1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #if defined(__x86) 62 #include <sys/x86_archext.h> 63 #endif 64 65 extern int mp_cpu_start(cpu_t *); 66 extern int mp_cpu_stop(cpu_t *); 67 extern int mp_cpu_poweron(cpu_t *); 68 extern int mp_cpu_poweroff(cpu_t *); 69 extern int mp_cpu_configure(int); 70 extern int mp_cpu_unconfigure(int); 71 extern void mp_cpu_faulted_enter(cpu_t *); 72 extern void mp_cpu_faulted_exit(cpu_t *); 73 74 extern int cmp_cpu_to_chip(processorid_t cpuid); 75 #ifdef __sparcv9 76 extern char *cpu_fru_fmri(cpu_t *cp); 77 #endif 78 79 static void cpu_add_active_internal(cpu_t *cp); 80 static void cpu_remove_active(cpu_t *cp); 81 static void cpu_info_kstat_create(cpu_t *cp); 82 static void cpu_info_kstat_destroy(cpu_t *cp); 83 static void cpu_stats_kstat_create(cpu_t *cp); 84 static void cpu_stats_kstat_destroy(cpu_t *cp); 85 86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 90 91 /* 92 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 93 * and dispatch queue reallocations. The lock ordering with respect to 94 * related locks is: 95 * 96 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 97 * 98 * Warning: Certain sections of code do not use the cpu_lock when 99 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 100 * all cpus are paused during modifications to this list, a solution 101 * to protect the list is too either disable kernel preemption while 102 * walking the list, *or* recheck the cpu_next pointer at each 103 * iteration in the loop. Note that in no cases can any cached 104 * copies of the cpu pointers be kept as they may become invalid. 105 */ 106 kmutex_t cpu_lock; 107 cpu_t *cpu_list; /* list of all CPUs */ 108 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 109 cpu_t *cpu_active; /* list of active CPUs */ 110 static cpuset_t cpu_available; /* set of available CPUs */ 111 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 112 113 /* 114 * max_ncpus keeps the max cpus the system can have. Initially 115 * it's NCPU, but since most archs scan the devtree for cpus 116 * fairly early on during boot, the real max can be known before 117 * ncpus is set (useful for early NCPU based allocations). 118 */ 119 int max_ncpus = NCPU; 120 /* 121 * platforms that set max_ncpus to maxiumum number of cpus that can be 122 * dynamically added will set boot_max_ncpus to the number of cpus found 123 * at device tree scan time during boot. 124 */ 125 int boot_max_ncpus = -1; 126 /* 127 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 128 * used to size arrays that are indexed by CPU id. 129 */ 130 processorid_t max_cpuid = NCPU - 1; 131 132 int ncpus = 1; 133 int ncpus_online = 1; 134 135 /* 136 * CPU that we're trying to offline. Protected by cpu_lock. 137 */ 138 cpu_t *cpu_inmotion; 139 140 /* 141 * Can be raised to suppress further weakbinding, which are instead 142 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 143 * while individual thread weakbinding synchronisation is done under thread 144 * lock. 145 */ 146 int weakbindingbarrier; 147 148 /* 149 * Variables used in pause_cpus(). 150 */ 151 static volatile char safe_list[NCPU]; 152 153 static struct _cpu_pause_info { 154 int cp_spl; /* spl saved in pause_cpus() */ 155 volatile int cp_go; /* Go signal sent after all ready */ 156 int cp_count; /* # of CPUs to pause */ 157 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 158 kthread_id_t cp_paused; 159 } cpu_pause_info; 160 161 static kmutex_t pause_free_mutex; 162 static kcondvar_t pause_free_cv; 163 164 static struct cpu_sys_stats_ks_data { 165 kstat_named_t cpu_ticks_idle; 166 kstat_named_t cpu_ticks_user; 167 kstat_named_t cpu_ticks_kernel; 168 kstat_named_t cpu_ticks_wait; 169 kstat_named_t cpu_nsec_idle; 170 kstat_named_t cpu_nsec_user; 171 kstat_named_t cpu_nsec_kernel; 172 kstat_named_t cpu_nsec_intr; 173 kstat_named_t cpu_load_intr; 174 kstat_named_t wait_ticks_io; 175 kstat_named_t bread; 176 kstat_named_t bwrite; 177 kstat_named_t lread; 178 kstat_named_t lwrite; 179 kstat_named_t phread; 180 kstat_named_t phwrite; 181 kstat_named_t pswitch; 182 kstat_named_t trap; 183 kstat_named_t intr; 184 kstat_named_t syscall; 185 kstat_named_t sysread; 186 kstat_named_t syswrite; 187 kstat_named_t sysfork; 188 kstat_named_t sysvfork; 189 kstat_named_t sysexec; 190 kstat_named_t readch; 191 kstat_named_t writech; 192 kstat_named_t rcvint; 193 kstat_named_t xmtint; 194 kstat_named_t mdmint; 195 kstat_named_t rawch; 196 kstat_named_t canch; 197 kstat_named_t outch; 198 kstat_named_t msg; 199 kstat_named_t sema; 200 kstat_named_t namei; 201 kstat_named_t ufsiget; 202 kstat_named_t ufsdirblk; 203 kstat_named_t ufsipage; 204 kstat_named_t ufsinopage; 205 kstat_named_t procovf; 206 kstat_named_t intrthread; 207 kstat_named_t intrblk; 208 kstat_named_t intrunpin; 209 kstat_named_t idlethread; 210 kstat_named_t inv_swtch; 211 kstat_named_t nthreads; 212 kstat_named_t cpumigrate; 213 kstat_named_t xcalls; 214 kstat_named_t mutex_adenters; 215 kstat_named_t rw_rdfails; 216 kstat_named_t rw_wrfails; 217 kstat_named_t modload; 218 kstat_named_t modunload; 219 kstat_named_t bawrite; 220 kstat_named_t iowait; 221 } cpu_sys_stats_ks_data_template = { 222 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 223 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 224 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 225 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 226 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 227 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 228 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 229 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 230 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 