1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #if defined(__x86) || defined(__amd64) 62 #include <sys/x86_archext.h> 63 #endif 64 65 extern int mp_cpu_start(cpu_t *); 66 extern int mp_cpu_stop(cpu_t *); 67 extern int mp_cpu_poweron(cpu_t *); 68 extern int mp_cpu_poweroff(cpu_t *); 69 extern int mp_cpu_configure(int); 70 extern int mp_cpu_unconfigure(int); 71 extern void mp_cpu_faulted_enter(cpu_t *); 72 extern void mp_cpu_faulted_exit(cpu_t *); 73 74 extern int cmp_cpu_to_chip(processorid_t cpuid); 75 #ifdef __sparcv9 76 extern char *cpu_fru_fmri(cpu_t *cp); 77 #endif 78 79 static void cpu_add_active_internal(cpu_t *cp); 80 static void cpu_remove_active(cpu_t *cp); 81 static void cpu_info_kstat_create(cpu_t *cp); 82 static void cpu_info_kstat_destroy(cpu_t *cp); 83 static void cpu_stats_kstat_create(cpu_t *cp); 84 static void cpu_stats_kstat_destroy(cpu_t *cp); 85 86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 90 91 /* 92 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 93 * and dispatch queue reallocations. The lock ordering with respect to 94 * related locks is: 95 * 96 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 97 * 98 * Warning: Certain sections of code do not use the cpu_lock when 99 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 100 * all cpus are paused during modifications to this list, a solution 101 * to protect the list is too either disable kernel preemption while 102 * walking the list, *or* recheck the cpu_next pointer at each 103 * iteration in the loop. Note that in no cases can any cached 104 * copies of the cpu pointers be kept as they may become invalid. 105 */ 106 kmutex_t cpu_lock; 107 cpu_t *cpu_list; /* list of all CPUs */ 108 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 109 cpu_t *cpu_active; /* list of active CPUs */ 110 static cpuset_t cpu_available; /* set of available CPUs */ 111 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 112 113 /* 114 * max_ncpus keeps the max cpus the system can have. Initially 115 * it's NCPU, but since most archs scan the devtree for cpus 116 * fairly early on during boot, the real max can be known before 117 * ncpus is set (useful for early NCPU based allocations). 118 */ 119 int max_ncpus = NCPU; 120 /* 121 * platforms that set max_ncpus to maxiumum number of cpus that can be 122 * dynamically added will set boot_max_ncpus to the number of cpus found 123 * at device tree scan time during boot. 124 */ 125 int boot_max_ncpus = -1; 126 /* 127 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 128 * used to size arrays that are indexed by CPU id. 129 */ 130 processorid_t max_cpuid = NCPU - 1; 131 132 int ncpus = 1; 133 int ncpus_online = 1; 134 135 /* 136 * CPU that we're trying to offline. Protected by cpu_lock. 137 */ 138 cpu_t *cpu_inmotion; 139 140 /* 141 * Can be raised to suppress further weakbinding, which are instead 142 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 143 * while individual thread weakbinding synchronisation is done under thread 144 * lock. 145 */ 146 int weakbindingbarrier; 147 148 /* 149 * Variables used in pause_cpus(). 150 */ 151 static volatile char safe_list[NCPU]; 152 153 static struct _cpu_pause_info { 154 int cp_spl; /* spl saved in pause_cpus() */ 155 volatile int cp_go; /* Go signal sent after all ready */ 156 int cp_count; /* # of CPUs to pause */ 157 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 158 kthread_id_t cp_paused; 159 } cpu_pause_info; 160 161 static kmutex_t pause_free_mutex; 162 static kcondvar_t pause_free_cv; 163 164 void *(*cpu_pause_func)(void *) = NULL; 165 166 167 static struct cpu_sys_stats_ks_data { 168 kstat_named_t cpu_ticks_idle; 169 kstat_named_t cpu_ticks_user; 170 kstat_named_t cpu_ticks_kernel; 171 kstat_named_t cpu_ticks_wait; 172 kstat_named_t cpu_nsec_idle; 173 kstat_named_t cpu_nsec_user; 174 kstat_named_t cpu_nsec_kernel; 175 kstat_named_t cpu_nsec_intr; 176 kstat_named_t cpu_load_intr; 177 kstat_named_t wait_ticks_io; 178 kstat_named_t bread; 179 kstat_named_t bwrite; 180 kstat_named_t lread; 181 kstat_named_t lwrite; 182 kstat_named_t phread; 183 kstat_named_t phwrite; 184 kstat_named_t pswitch; 185 kstat_named_t trap; 186 kstat_named_t intr; 187 kstat_named_t syscall; 188 kstat_named_t sysread; 189 kstat_named_t syswrite; 190 kstat_named_t sysfork; 191 kstat_named_t sysvfork; 192 kstat_named_t sysexec; 193 kstat_named_t readch; 194 kstat_named_t writech; 195 kstat_named_t rcvint; 196 kstat_named_t xmtint; 197 kstat_named_t mdmint; 198 kstat_named_t rawch; 199 kstat_named_t canch; 200 kstat_named_t outch; 201 kstat_named_t msg; 202 kstat_named_t sema; 203 kstat_named_t namei; 204 kstat_named_t ufsiget; 205 kstat_named_t ufsdirblk; 206 kstat_named_t ufsipage; 207 kstat_named_t ufsinopage; 208 kstat_named_t procovf; 209 kstat_named_t intrthread; 210 kstat_named_t intrblk; 211 kstat_named_t intrunpin; 212 kstat_named_t idlethread; 213 kstat_named_t inv_swtch; 214 kstat_named_t nthreads; 215 kstat_named_t cpumigrate; 216 kstat_named_t xcalls; 217 kstat_named_t mutex_adenters; 218 kstat_named_t rw_rdfails; 219 kstat_named_t rw_wrfails; 220 kstat_named_t modload; 221 kstat_named_t modunload; 222 kstat_named_t bawrite; 223 kstat_named_t iowait; 224 } cpu_sys_stats_ks_data_template = { 225 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 226 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 227 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 228 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 229 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 230 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 231 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 232 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 233 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 234 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 235 { "bread", KSTAT_DATA_UINT64 }, 236 { "bwrite", KSTAT_DATA_UINT64 }, 237 { "lread", KSTAT_DATA_UINT64 }, 238 { "lwrite", KSTAT_DATA_UINT64 }, 239 { "phread", KSTAT_DATA_UINT64 }, 240 { "phwrite", KSTAT_DATA_UINT64 }, 241 { "pswitch", KSTAT_DATA_UINT64 }, 242 { "trap", KSTAT_DATA_UINT64 }, 243 { "intr", KSTAT_DATA_UINT64 }, 244 { "syscall", KSTAT_DATA_UINT64 }, 245 { "sysread", KSTAT_DATA_UINT64 }, 246 { "syswrite", KSTAT_DATA_UINT64 }, 247 { "sysfork", KSTAT_DATA_UINT64 }, 248 { "sysvfork", KSTAT_DATA_UINT64 }, 249 { "sysexec", KSTAT_DATA_UINT64 }, 250 { "readch", KSTAT_DATA_UINT64 }, 251 { "writech", KSTAT_DATA_UINT64 }, 252 { "rcvint", KSTAT_DATA_UINT64 }, 253 { "xmtint", KSTAT_DATA_UINT64 }, 254 { "mdmint", KSTAT_DATA_UINT64 }, 255 { "rawch", KSTAT_DATA_UINT64 }, 256 { "canch", KSTAT_DATA_UINT64 }, 257 { "outch", KSTAT_DATA_UINT64 }, 258 { "msg", KSTAT_DATA_UINT64 }, 259 { "sema", KSTAT_DATA_UINT64 }, 260 { "namei", KSTAT_DATA_UINT64 }, 261 { "ufsiget", KSTAT_DATA_UINT64 }, 262 { "ufsdirblk", KSTAT_DATA_UINT64 }, 263 { "ufsipage", KSTAT_DATA_UINT64 }, 264 { "ufsinopage", KSTAT_DATA_UINT64 }, 265 { "procovf", KSTAT_DATA_UINT64 }, 266 { "intrthread", KSTAT_DATA_UINT64 }, 267 { "intrblk", KSTAT_DATA_UINT64 }, 268 { "intrunpin", KSTAT_DATA_UINT64 }, 269 { "idlethread", KSTAT_DATA_UINT64 }, 270 { "inv_swtch", KSTAT_DATA_UINT64 }, 271 { "nthreads", KSTAT_DATA_UINT64 }, 272 { "cpumigrate", KSTAT_DATA_UINT64 }, 273 { "xcalls", KSTAT_DATA_UINT64 }, 274 { "mutex_adenters", KSTAT_DATA_UINT64 }, 275 { "rw_rdfails", KSTAT_DATA_UINT64 }, 276 { "rw_wrfails", KSTAT_DATA_UINT64 }, 277 { "modload", KSTAT_DATA_UINT64 }, 278 { "modunload", KSTAT_DATA_UINT64 }, 279 { "bawrite", KSTAT_DATA_UINT64 }, 280 { "iowait", KSTAT_DATA_UINT64 }, 281 }; 282 283 static struct cpu_vm_stats_ks_data { 284 kstat_named_t pgrec; 285 kstat_named_t pgfrec; 286 kstat_named_t pgin; 287 kstat_named_t pgpgin; 288 kstat_named_t pgout; 289 kstat_named_t pgpgout; 290 kstat_named_t swapin; 291 kstat_named_t pgswapin; 292 kstat_named_t swapout; 293 kstat_named_t pgswapout; 294 kstat_named_t zfod; 295 kstat_named_t dfree; 296 kstat_named_t scan; 297 kstat_named_t rev; 298 kstat_named_t hat_fault; 299 kstat_named_t as_fault; 300 kstat_named_t maj_fault; 301 kstat_named_t cow_fault; 302 kstat_named_t prot_fault; 303 kstat_named_t softlock; 304 kstat_named_t kernel_asflt; 305 kstat_named_t pgrrun; 306 kstat_named_t execpgin; 307 kstat_named_t execpgout; 308 kstat_named_t execfree; 309 kstat_named_t anonpgin; 310 kstat_named_t anonpgout; 311 kstat_named_t anonfree; 312 kstat_named_t fspgin; 313 kstat_named_t fspgout; 314 kstat_named_t fsfree; 315 } cpu_vm_stats_ks_data_template = { 316 { "pgrec", KSTAT_DATA_UINT64 }, 317 { "pgfrec", KSTAT_DATA_UINT64 }, 318 { "pgin", KSTAT_DATA_UINT64 }, 319 { "pgpgin", KSTAT_DATA_UINT64 }, 320 { "pgout", KSTAT_DATA_UINT64 }, 321 { "pgpgout", KSTAT_DATA_UINT64 }, 322 { "swapin", KSTAT_DATA_UINT64 }, 323 { "pgswapin", KSTAT_DATA_UINT64 }, 324 { "swapout", KSTAT_DATA_UINT64 }, 325 { "pgswapout", KSTAT_DATA_UINT64 }, 326 { "zfod", KSTAT_DATA_UINT64 }, 327 { "dfree", KSTAT_DATA_UINT64 }, 328 { "scan", KSTAT_DATA_UINT64 }, 329 { "rev", KSTAT_DATA_UINT64 }, 330 { "hat_fault", KSTAT_DATA_UINT64 }, 331 { "as_fault", KSTAT_DATA_UINT64 }, 332 { "maj_fault", KSTAT_DATA_UINT64 }, 333 { "cow_fault", KSTAT_DATA_UINT64 }, 334 { "prot_fault", KSTAT_DATA_UINT64 }, 335 { "softlock", KSTAT_DATA_UINT64 }, 336 { "kernel_asflt", KSTAT_DATA_UINT64 }, 337 { "pgrrun", KSTAT_DATA_UINT64 }, 338 { "execpgin", KSTAT_DATA_UINT64 }, 339 { "execpgout", KSTAT_DATA_UINT64 }, 340 { "execfree", KSTAT_DATA_UINT64 }, 341 { "anonpgin", KSTAT_DATA_UINT64 }, 342 { "anonpgout", KSTAT_DATA_UINT64 }, 343 { "anonfree", KSTAT_DATA_UINT64 }, 344 { "fspgin", KSTAT_DATA_UINT64 }, 345 { "fspgout", KSTAT_DATA_UINT64 }, 346 { "fsfree", KSTAT_DATA_UINT64 }, 347 }; 348 349 /* 350 * Force the specified thread to migrate to the appropriate processor. 351 * Called with thread lock held, returns with it dropped. 352 */ 353 static void 354 force_thread_migrate(kthread_id_t tp) 355 { 356 ASSERT(THREAD_LOCK_HELD(tp)); 357 if (tp == curthread) { 358 THREAD_TRANSITION(tp); 359 CL_SETRUN(tp); 360 thread_unlock_nopreempt(tp); 361 swtch(); 362 } else { 363 if (tp->t_state == TS_ONPROC) { 364 cpu_surrender(tp); 365 } else if (tp->t_state == TS_RUN) { 366 (void) dispdeq(tp); 367 setbackdq(tp); 368 } 369 thread_unlock(tp); 370 } 371 } 372 373 /* 374 * Set affinity for a specified CPU. 375 * A reference count is incremented and the affinity is held until the 376 * reference count is decremented to zero by thread_affinity_clear(). 377 * This is so regions of code requiring affinity can be nested. 378 * Caller needs to ensure that cpu_id remains valid, which can be 379 * done by holding cpu_lock across this call, unless the caller 380 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 381 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 382 */ 383 void 384 thread_affinity_set(kthread_id_t t, int cpu_id) 385 { 386 cpu_t *cp; 387 int c; 388 389 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 390 391 if ((c = cpu_id) == CPU_CURRENT) { 392 mutex_enter(&cpu_lock); 393 cpu_id = CPU->cpu_id; 394 } 395 /* 396 * We should be asserting that cpu_lock is held here, but 397 * the NCA code doesn't acquire it. The following assert 398 * should be uncommented when the NCA code is fixed. 399 * 400 * ASSERT(MUTEX_HELD(&cpu_lock)); 401 */ 402 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 403 cp = cpu[cpu_id]; 404 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 405 /* 406 * If there is already a hard affinity requested, and this affinity 407 * conflicts with that, panic. 408 */ 409 thread_lock(t); 410 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 411 panic("affinity_set: setting %p but already bound to %p", 412 (void *)cp, (void *)t->t_bound_cpu); 413 } 414 t->t_affinitycnt++; 415 t->t_bound_cpu = cp; 416 417 /* 418 * Make sure we're running on the right CPU. 419 */ 420 if (cp != t->t_cpu || t != curthread) { 421 force_thread_migrate(t); /* drops thread lock */ 422 } else { 423 thread_unlock(t); 424 } 425 426 if (c == CPU_CURRENT) 427 mutex_exit(&cpu_lock); 428 } 429 430 /* 431 * Wrapper for backward compatibility. 