xref: /titanic_51/usr/src/uts/common/os/cpu.c (revision 5fb1ded3757bc29bbdcedd110025238dbcbc8d76)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Architecture-independent CPU control functions.
30  */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/var.h>
35 #include <sys/thread.h>
36 #include <sys/cpuvar.h>
37 #include <sys/kstat.h>
38 #include <sys/uadmin.h>
39 #include <sys/systm.h>
40 #include <sys/errno.h>
41 #include <sys/cmn_err.h>
42 #include <sys/procset.h>
43 #include <sys/processor.h>
44 #include <sys/debug.h>
45 #include <sys/cpupart.h>
46 #include <sys/lgrp.h>
47 #include <sys/pset.h>
48 #include <sys/pghw.h>
49 #include <sys/kmem.h>
50 #include <sys/kmem_impl.h>	/* to set per-cpu kmem_cache offset */
51 #include <sys/atomic.h>
52 #include <sys/callb.h>
53 #include <sys/vtrace.h>
54 #include <sys/cyclic.h>
55 #include <sys/bitmap.h>
56 #include <sys/nvpair.h>
57 #include <sys/pool_pset.h>
58 #include <sys/msacct.h>
59 #include <sys/time.h>
60 #include <sys/archsystm.h>
61 #if defined(__x86)
62 #include <sys/x86_archext.h>
63 #endif
64 
65 extern int	mp_cpu_start(cpu_t *);
66 extern int	mp_cpu_stop(cpu_t *);
67 extern int	mp_cpu_poweron(cpu_t *);
68 extern int	mp_cpu_poweroff(cpu_t *);
69 extern int	mp_cpu_configure(int);
70 extern int	mp_cpu_unconfigure(int);
71 extern void	mp_cpu_faulted_enter(cpu_t *);
72 extern void	mp_cpu_faulted_exit(cpu_t *);
73 
74 extern int cmp_cpu_to_chip(processorid_t cpuid);
75 #ifdef __sparcv9
76 extern char *cpu_fru_fmri(cpu_t *cp);
77 #endif
78 
79 static void cpu_add_active_internal(cpu_t *cp);
80 static void cpu_remove_active(cpu_t *cp);
81 static void cpu_info_kstat_create(cpu_t *cp);
82 static void cpu_info_kstat_destroy(cpu_t *cp);
83 static void cpu_stats_kstat_create(cpu_t *cp);
84 static void cpu_stats_kstat_destroy(cpu_t *cp);
85 
86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
88 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
90 
91 /*
92  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
93  * and dispatch queue reallocations.  The lock ordering with respect to
94  * related locks is:
95  *
96  *	cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
97  *
98  * Warning:  Certain sections of code do not use the cpu_lock when
99  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
100  * all cpus are paused during modifications to this list, a solution
101  * to protect the list is too either disable kernel preemption while
102  * walking the list, *or* recheck the cpu_next pointer at each
103  * iteration in the loop.  Note that in no cases can any cached
104  * copies of the cpu pointers be kept as they may become invalid.
105  */
106 kmutex_t	cpu_lock;
107 cpu_t		*cpu_list;		/* list of all CPUs */
108 cpu_t		*clock_cpu_list;	/* used by clock to walk CPUs */
109 cpu_t		*cpu_active;		/* list of active CPUs */
110 static cpuset_t	cpu_available;		/* set of available CPUs */
111 cpuset_t	cpu_seqid_inuse;	/* which cpu_seqids are in use */
112 
113 /*
114  * max_ncpus keeps the max cpus the system can have. Initially
115  * it's NCPU, but since most archs scan the devtree for cpus
116  * fairly early on during boot, the real max can be known before
117  * ncpus is set (useful for early NCPU based allocations).
118  */
119 int max_ncpus = NCPU;
120 /*
121  * platforms that set max_ncpus to maxiumum number of cpus that can be
122  * dynamically added will set boot_max_ncpus to the number of cpus found
123  * at device tree scan time during boot.
124  */
125 int boot_max_ncpus = -1;
126 /*
127  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
128  * used to size arrays that are indexed by CPU id.
129  */
130 processorid_t max_cpuid = NCPU - 1;
131 
132 int ncpus = 1;
133 int ncpus_online = 1;
134 
135 /*
136  * CPU that we're trying to offline.  Protected by cpu_lock.
137  */
138 cpu_t *cpu_inmotion;
139 
140 /*
141  * Can be raised to suppress further weakbinding, which are instead
142  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
143  * while individual thread weakbinding synchronisation is done under thread
144  * lock.
145  */
146 int weakbindingbarrier;
147 
148 /*
149  * Variables used in pause_cpus().
150  */
151 static volatile char safe_list[NCPU];
152 
153 static struct _cpu_pause_info {
154 	int		cp_spl;		/* spl saved in pause_cpus() */
155 	volatile int	cp_go;		/* Go signal sent after all ready */
156 	int		cp_count;	/* # of CPUs to pause */
157 	ksema_t		cp_sem;		/* synch pause_cpus & cpu_pause */
158 	kthread_id_t	cp_paused;
159 } cpu_pause_info;
160 
161 static kmutex_t pause_free_mutex;
162 static kcondvar_t pause_free_cv;
163 
164 void *(*cpu_pause_func)(void *) = NULL;
165 
166 
167 static struct cpu_sys_stats_ks_data {
168 	kstat_named_t cpu_ticks_idle;
169 	kstat_named_t cpu_ticks_user;
170 	kstat_named_t cpu_ticks_kernel;
171 	kstat_named_t cpu_ticks_wait;
172 	kstat_named_t cpu_nsec_idle;
173 	kstat_named_t cpu_nsec_user;
174 	kstat_named_t cpu_nsec_kernel;
175 	kstat_named_t cpu_nsec_intr;
176 	kstat_named_t cpu_load_intr;
177 	kstat_named_t wait_ticks_io;
178 	kstat_named_t bread;
179 	kstat_named_t bwrite;
180 	kstat_named_t lread;
181 	kstat_named_t lwrite;
182 	kstat_named_t phread;
183 	kstat_named_t phwrite;
184 	kstat_named_t pswitch;
185 	kstat_named_t trap;
186 	kstat_named_t intr;
187 	kstat_named_t syscall;
188 	kstat_named_t sysread;
189 	kstat_named_t syswrite;
190 	kstat_named_t sysfork;
191 	kstat_named_t sysvfork;
192 	kstat_named_t sysexec;
193 	kstat_named_t readch;
194 	kstat_named_t writech;
195 	kstat_named_t rcvint;
196 	kstat_named_t xmtint;
197 	kstat_named_t mdmint;
198 	kstat_named_t rawch;
199 	kstat_named_t canch;
200 	kstat_named_t outch;
201 	kstat_named_t msg;
202 	kstat_named_t sema;
203 	kstat_named_t namei;
204 	kstat_named_t ufsiget;
205 	kstat_named_t ufsdirblk;
206 	kstat_named_t ufsipage;
207 	kstat_named_t ufsinopage;
208 	kstat_named_t procovf;
209 	kstat_named_t intrthread;
210 	kstat_named_t intrblk;
211 	kstat_named_t intrunpin;
212 	kstat_named_t idlethread;
213 	kstat_named_t inv_swtch;
214 	kstat_named_t nthreads;
215 	kstat_named_t cpumigrate;
216 	kstat_named_t xcalls;
217 	kstat_named_t mutex_adenters;
218 	kstat_named_t rw_rdfails;
219 	kstat_named_t rw_wrfails;
220 	kstat_named_t modload;
221 	kstat_named_t modunload;
222 	kstat_named_t bawrite;
223 	kstat_named_t iowait;
224 } cpu_sys_stats_ks_data_template = {
225 	{ "cpu_ticks_idle", 	KSTAT_DATA_UINT64 },
226 	{ "cpu_ticks_user", 	KSTAT_DATA_UINT64 },
227 	{ "cpu_ticks_kernel", 	KSTAT_DATA_UINT64 },
228 	{ "cpu_ticks_wait", 	KSTAT_DATA_UINT64 },
229 	{ "cpu_nsec_idle",	KSTAT_DATA_UINT64 },
230 	{ "cpu_nsec_user",	KSTAT_DATA_UINT64 },
231 	{ "cpu_nsec_kernel",	KSTAT_DATA_UINT64 },
232 	{ "cpu_nsec_intr",	KSTAT_DATA_UINT64 },
233 	{ "cpu_load_intr",	KSTAT_DATA_UINT64 },
234 	{ "wait_ticks_io", 	KSTAT_DATA_UINT64 },
235 	{ "bread", 		KSTAT_DATA_UINT64 },
236 	{ "bwrite", 		KSTAT_DATA_UINT64 },
237 	{ "lread", 		KSTAT_DATA_UINT64 },
238 	{ "lwrite", 		KSTAT_DATA_UINT64 },
239 	{ "phread", 		KSTAT_DATA_UINT64 },
240 	{ "phwrite", 		KSTAT_DATA_UINT64 },
241 	{ "pswitch", 		KSTAT_DATA_UINT64 },
242 	{ "trap", 		KSTAT_DATA_UINT64 },
243 	{ "intr", 		KSTAT_DATA_UINT64 },
244 	{ "syscall", 		KSTAT_DATA_UINT64 },
245 	{ "sysread", 		KSTAT_DATA_UINT64 },
246 	{ "syswrite", 		KSTAT_DATA_UINT64 },
247 	{ "sysfork", 		KSTAT_DATA_UINT64 },
248 	{ "sysvfork", 		KSTAT_DATA_UINT64 },
249 	{ "sysexec", 		KSTAT_DATA_UINT64 },
250 	{ "readch", 		KSTAT_DATA_UINT64 },
251 	{ "writech", 		KSTAT_DATA_UINT64 },
252 	{ "rcvint", 		KSTAT_DATA_UINT64 },
253 	{ "xmtint", 		KSTAT_DATA_UINT64 },
254 	{ "mdmint", 		KSTAT_DATA_UINT64 },
255 	{ "rawch", 		KSTAT_DATA_UINT64 },
256 	{ "canch", 		KSTAT_DATA_UINT64 },
257 	{ "outch", 		KSTAT_DATA_UINT64 },
258 	{ "msg", 		KSTAT_DATA_UINT64 },
259 	{ "sema", 		KSTAT_DATA_UINT64 },
260 	{ "namei", 		KSTAT_DATA_UINT64 },
261 	{ "ufsiget", 		KSTAT_DATA_UINT64 },
262 	{ "ufsdirblk", 		KSTAT_DATA_UINT64 },
263 	{ "ufsipage", 		KSTAT_DATA_UINT64 },
264 	{ "ufsinopage", 	KSTAT_DATA_UINT64 },
265 	{ "procovf", 		KSTAT_DATA_UINT64 },
266 	{ "intrthread", 	KSTAT_DATA_UINT64 },
267 	{ "intrblk", 		KSTAT_DATA_UINT64 },
268 	{ "intrunpin",		KSTAT_DATA_UINT64 },
269 	{ "idlethread", 	KSTAT_DATA_UINT64 },
270 	{ "inv_swtch", 		KSTAT_DATA_UINT64 },
271 	{ "nthreads", 		KSTAT_DATA_UINT64 },
272 	{ "cpumigrate", 	KSTAT_DATA_UINT64 },
273 	{ "xcalls", 		KSTAT_DATA_UINT64 },
274 	{ "mutex_adenters", 	KSTAT_DATA_UINT64 },
275 	{ "rw_rdfails", 	KSTAT_DATA_UINT64 },
276 	{ "rw_wrfails", 	KSTAT_DATA_UINT64 },
277 	{ "modload", 		KSTAT_DATA_UINT64 },
278 	{ "modunload", 		KSTAT_DATA_UINT64 },
279 	{ "bawrite", 		KSTAT_DATA_UINT64 },
280 	{ "iowait",		KSTAT_DATA_UINT64 },
281 };
282 
283 static struct cpu_vm_stats_ks_data {
284 	kstat_named_t pgrec;
285 	kstat_named_t pgfrec;
286 	kstat_named_t pgin;
287 	kstat_named_t pgpgin;
288 	kstat_named_t pgout;
289 	kstat_named_t pgpgout;
290 	kstat_named_t swapin;
291 	kstat_named_t pgswapin;
292 	kstat_named_t swapout;
293 	kstat_named_t pgswapout;
294 	kstat_named_t zfod;
295 	kstat_named_t dfree;
296 	kstat_named_t scan;
297 	kstat_named_t rev;
298 	kstat_named_t hat_fault;
299 	kstat_named_t as_fault;
300 	kstat_named_t maj_fault;
301 	kstat_named_t cow_fault;
302 	kstat_named_t prot_fault;
303 	kstat_named_t softlock;
304 	kstat_named_t kernel_asflt;
305 	kstat_named_t pgrrun;
306 	kstat_named_t execpgin;
307 	kstat_named_t execpgout;
308 	kstat_named_t execfree;
309 	kstat_named_t anonpgin;
310 	kstat_named_t anonpgout;
311 	kstat_named_t anonfree;
312 	kstat_named_t fspgin;
313 	kstat_named_t fspgout;
314 	kstat_named_t fsfree;
315 } cpu_vm_stats_ks_data_template = {
316 	{ "pgrec",		KSTAT_DATA_UINT64 },
317 	{ "pgfrec",		KSTAT_DATA_UINT64 },
318 	{ "pgin",		KSTAT_DATA_UINT64 },
319 	{ "pgpgin",		KSTAT_DATA_UINT64 },
320 	{ "pgout",		KSTAT_DATA_UINT64 },
321 	{ "pgpgout",		KSTAT_DATA_UINT64 },
322 	{ "swapin",		KSTAT_DATA_UINT64 },
323 	{ "pgswapin",		KSTAT_DATA_UINT64 },
324 	{ "swapout",		KSTAT_DATA_UINT64 },
325 	{ "pgswapout",		KSTAT_DATA_UINT64 },
326 	{ "zfod",		KSTAT_DATA_UINT64 },
327 	{ "dfree",		KSTAT_DATA_UINT64 },
328 	{ "scan",		KSTAT_DATA_UINT64 },
329 	{ "rev",		KSTAT_DATA_UINT64 },
330 	{ "hat_fault",		KSTAT_DATA_UINT64 },
331 	{ "as_fault",		KSTAT_DATA_UINT64 },
332 	{ "maj_fault",		KSTAT_DATA_UINT64 },
333 	{ "cow_fault",		KSTAT_DATA_UINT64 },
334 	{ "prot_fault",		KSTAT_DATA_UINT64 },
335 	{ "softlock",		KSTAT_DATA_UINT64 },
336 	{ "kernel_asflt",	KSTAT_DATA_UINT64 },
337 	{ "pgrrun",		KSTAT_DATA_UINT64 },
338 	{ "execpgin",		KSTAT_DATA_UINT64 },
339 	{ "execpgout",		KSTAT_DATA_UINT64 },
340 	{ "execfree",		KSTAT_DATA_UINT64 },
341 	{ "anonpgin",		KSTAT_DATA_UINT64 },
342 	{ "anonpgout",		KSTAT_DATA_UINT64 },
343 	{ "anonfree",		KSTAT_DATA_UINT64 },
344 	{ "fspgin",		KSTAT_DATA_UINT64 },
345 	{ "fspgout",		KSTAT_DATA_UINT64 },
346 	{ "fsfree",		KSTAT_DATA_UINT64 },
347 };
348 
349 /*
350  * Force the specified thread to migrate to the appropriate processor.