231 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 232 { "bread", KSTAT_DATA_UINT64 }, 233 { "bwrite", KSTAT_DATA_UINT64 }, 234 { "lread", KSTAT_DATA_UINT64 }, 235 { "lwrite", KSTAT_DATA_UINT64 }, 236 { "phread", KSTAT_DATA_UINT64 }, 237 { "phwrite", KSTAT_DATA_UINT64 }, 238 { "pswitch", KSTAT_DATA_UINT64 }, 239 { "trap", KSTAT_DATA_UINT64 }, 240 { "intr", KSTAT_DATA_UINT64 }, 241 { "syscall", KSTAT_DATA_UINT64 }, 242 { "sysread", KSTAT_DATA_UINT64 }, 243 { "syswrite", KSTAT_DATA_UINT64 }, 244 { "sysfork", KSTAT_DATA_UINT64 }, 245 { "sysvfork", KSTAT_DATA_UINT64 }, 246 { "sysexec", KSTAT_DATA_UINT64 }, 247 { "readch", KSTAT_DATA_UINT64 }, 248 { "writech", KSTAT_DATA_UINT64 }, 249 { "rcvint", KSTAT_DATA_UINT64 }, 250 { "xmtint", KSTAT_DATA_UINT64 }, 251 { "mdmint", KSTAT_DATA_UINT64 }, 252 { "rawch", KSTAT_DATA_UINT64 }, 253 { "canch", KSTAT_DATA_UINT64 }, 254 { "outch", KSTAT_DATA_UINT64 }, 255 { "msg", KSTAT_DATA_UINT64 }, 256 { "sema", KSTAT_DATA_UINT64 }, 257 { "namei", KSTAT_DATA_UINT64 }, 258 { "ufsiget", KSTAT_DATA_UINT64 }, 259 { "ufsdirblk", KSTAT_DATA_UINT64 }, 260 { "ufsipage", KSTAT_DATA_UINT64 }, 261 { "ufsinopage", KSTAT_DATA_UINT64 }, 262 { "procovf", KSTAT_DATA_UINT64 }, 263 { "intrthread", KSTAT_DATA_UINT64 }, 264 { "intrblk", KSTAT_DATA_UINT64 }, 265 { "intrunpin", KSTAT_DATA_UINT64 }, 266 { "idlethread", KSTAT_DATA_UINT64 }, 267 { "inv_swtch", KSTAT_DATA_UINT64 }, 268 { "nthreads", KSTAT_DATA_UINT64 }, 269 { "cpumigrate", KSTAT_DATA_UINT64 }, 270 { "xcalls", KSTAT_DATA_UINT64 }, 271 { "mutex_adenters", KSTAT_DATA_UINT64 }, 272 { "rw_rdfails", KSTAT_DATA_UINT64 }, 273 { "rw_wrfails", KSTAT_DATA_UINT64 }, 274 { "modload", KSTAT_DATA_UINT64 }, 275 { "modunload", KSTAT_DATA_UINT64 }, 276 { "bawrite", KSTAT_DATA_UINT64 }, 277 { "iowait", KSTAT_DATA_UINT64 }, 278 }; 279 280 static struct cpu_vm_stats_ks_data { 281 kstat_named_t pgrec; 282 kstat_named_t pgfrec; 283 kstat_named_t pgin; 284 kstat_named_t pgpgin; 285 kstat_named_t pgout; 286 kstat_named_t pgpgout; 287 kstat_named_t swapin; 288 kstat_named_t pgswapin; 289 kstat_named_t swapout; 290 kstat_named_t pgswapout; 291 kstat_named_t zfod; 292 kstat_named_t dfree; 293 kstat_named_t scan; 294 kstat_named_t rev; 295 kstat_named_t hat_fault; 296 kstat_named_t as_fault; 297 kstat_named_t maj_fault; 298 kstat_named_t cow_fault; 299 kstat_named_t prot_fault; 300 kstat_named_t softlock; 301 kstat_named_t kernel_asflt; 302 kstat_named_t pgrrun; 303 kstat_named_t execpgin; 304 kstat_named_t execpgout; 305 kstat_named_t execfree; 306 kstat_named_t anonpgin; 307 kstat_named_t anonpgout; 308 kstat_named_t anonfree; 309 kstat_named_t fspgin; 310 kstat_named_t fspgout; 311 kstat_named_t fsfree; 312 } cpu_vm_stats_ks_data_template = { 313 { "pgrec", KSTAT_DATA_UINT64 }, 314 { "pgfrec", KSTAT_DATA_UINT64 }, 315 { "pgin", KSTAT_DATA_UINT64 }, 316 { "pgpgin", KSTAT_DATA_UINT64 }, 317 { "pgout", KSTAT_DATA_UINT64 }, 318 { "pgpgout", KSTAT_DATA_UINT64 }, 319 { "swapin", KSTAT_DATA_UINT64 }, 320 { "pgswapin", KSTAT_DATA_UINT64 }, 321 { "swapout", KSTAT_DATA_UINT64 }, 322 { "pgswapout", KSTAT_DATA_UINT64 }, 323 { "zfod", KSTAT_DATA_UINT64 }, 324 { "dfree", KSTAT_DATA_UINT64 }, 325 { "scan", KSTAT_DATA_UINT64 }, 326 { "rev", KSTAT_DATA_UINT64 }, 327 { "hat_fault", KSTAT_DATA_UINT64 }, 328 { "as_fault", KSTAT_DATA_UINT64 }, 329 { "maj_fault", KSTAT_DATA_UINT64 }, 330 { "cow_fault", KSTAT_DATA_UINT64 }, 331 { "prot_fault", KSTAT_DATA_UINT64 }, 332 { "softlock", KSTAT_DATA_UINT64 }, 333 { "kernel_asflt", KSTAT_DATA_UINT64 }, 334 { "pgrrun", KSTAT_DATA_UINT64 }, 335 { "execpgin", KSTAT_DATA_UINT64 }, 336 { "execpgout", KSTAT_DATA_UINT64 }, 337 { "execfree", KSTAT_DATA_UINT64 }, 338 { "anonpgin", KSTAT_DATA_UINT64 }, 339 { "anonpgout", KSTAT_DATA_UINT64 }, 340 { "anonfree", KSTAT_DATA_UINT64 }, 341 { "fspgin", KSTAT_DATA_UINT64 }, 342 { "fspgout", KSTAT_DATA_UINT64 }, 343 { "fsfree", KSTAT_DATA_UINT64 }, 344 }; 345 346 /* 347 * Force the specified thread to migrate to the appropriate processor. 348 * Called with thread lock held, returns with it dropped. 349 */ 350 static void 351 force_thread_migrate(kthread_id_t tp) 352 { 353 ASSERT(THREAD_LOCK_HELD(tp)); 354 if (tp == curthread) { 355 THREAD_TRANSITION(tp); 356 CL_SETRUN(tp); 357 thread_unlock_nopreempt(tp); 358 swtch(); 359 } else { 360 if (tp->t_state == TS_ONPROC) { 361 cpu_surrender(tp); 362 } else if (tp->t_state == TS_RUN) { 363 (void) dispdeq(tp); 364 setbackdq(tp); 365 } 366 thread_unlock(tp); 367 } 368 } 369 370 /* 371 * Set affinity for a specified CPU. 372 * A reference count is incremented and the affinity is held until the 373 * reference count is decremented to zero by thread_affinity_clear(). 374 * This is so regions of code requiring affinity can be nested. 375 * Caller needs to ensure that cpu_id remains valid, which can be 376 * done by holding cpu_lock across this call, unless the caller 377 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 378 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 379 */ 380 void 381 thread_affinity_set(kthread_id_t t, int cpu_id) 382 { 383 cpu_t *cp; 384 int c; 385 386 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 387 388 if ((c = cpu_id) == CPU_CURRENT) { 389 mutex_enter(&cpu_lock); 390 cpu_id = CPU->cpu_id; 391 } 392 /* 393 * We should be asserting that cpu_lock is held here, but 394 * the NCA code doesn't acquire it. The following assert 395 * should be uncommented when the NCA code is fixed. 396 * 397 * ASSERT(MUTEX_HELD(&cpu_lock)); 398 */ 399 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 400 cp = cpu[cpu_id]; 401 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 402 /* 403 * If there is already a hard affinity requested, and this affinity 404 * conflicts with that, panic. 