xref: /titanic_51/usr/src/uts/common/os/dumpsubr.c (revision 825277341c15b6b0d2c4b8b622ae7b1d2bdc0390)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/vm.h>
31 #include <sys/proc.h>
32 #include <sys/file.h>
33 #include <sys/conf.h>
34 #include <sys/kmem.h>
35 #include <sys/mem.h>
36 #include <sys/mman.h>
37 #include <sys/vnode.h>
38 #include <sys/errno.h>
39 #include <sys/memlist.h>
40 #include <sys/dumphdr.h>
41 #include <sys/dumpadm.h>
42 #include <sys/ksyms.h>
43 #include <sys/compress.h>
44 #include <sys/stream.h>
45 #include <sys/strsun.h>
46 #include <sys/cmn_err.h>
47 #include <sys/bitmap.h>
48 #include <sys/modctl.h>
49 #include <sys/utsname.h>
50 #include <sys/systeminfo.h>
51 #include <sys/vmem.h>
52 #include <sys/log.h>
53 #include <sys/var.h>
54 #include <sys/debug.h>
55 #include <sys/sunddi.h>
56 #include <fs/fs_subr.h>
57 #include <sys/fs/snode.h>
58 #include <sys/ontrap.h>
59 #include <sys/panic.h>
60 #include <sys/dkio.h>
61 #include <sys/vtoc.h>
62 #include <sys/errorq.h>
63 #include <sys/fm/util.h>
64 #include <sys/fs/zfs.h>
65 
66 #include <vm/hat.h>
67 #include <vm/as.h>
68 #include <vm/page.h>
69 #include <vm/pvn.h>
70 #include <vm/seg.h>
71 #include <vm/seg_kmem.h>
72 
73 #include <bzip2/bzlib.h>
74 
75 /*
76  * Crash dump time is dominated by disk write time.  To reduce this,
77  * the stronger compression method bzip2 is applied to reduce the dump
78  * size and hence reduce I/O time.  However, bzip2 is much more
79  * computationally expensive than the existing lzjb algorithm, so to
80  * avoid increasing compression time, CPUs that are otherwise idle
81  * during panic are employed to parallelize the compression task.
82  * Many helper CPUs are needed to prevent bzip2 from being a
83  * bottleneck, and on systems with too few CPUs, the lzjb algorithm is
84  * parallelized instead. Lastly, I/O and compression are performed by
85  * different CPUs, and are hence overlapped in time, unlike the older
86  * serial code.
87  *
88  * Another important consideration is the speed of the dump
89  * device. Faster disks need less CPUs in order to benefit from
90  * parallel lzjb versus parallel bzip2. Therefore, the CPU count
91  * threshold for switching from parallel lzjb to paralled bzip2 is
92  * elevated for faster disks. The dump device speed is adduced from
93  * the setting for dumpbuf.iosize, see dump_update_clevel.
94  */
95 
96 /*
97  * exported vars
98  */
99 kmutex_t	dump_lock;		/* lock for dump configuration */
100 dumphdr_t	*dumphdr;		/* dump header */
101 int		dump_conflags = DUMP_KERNEL; /* dump configuration flags */
102 vnode_t		*dumpvp;		/* dump device vnode pointer */
103 u_offset_t	dumpvp_size;		/* size of dump device, in bytes */
104 char		*dumppath;		/* pathname of dump device */
105 int		dump_timeout = 120;	/* timeout for dumping pages */
106 int		dump_timeleft;		/* portion of dump_timeout remaining */
107 int		dump_ioerr;		/* dump i/o error */
108 int		dump_check_used;	/* enable check for used pages */
109 
110 /*
111  * Tunables for dump compression and parallelism. These can be set via
112  * /etc/system.
113  *
114  * dump_ncpu_low	number of helpers for parallel lzjb
115  *	This is also the minimum configuration.
116  *
117  * dump_bzip2_level	bzip2 compression level: 1-9
118  *	Higher numbers give greater compression, but take more memory
119  *	and time. Memory used per helper is ~(dump_bzip2_level * 1MB).
120  *
121  * dump_plat_mincpu	the cross-over limit for using bzip2 (per platform):
122  *	if dump_plat_mincpu == 0, then always do single threaded dump
123  *	if ncpu >= dump_plat_mincpu then try to use bzip2
124  *
125  * dump_metrics_on	if set, metrics are collected in the kernel, passed
126  *	to savecore via the dump file, and recorded by savecore in
127  *	METRICS.txt.
128  */
129 uint_t dump_ncpu_low = 4;	/* minimum config for parallel lzjb */
130 uint_t dump_bzip2_level = 1;	/* bzip2 level (1-9) */
131 
132 /* Define multiple buffers per helper to avoid stalling */
133 #define	NCBUF_PER_HELPER	2
134 #define	NCMAP_PER_HELPER	4
135 
136 /* minimum number of helpers configured */
137 #define	MINHELPERS	(dump_ncpu_low)
138 #define	MINCBUFS	(MINHELPERS * NCBUF_PER_HELPER)
139 
140 /*
141  * Define constant parameters.
142  *
143  * CBUF_SIZE		size of an output buffer
144  *
145  * CBUF_MAPSIZE		size of virtual range for mapping pages
146  *
147  * CBUF_MAPNP		size of virtual range in pages
148  *
149  */
150 #define	DUMP_1KB	((size_t)1 << 10)
151 #define	DUMP_1MB	((size_t)1 << 20)
152 #define	CBUF_SIZE	((size_t)1 << 17)
153 #define	CBUF_MAPSHIFT	(22)
154 #define	CBUF_MAPSIZE	((size_t)1 << CBUF_MAPSHIFT)
155 #define	CBUF_MAPNP	((size_t)1 << (CBUF_MAPSHIFT - PAGESHIFT))
156 
157 /*
158  * Compression metrics are accumulated nano-second subtotals. The
159  * results are normalized by the number of pages dumped. A report is
160  * generated when dumpsys() completes and is saved in the dump image
161  * after the trailing dump header.
162  *
163  * Metrics are always collected. Set the variable dump_metrics_on to
164  * cause metrics to be saved in the crash file, where savecore will
165  * save it in the file METRICS.txt.
166  */
167 #define	PERPAGES \
168 	PERPAGE(bitmap) PERPAGE(map) PERPAGE(unmap) \
169 	PERPAGE(copy) PERPAGE(compress) \
170 	PERPAGE(write) \
171 	PERPAGE(inwait) PERPAGE(outwait)
172 
173 typedef struct perpage {
174 #define	PERPAGE(x) hrtime_t x;
175 	PERPAGES
176 #undef PERPAGE
177 } perpage_t;
178 
179 /*
180  * This macro controls the code generation for collecting dump
181  * performance information. By default, the code is generated, but
182  * automatic saving of the information is disabled. If dump_metrics_on
183  * is set to 1, the timing information is passed to savecore via the
184  * crash file, where it is appended to the file dump-dir/METRICS.txt.
185  */
186 #define	COLLECT_METRICS
187 
188 #ifdef COLLECT_METRICS
189 uint_t dump_metrics_on = 0;	/* set to 1 to enable recording metrics */
190 
191 #define	HRSTART(v, m)		v##ts.m = gethrtime()
192 #define	HRSTOP(v, m)		v.m += gethrtime() - v##ts.m
193 #define	HRBEGIN(v, m, s)	v##ts.m = gethrtime(); v.size += s
194 #define	HREND(v, m)		v.m += gethrtime() - v##ts.m
195 #define	HRNORM(v, m, n)		v.m /= (n)
196 
197 #else
198 #define	HRSTART(v, m)
199 #define	HRSTOP(v, m)
200 #define	HRBEGIN(v, m, s)
201 #define	HREND(v, m)
202 #define	HRNORM(v, m, n)
203 #endif	/* COLLECT_METRICS */
204 
205 /*
206  * Buffers for copying and compressing memory pages.
207  *
208  * cbuf_t buffer controllers: used for both input and output.
209  *
210  * The buffer state indicates how it is being used:
211  *
212  * CBUF_FREEMAP: CBUF_MAPSIZE virtual address range is available for
213  * mapping input pages.
214  *
215  * CBUF_INREADY: input pages are mapped and ready for compression by a
216  * helper.
217  *
218  * CBUF_USEDMAP: mapping has been consumed by a helper. Needs unmap.
219  *
220  * CBUF_FREEBUF: CBUF_SIZE output buffer, which is available.
221  *
222  * CBUF_WRITE: CBUF_SIZE block of compressed pages from a helper,
223  * ready to write out.
224  *
225  * CBUF_ERRMSG: CBUF_SIZE block of error messages from a helper
226  * (reports UE errors.)
227  */
228 
229 typedef enum cbufstate {
230 	CBUF_FREEMAP,
231 	CBUF_INREADY,
232 	CBUF_USEDMAP,
233 	CBUF_FREEBUF,
234 	CBUF_WRITE,
235 	CBUF_ERRMSG
236 } cbufstate_t;
237 
238 typedef struct cbuf cbuf_t;
239 
240 struct cbuf {
241 	cbuf_t *next;			/* next in list */
242 	cbufstate_t state;		/* processing state */
243 	size_t used;			/* amount used */
244 	size_t size;			/* mem size */
245 	char *buf;			/* kmem or vmem */
246 	pgcnt_t pagenum;		/* index to pfn map */
247 	pgcnt_t bitnum;			/* first set bitnum */
248 	pfn_t pfn;			/* first pfn in mapped range */
249 	int off;			/* byte offset to first pfn */
250 };
251 
252 /*
253  * cqueue_t queues: a uni-directional channel for communication
254  * from the master to helper tasks or vice-versa using put and
255  * get primitives. Both mappings and data buffers are passed via
256  * queues. Producers close a queue when done. The number of
257  * active producers is reference counted so the consumer can
258  * detect end of data. Concurrent access is mediated by atomic
259  * operations for panic dump, or mutex/cv for live dump.
260  *
261  * There a four queues, used as follows:
262  *
263  * Queue		Dataflow		NewState
264  * --------------------------------------------------
265  * mainq		master -> master	FREEMAP
266  * master has initialized or unmapped an input buffer
267  * --------------------------------------------------
268  * helperq		master -> helper	INREADY
269  * master has mapped input for use by helper
270  * --------------------------------------------------
271  * mainq		master <- helper	USEDMAP
272  * helper is done with input
273  * --------------------------------------------------
274  * freebufq		master -> helper	FREEBUF
275  * master has initialized or written an output buffer
276  * --------------------------------------------------
277  * mainq		master <- helper	WRITE
278  * block of compressed pages from a helper
279  * --------------------------------------------------
280  * mainq		master <- helper	ERRMSG
281  * error messages from a helper (memory error case)
282  * --------------------------------------------------
283  * writerq		master <- master	WRITE
284  * non-blocking queue of blocks to write
285  * --------------------------------------------------
286  */
287 typedef struct cqueue {
288 	cbuf_t *volatile first;		/* first in list */
289 	cbuf_t *last;			/* last in list */
290 	hrtime_t ts;			/* timestamp */
291 	hrtime_t empty;			/* total time empty */
292 	kmutex_t mutex;			/* live state lock */
293 	kcondvar_t cv;			/* live wait var */
294 	lock_t spinlock;		/* panic mode spin lock */
295 	volatile uint_t open;		/* producer ref count */
296 } cqueue_t;
297 
298 /*
299  * Convenience macros for using the cqueue functions
300  * Note that the caller must have defined "dumpsync_t *ds"
301  */
302 #define	CQ_IS_EMPTY(q)					\
303 	(ds->q.first == NULL)
304 
305 #define	CQ_OPEN(q)					\
306 	atomic_inc_uint(&ds->q.open)
307 
308 #define	CQ_CLOSE(q)					\
309 	dumpsys_close_cq(&ds->q, ds->live)
310 
311 #define	CQ_PUT(q, cp, st)				\
312 	dumpsys_put_cq(&ds->q, cp, st, ds->live)
313 
314 #define	CQ_GET(q)					\
315 	dumpsys_get_cq(&ds->q, ds->live)
316 
317 /*
318  * Dynamic state when dumpsys() is running.
319  */
320 typedef struct dumpsync {
321 	pgcnt_t npages;			/* subtotal of pages dumped */
322 	pgcnt_t pages_mapped;		/* subtotal of pages mapped */
323 	pgcnt_t pages_used;		/* subtotal of pages used per map */
324 	size_t nwrite;			/* subtotal of bytes written */
325 	uint_t live;			/* running live dump */
326 	uint_t neednl;			/* will need to print a newline */
327 	uint_t percent;			/* dump progress */
328 	uint_t percent_done;		/* dump progress reported */
329 	cqueue_t freebufq;		/* free kmem bufs for writing */
330 	cqueue_t mainq;			/* input for main task */
331 	cqueue_t helperq;		/* input for helpers */
332 	cqueue_t writerq;		/* input for writer */
333 	hrtime_t start;			/* start time */
334 	hrtime_t elapsed;		/* elapsed time when completed */
335 	hrtime_t iotime;		/* time spent writing nwrite bytes */
336 	hrtime_t iowait;		/* time spent waiting for output */
337 	hrtime_t iowaitts;		/* iowait timestamp */
338 	perpage_t perpage;		/* metrics */
339 	perpage_t perpagets;
340 	int dumpcpu;			/* master cpu */
341 } dumpsync_t;
342 
343 static dumpsync_t dumpsync;		/* synchronization vars */
344 
345 /*
346  * helper_t helpers: contains the context for a stream. CPUs run in
347  * parallel at dump time; each CPU creates a single stream of
348  * compression data.  Stream data is divided into CBUF_SIZE blocks.
349  * The blocks are written in order within a stream. But, blocks from
350  * multiple streams can be interleaved. Each stream is identified by a
351  * unique tag.