351  * Called with thread lock held, returns with it dropped.
352  */
353 static void
354 force_thread_migrate(kthread_id_t tp)
355 {
356 	ASSERT(THREAD_LOCK_HELD(tp));
357 	if (tp == curthread) {
358 		THREAD_TRANSITION(tp);
359 		CL_SETRUN(tp);
360 		thread_unlock_nopreempt(tp);
361 		swtch();
362 	} else {
363 		if (tp->t_state == TS_ONPROC) {
364 			cpu_surrender(tp);
365 		} else if (tp->t_state == TS_RUN) {
366 			(void) dispdeq(tp);
367 			setbackdq(tp);
368 		}
369 		thread_unlock(tp);
370 	}
371 }
372 
373 /*
374  * Set affinity for a specified CPU.
375  * A reference count is incremented and the affinity is held until the
376  * reference count is decremented to zero by thread_affinity_clear().
377  * This is so regions of code requiring affinity can be nested.
378  * Caller needs to ensure that cpu_id remains valid, which can be
379  * done by holding cpu_lock across this call, unless the caller
380  * specifies CPU_CURRENT in which case the cpu_lock will be acquired
381  * by thread_affinity_set and CPU->cpu_id will be the target CPU.
382  */
383 void
384 thread_affinity_set(kthread_id_t t, int cpu_id)
385 {
386 	cpu_t		*cp;
387 	int		c;
388 
389 	ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
390 
391 	if ((c = cpu_id) == CPU_CURRENT) {
392 		mutex_enter(&cpu_lock);
393 		cpu_id = CPU->cpu_id;
394 	}
395 	/*
396 	 * We should be asserting that cpu_lock is held here, but
397 	 * the NCA code doesn't acquire it.  The following assert
398 	 * should be uncommented when the NCA code is fixed.
399 	 *
400 	 * ASSERT(MUTEX_HELD(&cpu_lock));
401 	 */
402 	ASSERT((cpu_id >= 0) && (cpu_id < NCPU));
403 	cp = cpu[cpu_id];
404 	ASSERT(cp != NULL);		/* user must provide a good cpu_id */
405 	/*
406 	 * If there is already a hard affinity requested, and this affinity
407 	 * conflicts with that, panic.
408 	 */
409 	thread_lock(t);
410 	if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
411 		panic("affinity_set: setting %p but already bound to %p",
412 		    (void *)cp, (void *)t->t_bound_cpu);
413 	}
414 	t->t_affinitycnt++;
415 	t->t_bound_cpu = cp;
416 
417 	/*
418 	 * Make sure we're running on the right CPU.
419 	 */
420 	if (cp != t->t_cpu || t != curthread) {
421 		force_thread_migrate(t);	/* drops thread lock */
422 	} else {
423 		thread_unlock(t);
424 	}
425 
426 	if (c == CPU_CURRENT)
427 		mutex_exit(&cpu_lock);
428 }
429 
430 /*
431  *	Wrapper for backward compatibility.
432  */
433 void
434 affinity_set(int cpu_id)
435 {
436 	thread_affinity_set(curthread, cpu_id);
437 }
438 
439 /*
440  * Decrement the affinity reservation count and if it becomes zero,
441  * clear the CPU affinity for the current thread, or set it to the user's
442  * software binding request.
443  */
444 void
445 thread_affinity_clear(kthread_id_t t)
446 {
447 	register processorid_t binding;
448 
449 	thread_lock(t);
450 	if (--t->t_affinitycnt == 0) {
451 		if ((binding = t->t_bind_cpu) == PBIND_NONE) {
452 			/*
453 			 * Adjust disp_max_unbound_pri if necessary.
454 			 */
455 			disp_adjust_unbound_pri(t);
456 			t->t_bound_cpu = NULL;
457 			if (t->t_cpu->cpu_part != t->t_cpupart) {
458 				force_thread_migrate(t);
459 				return;
460 			}
461 		} else {
462 			t->t_bound_cpu = cpu[binding];
463 			/*
464 			 * Make sure the thread is running on the bound CPU.
465 			 */
466 			if (t->t_cpu != t->t_bound_cpu) {
467 				force_thread_migrate(t);
468 				return;		/* already dropped lock */
469 			}
470 		}
471 	}
472 	thread_unlock(t);
473 }
474 
475 /*
476  * Wrapper for backward compatibility.
477  */
478 void
479 affinity_clear(void)
480 {
481 	thread_affinity_clear(curthread);
482 }
483 
484 /*
485  * Weak cpu affinity.  Bind to the "current" cpu for short periods
486  * of time during which the thread must not block (but may be preempted).
487  * Use this instead of kpreempt_disable() when it is only "no migration"
488  * rather than "no preemption" semantics that are required - disabling
489  * preemption holds higher priority threads off of cpu and if the
490  * operation that is protected is more than momentary this is not good
491  * for realtime etc.
492  *
493  * Weakly bound threads will not prevent a cpu from being offlined -
494  * we'll only run them on the cpu to which they are weakly bound but
495  * (because they do not block) we'll always be able to move them on to
496  * another cpu at offline time if we give them just a short moment to
497  * run during which they will unbind.  To give a cpu a chance of offlining,
498  * however, we require a barrier to weak bindings that may be raised for a
499  * given cpu (offline/move code may set this and then wait a short time for
500  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
501  *
502  * There are few restrictions on the calling context of thread_nomigrate.
503  * The caller must not hold the thread lock.  Calls may be nested.
504  *
505  * After weakbinding a thread must not perform actions that may block.
506  * In particular it must not call thread_affinity_set; calling that when
507  * already weakbound is nonsensical anyway.
508  *
509  * If curthread is prevented from migrating for other reasons
510  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
511  * then the weak binding will succeed even if this cpu is the target of an
512  * offline/move request.
513  */
514 void
515 thread_nomigrate(void)
516 {
517 	cpu_t *cp;
518 	kthread_id_t t = curthread;
519 
520 again:
521 	kpreempt_disable();
522 	cp = CPU;
523 
524 	/*
525 	 * A highlevel interrupt must not modify t_nomigrate or
526 	 * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
527 	 * interrupt thread cannot migrate and we can avoid the
528 	 * thread_lock call below by short-circuiting here.  In either
529 	 * case we can just return since no migration is possible and
530 	 * the condition will persist (ie, when we test for these again
531 	 * in thread_allowmigrate they can't have changed).   Migration
532 	 * is also impossible if we're at or above DISP_LEVEL pil.
533 	 */
534 	if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
535 	    getpil() >= DISP_LEVEL) {
536 		kpreempt_enable();
537 		return;
538 	}
539 
540 	/*
541 	 * We must be consistent with existing weak bindings.  Since we
542 	 * may be interrupted between the increment of t_nomigrate and
543 	 * the store to t_weakbound_cpu below we cannot assume that
544 	 * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
545 	 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
546 	 * always the case.
547 	 */
548 	if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
549 		if (!panicstr)
550 			panic("thread_nomigrate: binding to %p but already "
551 			    "bound to %p", (void *)cp,
552 			    (void *)t->t_weakbound_cpu);
553 	}
554 
555 	/*
556 	 * At this point we have preemption disabled and we don't yet hold
557 	 * the thread lock.  So it's possible that somebody else could
558 	 * set t_bind_cpu here and not be able to force us across to the
559 	 * new cpu (since we have preemption disabled).
560 	 */
561 	thread_lock(curthread);
562 
563 	/*
564 	 * If further weak bindings are being (temporarily) suppressed then
565 	 * we'll settle for disabling kernel preemption (which assures
566 	 * no migration provided the thread does not block which it is
567 	 * not allowed to if using thread_nomigrate).  We must remember
568 	 * this disposition so we can take appropriate action in
569 	 * thread_allowmigrate.  If this is a nested call and the
570 	 * thread is already weakbound then fall through as normal.
571 	 * We remember the decision to settle for kpreempt_disable through
572 	 * negative nesting counting in t_nomigrate.  Once a thread has had one
573 	 * weakbinding request satisfied in this way any further (nested)
574 	 * requests will continue to be satisfied in the same way,
575 	 * even if weak bindings have recommenced.
576 	 */
577 	if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
578 		--t->t_nomigrate;
579 		thread_unlock(curthread);
580 		return;		/* with kpreempt_disable still active */
581 	}
582 
583 	/*
584 	 * We hold thread_lock so t_bind_cpu cannot change.  We could,
585 	 * however, be running on a different cpu to which we are t_bound_cpu
586 	 * to (as explained above).  If we grant the weak binding request
587 	 * in that case then the dispatcher must favour our weak binding
588 	 * over our strong (in which case, just as when preemption is
589 	 * disabled, we can continue to run on a cpu other than the one to
590 	 * which we are strongbound; the difference in this case is that
591 	 * this thread can be preempted and so can appear on the dispatch
592 	 * queues of a cpu other than the one it is strongbound to).
593 	 *
594 	 * If the cpu we are running on does not appear to be a current
595 	 * offline target (we check cpu_inmotion to determine this - since
596 	 * we don't hold cpu_lock we may not see a recent store to that,
597 	 * so it's possible that we at times can grant a weak binding to a
598 	 * cpu that is an offline target, but that one request will not
599 	 * prevent the offline from succeeding) then we will always grant
600 	 * the weak binding request.  This includes the case above where
601 	 * we grant a weakbinding not commensurate with our strong binding.
602 	 *
603 	 * If our cpu does appear to be an offline target then we're inclined
604 	 * not to grant the weakbinding request just yet - we'd prefer to
605 	 * migrate to another cpu and grant the request there.  The
606 	 * exceptions are those cases where going through preemption code
607 	 * will not result in us changing cpu:
608 	 *
609 	 *	. interrupts have already bypassed this case (see above)
610 	 *	. we are already weakbound to this cpu (dispatcher code will
611 	 *	  always return us to the weakbound cpu)
612 	 *	. preemption was disabled even before we disabled it above
613 	 *	. we are strongbound to this cpu (if we're strongbound to
614 	 *	another and not yet running there the trip through the
615 	 *	dispatcher will move us to the strongbound cpu and we
616 	 *	will grant the weak binding there)
617 	 */
618 	if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
619 	    t->t_bound_cpu == cp) {
620 		/*
621 		 * Don't be tempted to store to t_weakbound_cpu only on
622 		 * the first nested bind request - if we're interrupted
623 		 * after the increment of t_nomigrate and before the
624 		 * store to t_weakbound_cpu and the interrupt calls
625 		 * thread_nomigrate then the assertion in thread_allowmigrate
626 		 * would fail.
627 		 */
628 		t->t_nomigrate++;
629 		t->t_weakbound_cpu = cp;
630 		membar_producer();
631 		thread_unlock(curthread);
632 		/*
633 		 * Now that we have dropped the thread_lock another thread
634 		 * can set our t_weakbound_cpu, and will try to migrate us
635 		 * to the strongbound cpu (which will not be prevented by
636 		 * preemption being disabled since we're about to enable
637 		 * preemption).  We have granted the weakbinding to the current
638 		 * cpu, so again we are in the position that is is is possible
639 		 * that our weak and strong bindings differ.  Again this
640 		 * is catered for by dispatcher code which will favour our
641 		 * weak binding.
642 		 */
643 		kpreempt_enable();
644 	} else {
645 		/*
646 		 * Move to another cpu before granting the request by
647 		 * forcing this thread through preemption code.  When we
648 		 * get to set{front,back}dq called from CL_PREEMPT()
649 		 * cpu_choose() will be used to select a cpu to queue
650 		 * us on - that will see cpu_inmotion and take
651 		 * steps to avoid returning us to this cpu.
652 		 */
653 		cp->cpu_kprunrun = 1;
654 		thread_unlock(curthread);
655 		kpreempt_enable();	/* will call preempt() */
656 		goto again;
657 	}
658 }
659 
660 void
661 thread_allowmigrate(void)
662 {
663 	kthread_id_t t = curthread;
664 
665 	ASSERT(t->t_weakbound_cpu == CPU ||
666 	    (t->t_nomigrate < 0 && t->t_preempt > 0) ||
667 	    CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
668 	    getpil() >= DISP_LEVEL);
669 
670 	if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
671 	    getpil() >= DISP_LEVEL)
672 		return;
673 
674 	if (t->t_nomigrate < 0) {
675 		/*
676 		 * This thread was granted "weak binding" in the
677 		 * stronger form of kernel preemption disabling.
678 		 * Undo a level of nesting for both t_nomigrate
679 		 * and t_preempt.
680 		 */
681 		++t->t_nomigrate;
682 		kpreempt_enable();
683 	} else if (--t->t_nomigrate == 0) {
684 		/*
685 		 * Time to drop the weak binding.  We need to cater
686 		 * for the case where we're weakbound to a different
687 		 * cpu than that to which we're strongbound (a very
688 		 * temporary arrangement that must only persist until
689 		 * weak binding drops).  We don't acquire thread_lock
690 		 * here so even as this code executes t_bound_cpu
691 		 * may be changing.  So we disable preemption and
692 		 * a) in the case that t_bound_cpu changes while we
693 		 * have preemption disabled kprunrun will be set
694 		 * asynchronously, and b) if before disabling
695 		 * preemption we were already on a different cpu to
696 		 * our t_bound_cpu then we set kprunrun ourselves
697 		 * to force a trip through the dispatcher when
698 		 * preemption is enabled.
699 		 */
700 		kpreempt_disable();
701 		if (t->t_bound_cpu &&
702 		    t->t_weakbound_cpu != t->t_bound_cpu)
703 			CPU->cpu_kprunrun = 1;
704 		t->t_weakbound_cpu = NULL;
705 		membar_producer();
706 		kpreempt_enable();
707 	}
708 }
709 
710 /*
711  * weakbinding_stop can be used to temporarily cause weakbindings made
712  * with thread_nomigrate to be satisfied through the stronger action of
713  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
714  */
715 
716 void
717 weakbinding_stop(void)
718 {
719 	ASSERT(MUTEX_HELD(&cpu_lock));
720 	weakbindingbarrier = 1;
721 	membar_producer();	/* make visible before subsequent thread_lock */
722 }
723 
724 void
725 weakbinding_start(void)
726 {
727 	ASSERT(MUTEX_HELD(&cpu_lock));
728 	weakbindingbarrier = 0;
729 }
730 
731 /*
732  * This routine is called to place the CPUs in a safe place so that
733  * one of them can be taken off line or placed on line.  What we are
734  * trying to do here is prevent a thread from traversing the list
735  * of active CPUs while we are changing it or from getting placed on
736  * the run queue of a CPU that has just gone off line.  We do this by
737  * creating a thread with the highest possible prio for each CPU and
738  * having it call this routine.  The advantage of this method is that
739  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
740  * This makes disp faster at the expense of making p_online() slower
741  * which is a good trade off.
742  */
743 static void
744 cpu_pause(int index)
745 {
746 	int s;
747 	struct _cpu_pause_info *cpi = &cpu_pause_info;
748 	volatile char *safe = &safe_list[index];
749 	long    lindex = index;
750 
751 	ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
752 
753 	while (*safe != PAUSE_DIE) {
754 		*safe = PAUSE_READY;
755 		membar_enter();		/* make sure stores are flushed */
756 		sema_v(&cpi->cp_sem);	/* signal requesting thread */
757 
758 		/*
759 		 * Wait here until all pause threads are running.  That
760 		 * indicates that it's safe to do the spl.  Until
761 		 * cpu_pause_info.cp_go is set, we don't want to spl
762 		 * because that might block clock interrupts needed
763 		 * to preempt threads on other CPUs.