405 */ 406 thread_lock(t); 407 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 408 panic("affinity_set: setting %p but already bound to %p", 409 (void *)cp, (void *)t->t_bound_cpu); 410 } 411 t->t_affinitycnt++; 412 t->t_bound_cpu = cp; 413 414 /* 415 * Make sure we're running on the right CPU. 416 */ 417 if (cp != t->t_cpu || t != curthread) { 418 force_thread_migrate(t); /* drops thread lock */ 419 } else { 420 thread_unlock(t); 421 } 422 423 if (c == CPU_CURRENT) 424 mutex_exit(&cpu_lock); 425 } 426 427 /* 428 * Wrapper for backward compatibility. 429 */ 430 void 431 affinity_set(int cpu_id) 432 { 433 thread_affinity_set(curthread, cpu_id); 434 } 435 436 /* 437 * Decrement the affinity reservation count and if it becomes zero, 438 * clear the CPU affinity for the current thread, or set it to the user's 439 * software binding request. 440 */ 441 void 442 thread_affinity_clear(kthread_id_t t) 443 { 444 register processorid_t binding; 445 446 thread_lock(t); 447 if (--t->t_affinitycnt == 0) { 448 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 449 /* 450 * Adjust disp_max_unbound_pri if necessary. 451 */ 452 disp_adjust_unbound_pri(t); 453 t->t_bound_cpu = NULL; 454 if (t->t_cpu->cpu_part != t->t_cpupart) { 455 force_thread_migrate(t); 456 return; 457 } 458 } else { 459 t->t_bound_cpu = cpu[binding]; 460 /* 461 * Make sure the thread is running on the bound CPU. 462 */ 463 if (t->t_cpu != t->t_bound_cpu) { 464 force_thread_migrate(t); 465 return; /* already dropped lock */ 466 } 467 } 468 } 469 thread_unlock(t); 470 } 471 472 /* 473 * Wrapper for backward compatibility. 474 */ 475 void 476 affinity_clear(void) 477 { 478 thread_affinity_clear(curthread); 479 } 480 481 /* 482 * Weak cpu affinity. Bind to the "current" cpu for short periods 483 * of time during which the thread must not block (but may be preempted). 484 * Use this instead of kpreempt_disable() when it is only "no migration" 485 * rather than "no preemption" semantics that are required - disabling 486 * preemption holds higher priority threads off of cpu and if the 487 * operation that is protected is more than momentary this is not good 488 * for realtime etc. 489 * 490 * Weakly bound threads will not prevent a cpu from being offlined - 491 * we'll only run them on the cpu to which they are weakly bound but 492 * (because they do not block) we'll always be able to move them on to 493 * another cpu at offline time if we give them just a short moment to 494 * run during which they will unbind. To give a cpu a chance of offlining, 495 * however, we require a barrier to weak bindings that may be raised for a 496 * given cpu (offline/move code may set this and then wait a short time for 497 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 498 * 499 * There are few restrictions on the calling context of thread_nomigrate. 500 * The caller must not hold the thread lock. Calls may be nested. 501 * 502 * After weakbinding a thread must not perform actions that may block. 503 * In particular it must not call thread_affinity_set; calling that when 504 * already weakbound is nonsensical anyway. 505 * 506 * If curthread is prevented from migrating for other reasons 507 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 508 * then the weak binding will succeed even if this cpu is the target of an 509 * offline/move request. 510 */ 511 void 512 thread_nomigrate(void) 513 { 514 cpu_t *cp; 515 kthread_id_t t = curthread; 516 517 again: 518 kpreempt_disable(); 519 cp = CPU; 520 521 /* 522 * A highlevel interrupt must not modify t_nomigrate or 523 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 524 * interrupt thread cannot migrate and we can avoid the 525 * thread_lock call below by short-circuiting here. In either 526 * case we can just return since no migration is possible and 527 * the condition will persist (ie, when we test for these again 528 * in thread_allowmigrate they can't have changed). Migration 529 * is also impossible if we're at or above DISP_LEVEL pil. 530 */ 531 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 532 getpil() >= DISP_LEVEL) { 533 kpreempt_enable(); 534 return; 535 } 536 537 /* 538 * We must be consistent with existing weak bindings. Since we 539 * may be interrupted between the increment of t_nomigrate and 540 * the store to t_weakbound_cpu below we cannot assume that 541 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 542 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 543 * always the case. 544 */ 545 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 546 if (!panicstr) 547 panic("thread_nomigrate: binding to %p but already " 548 "bound to %p", (void *)cp, 549 (void *)t->t_weakbound_cpu); 550 } 551 552 /* 553 * At this point we have preemption disabled and we don't yet hold 554 * the thread lock. So it's possible that somebody else could 555 * set t_bind_cpu here and not be able to force us across to the 556 * new cpu (since we have preemption disabled). 557 */ 558 thread_lock(curthread); 559 560 /* 561 * If further weak bindings are being (temporarily) suppressed then 562 * we'll settle for disabling kernel preemption (which assures 563 * no migration provided the thread does not block which it is 564 * not allowed to if using thread_nomigrate). We must remember 565 * this disposition so we can take appropriate action in 566 * thread_allowmigrate. If this is a nested call and the 567 * thread is already weakbound then fall through as normal. 