432 */ 433 void 434 affinity_set(int cpu_id) 435 { 436 thread_affinity_set(curthread, cpu_id); 437 } 438 439 /* 440 * Decrement the affinity reservation count and if it becomes zero, 441 * clear the CPU affinity for the current thread, or set it to the user's 442 * software binding request. 443 */ 444 void 445 thread_affinity_clear(kthread_id_t t) 446 { 447 register processorid_t binding; 448 449 thread_lock(t); 450 if (--t->t_affinitycnt == 0) { 451 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 452 /* 453 * Adjust disp_max_unbound_pri if necessary. 454 */ 455 disp_adjust_unbound_pri(t); 456 t->t_bound_cpu = NULL; 457 if (t->t_cpu->cpu_part != t->t_cpupart) { 458 force_thread_migrate(t); 459 return; 460 } 461 } else { 462 t->t_bound_cpu = cpu[binding]; 463 /* 464 * Make sure the thread is running on the bound CPU. 465 */ 466 if (t->t_cpu != t->t_bound_cpu) { 467 force_thread_migrate(t); 468 return; /* already dropped lock */ 469 } 470 } 471 } 472 thread_unlock(t); 473 } 474 475 /* 476 * Wrapper for backward compatibility. 477 */ 478 void 479 affinity_clear(void) 480 { 481 thread_affinity_clear(curthread); 482 } 483 484 /* 485 * Weak cpu affinity. Bind to the "current" cpu for short periods 486 * of time during which the thread must not block (but may be preempted). 487 * Use this instead of kpreempt_disable() when it is only "no migration" 488 * rather than "no preemption" semantics that are required - disabling 489 * preemption holds higher priority threads off of cpu and if the 490 * operation that is protected is more than momentary this is not good 491 * for realtime etc. 492 * 493 * Weakly bound threads will not prevent a cpu from being offlined - 494 * we'll only run them on the cpu to which they are weakly bound but 495 * (because they do not block) we'll always be able to move them on to 496 * another cpu at offline time if we give them just a short moment to 497 * run during which they will unbind. To give a cpu a chance of offlining, 498 * however, we require a barrier to weak bindings that may be raised for a 499 * given cpu (offline/move code may set this and then wait a short time for 500 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 501 * 502 * There are few restrictions on the calling context of thread_nomigrate. 503 * The caller must not hold the thread lock. Calls may be nested. 504 * 505 * After weakbinding a thread must not perform actions that may block. 506 * In particular it must not call thread_affinity_set; calling that when 507 * already weakbound is nonsensical anyway. 508 * 509 * If curthread is prevented from migrating for other reasons 510 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 511 * then the weak binding will succeed even if this cpu is the target of an 512 * offline/move request. 513 */ 514 void 515 thread_nomigrate(void) 516 { 517 cpu_t *cp; 518 kthread_id_t t = curthread; 519 520 again: 521 kpreempt_disable(); 522 cp = CPU; 523 524 /* 525 * A highlevel interrupt must not modify t_nomigrate or 526 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 527 * interrupt thread cannot migrate and we can avoid the 528 * thread_lock call below by short-circuiting here. In either 529 * case we can just return since no migration is possible and 530 * the condition will persist (ie, when we test for these again 531 * in thread_allowmigrate they can't have changed). Migration 532 * is also impossible if we're at or above DISP_LEVEL pil. 533 */ 534 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 535 getpil() >= DISP_LEVEL) { 536 kpreempt_enable(); 537 return; 538 } 539 540 /* 541 * We must be consistent with existing weak bindings. Since we 542 * may be interrupted between the increment of t_nomigrate and 543 * the store to t_weakbound_cpu below we cannot assume that 544 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 545 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 546 * always the case. 547 */ 548 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 549 if (!panicstr) 550 panic("thread_nomigrate: binding to %p but already " 551 "bound to %p", (void *)cp, 552 (void *)t->t_weakbound_cpu); 553 } 554 555 /* 556 * At this point we have preemption disabled and we don't yet hold 557 * the thread lock. So it's possible that somebody else could 558 * set t_bind_cpu here and not be able to force us across to the 559 * new cpu (since we have preemption disabled). 560 */ 561 thread_lock(curthread); 562 563 /* 564 * If further weak bindings are being (temporarily) suppressed then 565 * we'll settle for disabling kernel preemption (which assures 566 * no migration provided the thread does not block which it is 567 * not allowed to if using thread_nomigrate). We must remember 568 * this disposition so we can take appropriate action in 569 * thread_allowmigrate. If this is a nested call and the 570 * thread is already weakbound then fall through as normal. 571 * We remember the decision to settle for kpreempt_disable through 572 * negative nesting counting in t_nomigrate. Once a thread has had one 573 * weakbinding request satisfied in this way any further (nested) 574 * requests will continue to be satisfied in the same way, 575 * even if weak bindings have recommenced. 576 */ 577 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 578 --t->t_nomigrate; 579 thread_unlock(curthread); 580 return; /* with kpreempt_disable still active */ 581 } 582 583 /* 584 * We hold thread_lock so t_bind_cpu cannot change. We could, 585 * however, be running on a different cpu to which we are t_bound_cpu 586 * to (as explained above). If we grant the weak binding request 587 * in that case then the dispatcher must favour our weak binding 588 * over our strong (in which case, just as when preemption is 589 * disabled, we can continue to run on a cpu other than the one to 590 * which we are strongbound; the difference in this case is that 591 * this thread can be preempted and so can appear on the dispatch 592 * queues of a cpu other than the one it is strongbound to). 593 * 594 * If the cpu we are running on does not appear to be a current 595 * offline target (we check cpu_inmotion to determine this - since 596 * we don't hold cpu_lock we may not see a recent store to that, 597 * so it's possible that we at times can grant a weak binding to a 598 * cpu that is an offline target, but that one request will not 599 * prevent the offline from succeeding) then we will always grant 600 * the weak binding request. This includes the case above where 601 * we grant a weakbinding not commensurate with our strong binding. 602 * 603 * If our cpu does appear to be an offline target then we're inclined 604 * not to grant the weakbinding request just yet - we'd prefer to 605 * migrate to another cpu and grant the request there. The 606 * exceptions are those cases where going through preemption code 607 * will not result in us changing cpu: 608 * 609 * . interrupts have already bypassed this case (see above) 610 * . we are already weakbound to this cpu (dispatcher code will 611 * always return us to the weakbound cpu) 612 * . preemption was disabled even before we disabled it above 613 * . we are strongbound to this cpu (if we're strongbound to 614 * another and not yet running there the trip through the 615 * dispatcher will move us to the strongbound cpu and we 616 * will grant the weak binding there) 617 */ 618 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 619 t->t_bound_cpu == cp) { 620 /* 621 * Don't be tempted to store to t_weakbound_cpu only on 622 * the first nested bind request - if we're interrupted 623 * after the increment of t_nomigrate and before the 624 * store to t_weakbound_cpu and the interrupt calls 625 * thread_nomigrate then the assertion in thread_allowmigrate 626 * would fail. 627 */ 628 t->t_nomigrate++; 629 t->t_weakbound_cpu = cp; 630 membar_producer(); 631 thread_unlock(curthread); 632 /* 633 * Now that we have dropped the thread_lock another thread 634 * can set our t_weakbound_cpu, and will try to migrate us 635 * to the strongbound cpu (which will not be prevented by 636 * preemption being disabled since we're about to enable 637 * preemption). We have granted the weakbinding to the current 638 * cpu, so again we are in the position that is is is possible 639 * that our weak and strong bindings differ. Again this 640 * is catered for by dispatcher code which will favour our 641 * weak binding. 642 */ 643 kpreempt_enable(); 644 } else { 645 /* 646 * Move to another cpu before granting the request by 647 * forcing this thread through preemption code. When we 648 * get to set{front,back}dq called from CL_PREEMPT() 649 * cpu_choose() will be used to select a cpu to queue 650 * us on - that will see cpu_inmotion and take 651 * steps to avoid returning us to this cpu. 652 */ 653 cp->cpu_kprunrun = 1; 654 thread_unlock(curthread); 655 kpreempt_enable(); /* will call preempt() */ 656 goto again; 657 } 658 } 659 660 void 661 thread_allowmigrate(void) 662 { 663 kthread_id_t t = curthread; 664 665 ASSERT(t->t_weakbound_cpu == CPU || 666 (t->t_nomigrate < 0 && t->t_preempt > 0) || 667 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 668 getpil() >= DISP_LEVEL); 669 670 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 671 getpil() >= DISP_LEVEL) 672 return; 673 674 if (t->t_nomigrate < 0) { 675 /* 676 * This thread was granted "weak binding" in the 677 * stronger form of kernel preemption disabling. 678 * Undo a level of nesting for both t_nomigrate 679 * and t_preempt. 680 */ 681 ++t->t_nomigrate; 682 kpreempt_enable(); 683 } else if (--t->t_nomigrate == 0) { 684 /* 685 * Time to drop the weak binding. We need to cater 686 * for the case where we're weakbound to a different 687 * cpu than that to which we're strongbound (a very 688 * temporary arrangement that must only persist until 689 * weak binding drops). We don't acquire thread_lock 690 * here so even as this code executes t_bound_cpu 691 * may be changing. So we disable preemption and 692 * a) in the case that t_bound_cpu changes while we 693 * have preemption disabled kprunrun will be set 694 * asynchronously, and b) if before disabling 695 * preemption we were already on a different cpu to 696 * our t_bound_cpu then we set kprunrun ourselves 697 * to force a trip through the dispatcher when 698 * preemption is enabled. 699 */ 700 kpreempt_disable(); 701 if (t->t_bound_cpu && 702 t->t_weakbound_cpu != t->t_bound_cpu) 703 CPU->cpu_kprunrun = 1; 704 t->t_weakbound_cpu = NULL; 705 membar_producer(); 706 kpreempt_enable(); 707 } 708 } 709 710 /* 711 * weakbinding_stop can be used to temporarily cause weakbindings made 712 * with thread_nomigrate to be satisfied through the stronger action of 713 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 714 */ 715 716 void 717 weakbinding_stop(void) 718 { 719 ASSERT(MUTEX_HELD(&cpu_lock)); 720 weakbindingbarrier = 1; 721 membar_producer(); /* make visible before subsequent thread_lock */ 722 } 723 724 void 725 weakbinding_start(void) 726 { 727 ASSERT(MUTEX_HELD(&cpu_lock)); 728 weakbindingbarrier = 0; 729 } 730 731 void 732 null_xcall(void) 733 { 734 } 735 736 /* 737 * This routine is called to place the CPUs in a safe place so that 738 * one of them can be taken off line or placed on line. What we are 739 * trying to do here is prevent a thread from traversing the list 740 * of active CPUs while we are changing it or from getting placed on 741 * the run queue of a CPU that has just gone off line. We do this by 742 * creating a thread with the highest possible prio for each CPU and 743 * having it call this routine. The advantage of this method is that 744 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 745 * This makes disp faster at the expense of making p_online() slower 746 * which is a good trade off. 747 */ 748 static void 749 cpu_pause(int index) 750 { 751 int s; 752 struct _cpu_pause_info *cpi = &cpu_pause_info; 753 volatile char *safe = &safe_list[index]; 754 long lindex = index; 755 756 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 757 758 while (*safe != PAUSE_DIE) { 759 *safe = PAUSE_READY; 760 membar_enter(); /* make sure stores are flushed */ 761 sema_v(&cpi->cp_sem); /* signal requesting thread */ 762 763 /* 764 * Wait here until all pause threads are running. That 765 * indicates that it's safe to do the spl. Until 766 * cpu_pause_info.cp_go is set, we don't want to spl 767 * because that might block clock interrupts needed 768 * to preempt threads on other CPUs. 769 */ 770 while (cpi->cp_go == 0) 771 ; 772 /* 773 * Even though we are at the highest disp prio, we need 774 * to block out all interrupts below LOCK_LEVEL so that 775 * an intr doesn't come in, wake up a thread, and call 776 * setbackdq/setfrontdq. 