305 { 1306 (void) f_setfd_error(fd, flags); 1307 } 1308 1309 #define BADFD_MIN 3 1310 #define BADFD_MAX 255 1311 1312 /* 1313 * Attempt to allocate a file descriptor which is bad and which 1314 * is "poison" to the application. It cannot be closed (except 1315 * on exec), allocated for a different use, etc. 1316 */ 1317 int 1318 f_badfd(int start, int *fdp, int action) 1319 { 1320 int fdr; 1321 int badfd; 1322 uf_info_t *fip = P_FINFO(curproc); 1323 1324 #ifdef _LP64 1325 /* No restrictions on 64 bit _file */ 1326 if (get_udatamodel() != DATAMODEL_ILP32) 1327 return (EINVAL); 1328 #endif 1329 1330 if (start > BADFD_MAX || start < BADFD_MIN) 1331 return (EINVAL); 1332 1333 if (action >= NSIG || action < 0) 1334 return (EINVAL); 1335 1336 mutex_enter(&fip->fi_lock); 1337 badfd = fip->fi_badfd; 1338 mutex_exit(&fip->fi_lock); 1339 1340 if (badfd != -1) 1341 return (EAGAIN); 1342 1343 fdr = ufalloc(start); 1344 1345 if (fdr > BADFD_MAX) { 1346 setf(fdr, NULL); 1347 return (EMFILE); 1348 } 1349 if (fdr < 0) 1350 return (EMFILE); 1351 1352 mutex_enter(&fip->fi_lock); 1353 if (fip->fi_badfd != -1) { 1354 /* Lost race */ 1355 mutex_exit(&fip->fi_lock); 1356 setf(fdr, NULL); 1357 return (EAGAIN); 1358 } 1359 fip->fi_action = action; 1360 fip->fi_badfd = fdr; 1361 mutex_exit(&fip->fi_lock); 1362 setf(fdr, NULL); 1363 1364 *fdp = fdr; 1365 1366 return (0); 1367 } 1368 1369 /* 1370 * Allocate a file descriptor and assign it to the vnode "*vpp", 1371 * performing the usual open protocol upon it and returning the 1372 * file descriptor allocated. It is the responsibility of the 1373 * caller to dispose of "*vpp" if any error occurs. 1374 */ 1375 int 1376 fassign(vnode_t **vpp, int mode, int *fdp) 1377 { 1378 file_t *fp; 1379 int error; 1380 int fd; 1381 1382 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1383 return (error); 1384 if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) { 1385 setf(fd, NULL); 1386 unfalloc(fp); 1387 return (error); 1388 } 1389 fp->f_vnode = *vpp; 1390 mutex_exit(&fp->f_tlock); 1391 /* 1392 * Fill in the slot falloc reserved. 1393 */ 1394 setf(fd, fp); 1395 *fdp = fd; 1396 return (0); 1397 } 1398 1399 /* 1400 * When a process forks it must increment the f_count of all file pointers 1401 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1402 * Since we are called when there is only 1 active lwp we don't need to 1403 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1404 * fcnt_add(fip, -1) to restore the counts. 1405 */ 1406 void 1407 fcnt_add(uf_info_t *fip, int incr) 1408 { 1409 int i; 1410 uf_entry_t *ufp; 1411 file_t *fp; 1412 1413 ufp = fip->fi_list; 1414 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1415 if ((fp = ufp->uf_file) != NULL) { 1416 mutex_enter(&fp->f_tlock); 1417 ASSERT((incr == 1 && fp->f_count >= 1) || 1418 (incr == -1 && fp->f_count >= 2)); 1419 fp->f_count += incr; 1420 mutex_exit(&fp->f_tlock); 1421 } 1422 } 1423 } 1424 1425 /* 1426 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1427 * set and also to close all self-open for write /proc file descriptors. 