764 		 */
765 		while (cpi->cp_go == 0)
766 			;
767 		/*
768 		 * Even though we are at the highest disp prio, we need
769 		 * to block out all interrupts below LOCK_LEVEL so that
770 		 * an intr doesn't come in, wake up a thread, and call
771 		 * setbackdq/setfrontdq.
772 		 */
773 		s = splhigh();
774 		/*
775 		 * if cpu_pause_func() has been set then call it using
776 		 * index as the argument, currently only used by
777 		 * cpr_suspend_cpus().  This function is used as the
778 		 * code to execute on the "paused" cpu's when a machine
779 		 * comes out of a sleep state and CPU's were powered off.
780 		 * (could also be used for hotplugging CPU's).
781 		 */
782 		if (cpu_pause_func != NULL)
783 			(*cpu_pause_func)((void *)lindex);
784 
785 		mach_cpu_pause(safe);
786 
787 		splx(s);
788 		/*
789 		 * Waiting is at an end. Switch out of cpu_pause
790 		 * loop and resume useful work.
791 		 */
792 		swtch();
793 	}
794 
795 	mutex_enter(&pause_free_mutex);
796 	*safe = PAUSE_DEAD;
797 	cv_broadcast(&pause_free_cv);
798 	mutex_exit(&pause_free_mutex);
799 }
800 
801 /*
802  * Allow the cpus to start running again.
803  */
804 void
805 start_cpus()
806 {
807 	int i;
808 
809 	ASSERT(MUTEX_HELD(&cpu_lock));
810 	ASSERT(cpu_pause_info.cp_paused);
811 	cpu_pause_info.cp_paused = NULL;
812 	for (i = 0; i < NCPU; i++)
813 		safe_list[i] = PAUSE_IDLE;
814 	membar_enter();			/* make sure stores are flushed */
815 	affinity_clear();
816 	splx(cpu_pause_info.cp_spl);
817 	kpreempt_enable();
818 }
819 
820 /*
821  * Allocate a pause thread for a CPU.
822  */
823 static void
824 cpu_pause_alloc(cpu_t *cp)
825 {
826 	kthread_id_t	t;
827 	long		cpun = cp->cpu_id;
828 
829 	/*
830 	 * Note, v.v_nglobpris will not change value as long as I hold
831 	 * cpu_lock.
832 	 */
833 	t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
834 	    0, &p0, TS_STOPPED, v.v_nglobpris - 1);
835 	thread_lock(t);
836 	t->t_bound_cpu = cp;
837 	t->t_disp_queue = cp->cpu_disp;
838 	t->t_affinitycnt = 1;
839 	t->t_preempt = 1;
840 	thread_unlock(t);
841 	cp->cpu_pause_thread = t;
842 	/*
843 	 * Registering a thread in the callback table is usually done
844 	 * in the initialization code of the thread.  In this
845 	 * case, we do it right after thread creation because the
846 	 * thread itself may never run, and we need to register the
847 	 * fact that it is safe for cpr suspend.
848 	 */
849 	CALLB_CPR_INIT_SAFE(t, "cpu_pause");
850 }
851 
852 /*
853  * Free a pause thread for a CPU.
854  */
855 static void
856 cpu_pause_free(cpu_t *cp)
857 {
858 	kthread_id_t	t;
859 	int		cpun = cp->cpu_id;
860 
861 	ASSERT(MUTEX_HELD(&cpu_lock));
862 	/*
863 	 * We have to get the thread and tell him to die.
864 	 */
865 	if ((t = cp->cpu_pause_thread) == NULL) {
866 		ASSERT(safe_list[cpun] == PAUSE_IDLE);
867 		return;
868 	}
869 	thread_lock(t);
870 	t->t_cpu = CPU;		/* disp gets upset if last cpu is quiesced. */
871 	t->t_bound_cpu = NULL;	/* Must un-bind; cpu may not be running. */
872 	t->t_pri = v.v_nglobpris - 1;
873 	ASSERT(safe_list[cpun] == PAUSE_IDLE);
874 	safe_list[cpun] = PAUSE_DIE;
875 	THREAD_TRANSITION(t);
876 	setbackdq(t);
877 	thread_unlock_nopreempt(t);
878 
879 	/*
880 	 * If we don't wait for the thread to actually die, it may try to
881 	 * run on the wrong cpu as part of an actual call to pause_cpus().
882 	 */
883 	mutex_enter(&pause_free_mutex);
884 	while (safe_list[cpun] != PAUSE_DEAD) {
885 		cv_wait(&pause_free_cv, &pause_free_mutex);
886 	}
887 	mutex_exit(&pause_free_mutex);
888 	safe_list[cpun] = PAUSE_IDLE;
889 
890 	cp->cpu_pause_thread = NULL;
891 }
892 
893 /*
894  * Initialize basic structures for pausing CPUs.
895  */
896 void
897 cpu_pause_init()
898 {
899 	sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
900 	/*
901 	 * Create initial CPU pause thread.
902 	 */
903 	cpu_pause_alloc(CPU);
904 }
905 
906 /*
907  * Start the threads used to pause another CPU.
908  */
909 static int
910 cpu_pause_start(processorid_t cpu_id)
911 {
912 	int	i;
913 	int	cpu_count = 0;
914 
915 	for (i = 0; i < NCPU; i++) {
916 		cpu_t		*cp;
917 		kthread_id_t	t;
918 
919 		cp = cpu[i];
920 		if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
921 			safe_list[i] = PAUSE_WAIT;
922 			continue;
923 		}
924 
925 		/*
926 		 * Skip CPU if it is quiesced or not yet started.
927 		 */
928 		if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
929 			safe_list[i] = PAUSE_WAIT;
930 			continue;
931 		}
932 
933 		/*
934 		 * Start this CPU's pause thread.
935 		 */
936 		t = cp->cpu_pause_thread;
937 		thread_lock(t);
938 		/*
939 		 * Reset the priority, since nglobpris may have
940 		 * changed since the thread was created, if someone
941 		 * has loaded the RT (or some other) scheduling
942 		 * class.
943 		 */
944 		t->t_pri = v.v_nglobpris - 1;
945 		THREAD_TRANSITION(t);
946 		setbackdq(t);
947 		thread_unlock_nopreempt(t);
948 		++cpu_count;
949 	}
950 	return (cpu_count);
951 }
952 
953 
954 /*
955  * Pause all of the CPUs except the one we are on by creating a high
956  * priority thread bound to those CPUs.
957  *
958  * Note that one must be extremely careful regarding code
959  * executed while CPUs are paused.  Since a CPU may be paused
960  * while a thread scheduling on that CPU is holding an adaptive
961  * lock, code executed with CPUs paused must not acquire adaptive
962  * (or low-level spin) locks.  Also, such code must not block,
963  * since the thread that is supposed to initiate the wakeup may
964  * never run.
965  *
966  * With a few exceptions, the restrictions on code executed with CPUs
967  * paused match those for code executed at high-level interrupt
968  * context.
969  */
970 void
971 pause_cpus(cpu_t *off_cp)
972 {
973 	processorid_t	cpu_id;
974 	int		i;
975 	struct _cpu_pause_info	*cpi = &cpu_pause_info;
976 
977 	ASSERT(MUTEX_HELD(&cpu_lock));
978 	ASSERT(cpi->cp_paused == NULL);
979 	cpi->cp_count = 0;
980 	cpi->cp_go = 0;
981 	for (i = 0; i < NCPU; i++)
982 		safe_list[i] = PAUSE_IDLE;
983 	kpreempt_disable();
984 
985 	/*
986 	 * If running on the cpu that is going offline, get off it.
987 	 * This is so that it won't be necessary to rechoose a CPU
988 	 * when done.
989 	 */
990 	if (CPU == off_cp)
991 		cpu_id = off_cp->cpu_next_part->cpu_id;
992 	else
993 		cpu_id = CPU->cpu_id;
994 	affinity_set(cpu_id);
995 
996 	/*
997 	 * Start the pause threads and record how many were started
998 	 */
999 	cpi->cp_count = cpu_pause_start(cpu_id);
1000 
1001 	/*
1002 	 * Now wait for all CPUs to be running the pause thread.
1003 	 */
1004 	while (cpi->cp_count > 0) {
1005 		/*
1006 		 * Spin reading the count without grabbing the disp
1007 		 * lock to make sure we don't prevent the pause
1008 		 * threads from getting the lock.
1009 		 */
1010 		while (sema_held(&cpi->cp_sem))
1011 			;
1012 		if (sema_tryp(&cpi->cp_sem))
1013 			--cpi->cp_count;
1014 	}
1015 	cpi->cp_go = 1;			/* all have reached cpu_pause */
1016 
1017 	/*
1018 	 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1019 	 * to PAUSE_WAIT.)
1020 	 */
1021 	for (i = 0; i < NCPU; i++) {
1022 		while (safe_list[i] != PAUSE_WAIT)
1023 			;
1024 	}
1025 	cpi->cp_spl = splhigh();	/* block dispatcher on this CPU */
1026 	cpi->cp_paused = curthread;
1027 }
1028 
1029 /*
1030  * Check whether the current thread has CPUs paused
1031  */
1032 int
1033 cpus_paused(void)
1034 {
1035 	if (cpu_pause_info.cp_paused != NULL) {
1036 		ASSERT(cpu_pause_info.cp_paused == curthread);
1037 		return (1);
1038 	}
1039 	return (0);
1040 }
1041 
1042 static cpu_t *
1043 cpu_get_all(processorid_t cpun)
1044 {
1045 	ASSERT(MUTEX_HELD(&cpu_lock));
1046 
1047 	if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1048 		return (NULL);
1049 	return (cpu[cpun]);
1050 }
1051 
1052 /*
1053  * Check whether cpun is a valid processor id and whether it should be
1054  * visible from the current zone. If it is, return a pointer to the
1055  * associated CPU structure.
1056  */
1057 cpu_t *
1058 cpu_get(processorid_t cpun)
1059 {
1060 	cpu_t *c;
1061 
1062 	ASSERT(MUTEX_HELD(&cpu_lock));
1063 	c = cpu_get_all(cpun);
1064 	if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1065 	    zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1066 		return (NULL);
1067 	return (c);
1068 }
1069 
1070 /*
1071  * The following functions should be used to check CPU states in the kernel.
1072  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1073  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1074  * states.  Those are for user-land (and system call) use only.
1075  */
1076 
1077 /*
1078  * Determine whether the CPU is online and handling interrupts.
1079  */
1080 int
1081 cpu_is_online(cpu_t *cpu)
1082 {
1083 	ASSERT(MUTEX_HELD(&cpu_lock));
1084 	return (cpu_flagged_online(cpu->cpu_flags));
1085 }
1086 
1087 /*
1088  * Determine whether the CPU is offline (this includes spare and faulted).
1089  */
1090 int
1091 cpu_is_offline(cpu_t *cpu)
1092 {
1093 	ASSERT(MUTEX_HELD(&cpu_lock));
1094 	return (cpu_flagged_offline(cpu->cpu_flags));
1095 }
1096 
1097 /*
1098  * Determine whether the CPU is powered off.
1099  */
1100 int
1101 cpu_is_poweredoff(cpu_t *cpu)
1102 {
1103 	ASSERT(MUTEX_HELD(&cpu_lock));
1104 	return (cpu_flagged_poweredoff(cpu->cpu_flags));
1105 }
1106 
1107 /*
1108  * Determine whether the CPU is handling interrupts.
1109  */
1110 int
1111 cpu_is_nointr(cpu_t *cpu)
1112 {
1113 	ASSERT(MUTEX_HELD(&cpu_lock));
1114 	return (cpu_flagged_nointr(cpu->cpu_flags));
1115 }
1116 
1117 /*
1118  * Determine whether the CPU is active (scheduling threads).
1119  */
1120 int
1121 cpu_is_active(cpu_t *cpu)
1122 {
1123 	ASSERT(MUTEX_HELD(&cpu_lock));
1124 	return (cpu_flagged_active(cpu->cpu_flags));
1125 }
1126 
1127 /*
1128  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1129  */
1130 int
1131 cpu_flagged_online(cpu_flag_t cpu_flags)
1132 {
1133 	return (cpu_flagged_active(cpu_flags) &&
1134 	    (cpu_flags & CPU_ENABLE));
1135 }
1136 
1137 int
1138 cpu_flagged_offline(cpu_flag_t cpu_flags)
1139 {
1140 	return (((cpu_flags & CPU_POWEROFF) == 0) &&
1141 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1142 }
1143 
1144 int
1145 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1146 {
1147 	return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1148 }
1149 
1150 int
1151 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1152 {
1153 	return (cpu_flagged_active(cpu_flags) &&
1154 	    (cpu_flags & CPU_ENABLE) == 0);
1155 }
1156 
1157 int
1158 cpu_flagged_active(cpu_flag_t cpu_flags)
1159 {
1160 	return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1161 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1162 }
1163 
1164 /*
1165  * Bring the indicated CPU online.
1166  */
1167 int
1168 cpu_online(cpu_t *cp)
1169 {
1170 	int	error = 0;
1171 
1172 	/*
1173 	 * Handle on-line request.
1174 	 *	This code must put the new CPU on the active list before
1175 	 *	starting it because it will not be paused, and will start
1176 	 * 	using the active list immediately.  The real start occurs
1177 	 *	when the CPU_QUIESCED flag is turned off.
1178 	 */
1179 
1180 	ASSERT(MUTEX_HELD(&cpu_lock));
1181 
1182 	/*
1183 	 * Put all the cpus into a known safe place.
1184 	 * No mutexes can be entered while CPUs are paused.
1185 	 */
1186 	error = mp_cpu_start(cp);	/* arch-dep hook */
1187 	if (error == 0) {
1188 		pg_cpupart_in(cp, cp->cpu_part);
1189 		pause_cpus(NULL);
1190 		cpu_add_active_internal(cp);
1191 		if (cp->cpu_flags & CPU_FAULTED) {
1192 			cp->cpu_flags &= ~CPU_FAULTED;
1193 			mp_cpu_faulted_exit(cp);
1194 		}
1195 		cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1196 		    CPU_SPARE);
1197 		start_cpus();
1198 		cpu_stats_kstat_create(cp);
1199 		cpu_create_intrstat(cp);
1200 		lgrp_kstat_create(cp);
1201 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1202 		cpu_intr_enable(cp);	/* arch-dep hook */
1203 		cpu_set_state(cp);
1204 		cyclic_online(cp);
1205 		poke_cpu(cp->cpu_id);
1206 	}
1207 
1208 	return (error);
1209 }
1210 
1211 /*
1212  * Take the indicated CPU offline.
1213  */
1214 int
1215 cpu_offline(cpu_t *cp, int flags)
1216 {
1217 	cpupart_t *pp;
1218 	int	error = 0;
1219 	cpu_t	*ncp;
1220 	int	intr_enable;
1221 	int	cyclic_off = 0;
1222 	int	loop_count;
1223 	int	no_quiesce = 0;
1224 	int	(*bound_func)(struct cpu *, int);
1225 	kthread_t *t;
1226 	lpl_t	*cpu_lpl;
1227 	proc_t	*p;
1228 	int	lgrp_diff_lpl;
1229 
1230 	ASSERT(MUTEX_HELD(&cpu_lock));
1231 
1232 	/*
1233 	 * If we're going from faulted or spare to offline, just
1234 	 * clear these flags and update CPU state.