777 */ 778 s = splhigh(); 779 /* 780 * if cpu_pause_func() has been set then call it using 781 * index as the argument, currently only used by 782 * cpr_suspend_cpus(). This function is used as the 783 * code to execute on the "paused" cpu's when a machine 784 * comes out of a sleep state and CPU's were powered off. 785 * (could also be used for hotplugging CPU's). 786 */ 787 if (cpu_pause_func != NULL) 788 (*cpu_pause_func)((void *)lindex); 789 790 mach_cpu_pause(safe); 791 792 splx(s); 793 /* 794 * Waiting is at an end. Switch out of cpu_pause 795 * loop and resume useful work. 796 */ 797 swtch(); 798 } 799 800 mutex_enter(&pause_free_mutex); 801 *safe = PAUSE_DEAD; 802 cv_broadcast(&pause_free_cv); 803 mutex_exit(&pause_free_mutex); 804 } 805 806 /* 807 * Allow the cpus to start running again. 808 */ 809 void 810 start_cpus() 811 { 812 int i; 813 814 ASSERT(MUTEX_HELD(&cpu_lock)); 815 ASSERT(cpu_pause_info.cp_paused); 816 cpu_pause_info.cp_paused = NULL; 817 for (i = 0; i < NCPU; i++) 818 safe_list[i] = PAUSE_IDLE; 819 membar_enter(); /* make sure stores are flushed */ 820 affinity_clear(); 821 splx(cpu_pause_info.cp_spl); 822 kpreempt_enable(); 823 } 824 825 /* 826 * Allocate a pause thread for a CPU. 827 */ 828 static void 829 cpu_pause_alloc(cpu_t *cp) 830 { 831 kthread_id_t t; 832 long cpun = cp->cpu_id; 833 834 /* 835 * Note, v.v_nglobpris will not change value as long as I hold 836 * cpu_lock. 837 */ 838 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 839 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 840 thread_lock(t); 841 t->t_bound_cpu = cp; 842 t->t_disp_queue = cp->cpu_disp; 843 t->t_affinitycnt = 1; 844 t->t_preempt = 1; 845 thread_unlock(t); 846 cp->cpu_pause_thread = t; 847 /* 848 * Registering a thread in the callback table is usually done 849 * in the initialization code of the thread. In this 850 * case, we do it right after thread creation because the 851 * thread itself may never run, and we need to register the 852 * fact that it is safe for cpr suspend. 853 */ 854 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 855 } 856 857 /* 858 * Free a pause thread for a CPU. 859 */ 860 static void 861 cpu_pause_free(cpu_t *cp) 862 { 863 kthread_id_t t; 864 int cpun = cp->cpu_id; 865 866 ASSERT(MUTEX_HELD(&cpu_lock)); 867 /* 868 * We have to get the thread and tell him to die. 869 */ 870 if ((t = cp->cpu_pause_thread) == NULL) { 871 ASSERT(safe_list[cpun] == PAUSE_IDLE); 872 return; 873 } 874 thread_lock(t); 875 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 876 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 877 t->t_pri = v.v_nglobpris - 1; 878 ASSERT(safe_list[cpun] == PAUSE_IDLE); 879 safe_list[cpun] = PAUSE_DIE; 880 THREAD_TRANSITION(t); 881 setbackdq(t); 882 thread_unlock_nopreempt(t); 883 884 /* 885 * If we don't wait for the thread to actually die, it may try to 886 * run on the wrong cpu as part of an actual call to pause_cpus(). 887 */ 888 mutex_enter(&pause_free_mutex); 889 while (safe_list[cpun] != PAUSE_DEAD) { 890 cv_wait(&pause_free_cv, &pause_free_mutex); 891 } 892 mutex_exit(&pause_free_mutex); 893 safe_list[cpun] = PAUSE_IDLE; 894 895 cp->cpu_pause_thread = NULL; 896 } 897 898 /* 899 * Initialize basic structures for pausing CPUs. 900 */ 901 void 902 cpu_pause_init() 903 { 904 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 905 /* 906 * Create initial CPU pause thread. 907 */ 908 cpu_pause_alloc(CPU); 909 } 910 911 /* 912 * Start the threads used to pause another CPU. 913 */ 914 static int 915 cpu_pause_start(processorid_t cpu_id) 916 { 917 int i; 918 int cpu_count = 0; 919 920 for (i = 0; i < NCPU; i++) { 921 cpu_t *cp; 922 kthread_id_t t; 923 924 cp = cpu[i]; 925 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 926 safe_list[i] = PAUSE_WAIT; 927 continue; 928 } 929 930 /* 931 * Skip CPU if it is quiesced or not yet started. 932 */ 933 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 934 safe_list[i] = PAUSE_WAIT; 935 continue; 936 } 937 938 /* 939 * Start this CPU's pause thread. 940 */ 941 t = cp->cpu_pause_thread; 942 thread_lock(t); 943 /* 944 * Reset the priority, since nglobpris may have 945 * changed since the thread was created, if someone 946 * has loaded the RT (or some other) scheduling 947 * class. 948 */ 949 t->t_pri = v.v_nglobpris - 1; 950 THREAD_TRANSITION(t); 951 setbackdq(t); 952 thread_unlock_nopreempt(t); 953 ++cpu_count; 954 } 955 return (cpu_count); 956 } 957 958 959 /* 960 * Pause all of the CPUs except the one we are on by creating a high 961 * priority thread bound to those CPUs. 962 * 963 * Note that one must be extremely careful regarding code 964 * executed while CPUs are paused. Since a CPU may be paused 965 * while a thread scheduling on that CPU is holding an adaptive 966 * lock, code executed with CPUs paused must not acquire adaptive 967 * (or low-level spin) locks. Also, such code must not block, 968 * since the thread that is supposed to initiate the wakeup may 969 * never run. 970 * 971 * With a few exceptions, the restrictions on code executed with CPUs 972 * paused match those for code executed at high-level interrupt 973 * context. 974 */ 975 void 976 pause_cpus(cpu_t *off_cp) 977 { 978 processorid_t cpu_id; 979 int i; 980 struct _cpu_pause_info *cpi = &cpu_pause_info; 981 982 ASSERT(MUTEX_HELD(&cpu_lock)); 983 ASSERT(cpi->cp_paused == NULL); 984 cpi->cp_count = 0; 985 cpi->cp_go = 0; 986 for (i = 0; i < NCPU; i++) 987 safe_list[i] = PAUSE_IDLE; 988 kpreempt_disable(); 989 990 /* 991 * If running on the cpu that is going offline, get off it. 992 * This is so that it won't be necessary to rechoose a CPU 993 * when done. 994 */ 995 if (CPU == off_cp) 996 cpu_id = off_cp->cpu_next_part->cpu_id; 997 else 998 cpu_id = CPU->cpu_id; 999 affinity_set(cpu_id); 1000 1001 /* 1002 * Start the pause threads and record how many were started 1003 */ 1004 cpi->cp_count = cpu_pause_start(cpu_id); 1005 1006 /* 1007 * Now wait for all CPUs to be running the pause thread. 1008 */ 1009 while (cpi->cp_count > 0) { 1010 /* 1011 * Spin reading the count without grabbing the disp 1012 * lock to make sure we don't prevent the pause 1013 * threads from getting the lock. 1014 */ 1015 while (sema_held(&cpi->cp_sem)) 1016 ; 1017 if (sema_tryp(&cpi->cp_sem)) 1018 --cpi->cp_count; 1019 } 1020 cpi->cp_go = 1; /* all have reached cpu_pause */ 1021 1022 /* 1023 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1024 * to PAUSE_WAIT.) 1025 */ 1026 for (i = 0; i < NCPU; i++) { 1027 while (safe_list[i] != PAUSE_WAIT) 1028 ; 1029 } 1030 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1031 cpi->cp_paused = curthread; 1032 } 1033 1034 /* 1035 * Check whether the current thread has CPUs paused 1036 */ 1037 int 1038 cpus_paused(void) 1039 { 1040 if (cpu_pause_info.cp_paused != NULL) { 1041 ASSERT(cpu_pause_info.cp_paused == curthread); 1042 return (1); 1043 } 1044 return (0); 1045 } 1046 1047 static cpu_t * 1048 cpu_get_all(processorid_t cpun) 1049 { 1050 ASSERT(MUTEX_HELD(&cpu_lock)); 1051 1052 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1053 return (NULL); 1054 return (cpu[cpun]); 1055 } 1056 1057 /* 1058 * Check whether cpun is a valid processor id and whether it should be 1059 * visible from the current zone. If it is, return a pointer to the 1060 * associated CPU structure. 1061 */ 1062 cpu_t * 1063 cpu_get(processorid_t cpun) 1064 { 1065 cpu_t *c; 1066 1067 ASSERT(MUTEX_HELD(&cpu_lock)); 1068 c = cpu_get_all(cpun); 1069 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1070 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1071 return (NULL); 1072 return (c); 1073 } 1074 1075 /* 1076 * The following functions should be used to check CPU states in the kernel. 1077 * They should be invoked with cpu_lock held. Kernel subsystems interested 1078 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1079 * states. Those are for user-land (and system call) use only. 1080 */ 1081 1082 /* 1083 * Determine whether the CPU is online and handling interrupts. 1084 */ 1085 int 1086 cpu_is_online(cpu_t *cpu) 1087 { 1088 ASSERT(MUTEX_HELD(&cpu_lock)); 1089 return (cpu_flagged_online(cpu->cpu_flags)); 1090 } 1091 1092 /* 1093 * Determine whether the CPU is offline (this includes spare and faulted). 1094 */ 1095 int 1096 cpu_is_offline(cpu_t *cpu) 1097 { 1098 ASSERT(MUTEX_HELD(&cpu_lock)); 1099 return (cpu_flagged_offline(cpu->cpu_flags)); 1100 } 1101 1102 /* 1103 * Determine whether the CPU is powered off. 1104 */ 1105 int 1106 cpu_is_poweredoff(cpu_t *cpu) 1107 { 1108 ASSERT(MUTEX_HELD(&cpu_lock)); 1109 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1110 } 1111 1112 /* 1113 * Determine whether the CPU is handling interrupts. 1114 */ 1115 int 1116 cpu_is_nointr(cpu_t *cpu) 1117 { 1118 ASSERT(MUTEX_HELD(&cpu_lock)); 1119 return (cpu_flagged_nointr(cpu->cpu_flags)); 1120 } 1121 1122 /* 1123 * Determine whether the CPU is active (scheduling threads). 1124 */ 1125 int 1126 cpu_is_active(cpu_t *cpu) 1127 { 1128 ASSERT(MUTEX_HELD(&cpu_lock)); 1129 return (cpu_flagged_active(cpu->cpu_flags)); 1130 } 1131 1132 /* 1133 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1134 */ 1135 int 1136 cpu_flagged_online(cpu_flag_t cpu_flags) 1137 { 1138 return (cpu_flagged_active(cpu_flags) && 1139 (cpu_flags & CPU_ENABLE)); 1140 } 1141 1142 int 1143 cpu_flagged_offline(cpu_flag_t cpu_flags) 1144 { 1145 return (((cpu_flags & CPU_POWEROFF) == 0) && 1146 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1147 } 1148 1149 int 1150 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1151 { 1152 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1153 } 1154 1155 int 1156 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1157 { 1158 return (cpu_flagged_active(cpu_flags) && 1159 (cpu_flags & CPU_ENABLE) == 0); 1160 } 1161 1162 int 1163 cpu_flagged_active(cpu_flag_t cpu_flags) 1164 { 1165 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1166 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1167 } 1168 1169 /* 1170 * Bring the indicated CPU online. 1171 */ 1172 int 1173 cpu_online(cpu_t *cp) 1174 { 1175 int error = 0; 1176 1177 /* 1178 * Handle on-line request. 1179 * This code must put the new CPU on the active list before 1180 * starting it because it will not be paused, and will start 1181 * using the active list immediately. The real start occurs 1182 * when the CPU_QUIESCED flag is turned off. 1183 */ 1184 1185 ASSERT(MUTEX_HELD(&cpu_lock)); 1186 1187 /* 1188 * Put all the cpus into a known safe place. 1189 * No mutexes can be entered while CPUs are paused. 1190 */ 1191 error = mp_cpu_start(cp); /* arch-dep hook */ 1192 if (error == 0) { 1193 pg_cpupart_in(cp, cp->cpu_part); 1194 pause_cpus(NULL); 1195 cpu_add_active_internal(cp); 1196 if (cp->cpu_flags & CPU_FAULTED) { 1197 cp->cpu_flags &= ~CPU_FAULTED; 1198 mp_cpu_faulted_exit(cp); 1199 } 1200 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1201 CPU_SPARE); 1202 start_cpus(); 1203 cpu_stats_kstat_create(cp); 1204 cpu_create_intrstat(cp); 1205 lgrp_kstat_create(cp); 1206 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1207 cpu_intr_enable(cp); /* arch-dep hook */ 1208 cpu_set_state(cp); 1209 cyclic_online(cp); 1210 poke_cpu(cp->cpu_id); 1211 } 1212 1213 return (error); 1214 } 1215 1216 /* 1217 * Take the indicated CPU offline. 1218 */ 1219 int 1220 cpu_offline(cpu_t *cp, int flags) 1221 { 1222 cpupart_t *pp; 1223 int error = 0; 1224 cpu_t *ncp; 1225 int intr_enable; 1226 int cyclic_off = 0; 1227 int loop_count; 1228 int no_quiesce = 0; 1229 int (*bound_func)(struct cpu *, int); 1230 kthread_t *t; 1231 lpl_t *cpu_lpl; 1232 proc_t *p; 1233 int lgrp_diff_lpl; 1234 1235 ASSERT(MUTEX_HELD(&cpu_lock)); 1236 1237 /* 1238 * If we're going from faulted or spare to offline, just 1239 * clear these flags and update CPU state. 