1428 */ 1429 void 1430 close_exec(uf_info_t *fip) 1431 { 1432 int fd; 1433 file_t *fp; 1434 fpollinfo_t *fpip; 1435 uf_entry_t *ufp; 1436 portfd_t *pfd; 1437 1438 ufp = fip->fi_list; 1439 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1440 if ((fp = ufp->uf_file) != NULL && 1441 ((ufp->uf_flag & FD_CLOEXEC) || 1442 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1443 fpip = ufp->uf_fpollinfo; 1444 mutex_enter(&fip->fi_lock); 1445 mutex_enter(&ufp->uf_lock); 1446 fd_reserve(fip, fd, -1); 1447 mutex_exit(&fip->fi_lock); 1448 ufp->uf_file = NULL; 1449 ufp->uf_fpollinfo = NULL; 1450 ufp->uf_flag = 0; 1451 /* 1452 * We may need to cleanup some cached poll states 1453 * in t_pollstate before the fd can be reused. It 1454 * is important that we don't access a stale thread 1455 * structure. We will do the cleanup in two 1456 * phases to avoid deadlock and holding uf_lock for 1457 * too long. In phase 1, hold the uf_lock and call 1458 * pollblockexit() to set state in t_pollstate struct 1459 * so that a thread does not exit on us. In phase 2, 1460 * we drop the uf_lock and call pollcacheclean(). 1461 */ 1462 pfd = ufp->uf_portfd; 1463 ufp->uf_portfd = NULL; 1464 if (fpip != NULL) 1465 pollblockexit(fpip); 1466 mutex_exit(&ufp->uf_lock); 1467 if (fpip != NULL) 1468 pollcacheclean(fpip, fd); 1469 if (pfd) 1470 port_close_fd(pfd); 1471 (void) closef(fp); 1472 } 1473 } 1474 1475 /* Reset bad fd */ 1476 fip->fi_badfd = -1; 1477 fip->fi_action = -1; 1478 } 1479 1480 /* 1481 * Utility function called by most of the *at() system call interfaces. 1482 * 1483 * Generate a starting vnode pointer for an (fd, path) pair where 'fd' 1484 * is an open file descriptor for a directory to be used as the starting 1485 * point for the lookup of the relative pathname 'path' (or, if path is 1486 * NULL, generate a vnode pointer for the direct target of the operation). 1487 * 1488 * If we successfully return a non-NULL startvp, it has been the target 1489 * of VN_HOLD() and the caller must call VN_RELE() on it. 1490 */ 1491 int 1492 fgetstartvp(int fd, char *path, vnode_t **startvpp) 1493 { 1494 vnode_t *startvp; 1495 file_t *startfp; 1496 char startchar; 1497 1498 if (fd == AT_FDCWD && path == NULL) 1499 return (EFAULT); 1500 1501 if (fd == AT_FDCWD) { 1502 /* 1503 * Start from the current working directory. 1504 */ 1505 startvp = NULL; 1506 } else { 1507 if (path == NULL) 1508 startchar = '\0'; 1509 else if (copyin(path, &startchar, sizeof (char))) 1510 return (EFAULT); 1511 1512 if (startchar == '/') { 1513 /* 1514 * 'path' is an absolute pathname. 1515 */ 1516 startvp = NULL; 1517 } else { 1518 /* 1519 * 'path' is a relative pathname or we will 1520 * be applying the operation to 'fd' itself. 1521 */ 1522 if ((startfp = getf(fd)) == NULL) 1523 return (EBADF); 1524 startvp = startfp->f_vnode; 1525 VN_HOLD(startvp); 1526 releasef(fd); 1527 } 1528 } 1529 *startvpp = startvp; 1530 return (0); 1531 } 1532 1533 /* 1534 * Called from fchownat() and fchmodat() to set ownership and mode. 1535 * The contents of *vap must be set before calling here. 1536 */ 1537 int 1538 fsetattrat(int fd, char *path, int flags, struct vattr *vap) 1539 { 1540 vnode_t *startvp; 1541 vnode_t *vp; 1542 int error; 1543 1544 /* 1545 * Since we are never called to set the size of a file, we don't 1546 * need to check for non-blocking locks (via nbl_need_check(vp)). 1547 */ 1548 ASSERT(!(vap->va_mask & AT_SIZE)); 1549 1550 if ((error = fgetstartvp(fd, path, &startvp)) != 0) 1551 return (error); 1552 if (AU_AUDITING() && startvp != NULL) 1553 audit_setfsat_path(1); 1554 1555 /* 1556 * Do lookup for fchownat/fchmodat when path not NULL 1557 */ 1558 if (path != NULL) { 1559 if (error = lookupnameat(path, UIO_USERSPACE, 1560 (flags == AT_SYMLINK_NOFOLLOW) ? 