1235 	 */
1236 	if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1237 		if (cp->cpu_flags & CPU_FAULTED) {
1238 			cp->cpu_flags &= ~CPU_FAULTED;
1239 			mp_cpu_faulted_exit(cp);
1240 		}
1241 		cp->cpu_flags &= ~CPU_SPARE;
1242 		cpu_set_state(cp);
1243 		return (0);
1244 	}
1245 
1246 	/*
1247 	 * Handle off-line request.
1248 	 */
1249 	pp = cp->cpu_part;
1250 	/*
1251 	 * Don't offline last online CPU in partition
1252 	 */
1253 	if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1254 		return (EBUSY);
1255 	/*
1256 	 * Unbind all thread bound to our CPU if we were asked to.
1257 	 */
1258 	if (flags & CPU_FORCED && (error = cpu_unbind(cp->cpu_id)) != 0)
1259 		return (error);
1260 	/*
1261 	 * We shouldn't be bound to this CPU ourselves.
1262 	 */
1263 	if (curthread->t_bound_cpu == cp)
1264 		return (EBUSY);
1265 
1266 	/*
1267 	 * Tell interested parties that this CPU is going offline.
1268 	 */
1269 	cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1270 
1271 	/*
1272 	 * Tell the PG subsystem that the CPU is leaving the partition
1273 	 */
1274 	pg_cpupart_out(cp, pp);
1275 
1276 	/*
1277 	 * Take the CPU out of interrupt participation so we won't find
1278 	 * bound kernel threads.  If the architecture cannot completely
1279 	 * shut off interrupts on the CPU, don't quiesce it, but don't
1280 	 * run anything but interrupt thread... this is indicated by
1281 	 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1282 	 * off.
1283 	 */
1284 	intr_enable = cp->cpu_flags & CPU_ENABLE;
1285 	if (intr_enable)
1286 		no_quiesce = cpu_intr_disable(cp);
1287 
1288 	/*
1289 	 * Record that we are aiming to offline this cpu.  This acts as
1290 	 * a barrier to further weak binding requests in thread_nomigrate
1291 	 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1292 	 * lean away from this cpu.  Further strong bindings are already
1293 	 * avoided since we hold cpu_lock.  Since threads that are set
1294 	 * runnable around now and others coming off the target cpu are
1295 	 * directed away from the target, existing strong and weak bindings
1296 	 * (especially the latter) to the target cpu stand maximum chance of
1297 	 * being able to unbind during the short delay loop below (if other
1298 	 * unbound threads compete they may not see cpu in time to unbind
1299 	 * even if they would do so immediately.
1300 	 */
1301 	cpu_inmotion = cp;
1302 	membar_enter();
1303 
1304 	/*
1305 	 * Check for kernel threads (strong or weak) bound to that CPU.
1306 	 * Strongly bound threads may not unbind, and we'll have to return
1307 	 * EBUSY.  Weakly bound threads should always disappear - we've
1308 	 * stopped more weak binding with cpu_inmotion and existing
1309 	 * bindings will drain imminently (they may not block).  Nonetheless
1310 	 * we will wait for a fixed period for all bound threads to disappear.
1311 	 * Inactive interrupt threads are OK (they'll be in TS_FREE
1312 	 * state).  If test finds some bound threads, wait a few ticks
1313 	 * to give short-lived threads (such as interrupts) chance to
1314 	 * complete.  Note that if no_quiesce is set, i.e. this cpu
1315 	 * is required to service interrupts, then we take the route
1316 	 * that permits interrupt threads to be active (or bypassed).
1317 	 */
1318 	bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1319 
1320 again:	for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1321 		if (loop_count >= 5) {
1322 			error = EBUSY;	/* some threads still bound */
1323 			break;
1324 		}
1325 
1326 		/*
1327 		 * If some threads were assigned, give them
1328 		 * a chance to complete or move.
1329 		 *
1330 		 * This assumes that the clock_thread is not bound
1331 		 * to any CPU, because the clock_thread is needed to
1332 		 * do the delay(hz/100).
1333 		 *
1334 		 * Note: we still hold the cpu_lock while waiting for
1335 		 * the next clock tick.  This is OK since it isn't
1336 		 * needed for anything else except processor_bind(2),
1337 		 * and system initialization.  If we drop the lock,
1338 		 * we would risk another p_online disabling the last
1339 		 * processor.
1340 		 */
1341 		delay(hz/100);
1342 	}
1343 
1344 	if (error == 0 && cyclic_off == 0) {
1345 		if (!cyclic_offline(cp)) {
1346 			/*
1347 			 * We must have bound cyclics...
1348 			 */
1349 			error = EBUSY;
1350 			goto out;
1351 		}
1352 		cyclic_off = 1;
1353 	}
1354 
1355 	/*
1356 	 * Call mp_cpu_stop() to perform any special operations
1357 	 * needed for this machine architecture to offline a CPU.
1358 	 */
1359 	if (error == 0)
1360 		error = mp_cpu_stop(cp);	/* arch-dep hook */
1361 
1362 	/*
1363 	 * If that all worked, take the CPU offline and decrement
1364 	 * ncpus_online.
1365 	 */
1366 	if (error == 0) {
1367 		/*
1368 		 * Put all the cpus into a known safe place.
1369 		 * No mutexes can be entered while CPUs are paused.
1370 		 */
1371 		pause_cpus(cp);
1372 		/*
1373 		 * Repeat the operation, if necessary, to make sure that
1374 		 * all outstanding low-level interrupts run to completion
1375 		 * before we set the CPU_QUIESCED flag.  It's also possible
1376 		 * that a thread has weak bound to the cpu despite our raising
1377 		 * cpu_inmotion above since it may have loaded that
1378 		 * value before the barrier became visible (this would have
1379 		 * to be the thread that was on the target cpu at the time
1380 		 * we raised the barrier).
1381 		 */
1382 		if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1383 		    (*bound_func)(cp, 1)) {
1384 			start_cpus();
1385 			(void) mp_cpu_start(cp);
1386 			goto again;
1387 		}
1388 		ncp = cp->cpu_next_part;
1389 		cpu_lpl = cp->cpu_lpl;
1390 		ASSERT(cpu_lpl != NULL);
1391 
1392 		/*
1393 		 * Remove the CPU from the list of active CPUs.
1394 		 */
1395 		cpu_remove_active(cp);
1396 
1397 		/*
1398 		 * Walk the active process list and look for threads
1399 		 * whose home lgroup needs to be updated, or
1400 		 * the last CPU they run on is the one being offlined now.
1401 		 */
1402 
1403 		ASSERT(curthread->t_cpu != cp);
1404 		for (p = practive; p != NULL; p = p->p_next) {
1405 
1406 			t = p->p_tlist;
1407 
1408 			if (t == NULL)
1409 				continue;
1410 
1411 			lgrp_diff_lpl = 0;
1412 
1413 			do {
1414 				ASSERT(t->t_lpl != NULL);
1415 				/*
1416 				 * Taking last CPU in lpl offline
1417 				 * Rehome thread if it is in this lpl
1418 				 * Otherwise, update the count of how many
1419 				 * threads are in this CPU's lgroup but have
1420 				 * a different lpl.
1421 				 */
1422 
1423 				if (cpu_lpl->lpl_ncpu == 0) {
1424 					if (t->t_lpl == cpu_lpl)
1425 						lgrp_move_thread(t,
1426 						    lgrp_choose(t,
1427 						    t->t_cpupart), 0);
1428 					else if (t->t_lpl->lpl_lgrpid ==
1429 					    cpu_lpl->lpl_lgrpid)
1430 						lgrp_diff_lpl++;
1431 				}
1432 				ASSERT(t->t_lpl->lpl_ncpu > 0);
1433 
1434 				/*
1435 				 * Update CPU last ran on if it was this CPU
1436 				 */
1437 				if (t->t_cpu == cp && t->t_bound_cpu != cp)
1438 					t->t_cpu = disp_lowpri_cpu(ncp,
1439 					    t->t_lpl, t->t_pri, NULL);
1440 				ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1441 				    t->t_weakbound_cpu == cp);
1442 
1443 				t = t->t_forw;
1444 			} while (t != p->p_tlist);
1445 
1446 			/*
1447 			 * Didn't find any threads in the same lgroup as this
1448 			 * CPU with a different lpl, so remove the lgroup from
1449 			 * the process lgroup bitmask.
1450 			 */
1451 
1452 			if (lgrp_diff_lpl == 0)
1453 				klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1454 		}
1455 
1456 		/*
1457 		 * Walk thread list looking for threads that need to be
1458 		 * rehomed, since there are some threads that are not in
1459 		 * their process's p_tlist.
1460 		 */
1461 
1462 		t = curthread;
1463 		do {
1464 			ASSERT(t != NULL && t->t_lpl != NULL);
1465 
1466 			/*
1467 			 * Rehome threads with same lpl as this CPU when this
1468 			 * is the last CPU in the lpl.
1469 			 */
1470 
1471 			if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1472 				lgrp_move_thread(t,
1473 				    lgrp_choose(t, t->t_cpupart), 1);
1474 
1475 			ASSERT(t->t_lpl->lpl_ncpu > 0);
1476 
1477 			/*
1478 			 * Update CPU last ran on if it was this CPU
1479 			 */
1480 
1481 			if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1482 				t->t_cpu = disp_lowpri_cpu(ncp,
1483 				    t->t_lpl, t->t_pri, NULL);
1484 			}
1485 			ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1486 			    t->t_weakbound_cpu == cp);
1487 			t = t->t_next;
1488 
1489 		} while (t != curthread);
1490 		ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1491 		cp->cpu_flags |= CPU_OFFLINE;
1492 		disp_cpu_inactive(cp);
1493 		if (!no_quiesce)
1494 			cp->cpu_flags |= CPU_QUIESCED;
1495 		ncpus_online--;
1496 		cpu_set_state(cp);
1497 		cpu_inmotion = NULL;
1498 		start_cpus();
1499 		cpu_stats_kstat_destroy(cp);
1500 		cpu_delete_intrstat(cp);
1501 		lgrp_kstat_destroy(cp);
1502 	}
1503 
1504 out:
1505 	cpu_inmotion = NULL;
1506 
1507 	/*
1508 	 * If we failed, re-enable interrupts.
1509 	 * Do this even if cpu_intr_disable returned an error, because
1510 	 * it may have partially disabled interrupts.
1511 	 */
1512 	if (error && intr_enable)
1513 		cpu_intr_enable(cp);
1514 
1515 	/*
1516 	 * If we failed, but managed to offline the cyclic subsystem on this
1517 	 * CPU, bring it back online.
1518 	 */
1519 	if (error && cyclic_off)
1520 		cyclic_online(cp);
1521 
1522 	/*
1523 	 * If we failed, tell the PG subsystem that the CPU is back
1524 	 */
1525 	pg_cpupart_in(cp, pp);
1526 
1527 	/*
1528 	 * If we failed, we need to notify everyone that this CPU is back on.
1529 	 */
1530 	if (error != 0)
1531 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1532 
1533 	return (error);
1534 }
1535 
1536 /*
1537  * Mark the indicated CPU as faulted, taking it offline.
1538  */
1539 int
1540 cpu_faulted(cpu_t *cp, int flags)
1541 {
1542 	int	error = 0;
1543 
1544 	ASSERT(MUTEX_HELD(&cpu_lock));
1545 	ASSERT(!cpu_is_poweredoff(cp));
1546 
1547 	if (cpu_is_offline(cp)) {
1548 		cp->cpu_flags &= ~CPU_SPARE;
1549 		cp->cpu_flags |= CPU_FAULTED;
1550 		mp_cpu_faulted_enter(cp);
1551 		cpu_set_state(cp);
1552 		return (0);
1553 	}
1554 
1555 	if ((error = cpu_offline(cp, flags)) == 0) {
1556 		cp->cpu_flags |= CPU_FAULTED;
1557 		mp_cpu_faulted_enter(cp);
1558 		cpu_set_state(cp);
1559 	}
1560 
1561 	return (error);
1562 }
1563 
1564 /*
1565  * Mark the indicated CPU as a spare, taking it offline.
1566  */
1567 int
1568 cpu_spare(cpu_t *cp, int flags)
1569 {
1570 	int	error = 0;
1571 
1572 	ASSERT(MUTEX_HELD(&cpu_lock));
1573 	ASSERT(!cpu_is_poweredoff(cp));
1574 
1575 	if (cpu_is_offline(cp)) {
1576 		if (cp->cpu_flags & CPU_FAULTED) {
1577 			cp->cpu_flags &= ~CPU_FAULTED;
1578 			mp_cpu_faulted_exit(cp);
1579 		}
1580 		cp->cpu_flags |= CPU_SPARE;
1581 		cpu_set_state(cp);
1582 		return (0);
1583 	}
1584 
1585 	if ((error = cpu_offline(cp, flags)) == 0) {
1586 		cp->cpu_flags |= CPU_SPARE;
1587 		cpu_set_state(cp);
1588 	}
1589 
1590 	return (error);
1591 }
1592 
1593 /*
1594  * Take the indicated CPU from poweroff to offline.
1595  */
1596 int
1597 cpu_poweron(cpu_t *cp)
1598 {
1599 	int	error = ENOTSUP;
1600 
1601 	ASSERT(MUTEX_HELD(&cpu_lock));
1602 	ASSERT(cpu_is_poweredoff(cp));
1603 
1604 	error = mp_cpu_poweron(cp);	/* arch-dep hook */
1605 	if (error == 0)
1606 		cpu_set_state(cp);
1607 
1608 	return (error);
1609 }
1610 
1611 /*
1612  * Take the indicated CPU from any inactive state to powered off.
1613  */
1614 int
1615 cpu_poweroff(cpu_t *cp)
1616 {
1617 	int	error = ENOTSUP;
1618 
1619 	ASSERT(MUTEX_HELD(&cpu_lock));
1620 	ASSERT(cpu_is_offline(cp));
1621 
1622 	if (!(cp->cpu_flags & CPU_QUIESCED))
1623 		return (EBUSY);		/* not completely idle */
1624 
1625 	error = mp_cpu_poweroff(cp);	/* arch-dep hook */
1626 	if (error == 0)
1627 		cpu_set_state(cp);
1628 
1629 	return (error);
1630 }
1631 
1632 /*
1633  * Initialize the CPU lists for the first CPU.
1634  */
1635 void
1636 cpu_list_init(cpu_t *cp)
1637 {
1638 	cp->cpu_next = cp;
1639 	cp->cpu_prev = cp;
1640 	cpu_list = cp;
1641 	clock_cpu_list = cp;
1642 
1643 	cp->cpu_next_onln = cp;
1644 	cp->cpu_prev_onln = cp;
1645 	cpu_active = cp;
1646 
1647 	cp->cpu_seqid = 0;
1648 	CPUSET_ADD(cpu_seqid_inuse, 0);
1649 	cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid);
1650 	cp_default.cp_mach = &cp_default_mach;
1651 	cp_default.cp_cpulist = cp;
1652 	cp_default.cp_ncpus = 1;
1653 	cp->cpu_next_part = cp;
1654 	cp->cpu_prev_part = cp;
1655 	cp->cpu_part = &cp_default;
1656 
1657 	CPUSET_ADD(cpu_available, cp->cpu_id);
1658 }
1659 
1660 /*
1661  * Insert a CPU into the list of available CPUs.