1240 */ 1241 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1242 if (cp->cpu_flags & CPU_FAULTED) { 1243 cp->cpu_flags &= ~CPU_FAULTED; 1244 mp_cpu_faulted_exit(cp); 1245 } 1246 cp->cpu_flags &= ~CPU_SPARE; 1247 cpu_set_state(cp); 1248 return (0); 1249 } 1250 1251 /* 1252 * Handle off-line request. 1253 */ 1254 pp = cp->cpu_part; 1255 /* 1256 * Don't offline last online CPU in partition 1257 */ 1258 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1259 return (EBUSY); 1260 /* 1261 * Unbind all thread bound to our CPU if we were asked to. 1262 */ 1263 if (flags & CPU_FORCED && (error = cpu_unbind(cp->cpu_id)) != 0) 1264 return (error); 1265 /* 1266 * We shouldn't be bound to this CPU ourselves. 1267 */ 1268 if (curthread->t_bound_cpu == cp) 1269 return (EBUSY); 1270 1271 /* 1272 * Tell interested parties that this CPU is going offline. 1273 */ 1274 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1275 1276 /* 1277 * Tell the PG subsystem that the CPU is leaving the partition 1278 */ 1279 pg_cpupart_out(cp, pp); 1280 1281 /* 1282 * Take the CPU out of interrupt participation so we won't find 1283 * bound kernel threads. If the architecture cannot completely 1284 * shut off interrupts on the CPU, don't quiesce it, but don't 1285 * run anything but interrupt thread... this is indicated by 1286 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1287 * off. 1288 */ 1289 intr_enable = cp->cpu_flags & CPU_ENABLE; 1290 if (intr_enable) 1291 no_quiesce = cpu_intr_disable(cp); 1292 1293 /* 1294 * Record that we are aiming to offline this cpu. This acts as 1295 * a barrier to further weak binding requests in thread_nomigrate 1296 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1297 * lean away from this cpu. Further strong bindings are already 1298 * avoided since we hold cpu_lock. Since threads that are set 1299 * runnable around now and others coming off the target cpu are 1300 * directed away from the target, existing strong and weak bindings 1301 * (especially the latter) to the target cpu stand maximum chance of 1302 * being able to unbind during the short delay loop below (if other 1303 * unbound threads compete they may not see cpu in time to unbind 1304 * even if they would do so immediately. 1305 */ 1306 cpu_inmotion = cp; 1307 membar_enter(); 1308 1309 /* 1310 * Check for kernel threads (strong or weak) bound to that CPU. 1311 * Strongly bound threads may not unbind, and we'll have to return 1312 * EBUSY. Weakly bound threads should always disappear - we've 1313 * stopped more weak binding with cpu_inmotion and existing 1314 * bindings will drain imminently (they may not block). Nonetheless 1315 * we will wait for a fixed period for all bound threads to disappear. 1316 * Inactive interrupt threads are OK (they'll be in TS_FREE 1317 * state). If test finds some bound threads, wait a few ticks 1318 * to give short-lived threads (such as interrupts) chance to 1319 * complete. Note that if no_quiesce is set, i.e. this cpu 1320 * is required to service interrupts, then we take the route 1321 * that permits interrupt threads to be active (or bypassed). 1322 */ 1323 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1324 1325 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1326 if (loop_count >= 5) { 1327 error = EBUSY; /* some threads still bound */ 1328 break; 1329 } 1330 1331 /* 1332 * If some threads were assigned, give them 1333 * a chance to complete or move. 1334 * 1335 * This assumes that the clock_thread is not bound 1336 * to any CPU, because the clock_thread is needed to 1337 * do the delay(hz/100). 1338 * 1339 * Note: we still hold the cpu_lock while waiting for 1340 * the next clock tick. This is OK since it isn't 1341 * needed for anything else except processor_bind(2), 1342 * and system initialization. If we drop the lock, 1343 * we would risk another p_online disabling the last 1344 * processor. 1345 */ 1346 delay(hz/100); 1347 } 1348 1349 if (error == 0 && cyclic_off == 0) { 1350 if (!cyclic_offline(cp)) { 1351 /* 1352 * We must have bound cyclics... 1353 */ 1354 error = EBUSY; 1355 goto out; 1356 } 1357 cyclic_off = 1; 1358 } 1359 1360 /* 1361 * Call mp_cpu_stop() to perform any special operations 1362 * needed for this machine architecture to offline a CPU. 1363 */ 1364 if (error == 0) 1365 error = mp_cpu_stop(cp); /* arch-dep hook */ 1366 1367 /* 1368 * If that all worked, take the CPU offline and decrement 1369 * ncpus_online. 1370 */ 1371 if (error == 0) { 1372 /* 1373 * Put all the cpus into a known safe place. 1374 * No mutexes can be entered while CPUs are paused. 1375 */ 1376 pause_cpus(cp); 1377 /* 1378 * Repeat the operation, if necessary, to make sure that 1379 * all outstanding low-level interrupts run to completion 1380 * before we set the CPU_QUIESCED flag. It's also possible 1381 * that a thread has weak bound to the cpu despite our raising 1382 * cpu_inmotion above since it may have loaded that 1383 * value before the barrier became visible (this would have 1384 * to be the thread that was on the target cpu at the time 1385 * we raised the barrier). 1386 */ 1387 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1388 (*bound_func)(cp, 1)) { 1389 start_cpus(); 1390 (void) mp_cpu_start(cp); 1391 goto again; 1392 } 1393 ncp = cp->cpu_next_part; 1394 cpu_lpl = cp->cpu_lpl; 1395 ASSERT(cpu_lpl != NULL); 1396 1397 /* 1398 * Remove the CPU from the list of active CPUs. 1399 */ 1400 cpu_remove_active(cp); 1401 1402 /* 1403 * Walk the active process list and look for threads 1404 * whose home lgroup needs to be updated, or 1405 * the last CPU they run on is the one being offlined now. 1406 */ 1407 1408 ASSERT(curthread->t_cpu != cp); 1409 for (p = practive; p != NULL; p = p->p_next) { 1410 1411 t = p->p_tlist; 1412 1413 if (t == NULL) 1414 continue; 1415 1416 lgrp_diff_lpl = 0; 1417 1418 do { 1419 ASSERT(t->t_lpl != NULL); 1420 /* 1421 * Taking last CPU in lpl offline 1422 * Rehome thread if it is in this lpl 1423 * Otherwise, update the count of how many 1424 * threads are in this CPU's lgroup but have 1425 * a different lpl. 1426 */ 1427 1428 if (cpu_lpl->lpl_ncpu == 0) { 1429 if (t->t_lpl == cpu_lpl) 1430 lgrp_move_thread(t, 1431 lgrp_choose(t, 1432 t->t_cpupart), 0); 1433 else if (t->t_lpl->lpl_lgrpid == 1434 cpu_lpl->lpl_lgrpid) 1435 lgrp_diff_lpl++; 1436 } 1437 ASSERT(t->t_lpl->lpl_ncpu > 0); 1438 1439 /* 1440 * Update CPU last ran on if it was this CPU 1441 */ 1442 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1443 t->t_cpu = disp_lowpri_cpu(ncp, 1444 t->t_lpl, t->t_pri, NULL); 1445 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1446 t->t_weakbound_cpu == cp); 1447 1448 t = t->t_forw; 1449 } while (t != p->p_tlist); 1450 1451 /* 1452 * Didn't find any threads in the same lgroup as this 1453 * CPU with a different lpl, so remove the lgroup from 1454 * the process lgroup bitmask. 1455 */ 1456 1457 if (lgrp_diff_lpl == 0) 1458 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1459 } 1460 1461 /* 1462 * Walk thread list looking for threads that need to be 1463 * rehomed, since there are some threads that are not in 1464 * their process's p_tlist. 1465 */ 1466 1467 t = curthread; 1468 do { 1469 ASSERT(t != NULL && t->t_lpl != NULL); 1470 1471 /* 1472 * Rehome threads with same lpl as this CPU when this 1473 * is the last CPU in the lpl. 1474 */ 1475 1476 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1477 lgrp_move_thread(t, 1478 lgrp_choose(t, t->t_cpupart), 1); 1479 1480 ASSERT(t->t_lpl->lpl_ncpu > 0); 1481 1482 /* 1483 * Update CPU last ran on if it was this CPU 1484 */ 1485 1486 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1487 t->t_cpu = disp_lowpri_cpu(ncp, 1488 t->t_lpl, t->t_pri, NULL); 1489 } 1490 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1491 t->t_weakbound_cpu == cp); 1492 t = t->t_next; 1493 1494 } while (t != curthread); 1495 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1496 cp->cpu_flags |= CPU_OFFLINE; 1497 disp_cpu_inactive(cp); 1498 if (!no_quiesce) 1499 cp->cpu_flags |= CPU_QUIESCED; 1500 ncpus_online--; 1501 cpu_set_state(cp); 1502 cpu_inmotion = NULL; 1503 start_cpus(); 1504 cpu_stats_kstat_destroy(cp); 1505 cpu_delete_intrstat(cp); 1506 lgrp_kstat_destroy(cp); 1507 } 1508 1509 out: 1510 cpu_inmotion = NULL; 1511 1512 /* 1513 * If we failed, re-enable interrupts. 1514 * Do this even if cpu_intr_disable returned an error, because 1515 * it may have partially disabled interrupts. 1516 */ 1517 if (error && intr_enable) 1518 cpu_intr_enable(cp); 1519 1520 /* 1521 * If we failed, but managed to offline the cyclic subsystem on this 1522 * CPU, bring it back online. 1523 */ 1524 if (error && cyclic_off) 1525 cyclic_online(cp); 1526 1527 /* 1528 * If we failed, tell the PG subsystem that the CPU is back 1529 */ 1530 pg_cpupart_in(cp, pp); 1531 1532 /* 1533 * If we failed, we need to notify everyone that this CPU is back on. 1534 */ 1535 if (error != 0) 1536 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1537 1538 return (error); 1539 } 1540 1541 /* 1542 * Mark the indicated CPU as faulted, taking it offline. 1543 */ 1544 int 1545 cpu_faulted(cpu_t *cp, int flags) 1546 { 1547 int error = 0; 1548 1549 ASSERT(MUTEX_HELD(&cpu_lock)); 1550 ASSERT(!cpu_is_poweredoff(cp)); 1551 1552 if (cpu_is_offline(cp)) { 1553 cp->cpu_flags &= ~CPU_SPARE; 1554 cp->cpu_flags |= CPU_FAULTED; 1555 mp_cpu_faulted_enter(cp); 1556 cpu_set_state(cp); 1557 return (0); 1558 } 1559 1560 if ((error = cpu_offline(cp, flags)) == 0) { 1561 cp->cpu_flags |= CPU_FAULTED; 1562 mp_cpu_faulted_enter(cp); 1563 cpu_set_state(cp); 1564 } 1565 1566 return (error); 1567 } 1568 1569 /* 1570 * Mark the indicated CPU as a spare, taking it offline. 1571 */ 1572 int 1573 cpu_spare(cpu_t *cp, int flags) 1574 { 1575 int error = 0; 1576 1577 ASSERT(MUTEX_HELD(&cpu_lock)); 1578 ASSERT(!cpu_is_poweredoff(cp)); 1579 1580 if (cpu_is_offline(cp)) { 1581 if (cp->cpu_flags & CPU_FAULTED) { 1582 cp->cpu_flags &= ~CPU_FAULTED; 1583 mp_cpu_faulted_exit(cp); 1584 } 1585 cp->cpu_flags |= CPU_SPARE; 1586 cpu_set_state(cp); 1587 return (0); 1588 } 1589 1590 if ((error = cpu_offline(cp, flags)) == 0) { 1591 cp->cpu_flags |= CPU_SPARE; 1592 cpu_set_state(cp); 1593 } 1594 1595 return (error); 1596 } 1597 1598 /* 1599 * Take the indicated CPU from poweroff to offline. 1600 */ 1601 int 1602 cpu_poweron(cpu_t *cp) 1603 { 1604 int error = ENOTSUP; 1605 1606 ASSERT(MUTEX_HELD(&cpu_lock)); 1607 ASSERT(cpu_is_poweredoff(cp)); 1608 1609 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1610 if (error == 0) 1611 cpu_set_state(cp); 1612 1613 return (error); 1614 } 1615 1616 /* 1617 * Take the indicated CPU from any inactive state to powered off. 1618 */ 1619 int 1620 cpu_poweroff(cpu_t *cp) 1621 { 1622 int error = ENOTSUP; 1623 1624 ASSERT(MUTEX_HELD(&cpu_lock)); 1625 ASSERT(cpu_is_offline(cp)); 1626 1627 if (!