1561 NO_FOLLOW : FOLLOW, 1562 NULLVPP, &vp, startvp)) { 1563 if (startvp != NULL) 1564 VN_RELE(startvp); 1565 return (error); 1566 } 1567 } else { 1568 vp = startvp; 1569 ASSERT(vp); 1570 VN_HOLD(vp); 1571 } 1572 1573 if (vp->v_type == VLNK && (vap->va_mask & AT_MODE) != 0) { 1574 error = EOPNOTSUPP; 1575 } else if (vn_is_readonly(vp)) { 1576 error = EROFS; 1577 } else { 1578 error = VOP_SETATTR(vp, vap, 0, CRED(), NULL); 1579 } 1580 1581 if (startvp != NULL) 1582 VN_RELE(startvp); 1583 VN_RELE(vp); 1584 1585 return (error); 1586 } 1587 1588 /* 1589 * Return true if the given vnode is referenced by any 1590 * entry in the current process's file descriptor table. 1591 */ 1592 int 1593 fisopen(vnode_t *vp) 1594 { 1595 int fd; 1596 file_t *fp; 1597 vnode_t *ovp; 1598 uf_info_t *fip = P_FINFO(curproc); 1599 uf_entry_t *ufp; 1600 1601 mutex_enter(&fip->fi_lock); 1602 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1603 UF_ENTER(ufp, fip, fd); 1604 if ((fp = ufp->uf_file) != NULL && 1605 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1606 UF_EXIT(ufp); 1607 mutex_exit(&fip->fi_lock); 1608 return (1); 1609 } 1610 UF_EXIT(ufp); 1611 } 1612 mutex_exit(&fip->fi_lock); 1613 return (0); 1614 } 1615 1616 /* 1617 * Return zero if at least one file currently open (by curproc) shouldn't be 1618 * allowed to change zones. 1619 */ 1620 int 1621 files_can_change_zones(void) 1622 { 1623 int fd; 1624 file_t *fp; 1625 uf_info_t *fip = P_FINFO(curproc); 1626 uf_entry_t *ufp; 1627 1628 mutex_enter(&fip->fi_lock); 1629 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1630 UF_ENTER(ufp, fip, fd); 1631 if ((fp = ufp->uf_file) != NULL && 1632 !vn_can_change_zones(fp->f_vnode)) { 1633 UF_EXIT(ufp); 1634 mutex_exit(&fip->fi_lock); 1635 return (0); 1636 } 1637 UF_EXIT(ufp); 1638 } 1639 mutex_exit(&fip->fi_lock); 1640 return (1); 1641 } 1642 1643 #ifdef DEBUG 1644 1645 /* 1646 * The following functions are only used in ASSERT()s elsewhere. 1647 * They do not modify the state of the system. 1648 */ 1649 1650 /* 1651 * Return true (1) if the current thread is in the fpollinfo 1652 * list for this file descriptor, else false (0). 1653 */ 1654 static int 1655 curthread_in_plist(uf_entry_t *ufp) 1656 { 1657 fpollinfo_t *fpip; 1658 1659 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1660 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1661 if (fpip->fp_thread == curthread) 1662 return (1); 1663 return (0); 1664 } 1665 1666 /* 1667 * Sanity check to make sure that after lwp_exit(), 1668 * curthread does not appear on any fd's fpollinfo list. 1669 */ 1670 void 1671 checkfpollinfo(void) 1672 { 1673 int fd; 1674 uf_info_t *fip = P_FINFO(curproc); 1675 uf_entry_t *ufp; 1676 1677 mutex_enter(&fip->fi_lock); 1678 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1679 UF_ENTER(ufp, fip, fd); 1680 ASSERT(!curthread_in_plist(ufp)); 1681 UF_EXIT(ufp); 1682 } 1683 mutex_exit(&fip->fi_lock); 1684 } 1685 1686 /* 1687 * Return true (1) if the current thread is in the fpollinfo 1688 * list for this file descriptor, else false (0). 