1662  */
1663 void
1664 cpu_add_unit(cpu_t *cp)
1665 {
1666 	int seqid;
1667 
1668 	ASSERT(MUTEX_HELD(&cpu_lock));
1669 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1670 
1671 	lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1672 
1673 	/*
1674 	 * Note: most users of the cpu_list will grab the
1675 	 * cpu_lock to insure that it isn't modified.  However,
1676 	 * certain users can't or won't do that.  To allow this
1677 	 * we pause the other cpus.  Users who walk the list
1678 	 * without cpu_lock, must disable kernel preemption
1679 	 * to insure that the list isn't modified underneath
1680 	 * them.  Also, any cached pointers to cpu structures
1681 	 * must be revalidated by checking to see if the
1682 	 * cpu_next pointer points to itself.  This check must
1683 	 * be done with the cpu_lock held or kernel preemption
1684 	 * disabled.  This check relies upon the fact that
1685 	 * old cpu structures are not free'ed or cleared after
1686 	 * then are removed from the cpu_list.
1687 	 *
1688 	 * Note that the clock code walks the cpu list dereferencing
1689 	 * the cpu_part pointer, so we need to initialize it before
1690 	 * adding the cpu to the list.
1691 	 */
1692 	cp->cpu_part = &cp_default;
1693 	(void) pause_cpus(NULL);
1694 	cp->cpu_next = cpu_list;
1695 	cp->cpu_prev = cpu_list->cpu_prev;
1696 	cpu_list->cpu_prev->cpu_next = cp;
1697 	cpu_list->cpu_prev = cp;
1698 	start_cpus();
1699 
1700 	for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1701 		continue;
1702 	CPUSET_ADD(cpu_seqid_inuse, seqid);
1703 	cp->cpu_seqid = seqid;
1704 	ASSERT(ncpus < max_ncpus);
1705 	ncpus++;
1706 	cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid);
1707 	cpu[cp->cpu_id] = cp;
1708 	CPUSET_ADD(cpu_available, cp->cpu_id);
1709 
1710 	/*
1711 	 * allocate a pause thread for this CPU.
1712 	 */
1713 	cpu_pause_alloc(cp);
1714 
1715 	/*
1716 	 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1717 	 * link them into a list of just that CPU.
1718 	 * This is so that disp_lowpri_cpu will work for thread_create in
1719 	 * pause_cpus() when called from the startup thread in a new CPU.
1720 	 */
1721 	cp->cpu_next_onln = cp;
1722 	cp->cpu_prev_onln = cp;
1723 	cpu_info_kstat_create(cp);
1724 	cp->cpu_next_part = cp;
1725 	cp->cpu_prev_part = cp;
1726 
1727 	init_cpu_mstate(cp, CMS_SYSTEM);
1728 
1729 	pool_pset_mod = gethrtime();
1730 }
1731 
1732 /*
1733  * Do the opposite of cpu_add_unit().
1734  */
1735 void
1736 cpu_del_unit(int cpuid)
1737 {
1738 	struct cpu	*cp, *cpnext;
1739 
1740 	ASSERT(MUTEX_HELD(&cpu_lock));
1741 	cp = cpu[cpuid];
1742 	ASSERT(cp != NULL);
1743 
1744 	ASSERT(cp->cpu_next_onln == cp);
1745 	ASSERT(cp->cpu_prev_onln == cp);
1746 	ASSERT(cp->cpu_next_part == cp);
1747 	ASSERT(cp->cpu_prev_part == cp);
1748 
1749 	/*
1750 	 * Tear down the CPU's physical ID cache, and update any
1751 	 * processor groups
1752 	 */
1753 	pg_cpu_fini(cp);
1754 	pghw_physid_destroy(cp);
1755 
1756 	/*
1757 	 * Destroy kstat stuff.
1758 	 */
1759 	cpu_info_kstat_destroy(cp);
1760 	term_cpu_mstate(cp);
1761 	/*
1762 	 * Free up pause thread.
1763 	 */
1764 	cpu_pause_free(cp);
1765 	CPUSET_DEL(cpu_available, cp->cpu_id);
1766 	cpu[cp->cpu_id] = NULL;
1767 	/*
1768 	 * The clock thread and mutex_vector_enter cannot hold the
1769 	 * cpu_lock while traversing the cpu list, therefore we pause
1770 	 * all other threads by pausing the other cpus. These, and any
1771 	 * other routines holding cpu pointers while possibly sleeping
1772 	 * must be sure to call kpreempt_disable before processing the
1773 	 * list and be sure to check that the cpu has not been deleted
1774 	 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1775 	 * to keep the deleted cpu structure around.
1776 	 *
1777 	 * Note that this MUST be done AFTER cpu_available
1778 	 * has been updated so that we don't waste time
1779 	 * trying to pause the cpu we're trying to delete.
1780 	 */
1781 	(void) pause_cpus(NULL);
1782 
1783 	cpnext = cp->cpu_next;
1784 	cp->cpu_prev->cpu_next = cp->cpu_next;
1785 	cp->cpu_next->cpu_prev = cp->cpu_prev;
1786 	if (cp == cpu_list)
1787 		cpu_list = cpnext;
1788 
1789 	/*
1790 	 * Signals that the cpu has been deleted (see above).
1791 	 */
1792 	cp->cpu_next = NULL;
1793 	cp->cpu_prev = NULL;
1794 
1795 	start_cpus();
1796 
1797 	CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1798 	ncpus--;
1799 	lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1800 
1801 	pool_pset_mod = gethrtime();
1802 }
1803 
1804 /*
1805  * Add a CPU to the list of active CPUs.
1806  *	This routine must not get any locks, because other CPUs are paused.
1807  */
1808 static void
1809 cpu_add_active_internal(cpu_t *cp)
1810 {
1811 	cpupart_t	*pp = cp->cpu_part;
1812 
1813 	ASSERT(MUTEX_HELD(&cpu_lock));
1814 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1815 
1816 	ncpus_online++;
1817 	cpu_set_state(cp);
1818 	cp->cpu_next_onln = cpu_active;
1819 	cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1820 	cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1821 	cpu_active->cpu_prev_onln = cp;
1822 
1823 	if (pp->cp_cpulist) {
1824 		cp->cpu_next_part = pp->cp_cpulist;
1825 		cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1826 		pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1827 		pp->cp_cpulist->cpu_prev_part = cp;
1828 	} else {
1829 		ASSERT(pp->cp_ncpus == 0);
1830 		pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1831 	}
1832 	pp->cp_ncpus++;
1833 	if (pp->cp_ncpus == 1) {
1834 		cp_numparts_nonempty++;
1835 		ASSERT(cp_numparts_nonempty != 0);
1836 	}
1837 
1838 	pg_cpu_active(cp);
1839 	lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1840 
1841 	bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1842 }
1843 
1844 /*
1845  * Add a CPU to the list of active CPUs.
1846  *	This is called from machine-dependent layers when a new CPU is started.
1847  */
1848 void
1849 cpu_add_active(cpu_t *cp)
1850 {
1851 	pg_cpupart_in(cp, cp->cpu_part);
1852 
1853 	pause_cpus(NULL);
1854 	cpu_add_active_internal(cp);
1855 	start_cpus();
1856 
1857 	cpu_stats_kstat_create(cp);
1858 	cpu_create_intrstat(cp);
1859 	lgrp_kstat_create(cp);
1860 	cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1861 }
1862 
1863 
1864 /*
1865  * Remove a CPU from the list of active CPUs.
1866  *	This routine must not get any locks, because other CPUs are paused.
1867  */
1868 /* ARGSUSED */
1869 static void
1870 cpu_remove_active(cpu_t *cp)
1871 {
1872 	cpupart_t	*pp = cp->cpu_part;
1873 
1874 	ASSERT(MUTEX_HELD(&cpu_lock));
1875 	ASSERT(cp->cpu_next_onln != cp);	/* not the last one */
1876 	ASSERT(cp->cpu_prev_onln != cp);	/* not the last one */
1877 
1878 	pg_cpu_inactive(cp);
1879 
1880 	lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1881 
1882 	if (cp == clock_cpu_list)
1883 		clock_cpu_list = cp->cpu_next_onln;
1884 
1885 	cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1886 	cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1887 	if (cpu_active == cp) {
1888 		cpu_active = cp->cpu_next_onln;
1889 	}
1890 	cp->cpu_next_onln = cp;
1891 	cp->cpu_prev_onln = cp;
1892 
1893 	cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1894 	cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1895 	if (pp->cp_cpulist == cp) {
1896 		pp->cp_cpulist = cp->cpu_next_part;
1897 		ASSERT(pp->cp_cpulist != cp);
1898 	}
1899 	cp->cpu_next_part = cp;
1900 	cp->cpu_prev_part = cp;
1901 	pp->cp_ncpus--;
1902 	if (pp->cp_ncpus == 0) {
1903 		cp_numparts_nonempty--;
1904 		ASSERT(cp_numparts_nonempty != 0);
1905 	}
1906 }
1907 
1908 /*
1909  * Routine used to setup a newly inserted CPU in preparation for starting
1910  * it running code.
1911  */
1912 int
1913 cpu_configure(int cpuid)
1914 {
1915 	int retval = 0;
1916 
1917 	ASSERT(MUTEX_HELD(&cpu_lock));
1918 
1919 	/*
1920 	 * Some structures are statically allocated based upon
1921 	 * the maximum number of cpus the system supports.  Do not
1922 	 * try to add anything beyond this limit.
1923 	 */
1924 	if (cpuid < 0 || cpuid >= NCPU) {
1925 		return (EINVAL);
1926 	}
1927 
1928 	if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
1929 		return (EALREADY);
1930 	}
1931 
1932 	if ((retval = mp_cpu_configure(cpuid)) != 0) {
1933 		return (retval);
1934 	}
1935 
1936 	cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
1937 	cpu_set_state(cpu[cpuid]);
1938 	retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
1939 	if (retval != 0)
1940 		(void) mp_cpu_unconfigure(cpuid);
1941 
1942 	return (retval);
1943 }
1944 
1945 /*
1946  * Routine used to cleanup a CPU that has been powered off.  This will
1947  * destroy all per-cpu information related to this cpu.
1948  */
1949 int
1950 cpu_unconfigure(int cpuid)
1951 {
1952 	int error;
1953 
1954 	ASSERT(MUTEX_HELD(&cpu_lock));
1955 
1956 	if (cpu[cpuid] == NULL) {
1957 		return (ENODEV);
1958 	}
1959 
1960 	if (cpu[cpuid]->cpu_flags == 0) {
1961 		return (EALREADY);
1962 	}
1963 
1964 	if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
1965 		return (EBUSY);
1966 	}
1967 
1968 	if (cpu[cpuid]->cpu_props != NULL) {
1969 		(void) nvlist_free(cpu[cpuid]->cpu_props);
1970 		cpu[cpuid]->cpu_props = NULL;
1971 	}
1972 
1973 	error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
1974 
1975 	if (error != 0)
1976 		return (error);
1977 
1978 	return (mp_cpu_unconfigure(cpuid));
1979 }
1980 
1981 /*
1982  * Routines for registering and de-registering cpu_setup callback functions.
1983  *
1984  * Caller's context
1985  *	These routines must not be called from a driver's attach(9E) or
1986  *	detach(9E) entry point.
1987  *
1988  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
1989  */
1990 
1991 /*
1992  * Ideally, these would be dynamically allocated and put into a linked
1993  * list; however that is not feasible because the registration routine
1994  * has to be available before the kmem allocator is working (in fact,
1995  * it is called by the kmem allocator init code).  In any case, there
1996  * are quite a few extra entries for future users.
1997  */
1998 #define	NCPU_SETUPS	20
1999 
2000 struct cpu_setup {
2001 	cpu_setup_func_t *func;
2002 	void *arg;
2003 } cpu_setups[NCPU_SETUPS];
2004 
2005 void
2006 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2007 {
2008 	int i;
2009 
2010 	ASSERT(MUTEX_HELD(&cpu_lock));
2011 
2012 	for (i = 0; i < NCPU_SETUPS; i++)
2013 		if (cpu_setups[i].func == NULL)
2014 			break;
2015 	if (i >= NCPU_SETUPS)
2016 		cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2017 
2018 	cpu_setups[i].func = func;
2019 	cpu_setups[i].arg = arg;
2020 }
2021 
2022 void
2023 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2024 {
2025 	int i;
2026 
2027 	ASSERT(MUTEX_HELD(&cpu_lock));
2028 
2029 	for (i = 0; i < NCPU_SETUPS; i++)
2030 		if ((cpu_setups[i].func == func) &&
2031 		    (cpu_setups[i].arg == arg))
2032 			break;
2033 	if (i >= NCPU_SETUPS)
2034 		cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2035 		    "deregister");
2036 
2037 	cpu_setups[i].func = NULL;
2038 	cpu_setups[i].arg = 0;
2039 }
2040 
2041 /*
2042  * Call any state change hooks for this CPU, ignore any errors.
2043  */
2044 void
2045 cpu_state_change_notify(int id, cpu_setup_t what)
2046 {
2047 	int i;
2048 
2049 	ASSERT(MUTEX_HELD(&cpu_lock));
2050 
2051 	for (i = 0; i < NCPU_SETUPS; i++) {
2052 		if (cpu_setups[i].func != NULL) {
2053 			cpu_setups[i].func(what, id, cpu_setups[i].arg);
2054 		}
2055 	}
2056 }
2057 
2058 /*
2059  * Call any state change hooks for this CPU, undo it if error found.
2060  */
2061 static int
2062 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2063 {
2064 	int i;
2065 	int retval = 0;
2066 
2067 	ASSERT(MUTEX_HELD(&cpu_lock));
2068 
2069 	for (i = 0; i < NCPU_SETUPS; i++) {
2070 		if (cpu_setups[i].func != NULL) {
2071 			retval = cpu_setups[i].func(what, id,
2072 			    cpu_setups[i].arg);
2073 			if (retval) {
2074 				for (i--; i >= 0; i--) {
2075 					if (cpu_setups[i].func != NULL)
2076 						cpu_setups[i].func(undo,
2077 						    id, cpu_setups[i].arg);
2078 				}
2079 				break;
2080 			}
2081 		}
2082 	}
2083 	return (retval);
2084 }
2085 
2086 /*
2087  * Export information about this CPU via the kstat mechanism.