(cp->cpu_flags & CPU_QUIESCED)) 1628 return (EBUSY); /* not completely idle */ 1629 1630 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1631 if (error == 0) 1632 cpu_set_state(cp); 1633 1634 return (error); 1635 } 1636 1637 /* 1638 * Initialize the CPU lists for the first CPU. 1639 */ 1640 void 1641 cpu_list_init(cpu_t *cp) 1642 { 1643 cp->cpu_next = cp; 1644 cp->cpu_prev = cp; 1645 cpu_list = cp; 1646 clock_cpu_list = cp; 1647 1648 cp->cpu_next_onln = cp; 1649 cp->cpu_prev_onln = cp; 1650 cpu_active = cp; 1651 1652 cp->cpu_seqid = 0; 1653 CPUSET_ADD(cpu_seqid_inuse, 0); 1654 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1655 cp_default.cp_mach = &cp_default_mach; 1656 cp_default.cp_cpulist = cp; 1657 cp_default.cp_ncpus = 1; 1658 cp->cpu_next_part = cp; 1659 cp->cpu_prev_part = cp; 1660 cp->cpu_part = &cp_default; 1661 1662 CPUSET_ADD(cpu_available, cp->cpu_id); 1663 } 1664 1665 /* 1666 * Insert a CPU into the list of available CPUs. 1667 */ 1668 void 1669 cpu_add_unit(cpu_t *cp) 1670 { 1671 int seqid; 1672 1673 ASSERT(MUTEX_HELD(&cpu_lock)); 1674 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1675 1676 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1677 1678 /* 1679 * Note: most users of the cpu_list will grab the 1680 * cpu_lock to insure that it isn't modified. However, 1681 * certain users can't or won't do that. To allow this 1682 * we pause the other cpus. Users who walk the list 1683 * without cpu_lock, must disable kernel preemption 1684 * to insure that the list isn't modified underneath 1685 * them. Also, any cached pointers to cpu structures 1686 * must be revalidated by checking to see if the 1687 * cpu_next pointer points to itself. This check must 1688 * be done with the cpu_lock held or kernel preemption 1689 * disabled. This check relies upon the fact that 1690 * old cpu structures are not free'ed or cleared after 1691 * then are removed from the cpu_list. 1692 * 1693 * Note that the clock code walks the cpu list dereferencing 1694 * the cpu_part pointer, so we need to initialize it before 1695 * adding the cpu to the list. 1696 */ 1697 cp->cpu_part = &cp_default; 1698 (void) pause_cpus(NULL); 1699 cp->cpu_next = cpu_list; 1700 cp->cpu_prev = cpu_list->cpu_prev; 1701 cpu_list->cpu_prev->cpu_next = cp; 1702 cpu_list->cpu_prev = cp; 1703 start_cpus(); 1704 1705 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1706 continue; 1707 CPUSET_ADD(cpu_seqid_inuse, seqid); 1708 cp->cpu_seqid = seqid; 1709 ASSERT(ncpus < max_ncpus); 1710 ncpus++; 1711 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1712 cpu[cp->cpu_id] = cp; 1713 CPUSET_ADD(cpu_available, cp->cpu_id); 1714 1715 /* 1716 * allocate a pause thread for this CPU. 1717 */ 1718 cpu_pause_alloc(cp); 1719 1720 /* 1721 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1722 * link them into a list of just that CPU. 1723 * This is so that disp_lowpri_cpu will work for thread_create in 1724 * pause_cpus() when called from the startup thread in a new CPU. 1725 */ 1726 cp->cpu_next_onln = cp; 1727 cp->cpu_prev_onln = cp; 1728 cpu_info_kstat_create(cp); 1729 cp->cpu_next_part = cp; 1730 cp->cpu_prev_part = cp; 1731 1732 init_cpu_mstate(cp, CMS_SYSTEM); 1733 1734 pool_pset_mod = gethrtime(); 1735 } 1736 1737 /* 1738 * Do the opposite of cpu_add_unit(). 1739 */ 1740 void 1741 cpu_del_unit(int cpuid) 1742 { 1743 struct cpu *cp, *cpnext; 1744 1745 ASSERT(MUTEX_HELD(&cpu_lock)); 1746 cp = cpu[cpuid]; 1747 ASSERT(cp != NULL); 1748 1749 ASSERT(cp->cpu_next_onln == cp); 1750 ASSERT(cp->cpu_prev_onln == cp); 1751 ASSERT(cp->cpu_next_part == cp); 1752 ASSERT(cp->cpu_prev_part == cp); 1753 1754 /* 1755 * Tear down the CPU's physical ID cache, and update any 1756 * processor groups 1757 */ 1758 pg_cpu_fini(cp); 1759 pghw_physid_destroy(cp); 1760 1761 /* 1762 * Destroy kstat stuff. 1763 */ 1764 cpu_info_kstat_destroy(cp); 1765 term_cpu_mstate(cp); 1766 /* 1767 * Free up pause thread. 1768 */ 1769 cpu_pause_free(cp); 1770 CPUSET_DEL(cpu_available, cp->cpu_id); 1771 cpu[cp->cpu_id] = NULL; 1772 /* 1773 * The clock thread and mutex_vector_enter cannot hold the 1774 * cpu_lock while traversing the cpu list, therefore we pause 1775 * all other threads by pausing the other cpus. These, and any 1776 * other routines holding cpu pointers while possibly sleeping 1777 * must be sure to call kpreempt_disable before processing the 1778 * list and be sure to check that the cpu has not been deleted 1779 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1780 * to keep the deleted cpu structure around. 1781 * 1782 * Note that this MUST be done AFTER cpu_available 1783 * has been updated so that we don't waste time 1784 * trying to pause the cpu we're trying to delete. 1785 */ 1786 (void) pause_cpus(NULL); 1787 1788 cpnext = cp->cpu_next; 1789 cp->cpu_prev->cpu_next = cp->cpu_next; 1790 cp->cpu_next->cpu_prev = cp->cpu_prev; 1791 if (cp == cpu_list) 1792 cpu_list = cpnext; 1793 1794 /* 1795 * Signals that the cpu has been deleted (see above). 1796 */ 1797 cp->cpu_next = NULL; 1798 cp->cpu_prev = NULL; 1799 1800 start_cpus(); 1801 1802 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1803 ncpus--; 1804 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1805 1806 pool_pset_mod = gethrtime(); 1807 } 1808 1809 /* 1810 * Add a CPU to the list of active CPUs. 1811 * This routine must not get any locks, because other CPUs are paused. 1812 */ 1813 static void 1814 cpu_add_active_internal(cpu_t *cp) 1815 { 1816 cpupart_t *pp = cp->cpu_part; 1817 1818 ASSERT(MUTEX_HELD(&cpu_lock)); 1819 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1820 1821 ncpus_online++; 1822 cpu_set_state(cp); 1823 cp->cpu_next_onln = cpu_active; 1824 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1825 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1826 cpu_active->cpu_prev_onln = cp; 1827 1828 if (pp->cp_cpulist) { 1829 cp->cpu_next_part = pp->cp_cpulist; 1830 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1831 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1832 pp->cp_cpulist->cpu_prev_part = cp; 1833 } else { 1834 ASSERT(pp->cp_ncpus == 0); 1835 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1836 } 1837 pp->cp_ncpus++; 1838 if (pp->cp_ncpus == 1) { 1839 cp_numparts_nonempty++; 1840 ASSERT(cp_numparts_nonempty != 0); 1841 } 1842 1843 pg_cpu_active(cp); 1844 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1845 1846 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1847 } 1848 1849 /* 1850 * Add a CPU to the list of active CPUs. 1851 * This is called from machine-dependent layers when a new CPU is started. 1852 */ 1853 void 1854 cpu_add_active(cpu_t *cp) 1855 { 1856 pg_cpupart_in(cp, cp->cpu_part); 1857 1858 pause_cpus(NULL); 1859 cpu_add_active_internal(cp); 1860 start_cpus(); 1861 1862 cpu_stats_kstat_create(cp); 1863 cpu_create_intrstat(cp); 1864 lgrp_kstat_create(cp); 1865 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1866 } 1867 1868 1869 /* 1870 * Remove a CPU from the list of active CPUs. 1871 * This routine must not get any locks, because other CPUs are paused. 1872 */ 1873 /* ARGSUSED */ 1874 static void 1875 cpu_remove_active(cpu_t *cp) 1876 { 1877 cpupart_t *pp = cp->cpu_part; 1878 1879 ASSERT(MUTEX_HELD(&cpu_lock)); 1880 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1881 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1882 1883 pg_cpu_inactive(cp); 1884 1885 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1886 1887 if (cp == clock_cpu_list) 1888 clock_cpu_list = cp->cpu_next_onln; 1889 1890 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1891 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1892 if (cpu_active == cp) { 1893 cpu_active = cp->cpu_next_onln; 1894 } 1895 cp->cpu_next_onln = cp; 1896 cp->cpu_prev_onln = cp; 1897 1898 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1899 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1900 if (pp->cp_cpulist == cp) { 1901 pp->cp_cpulist = cp->cpu_next_part; 1902 ASSERT(pp->cp_cpulist != cp); 1903 } 1904 cp->cpu_next_part = cp; 1905 cp->cpu_prev_part = cp; 1906 pp->cp_ncpus--; 1907 if (pp->cp_ncpus == 0) { 1908 cp_numparts_nonempty--; 1909 ASSERT(cp_numparts_nonempty != 0); 1910 } 1911 } 1912 1913 /* 1914 * Routine used to setup a newly inserted CPU in preparation for starting 1915 * it running code. 1916 */ 1917 int 1918 cpu_configure(int cpuid) 1919 { 1920 int retval = 0; 1921 1922 ASSERT(MUTEX_HELD(&cpu_lock)); 1923 1924 /* 1925 * Some structures are statically allocated based upon 1926 * the maximum number of cpus the system supports. Do not 1927 * try to add anything beyond this limit. 1928 */ 1929 if (cpuid < 0 || cpuid >= NCPU) { 1930 return (EINVAL); 1931 } 1932 1933 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1934 return (EALREADY); 1935 } 1936 1937 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1938 return (retval); 1939 } 1940 1941 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1942 cpu_set_state(cpu[cpuid]); 1943 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1944 if (retval != 0) 1945 (void) mp_cpu_unconfigure(cpuid); 1946 1947 return (retval); 1948 } 1949 1950 /* 1951 * Routine used to cleanup a CPU that has been powered off. This will 1952 * destroy all per-cpu information related to this cpu. 1953 */ 1954 int 1955 cpu_unconfigure(int cpuid) 1956 { 1957 int error; 1958 1959 ASSERT(MUTEX_HELD(&cpu_lock)); 1960 1961 if (cpu[cpuid] == NULL) { 1962 return (ENODEV); 1963 } 1964 1965 if (cpu[cpuid]->cpu_flags == 0) { 1966 return (EALREADY); 1967 } 1968 1969 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1970 return (EBUSY); 1971 } 1972 1973 if (cpu[cpuid]->cpu_props != NULL) { 1974 (void) nvlist_free(cpu[cpuid]->cpu_props); 1975 cpu[cpuid]->cpu_props = NULL; 1976 } 1977 1978 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1979 1980 if (error != 0) 1981 return (error); 1982 1983 return (mp_cpu_unconfigure(cpuid)); 1984 } 1985 1986 /* 1987 * Routines for registering and de-registering cpu_setup callback functions. 1988 * 1989 * Caller's context 1990 * These routines must not be called from a driver's attach(9E) or 1991 * detach(9E) entry point. 1992 * 1993 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1994 */ 1995 1996 /* 1997 * Ideally, these would be dynamically allocated and put into a linked 1998 * list; however that is not feasible because the registration routine 1999 * has to be available before the kmem allocator is working (in fact, 2000 * it is called by the kmem allocator init code). In any case, there 2001 * are quite a few extra entries for future users. 2002 */ 2003 #define NCPU_SETUPS 20 2004 2005 struct cpu_setup { 2006 cpu_setup_func_t *func; 2007 void *arg; 2008 } cpu_setups[NCPU_SETUPS]; 2009 2010 void 2011 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2012 { 2013 int i; 2014 2015 ASSERT(MUTEX_HELD(&cpu_lock)); 2016 2017 for (i = 0; i < NCPU_SETUPS; i++) 2018 if (cpu_setups[i].func == NULL) 2019 break; 2020 if (i >= NCPU_SETUPS) 2021 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2022 2023 cpu_setups[i].func = func; 2024 cpu_setups[i].arg = arg; 2025 } 2026 2027 void 2028 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2029 { 2030 int i; 2031 2032 ASSERT(MUTEX_HELD(&cpu_lock)); 2033 2034 for (i = 0; i < NCPU_SETUPS; i++) 2035 if ((cpu_setups[i].func == func) && 2036 (cpu_setups[i].arg == arg)) 2037 break; 2038 if (i >= NCPU_SETUPS) 2039 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2040 "deregister"); 2041 2042 cpu_setups[i].func = NULL; 2043 cpu_setups[i].arg = 0; 2044 } 2045 2046 /* 2047 * Call any state change hooks for this CPU, ignore any errors. 2048 */ 2049 void 2050 cpu_state_change_notify(int id, cpu_setup_t what) 2051 { 2052 int i; 2053 2054 ASSERT(MUTEX_HELD(&cpu_lock)); 2055 2056 for (i = 0; i < NCPU_SETUPS; i++) { 2057 if (cpu_setups[i].func != NULL) { 2058 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2059 } 2060 } 2061 } 2062 2063 /* 2064 * Call any state change hooks for this CPU, undo it if error found. 2065 */ 2066 static int 2067 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2068 { 2069 int i; 2070 int retval = 0; 2071 2072 ASSERT(MUTEX_HELD(&cpu_lock)); 2073 2074 for (i = 0; i < NCPU_SETUPS; i++) { 2075 if (cpu_setups[i].func != NULL) { 2076 retval = cpu_setups[i].func(what, id, 2077 cpu_setups[i].arg); 2078 if (retval) { 2079 for (i--; i >= 0; i--) { 2080 if (cpu_setups[i].func != NULL) 2081 cpu_setups[i].func(undo, 2082 id, cpu_setups[i].arg); 2083 } 2084 break; 2085 } 2086 } 2087 } 2088 return (retval); 2089 } 2090 2091 /* 2092 * Export information about this CPU via the kstat mechanism. 