1689 * This is the same as curthread_in_plist(), 1690 * but is called w/o holding uf_lock. 1691 */ 1692 int 1693 infpollinfo(int fd) 1694 { 1695 uf_info_t *fip = P_FINFO(curproc); 1696 uf_entry_t *ufp; 1697 int rc; 1698 1699 UF_ENTER(ufp, fip, fd); 1700 rc = curthread_in_plist(ufp); 1701 UF_EXIT(ufp); 1702 return (rc); 1703 } 1704 1705 #endif /* DEBUG */ 1706 1707 /* 1708 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1709 * thread's poll cache. Each lwp polling this file descriptor should call 1710 * this routine once. 1711 */ 1712 void 1713 addfpollinfo(int fd) 1714 { 1715 struct uf_entry *ufp; 1716 fpollinfo_t *fpip; 1717 uf_info_t *fip = P_FINFO(curproc); 1718 1719 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1720 fpip->fp_thread = curthread; 1721 UF_ENTER(ufp, fip, fd); 1722 /* 1723 * Assert we are not already on the list, that is, that 1724 * this lwp did not call addfpollinfo twice for the same fd. 1725 */ 1726 ASSERT(!curthread_in_plist(ufp)); 1727 /* 1728 * addfpollinfo is always done inside the getf/releasef pair. 1729 */ 1730 ASSERT(ufp->uf_refcnt >= 1); 1731 fpip->fp_next = ufp->uf_fpollinfo; 1732 ufp->uf_fpollinfo = fpip; 1733 UF_EXIT(ufp); 1734 } 1735 1736 /* 1737 * Delete curthread from fpollinfo list if it is there. 1738 */ 1739 void 1740 delfpollinfo(int fd) 1741 { 1742 struct uf_entry *ufp; 1743 struct fpollinfo *fpip; 1744 struct fpollinfo **fpipp; 1745 uf_info_t *fip = P_FINFO(curproc); 1746 1747 UF_ENTER(ufp, fip, fd); 1748 for (fpipp = &ufp->uf_fpollinfo; 1749 (fpip = *fpipp) != NULL; 1750 fpipp = &fpip->fp_next) { 1751 if (fpip->fp_thread == curthread) { 1752 *fpipp = fpip->fp_next; 1753 kmem_free(fpip, sizeof (fpollinfo_t)); 1754 break; 1755 } 1756 } 1757 /* 1758 * Assert that we are not still on the list, that is, that 1759 * this lwp did not call addfpollinfo twice for the same fd. 1760 */ 1761 ASSERT(!curthread_in_plist(ufp)); 1762 UF_EXIT(ufp); 1763 } 1764 1765 /* 1766 * fd is associated with a port. pfd is a pointer to the fd entry in the 1767 * cache of the port. 1768 */ 1769 1770 void 1771 addfd_port(int fd, portfd_t *pfd) 1772 { 1773 struct uf_entry *ufp; 1774 uf_info_t *fip = P_FINFO(curproc); 1775 1776 UF_ENTER(ufp, fip, fd); 1777 /* 1778 * addfd_port is always done inside the getf/releasef pair. 1779 */ 1780 ASSERT(ufp->uf_refcnt >= 1); 1781 if (ufp->uf_portfd == NULL) { 1782 /* first entry */ 1783 ufp->uf_portfd = pfd; 1784 pfd->pfd_next = NULL; 1785 } else { 1786 pfd->pfd_next = ufp->uf_portfd; 1787 ufp->uf_portfd = pfd; 1788 pfd->pfd_next->pfd_prev = pfd; 1789 } 1790 UF_EXIT(ufp); 1791 } 1792 1793 void 1794 delfd_port(int fd, portfd_t *pfd) 1795 { 1796 struct uf_entry *ufp; 1797 uf_info_t *fip = P_FINFO(curproc); 1798 1799 UF_ENTER(ufp, fip, fd); 1800 /* 1801 * delfd_port is always done inside the getf/releasef pair. 1802 */ 1803 ASSERT(ufp->uf_refcnt >= 1); 1804 if (ufp->uf_portfd == pfd) { 1805 /* remove first entry */ 1806 ufp->uf_portfd = pfd->pfd_next; 1807 } else { 1808 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1809 if (pfd->pfd_next != NULL) 1810 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1811 } 1812 UF_EXIT(ufp); 1813 } 1814 1815 static void 1816 port_close_fd(portfd_t *pfd) 1817 { 1818 portfd_t *pfdn; 1819 1820 /* 1821 * At this point, no other thread should access 1822 * the portfd_t list for this fd. The uf_file, uf_portfd 1823 * pointers in the uf_entry_t struct for this fd would 1824 * be set to NULL. 1825 */ 1826 for (; pfd != NULL; pfd = pfdn) { 1827 pfdn = pfd->pfd_next; 1828 port_close_pfd(pfd); 1829 } 1830 } 1831