568 * We remember the decision to settle for kpreempt_disable through 569 * negative nesting counting in t_nomigrate. Once a thread has had one 570 * weakbinding request satisfied in this way any further (nested) 571 * requests will continue to be satisfied in the same way, 572 * even if weak bindings have recommenced. 573 */ 574 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 575 --t->t_nomigrate; 576 thread_unlock(curthread); 577 return; /* with kpreempt_disable still active */ 578 } 579 580 /* 581 * We hold thread_lock so t_bind_cpu cannot change. We could, 582 * however, be running on a different cpu to which we are t_bound_cpu 583 * to (as explained above). If we grant the weak binding request 584 * in that case then the dispatcher must favour our weak binding 585 * over our strong (in which case, just as when preemption is 586 * disabled, we can continue to run on a cpu other than the one to 587 * which we are strongbound; the difference in this case is that 588 * this thread can be preempted and so can appear on the dispatch 589 * queues of a cpu other than the one it is strongbound to). 590 * 591 * If the cpu we are running on does not appear to be a current 592 * offline target (we check cpu_inmotion to determine this - since 593 * we don't hold cpu_lock we may not see a recent store to that, 594 * so it's possible that we at times can grant a weak binding to a 595 * cpu that is an offline target, but that one request will not 596 * prevent the offline from succeeding) then we will always grant 597 * the weak binding request. This includes the case above where 598 * we grant a weakbinding not commensurate with our strong binding. 599 * 600 * If our cpu does appear to be an offline target then we're inclined 601 * not to grant the weakbinding request just yet - we'd prefer to 602 * migrate to another cpu and grant the request there. The 603 * exceptions are those cases where going through preemption code 604 * will not result in us changing cpu: 605 * 606 * . interrupts have already bypassed this case (see above) 607 * . we are already weakbound to this cpu (dispatcher code will 608 * always return us to the weakbound cpu) 609 * . preemption was disabled even before we disabled it above 610 * . we are strongbound to this cpu (if we're strongbound to 611 * another and not yet running there the trip through the 612 * dispatcher will move us to the strongbound cpu and we 613 * will grant the weak binding there) 614 */ 615 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 616 t->t_bound_cpu == cp) { 617 /* 618 * Don't be tempted to store to t_weakbound_cpu only on 619 * the first nested bind request - if we're interrupted 620 * after the increment of t_nomigrate and before the 621 * store to t_weakbound_cpu and the interrupt calls 622 * thread_nomigrate then the assertion in thread_allowmigrate 623 * would fail. 624 */ 625 t->t_nomigrate++; 626 t->t_weakbound_cpu = cp; 627 membar_producer(); 628 thread_unlock(curthread); 629 /* 630 * Now that we have dropped the thread_lock another thread 631 * can set our t_weakbound_cpu, and will try to migrate us 632 * to the strongbound cpu (which will not be prevented by 633 * preemption being disabled since we're about to enable 634 * preemption). We have granted the weakbinding to the current 635 * cpu, so again we are in the position that is is is possible 636 * that our weak and strong bindings differ. Again this 637 * is catered for by dispatcher code which will favour our 638 * weak binding. 639 */ 640 kpreempt_enable(); 641 } else { 642 /* 643 * Move to another cpu before granting the request by 644 * forcing this thread through preemption code. When we 645 * get to set{front,back}dq called from CL_PREEMPT() 646 * cpu_choose() will be used to select a cpu to queue 647 * us on - that will see cpu_inmotion and take 648 * steps to avoid returning us to this cpu. 649 */ 650 cp->cpu_kprunrun = 1; 651 thread_unlock(curthread); 652 kpreempt_enable(); /* will call preempt() */ 653 goto again; 654 } 655 } 656 657 void 658 thread_allowmigrate(void) 659 { 660 kthread_id_t t = curthread; 661 662 ASSERT(t->t_weakbound_cpu == CPU || 663 (t->t_nomigrate < 0 && t->t_preempt > 0) || 664 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 665 getpil() >= DISP_LEVEL); 666 667 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 668 getpil() >= DISP_LEVEL) 669 return; 670 671 if (t->t_nomigrate < 0) { 672 /* 673 * This thread was granted "weak binding" in the 674 * stronger form of kernel preemption disabling. 675 * Undo a level of nesting for both t_nomigrate 676 * and t_preempt. 677 */ 678 ++t->t_nomigrate; 679 kpreempt_enable(); 680 } else if (--t->t_nomigrate == 0) { 681 /* 682 * Time to drop the weak binding. We need to cater 683 * for the case where we're weakbound to a different 684 * cpu than that to which we're strongbound (a very 685 * temporary arrangement that must only persist until 686 * weak binding drops). We don't acquire thread_lock 687 * here so even as this code executes t_bound_cpu 688 * may be changing. So we disable preemption and 689 * a) in the case that t_bound_cpu changes while we 690 * have preemption disabled kprunrun will be set 691 * asynchronously, and b) if before disabling 692 * preemption we were already on a different cpu to 693 * our t_bound_cpu then we set kprunrun ourselves 694 * to force a trip through the dispatcher when 695 * preemption is enabled. 