352  */
353 typedef struct helper {
354 	int helper;			/* bound helper id */
355 	int tag;			/* compression stream tag */
356 	perpage_t perpage;		/* per page metrics */
357 	perpage_t perpagets;		/* per page metrics (timestamps) */
358 	taskqid_t taskqid;		/* live dump task ptr */
359 	int in, out;			/* buffer offsets */
360 	cbuf_t *cpin, *cpout, *cperr;	/* cbuf objects in process */
361 	dumpsync_t *ds;			/* pointer to sync vars */
362 	size_t used;			/* counts input consumed */
363 	char *page;			/* buffer for page copy */
364 	char *lzbuf;			/* lzjb output */
365 	bz_stream bzstream;		/* bzip2 state */
366 } helper_t;
367 
368 #define	MAINHELPER	(-1)		/* helper is also the main task */
369 #define	FREEHELPER	(-2)		/* unbound helper */
370 #define	DONEHELPER	(-3)		/* helper finished */
371 
372 /*
373  * configuration vars for dumpsys
374  */
375 typedef struct dumpcfg {
376 	int	threshold;	/* ncpu threshold for bzip2 */
377 	int	nhelper;	/* number of helpers */
378 	int	nhelper_used;	/* actual number of helpers used */
379 	int	ncmap;		/* number VA pages for compression */
380 	int	ncbuf;		/* number of bufs for compression */
381 	int	ncbuf_used;	/* number of bufs in use */
382 	uint_t	clevel;		/* dump compression level */
383 	helper_t *helper;	/* array of helpers */
384 	cbuf_t	*cmap;		/* array of input (map) buffers */
385 	cbuf_t	*cbuf;		/* array of output  buffers */
386 	ulong_t	*helpermap;	/* set of dumpsys helper CPU ids */
387 	ulong_t	*bitmap;	/* bitmap for marking pages to dump */
388 	ulong_t	*rbitmap;	/* bitmap for used CBUF_MAPSIZE ranges */
389 	pgcnt_t	bitmapsize;	/* size of bitmap */
390 	pgcnt_t	rbitmapsize;	/* size of bitmap for ranges */
391 	pgcnt_t found4m;	/* number ranges allocated by dump */
392 	pgcnt_t foundsm;	/* number small pages allocated by dump */
393 	pid_t	*pids;		/* list of process IDs at dump time */
394 	size_t	maxsize;	/* memory size needed at dump time */
395 	size_t	maxvmsize;	/* size of reserved VM */
396 	char	*maxvm;		/* reserved VM for spare pages */
397 	lock_t	helper_lock;	/* protect helper state */
398 	char	helpers_wanted;	/* flag to enable parallelism */
399 } dumpcfg_t;
400 
401 static dumpcfg_t dumpcfg;	/* config vars */
402 
403 /*
404  * The dump I/O buffer.
405  *
406  * There is one I/O buffer used by dumpvp_write and dumvp_flush. It is
407  * sized according to the optimum device transfer speed.
408  */
409 typedef struct dumpbuf {
410 	vnode_t	*cdev_vp;	/* VCHR open of the dump device */
411 	len_t	vp_limit;	/* maximum write offset */
412 	offset_t vp_off;	/* current dump device offset */
413 	char	*cur;		/* dump write pointer */
414 	char	*start;		/* dump buffer address */
415 	char	*end;		/* dump buffer end */
416 	size_t	size;		/* size of dumpbuf in bytes */
417 	size_t	iosize;		/* best transfer size for device */
418 } dumpbuf_t;
419 
420 dumpbuf_t dumpbuf;		/* I/O buffer */
421 
422 /*
423  * The dump I/O buffer must be at least one page, at most xfer_size
424  * bytes, and should scale with physmem in between.  The transfer size
425  * passed in will either represent a global default (maxphys) or the
426  * best size for the device.  The size of the dumpbuf I/O buffer is
427  * limited by dumpbuf_limit (8MB by default) because the dump
428  * performance saturates beyond a certain size.  The default is to
429  * select 1/4096 of the memory.
430  */
431 static int	dumpbuf_fraction = 12;	/* memory size scale factor */
432 static size_t	dumpbuf_limit = 8 * DUMP_1MB;	/* max I/O buf size */
433 
434 static size_t
435 dumpbuf_iosize(size_t xfer_size)
436 {
437 	size_t iosize = ptob(physmem >> dumpbuf_fraction);
438 
439 	if (iosize < PAGESIZE)
440 		iosize = PAGESIZE;
441 	else if (iosize > xfer_size)
442 		iosize = xfer_size;
443 	if (iosize > dumpbuf_limit)
444 		iosize = dumpbuf_limit;
445 	return (iosize & PAGEMASK);
446 }
447 
448 /*
449  * resize the I/O buffer
450  */
451 static void
452 dumpbuf_resize(void)
453 {
454 	char *old_buf = dumpbuf.start;
455 	size_t old_size = dumpbuf.size;
456 	char *new_buf;
457 	size_t new_size;
458 
459 	ASSERT(MUTEX_HELD(&dump_lock));
460 
461 	new_size = dumpbuf_iosize(MAX(dumpbuf.iosize, maxphys));
462 	if (new_size <= old_size)
463 		return; /* no need to reallocate buffer */
464 
465 	new_buf = kmem_alloc(new_size, KM_SLEEP);
466 	dumpbuf.size = new_size;
467 	dumpbuf.start = new_buf;
468 	dumpbuf.end = new_buf + new_size;
469 	kmem_free(old_buf, old_size);
470 }
471 
472 /*
473  * dump_update_clevel is called when dumpadm configures the dump device.
474  * 	Calculate number of helpers and buffers.
475  * 	Allocate the minimum configuration for now.
476  *
477  * When the dump file is configured we reserve a minimum amount of
478  * memory for use at crash time. But we reserve VA for all the memory
479  * we really want in order to do the fastest dump possible. The VA is
480  * backed by pages not being dumped, according to the bitmap. If
481  * there is insufficient spare memory, however, we fall back to the
482  * minimum.
483  *
484  * Live dump (savecore -L) always uses the minimum config.
485  *
486  * clevel 0 is single threaded lzjb
487  * clevel 1 is parallel lzjb
488  * clevel 2 is parallel bzip2
489  *
490  * The ncpu threshold is selected with dump_plat_mincpu.
491  * On OPL, set_platform_defaults() overrides the sun4u setting.
492  * The actual values are defined via DUMP_PLAT_*_MINCPU macros.
493  *
494  * Architecture		Threshold	Algorithm
495  * sun4u       		<  51		parallel lzjb
496  * sun4u       		>= 51		parallel bzip2(*)
497  * sun4u OPL   		<  8		parallel lzjb
498  * sun4u OPL   		>= 8		parallel bzip2(*)
499  * sun4v       		<  128		parallel lzjb
500  * sun4v       		>= 128		parallel bzip2(*)
501  * x86			< 11		parallel lzjb
502  * x86			>= 11		parallel bzip2(*)
503  * 32-bit      		N/A		single-threaded lzjb
504  *
505  * (*) bzip2 is only chosen if there is sufficient available
506  * memory for buffers at dump time. See dumpsys_get_maxmem().
507  *
508  * Faster dump devices have larger I/O buffers. The threshold value is
509  * increased according to the size of the dump I/O buffer, because
510  * parallel lzjb performs better with faster disks. For buffers >= 1MB
511  * the threshold is 3X; for buffers >= 256K threshold is 2X.
512  *
513  * For parallel dumps, the number of helpers is ncpu-1. The CPU
514  * running panic runs the main task. For single-threaded dumps, the
515  * panic CPU does lzjb compression (it is tagged as MAINHELPER.)
516  *
517  * Need multiple buffers per helper so that they do not block waiting
518  * for the main task.
519  *				parallel	single-threaded
520  * Number of output buffers:	nhelper*2		1
521  * Number of mapping buffers:	nhelper*4		1
522  *
523  */
524 static void
525 dump_update_clevel()
526 {
527 	int tag;
528 	size_t bz2size;
529 	helper_t *hp, *hpend;
530 	cbuf_t *cp, *cpend;
531 	dumpcfg_t *old = &dumpcfg;
532 	dumpcfg_t newcfg = *old;
533 	dumpcfg_t *new = &newcfg;
534 
535 	ASSERT(MUTEX_HELD(&dump_lock));
536 
537 	/*
538 	 * Free the previously allocated bufs and VM.
539 	 */
540 	if (old->helper != NULL) {
541 
542 		/* helpers */
543 		hpend = &old->helper[old->nhelper];
544 		for (hp = old->helper; hp != hpend; hp++) {
545 			if (hp->lzbuf != NULL)
546 				kmem_free(hp->lzbuf, PAGESIZE);
547 			if (hp->page != NULL)
548 				kmem_free(hp->page, PAGESIZE);
549 		}
550 		kmem_free(old->helper, old->nhelper * sizeof (helper_t));
551 
552 		/* VM space for mapping pages */
553 		cpend = &old->cmap[old->ncmap];
554 		for (cp = old->cmap; cp != cpend; cp++)
555 			vmem_xfree(heap_arena, cp->buf, CBUF_MAPSIZE);
556 		kmem_free(old->cmap, old->ncmap * sizeof (cbuf_t));
557 
558 		/* output bufs */
559 		cpend = &old->cbuf[old->ncbuf];
560 		for (cp = old->cbuf; cp != cpend; cp++)
561 			if (cp->buf != NULL)
562 				kmem_free(cp->buf, cp->size);
563 		kmem_free(old->cbuf, old->ncbuf * sizeof (cbuf_t));
564 
565 		/* reserved VM for dumpsys_get_maxmem */
566 		if (old->maxvmsize > 0)
567 			vmem_xfree(heap_arena, old->maxvm, old->maxvmsize);
568 	}
569 
570 	/*
571 	 * Allocate memory and VM.
572 	 * One CPU runs dumpsys, the rest are helpers.
573 	 */
574 	new->nhelper = ncpus - 1;
575 	if (new->nhelper < 1)
576 		new->nhelper = 1;
577 
578 	if (new->nhelper > DUMP_MAX_NHELPER)
579 		new->nhelper = DUMP_MAX_NHELPER;
580 
581 	/* increase threshold for faster disks */
582 	new->threshold = dump_plat_mincpu;
583 	if (dumpbuf.iosize >= DUMP_1MB)
584 		new->threshold *= 3;
585 	else if (dumpbuf.iosize >= (256 * DUMP_1KB))
586 		new->threshold *= 2;
587 
588 	/* figure compression level based upon the computed threshold. */
589 	if (dump_plat_mincpu == 0 || new->nhelper < 2) {
590 		new->clevel = 0;
591 		new->nhelper = 1;
592 	} else if ((new->nhelper + 1) >= new->threshold) {
593 		new->clevel = DUMP_CLEVEL_BZIP2;
594 	} else {
595 		new->clevel = DUMP_CLEVEL_LZJB;
596 	}
597 
598 	if (new->clevel == 0) {
599 		new->ncbuf = 1;
600 		new->ncmap = 1;
601 	} else {
602 		new->ncbuf = NCBUF_PER_HELPER * new->nhelper;
603 		new->ncmap = NCMAP_PER_HELPER * new->nhelper;
604 	}
605 
606 	/*
607 	 * Allocate new data structures and buffers for MINHELPERS,
608 	 * and also figure the max desired size.
609 	 */
610 	bz2size = BZ2_bzCompressInitSize(dump_bzip2_level);
611 	new->maxsize = 0;
612 	new->maxvmsize = 0;
613 	new->maxvm = NULL;
614 	tag = 1;
615 	new->helper = kmem_zalloc(new->nhelper * sizeof (helper_t), KM_SLEEP);
616 	hpend = &new->helper[new->nhelper];
617 	for (hp = new->helper; hp != hpend; hp++) {
618 		hp->tag = tag++;
619 		if (hp < &new->helper[MINHELPERS]) {
620 			hp->lzbuf = kmem_alloc(PAGESIZE, KM_SLEEP);
621 			hp->page = kmem_alloc(PAGESIZE, KM_SLEEP);
622 		} else if (new->clevel < DUMP_CLEVEL_BZIP2) {
623 			new->maxsize += 2 * PAGESIZE;
624 		} else {
625 			new->maxsize += PAGESIZE;
626 		}
627 		if (new->clevel >= DUMP_CLEVEL_BZIP2)
628 			new->maxsize += bz2size;
629 	}
630 
631 	new->cbuf = kmem_zalloc(new->ncbuf * sizeof (cbuf_t), KM_SLEEP);
632 	cpend = &new->cbuf[new->ncbuf];
633 	for (cp = new->cbuf; cp != cpend; cp++) {
634 		cp->state = CBUF_FREEBUF;
635 		cp->size = CBUF_SIZE;
636 		if (cp < &new->cbuf[MINCBUFS])
637 			cp->buf = kmem_alloc(cp->size, KM_SLEEP);
638 		else
639 			new->maxsize += cp->size;
640 	}
641 
642 	new->cmap = kmem_zalloc(new->ncmap * sizeof (cbuf_t), KM_SLEEP);
643 	cpend = &new->cmap[new->ncmap];
644 	for (cp = new->cmap; cp != cpend; cp++) {
645 		cp->state = CBUF_FREEMAP;
646 		cp->size = CBUF_MAPSIZE;
647 		cp->buf = vmem_xalloc(heap_arena, CBUF_MAPSIZE, CBUF_MAPSIZE,
648 		    0, 0, NULL, NULL, VM_SLEEP);
649 	}
650 
651 	/* reserve VA to be backed with spare pages at crash time */
652 	if (new->maxsize > 0) {
653 		new->maxsize = P2ROUNDUP(new->maxsize, PAGESIZE);
654 		new->maxvmsize = P2ROUNDUP(new->maxsize, CBUF_MAPSIZE);
655 		new->maxvm = vmem_xalloc(heap_arena, new->maxvmsize,
656 		    CBUF_MAPSIZE, 0, 0, NULL, NULL, VM_SLEEP);
657 	}
658 
659 	/* set new config pointers */
660 	*old = *new;
661 }
662 
663 /*
664  * Define a struct memlist walker to optimize bitnum to pfn
665  * lookup. The walker maintains the state of the list traversal.
666  */
667 typedef struct dumpmlw {
668 	struct memlist	*mp;		/* current memlist */
669 	pgcnt_t		basenum;	/* bitnum base offset */
670 	pgcnt_t		mppages;	/* current memlist size */
671 	pgcnt_t		mpleft;		/* size to end of current memlist */
672 	pfn_t		mpaddr;		/* first pfn in memlist */
673 } dumpmlw_t;
674 
675 /* initialize the walker */
676 static inline void
677 dump_init_memlist_walker(dumpmlw_t *pw)
678 {
679 	pw->mp = phys_install;
680 	pw->basenum = 0;
681 	pw->mppages = pw->mp->size >> PAGESHIFT;
682 	pw->mpleft = pw->mppages;
683 	pw->mpaddr = pw->mp->address >> PAGESHIFT;
684 }
685 
686 /*
687  * Lookup pfn given bitnum. The memlist can be quite long on some
688  * systems (e.g.: one per board). To optimize sequential lookups, the
689  * caller initializes and presents a memlist walker.