2088  */
2089 static struct {
2090 	kstat_named_t ci_state;
2091 	kstat_named_t ci_state_begin;
2092 	kstat_named_t ci_cpu_type;
2093 	kstat_named_t ci_fpu_type;
2094 	kstat_named_t ci_clock_MHz;
2095 	kstat_named_t ci_chip_id;
2096 	kstat_named_t ci_implementation;
2097 	kstat_named_t ci_brandstr;
2098 	kstat_named_t ci_core_id;
2099 	kstat_named_t ci_curr_clock_Hz;
2100 	kstat_named_t ci_supp_freq_Hz;
2101 #if defined(__sparcv9)
2102 	kstat_named_t ci_device_ID;
2103 	kstat_named_t ci_cpu_fru;
2104 #endif
2105 #if defined(__x86)
2106 	kstat_named_t ci_vendorstr;
2107 	kstat_named_t ci_family;
2108 	kstat_named_t ci_model;
2109 	kstat_named_t ci_step;
2110 	kstat_named_t ci_clogid;
2111 	kstat_named_t ci_ncpuperchip;
2112 	kstat_named_t ci_ncoreperchip;
2113 #endif
2114 } cpu_info_template = {
2115 	{ "state",			KSTAT_DATA_CHAR },
2116 	{ "state_begin",		KSTAT_DATA_LONG },
2117 	{ "cpu_type",			KSTAT_DATA_CHAR },
2118 	{ "fpu_type",			KSTAT_DATA_CHAR },
2119 	{ "clock_MHz",			KSTAT_DATA_LONG },
2120 	{ "chip_id",			KSTAT_DATA_LONG },
2121 	{ "implementation",		KSTAT_DATA_STRING },
2122 	{ "brand",			KSTAT_DATA_STRING },
2123 	{ "core_id",			KSTAT_DATA_LONG },
2124 	{ "current_clock_Hz",		KSTAT_DATA_UINT64 },
2125 	{ "supported_frequencies_Hz",	KSTAT_DATA_STRING },
2126 #if defined(__sparcv9)
2127 	{ "device_ID",			KSTAT_DATA_UINT64 },
2128 	{ "cpu_fru",			KSTAT_DATA_STRING },
2129 #endif
2130 #if defined(__x86)
2131 	{ "vendor_id",			KSTAT_DATA_STRING },
2132 	{ "family",			KSTAT_DATA_INT32 },
2133 	{ "model",			KSTAT_DATA_INT32 },
2134 	{ "stepping",			KSTAT_DATA_INT32 },
2135 	{ "clog_id",			KSTAT_DATA_INT32 },
2136 	{ "ncpu_per_chip",		KSTAT_DATA_INT32 },
2137 	{ "ncore_per_chip", 		KSTAT_DATA_INT32 },
2138 #endif
2139 };
2140 
2141 static kmutex_t cpu_info_template_lock;
2142 
2143 static int
2144 cpu_info_kstat_update(kstat_t *ksp, int rw)
2145 {
2146 	cpu_t	*cp = ksp->ks_private;
2147 	const char *pi_state;
2148 
2149 	if (rw == KSTAT_WRITE)
2150 		return (EACCES);
2151 
2152 	switch (cp->cpu_type_info.pi_state) {
2153 	case P_ONLINE:
2154 		pi_state = PS_ONLINE;
2155 		break;
2156 	case P_POWEROFF:
2157 		pi_state = PS_POWEROFF;
2158 		break;
2159 	case P_NOINTR:
2160 		pi_state = PS_NOINTR;
2161 		break;
2162 	case P_FAULTED:
2163 		pi_state = PS_FAULTED;
2164 		break;
2165 	case P_SPARE:
2166 		pi_state = PS_SPARE;
2167 		break;
2168 	case P_OFFLINE:
2169 		pi_state = PS_OFFLINE;
2170 		break;
2171 	default:
2172 		pi_state = "unknown";
2173 	}
2174 	(void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2175 	cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2176 	(void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2177 	    cp->cpu_type_info.pi_processor_type, 15);
2178 	(void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2179 	    cp->cpu_type_info.pi_fputypes, 15);
2180 	cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2181 	cpu_info_template.ci_chip_id.value.l =
2182 	    pg_plat_hw_instance_id(cp, PGHW_CHIP);
2183 	kstat_named_setstr(&cpu_info_template.ci_implementation,
2184 	    cp->cpu_idstr);
2185 	kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2186 	cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2187 	cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2188 	    cp->cpu_curr_clock;
2189 	kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2190 	    cp->cpu_supp_freqs);
2191 #if defined(__sparcv9)
2192 	cpu_info_template.ci_device_ID.value.ui64 =
2193 	    cpunodes[cp->cpu_id].device_id;
2194 	kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2195 #endif
2196 #if defined(__x86)
2197 	kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2198 	    cpuid_getvendorstr(cp));
2199 	cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2200 	cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2201 	cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2202 	cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2203 	cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2204 	cpu_info_template.ci_ncoreperchip.value.l =
2205 	    cpuid_get_ncore_per_chip(cp);
2206 #endif
2207 
2208 	return (0);
2209 }
2210 
2211 static void
2212 cpu_info_kstat_create(cpu_t *cp)
2213 {
2214 	zoneid_t zoneid;
2215 
2216 	ASSERT(MUTEX_HELD(&cpu_lock));
2217 
2218 	if (pool_pset_enabled())
2219 		zoneid = GLOBAL_ZONEID;
2220 	else
2221 		zoneid = ALL_ZONES;
2222 	if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2223 	    NULL, "misc", KSTAT_TYPE_NAMED,
2224 	    sizeof (cpu_info_template) / sizeof (kstat_named_t),
2225 	    KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) {
2226 		cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2227 #if defined(__sparcv9)
2228 		cp->cpu_info_kstat->ks_data_size +=
2229 		    strlen(cpu_fru_fmri(cp)) + 1;
2230 #endif
2231 #if defined(__x86)
2232 		cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2233 #endif
2234 		if (cp->cpu_supp_freqs != NULL)
2235 			cp->cpu_info_kstat->ks_data_size +=
2236 			    strlen(cp->cpu_supp_freqs) + 1;
2237 		cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2238 		cp->cpu_info_kstat->ks_data = &cpu_info_template;
2239 		cp->cpu_info_kstat->ks_private = cp;
2240 		cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2241 		kstat_install(cp->cpu_info_kstat);
2242 	}
2243 }
2244 
2245 static void
2246 cpu_info_kstat_destroy(cpu_t *cp)
2247 {
2248 	ASSERT(MUTEX_HELD(&cpu_lock));
2249 
2250 	kstat_delete(cp->cpu_info_kstat);
2251 	cp->cpu_info_kstat = NULL;
2252 }
2253 
2254 /*
2255  * Create and install kstats for the boot CPU.
2256  */
2257 void
2258 cpu_kstat_init(cpu_t *cp)
2259 {
2260 	mutex_enter(&cpu_lock);
2261 	cpu_info_kstat_create(cp);
2262 	cpu_stats_kstat_create(cp);
2263 	cpu_create_intrstat(cp);
2264 	cpu_set_state(cp);
2265 	mutex_exit(&cpu_lock);
2266 }
2267 
2268 /*
2269  * Make visible to the zone that subset of the cpu information that would be
2270  * initialized when a cpu is configured (but still offline).
2271  */
2272 void
2273 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2274 {
2275 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2276 
2277 	ASSERT(MUTEX_HELD(&cpu_lock));
2278 	ASSERT(pool_pset_enabled());
2279 	ASSERT(cp != NULL);
2280 
2281 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2282 		zone->zone_ncpus++;
2283 		ASSERT(zone->zone_ncpus <= ncpus);
2284 	}
2285 	if (cp->cpu_info_kstat != NULL)
2286 		kstat_zone_add(cp->cpu_info_kstat, zoneid);
2287 }
2288 
2289 /*
2290  * Make visible to the zone that subset of the cpu information that would be
2291  * initialized when a previously configured cpu is onlined.
2292  */
2293 void
2294 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2295 {
2296 	kstat_t *ksp;
2297 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2298 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2299 	processorid_t cpun;
2300 
2301 	ASSERT(MUTEX_HELD(&cpu_lock));
2302 	ASSERT(pool_pset_enabled());
2303 	ASSERT(cp != NULL);
2304 	ASSERT(cpu_is_active(cp));
2305 
2306 	cpun = cp->cpu_id;
2307 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2308 		zone->zone_ncpus_online++;
2309 		ASSERT(zone->zone_ncpus_online <= ncpus_online);
2310 	}
2311 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2312 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2313 	    != NULL) {
2314 		kstat_zone_add(ksp, zoneid);
2315 		kstat_rele(ksp);
2316 	}
2317 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2318 		kstat_zone_add(ksp, zoneid);
2319 		kstat_rele(ksp);
2320 	}
2321 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2322 		kstat_zone_add(ksp, zoneid);
2323 		kstat_rele(ksp);
2324 	}
2325 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2326 	    NULL) {
2327 		kstat_zone_add(ksp, zoneid);
2328 		kstat_rele(ksp);
2329 	}
2330 }
2331 
2332 /*
2333  * Update relevant kstats such that cpu is now visible to processes
2334  * executing in specified zone.
2335  */
2336 void
2337 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2338 {
2339 	cpu_visibility_configure(cp, zone);
2340 	if (cpu_is_active(cp))
2341 		cpu_visibility_online(cp, zone);
2342 }
2343 
2344 /*
2345  * Make invisible to the zone that subset of the cpu information that would be
2346  * torn down when a previously offlined cpu is unconfigured.
2347  */
2348 void
2349 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2350 {
2351 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2352 
2353 	ASSERT(MUTEX_HELD(&cpu_lock));
2354 	ASSERT(pool_pset_enabled());
2355 	ASSERT(cp != NULL);
2356 
2357 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2358 		ASSERT(zone->zone_ncpus != 0);
2359 		zone->zone_ncpus--;
2360 	}
2361 	if (cp->cpu_info_kstat)
2362 		kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2363 }
2364 
2365 /*
2366  * Make invisible to the zone that subset of the cpu information that would be
2367  * torn down when a cpu is offlined (but still configured).
2368  */
2369 void
2370 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2371 {
2372 	kstat_t *ksp;
2373 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2374 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2375 	processorid_t cpun;
2376 
2377 	ASSERT(MUTEX_HELD(&cpu_lock));
2378 	ASSERT(pool_pset_enabled());
2379 	ASSERT(cp != NULL);
2380 	ASSERT(cpu_is_active(cp));
2381 
2382 	cpun = cp->cpu_id;
2383 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2384 		ASSERT(zone->zone_ncpus_online != 0);
2385 		zone->zone_ncpus_online--;
2386 	}
2387 
2388 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2389 	    NULL) {
2390 		kstat_zone_remove(ksp, zoneid);
2391 		kstat_rele(ksp);
2392 	}
2393 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2394 		kstat_zone_remove(ksp, zoneid);
2395 		kstat_rele(ksp);
2396 	}
2397 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2398 		kstat_zone_remove(ksp, zoneid);
2399 		kstat_rele(ksp);
2400 	}
2401 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2402 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2403 	    != NULL) {
2404 		kstat_zone_remove(ksp, zoneid);
2405 		kstat_rele(ksp);
2406 	}
2407 }
2408 
2409 /*
2410  * Update relevant kstats such that cpu is no longer visible to processes
2411  * executing in specified zone.
2412  */
2413 void
2414 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2415 {
2416 	if (cpu_is_active(cp))
2417 		cpu_visibility_offline(cp, zone);
2418 	cpu_visibility_unconfigure(cp, zone);
2419 }
2420 
2421 /*
2422  * Bind a thread to a CPU as requested.
2423  */
2424 int
2425 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2426     int *error)
2427 {
2428 	processorid_t	binding;
2429 	cpu_t		*cp;
2430 
2431 	ASSERT(MUTEX_HELD(&cpu_lock));
2432 	ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2433 
2434 	thread_lock(tp);
2435 
2436 	/*
2437 	 * Record old binding, but change the obind, which was initialized
2438 	 * to PBIND_NONE, only if this thread has a binding.  This avoids
2439 	 * reporting PBIND_NONE for a process when some LWPs are bound.
2440 	 */
2441 	binding = tp->t_bind_cpu;
2442 	if (binding != PBIND_NONE)
2443 		*obind = binding;	/* record old binding */
2444 
2445 	if (bind == PBIND_QUERY) {
2446 		thread_unlock(tp);
2447 		return (0);
2448 	}
2449 
2450 	/*
2451 	 * If this thread/LWP cannot be bound because of permission
2452 	 * problems, just note that and return success so that the
2453 	 * other threads/LWPs will be bound.  This is the way
2454 	 * processor_bind() is defined to work.
2455 	 *
2456 	 * Binding will get EPERM if the thread is of system class
2457 	 * or hasprocperm() fails.
2458 	 */
2459 	if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2460 		*error = EPERM;
2461 		thread_unlock(tp);
2462 		return (0);
2463 	}
2464 
2465 	binding = bind;
2466 	if (binding != PBIND_NONE) {
2467 		cp = cpu[binding];
2468 		/*
2469 		 * Make sure binding is in right partition.
2470 		 */
2471 		if (tp->t_cpupart != cp->cpu_part) {
2472 			*error = EINVAL;
2473 			thread_unlock(tp);
2474 			return (0);
2475 		}
2476 	}
2477 	tp->t_bind_cpu = binding;	/* set new binding */
2478 
2479 	/*
2480 	 * If there is no system-set reason for affinity, set
2481 	 * the t_bound_cpu field to reflect the binding.
2482 	 */
2483 	if (tp->t_affinitycnt == 0) {
2484 		if (binding == PBIND_NONE) {
2485 			/*
2486 			 * We may need to adjust disp_max_unbound_pri
2487 			 * since we're becoming unbound.
2488 			 */
2489 			disp_adjust_unbound_pri(tp);
2490 
2491 			tp->t_bound_cpu = NULL;	/* set new binding */
2492 
2493 			/*
2494 			 * Move thread to lgroup with strongest affinity
2495 			 * after unbinding
2496 			 */
2497 			if (tp->t_lgrp_affinity)
2498 				lgrp_move_thread(tp,
2499 				    lgrp_choose(tp, tp->t_cpupart), 1);
2500 
2501 			if (tp->t_state == TS_ONPROC &&
2502 			    tp->t_cpu->cpu_part != tp->t_cpupart)
2503 				cpu_surrender(tp);
2504 		} else {
2505 			lpl_t	*lpl;
2506 
2507 			tp->t_bound_cpu = cp;
2508 			ASSERT(cp->cpu_lpl != NULL);
2509 
2510 			/*
2511 			 * Set home to lgroup with most affinity containing CPU
2512 			 * that thread is being bound or minimum bounding
2513 			 * lgroup if no affinities set
2514 			 */
2515 			if (tp->t_lgrp_affinity)
2516 				lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2517 				    LGRP_NONE, B_FALSE);
2518 			else
2519 				lpl = cp->cpu_lpl;
2520 
2521 			if (tp->t_lpl != lpl) {
2522 				/* can't grab cpu_lock */
2523 				lgrp_move_thread(tp, lpl, 1);
2524 			}
2525 
2526 			/*
2527 			 * Make the thread switch to the bound CPU.
2528 			 * If the thread is runnable, we need to
2529 			 * requeue it even if t_cpu is already set
2530 			 * to the right CPU, since it may be on a
2531 			 * kpreempt queue and need to move to a local
2532 			 * queue.  We could check t_disp_queue to
2533 			 * avoid unnecessary overhead if it's already
2534 			 * on the right queue, but since this isn't
2535 			 * a performance-critical operation it doesn't
2536 			 * seem worth the extra code and complexity.
2537 			 *
2538 			 * If the thread is weakbound to the cpu then it will
2539 			 * resist the new binding request until the weak
2540 			 * binding drops.  The cpu_surrender or requeueing
2541 			 * below could be skipped in such cases (since it
2542 			 * will have no effect), but that would require
2543 			 * thread_allowmigrate to acquire thread_lock so
2544 			 * we'll take the very occasional hit here instead.
2545 			 */
2546 			if (tp->t_state == TS_ONPROC) {
2547 				cpu_surrender(tp);
2548 			} else if (tp->t_state == TS_RUN) {
2549 				cpu_t *ocp = tp->t_cpu;
2550 
2551 				(void) dispdeq(tp);
2552 				setbackdq(tp);
2553 				/*
2554 				 * Either on the bound CPU's disp queue now,
2555 				 * or swapped out or on the swap queue.
2556 				 */
2557 				ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2558 				    tp->t_weakbound_cpu == ocp ||
2559 				    (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2560 				    != TS_LOAD);
2561 			}
2562 		}
2563 	}
2564 
2565 	/*
2566 	 * Our binding has changed; set TP_CHANGEBIND.