696 */ 697 kpreempt_disable(); 698 if (t->t_bound_cpu && 699 t->t_weakbound_cpu != t->t_bound_cpu) 700 CPU->cpu_kprunrun = 1; 701 t->t_weakbound_cpu = NULL; 702 membar_producer(); 703 kpreempt_enable(); 704 } 705 } 706 707 /* 708 * weakbinding_stop can be used to temporarily cause weakbindings made 709 * with thread_nomigrate to be satisfied through the stronger action of 710 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 711 */ 712 713 void 714 weakbinding_stop(void) 715 { 716 ASSERT(MUTEX_HELD(&cpu_lock)); 717 weakbindingbarrier = 1; 718 membar_producer(); /* make visible before subsequent thread_lock */ 719 } 720 721 void 722 weakbinding_start(void) 723 { 724 ASSERT(MUTEX_HELD(&cpu_lock)); 725 weakbindingbarrier = 0; 726 } 727 728 /* 729 * This routine is called to place the CPUs in a safe place so that 730 * one of them can be taken off line or placed on line. What we are 731 * trying to do here is prevent a thread from traversing the list 732 * of active CPUs while we are changing it or from getting placed on 733 * the run queue of a CPU that has just gone off line. We do this by 734 * creating a thread with the highest possible prio for each CPU and 735 * having it call this routine. The advantage of this method is that 736 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 737 * This makes disp faster at the expense of making p_online() slower 738 * which is a good trade off. 739 */ 740 static void 741 cpu_pause(volatile char *safe) 742 { 743 int s; 744 struct _cpu_pause_info *cpi = &cpu_pause_info; 745 746 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 747 748 while (*safe != PAUSE_DIE) { 749 *safe = PAUSE_READY; 750 membar_enter(); /* make sure stores are flushed */ 751 sema_v(&cpi->cp_sem); /* signal requesting thread */ 752 753 /* 754 * Wait here until all pause threads are running. That 755 * indicates that it's safe to do the spl. Until 756 * cpu_pause_info.cp_go is set, we don't want to spl 757 * because that might block clock interrupts needed 758 * to preempt threads on other CPUs. 759 */ 760 while (cpi->cp_go == 0) 761 ; 762 /* 763 * Even though we are at the highest disp prio, we need 764 * to block out all interrupts below LOCK_LEVEL so that 765 * an intr doesn't come in, wake up a thread, and call 766 * setbackdq/setfrontdq. 767 */ 768 s = splhigh(); 769 770 mach_cpu_pause(safe); 771 772 splx(s); 773 /* 774 * Waiting is at an end. Switch out of cpu_pause 775 * loop and resume useful work. 776 */ 777 swtch(); 778 } 779 780 mutex_enter(&pause_free_mutex); 781 *safe = PAUSE_DEAD; 782 cv_broadcast(&pause_free_cv); 783 mutex_exit(&pause_free_mutex); 784 } 785 786 /* 787 * Allow the cpus to start running again. 788 */ 789 void 790 start_cpus() 791 { 792 int i; 793 794 ASSERT(MUTEX_HELD(&cpu_lock)); 795 ASSERT(cpu_pause_info.cp_paused); 796 cpu_pause_info.cp_paused = NULL; 797 for (i = 0; i < NCPU; i++) 798 safe_list[i] = PAUSE_IDLE; 799 membar_enter(); /* make sure stores are flushed */ 800 affinity_clear(); 801 splx(cpu_pause_info.cp_spl); 802 kpreempt_enable(); 803 } 804 805 /* 806 * Allocate a pause thread for a CPU. 807 */ 808 static void 809 cpu_pause_alloc(cpu_t *cp) 810 { 811 kthread_id_t t; 812 int cpun = cp->cpu_id; 813 814 /* 815 * Note, v.v_nglobpris will not change value as long as I hold 816 * cpu_lock. 817 */ 818 t = thread_create(NULL, 0, cpu_pause, (caddr_t)&safe_list[cpun], 819 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 820 thread_lock(t); 821 t->t_bound_cpu = cp; 822 t->t_disp_queue = cp->cpu_disp; 823 t->t_affinitycnt = 1; 824 t->t_preempt = 1; 825 thread_unlock(t); 826 cp->cpu_pause_thread = t; 827 /* 828 * Registering a thread in the callback table is usually done 829 * in the initialization code of the thread. In this 830 * case, we do it right after thread creation because the 831 * thread itself may never run, and we need to register the 832 * fact that it is safe for cpr suspend. 833 */ 834 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 835 } 836 837 /* 838 * Free a pause thread for a CPU. 839 */ 840 static void 841 cpu_pause_free(cpu_t *cp) 842 { 843 kthread_id_t t; 844 int cpun = cp->cpu_id; 845 846 ASSERT(MUTEX_HELD(&cpu_lock)); 847 /* 848 * We have to get the thread and tell him to die. 849 */ 850 if ((t = cp->cpu_pause_thread) == NULL) { 851 ASSERT(safe_list[cpun] == PAUSE_IDLE); 852 return; 853 } 854 thread_lock(t); 855 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 856 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 857 t->t_pri = v.v_nglobpris - 1; 858 ASSERT(safe_list[cpun] == PAUSE_IDLE); 859 safe_list[cpun] = PAUSE_DIE; 860 THREAD_TRANSITION(t); 861 setbackdq(t); 862 thread_unlock_nopreempt(t); 863 864 /* 865 * If we don't wait for the thread to actually die, it may try to 866 * run on the wrong cpu as part of an actual call to pause_cpus(). 867 */ 868 mutex_enter(&pause_free_mutex); 869 while (safe_list[cpun] != PAUSE_DEAD) { 870 cv_wait(&pause_free_cv, &pause_free_mutex); 871 } 872 mutex_exit(&pause_free_mutex); 873 safe_list[cpun] = PAUSE_IDLE; 874 875 cp->cpu_pause_thread = NULL; 876 } 877 878 /* 879 * Initialize basic structures for pausing CPUs. 880 */ 881 void 882 cpu_pause_init() 883 { 884 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 885 /* 886 * Create initial CPU pause thread. 887 */ 888 cpu_pause_alloc(CPU); 889 } 890 891 /* 892 * Start the threads used to pause another CPU. 893 */ 894 static int 895 cpu_pause_start(processorid_t cpu_id) 896 { 897 int i; 898 int cpu_count = 0; 899 900 for (i = 0; i < NCPU; i++) { 901 cpu_t *cp; 902 kthread_id_t t; 903 904 cp = cpu[i]; 905 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 906 safe_list[i] = PAUSE_WAIT; 907 continue; 908 } 909 910 /* 911 * Skip CPU if it is quiesced or not yet started. 912 */ 913 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 914 safe_list[i] = PAUSE_WAIT; 915 continue; 916 } 917 918 /* 919 * Start this CPU's pause thread. 920 */ 921 t = cp->cpu_pause_thread; 922 thread_lock(t); 923 /* 924 * Reset the priority, since nglobpris may have 925 * changed since the thread was created, if someone 926 * has loaded the RT (or some other) scheduling 927 * class. 