690  */
691 static pfn_t
692 dump_bitnum_to_pfn(pgcnt_t bitnum, dumpmlw_t *pw)
693 {
694 	bitnum -= pw->basenum;
695 	while (pw->mp != NULL) {
696 		if (bitnum < pw->mppages) {
697 			pw->mpleft = pw->mppages - bitnum;
698 			return (pw->mpaddr + bitnum);
699 		}
700 		bitnum -= pw->mppages;
701 		pw->basenum += pw->mppages;
702 		pw->mp = pw->mp->next;
703 		if (pw->mp != NULL) {
704 			pw->mppages = pw->mp->size >> PAGESHIFT;
705 			pw->mpleft = pw->mppages;
706 			pw->mpaddr = pw->mp->address >> PAGESHIFT;
707 		}
708 	}
709 	return (PFN_INVALID);
710 }
711 
712 static pgcnt_t
713 dump_pfn_to_bitnum(pfn_t pfn)
714 {
715 	struct memlist *mp;
716 	pgcnt_t bitnum = 0;
717 
718 	for (mp = phys_install; mp != NULL; mp = mp->next) {
719 		if (pfn >= (mp->address >> PAGESHIFT) &&
720 		    pfn < ((mp->address + mp->size) >> PAGESHIFT))
721 			return (bitnum + pfn - (mp->address >> PAGESHIFT));
722 		bitnum += mp->size >> PAGESHIFT;
723 	}
724 	return ((pgcnt_t)-1);
725 }
726 
727 /*
728  * Set/test bitmap for a CBUF_MAPSIZE range which includes pfn. The
729  * mapping of pfn to range index is imperfect because pfn and bitnum
730  * do not have the same phase. To make sure a CBUF_MAPSIZE range is
731  * covered, call this for both ends:
732  *	dump_set_used(base)
733  *	dump_set_used(base+CBUF_MAPNP-1)
734  *
735  * This is used during a panic dump to mark pages allocated by
736  * dumpsys_get_maxmem(). The macro IS_DUMP_PAGE(pp) is used by
737  * page_get_mnode_freelist() to make sure pages used by dump are never
738  * allocated.
739  */
740 #define	CBUF_MAPP2R(pfn)	((pfn) >> (CBUF_MAPSHIFT - PAGESHIFT))
741 
742 static void
743 dump_set_used(pfn_t pfn)
744 {
745 
746 	pgcnt_t bitnum, rbitnum;
747 
748 	bitnum = dump_pfn_to_bitnum(pfn);
749 	ASSERT(bitnum != (pgcnt_t)-1);
750 
751 	rbitnum = CBUF_MAPP2R(bitnum);
752 	ASSERT(rbitnum < dumpcfg.rbitmapsize);
753 
754 	BT_SET(dumpcfg.rbitmap, rbitnum);
755 }
756 
757 int
758 dump_test_used(pfn_t pfn)
759 {
760 	pgcnt_t bitnum, rbitnum;
761 
762 	bitnum = dump_pfn_to_bitnum(pfn);
763 	ASSERT(bitnum != (pgcnt_t)-1);
764 
765 	rbitnum = CBUF_MAPP2R(bitnum);
766 	ASSERT(rbitnum < dumpcfg.rbitmapsize);
767 
768 	return (BT_TEST(dumpcfg.rbitmap, rbitnum));
769 }
770 
771 /*
772  * dumpbzalloc and dumpbzfree are callbacks from the bzip2 library.
773  * dumpsys_get_maxmem() uses them for BZ2_bzCompressInit().
774  */
775 static void *
776 dumpbzalloc(void *opaque, int items, int size)
777 {
778 	size_t *sz;
779 	char *ret;
780 
781 	ASSERT(opaque != NULL);
782 	sz = opaque;
783 	ret = dumpcfg.maxvm + *sz;
784 	*sz += items * size;
785 	*sz = P2ROUNDUP(*sz, BZ2_BZALLOC_ALIGN);
786 	ASSERT(*sz <= dumpcfg.maxvmsize);
787 	return (ret);
788 }
789 
790 /*ARGSUSED*/
791 static void
792 dumpbzfree(void *opaque, void *addr)
793 {
794 }
795 
796 /*
797  * Perform additional checks on the page to see if we can really use
798  * it. The kernel (kas) pages are always set in the bitmap. However,
799  * boot memory pages (prom_ppages or P_BOOTPAGES) are not in the
800  * bitmap. So we check for them.
801  */
802 static inline int
803 dump_pfn_check(pfn_t pfn)
804 {
805 	page_t *pp = page_numtopp_nolock(pfn);
806 #if defined(__sparc)
807 	extern struct vnode prom_ppages;
808 #endif
809 
810 	if (pp == NULL || pp->p_pagenum != pfn ||
811 #if defined(__sparc)
812 	    pp->p_vnode == &prom_ppages ||
813 #else
814 	    PP_ISBOOTPAGES(pp) ||
815 #endif
816 	    pp->p_toxic != 0)
817 		return (0);
818 	return (1);
819 }
820 
821 /*
822  * Check a range to see if all contained pages are available and
823  * return non-zero if the range can be used.
824  */
825 static inline int
826 dump_range_check(pgcnt_t start, pgcnt_t end, pfn_t pfn)
827 {
828 	for (; start < end; start++, pfn++) {
829 		if (BT_TEST(dumpcfg.bitmap, start))
830 			return (0);
831 		if (!dump_pfn_check(pfn))
832 			return (0);
833 	}
834 	return (1);
835 }
836 
837 /*
838  * dumpsys_get_maxmem() is called during panic. Find unused ranges
839  * and use them for buffers. If we find enough memory switch to
840  * parallel bzip2, otherwise use parallel lzjb.
841  *
842  * It searches the dump bitmap in 2 passes. The first time it looks
843  * for CBUF_MAPSIZE ranges. On the second pass it uses small pages.
844  */
845 static void
846 dumpsys_get_maxmem()
847 {
848 	dumpcfg_t *cfg = &dumpcfg;
849 	cbuf_t *endcp = &cfg->cbuf[cfg->ncbuf];
850 	helper_t *endhp = &cfg->helper[cfg->nhelper];
851 	pgcnt_t bitnum, end;
852 	size_t sz, endsz, bz2size;
853 	pfn_t pfn, off;
854 	cbuf_t *cp;
855 	helper_t *hp, *ohp;
856 	dumpmlw_t mlw;
857 	int k;
858 
859 	if (cfg->maxsize == 0 || cfg->clevel < DUMP_CLEVEL_LZJB ||
860 	    (dump_conflags & DUMP_ALL) != 0)
861 		return;
862 
863 	sz = 0;
864 	cfg->found4m = 0;
865 	cfg->foundsm = 0;
866 
867 	/* bitmap of ranges used to estimate which pfns are being used */
868 	bzero(dumpcfg.rbitmap, BT_SIZEOFMAP(dumpcfg.rbitmapsize));
869 
870 	/* find ranges that are not being dumped to use for buffers */
871 	dump_init_memlist_walker(&mlw);
872 	for (bitnum = 0; bitnum < dumpcfg.bitmapsize; bitnum = end) {
873 		dump_timeleft = dump_timeout;
874 		end = bitnum + CBUF_MAPNP;
875 		pfn = dump_bitnum_to_pfn(bitnum, &mlw);
876 		ASSERT(pfn != PFN_INVALID);
877 
878 		/* skip partial range at end of mem segment */
879 		if (mlw.mpleft < CBUF_MAPNP) {
880 			end = bitnum + mlw.mpleft;
881 			continue;
882 		}
883 
884 		/* skip non aligned pages */
885 		off = P2PHASE(pfn, CBUF_MAPNP);
886 		if (off != 0) {
887 			end -= off;
888 			continue;
889 		}
890 
891 		if (!dump_range_check(bitnum, end, pfn))
892 			continue;
893 
894 		ASSERT((sz + CBUF_MAPSIZE) <= cfg->maxvmsize);
895 		hat_devload(kas.a_hat, cfg->maxvm + sz, CBUF_MAPSIZE, pfn,
896 		    PROT_READ | PROT_WRITE, HAT_LOAD_NOCONSIST);
897 		sz += CBUF_MAPSIZE;
898 		cfg->found4m++;
899 
900 		/* set the bitmap for both ends to be sure to cover the range */
901 		dump_set_used(pfn);
902 		dump_set_used(pfn + CBUF_MAPNP - 1);
903 
904 		if (sz >= cfg->maxsize)
905 			goto foundmax;
906 	}
907 
908 	/* Add small pages if we can't find enough large pages. */
909 	dump_init_memlist_walker(&mlw);
910 	for (bitnum = 0; bitnum < dumpcfg.bitmapsize; bitnum = end) {
911 		dump_timeleft = dump_timeout;
912 		end = bitnum + CBUF_MAPNP;
913 		pfn = dump_bitnum_to_pfn(bitnum, &mlw);
914 		ASSERT(pfn != PFN_INVALID);
915 
916 		/* Find any non-aligned pages at start and end of segment. */
917 		off = P2PHASE(pfn, CBUF_MAPNP);
918 		if (mlw.mpleft < CBUF_MAPNP) {
919 			end = bitnum + mlw.mpleft;
920 		} else if (off != 0) {
921 			end -= off;
922 		} else if (cfg->found4m && dump_test_used(pfn)) {
923 			continue;
924 		}
925 
926 		for (; bitnum < end; bitnum++, pfn++) {
927 			dump_timeleft = dump_timeout;
928 			if (BT_TEST(dumpcfg.bitmap, bitnum))
929 				continue;
930 			if (!dump_pfn_check(pfn))
931 				continue;
932 			ASSERT((sz + PAGESIZE) <= cfg->maxvmsize);
933 			hat_devload(kas.a_hat, cfg->maxvm + sz, PAGESIZE, pfn,
934 			    PROT_READ | PROT_WRITE, HAT_LOAD_NOCONSIST);
935 			sz += PAGESIZE;
936 			cfg->foundsm++;
937 			dump_set_used(pfn);
938 			if (sz >= cfg->maxsize)
939 				goto foundmax;
940 		}
941 	}
942 
943 	/* Fall back to lzjb if we did not get enough memory for bzip2. */
944 	endsz = (cfg->maxsize * cfg->threshold) / cfg->nhelper;
945 	if (sz < endsz) {
946 		cfg->clevel = DUMP_CLEVEL_LZJB;
947 	}
948 
949 	/* Allocate memory for as many helpers as we can. */
950 foundmax:
951 
952 	/* Byte offsets into memory found and mapped above */
953 	endsz = sz;
954 	sz = 0;
955 
956 	/* Set the size for bzip2 state. Only bzip2 needs it. */
957 	bz2size = BZ2_bzCompressInitSize(dump_bzip2_level);
958 
959 	/* Skip the preallocate output buffers. */
960 	cp = &cfg->cbuf[MINCBUFS];
961 
962 	/* Use this to move memory up from the preallocated helpers. */
963 	ohp = cfg->helper;
964 
965 	/* Loop over all helpers and allocate memory. */
966 	for (hp = cfg->helper; hp < endhp; hp++) {
967 
968 		/* Skip preallocated helpers by checking hp->page. */
969 		if (hp->page == NULL) {
970 			if (cfg->clevel <= DUMP_CLEVEL_LZJB) {
971 				/* lzjb needs 2 1-page buffers */
972 				if ((sz + (2 * PAGESIZE)) > endsz)
973 					break;
974 				hp->page = cfg->maxvm + sz;
975 				sz += PAGESIZE;
976 				hp->lzbuf = cfg->maxvm + sz;
977 				sz += PAGESIZE;
978 
979 			} else if (ohp->lzbuf != NULL) {
980 				/* re-use the preallocted lzjb page for bzip2 */
981 				hp->page = ohp->lzbuf;
982 				ohp->lzbuf = NULL;
983 				++ohp;
984 
985 			} else {
986 				/* bzip2 needs a 1-page buffer */
987 				if ((sz + PAGESIZE) > endsz)
988 					break;
989 				hp->page = cfg->maxvm + sz;
990 				sz += PAGESIZE;
991 			}
992 		}
993 
994 		/*
995 		 * Add output buffers per helper. The number of
996 		 * buffers per helper is determined by the ratio of
997 		 * ncbuf to nhelper.
998 		 */
999 		for (k = 0; cp < endcp && (sz + CBUF_SIZE) <= endsz &&
1000 		    k < NCBUF_PER_HELPER; k++) {
1001 			cp->state = CBUF_FREEBUF;
1002 			cp->size = CBUF_SIZE;
1003 			cp->buf = cfg->maxvm + sz;
1004 			sz += CBUF_SIZE;
1005 			++cp;
1006 		}
1007 
1008 		/*
1009 		 * bzip2 needs compression state. Use the dumpbzalloc
1010 		 * and dumpbzfree callbacks to allocate the memory.
1011 		 * bzip2 does allocation only at init time.
1012 		 */
1013 		if (cfg->clevel >= DUMP_CLEVEL_BZIP2) {
1014 			if ((sz + bz2size) > endsz) {
1015 				hp->page = NULL;
1016 				break;
1017 			} else {
1018 				hp->bzstream.opaque = &sz;
1019 				hp->bzstream.bzalloc = dumpbzalloc;
1020 				hp->bzstream.bzfree = dumpbzfree;
1021 				(void) BZ2_bzCompressInit(&hp->bzstream,
1022 				    dump_bzip2_level, 0, 0);
1023 				hp->bzstream.opaque = NULL;
1024 			}
1025 		}
1026 	}
1027 
1028 	/* Finish allocating output buffers */
1029 	for (; cp < endcp && (sz + CBUF_SIZE) <= endsz; cp++) {
1030 		cp->state = CBUF_FREEBUF;
1031 		cp->size = CBUF_SIZE;
1032 		cp->buf = cfg->maxvm + sz;
1033 		sz += CBUF_SIZE;
1034 	}
1035 
1036 	/* Enable IS_DUMP_PAGE macro, which checks for pages we took. */
1037 	if (cfg->found4m || cfg->foundsm)
1038 		dump_check_used = 1;
1039 
1040 	ASSERT(sz <= endsz);
1041 }
1042 
1043 static void
1044 dumphdr_init(void)
1045 {
1046 	pgcnt_t npages = 0;
1047 
1048 	ASSERT(MUTEX_HELD(&dump_lock));
1049 
1050 	if (dumphdr == NULL) {
1051 		dumphdr = kmem_zalloc(sizeof (dumphdr_t), KM_SLEEP);
1052 		dumphdr->dump_magic = DUMP_MAGIC;
1053 		dumphdr->dump_version = DUMP_VERSION;
1054 		dumphdr->dump_wordsize = DUMP_WORDSIZE;
1055 		dumphdr->dump_pageshift = PAGESHIFT;
1056 		dumphdr->dump_pagesize = PAGESIZE;
1057 		dumphdr->dump_utsname = utsname;
1058 		(void) strcpy(dumphdr->dump_platform, platform);
1059 		dumpbuf.size = dumpbuf_iosize(maxphys);
1060 		dumpbuf.start = kmem_alloc(dumpbuf.size, KM_SLEEP);
1061 		dumpbuf.end = dumpbuf.start + dumpbuf.size;
1062 		dumpcfg.pids = kmem_alloc(v.v_proc * sizeof (pid_t), KM_SLEEP);
1063 		dumpcfg.helpermap = kmem_zalloc(BT_SIZEOFMAP(NCPU), KM_SLEEP);
1064 		LOCK_INIT_HELD(&dumpcfg.helper_lock);
1065 	}
1066 
1067 	npages = num_phys_pages();
1068 
1069 	if (dumpcfg.bitmapsize != npages) {
1070 		size_t rlen = CBUF_MAPP2R(P2ROUNDUP(npages, CBUF_MAPNP));
1071 		void *map = kmem_alloc(BT_SIZEOFMAP(npages), KM_SLEEP);
1072 		void *rmap = kmem_alloc(BT_SIZEOFMAP(rlen), KM_SLEEP);
1073 
1074 		if (dumpcfg.bitmap != NULL)
1075 			kmem_free(dumpcfg.bitmap, BT_SIZEOFMAP(dumpcfg.