2093 */ 2094 static struct { 2095 kstat_named_t ci_state; 2096 kstat_named_t ci_state_begin; 2097 kstat_named_t ci_cpu_type; 2098 kstat_named_t ci_fpu_type; 2099 kstat_named_t ci_clock_MHz; 2100 kstat_named_t ci_chip_id; 2101 kstat_named_t ci_implementation; 2102 kstat_named_t ci_brandstr; 2103 kstat_named_t ci_core_id; 2104 kstat_named_t ci_curr_clock_Hz; 2105 kstat_named_t ci_supp_freq_Hz; 2106 #if defined(__sparcv9) 2107 kstat_named_t ci_device_ID; 2108 kstat_named_t ci_cpu_fru; 2109 #endif 2110 #if defined(__x86) 2111 kstat_named_t ci_vendorstr; 2112 kstat_named_t ci_family; 2113 kstat_named_t ci_model; 2114 kstat_named_t ci_step; 2115 kstat_named_t ci_clogid; 2116 kstat_named_t ci_ncpuperchip; 2117 kstat_named_t ci_ncoreperchip; 2118 #endif 2119 } cpu_info_template = { 2120 { "state", KSTAT_DATA_CHAR }, 2121 { "state_begin", KSTAT_DATA_LONG }, 2122 { "cpu_type", KSTAT_DATA_CHAR }, 2123 { "fpu_type", KSTAT_DATA_CHAR }, 2124 { "clock_MHz", KSTAT_DATA_LONG }, 2125 { "chip_id", KSTAT_DATA_LONG }, 2126 { "implementation", KSTAT_DATA_STRING }, 2127 { "brand", KSTAT_DATA_STRING }, 2128 { "core_id", KSTAT_DATA_LONG }, 2129 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2130 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2131 #if defined(__sparcv9) 2132 { "device_ID", KSTAT_DATA_UINT64 }, 2133 { "cpu_fru", KSTAT_DATA_STRING }, 2134 #endif 2135 #if defined(__x86) 2136 { "vendor_id", KSTAT_DATA_STRING }, 2137 { "family", KSTAT_DATA_INT32 }, 2138 { "model", KSTAT_DATA_INT32 }, 2139 { "stepping", KSTAT_DATA_INT32 }, 2140 { "clog_id", KSTAT_DATA_INT32 }, 2141 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2142 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2143 #endif 2144 }; 2145 2146 static kmutex_t cpu_info_template_lock; 2147 2148 static int 2149 cpu_info_kstat_update(kstat_t *ksp, int rw) 2150 { 2151 cpu_t *cp = ksp->ks_private; 2152 const char *pi_state; 2153 2154 if (rw == KSTAT_WRITE) 2155 return (EACCES); 2156 2157 switch (cp->cpu_type_info.pi_state) { 2158 case P_ONLINE: 2159 pi_state = PS_ONLINE; 2160 break; 2161 case P_POWEROFF: 2162 pi_state = PS_POWEROFF; 2163 break; 2164 case P_NOINTR: 2165 pi_state = PS_NOINTR; 2166 break; 2167 case P_FAULTED: 2168 pi_state = PS_FAULTED; 2169 break; 2170 case P_SPARE: 2171 pi_state = PS_SPARE; 2172 break; 2173 case P_OFFLINE: 2174 pi_state = PS_OFFLINE; 2175 break; 2176 default: 2177 pi_state = "unknown"; 2178 } 2179 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2180 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2181 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2182 cp->cpu_type_info.pi_processor_type, 15); 2183 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2184 cp->cpu_type_info.pi_fputypes, 15); 2185 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2186 cpu_info_template.ci_chip_id.value.l = 2187 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2188 kstat_named_setstr(&cpu_info_template.ci_implementation, 2189 cp->cpu_idstr); 2190 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2191 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2192 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2193 cp->cpu_curr_clock; 2194 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2195 cp->cpu_supp_freqs); 2196 #if defined(__sparcv9) 2197 cpu_info_template.ci_device_ID.value.ui64 = 2198 cpunodes[cp->cpu_id].device_id; 2199 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2200 #endif 2201 #if defined(__x86) 2202 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2203 cpuid_getvendorstr(cp)); 2204 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2205 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2206 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2207 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2208 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2209 cpu_info_template.ci_ncoreperchip.value.l = 2210 cpuid_get_ncore_per_chip(cp); 2211 #endif 2212 2213 return (0); 2214 } 2215 2216 static void 2217 cpu_info_kstat_create(cpu_t *cp) 2218 { 2219 zoneid_t zoneid; 2220 2221 ASSERT(MUTEX_HELD(&cpu_lock)); 2222 2223 if (pool_pset_enabled()) 2224 zoneid = GLOBAL_ZONEID; 2225 else 2226 zoneid = ALL_ZONES; 2227 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2228 NULL, "misc", KSTAT_TYPE_NAMED, 2229 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2230 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2231 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2232 #if defined(__sparcv9) 2233 cp->cpu_info_kstat->ks_data_size += 2234 strlen(cpu_fru_fmri(cp)) + 1; 2235 #endif 2236 #if defined(__x86) 2237 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2238 #endif 2239 if (cp->cpu_supp_freqs != NULL) 2240 cp->cpu_info_kstat->ks_data_size += 2241 strlen(cp->cpu_supp_freqs) + 1; 2242 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2243 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2244 cp->cpu_info_kstat->ks_private = cp; 2245 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2246 kstat_install(cp->cpu_info_kstat); 2247 } 2248 } 2249 2250 static void 2251 cpu_info_kstat_destroy(cpu_t *cp) 2252 { 2253 ASSERT(MUTEX_HELD(&cpu_lock)); 2254 2255 kstat_delete(cp->cpu_info_kstat); 2256 cp->cpu_info_kstat = NULL; 2257 } 2258 2259 /* 2260 * Create and install kstats for the boot CPU. 2261 */ 2262 void 2263 cpu_kstat_init(cpu_t *cp) 2264 { 2265 mutex_enter(&cpu_lock); 2266 cpu_info_kstat_create(cp); 2267 cpu_stats_kstat_create(cp); 2268 cpu_create_intrstat(cp); 2269 cpu_set_state(cp); 2270 mutex_exit(&cpu_lock); 2271 } 2272 2273 /* 2274 * Make visible to the zone that subset of the cpu information that would be 2275 * initialized when a cpu is configured (but still offline). 2276 */ 2277 void 2278 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2279 { 2280 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2281 2282 ASSERT(MUTEX_HELD(&cpu_lock)); 2283 ASSERT(pool_pset_enabled()); 2284 ASSERT(cp != NULL); 2285 2286 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2287 zone->zone_ncpus++; 2288 ASSERT(zone->zone_ncpus <= ncpus); 2289 } 2290 if (cp->cpu_info_kstat != NULL) 2291 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2292 } 2293 2294 /* 2295 * Make visible to the zone that subset of the cpu information that would be 2296 * initialized when a previously configured cpu is onlined. 2297 */ 2298 void 2299 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2300 { 2301 kstat_t *ksp; 2302 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2303 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2304 processorid_t cpun; 2305 2306 ASSERT(MUTEX_HELD(&cpu_lock)); 2307 ASSERT(pool_pset_enabled()); 2308 ASSERT(cp != NULL); 2309 ASSERT(cpu_is_active(cp)); 2310 2311 cpun = cp->cpu_id; 2312 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2313 zone->zone_ncpus_online++; 2314 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2315 } 2316 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2317 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2318 != NULL) { 2319 kstat_zone_add(ksp, zoneid); 2320 kstat_rele(ksp); 2321 } 2322 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2323 kstat_zone_add(ksp, zoneid); 2324 kstat_rele(ksp); 2325 } 2326 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2327 kstat_zone_add(ksp, zoneid); 2328 kstat_rele(ksp); 2329 } 2330 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2331 NULL) { 2332 kstat_zone_add(ksp, zoneid); 2333 kstat_rele(ksp); 2334 } 2335 } 2336 2337 /* 2338 * Update relevant kstats such that cpu is now visible to processes 2339 * executing in specified zone. 2340 */ 2341 void 2342 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2343 { 2344 cpu_visibility_configure(cp, zone); 2345 if (cpu_is_active(cp)) 2346 cpu_visibility_online(cp, zone); 2347 } 2348 2349 /* 2350 * Make invisible to the zone that subset of the cpu information that would be 2351 * torn down when a previously offlined cpu is unconfigured. 2352 */ 2353 void 2354 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2355 { 2356 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2357 2358 ASSERT(MUTEX_HELD(&cpu_lock)); 2359 ASSERT(pool_pset_enabled()); 2360 ASSERT(cp != NULL); 2361 2362 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2363 ASSERT(zone->zone_ncpus != 0); 2364 zone->zone_ncpus--; 2365 } 2366 if (cp->cpu_info_kstat) 2367 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2368 } 2369 2370 /* 2371 * Make invisible to the zone that subset of the cpu information that would be 2372 * torn down when a cpu is offlined (but still configured). 2373 */ 2374 void 2375 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2376 { 2377 kstat_t *ksp; 2378 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2379 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2380 processorid_t cpun; 2381 2382 ASSERT(MUTEX_HELD(&cpu_lock)); 2383 ASSERT(pool_pset_enabled()); 2384 ASSERT(cp != NULL); 2385 ASSERT(cpu_is_active(cp)); 2386 2387 cpun = cp->cpu_id; 2388 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2389 ASSERT(zone->zone_ncpus_online != 0); 2390 zone->zone_ncpus_online--; 2391 } 2392 2393 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2394 NULL) { 2395 kstat_zone_remove(ksp, zoneid); 2396 kstat_rele(ksp); 2397 } 2398 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2399 kstat_zone_remove(ksp, zoneid); 2400 kstat_rele(ksp); 2401 } 2402 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2403 kstat_zone_remove(ksp, zoneid); 2404 kstat_rele(ksp); 2405 } 2406 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2407 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2408 != NULL) { 2409 kstat_zone_remove(ksp, zoneid); 2410 kstat_rele(ksp); 2411 } 2412 } 2413 2414 /* 2415 * Update relevant kstats such that cpu is no longer visible to processes 2416 * executing in specified zone. 2417 */ 2418 void 2419 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2420 { 2421 if (cpu_is_active(cp)) 2422 cpu_visibility_offline(cp, zone); 2423 cpu_visibility_unconfigure(cp, zone); 2424 } 2425 2426 /* 2427 * Bind a thread to a CPU as requested. 2428 */ 2429 int 2430 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2431 int *error) 2432 { 2433 processorid_t binding; 2434 cpu_t *cp; 2435 2436 ASSERT(MUTEX_HELD(&cpu_lock)); 2437 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2438 2439 thread_lock(tp); 2440 2441 /* 2442 * Record old binding, but change the obind, which was initialized 2443 * to PBIND_NONE, only if this thread has a binding. This avoids 2444 * reporting PBIND_NONE for a process when some LWPs are bound. 2445 */ 2446 binding = tp->t_bind_cpu; 2447 if (binding != PBIND_NONE) 2448 *obind = binding; /* record old binding */ 2449 2450 if (bind == PBIND_QUERY) { 2451 thread_unlock(tp); 2452 return (0); 2453 } 2454 2455 /* 2456 * If this thread/LWP cannot be bound because of permission 2457 * problems, just note that and return success so that the 2458 * other threads/LWPs will be bound. This is the way 2459 * processor_bind() is defined to work. 2460 * 2461 * Binding will get EPERM if the thread is of system class 2462 * or hasprocperm() fails. 2463 */ 2464 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2465 *error = EPERM; 2466 thread_unlock(tp); 2467 return (0); 2468 } 2469 2470 binding = bind; 2471 if (binding != PBIND_NONE) { 2472 cp = cpu[binding]; 2473 /* 2474 * Make sure binding is in right partition. 2475 */ 2476 if (tp->t_cpupart != cp->cpu_part) { 2477 *error = EINVAL; 2478 thread_unlock(tp); 2479 return (0); 2480 } 2481 } 2482 tp->t_bind_cpu = binding; /* set new binding */ 2483 2484 /* 2485 * If there is no system-set reason for affinity, set 2486 * the t_bound_cpu field to reflect the binding. 2487 */ 2488 if (tp->t_affinitycnt == 0) { 2489 if (binding == PBIND_NONE) { 2490 /* 2491 * We may need to adjust disp_max_unbound_pri 2492 * since we're becoming unbound. 2493 */ 2494 disp_adjust_unbound_pri(tp); 2495 2496 tp->t_bound_cpu = NULL; /* set new binding */ 2497 2498 /* 2499 * Move thread to lgroup with strongest affinity 2500 * after unbinding 2501 */ 2502 if (tp->t_lgrp_affinity) 2503 lgrp_move_thread(tp, 2504 lgrp_choose(tp, tp->t_cpupart), 1); 2505 2506 if (tp->t_state == TS_ONPROC && 2507 tp->t_cpu->cpu_part != tp->t_cpupart) 2508 cpu_surrender(tp); 2509 } else { 2510 lpl_t *lpl; 2511 2512 tp->t_bound_cpu = cp; 2513 ASSERT(cp->cpu_lpl != NULL); 2514 2515 /* 2516 * Set home to lgroup with most affinity containing CPU 2517 * that thread is being bound or minimum bounding 2518 * lgroup if no affinities set 2519 */ 2520 if (tp->t_lgrp_affinity) 2521 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2522 LGRP_NONE, B_FALSE); 2523 else 2524 lpl = cp->cpu_lpl; 2525 2526 if (tp->t_lpl != lpl) { 2527 /* can't grab cpu_lock */ 2528 lgrp_move_thread(tp, lpl, 1); 2529 } 2530 2531 /* 2532 * Make the thread switch to the bound CPU. 2533 * If the thread is runnable, we need to 2534 * requeue it even if t_cpu is already set 2535 * to the right CPU, since it may be on a 2536 * kpreempt queue and need to move to a local 2537 * queue. We could check t_disp_queue to 2538 * avoid unnecessary overhead if it's already 2539 * on the right queue, but since this isn't 2540 * a performance-critical operation it doesn't 2541 * seem worth the extra code and complexity. 