928 */ 929 t->t_pri = v.v_nglobpris - 1; 930 THREAD_TRANSITION(t); 931 setbackdq(t); 932 thread_unlock_nopreempt(t); 933 ++cpu_count; 934 } 935 return (cpu_count); 936 } 937 938 939 /* 940 * Pause all of the CPUs except the one we are on by creating a high 941 * priority thread bound to those CPUs. 942 * 943 * Note that one must be extremely careful regarding code 944 * executed while CPUs are paused. Since a CPU may be paused 945 * while a thread scheduling on that CPU is holding an adaptive 946 * lock, code executed with CPUs paused must not acquire adaptive 947 * (or low-level spin) locks. Also, such code must not block, 948 * since the thread that is supposed to initiate the wakeup may 949 * never run. 950 * 951 * With a few exceptions, the restrictions on code executed with CPUs 952 * paused match those for code executed at high-level interrupt 953 * context. 954 */ 955 void 956 pause_cpus(cpu_t *off_cp) 957 { 958 processorid_t cpu_id; 959 int i; 960 struct _cpu_pause_info *cpi = &cpu_pause_info; 961 962 ASSERT(MUTEX_HELD(&cpu_lock)); 963 ASSERT(cpi->cp_paused == NULL); 964 cpi->cp_count = 0; 965 cpi->cp_go = 0; 966 for (i = 0; i < NCPU; i++) 967 safe_list[i] = PAUSE_IDLE; 968 kpreempt_disable(); 969 970 /* 971 * If running on the cpu that is going offline, get off it. 972 * This is so that it won't be necessary to rechoose a CPU 973 * when done. 974 */ 975 if (CPU == off_cp) 976 cpu_id = off_cp->cpu_next_part->cpu_id; 977 else 978 cpu_id = CPU->cpu_id; 979 affinity_set(cpu_id); 980 981 /* 982 * Start the pause threads and record how many were started 983 */ 984 cpi->cp_count = cpu_pause_start(cpu_id); 985 986 /* 987 * Now wait for all CPUs to be running the pause thread. 988 */ 989 while (cpi->cp_count > 0) { 990 /* 991 * Spin reading the count without grabbing the disp 992 * lock to make sure we don't prevent the pause 993 * threads from getting the lock. 994 */ 995 while (sema_held(&cpi->cp_sem)) 996 ; 997 if (sema_tryp(&cpi->cp_sem)) 998 --cpi->cp_count; 999 } 1000 cpi->cp_go = 1; /* all have reached cpu_pause */ 1001 1002 /* 1003 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1004 * to PAUSE_WAIT.) 1005 */ 1006 for (i = 0; i < NCPU; i++) { 1007 while (safe_list[i] != PAUSE_WAIT) 1008 ; 1009 } 1010 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1011 cpi->cp_paused = curthread; 1012 } 1013 1014 /* 1015 * Check whether the current thread has CPUs paused 1016 */ 1017 int 1018 cpus_paused(void) 1019 { 1020 if (cpu_pause_info.cp_paused != NULL) { 1021 ASSERT(cpu_pause_info.cp_paused == curthread); 1022 return (1); 1023 } 1024 return (0); 1025 } 1026 1027 static cpu_t * 1028 cpu_get_all(processorid_t cpun) 1029 { 1030 ASSERT(MUTEX_HELD(&cpu_lock)); 1031 1032 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1033 return (NULL); 1034 return (cpu[cpun]); 1035 } 1036 1037 /* 1038 * Check whether cpun is a valid processor id and whether it should be 1039 * visible from the current zone. If it is, return a pointer to the 1040 * associated CPU structure. 1041 */ 1042 cpu_t * 1043 cpu_get(processorid_t cpun) 1044 { 1045 cpu_t *c; 1046 1047 ASSERT(MUTEX_HELD(&cpu_lock)); 1048 c = cpu_get_all(cpun); 1049 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1050 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1051 return (NULL); 1052 return (c); 1053 } 1054 1055 /* 1056 * The following functions should be used to check CPU states in the kernel. 1057 * They should be invoked with cpu_lock held. Kernel subsystems interested 1058 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1059 * states. Those are for user-land (and system call) use only. 1060 */ 1061 1062 /* 1063 * Determine whether the CPU is online and handling interrupts. 1064 */ 1065 int 1066 cpu_is_online(cpu_t *cpu) 1067 { 1068 ASSERT(MUTEX_HELD(&cpu_lock)); 1069 return (cpu_flagged_online(cpu->cpu_flags)); 1070 } 1071 1072 /* 1073 * Determine whether the CPU is offline (this includes spare and faulted). 1074 */ 1075 int 1076 cpu_is_offline(cpu_t *cpu) 1077 { 1078 ASSERT(MUTEX_HELD(&cpu_lock)); 1079 return (cpu_flagged_offline(cpu->cpu_flags)); 1080 } 1081 1082 /* 1083 * Determine whether the CPU is powered off. 1084 */ 1085 int 1086 cpu_is_poweredoff(cpu_t *cpu) 1087 { 1088 ASSERT(MUTEX_HELD(&cpu_lock)); 1089 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1090 } 1091 1092 /* 1093 * Determine whether the CPU is handling interrupts. 1094 */ 1095 int 1096 cpu_is_nointr(cpu_t *cpu) 1097 { 1098 ASSERT(MUTEX_HELD(&cpu_lock)); 1099 return (cpu_flagged_nointr(cpu->cpu_flags)); 1100 } 1101 1102 /* 1103 * Determine whether the CPU is active (scheduling threads). 1104 */ 1105 int 1106 cpu_is_active(cpu_t *cpu) 1107 { 1108 ASSERT(MUTEX_HELD(&cpu_lock)); 1109 return (cpu_flagged_active(cpu->cpu_flags)); 1110 } 1111 1112 /* 1113 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1114 */ 1115 int 1116 cpu_flagged_online(cpu_flag_t cpu_flags) 1117 { 1118 return (cpu_flagged_active(cpu_flags) && 1119 (cpu_flags & CPU_ENABLE)); 1120 } 1121 1122 int 1123 cpu_flagged_offline(cpu_flag_t cpu_flags) 1124 { 1125 return (((cpu_flags & CPU_POWEROFF) == 0) && 1126 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1127 } 1128 1129 int 1130 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1131 { 1132 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1133 } 1134 1135 int 1136 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1137 { 1138 return (cpu_flagged_active(cpu_flags) && 1139 (cpu_flags & CPU_ENABLE) == 0); 1140 } 1141 1142 int 1143 cpu_flagged_active(cpu_flag_t cpu_flags) 1144 { 1145 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1146 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1147 } 1148 1149 /* 1150 * Bring the indicated CPU online. 