1076 			    bitmapsize));
1077 		if (dumpcfg.rbitmap != NULL)
1078 			kmem_free(dumpcfg.rbitmap, BT_SIZEOFMAP(dumpcfg.
1079 			    rbitmapsize));
1080 		dumpcfg.bitmap = map;
1081 		dumpcfg.bitmapsize = npages;
1082 		dumpcfg.rbitmap = rmap;
1083 		dumpcfg.rbitmapsize = rlen;
1084 	}
1085 }
1086 
1087 /*
1088  * Establish a new dump device.
1089  */
1090 int
1091 dumpinit(vnode_t *vp, char *name, int justchecking)
1092 {
1093 	vnode_t *cvp;
1094 	vattr_t vattr;
1095 	vnode_t *cdev_vp;
1096 	int error = 0;
1097 
1098 	ASSERT(MUTEX_HELD(&dump_lock));
1099 
1100 	dumphdr_init();
1101 
1102 	cvp = common_specvp(vp);
1103 	if (cvp == dumpvp)
1104 		return (0);
1105 
1106 	/*
1107 	 * Determine whether this is a plausible dump device.  We want either:
1108 	 * (1) a real device that's not mounted and has a cb_dump routine, or
1109 	 * (2) a swapfile on some filesystem that has a vop_dump routine.
1110 	 */
1111 	if ((error = VOP_OPEN(&cvp, FREAD | FWRITE, kcred, NULL)) != 0)
1112 		return (error);
1113 
1114 	vattr.va_mask = AT_SIZE | AT_TYPE | AT_RDEV;
1115 	if ((error = VOP_GETATTR(cvp, &vattr, 0, kcred, NULL)) == 0) {
1116 		if (vattr.va_type == VBLK || vattr.va_type == VCHR) {
1117 			if (devopsp[getmajor(vattr.va_rdev)]->
1118 			    devo_cb_ops->cb_dump == nodev)
1119 				error = ENOTSUP;
1120 			else if (vfs_devismounted(vattr.va_rdev))
1121 				error = EBUSY;
1122 			if (strcmp(ddi_driver_name(VTOS(cvp)->s_dip),
1123 			    ZFS_DRIVER) == 0 &&
1124 			    IS_SWAPVP(common_specvp(cvp)))
1125 					error = EBUSY;
1126 		} else {
1127 			if (vn_matchopval(cvp, VOPNAME_DUMP, fs_nosys) ||
1128 			    !IS_SWAPVP(cvp))
1129 				error = ENOTSUP;
1130 		}
1131 	}
1132 
1133 	if (error == 0 && vattr.va_size < 2 * DUMP_LOGSIZE + DUMP_ERPTSIZE)
1134 		error = ENOSPC;
1135 
1136 	if (error || justchecking) {
1137 		(void) VOP_CLOSE(cvp, FREAD | FWRITE, 1, (offset_t)0,
1138 		    kcred, NULL);
1139 		return (error);
1140 	}
1141 
1142 	VN_HOLD(cvp);
1143 
1144 	if (dumpvp != NULL)
1145 		dumpfini();	/* unconfigure the old dump device */
1146 
1147 	dumpvp = cvp;
1148 	dumpvp_size = vattr.va_size & -DUMP_OFFSET;
1149 	dumppath = kmem_alloc(strlen(name) + 1, KM_SLEEP);
1150 	(void) strcpy(dumppath, name);
1151 	dumpbuf.iosize = 0;
1152 
1153 	/*
1154 	 * If the dump device is a block device, attempt to open up the
1155 	 * corresponding character device and determine its maximum transfer
1156 	 * size.  We use this information to potentially resize dumpbuf to a
1157 	 * larger and more optimal size for performing i/o to the dump device.
1158 	 */
1159 	if (cvp->v_type == VBLK &&
1160 	    (cdev_vp = makespecvp(VTOS(cvp)->s_dev, VCHR)) != NULL) {
1161 		if (VOP_OPEN(&cdev_vp, FREAD | FWRITE, kcred, NULL) == 0) {
1162 			size_t blk_size;
1163 			struct dk_cinfo dki;
1164 			struct dk_minfo minf;
1165 
1166 			if (VOP_IOCTL(cdev_vp, DKIOCGMEDIAINFO,
1167 			    (intptr_t)&minf, FKIOCTL, kcred, NULL, NULL)
1168 			    == 0 && minf.dki_lbsize != 0)
1169 				blk_size = minf.dki_lbsize;
1170 			else
1171 				blk_size = DEV_BSIZE;
1172 
1173 			if (VOP_IOCTL(cdev_vp, DKIOCINFO, (intptr_t)&dki,
1174 			    FKIOCTL, kcred, NULL, NULL) == 0) {
1175 				dumpbuf.iosize = dki.dki_maxtransfer * blk_size;
1176 				dumpbuf_resize();
1177 			}
1178 			/*
1179 			 * If we are working with a zvol then dumpify it
1180 			 * if it's not being used as swap.
1181 			 */
1182 			if (strcmp(dki.dki_dname, ZVOL_DRIVER) == 0) {
1183 				if (IS_SWAPVP(common_specvp(cvp)))
1184 					error = EBUSY;
1185 				else if ((error = VOP_IOCTL(cdev_vp,
1186 				    DKIOCDUMPINIT, NULL, FKIOCTL, kcred,
1187 				    NULL, NULL)) != 0)
1188 					dumpfini();
1189 			}
1190 
1191 			(void) VOP_CLOSE(cdev_vp, FREAD | FWRITE, 1, 0,
1192 			    kcred, NULL);
1193 		}
1194 
1195 		VN_RELE(cdev_vp);
1196 	}
1197 
1198 	cmn_err(CE_CONT, "?dump on %s size %llu MB\n", name, dumpvp_size >> 20);
1199 
1200 	dump_update_clevel();
1201 
1202 	return (error);
1203 }
1204 
1205 void
1206 dumpfini(void)
1207 {
1208 	vattr_t vattr;
1209 	boolean_t is_zfs = B_FALSE;
1210 	vnode_t *cdev_vp;
1211 	ASSERT(MUTEX_HELD(&dump_lock));
1212 
1213 	kmem_free(dumppath, strlen(dumppath) + 1);
1214 
1215 	/*
1216 	 * Determine if we are using zvols for our dump device
1217 	 */
1218 	vattr.va_mask = AT_RDEV;
1219 	if (VOP_GETATTR(dumpvp, &vattr, 0, kcred, NULL) == 0) {
1220 		is_zfs = (getmajor(vattr.va_rdev) ==
1221 		    ddi_name_to_major(ZFS_DRIVER)) ? B_TRUE : B_FALSE;
1222 	}
1223 
1224 	/*
1225 	 * If we have a zvol dump device then we call into zfs so
1226 	 * that it may have a chance to cleanup.
1227 	 */
1228 	if (is_zfs &&
1229 	    (cdev_vp = makespecvp(VTOS(dumpvp)->s_dev, VCHR)) != NULL) {
1230 		if (VOP_OPEN(&cdev_vp, FREAD | FWRITE, kcred, NULL) == 0) {
1231 			(void) VOP_IOCTL(cdev_vp, DKIOCDUMPFINI, NULL, FKIOCTL,
1232 			    kcred, NULL, NULL);
1233 			(void) VOP_CLOSE(cdev_vp, FREAD | FWRITE, 1, 0,
1234 			    kcred, NULL);
1235 		}
1236 		VN_RELE(cdev_vp);
1237 	}
1238 
1239 	(void) VOP_CLOSE(dumpvp, FREAD | FWRITE, 1, (offset_t)0, kcred, NULL);
1240 
1241 	VN_RELE(dumpvp);
1242 
1243 	dumpvp = NULL;
1244 	dumpvp_size = 0;
1245 	dumppath = NULL;
1246 }
1247 
1248 static offset_t
1249 dumpvp_flush(void)
1250 {
1251 	size_t size = P2ROUNDUP(dumpbuf.cur - dumpbuf.start, PAGESIZE);
1252 	hrtime_t iotime;
1253 	int err;
1254 
1255 	if (dumpbuf.vp_off + size > dumpbuf.vp_limit) {
1256 		dump_ioerr = ENOSPC;
1257 		dumpbuf.vp_off = dumpbuf.vp_limit;
1258 	} else if (size != 0) {
1259 		iotime = gethrtime();
1260 		dumpsync.iowait += iotime - dumpsync.iowaitts;
1261 		if (panicstr)
1262 			err = VOP_DUMP(dumpvp, dumpbuf.start,
1263 			    lbtodb(dumpbuf.vp_off), btod(size), NULL);
1264 		else
1265 			err = vn_rdwr(UIO_WRITE, dumpbuf.cdev_vp != NULL ?
1266 			    dumpbuf.cdev_vp : dumpvp, dumpbuf.start, size,
1267 			    dumpbuf.vp_off, UIO_SYSSPACE, 0, dumpbuf.vp_limit,
1268 			    kcred, 0);
1269 		if (err && dump_ioerr == 0)
1270 			dump_ioerr = err;
1271 		dumpsync.iowaitts = gethrtime();
1272 		dumpsync.iotime += dumpsync.iowaitts - iotime;
1273 		dumpsync.nwrite += size;
1274 		dumpbuf.vp_off += size;
1275 	}
1276 	dumpbuf.cur = dumpbuf.start;
1277 	dump_timeleft = dump_timeout;
1278 	return (dumpbuf.vp_off);
1279 }
1280 
1281 /* maximize write speed by keeping seek offset aligned with size */
1282 void
1283 dumpvp_write(const void *va, size_t size)
1284 {
1285 	size_t len, off, sz;
1286 
1287 	while (size != 0) {
1288 		len = MIN(size, dumpbuf.end - dumpbuf.cur);
1289 		if (len == 0) {
1290 			off = P2PHASE(dumpbuf.vp_off, dumpbuf.size);
1291 			if (off == 0 || !ISP2(dumpbuf.size)) {
1292 				(void) dumpvp_flush();
1293 			} else {
1294 				sz = dumpbuf.size - off;
1295 				dumpbuf.cur = dumpbuf.start + sz;
1296 				(void) dumpvp_flush();
1297 				ovbcopy(dumpbuf.start + sz, dumpbuf.start, off);
1298 				dumpbuf.cur += off;
1299 			}
1300 		} else {
1301 			bcopy(va, dumpbuf.cur, len);
1302 			va = (char *)va + len;
1303 			dumpbuf.cur += len;
1304 			size -= len;
1305 		}
1306 	}
1307 }
1308 
1309 /*ARGSUSED*/
1310 static void
1311 dumpvp_ksyms_write(const void *src, void *dst, size_t size)
1312 {
1313 	dumpvp_write(src, size);
1314 }
1315 
1316 /*
1317  * Mark 'pfn' in the bitmap and dump its translation table entry.
1318  */
1319 void
1320 dump_addpage(struct as *as, void *va, pfn_t pfn)
1321 {
1322 	mem_vtop_t mem_vtop;
1323 	pgcnt_t bitnum;
1324 
1325 	if ((bitnum = dump_pfn_to_bitnum(pfn)) != (pgcnt_t)-1) {
1326 		if (!BT_TEST(dumpcfg.bitmap, bitnum)) {
1327 			dumphdr->dump_npages++;
1328 			BT_SET(dumpcfg.bitmap, bitnum);
1329 		}
1330 		dumphdr->dump_nvtop++;
1331 		mem_vtop.m_as = as;
1332 		mem_vtop.m_va = va;
1333 		mem_vtop.m_pfn = pfn;
1334 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1335 	}
1336 	dump_timeleft = dump_timeout;
1337 }
1338 
1339 /*
1340  * Mark 'pfn' in the bitmap
1341  */
1342 void
1343 dump_page(pfn_t pfn)
1344 {
1345 	pgcnt_t bitnum;
1346 
1347 	if ((bitnum = dump_pfn_to_bitnum(pfn)) != (pgcnt_t)-1) {
1348 		if (!BT_TEST(dumpcfg.bitmap, bitnum)) {
1349 			dumphdr->dump_npages++;
1350 			BT_SET(dumpcfg.bitmap, bitnum);
1351 		}
1352 	}
1353 	dump_timeleft = dump_timeout;
1354 }
1355 
1356 /*
1357  * Dump the <as, va, pfn> information for a given address space.
1358  * SEGOP_DUMP() will call dump_addpage() for each page in the segment.