2542 * 2543 * If the thread is weakbound to the cpu then it will 2544 * resist the new binding request until the weak 2545 * binding drops. The cpu_surrender or requeueing 2546 * below could be skipped in such cases (since it 2547 * will have no effect), but that would require 2548 * thread_allowmigrate to acquire thread_lock so 2549 * we'll take the very occasional hit here instead. 2550 */ 2551 if (tp->t_state == TS_ONPROC) { 2552 cpu_surrender(tp); 2553 } else if (tp->t_state == TS_RUN) { 2554 cpu_t *ocp = tp->t_cpu; 2555 2556 (void) dispdeq(tp); 2557 setbackdq(tp); 2558 /* 2559 * Either on the bound CPU's disp queue now, 2560 * or swapped out or on the swap queue. 2561 */ 2562 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2563 tp->t_weakbound_cpu == ocp || 2564 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2565 != TS_LOAD); 2566 } 2567 } 2568 } 2569 2570 /* 2571 * Our binding has changed; set TP_CHANGEBIND. 2572 */ 2573 tp->t_proc_flag |= TP_CHANGEBIND; 2574 aston(tp); 2575 2576 thread_unlock(tp); 2577 2578 return (0); 2579 } 2580 2581 #if CPUSET_WORDS > 1 2582 2583 /* 2584 * Functions for implementing cpuset operations when a cpuset is more 2585 * than one word. On platforms where a cpuset is a single word these 2586 * are implemented as macros in cpuvar.h. 2587 */ 2588 2589 void 2590 cpuset_all(cpuset_t *s) 2591 { 2592 int i; 2593 2594 for (i = 0; i < CPUSET_WORDS; i++) 2595 s->cpub[i] = ~0UL; 2596 } 2597 2598 void 2599 cpuset_all_but(cpuset_t *s, uint_t cpu) 2600 { 2601 cpuset_all(s); 2602 CPUSET_DEL(*s, cpu); 2603 } 2604 2605 void 2606 cpuset_only(cpuset_t *s, uint_t cpu) 2607 { 2608 CPUSET_ZERO(*s); 2609 CPUSET_ADD(*s, cpu); 2610 } 2611 2612 int 2613 cpuset_isnull(cpuset_t *s) 2614 { 2615 int i; 2616 2617 for (i = 0; i < CPUSET_WORDS; i++) 2618 if (s->cpub[i] != 0) 2619 return (0); 2620 return (1); 2621 } 2622 2623 int 2624 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2625 { 2626 int i; 2627 2628 for (i = 0; i < CPUSET_WORDS; i++) 2629 if (s1->cpub[i] != s2->cpub[i]) 2630 return (0); 2631 return (1); 2632 } 2633 2634 uint_t 2635 cpuset_find(cpuset_t *s) 2636 { 2637 2638 uint_t i; 2639 uint_t cpu = (uint_t)-1; 2640 2641 /* 2642 * Find a cpu in the cpuset 2643 */ 2644 for (i = 0; i < CPUSET_WORDS; i++) { 2645 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2646 if (cpu != (uint_t)-1) { 2647 cpu += i * BT_NBIPUL; 2648 break; 2649 } 2650 } 2651 return (cpu); 2652 } 2653 2654 void 2655 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2656 { 2657 int i, j; 2658 uint_t bit; 2659 2660 /* 2661 * First, find the smallest cpu id in the set. 2662 */ 2663 for (i = 0; i < CPUSET_WORDS; i++) { 2664 if (s->cpub[i] != 0) { 2665 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2666 ASSERT(bit != (uint_t)-1); 2667 *smallestid = bit + (i * BT_NBIPUL); 2668 2669 /* 2670 * Now find the largest cpu id in 2671 * the set and return immediately. 2672 * Done in an inner loop to avoid 2673 * having to break out of the first 2674 * loop. 2675 */ 2676 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2677 if (s->cpub[j] != 0) { 2678 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2679 ASSERT(bit != (uint_t)-1); 2680 *largestid = bit + (j * BT_NBIPUL); 2681 ASSERT(*largestid >= *smallestid); 2682 return; 2683 } 2684 } 2685 2686 /* 2687 * If this code is reached, a 2688 * smallestid was found, but not a 2689 * largestid. The cpuset must have 2690 * been changed during the course 2691 * of this function call. 2692 */ 2693 ASSERT(0); 2694 } 2695 } 2696 *smallestid = *largestid = CPUSET_NOTINSET; 2697 } 2698 2699 #endif /* CPUSET_WORDS */ 2700 2701 /* 2702 * Unbind all user threads bound to a given CPU. 2703 */ 2704 int 2705 cpu_unbind(processorid_t cpu) 2706 { 2707 processorid_t obind; 2708 kthread_t *tp; 2709 int ret = 0; 2710 proc_t *pp; 2711 int err, berr = 0; 2712 2713 ASSERT(MUTEX_HELD(&cpu_lock)); 2714 2715 mutex_enter(&pidlock); 2716 for (pp = practive; pp != NULL; pp = pp->p_next) { 2717 mutex_enter(&pp->p_lock); 2718 tp = pp->p_tlist; 2719 /* 2720 * Skip zombies, kernel processes, and processes in 2721 * other zones, if called from a non-global zone. 2722 */ 2723 if (tp == NULL || (pp->p_flag & SSYS) || 2724 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2725 mutex_exit(&pp->p_lock); 2726 continue; 2727 } 2728 do { 2729 if (tp->t_bind_cpu != cpu) 2730 continue; 2731 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2732 if (ret == 0) 2733 ret = err; 2734 } while ((tp = tp->t_forw) != pp->p_tlist); 2735 mutex_exit(&pp->p_lock); 2736 } 2737 mutex_exit(&pidlock); 2738 if (ret == 0) 2739 ret = berr; 2740 return (ret); 2741 } 2742 2743 2744 /* 2745 * Destroy all remaining bound threads on a cpu. 2746 */ 2747 void 2748 cpu_destroy_bound_threads(cpu_t *cp) 2749 { 2750 extern id_t syscid; 2751 register kthread_id_t t, tlist, tnext; 2752 2753 /* 2754 * Destroy all remaining bound threads on the cpu. This 2755 * should include both the interrupt threads and the idle thread. 2756 * This requires some care, since we need to traverse the 2757 * thread list with the pidlock mutex locked, but thread_free 2758 * also locks the pidlock mutex. So, we collect the threads 2759 * we're going to reap in a list headed by "tlist", then we 2760 * unlock the pidlock mutex and traverse the tlist list, 2761 * doing thread_free's on the thread's. Simple, n'est pas? 2762 * Also, this depends on thread_free not mucking with the 2763 * t_next and t_prev links of the thread. 2764 */ 2765 2766 if ((t = curthread) != NULL) { 2767 2768 tlist = NULL; 2769 mutex_enter(&pidlock); 2770 do { 2771 tnext = t->t_next; 2772 if (t->t_bound_cpu == cp) { 2773 2774 /* 2775 * We've found a bound thread, carefully unlink 2776 * it out of the thread list, and add it to 2777 * our "tlist". We "know" we don't have to 2778 * worry about unlinking curthread (the thread 2779 * that is executing this code). 2780 */ 2781 t->t_next->t_prev = t->t_prev; 2782 t->t_prev->t_next = t->t_next; 2783 t->t_next = tlist; 2784 tlist = t; 2785 ASSERT(t->t_cid == syscid); 2786 /* wake up anyone blocked in thread_join */ 2787 cv_broadcast(&t->t_joincv); 2788 /* 2789 * t_lwp set by interrupt threads and not 2790 * cleared. 2791 */ 2792 t->t_lwp = NULL; 2793 /* 2794 * Pause and idle threads always have 2795 * t_state set to TS_ONPROC. 2796 */ 2797 t->t_state = TS_FREE; 2798 t->t_prev = NULL; /* Just in case */ 2799 } 2800 2801 } while ((t = tnext) != curthread); 2802 2803 mutex_exit(&pidlock); 2804 2805 mutex_sync(); 2806 for (t = tlist; t != NULL; t = tnext) { 2807 tnext = t->t_next; 2808 thread_free(t); 2809 } 2810 } 2811 } 2812 2813 /* 2814 * Update the cpu_supp_freqs of this cpu. This information is returned 2815 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2816 * maintain the kstat data size. 2817 */ 2818 void 2819 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2820 { 2821 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2822 const char *lfreqs = clkstr; 2823 boolean_t kstat_exists = B_FALSE; 2824 kstat_t *ksp; 2825 size_t len; 2826 2827 /* 2828 * A NULL pointer means we only support one speed. 2829 */ 2830 if (freqs == NULL) 2831 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2832 cp->cpu_curr_clock); 2833 else 2834 lfreqs = freqs; 2835 2836 /* 2837 * Make sure the frequency doesn't change while a snapshot is 2838 * going on. Of course, we only need to worry about this if 2839 * the kstat exists. 2840 */ 2841 if ((ksp = cp->cpu_info_kstat) != NULL) { 2842 mutex_enter(ksp->ks_lock); 2843 kstat_exists = B_TRUE; 2844 } 2845 2846 /* 2847 * Free any previously allocated string and if the kstat 2848 * already exists, then update its data size. 2849 */ 2850 if (cp->cpu_supp_freqs != NULL) { 2851 len = strlen(cp->cpu_supp_freqs) + 1; 2852 kmem_free(cp->cpu_supp_freqs, len); 2853 if (kstat_exists) 2854 ksp->ks_data_size -= len; 2855 } 2856 2857 /* 2858 * Allocate the new string and set the pointer. 2859 */ 2860 len = strlen(lfreqs) + 1; 2861 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2862 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2863 2864 /* 2865 * If the kstat already exists then update the data size and 2866 * free the lock. 2867 */ 2868 if (kstat_exists) { 2869 ksp->ks_data_size += len; 2870 mutex_exit(ksp->ks_lock); 2871 } 2872 } 2873 2874 /* 2875 * processor_info(2) and p_online(2) status support functions 2876 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2877 * for use in communicating processor state information to userland. Kernel 2878 * subsystems should only be using the cpu_flags value directly. Subsystems 2879 * modifying cpu_flags should record the state change via a call to the 2880 * cpu_set_state(). 2881 */ 2882 2883 /* 2884 * Update the pi_state of this CPU. This function provides the CPU status for 2885 * the information returned by processor_info(2). 2886 */ 2887 void 2888 cpu_set_state(cpu_t *cpu) 2889 { 2890 ASSERT(MUTEX_HELD(&cpu_lock)); 2891 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2892 cpu->cpu_state_begin = gethrestime_sec(); 2893 pool_cpu_mod = gethrtime(); 2894 } 2895 2896 /* 2897 * Return offline/online/other status for the indicated CPU. Use only for 2898 * communication with user applications; cpu_flags provides the in-kernel 2899 * interface. 2900 */ 2901 int 2902 cpu_get_state(cpu_t *cpu) 2903 { 2904 ASSERT(MUTEX_HELD(&cpu_lock)); 2905 if (cpu->cpu_flags & CPU_POWEROFF) 2906 return (P_POWEROFF); 2907 else if (cpu->cpu_flags & CPU_FAULTED) 2908 return (P_FAULTED); 2909 else if (cpu->cpu_flags & CPU_SPARE) 2910 return (P_SPARE); 2911 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2912 return (P_OFFLINE); 2913 else if (cpu->cpu_flags & CPU_ENABLE) 2914 return (P_ONLINE); 2915 else 2916 return (P_NOINTR); 2917 } 2918 2919 /* 2920 * Return processor_info(2) state as a string. 2921 */ 2922 const char * 2923 cpu_get_state_str(cpu_t *cpu) 2924 { 2925 const char *string; 2926 2927 switch (cpu_get_state(cpu)) { 2928 case P_ONLINE: 2929 string = PS_ONLINE; 2930 break; 2931 case P_POWEROFF: 2932 string = PS_POWEROFF; 2933 break; 2934 case P_NOINTR: 2935 string = PS_NOINTR; 2936 break; 2937 case P_SPARE: 2938 string = PS_SPARE; 2939 break; 2940 case P_FAULTED: 2941 string = PS_FAULTED; 2942 break; 2943 case P_OFFLINE: 2944 string = PS_OFFLINE; 2945 break; 2946 default: 2947 string = "unknown"; 2948 break; 2949 } 2950 return (string); 2951 } 2952 2953 /* 2954 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 2955 * kstats, respectively. This is done when a CPU is initialized or placed 2956 * online via p_online(2). 2957 */ 2958 static void 2959 cpu_stats_kstat_create(cpu_t *cp) 2960 { 2961 int instance = cp->cpu_id; 2962 char *module = "cpu"; 2963 char *class = "misc"; 2964 kstat_t *ksp; 2965 zoneid_t zoneid; 2966 2967 ASSERT(MUTEX_HELD(&cpu_lock)); 2968 2969 if (pool_pset_enabled()) 2970 zoneid = GLOBAL_ZONEID; 2971 else 2972 zoneid = ALL_ZONES; 2973 /* 2974 * Create named kstats 2975 */ 2976 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 2977 ksp = kstat_create_zone(module, instance, (name), class, \ 2978 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 2979 zoneid); \ 2980 if (ksp != NULL) { \ 2981 ksp->ks_private = cp; \ 2982 ksp->ks_update = (update_func); \ 2983 kstat_install(ksp); \ 2984 } else \ 2985 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 2986 module, instance, (name)); 2987 2988 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 2989 cpu_sys_stats_ks_update); 2990 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 2991 cpu_vm_stats_ks_update); 2992 2993 /* 2994 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 2995 */ 2996 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 2997 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 2998 if (ksp != NULL) { 2999 ksp->ks_update = cpu_stat_ks_update; 3000 ksp->ks_private = cp; 3001 kstat_install(ksp); 3002 } 3003 } 3004 3005 static void 3006 cpu_stats_kstat_destroy(cpu_t *cp) 3007 { 3008 char ks_name[KSTAT_STRLEN]; 3009 3010 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3011 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3012 3013 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3014 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3015 } 3016 3017 static int 3018 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3019 { 3020 cpu_t *cp = (cpu_t *)ksp->ks_private; 3021 struct cpu_sys_stats_ks_data *csskd; 3022 cpu_sys_stats_t *css; 3023 hrtime_t msnsecs[NCMSTATES]; 3024 int i; 3025 3026 if (rw == KSTAT_WRITE) 3027 return (EACCES); 3028 3029 csskd = ksp->ks_data; 3030 css = &cp->cpu_stats.sys; 3031 3032 /* 3033 * Read CPU mstate, but compare with the last values we 3034 * received to make sure that the returned kstats never 3035 * decrease. 