2567 	 */
2568 	tp->t_proc_flag |= TP_CHANGEBIND;
2569 	aston(tp);
2570 
2571 	thread_unlock(tp);
2572 
2573 	return (0);
2574 }
2575 
2576 #if CPUSET_WORDS > 1
2577 
2578 /*
2579  * Functions for implementing cpuset operations when a cpuset is more
2580  * than one word.  On platforms where a cpuset is a single word these
2581  * are implemented as macros in cpuvar.h.
2582  */
2583 
2584 void
2585 cpuset_all(cpuset_t *s)
2586 {
2587 	int i;
2588 
2589 	for (i = 0; i < CPUSET_WORDS; i++)
2590 		s->cpub[i] = ~0UL;
2591 }
2592 
2593 void
2594 cpuset_all_but(cpuset_t *s, uint_t cpu)
2595 {
2596 	cpuset_all(s);
2597 	CPUSET_DEL(*s, cpu);
2598 }
2599 
2600 void
2601 cpuset_only(cpuset_t *s, uint_t cpu)
2602 {
2603 	CPUSET_ZERO(*s);
2604 	CPUSET_ADD(*s, cpu);
2605 }
2606 
2607 int
2608 cpuset_isnull(cpuset_t *s)
2609 {
2610 	int i;
2611 
2612 	for (i = 0; i < CPUSET_WORDS; i++)
2613 		if (s->cpub[i] != 0)
2614 			return (0);
2615 	return (1);
2616 }
2617 
2618 int
2619 cpuset_cmp(cpuset_t *s1, cpuset_t *s2)
2620 {
2621 	int i;
2622 
2623 	for (i = 0; i < CPUSET_WORDS; i++)
2624 		if (s1->cpub[i] != s2->cpub[i])
2625 			return (0);
2626 	return (1);
2627 }
2628 
2629 uint_t
2630 cpuset_find(cpuset_t *s)
2631 {
2632 
2633 	uint_t	i;
2634 	uint_t	cpu = (uint_t)-1;
2635 
2636 	/*
2637 	 * Find a cpu in the cpuset
2638 	 */
2639 	for (i = 0; i < CPUSET_WORDS; i++) {
2640 		cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2641 		if (cpu != (uint_t)-1) {
2642 			cpu += i * BT_NBIPUL;
2643 			break;
2644 		}
2645 	}
2646 	return (cpu);
2647 }
2648 
2649 void
2650 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2651 {
2652 	int	i, j;
2653 	uint_t	bit;
2654 
2655 	/*
2656 	 * First, find the smallest cpu id in the set.
2657 	 */
2658 	for (i = 0; i < CPUSET_WORDS; i++) {
2659 		if (s->cpub[i] != 0) {
2660 			bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2661 			ASSERT(bit != (uint_t)-1);
2662 			*smallestid = bit + (i * BT_NBIPUL);
2663 
2664 			/*
2665 			 * Now find the largest cpu id in
2666 			 * the set and return immediately.
2667 			 * Done in an inner loop to avoid
2668 			 * having to break out of the first
2669 			 * loop.
2670 			 */
2671 			for (j = CPUSET_WORDS - 1; j >= i; j--) {
2672 				if (s->cpub[j] != 0) {
2673 					bit = (uint_t)(highbit(s->cpub[j]) - 1);
2674 					ASSERT(bit != (uint_t)-1);
2675 					*largestid = bit + (j * BT_NBIPUL);
2676 					ASSERT(*largestid >= *smallestid);
2677 					return;
2678 				}
2679 			}
2680 
2681 			/*
2682 			 * If this code is reached, a
2683 			 * smallestid was found, but not a
2684 			 * largestid. The cpuset must have
2685 			 * been changed during the course
2686 			 * of this function call.
2687 			 */
2688 			ASSERT(0);
2689 		}
2690 	}
2691 	*smallestid = *largestid = CPUSET_NOTINSET;
2692 }
2693 
2694 #endif	/* CPUSET_WORDS */
2695 
2696 /*
2697  * Unbind all user threads bound to a given CPU.
2698  */
2699 int
2700 cpu_unbind(processorid_t cpu)
2701 {
2702 	processorid_t obind;
2703 	kthread_t *tp;
2704 	int ret = 0;
2705 	proc_t *pp;
2706 	int err, berr = 0;
2707 
2708 	ASSERT(MUTEX_HELD(&cpu_lock));
2709 
2710 	mutex_enter(&pidlock);
2711 	for (pp = practive; pp != NULL; pp = pp->p_next) {
2712 		mutex_enter(&pp->p_lock);
2713 		tp = pp->p_tlist;
2714 		/*
2715 		 * Skip zombies, kernel processes, and processes in
2716 		 * other zones, if called from a non-global zone.
2717 		 */
2718 		if (tp == NULL || (pp->p_flag & SSYS) ||
2719 		    !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2720 			mutex_exit(&pp->p_lock);
2721 			continue;
2722 		}
2723 		do {
2724 			if (tp->t_bind_cpu != cpu)
2725 				continue;
2726 			err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2727 			if (ret == 0)
2728 				ret = err;
2729 		} while ((tp = tp->t_forw) != pp->p_tlist);
2730 		mutex_exit(&pp->p_lock);
2731 	}
2732 	mutex_exit(&pidlock);
2733 	if (ret == 0)
2734 		ret = berr;
2735 	return (ret);
2736 }
2737 
2738 
2739 /*
2740  * Destroy all remaining bound threads on a cpu.
2741  */
2742 void
2743 cpu_destroy_bound_threads(cpu_t *cp)
2744 {
2745 	extern id_t syscid;
2746 	register kthread_id_t	t, tlist, tnext;
2747 
2748 	/*
2749 	 * Destroy all remaining bound threads on the cpu.  This
2750 	 * should include both the interrupt threads and the idle thread.
2751 	 * This requires some care, since we need to traverse the
2752 	 * thread list with the pidlock mutex locked, but thread_free
2753 	 * also locks the pidlock mutex.  So, we collect the threads
2754 	 * we're going to reap in a list headed by "tlist", then we
2755 	 * unlock the pidlock mutex and traverse the tlist list,
2756 	 * doing thread_free's on the thread's.	 Simple, n'est pas?
2757 	 * Also, this depends on thread_free not mucking with the
2758 	 * t_next and t_prev links of the thread.
2759 	 */
2760 
2761 	if ((t = curthread) != NULL) {
2762 
2763 		tlist = NULL;
2764 		mutex_enter(&pidlock);
2765 		do {
2766 			tnext = t->t_next;
2767 			if (t->t_bound_cpu == cp) {
2768 
2769 				/*
2770 				 * We've found a bound thread, carefully unlink
2771 				 * it out of the thread list, and add it to
2772 				 * our "tlist".	 We "know" we don't have to
2773 				 * worry about unlinking curthread (the thread
2774 				 * that is executing this code).
2775 				 */
2776 				t->t_next->t_prev = t->t_prev;
2777 				t->t_prev->t_next = t->t_next;
2778 				t->t_next = tlist;
2779 				tlist = t;
2780 				ASSERT(t->t_cid == syscid);
2781 				/* wake up anyone blocked in thread_join */
2782 				cv_broadcast(&t->t_joincv);
2783 				/*
2784 				 * t_lwp set by interrupt threads and not
2785 				 * cleared.
2786 				 */
2787 				t->t_lwp = NULL;
2788 				/*
2789 				 * Pause and idle threads always have
2790 				 * t_state set to TS_ONPROC.
2791 				 */
2792 				t->t_state = TS_FREE;
2793 				t->t_prev = NULL;	/* Just in case */
2794 			}
2795 
2796 		} while ((t = tnext) != curthread);
2797 
2798 		mutex_exit(&pidlock);
2799 
2800 		for (t = tlist; t != NULL; t = tnext) {
2801 			tnext = t->t_next;
2802 			thread_free(t);
2803 		}
2804 	}
2805 }
2806 
2807 /*
2808  * Update the cpu_supp_freqs of this cpu. This information is returned
2809  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
2810  * maintain the kstat data size.
2811  */
2812 void
2813 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
2814 {
2815 	char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
2816 	const char *lfreqs = clkstr;
2817 	boolean_t kstat_exists = B_FALSE;
2818 	kstat_t *ksp;
2819 	size_t len;
2820 
2821 	/*
2822 	 * A NULL pointer means we only support one speed.
2823 	 */
2824 	if (freqs == NULL)
2825 		(void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
2826 		    cp->cpu_curr_clock);
2827 	else
2828 		lfreqs = freqs;
2829 
2830 	/*
2831 	 * Make sure the frequency doesn't change while a snapshot is
2832 	 * going on. Of course, we only need to worry about this if
2833 	 * the kstat exists.
2834 	 */
2835 	if ((ksp = cp->cpu_info_kstat) != NULL) {
2836 		mutex_enter(ksp->ks_lock);
2837 		kstat_exists = B_TRUE;
2838 	}
2839 
2840 	/*
2841 	 * Free any previously allocated string and if the kstat
2842 	 * already exists, then update its data size.
2843 	 */
2844 	if (cp->cpu_supp_freqs != NULL) {
2845 		len = strlen(cp->cpu_supp_freqs) + 1;
2846 		kmem_free(cp->cpu_supp_freqs, len);
2847 		if (kstat_exists)
2848 			ksp->ks_data_size -= len;
2849 	}
2850 
2851 	/*
2852 	 * Allocate the new string and set the pointer.
2853 	 */
2854 	len = strlen(lfreqs) + 1;
2855 	cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
2856 	(void) strcpy(cp->cpu_supp_freqs, lfreqs);
2857 
2858 	/*
2859 	 * If the kstat already exists then update the data size and
2860 	 * free the lock.
2861 	 */
2862 	if (kstat_exists) {
2863 		ksp->ks_data_size += len;
2864 		mutex_exit(ksp->ks_lock);
2865 	}
2866 }
2867 
2868 /*
2869  * processor_info(2) and p_online(2) status support functions
2870  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
2871  *   for use in communicating processor state information to userland.  Kernel
2872  *   subsystems should only be using the cpu_flags value directly.  Subsystems
2873  *   modifying cpu_flags should record the state change via a call to the
2874  *   cpu_set_state().
2875  */
2876 
2877 /*
2878  * Update the pi_state of this CPU.  This function provides the CPU status for
2879  * the information returned by processor_info(2).
2880  */
2881 void
2882 cpu_set_state(cpu_t *cpu)
2883 {
2884 	ASSERT(MUTEX_HELD(&cpu_lock));
2885 	cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
2886 	cpu->cpu_state_begin = gethrestime_sec();
2887 	pool_cpu_mod = gethrtime();
2888 }
2889 
2890 /*
2891  * Return offline/online/other status for the indicated CPU.  Use only for
2892  * communication with user applications; cpu_flags provides the in-kernel
2893  * interface.
2894  */
2895 int
2896 cpu_get_state(cpu_t *cpu)
2897 {
2898 	ASSERT(MUTEX_HELD(&cpu_lock));
2899 	if (cpu->cpu_flags & CPU_POWEROFF)
2900 		return (P_POWEROFF);
2901 	else if (cpu->cpu_flags & CPU_FAULTED)
2902 		return (P_FAULTED);
2903 	else if (cpu->cpu_flags & CPU_SPARE)
2904 		return (P_SPARE);
2905 	else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
2906 		return (P_OFFLINE);
2907 	else if (cpu->cpu_flags & CPU_ENABLE)
2908 		return (P_ONLINE);
2909 	else
2910 		return (P_NOINTR);
2911 }
2912 
2913 /*
2914  * Return processor_info(2) state as a string.
2915  */
2916 const char *
2917 cpu_get_state_str(cpu_t *cpu)
2918 {
2919 	const char *string;
2920 
2921 	switch (cpu_get_state(cpu)) {
2922 	case P_ONLINE:
2923 		string = PS_ONLINE;
2924 		break;
2925 	case P_POWEROFF:
2926 		string = PS_POWEROFF;
2927 		break;
2928 	case P_NOINTR:
2929 		string = PS_NOINTR;
2930 		break;
2931 	case P_SPARE:
2932 		string = PS_SPARE;
2933 		break;
2934 	case P_FAULTED:
2935 		string = PS_FAULTED;
2936 		break;
2937 	case P_OFFLINE:
2938 		string = PS_OFFLINE;
2939 		break;
2940 	default:
2941 		string = "unknown";
2942 		break;
2943 	}
2944 	return (string);
2945 }
2946 
2947 /*
2948  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
2949  * kstats, respectively.  This is done when a CPU is initialized or placed
2950  * online via p_online(2).
2951  */
2952 static void
2953 cpu_stats_kstat_create(cpu_t *cp)
2954 {
2955 	int 	instance = cp->cpu_id;
2956 	char 	*module = "cpu";
2957 	char 	*class = "misc";
2958 	kstat_t	*ksp;
2959 	zoneid_t zoneid;
2960 
2961 	ASSERT(MUTEX_HELD(&cpu_lock));
2962 
2963 	if (pool_pset_enabled())
2964 		zoneid = GLOBAL_ZONEID;
2965 	else
2966 		zoneid = ALL_ZONES;
2967 	/*
2968 	 * Create named kstats
2969 	 */
2970 #define	CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
2971 	ksp = kstat_create_zone(module, instance, (name), class,         \
2972 	    KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
2973 	    zoneid);                                                     \
2974 	if (ksp != NULL) {                                               \
2975 		ksp->ks_private = cp;                                    \
2976 		ksp->ks_update = (update_func);                          \
2977 		kstat_install(ksp);                                      \
2978 	} else                                                           \
2979 		cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
2980 		    module, instance, (name));
2981 
2982 	CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
2983 	    cpu_sys_stats_ks_update);
2984 	CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
2985 	    cpu_vm_stats_ks_update);
2986 
2987 	/*
2988 	 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
2989 	 */
2990 	ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
2991 	    "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
2992 	if (ksp != NULL) {
2993 		ksp->ks_update = cpu_stat_ks_update;
2994 		ksp->ks_private = cp;
2995 		kstat_install(ksp);
2996 	}
2997 }
2998 
2999 static void
3000 cpu_stats_kstat_destroy(cpu_t *cp)
3001 {
3002 	char ks_name[KSTAT_STRLEN];
3003 
3004 	(void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3005 	kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3006 
3007 	kstat_delete_byname("cpu", cp->cpu_id, "sys");
3008 	kstat_delete_byname("cpu", cp->cpu_id, "vm");
3009 }
3010 
3011 static int
3012 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3013 {
3014 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3015 	struct cpu_sys_stats_ks_data *csskd;
3016 	cpu_sys_stats_t *css;
3017 	hrtime_t msnsecs[NCMSTATES];
3018 	int	i;
3019 
3020 	if (rw == KSTAT_WRITE)
3021 		return (EACCES);
3022 
3023 	csskd = ksp->ks_data;
3024 	css = &cp->cpu_stats.sys;
3025 
3026 	/*
3027 	 * Read CPU mstate, but compare with the last values we
3028 	 * received to make sure that the returned kstats never
3029 	 * decrease.