1359  */
1360 static void
1361 dump_as(struct as *as)
1362 {
1363 	struct seg *seg;
1364 
1365 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1366 	for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
1367 		if (seg->s_as != as)
1368 			break;
1369 		if (seg->s_ops == NULL)
1370 			continue;
1371 		SEGOP_DUMP(seg);
1372 	}
1373 	AS_LOCK_EXIT(as, &as->a_lock);
1374 
1375 	if (seg != NULL)
1376 		cmn_err(CE_WARN, "invalid segment %p in address space %p",
1377 		    (void *)seg, (void *)as);
1378 }
1379 
1380 static int
1381 dump_process(pid_t pid)
1382 {
1383 	proc_t *p = sprlock(pid);
1384 
1385 	if (p == NULL)
1386 		return (-1);
1387 	if (p->p_as != &kas) {
1388 		mutex_exit(&p->p_lock);
1389 		dump_as(p->p_as);
1390 		mutex_enter(&p->p_lock);
1391 	}
1392 
1393 	sprunlock(p);
1394 
1395 	return (0);
1396 }
1397 
1398 void
1399 dump_ereports(void)
1400 {
1401 	u_offset_t dumpvp_start;
1402 	erpt_dump_t ed;
1403 
1404 	if (dumpvp == NULL || dumphdr == NULL)
1405 		return;
1406 
1407 	dumpbuf.cur = dumpbuf.start;
1408 	dumpbuf.vp_limit = dumpvp_size - (DUMP_OFFSET + DUMP_LOGSIZE);
1409 	dumpvp_start = dumpbuf.vp_limit - DUMP_ERPTSIZE;
1410 	dumpbuf.vp_off = dumpvp_start;
1411 
1412 	fm_ereport_dump();
1413 	if (panicstr)
1414 		errorq_dump();
1415 
1416 	bzero(&ed, sizeof (ed)); /* indicate end of ereports */
1417 	dumpvp_write(&ed, sizeof (ed));
1418 	(void) dumpvp_flush();
1419 
1420 	if (!panicstr) {
1421 		(void) VOP_PUTPAGE(dumpvp, dumpvp_start,
1422 		    (size_t)(dumpbuf.vp_off - dumpvp_start),
1423 		    B_INVAL | B_FORCE, kcred, NULL);
1424 	}
1425 }
1426 
1427 void
1428 dump_messages(void)
1429 {
1430 	log_dump_t ld;
1431 	mblk_t *mctl, *mdata;
1432 	queue_t *q, *qlast;
1433 	u_offset_t dumpvp_start;
1434 
1435 	if (dumpvp == NULL || dumphdr == NULL || log_consq == NULL)
1436 		return;
1437 
1438 	dumpbuf.cur = dumpbuf.start;
1439 	dumpbuf.vp_limit = dumpvp_size - DUMP_OFFSET;
1440 	dumpvp_start = dumpbuf.vp_limit - DUMP_LOGSIZE;
1441 	dumpbuf.vp_off = dumpvp_start;
1442 
1443 	qlast = NULL;
1444 	do {
1445 		for (q = log_consq; q->q_next != qlast; q = q->q_next)
1446 			continue;
1447 		for (mctl = q->q_first; mctl != NULL; mctl = mctl->b_next) {
1448 			dump_timeleft = dump_timeout;
1449 			mdata = mctl->b_cont;
1450 			ld.ld_magic = LOG_MAGIC;
1451 			ld.ld_msgsize = MBLKL(mctl->b_cont);
1452 			ld.ld_csum = checksum32(mctl->b_rptr, MBLKL(mctl));
1453 			ld.ld_msum = checksum32(mdata->b_rptr, MBLKL(mdata));
1454 			dumpvp_write(&ld, sizeof (ld));
1455 			dumpvp_write(mctl->b_rptr, MBLKL(mctl));
1456 			dumpvp_write(mdata->b_rptr, MBLKL(mdata));
1457 		}
1458 	} while ((qlast = q) != log_consq);
1459 
1460 	ld.ld_magic = 0;		/* indicate end of messages */
1461 	dumpvp_write(&ld, sizeof (ld));
1462 	(void) dumpvp_flush();
1463 	if (!panicstr) {
1464 		(void) VOP_PUTPAGE(dumpvp, dumpvp_start,
1465 		    (size_t)(dumpbuf.vp_off - dumpvp_start),
1466 		    B_INVAL | B_FORCE, kcred, NULL);
1467 	}
1468 }
1469 
1470 /*
1471  * The following functions are called on multiple CPUs during dump.
1472  * They must not use most kernel services, because all cross-calls are
1473  * disabled during panic. Therefore, blocking locks and cache flushes
1474  * will not work.
1475  */
1476 
1477 static int
1478 dump_pagecopy(void *src, void *dst)
1479 {
1480 	long *wsrc = (long *)src;
1481 	long *wdst = (long *)dst;
1482 	const ulong_t ncopies = PAGESIZE / sizeof (long);
1483 	volatile int w = 0;
1484 	volatile int ueoff = -1;
1485 	on_trap_data_t otd;
1486 
1487 	if (on_trap(&otd, OT_DATA_EC)) {
1488 		if (ueoff == -1)
1489 			ueoff = w * sizeof (long);
1490 #ifdef _LP64
1491 		wdst[w++] = 0xbadecc00badecc;
1492 #else
1493 		wdst[w++] = 0xbadecc;
1494 #endif
1495 	}
1496 	while (w < ncopies) {
1497 		wdst[w] = wsrc[w];
1498 		w++;
1499 	}
1500 	no_trap();
1501 	return (ueoff);
1502 }
1503 
1504 static void
1505 dumpsys_close_cq(cqueue_t *cq, int live)
1506 {
1507 	if (live) {
1508 		mutex_enter(&cq->mutex);
1509 		atomic_dec_uint(&cq->open);
1510 		cv_signal(&cq->cv);
1511 		mutex_exit(&cq->mutex);
1512 	} else {
1513 		atomic_dec_uint(&cq->open);
1514 	}
1515 }
1516 
1517 static inline void
1518 dumpsys_spinlock(lock_t *lp)
1519 {
1520 	uint_t backoff = 0;
1521 	int loop_count = 0;
1522 
1523 	while (LOCK_HELD(lp) || !lock_spin_try(lp)) {
1524 		if (++loop_count >= ncpus) {
1525 			backoff = mutex_lock_backoff(0);
1526 			loop_count = 0;
1527 		} else {
1528 			backoff = mutex_lock_backoff(backoff);
1529 		}
1530 		mutex_lock_delay(backoff);
1531 	}
1532 }
1533 
1534 static inline void
1535 dumpsys_spinunlock(lock_t *lp)
1536 {
1537 	lock_clear(lp);
1538 }
1539 
1540 static inline void
1541 dumpsys_lock(cqueue_t *cq, int live)
1542 {
1543 	if (live)
1544 		mutex_enter(&cq->mutex);
1545 	else
1546 		dumpsys_spinlock(&cq->spinlock);
1547 }
1548 
1549 static inline void
1550 dumpsys_unlock(cqueue_t *cq, int live, int signal)
1551 {
1552 	if (live) {
1553 		if (signal)
1554 			cv_signal(&cq->cv);
1555 		mutex_exit(&cq->mutex);
1556 	} else {
1557 		dumpsys_spinunlock(&cq->spinlock);
1558 	}
1559 }
1560 
1561 static void
1562 dumpsys_wait_cq(cqueue_t *cq, int live)
1563 {
1564 	if (live) {
1565 		cv_wait(&cq->cv, &cq->mutex);
1566 	} else {
1567 		dumpsys_spinunlock(&cq->spinlock);
1568 		while (cq->open)
1569 			if (cq->first)
1570 				break;
1571 		dumpsys_spinlock(&cq->spinlock);
1572 	}
1573 }
1574 
1575 static void
1576 dumpsys_put_cq(cqueue_t *cq, cbuf_t *cp, int newstate, int live)
1577 {
1578 	if (cp == NULL)
1579 		return;
1580 
1581 	dumpsys_lock(cq, live);
1582 
1583 	if (cq->ts != 0) {
1584 		cq->empty += gethrtime() - cq->ts;
1585 		cq->ts = 0;
1586 	}
1587 
1588 	cp->state = newstate;
1589 	cp->next = NULL;
1590 	if (cq->last == NULL)
1591 		cq->first = cp;
1592 	else
1593 		cq->last->next = cp;
1594 	cq->last = cp;
1595 
1596 	dumpsys_unlock(cq, live, 1);
1597 }
1598 
1599 static cbuf_t *
1600 dumpsys_get_cq(cqueue_t *cq, int live)
1601 {
1602 	cbuf_t *cp;
1603 	hrtime_t now = gethrtime();
1604 
1605 	dumpsys_lock(cq, live);
1606 
1607 	/* CONSTCOND */
1608 	while (1) {
1609 		cp = (cbuf_t *)cq->first;
1610 		if (cp == NULL) {
1611 			if (cq->open == 0)
1612 				break;
1613 			dumpsys_wait_cq(cq, live);
1614 			continue;
1615 		}
1616 		cq->first = cp->next;
1617 		if (cq->first == NULL) {
1618 			cq->last = NULL;
1619 			cq->ts = now;
1620 		}
1621 		break;
1622 	}
1623 
1624 	dumpsys_unlock(cq, live, cq->first != NULL || cq->open == 0);
1625 	return (cp);
1626 }
1627 
1628 /*
1629  * Send an error message to the console. If the main task is running
1630  * just write the message via uprintf. If a helper is running the
1631  * message has to be put on a queue for the main task. Setting fmt to
1632  * NULL means flush the error message buffer. If fmt is not NULL, just
1633  * add the text to the existing buffer.
1634  */
1635 static void
1636 dumpsys_errmsg(helper_t *hp, const char *fmt, ...)
1637 {
1638 	dumpsync_t *ds = hp->ds;
1639 	cbuf_t *cp = hp->cperr;
1640 	va_list adx;
1641 
1642 	if (hp->helper == MAINHELPER) {
1643 		if (fmt != NULL) {
1644 			if (ds->neednl) {
1645 				uprintf("\n");
1646 				ds->neednl = 0;
1647 			}
1648 			va_start(adx, fmt);
1649 			vuprintf(fmt, adx);
1650 			va_end(adx);
1651 		}
1652 	} else if (fmt == NULL) {
1653 		if (cp != NULL) {
1654 			CQ_PUT(mainq, cp, CBUF_ERRMSG);
1655 			hp->cperr = NULL;
1656 		}
1657 	} else {
1658 		if (hp->cperr == NULL) {
1659 			cp = CQ_GET(freebufq);
1660 			hp->cperr = cp;
1661 			cp->used = 0;
1662 		}
1663 		va_start(adx, fmt);
1664 		cp->used += vsnprintf(cp->buf + cp->used, cp->size - cp->used,
1665 		    fmt, adx);
1666 		va_end(adx);
1667 		if ((cp->used + LOG_MSGSIZE) > cp->size) {
1668 			CQ_PUT(mainq, cp, CBUF_ERRMSG);
1669 			hp->cperr = NULL;
1670 		}
1671 	}
1672 }
1673 
1674 /*
1675  * Write an output buffer to the dump file. If the main task is
1676  * running just write the data. If a helper is running the output is
1677  * placed on a queue for the main task.
1678  */
1679 static void
1680 dumpsys_swrite(helper_t *hp, cbuf_t *cp, size_t used)
1681 {
1682 	dumpsync_t *ds = hp->ds;
1683 
1684 	if (hp->helper == MAINHELPER) {
1685 		HRSTART(ds->perpage, write);
1686 		dumpvp_write(cp->buf, used);
1687 		HRSTOP(ds->perpage, write);
1688 		CQ_PUT(freebufq, cp, CBUF_FREEBUF);
1689 	} else {
1690 		cp->used = used;
1691 		CQ_PUT(mainq, cp, CBUF_WRITE);
1692 	}
1693 }
1694 
1695 /*
1696  * Copy one page within the mapped range. The offset starts at 0 and
1697  * is relative to the first pfn. cp->buf + cp->off is the address of
1698  * the first pfn. If dump_pagecopy returns a UE offset, create an
1699  * error message.  Returns the offset to the next pfn in the range
1700  * selected by the bitmap.
1701  */
1702 static int
1703 dumpsys_copy_page(helper_t *hp, int offset)
1704 {
1705 	cbuf_t *cp = hp->cpin;
1706 	int ueoff;
1707 
1708 	ASSERT(cp->off + offset + PAGESIZE <= cp->size);
1709 	ASSERT(BT_TEST(dumpcfg.bitmap, cp->bitnum));
1710 
1711 	ueoff = dump_pagecopy(cp->buf + cp->off + offset, hp->page);
1712 
1713 	/* ueoff is the offset in the page to a UE error */
1714 	if (ueoff != -1) {
1715 		uint64_t pa = ptob(cp->pfn) + offset + ueoff;
1716 
1717 		dumpsys_errmsg(hp, "memory error at PA 0x%08x.%08x\n",
1718 		    (uint32_t)(pa >> 32), (uint32_t)pa);
1719 	}
1720 
1721 	/*
1722 	 * Advance bitnum and offset to the next input page for the
1723 	 * next call to this function.
1724 	 */
1725 	offset += PAGESIZE;
1726 	cp->bitnum++;
1727 	while (cp->off + offset < cp->size) {
1728 		if (BT_TEST(dumpcfg.bitmap, cp->bitnum))
1729 			break;
1730 		offset += PAGESIZE;
1731 		cp->bitnum++;
1732 	}
1733 
1734 	return (offset);
1735 }
1736 
1737 /*
1738  * Read the helper queue, and copy one mapped page. Return 0 when
1739  * done. Return 1 when a page has been copied into hp->page.
1740  */
1741 static int
1742 dumpsys_sread(helper_t *hp)
1743 {
1744 	dumpsync_t *ds = hp->ds;
1745 
1746 	/* CONSTCOND */
1747 	while (1) {
1748 
1749 		/* Find the next input buffer. */
1750 		if (hp->cpin == NULL) {
1751 			HRSTART(hp->perpage, inwait);
1752 
1753 			/* CONSTCOND */
1754 			while (1) {
1755 				hp->cpin = CQ_GET(helperq);
1756 				dump_timeleft = dump_timeout;
1757 
1758 				/*
1759 				 * NULL return means the helper queue
1760 				 * is closed and empty.
1761 				 */
1762 				if (hp->cpin == NULL)
1763 					break;
1764 
1765 				/* Have input, check for dump I/O error. */
1766 				if (!dump_ioerr)
1767 					break;
1768 
1769 				/*
1770 				 * If an I/O error occurs, stay in the
1771 				 * loop in order to empty the helper
1772 				 * queue. Return the buffers to the
1773 				 * main task to unmap and free it.
1774 				 */
1775 				hp->cpin->used = 0;
1776 				CQ_PUT(mainq, hp->cpin, CBUF_USEDMAP);
1777 			}
1778 			HRSTOP(hp->perpage, inwait);
1779 
1780 			/* Stop here when the helper queue is closed. */
1781 			if (hp->cpin == NULL)
1782 				break;
1783 
1784 			/* Set the offset=0 to get the first pfn. */
1785 			hp->in = 0;
1786 
1787 			/* Set the total processed to 0 */
1788 			hp->used = 0;
1789 		}
1790 
1791 		/* Process the next page. */
1792 		if (hp->used < hp->cpin->used) {
1793 
1794 			/*
1795 			 * Get the next page from the input buffer and
1796 			 * return a copy.
1797 			 */
1798 			ASSERT(hp->in != -1);
1799 			HRSTART(hp->perpage, copy);
1800 			hp->in = dumpsys_copy_page(hp, hp->in);
1801 			hp->used += PAGESIZE;
1802 			HRSTOP(hp->perpage, copy);
1803 			break;
1804 
1805 		} else {
1806 
1807 			/*
1808 			 * Done with the input. Flush the VM and
1809 			 * return the buffer to the main task.