3036 */ 3037 3038 get_cpu_mstate(cp, msnsecs); 3039 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3040 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3041 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3042 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3043 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3044 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3045 3046 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3047 sizeof (cpu_sys_stats_ks_data_template)); 3048 3049 csskd->cpu_ticks_wait.value.ui64 = 0; 3050 csskd->wait_ticks_io.value.ui64 = 0; 3051 3052 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3053 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3054 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3055 csskd->cpu_ticks_idle.value.ui64 = 3056 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3057 csskd->cpu_ticks_user.value.ui64 = 3058 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3059 csskd->cpu_ticks_kernel.value.ui64 = 3060 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3061 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3062 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3063 csskd->bread.value.ui64 = css->bread; 3064 csskd->bwrite.value.ui64 = css->bwrite; 3065 csskd->lread.value.ui64 = css->lread; 3066 csskd->lwrite.value.ui64 = css->lwrite; 3067 csskd->phread.value.ui64 = css->phread; 3068 csskd->phwrite.value.ui64 = css->phwrite; 3069 csskd->pswitch.value.ui64 = css->pswitch; 3070 csskd->trap.value.ui64 = css->trap; 3071 csskd->intr.value.ui64 = 0; 3072 for (i = 0; i < PIL_MAX; i++) 3073 csskd->intr.value.ui64 += css->intr[i]; 3074 csskd->syscall.value.ui64 = css->syscall; 3075 csskd->sysread.value.ui64 = css->sysread; 3076 csskd->syswrite.value.ui64 = css->syswrite; 3077 csskd->sysfork.value.ui64 = css->sysfork; 3078 csskd->sysvfork.value.ui64 = css->sysvfork; 3079 csskd->sysexec.value.ui64 = css->sysexec; 3080 csskd->readch.value.ui64 = css->readch; 3081 csskd->writech.value.ui64 = css->writech; 3082 csskd->rcvint.value.ui64 = css->rcvint; 3083 csskd->xmtint.value.ui64 = css->xmtint; 3084 csskd->mdmint.value.ui64 = css->mdmint; 3085 csskd->rawch.value.ui64 = css->rawch; 3086 csskd->canch.value.ui64 = css->canch; 3087 csskd->outch.value.ui64 = css->outch; 3088 csskd->msg.value.ui64 = css->msg; 3089 csskd->sema.value.ui64 = css->sema; 3090 csskd->namei.value.ui64 = css->namei; 3091 csskd->ufsiget.value.ui64 = css->ufsiget; 3092 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3093 csskd->ufsipage.value.ui64 = css->ufsipage; 3094 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3095 csskd->procovf.value.ui64 = css->procovf; 3096 csskd->intrthread.value.ui64 = 0; 3097 for (i = 0; i < LOCK_LEVEL - 1; i++) 3098 csskd->intrthread.value.ui64 += css->intr[i]; 3099 csskd->intrblk.value.ui64 = css->intrblk; 3100 csskd->intrunpin.value.ui64 = css->intrunpin; 3101 csskd->idlethread.value.ui64 = css->idlethread; 3102 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3103 csskd->nthreads.value.ui64 = css->nthreads; 3104 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3105 csskd->xcalls.value.ui64 = css->xcalls; 3106 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3107 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3108 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3109 csskd->modload.value.ui64 = css->modload; 3110 csskd->modunload.value.ui64 = css->modunload; 3111 csskd->bawrite.value.ui64 = css->bawrite; 3112 csskd->iowait.value.ui64 = css->iowait; 3113 3114 return (0); 3115 } 3116 3117 static int 3118 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3119 { 3120 cpu_t *cp = (cpu_t *)ksp->ks_private; 3121 struct cpu_vm_stats_ks_data *cvskd; 3122 cpu_vm_stats_t *cvs; 3123 3124 if (rw == KSTAT_WRITE) 3125 return (EACCES); 3126 3127 cvs = &cp->cpu_stats.vm; 3128 cvskd = ksp->ks_data; 3129 3130 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3131 sizeof (cpu_vm_stats_ks_data_template)); 3132 cvskd->pgrec.value.ui64 = cvs->pgrec; 3133 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3134 cvskd->pgin.value.ui64 = cvs->pgin; 3135 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3136 cvskd->pgout.value.ui64 = cvs->pgout; 3137 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3138 cvskd->swapin.value.ui64 = cvs->swapin; 3139 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3140 cvskd->swapout.value.ui64 = cvs->swapout; 3141 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3142 cvskd->zfod.value.ui64 = cvs->zfod; 3143 cvskd->dfree.value.ui64 = cvs->dfree; 3144 cvskd->scan.value.ui64 = cvs->scan; 3145 cvskd->rev.value.ui64 = cvs->rev; 3146 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3147 cvskd->as_fault.value.ui64 = cvs->as_fault; 3148 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3149 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3150 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3151 cvskd->softlock.value.ui64 = cvs->softlock; 3152 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3153 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3154 cvskd->execpgin.value.ui64 = cvs->execpgin; 3155 cvskd->execpgout.value.ui64 = cvs->execpgout; 3156 cvskd->execfree.value.ui64 = cvs->execfree; 3157 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3158 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3159 cvskd->anonfree.value.ui64 = cvs->anonfree; 3160 cvskd->fspgin.value.ui64 = cvs->fspgin; 3161 cvskd->fspgout.value.ui64 = cvs->fspgout; 3162 cvskd->fsfree.value.ui64 = cvs->fsfree; 3163 3164 return (0); 3165 } 3166 3167 static int 3168 cpu_stat_ks_update(kstat_t *ksp, int rw) 3169 { 3170 cpu_stat_t *cso; 3171 cpu_t *cp; 3172 int i; 3173 hrtime_t msnsecs[NCMSTATES]; 3174 3175 cso = (cpu_stat_t *)ksp->ks_data; 3176 cp = (cpu_t *)ksp->ks_private; 3177 3178 if (rw == KSTAT_WRITE) 3179 return (EACCES); 3180 3181 /* 3182 * Read CPU mstate, but compare with the last values we 3183 * received to make sure that the returned kstats never 3184 * decrease. 3185 */ 3186 3187 get_cpu_mstate(cp, msnsecs); 3188 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3189 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3190 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3191 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3192 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3193 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3194 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3195 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3196 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3197 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3198 cso->cpu_sysinfo.wait[W_IO] = 0; 3199 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3200 cso->cpu_sysinfo.wait[W_PIO] = 0; 3201 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3202 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3203 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3204 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3205 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3206 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3207 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3208 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3209 cso->cpu_sysinfo.intr = 0; 3210 for (i = 0; i < PIL_MAX; i++) 3211 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3212 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3213 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3214 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3215 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3216 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3217 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3218 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3219 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3220 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3221 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3222 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3223 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3224 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3225 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3226 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3227 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3228 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3229 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3230 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3231 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3232 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3233 cso->cpu_sysinfo.inodeovf = 0; 3234 cso->cpu_sysinfo.fileovf = 0; 3235 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3236 cso->cpu_sysinfo.intrthread = 0; 3237 for (i = 0; i < LOCK_LEVEL - 1; i++) 3238 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3239 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3240 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3241 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3242 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3243 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3244 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3245 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3246 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3247 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3248 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3249 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3250 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3251 cso->cpu_sysinfo.rw_enters = 0; 3252 cso->cpu_sysinfo.win_uo_cnt = 0; 3253 cso->cpu_sysinfo.win_uu_cnt = 0; 3254 cso->cpu_sysinfo.win_so_cnt = 0; 3255 cso->cpu_sysinfo.win_su_cnt = 0; 3256 cso->cpu_sysinfo.win_suo_cnt = 0; 3257 3258 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3259 cso->cpu_syswait.swap = 0; 3260 cso->cpu_syswait.physio = 0; 3261 3262 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3263 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3264 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3265 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3266 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3267 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3268 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3269 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3270 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3271 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3272 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3273 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3274 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3275 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3276 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3277 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3278 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3279 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3280 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3281 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3282 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3283 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3284 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3285 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3286 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3287 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3288 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3289 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3290 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3291 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3292 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3293 3294 return (0); 3295 } 3296