3030 	 */
3031 
3032 	get_cpu_mstate(cp, msnsecs);
3033 	if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3034 		msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3035 	if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3036 		msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3037 	if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3038 		msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3039 
3040 	bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3041 	    sizeof (cpu_sys_stats_ks_data_template));
3042 
3043 	csskd->cpu_ticks_wait.value.ui64 = 0;
3044 	csskd->wait_ticks_io.value.ui64 = 0;
3045 
3046 	csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3047 	csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3048 	csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3049 	csskd->cpu_ticks_idle.value.ui64 =
3050 	    NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3051 	csskd->cpu_ticks_user.value.ui64 =
3052 	    NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3053 	csskd->cpu_ticks_kernel.value.ui64 =
3054 	    NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3055 	csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3056 	csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3057 	csskd->bread.value.ui64 = css->bread;
3058 	csskd->bwrite.value.ui64 = css->bwrite;
3059 	csskd->lread.value.ui64 = css->lread;
3060 	csskd->lwrite.value.ui64 = css->lwrite;
3061 	csskd->phread.value.ui64 = css->phread;
3062 	csskd->phwrite.value.ui64 = css->phwrite;
3063 	csskd->pswitch.value.ui64 = css->pswitch;
3064 	csskd->trap.value.ui64 = css->trap;
3065 	csskd->intr.value.ui64 = 0;
3066 	for (i = 0; i < PIL_MAX; i++)
3067 		csskd->intr.value.ui64 += css->intr[i];
3068 	csskd->syscall.value.ui64 = css->syscall;
3069 	csskd->sysread.value.ui64 = css->sysread;
3070 	csskd->syswrite.value.ui64 = css->syswrite;
3071 	csskd->sysfork.value.ui64 = css->sysfork;
3072 	csskd->sysvfork.value.ui64 = css->sysvfork;
3073 	csskd->sysexec.value.ui64 = css->sysexec;
3074 	csskd->readch.value.ui64 = css->readch;
3075 	csskd->writech.value.ui64 = css->writech;
3076 	csskd->rcvint.value.ui64 = css->rcvint;
3077 	csskd->xmtint.value.ui64 = css->xmtint;
3078 	csskd->mdmint.value.ui64 = css->mdmint;
3079 	csskd->rawch.value.ui64 = css->rawch;
3080 	csskd->canch.value.ui64 = css->canch;
3081 	csskd->outch.value.ui64 = css->outch;
3082 	csskd->msg.value.ui64 = css->msg;
3083 	csskd->sema.value.ui64 = css->sema;
3084 	csskd->namei.value.ui64 = css->namei;
3085 	csskd->ufsiget.value.ui64 = css->ufsiget;
3086 	csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3087 	csskd->ufsipage.value.ui64 = css->ufsipage;
3088 	csskd->ufsinopage.value.ui64 = css->ufsinopage;
3089 	csskd->procovf.value.ui64 = css->procovf;
3090 	csskd->intrthread.value.ui64 = 0;
3091 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3092 		csskd->intrthread.value.ui64 += css->intr[i];
3093 	csskd->intrblk.value.ui64 = css->intrblk;
3094 	csskd->intrunpin.value.ui64 = css->intrunpin;
3095 	csskd->idlethread.value.ui64 = css->idlethread;
3096 	csskd->inv_swtch.value.ui64 = css->inv_swtch;
3097 	csskd->nthreads.value.ui64 = css->nthreads;
3098 	csskd->cpumigrate.value.ui64 = css->cpumigrate;
3099 	csskd->xcalls.value.ui64 = css->xcalls;
3100 	csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3101 	csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3102 	csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3103 	csskd->modload.value.ui64 = css->modload;
3104 	csskd->modunload.value.ui64 = css->modunload;
3105 	csskd->bawrite.value.ui64 = css->bawrite;
3106 	csskd->iowait.value.ui64 = css->iowait;
3107 
3108 	return (0);
3109 }
3110 
3111 static int
3112 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3113 {
3114 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3115 	struct cpu_vm_stats_ks_data *cvskd;
3116 	cpu_vm_stats_t *cvs;
3117 
3118 	if (rw == KSTAT_WRITE)
3119 		return (EACCES);
3120 
3121 	cvs = &cp->cpu_stats.vm;
3122 	cvskd = ksp->ks_data;
3123 
3124 	bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3125 	    sizeof (cpu_vm_stats_ks_data_template));
3126 	cvskd->pgrec.value.ui64 = cvs->pgrec;
3127 	cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3128 	cvskd->pgin.value.ui64 = cvs->pgin;
3129 	cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3130 	cvskd->pgout.value.ui64 = cvs->pgout;
3131 	cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3132 	cvskd->swapin.value.ui64 = cvs->swapin;
3133 	cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3134 	cvskd->swapout.value.ui64 = cvs->swapout;
3135 	cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3136 	cvskd->zfod.value.ui64 = cvs->zfod;
3137 	cvskd->dfree.value.ui64 = cvs->dfree;
3138 	cvskd->scan.value.ui64 = cvs->scan;
3139 	cvskd->rev.value.ui64 = cvs->rev;
3140 	cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3141 	cvskd->as_fault.value.ui64 = cvs->as_fault;
3142 	cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3143 	cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3144 	cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3145 	cvskd->softlock.value.ui64 = cvs->softlock;
3146 	cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3147 	cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3148 	cvskd->execpgin.value.ui64 = cvs->execpgin;
3149 	cvskd->execpgout.value.ui64 = cvs->execpgout;
3150 	cvskd->execfree.value.ui64 = cvs->execfree;
3151 	cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3152 	cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3153 	cvskd->anonfree.value.ui64 = cvs->anonfree;
3154 	cvskd->fspgin.value.ui64 = cvs->fspgin;
3155 	cvskd->fspgout.value.ui64 = cvs->fspgout;
3156 	cvskd->fsfree.value.ui64 = cvs->fsfree;
3157 
3158 	return (0);
3159 }
3160 
3161 static int
3162 cpu_stat_ks_update(kstat_t *ksp, int rw)
3163 {
3164 	cpu_stat_t *cso;
3165 	cpu_t *cp;
3166 	int i;
3167 	hrtime_t msnsecs[NCMSTATES];
3168 
3169 	cso = (cpu_stat_t *)ksp->ks_data;
3170 	cp = (cpu_t *)ksp->ks_private;
3171 
3172 	if (rw == KSTAT_WRITE)
3173 		return (EACCES);
3174 
3175 	/*
3176 	 * Read CPU mstate, but compare with the last values we
3177 	 * received to make sure that the returned kstats never
3178 	 * decrease.
3179 	 */
3180 
3181 	get_cpu_mstate(cp, msnsecs);
3182 	msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3183 	msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3184 	msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3185 	if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3186 		cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3187 	if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3188 		cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3189 	if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3190 		cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3191 	cso->cpu_sysinfo.cpu[CPU_WAIT] 	= 0;
3192 	cso->cpu_sysinfo.wait[W_IO] 	= 0;
3193 	cso->cpu_sysinfo.wait[W_SWAP]	= 0;
3194 	cso->cpu_sysinfo.wait[W_PIO]	= 0;
3195 	cso->cpu_sysinfo.bread 		= CPU_STATS(cp, sys.bread);
3196 	cso->cpu_sysinfo.bwrite 	= CPU_STATS(cp, sys.bwrite);
3197 	cso->cpu_sysinfo.lread 		= CPU_STATS(cp, sys.lread);
3198 	cso->cpu_sysinfo.lwrite 	= CPU_STATS(cp, sys.lwrite);
3199 	cso->cpu_sysinfo.phread 	= CPU_STATS(cp, sys.phread);
3200 	cso->cpu_sysinfo.phwrite 	= CPU_STATS(cp, sys.phwrite);
3201 	cso->cpu_sysinfo.pswitch 	= CPU_STATS(cp, sys.pswitch);
3202 	cso->cpu_sysinfo.trap 		= CPU_STATS(cp, sys.trap);
3203 	cso->cpu_sysinfo.intr		= 0;
3204 	for (i = 0; i < PIL_MAX; i++)
3205 		cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3206 	cso->cpu_sysinfo.syscall	= CPU_STATS(cp, sys.syscall);
3207 	cso->cpu_sysinfo.sysread	= CPU_STATS(cp, sys.sysread);
3208 	cso->cpu_sysinfo.syswrite	= CPU_STATS(cp, sys.syswrite);
3209 	cso->cpu_sysinfo.sysfork	= CPU_STATS(cp, sys.sysfork);
3210 	cso->cpu_sysinfo.sysvfork	= CPU_STATS(cp, sys.sysvfork);
3211 	cso->cpu_sysinfo.sysexec	= CPU_STATS(cp, sys.sysexec);
3212 	cso->cpu_sysinfo.readch		= CPU_STATS(cp, sys.readch);
3213 	cso->cpu_sysinfo.writech	= CPU_STATS(cp, sys.writech);
3214 	cso->cpu_sysinfo.rcvint		= CPU_STATS(cp, sys.rcvint);
3215 	cso->cpu_sysinfo.xmtint		= CPU_STATS(cp, sys.xmtint);
3216 	cso->cpu_sysinfo.mdmint		= CPU_STATS(cp, sys.mdmint);
3217 	cso->cpu_sysinfo.rawch		= CPU_STATS(cp, sys.rawch);
3218 	cso->cpu_sysinfo.canch		= CPU_STATS(cp, sys.canch);
3219 	cso->cpu_sysinfo.outch		= CPU_STATS(cp, sys.outch);
3220 	cso->cpu_sysinfo.msg		= CPU_STATS(cp, sys.msg);
3221 	cso->cpu_sysinfo.sema		= CPU_STATS(cp, sys.sema);
3222 	cso->cpu_sysinfo.namei		= CPU_STATS(cp, sys.namei);
3223 	cso->cpu_sysinfo.ufsiget	= CPU_STATS(cp, sys.ufsiget);
3224 	cso->cpu_sysinfo.ufsdirblk	= CPU_STATS(cp, sys.ufsdirblk);
3225 	cso->cpu_sysinfo.ufsipage	= CPU_STATS(cp, sys.ufsipage);
3226 	cso->cpu_sysinfo.ufsinopage	= CPU_STATS(cp, sys.ufsinopage);
3227 	cso->cpu_sysinfo.inodeovf	= 0;
3228 	cso->cpu_sysinfo.fileovf	= 0;
3229 	cso->cpu_sysinfo.procovf	= CPU_STATS(cp, sys.procovf);
3230 	cso->cpu_sysinfo.intrthread	= 0;
3231 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3232 		cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3233 	cso->cpu_sysinfo.intrblk	= CPU_STATS(cp, sys.intrblk);
3234 	cso->cpu_sysinfo.idlethread	= CPU_STATS(cp, sys.idlethread);
3235 	cso->cpu_sysinfo.inv_swtch	= CPU_STATS(cp, sys.inv_swtch);
3236 	cso->cpu_sysinfo.nthreads	= CPU_STATS(cp, sys.nthreads);
3237 	cso->cpu_sysinfo.cpumigrate	= CPU_STATS(cp, sys.cpumigrate);
3238 	cso->cpu_sysinfo.xcalls		= CPU_STATS(cp, sys.xcalls);
3239 	cso->cpu_sysinfo.mutex_adenters	= CPU_STATS(cp, sys.mutex_adenters);
3240 	cso->cpu_sysinfo.rw_rdfails	= CPU_STATS(cp, sys.rw_rdfails);
3241 	cso->cpu_sysinfo.rw_wrfails	= CPU_STATS(cp, sys.rw_wrfails);
3242 	cso->cpu_sysinfo.modload	= CPU_STATS(cp, sys.modload);
3243 	cso->cpu_sysinfo.modunload	= CPU_STATS(cp, sys.modunload);
3244 	cso->cpu_sysinfo.bawrite	= CPU_STATS(cp, sys.bawrite);
3245 	cso->cpu_sysinfo.rw_enters	= 0;
3246 	cso->cpu_sysinfo.win_uo_cnt	= 0;
3247 	cso->cpu_sysinfo.win_uu_cnt	= 0;
3248 	cso->cpu_sysinfo.win_so_cnt	= 0;
3249 	cso->cpu_sysinfo.win_su_cnt	= 0;
3250 	cso->cpu_sysinfo.win_suo_cnt	= 0;
3251 
3252 	cso->cpu_syswait.iowait		= CPU_STATS(cp, sys.iowait);
3253 	cso->cpu_syswait.swap		= 0;
3254 	cso->cpu_syswait.physio		= 0;
3255 
3256 	cso->cpu_vminfo.pgrec		= CPU_STATS(cp, vm.pgrec);
3257 	cso->cpu_vminfo.pgfrec		= CPU_STATS(cp, vm.pgfrec);
3258 	cso->cpu_vminfo.pgin		= CPU_STATS(cp, vm.pgin);
3259 	cso->cpu_vminfo.pgpgin		= CPU_STATS(cp, vm.pgpgin);
3260 	cso->cpu_vminfo.pgout		= CPU_STATS(cp, vm.pgout);
3261 	cso->cpu_vminfo.pgpgout		= CPU_STATS(cp, vm.pgpgout);
3262 	cso->cpu_vminfo.swapin		= CPU_STATS(cp, vm.swapin);
3263 	cso->cpu_vminfo.pgswapin	= CPU_STATS(cp, vm.pgswapin);
3264 	cso->cpu_vminfo.swapout		= CPU_STATS(cp, vm.swapout);
3265 	cso->cpu_vminfo.pgswapout	= CPU_STATS(cp, vm.pgswapout);
3266 	cso->cpu_vminfo.zfod		= CPU_STATS(cp, vm.zfod);
3267 	cso->cpu_vminfo.dfree		= CPU_STATS(cp, vm.dfree);
3268 	cso->cpu_vminfo.scan		= CPU_STATS(cp, vm.scan);
3269 	cso->cpu_vminfo.rev		= CPU_STATS(cp, vm.rev);
3270 	cso->cpu_vminfo.hat_fault	= CPU_STATS(cp, vm.hat_fault);
3271 	cso->cpu_vminfo.as_fault	= CPU_STATS(cp, vm.as_fault);
3272 	cso->cpu_vminfo.maj_fault	= CPU_STATS(cp, vm.maj_fault);
3273 	cso->cpu_vminfo.cow_fault	= CPU_STATS(cp, vm.cow_fault);
3274 	cso->cpu_vminfo.prot_fault	= CPU_STATS(cp, vm.prot_fault);
3275 	cso->cpu_vminfo.softlock	= CPU_STATS(cp, vm.softlock);
3276 	cso->cpu_vminfo.kernel_asflt	= CPU_STATS(cp, vm.kernel_asflt);
3277 	cso->cpu_vminfo.pgrrun		= CPU_STATS(cp, vm.pgrrun);
3278 	cso->cpu_vminfo.execpgin	= CPU_STATS(cp, vm.execpgin);
3279 	cso->cpu_vminfo.execpgout	= CPU_STATS(cp, vm.execpgout);
3280 	cso->cpu_vminfo.execfree	= CPU_STATS(cp, vm.execfree);
3281 	cso->cpu_vminfo.anonpgin	= CPU_STATS(cp, vm.anonpgin);
3282 	cso->cpu_vminfo.anonpgout	= CPU_STATS(cp, vm.anonpgout);
3283 	cso->cpu_vminfo.anonfree	= CPU_STATS(cp, vm.anonfree);
3284 	cso->cpu_vminfo.fspgin		= CPU_STATS(cp, vm.fspgin);
3285 	cso->cpu_vminfo.fspgout		= CPU_STATS(cp, vm.fspgout);
3286 	cso->cpu_vminfo.fsfree		= CPU_STATS(cp, vm.fsfree);
3287 
3288 	return (0);
3289 }
3290