1810 			 */
1811 			if (panicstr && hp->helper != MAINHELPER)
1812 				hat_flush_range(kas.a_hat,
1813 				    hp->cpin->buf, hp->cpin->size);
1814 			dumpsys_errmsg(hp, NULL);
1815 			CQ_PUT(mainq, hp->cpin, CBUF_USEDMAP);
1816 			hp->cpin = NULL;
1817 		}
1818 	}
1819 
1820 	return (hp->cpin != NULL);
1821 }
1822 
1823 /*
1824  * Compress size bytes starting at buf with bzip2
1825  * mode:
1826  *	BZ_RUN		add one more compressed page
1827  *	BZ_FINISH	no more input, flush the state
1828  */
1829 static void
1830 dumpsys_bzrun(helper_t *hp, void *buf, size_t size, int mode)
1831 {
1832 	dumpsync_t *ds = hp->ds;
1833 	const int CSIZE = sizeof (dumpcsize_t);
1834 	bz_stream *ps = &hp->bzstream;
1835 	int rc = 0;
1836 	uint32_t csize;
1837 	dumpcsize_t cs;
1838 
1839 	/* Set input pointers to new input page */
1840 	if (size > 0) {
1841 		ps->avail_in = size;
1842 		ps->next_in = buf;
1843 	}
1844 
1845 	/* CONSTCOND */
1846 	while (1) {
1847 
1848 		/* Quit when all input has been consumed */
1849 		if (ps->avail_in == 0 && mode == BZ_RUN)
1850 			break;
1851 
1852 		/* Get a new output buffer */
1853 		if (hp->cpout == NULL) {
1854 			HRSTART(hp->perpage, outwait);
1855 			hp->cpout = CQ_GET(freebufq);
1856 			HRSTOP(hp->perpage, outwait);
1857 			ps->avail_out = hp->cpout->size - CSIZE;
1858 			ps->next_out = hp->cpout->buf + CSIZE;
1859 		}
1860 
1861 		/* Compress input, or finalize */
1862 		HRSTART(hp->perpage, compress);
1863 		rc = BZ2_bzCompress(ps, mode);
1864 		HRSTOP(hp->perpage, compress);
1865 
1866 		/* Check for error */
1867 		if (mode == BZ_RUN && rc != BZ_RUN_OK) {
1868 			dumpsys_errmsg(hp, "%d: BZ_RUN error %s at page %lx\n",
1869 			    hp->helper, BZ2_bzErrorString(rc),
1870 			    hp->cpin->pagenum);
1871 			break;
1872 		}
1873 
1874 		/* Write the buffer if it is full, or we are flushing */
1875 		if (ps->avail_out == 0 || mode == BZ_FINISH) {
1876 			csize = hp->cpout->size - CSIZE - ps->avail_out;
1877 			cs = DUMP_SET_TAG(csize, hp->tag);
1878 			if (csize > 0) {
1879 				(void) memcpy(hp->cpout->buf, &cs, CSIZE);
1880 				dumpsys_swrite(hp, hp->cpout, csize + CSIZE);
1881 				hp->cpout = NULL;
1882 			}
1883 		}
1884 
1885 		/* Check for final complete */
1886 		if (mode == BZ_FINISH) {
1887 			if (rc == BZ_STREAM_END)
1888 				break;
1889 			if (rc != BZ_FINISH_OK) {
1890 				dumpsys_errmsg(hp, "%d: BZ_FINISH error %s\n",
1891 				    hp->helper, BZ2_bzErrorString(rc));
1892 				break;
1893 			}
1894 		}
1895 	}
1896 
1897 	/* Cleanup state and buffers */
1898 	if (mode == BZ_FINISH) {
1899 
1900 		/* Reset state so that it is re-usable. */
1901 		(void) BZ2_bzCompressReset(&hp->bzstream);
1902 
1903 		/* Give any unused outout buffer to the main task */
1904 		if (hp->cpout != NULL) {
1905 			hp->cpout->used = 0;
1906 			CQ_PUT(mainq, hp->cpout, CBUF_ERRMSG);
1907 			hp->cpout = NULL;
1908 		}
1909 	}
1910 }
1911 
1912 static void
1913 dumpsys_bz2compress(helper_t *hp)
1914 {
1915 	dumpsync_t *ds = hp->ds;
1916 	dumpstreamhdr_t sh;
1917 
1918 	(void) strcpy(sh.stream_magic, DUMP_STREAM_MAGIC);
1919 	sh.stream_pagenum = (pgcnt_t)-1;
1920 	sh.stream_npages = 0;
1921 	hp->cpin = NULL;
1922 	hp->cpout = NULL;
1923 	hp->cperr = NULL;
1924 	hp->in = 0;
1925 	hp->out = 0;
1926 	hp->bzstream.avail_in = 0;
1927 
1928 	/* Bump reference to mainq while we are running */
1929 	CQ_OPEN(mainq);
1930 
1931 	/* Get one page at a time */
1932 	while (dumpsys_sread(hp)) {
1933 		if (sh.stream_pagenum != hp->cpin->pagenum) {
1934 			sh.stream_pagenum = hp->cpin->pagenum;
1935 			sh.stream_npages = btop(hp->cpin->used);
1936 			dumpsys_bzrun(hp, &sh, sizeof (sh), BZ_RUN);
1937 		}
1938 		dumpsys_bzrun(hp, hp->page, PAGESIZE, 0);
1939 	}
1940 
1941 	/* Done with input, flush any partial buffer */
1942 	if (sh.stream_pagenum != (pgcnt_t)-1) {
1943 		dumpsys_bzrun(hp, NULL, 0, BZ_FINISH);
1944 		dumpsys_errmsg(hp, NULL);
1945 	}
1946 
1947 	ASSERT(hp->cpin == NULL && hp->cpout == NULL && hp->cperr == NULL);
1948 
1949 	/* Decrement main queue count, we are done */
1950 	CQ_CLOSE(mainq);
1951 }
1952 
1953 /*
1954  * Compress with lzjb
1955  * write stream block if full or size==0
1956  * if csize==0 write stream header, else write <csize, data>
1957  * size==0 is a call to flush a buffer
1958  * hp->cpout is the buffer we are flushing or filling
1959  * hp->out is the next index to fill data
1960  * osize is either csize+data, or the size of a stream header
1961  */
1962 static void
1963 dumpsys_lzjbrun(helper_t *hp, size_t csize, void *buf, size_t size)
1964 {
1965 	dumpsync_t *ds = hp->ds;
1966 	const int CSIZE = sizeof (dumpcsize_t);
1967 	dumpcsize_t cs;
1968 	size_t osize = csize > 0 ? CSIZE + size : size;
1969 
1970 	/* If flush, and there is no buffer, just return */
1971 	if (size == 0 && hp->cpout == NULL)
1972 		return;
1973 
1974 	/* If flush, or cpout is full, write it out */
1975 	if (size == 0 ||
1976 	    hp->cpout != NULL && hp->out + osize > hp->cpout->size) {
1977 
1978 		/* Set tag+size word at the front of the stream block. */
1979 		cs = DUMP_SET_TAG(hp->out - CSIZE, hp->tag);
1980 		(void) memcpy(hp->cpout->buf, &cs, CSIZE);
1981 
1982 		/* Write block to dump file. */
1983 		dumpsys_swrite(hp, hp->cpout, hp->out);
1984 
1985 		/* Clear pointer to indicate we need a new buffer */
1986 		hp->cpout = NULL;
1987 
1988 		/* flushing, we are done */
1989 		if (size == 0)
1990 			return;
1991 	}
1992 
1993 	/* Get an output buffer if we dont have one. */
1994 	if (hp->cpout == NULL) {
1995 		HRSTART(hp->perpage, outwait);
1996 		hp->cpout = CQ_GET(freebufq);
1997 		HRSTOP(hp->perpage, outwait);
1998 		hp->out = CSIZE;
1999 	}
2000 
2001 	/* Store csize word. This is the size of compressed data. */
2002 	if (csize > 0) {
2003 		cs = DUMP_SET_TAG(csize, 0);
2004 		(void) memcpy(hp->cpout->buf + hp->out, &cs, CSIZE);
2005 		hp->out += CSIZE;
2006 	}
2007 
2008 	/* Store the data. */
2009 	(void) memcpy(hp->cpout->buf + hp->out, buf, size);
2010 	hp->out += size;
2011 }
2012 
2013 static void
2014 dumpsys_lzjbcompress(helper_t *hp)
2015 {
2016 	dumpsync_t *ds = hp->ds;
2017 	size_t csize;
2018 	dumpstreamhdr_t sh;
2019 
2020 	(void) strcpy(sh.stream_magic, DUMP_STREAM_MAGIC);
2021 	sh.stream_pagenum = (pfn_t)-1;
2022 	sh.stream_npages = 0;
2023 	hp->cpin = NULL;
2024 	hp->cpout = NULL;
2025 	hp->cperr = NULL;
2026 	hp->in = 0;
2027 	hp->out = 0;
2028 
2029 	/* Bump reference to mainq while we are running */
2030 	CQ_OPEN(mainq);
2031 
2032 	/* Get one page at a time */
2033 	while (dumpsys_sread(hp)) {
2034 
2035 		/* Create a stream header for each new input map */
2036 		if (sh.stream_pagenum != hp->cpin->pagenum) {
2037 			sh.stream_pagenum = hp->cpin->pagenum;
2038 			sh.stream_npages = btop(hp->cpin->used);
2039 			dumpsys_lzjbrun(hp, 0, &sh, sizeof (sh));
2040 		}
2041 
2042 		/* Compress one page */
2043 		HRSTART(hp->perpage, compress);
2044 		csize = compress(hp->page, hp->lzbuf, PAGESIZE);
2045 		HRSTOP(hp->perpage, compress);
2046 
2047 		/* Add csize+data to output block */
2048 		ASSERT(csize > 0 && csize <= PAGESIZE);
2049 		dumpsys_lzjbrun(hp, csize, hp->lzbuf, csize);
2050 	}
2051 
2052 	/* Done with input, flush any partial buffer */
2053 	if (sh.stream_pagenum != (pfn_t)-1) {
2054 		dumpsys_lzjbrun(hp, 0, NULL, 0);
2055 		dumpsys_errmsg(hp, NULL);
2056 	}
2057 
2058 	ASSERT(hp->cpin == NULL && hp->cpout == NULL && hp->cperr == NULL);
2059 
2060 	/* Decrement main queue count, we are done */
2061 	CQ_CLOSE(mainq);
2062 }
2063 
2064 /*
2065  * Dump helper called from panic_idle() to compress pages.  CPUs in
2066  * this path must not call most kernel services.
2067  *
2068  * During panic, all but one of the CPUs is idle. These CPUs are used
2069  * as helpers working in parallel to copy and compress memory
2070  * pages. During a panic, however, these processors cannot call any
2071  * kernel services. This is because mutexes become no-ops during
2072  * panic, and, cross-call interrupts are inhibited.  Therefore, during
2073  * panic dump the helper CPUs communicate with the panic CPU using
2074  * memory variables. All memory mapping and I/O is performed by the
2075  * panic CPU.
2076  */
2077 void
2078 dumpsys_helper()
2079 {
2080 	dumpsys_spinlock(&dumpcfg.helper_lock);
2081 	if (dumpcfg.helpers_wanted) {
2082 		helper_t *hp, *hpend = &dumpcfg.helper[dumpcfg.nhelper];
2083 
2084 		for (hp = dumpcfg.helper; hp != hpend; hp++) {
2085 			if (hp->helper == FREEHELPER) {
2086 				hp->helper = CPU->cpu_id;
2087 				BT_SET(dumpcfg.helpermap, CPU->cpu_seqid);
2088 
2089 				dumpsys_spinunlock(&dumpcfg.helper_lock);
2090 
2091 				if (dumpcfg.clevel < DUMP_CLEVEL_BZIP2)
2092 					dumpsys_lzjbcompress(hp);
2093 				else
2094 					dumpsys_bz2compress(hp);
2095 
2096 				hp->helper = DONEHELPER;
2097 				return;
2098 			}
2099 		}
2100 	}
2101 	dumpsys_spinunlock(&dumpcfg.helper_lock);
2102 }
2103 
2104 /*
2105  * Dump helper for live dumps.
2106  * These run as a system task.
2107  */
2108 static void
2109 dumpsys_live_helper(void *arg)
2110 {
2111 	helper_t *hp = arg;
2112 
2113 	BT_ATOMIC_SET(dumpcfg.helpermap, CPU->cpu_seqid);
2114 	if (dumpcfg.clevel < DUMP_CLEVEL_BZIP2)
2115 		dumpsys_lzjbcompress(hp);
2116 	else
2117 		dumpsys_bz2compress(hp);
2118 }
2119 
2120 /*
2121  * Compress one page with lzjb (single threaded case)
2122  */
2123 static void
2124 dumpsys_lzjb_page(helper_t *hp, cbuf_t *cp)
2125 {
2126 	dumpsync_t *ds = hp->ds;
2127 	uint32_t csize;
2128 
2129 	hp->helper = MAINHELPER;
2130 	hp->in = 0;
2131 	hp->used = 0;
2132 	hp->cpin = cp;
2133 	while (hp->used < cp->used) {
2134 		HRSTART(hp->perpage, copy);
2135 		hp->in = dumpsys_copy_page(hp, hp->in);
2136 		hp->used += PAGESIZE;
2137 		HRSTOP(hp->perpage, copy);
2138 
2139 		HRSTART(hp->perpage, compress);
2140 		csize = compress(hp->page, hp->lzbuf, PAGESIZE);
2141 		HRSTOP(hp->perpage, compress);
2142 
2143 		HRSTART(hp->perpage, write);
2144 		dumpvp_write(&csize, sizeof (csize));
2145 		dumpvp_write(hp->lzbuf, csize);
2146 		HRSTOP(hp->perpage, write);
2147 	}
2148 	CQ_PUT(mainq, hp->cpin, CBUF_USEDMAP);
2149 	hp->cpin = NULL;
2150 }
2151 
2152 /*
2153  * Main task to dump pages. This is called on the dump CPU.