1151 */ 1152 int 1153 cpu_online(cpu_t *cp) 1154 { 1155 int error = 0; 1156 1157 /* 1158 * Handle on-line request. 1159 * This code must put the new CPU on the active list before 1160 * starting it because it will not be paused, and will start 1161 * using the active list immediately. The real start occurs 1162 * when the CPU_QUIESCED flag is turned off. 1163 */ 1164 1165 ASSERT(MUTEX_HELD(&cpu_lock)); 1166 1167 /* 1168 * Put all the cpus into a known safe place. 1169 * No mutexes can be entered while CPUs are paused. 1170 */ 1171 error = mp_cpu_start(cp); /* arch-dep hook */ 1172 if (error == 0) { 1173 pg_cpupart_in(cp, cp->cpu_part); 1174 pause_cpus(NULL); 1175 cpu_add_active_internal(cp); 1176 if (cp->cpu_flags & CPU_FAULTED) { 1177 cp->cpu_flags &= ~CPU_FAULTED; 1178 mp_cpu_faulted_exit(cp); 1179 } 1180 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1181 CPU_SPARE); 1182 start_cpus(); 1183 cpu_stats_kstat_create(cp); 1184 cpu_create_intrstat(cp); 1185 lgrp_kstat_create(cp); 1186 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1187 cpu_intr_enable(cp); /* arch-dep hook */ 1188 cpu_set_state(cp); 1189 cyclic_online(cp); 1190 poke_cpu(cp->cpu_id); 1191 } 1192 1193 return (error); 1194 } 1195 1196 /* 1197 * Take the indicated CPU offline. 1198 */ 1199 int 1200 cpu_offline(cpu_t *cp, int flags) 1201 { 1202 cpupart_t *pp; 1203 int error = 0; 1204 cpu_t *ncp; 1205 int intr_enable; 1206 int cyclic_off = 0; 1207 int loop_count; 1208 int no_quiesce = 0; 1209 int (*bound_func)(struct cpu *, int); 1210 kthread_t *t; 1211 lpl_t *cpu_lpl; 1212 proc_t *p; 1213 int lgrp_diff_lpl; 1214 1215 ASSERT(MUTEX_HELD(&cpu_lock)); 1216 1217 /* 1218 * If we're going from faulted or spare to offline, just 1219 * clear these flags and update CPU state. 1220 */ 1221 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1222 if (cp->cpu_flags & CPU_FAULTED) { 1223 cp->cpu_flags &= ~CPU_FAULTED; 1224 mp_cpu_faulted_exit(cp); 1225 } 1226 cp->cpu_flags &= ~CPU_SPARE; 1227 cpu_set_state(cp); 1228 return (0); 1229 } 1230 1231 /* 1232 * Handle off-line request. 1233 */ 1234 pp = cp->cpu_part; 1235 /* 1236 * Don't offline last online CPU in partition 1237 */ 1238 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1239 return (EBUSY); 1240 /* 1241 * Unbind all thread bound to our CPU if we were asked to. 1242 */ 1243 if (flags & CPU_FORCED && (error = cpu_unbind(cp->cpu_id)) != 0) 1244 return (error); 1245 /* 1246 * We shouldn't be bound to this CPU ourselves. 1247 */ 1248 if (curthread->t_bound_cpu == cp) 1249 return (EBUSY); 1250 1251 /* 1252 * Tell interested parties that this CPU is going offline. 1253 */ 1254 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1255 1256 /* 1257 * Tell the PG subsystem that the CPU is leaving the partition 1258 */ 1259 pg_cpupart_out(cp, pp); 1260 1261 /* 1262 * Take the CPU out of interrupt participation so we won't find 1263 * bound kernel threads. If the architecture cannot completely 1264 * shut off interrupts on the CPU, don't quiesce it, but don't 1265 * run anything but interrupt thread... this is indicated by 1266 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1267 * off. 1268 */ 1269 intr_enable = cp->cpu_flags & CPU_ENABLE; 1270 if (intr_enable) 1271 no_quiesce = cpu_intr_disable(cp); 1272 1273 /* 1274 * Record that we are aiming to offline this cpu. This acts as 1275 * a barrier to further weak binding requests in thread_nomigrate 1276 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1277 * lean away from this cpu. Further strong bindings are already 1278 * avoided since we hold cpu_lock. Since threads that are set 1279 * runnable around now and others coming off the target cpu are 1280 * directed away from the target, existing strong and weak bindings 1281 * (especially the latter) to the target cpu stand maximum chance of 1282 * being able to unbind during the short delay loop below (if other 1283 * unbound threads compete they may not see cpu in time to unbind 1284 * even if they would do so immediately. 1285 */ 1286 cpu_inmotion = cp; 1287 membar_enter(); 1288 1289 /* 1290 * Check for kernel threads (strong or weak) bound to that CPU. 1291 * Strongly bound threads may not unbind, and we'll have to return 1292 * EBUSY. Weakly bound threads should always disappear - we've 1293 * stopped more weak binding with cpu_inmotion and existing 1294 * bindings will drain imminently (they may not block). Nonetheless 1295 * we will wait for a fixed period for all bound threads to disappear. 1296 * Inactive interrupt threads are OK (they'll be in TS_FREE 1297 * state). If test finds some bound threads, wait a few ticks 1298 * to give short-lived threads (such as interrupts) chance to 1299 * complete. Note that if no_quiesce is set, i.e. this cpu 1300 * is required to service interrupts, then we take the route 1301 * that permits interrupt threads to be active (or bypassed). 1302 */ 1303 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1304 1305 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1306 if (loop_count >= 5) { 1307 error = EBUSY; /* some threads still bound */ 1308 break; 1309 } 1310 1311 /* 1312 * If some threads were assigned, give them 1313 * a chance to complete or move. 1314 * 1315 * This assumes that the clock_thread is not bound 1316 * to any CPU, because the clock_thread is needed to 1317 * do the delay(hz/100). 1318 * 1319 * Note: we still hold the cpu_lock while waiting for 1320 * the next clock tick. This is OK since it isn't 1321 * needed for anything else except processor_bind(2), 1322 * and system initialization. If we drop the lock, 1323 * we would risk another p_online disabling the last 1324 * processor. 