2154  */
2155 static void
2156 dumpsys_main_task(void *arg)
2157 {
2158 	dumpsync_t *ds = arg;
2159 	pgcnt_t pagenum = 0, bitnum = 0, hibitnum;
2160 	dumpmlw_t mlw;
2161 	cbuf_t *cp;
2162 	pgcnt_t baseoff, pfnoff;
2163 	pfn_t base, pfn;
2164 	int sec;
2165 
2166 	dump_init_memlist_walker(&mlw);
2167 
2168 	/* CONSTCOND */
2169 	while (1) {
2170 
2171 		if (ds->percent > ds->percent_done) {
2172 			ds->percent_done = ds->percent;
2173 			sec = (gethrtime() - ds->start) / 1000 / 1000 / 1000;
2174 			uprintf("^\r%2d:%02d %3d%% done",
2175 			    sec / 60, sec % 60, ds->percent);
2176 			ds->neednl = 1;
2177 		}
2178 
2179 		while (CQ_IS_EMPTY(mainq) && !CQ_IS_EMPTY(writerq)) {
2180 
2181 			/* the writerq never blocks */
2182 			cp = CQ_GET(writerq);
2183 			if (cp == NULL)
2184 				break;
2185 
2186 			dump_timeleft = dump_timeout;
2187 
2188 			HRSTART(ds->perpage, write);
2189 			dumpvp_write(cp->buf, cp->used);
2190 			HRSTOP(ds->perpage, write);
2191 
2192 			CQ_PUT(freebufq, cp, CBUF_FREEBUF);
2193 		}
2194 
2195 		/*
2196 		 * Wait here for some buffers to process. Returns NULL
2197 		 * when all helpers have terminated and all buffers
2198 		 * have been processed.
2199 		 */
2200 		cp = CQ_GET(mainq);
2201 
2202 		if (cp == NULL) {
2203 
2204 			/* Drain the write queue. */
2205 			if (!CQ_IS_EMPTY(writerq))
2206 				continue;
2207 
2208 			/* Main task exits here. */
2209 			break;
2210 		}
2211 
2212 		dump_timeleft = dump_timeout;
2213 
2214 		switch (cp->state) {
2215 
2216 		case CBUF_FREEMAP:
2217 
2218 			/*
2219 			 * Note that we drop CBUF_FREEMAP buffers on
2220 			 * the floor (they will not be on any cqueue)
2221 			 * when we no longer need them.
2222 			 */
2223 			if (bitnum >= dumpcfg.bitmapsize)
2224 				break;
2225 
2226 			if (dump_ioerr) {
2227 				bitnum = dumpcfg.bitmapsize;
2228 				CQ_CLOSE(helperq);
2229 				break;
2230 			}
2231 
2232 			HRSTART(ds->perpage, bitmap);
2233 			for (; bitnum < dumpcfg.bitmapsize; bitnum++)
2234 				if (BT_TEST(dumpcfg.bitmap, bitnum))
2235 					break;
2236 			HRSTOP(ds->perpage, bitmap);
2237 			dump_timeleft = dump_timeout;
2238 
2239 			if (bitnum >= dumpcfg.bitmapsize) {
2240 				CQ_CLOSE(helperq);
2241 				break;
2242 			}
2243 
2244 			/*
2245 			 * Try to map CBUF_MAPSIZE ranges. Can't
2246 			 * assume that memory segment size is a
2247 			 * multiple of CBUF_MAPSIZE. Can't assume that
2248 			 * the segment starts on a CBUF_MAPSIZE
2249 			 * boundary.
2250 			 */
2251 			pfn = dump_bitnum_to_pfn(bitnum, &mlw);
2252 			ASSERT(pfn != PFN_INVALID);
2253 			ASSERT(bitnum + mlw.mpleft <= dumpcfg.bitmapsize);
2254 
2255 			base = P2ALIGN(pfn, CBUF_MAPNP);
2256 			if (base < mlw.mpaddr) {
2257 				base = mlw.mpaddr;
2258 				baseoff = P2PHASE(base, CBUF_MAPNP);
2259 			} else {
2260 				baseoff = 0;
2261 			}
2262 
2263 			pfnoff = pfn - base;
2264 			if (pfnoff + mlw.mpleft < CBUF_MAPNP) {
2265 				hibitnum = bitnum + mlw.mpleft;
2266 				cp->size = ptob(pfnoff + mlw.mpleft);
2267 			} else {
2268 				hibitnum = bitnum - pfnoff + CBUF_MAPNP -
2269 				    baseoff;
2270 				cp->size = CBUF_MAPSIZE - ptob(baseoff);
2271 			}
2272 
2273 			cp->pfn = pfn;
2274 			cp->bitnum = bitnum++;
2275 			cp->pagenum = pagenum++;
2276 			cp->off = ptob(pfnoff);
2277 
2278 			for (; bitnum < hibitnum; bitnum++)
2279 				if (BT_TEST(dumpcfg.bitmap, bitnum))
2280 					pagenum++;
2281 
2282 			dump_timeleft = dump_timeout;
2283 			cp->used = ptob(pagenum - cp->pagenum);
2284 
2285 			HRSTART(ds->perpage, map);
2286 			hat_devload(kas.a_hat, cp->buf, cp->size, base,
2287 			    PROT_READ, HAT_LOAD_NOCONSIST);
2288 			HRSTOP(ds->perpage, map);
2289 
2290 			ds->pages_mapped += btop(cp->size);
2291 			ds->pages_used += pagenum - cp->pagenum;
2292 
2293 			CQ_OPEN(mainq);
2294 
2295 			/*
2296 			 * If there are no helpers the main task does
2297 			 * non-streams lzjb compress.
2298 			 */
2299 			if (dumpcfg.clevel == 0) {
2300 				dumpsys_lzjb_page(dumpcfg.helper, cp);
2301 				break;
2302 			}
2303 
2304 			/* pass mapped pages to a helper */
2305 			CQ_PUT(helperq, cp, CBUF_INREADY);
2306 
2307 			/* the last page was done */
2308 			if (bitnum >= dumpcfg.bitmapsize)
2309 				CQ_CLOSE(helperq);
2310 
2311 			break;
2312 
2313 		case CBUF_USEDMAP:
2314 
2315 			ds->npages += btop(cp->used);
2316 
2317 			HRSTART(ds->perpage, unmap);
2318 			hat_unload(kas.a_hat, cp->buf, cp->size, HAT_UNLOAD);
2319 			HRSTOP(ds->perpage, unmap);
2320 
2321 			if (bitnum < dumpcfg.bitmapsize)
2322 				CQ_PUT(mainq, cp, CBUF_FREEMAP);
2323 			CQ_CLOSE(mainq);
2324 
2325 			ASSERT(ds->npages <= dumphdr->dump_npages);
2326 			ds->percent = ds->npages * 100LL / dumphdr->dump_npages;
2327 			break;
2328 
2329 		case CBUF_WRITE:
2330 
2331 			CQ_PUT(writerq, cp, CBUF_WRITE);
2332 			break;
2333 
2334 		case CBUF_ERRMSG:
2335 
2336 			if (cp->used > 0) {
2337 				cp->buf[cp->size - 2] = '\n';
2338 				cp->buf[cp->size - 1] = '\0';
2339 				if (ds->neednl) {
2340 					uprintf("\n%s", cp->buf);
2341 					ds->neednl = 0;
2342 				} else {
2343 					uprintf("%s", cp->buf);
2344 				}
2345 			}
2346 			CQ_PUT(freebufq, cp, CBUF_FREEBUF);
2347 			break;
2348 
2349 		default:
2350 			uprintf("dump: unexpected buffer state %d, "
2351 			    "buffer will be lost\n", cp->state);
2352 			break;
2353 
2354 		} /* end switch */
2355 
2356 	} /* end while(1) */
2357 }
2358 
2359 #ifdef	COLLECT_METRICS
2360 size_t
2361 dumpsys_metrics(dumpsync_t *ds, char *buf, size_t size)
2362 {
2363 	dumpcfg_t *cfg = &dumpcfg;
2364 	int myid = CPU->cpu_seqid;
2365 	int i, compress_ratio;
2366 	int sec, iorate;
2367 	helper_t *hp, *hpend = &cfg->helper[cfg->nhelper];
2368 	char *e = buf + size;
2369 	char *p = buf;
2370 
2371 	sec = ds->elapsed / (1000 * 1000 * 1000ULL);
2372 	if (sec < 1)
2373 		sec = 1;
2374 
2375 	if (ds->iotime < 1)
2376 		ds->iotime = 1;
2377 	iorate = (ds->nwrite * 100000ULL) / ds->iotime;
2378 
2379 	compress_ratio = 100LL * ds->npages / btopr(ds->nwrite + 1);
2380 
2381 #define	P(...) (p += p < e ? snprintf(p, e - p, __VA_ARGS__) : 0)
2382 
2383 	P("Master cpu_seqid,%d\n", CPU->cpu_seqid);
2384 	P("Master cpu_id,%d\n", CPU->cpu_id);
2385 	P("dump_flags,0x%x\n", dumphdr->dump_flags);
2386 	P("dump_ioerr,%d\n", dump_ioerr);
2387 
2388 	P("Helpers:\n");
2389 	for (i = 0; i < ncpus; i++) {
2390 		if ((i & 15) == 0)
2391 			P(",,%03d,", i);
2392 		if (i == myid)
2393 			P("   M");
2394 		else if (BT_TEST(cfg->helpermap, i))
2395 			P("%4d", cpu_seq[i]->cpu_id);
2396 		else
2397 			P("   *");
2398 		if ((i & 15) == 15)
2399 			P("\n");
2400 	}
2401 
2402 	P("ncbuf_used,%d\n", cfg->ncbuf_used);
2403 	P("ncmap,%d\n", cfg->ncmap);
2404 
2405 	P("Found %ldM ranges,%ld\n", (CBUF_MAPSIZE / DUMP_1MB), cfg->found4m);
2406 	P("Found small pages,%ld\n", cfg->foundsm);
2407 
2408 	P("Compression level,%d\n", cfg->clevel);
2409 	P("Compression type,%s %s\n", cfg->clevel == 0 ? "serial" : "parallel",
2410 	    cfg->clevel >= DUMP_CLEVEL_BZIP2 ? "bzip2" : "lzjb");
2411 	P("Compression ratio,%d.%02d\n", compress_ratio / 100, compress_ratio %
2412 	    100);
2413 	P("nhelper_used,%d\n", cfg->nhelper_used);
2414 
2415 	P("Dump I/O rate MBS,%d.%02d\n", iorate / 100, iorate % 100);
2416 	P("..total bytes,%lld\n", (u_longlong_t)ds->nwrite);
2417 	P("..total nsec,%lld\n", (u_longlong_t)ds->iotime);
2418 	P("dumpbuf.iosize,%ld\n", dumpbuf.iosize);
2419 	P("dumpbuf.size,%ld\n", dumpbuf.size);
2420 
2421 	P("Dump pages/sec,%llu\n", (u_longlong_t)ds->npages / sec);
2422 	P("Dump pages,%llu\n", (u_longlong_t)ds->npages);
2423 	P("Dump time,%d\n", sec);
2424 
2425 	if (ds->pages_mapped > 0)
2426 		P("per-cent map utilization,%d\n", (int)((100 * ds->pages_used)
2427 		    / ds->pages_mapped));
2428 
2429 	P("\nPer-page metrics:\n");
2430 	if (ds->npages > 0) {
2431 		for (hp = cfg->helper; hp != hpend; hp++) {
2432 #define	PERPAGE(x)	ds->perpage.x += hp->perpage.x;
2433 			PERPAGES;
2434 #undef PERPAGE
2435 		}
2436 #define	PERPAGE(x) \
2437 		P("%s nsec/page,%d\n", #x, (int)(ds->perpage.x / ds->npages));
2438 		PERPAGES;
2439 #undef PERPAGE
2440 		P("freebufq.empty,%d\n", (int)(ds->freebufq.empty /
2441 		    ds->npages));
2442 		P("helperq.empty,%d\n", (int)(ds->helperq.empty /
2443 		    ds->npages));
2444 		P("writerq.empty,%d\n", (int)(ds->writerq.empty /
2445 		    ds->npages));
2446 		P("mainq.empty,%d\n", (int)(ds->mainq.empty / ds->npages));
2447 
2448 		P("I/O wait nsec/page,%llu\n", (u_longlong_t)(ds->iowait /
2449 		    ds->npages));
2450 	}
2451 #undef P
2452 	if (p < e)
2453 		bzero(p, e - p);
2454 	return (p - buf);
2455 }
2456 #endif	/* COLLECT_METRICS */
2457 
2458 /*
2459  * Dump the system.
2460  */
2461 void
2462 dumpsys(void)
2463 {
2464 	dumpsync_t *ds = &dumpsync;
2465 	taskq_t *livetaskq = NULL;
2466 	pfn_t pfn;
2467 	pgcnt_t bitnum;
2468 	proc_t *p;
2469 	helper_t *hp, *hpend = &dumpcfg.helper[dumpcfg.nhelper];
2470 	cbuf_t *cp;
2471 	pid_t npids, pidx;
2472 	char *content;
2473 	int save_dump_clevel;
2474 	dumpmlw_t mlw;
2475 	dumpcsize_t datatag;
2476 	dumpdatahdr_t datahdr;
2477 
2478 	if (dumpvp == NULL || dumphdr == NULL) {
2479 		uprintf("skipping system dump - no dump device configured\n");
2480 		if (panicstr) {
2481 			dumpcfg.helpers_wanted = 0;
2482 			dumpsys_spinunlock(&dumpcfg.helper_lock);
2483 		}
2484 		return;
2485 	}
2486 	dumpbuf.cur = dumpbuf.start;
2487 
2488 	/* clear the sync variables */
2489 	ASSERT(dumpcfg.nhelper > 0);
2490 	bzero(ds, sizeof (*ds));
2491 	ds->dumpcpu = CPU->cpu_id;
2492 
2493 	/*
2494 	 * Calculate the starting block for dump.  If we're dumping on a
2495 	 * swap device, start 1/5 of the way in; otherwise, start at the
2496 	 * beginning.  And never use the first page -- it may be a disk label.
2497 	 */
2498 	if (dumpvp->v_flag & VISSWAP)
2499 		dumphdr->dump_start = P2ROUNDUP(dumpvp_size / 5, DUMP_OFFSET);
2500 	else
2501 		dumphdr->dump_start = DUMP_OFFSET;
2502 
2503 	dumphdr->dump_flags = DF_VALID | DF_COMPLETE | DF_LIVE | DF_COMPRESSED;
2504 	dumphdr->dump_crashtime = gethrestime_sec();
2505 	dumphdr->dump_npages = 0;
2506 	dumphdr->dump_nvtop = 0;
2507 	bzero(dumpcfg.bitmap, BT_SIZEOFMAP(dumpcfg.bitmapsize));
2508 	dump_timeleft = dump_timeout;
2509 
2510 	if (panicstr) {
2511 		dumphdr->dump_flags &= ~DF_LIVE;
2512 		(void) VOP_DUMPCTL(dumpvp, DUMP_FREE, NULL, NULL);
2513 		(void) VOP_DUMPCTL(dumpvp, DUMP_ALLOC, NULL, NULL);
2514 		(void) vsnprintf(dumphdr->dump_panicstring, DUMP_PANICSIZE,
2515 		    panicstr, panicargs);
2516 
2517 	}
2518 
2519 	if (dump_conflags & DUMP_ALL)
2520 		content = "all";
2521 	else if (dump_conflags & DUMP_CURPROC)
2522 		content = "kernel + curproc";
2523 	else
2524 		content = "kernel";
2525 	uprintf("dumping to %s, offset %lld, content: %s\n", dumppath,
2526 	    dumphdr->dump_start, content);
2527 
2528 	/* Make sure nodename is current */
2529 	bcopy(utsname.nodename, dumphdr->dump_utsname.nodename, SYS_NMLN);
2530 
2531 	/*
2532 	 * If this is a live dump, try to open a VCHR vnode for better
2533 	 * performance. We must take care to flush the buffer cache
2534 	 * first.
2535 	 */
2536 	if (!panicstr) {
2537 		vnode_t *cdev_vp, *cmn_cdev_vp;
2538 
2539 		ASSERT(dumpbuf.cdev_vp == NULL);
2540 		cdev_vp = makespecvp(VTOS(dumpvp)->s_dev, VCHR);
2541 		if (cdev_vp != NULL) {
2542 			cmn_cdev_vp = common_specvp(cdev_vp);
2543 			if (VOP_OPEN(&cmn_cdev_vp, FREAD | FWRITE, kcred, NULL)
2544 			    == 0) {
2545 				if (vn_has_cached_data(dumpvp))
2546 					(void) pvn_vplist_dirty(dumpvp, 0, NULL,
2547 					    B_INVAL | B_TRUNC, kcred);
2548 				dumpbuf.cdev_vp = cmn_cdev_vp;
2549 			} else {
2550 				VN_RELE(cdev_vp);
2551 			}
2552 		}
2553 	}
2554 
2555 	/*
2556 	 * Leave room for the message and ereport save areas and terminal dump
2557 	 * header.
2558 	 */
2559 	dumpbuf.vp_limit = dumpvp_size - DUMP_LOGSIZE - DUMP_OFFSET -
2560 	    DUMP_ERPTSIZE;
2561 
2562 	/*
2563 	 * Write out the symbol table.  It's no longer compressed,
2564 	 * so its 'size' and 'csize' are equal.
2565 	 */
2566 	dumpbuf.vp_off = dumphdr->dump_ksyms = dumphdr->dump_start + PAGESIZE;
2567 	dumphdr->dump_ksyms_size = dumphdr->dump_ksyms_csize =
2568 	    ksyms_snapshot(dumpvp_ksyms_write, NULL, LONG_MAX);
2569 
2570 	/*
2571 	 * Write out the translation map.
2572 	 */
2573 	dumphdr->dump_map = dumpvp_flush();
2574 	dump_as(&kas);
2575 	dumphdr->dump_nvtop += dump_plat_addr();
2576 
2577 	/*
2578 	 * call into hat, which may have unmapped pages that also need to
2579 	 * be in the dump
2580 	 */
2581 	hat_dump();
2582 
2583 	if (dump_conflags & DUMP_ALL) {
2584 		mutex_enter(&pidlock);
2585 
2586 		for (npids = 0, p = practive; p != NULL; p = p->p_next)
2587 			dumpcfg.pids[npids++] = p->p_pid;
2588 
2589 		mutex_exit(&pidlock);
2590 
2591 		for (pidx = 0; pidx < npids; pidx++)
2592 			(void) dump_process(dumpcfg.pids[pidx]);
2593 
2594 		for (bitnum = 0; bitnum < dumpcfg.bitmapsize; bitnum++) {
2595 			dump_timeleft = dump_timeout;
2596 			BT_SET(dumpcfg.bitmap, bitnum);
2597 		}
2598 		dumphdr->dump_npages = dumpcfg.bitmapsize;
2599 		dumphdr->dump_flags |= DF_ALL;
2600 
2601 	} else if (dump_conflags & DUMP_CURPROC) {
2602 		/*
2603 		 * Determine which pid is to be dumped.  If we're panicking, we
2604 		 * dump the process associated with panic_thread (if any).  If
2605 		 * this is a live dump, we dump the process associated with
2606 		 * curthread.
2607 		 */
2608 		npids = 0;
2609 		if (panicstr) {
2610 			if (panic_thread != NULL &&
2611 			    panic_thread->t_procp != NULL &&
2612 			    panic_thread->t_procp != &p0) {
2613 				dumpcfg.pids[npids++] =
2614 				    panic_thread->t_procp->p_pid;
2615 			}
2616 		} else {
2617 			dumpcfg.pids[npids++] = curthread->t_procp->p_pid;
2618 		}
2619 
2620 		if (npids && dump_process(dumpcfg.pids[0]) == 0)
2621 			dumphdr->dump_flags |= DF_CURPROC;
2622 		else
2623 			dumphdr->dump_flags |= DF_KERNEL;
2624 
2625 	} else {
2626 		dumphdr->dump_flags |= DF_KERNEL;
2627 	}
2628 
2629 	dumphdr->dump_hashmask = (1 << highbit(dumphdr->dump_nvtop - 1)) - 1;
2630 
2631 	/*
2632 	 * Write out the pfn table.
2633 	 */
2634 	dumphdr->dump_pfn = dumpvp_flush();
2635 	dump_init_memlist_walker(&mlw);
2636 	for (bitnum = 0; bitnum < dumpcfg.bitmapsize; bitnum++) {
2637 		dump_timeleft = dump_timeout;
2638 		if (!BT_TEST(dumpcfg.bitmap, bitnum))
2639 			continue;
2640 		pfn = dump_bitnum_to_pfn(bitnum, &mlw);
2641 		ASSERT(pfn != PFN_INVALID);
2642 		dumpvp_write(&pfn, sizeof (pfn_t));
2643 	}
2644 	dump_plat_pfn();
2645 
2646 	/*
2647 	 * Write out all the pages.
2648 	 * Map pages, copy them handling UEs, compress, and write them out.
2649 	 * Cooperate with any helpers running on CPUs in panic_idle().
2650 	 */
2651 	dumphdr->dump_data = dumpvp_flush();
2652 
2653 	bzero(dumpcfg.helpermap, BT_SIZEOFMAP(NCPU));
2654 	ds->live = dumpcfg.clevel > 0 &&
2655 	    (dumphdr->dump_flags & DF_LIVE) != 0;
2656 
2657 	save_dump_clevel = dumpcfg.clevel;
2658 	if (panicstr)
2659 		dumpsys_get_maxmem();
2660 	else if (dumpcfg.clevel >= DUMP_CLEVEL_BZIP2)
2661 		dumpcfg.clevel = DUMP_CLEVEL_LZJB;
2662 
2663 	dumpcfg.nhelper_used = 0;
2664 	for (hp = dumpcfg.helper; hp != hpend; hp++) {
2665 		if (hp->page == NULL) {
2666 			hp->helper = DONEHELPER;
2667 			continue;
2668 		}
2669 		++dumpcfg.nhelper_used;
2670 		hp->helper = FREEHELPER;
2671 		hp->taskqid = NULL;
2672 		hp->ds = ds;
2673 		bzero(&hp->perpage, sizeof (hp->perpage));
2674 		if (dumpcfg.clevel >= DUMP_CLEVEL_BZIP2)
2675 			(void) BZ2_bzCompressReset(&hp->bzstream);
2676 	}
2677 
2678 	CQ_OPEN(freebufq);
2679 	CQ_OPEN(helperq);
2680 
2681 	dumpcfg.ncbuf_used = 0;
2682 	for (cp = dumpcfg.cbuf; cp != &dumpcfg.cbuf[dumpcfg.ncbuf]; cp++) {
2683 		if (cp->buf != NULL) {
2684 			CQ_PUT(freebufq, cp, CBUF_FREEBUF);
2685 			++dumpcfg.ncbuf_used;
2686 		}
2687 	}
2688 
2689 	for (cp = dumpcfg.cmap; cp != &dumpcfg.cmap[dumpcfg.ncmap]; cp++)
2690 		CQ_PUT(mainq, cp, CBUF_FREEMAP);
2691 
2692 	ds->start = gethrtime();
2693 	ds->iowaitts = ds->start;
2694 
2695 	/* start helpers */
2696 	if (ds->live) {
2697 		int n = dumpcfg.nhelper_used;
2698 		int pri = MINCLSYSPRI - 25;
2699 
2700 		livetaskq = taskq_create("LiveDump", n, pri, n, n,
2701 		    TASKQ_PREPOPULATE);
2702 		for (hp = dumpcfg.helper; hp != hpend; hp++) {
2703 			if (hp->page == NULL)
2704 				continue;
2705 			hp->helper = hp - dumpcfg.helper;
2706 			hp->taskqid = taskq_dispatch(livetaskq,
2707 			    dumpsys_live_helper, (void *)hp, TQ_NOSLEEP);
2708 		}
2709 
2710 	} else {
2711 		dumpcfg.helpers_wanted = dumpcfg.clevel > 0;
2712 		dumpsys_spinunlock(&dumpcfg.helper_lock);
2713 	}
2714 
2715 	/* run main task */
2716 	dumpsys_main_task(ds);
2717 
2718 	ds->elapsed = gethrtime() - ds->start;
2719 	if (ds->elapsed < 1)
2720 		ds->elapsed = 1;
2721 
2722 	if (livetaskq != NULL)
2723 		taskq_destroy(livetaskq);
2724 
2725 	if (ds->neednl) {
2726 		uprintf("\n");
2727 		ds->neednl = 0;
2728 	}
2729 
2730 	/* record actual pages dumped */
2731 	dumphdr->dump_npages = ds->npages;
2732 
2733 	/* platform-specific data */
2734 	dumphdr->dump_npages += dump_plat_data(dumpcfg.cbuf[0].buf);
2735 
2736 	/* note any errors by clearing DF_COMPLETE */
2737 	if (dump_ioerr || ds->npages < dumphdr->dump_npages)
2738 		dumphdr->dump_flags &= ~DF_COMPLETE;
2739 
2740 	/* end of stream blocks */
2741 	datatag = 0;
2742 	dumpvp_write(&datatag, sizeof (datatag));
2743 
2744 	/* compression info in data header */
2745 	bzero(&datahdr, sizeof (datahdr));
2746 	datahdr.dump_datahdr_magic = DUMP_DATAHDR_MAGIC;
2747 	datahdr.dump_datahdr_version = DUMP_DATAHDR_VERSION;
2748 	datahdr.dump_maxcsize = CBUF_SIZE;
2749 	datahdr.dump_maxrange = CBUF_MAPSIZE / PAGESIZE;
2750 	datahdr.dump_nstreams = dumpcfg.nhelper_used;
2751 	datahdr.dump_clevel = dumpcfg.clevel;
2752 #ifdef COLLECT_METRICS
2753 	if (dump_metrics_on)
2754 		datahdr.dump_metrics = dumpsys_metrics(ds, dumpcfg.cbuf[0].buf,
2755 		    MIN(dumpcfg.cbuf[0].size, DUMP_OFFSET - sizeof (dumphdr_t) -
2756 		    sizeof (dumpdatahdr_t)));
2757 #endif
2758 	datahdr.dump_data_csize = dumpvp_flush() - dumphdr->dump_data;
2759 
2760 	/*
2761 	 * Write out the initial and terminal dump headers.
2762 	 */
2763 	dumpbuf.vp_off = dumphdr->dump_start;
2764 	dumpvp_write(dumphdr, sizeof (dumphdr_t));
2765 	(void) dumpvp_flush();
2766 
2767 	dumpbuf.vp_limit = dumpvp_size;
2768 	dumpbuf.vp_off = dumpbuf.vp_limit - DUMP_OFFSET;
2769 	dumpvp_write(dumphdr, sizeof (dumphdr_t));
2770 	dumpvp_write(&datahdr, sizeof (dumpdatahdr_t));
2771 	dumpvp_write(dumpcfg.cbuf[0].buf, datahdr.dump_metrics);
2772 
2773 	(void) dumpvp_flush();
2774 
2775 	uprintf("\r%3d%% done: %llu pages dumped, ",
2776 	    ds->percent_done, (u_longlong_t)ds->npages);
2777 
2778 	if (dump_ioerr == 0) {
2779 		uprintf("dump succeeded\n");
2780 	} else {
2781 		uprintf("dump failed: error %d\n", dump_ioerr);
2782 #ifdef DEBUG
2783 		if (panicstr)
2784 			debug_enter("dump failed");
2785 #endif
2786 	}
2787 
2788 	/*
2789 	 * Write out all undelivered messages.  This has to be the *last*
2790 	 * thing we do because the dump process itself emits messages.
2791 	 */
2792 	if (panicstr) {
2793 		dump_ereports();
2794 		dump_messages();
2795 	}
2796 
2797 	delay(2 * hz);	/* let people see the 'done' message */
2798 	dump_timeleft = 0;
2799 	dump_ioerr = 0;
2800 
2801 	/* restore settings after live dump completes */
2802 	if (!panicstr) {
2803 		dumpcfg.clevel = save_dump_clevel;
2804 
2805 		/* release any VCHR open of the dump device */
2806 		if (dumpbuf.cdev_vp != NULL) {
2807 			(void) VOP_CLOSE(dumpbuf.cdev_vp, FREAD | FWRITE, 1, 0,
2808 			    kcred, NULL);
2809 			VN_RELE(dumpbuf.cdev_vp);
2810 			dumpbuf.cdev_vp = NULL;
2811 		}
2812 	}
2813 }
2814 
2815 /*
2816  * This function is called whenever the memory size, as represented
2817  * by the phys_install list, changes.
2818  */
2819 void
2820 dump_resize()
2821 {
2822 	mutex_enter(&dump_lock);
2823 	dumphdr_init();
2824 	dumpbuf_resize();
2825 	dump_update_clevel();
2826 	mutex_exit(&dump_lock);
2827 }
2828 
2829 /*
2830  * This function allows for dynamic resizing of a dump area. It assumes that
2831  * the underlying device has update its appropriate size(9P).
2832  */
2833 int
2834 dumpvp_resize()
2835 {
2836 	int error;
2837 	vattr_t vattr;
2838 
2839 	mutex_enter(&dump_lock);
2840 	vattr.va_mask = AT_SIZE;
2841 	if ((error = VOP_GETATTR(dumpvp, &vattr, 0, kcred, NULL)) != 0) {
2842 		mutex_exit(&dump_lock);
2843 		return (error);
2844 	}
2845 
2846 	if (error == 0 && vattr.va_size < 2 * DUMP_LOGSIZE + DUMP_ERPTSIZE) {
2847 		mutex_exit(&dump_lock);
2848 		return (ENOSPC);
2849 	}
2850 
2851 	dumpvp_size = vattr.va_size & -DUMP_OFFSET;
2852 	mutex_exit(&dump_lock);
2853 	return (0);
2854 }
2855