1325 */ 1326 delay(hz/100); 1327 } 1328 1329 if (error == 0 && cyclic_off == 0) { 1330 if (!cyclic_offline(cp)) { 1331 /* 1332 * We must have bound cyclics... 1333 */ 1334 error = EBUSY; 1335 goto out; 1336 } 1337 cyclic_off = 1; 1338 } 1339 1340 /* 1341 * Call mp_cpu_stop() to perform any special operations 1342 * needed for this machine architecture to offline a CPU. 1343 */ 1344 if (error == 0) 1345 error = mp_cpu_stop(cp); /* arch-dep hook */ 1346 1347 /* 1348 * If that all worked, take the CPU offline and decrement 1349 * ncpus_online. 1350 */ 1351 if (error == 0) { 1352 /* 1353 * Put all the cpus into a known safe place. 1354 * No mutexes can be entered while CPUs are paused. 1355 */ 1356 pause_cpus(cp); 1357 /* 1358 * Repeat the operation, if necessary, to make sure that 1359 * all outstanding low-level interrupts run to completion 1360 * before we set the CPU_QUIESCED flag. It's also possible 1361 * that a thread has weak bound to the cpu despite our raising 1362 * cpu_inmotion above since it may have loaded that 1363 * value before the barrier became visible (this would have 1364 * to be the thread that was on the target cpu at the time 1365 * we raised the barrier). 1366 */ 1367 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1368 (*bound_func)(cp, 1)) { 1369 start_cpus(); 1370 (void) mp_cpu_start(cp); 1371 goto again; 1372 } 1373 ncp = cp->cpu_next_part; 1374 cpu_lpl = cp->cpu_lpl; 1375 ASSERT(cpu_lpl != NULL); 1376 1377 /* 1378 * Remove the CPU from the list of active CPUs. 1379 */ 1380 cpu_remove_active(cp); 1381 1382 /* 1383 * Walk the active process list and look for threads 1384 * whose home lgroup needs to be updated, or 1385 * the last CPU they run on is the one being offlined now. 1386 */ 1387 1388 ASSERT(curthread->t_cpu != cp); 1389 for (p = practive; p != NULL; p = p->p_next) { 1390 1391 t = p->p_tlist; 1392 1393 if (t == NULL) 1394 continue; 1395 1396 lgrp_diff_lpl = 0; 1397 1398 do { 1399 ASSERT(t->t_lpl != NULL); 1400 /* 1401 * Taking last CPU in lpl offline 1402 * Rehome thread if it is in this lpl 1403 * Otherwise, update the count of how many 1404 * threads are in this CPU's lgroup but have 1405 * a different lpl. 1406 */ 1407 1408 if (cpu_lpl->lpl_ncpu == 0) { 1409 if (t->t_lpl == cpu_lpl) 1410 lgrp_move_thread(t, 1411 lgrp_choose(t, 1412 t->t_cpupart), 0); 1413 else if (t->t_lpl->lpl_lgrpid == 1414 cpu_lpl->lpl_lgrpid) 1415 lgrp_diff_lpl++; 1416 } 1417 ASSERT(t->t_lpl->lpl_ncpu > 0); 1418 1419 /* 1420 * Update CPU last ran on if it was this CPU 1421 */ 1422 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1423 t->t_cpu = disp_lowpri_cpu(ncp, 1424 t->t_lpl, t->t_pri, NULL); 1425 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1426 t->t_weakbound_cpu == cp); 1427 1428 t = t->t_forw; 1429 } while (t != p->p_tlist); 1430 1431 /* 1432 * Didn't find any threads in the same lgroup as this 1433 * CPU with a different lpl, so remove the lgroup from 1434 * the process lgroup bitmask. 1435 */ 1436 1437 if (lgrp_diff_lpl == 0) 1438 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1439 } 1440 1441 /* 1442 * Walk thread list looking for threads that need to be 1443 * rehomed, since there are some threads that are not in 1444 * their process's p_tlist. 1445 */ 1446 1447 t = curthread; 1448 do { 1449 ASSERT(t != NULL && t->t_lpl != NULL); 1450 1451 /* 1452 * Rehome threads with same lpl as this CPU when this 1453 * is the last CPU in the lpl. 1454 */ 1455 1456 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1457 lgrp_move_thread(t, 1458 lgrp_choose(t, t->t_cpupart), 1); 1459 1460 ASSERT(t->t_lpl->lpl_ncpu > 0); 1461 1462 /* 1463 * Update CPU last ran on if it was this CPU 1464 */ 1465 1466 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1467 t->t_cpu = disp_lowpri_cpu(ncp, 1468 t->t_lpl, t->t_pri, NULL); 1469 } 1470 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1471 t->t_weakbound_cpu == cp); 1472 t = t->t_next; 1473 1474 } while (t != curthread); 1475 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1476 cp->cpu_flags |= CPU_OFFLINE; 1477 disp_cpu_inactive(cp); 1478 if (!no_quiesce) 1479 cp->cpu_flags |= CPU_QUIESCED; 1480 ncpus_online--; 1481 cpu_set_state(cp); 1482 cpu_inmotion = NULL; 1483 start_cpus(); 1484 cpu_stats_kstat_destroy(cp); 1485 cpu_delete_intrstat(cp); 1486 lgrp_kstat_destroy(cp); 1487 } 1488 1489 out: 1490 cpu_inmotion = NULL; 1491 1492 /* 1493 * If we failed, re-enable interrupts. 1494 * Do this even if cpu_intr_disable returned an error, because 1495 * it may have partially disabled interrupts. 1496 */ 1497 if (error && intr_enable) 1498 cpu_intr_enable(cp); 1499 1500 /* 1501 * If we failed, but managed to offline the cyclic subsystem on this 1502 * CPU, bring it back online. 1503 */ 1504 if (error && cyclic_off) 1505 cyclic_online(cp); 1506 1507 /* 1508 * If we failed, tell the PG subsystem that the CPU is back 1509 */ 1510 pg_cpupart_in(cp, pp); 1511 1512 /* 1513 * If we failed, we need to notify everyone that this CPU is back on. 1514 */ 1515 if (error != 0) 1516 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1517 1518 return (error); 1519 } 1520 1521 /* 1522 * Mark the indicated CPU as faulted, taking it offline. 1523 */ 1524 int 1525 cpu_faulted(cpu_t *cp, int flags) 1526 { 1527 int error = 0; 1528 1529 ASSERT(MUTEX_HELD(&cpu_lock)); 1530 ASSERT(!cpu_is_poweredoff(cp)); 1531 1532 if (cpu_is_offline(cp)) { 1533 cp->cpu_flags &= ~CPU_SPARE; 1534 cp->cpu_flags |= CPU_FAULTED; 1535 mp_cpu_faulted_enter(cp); 1536 cpu_set_state(cp); 1537 return (0); 1538 } 1539 1540 if ((error = cpu_offline(cp, flags)) == 0) { 1541 cp->cpu_flags |= CPU_FAULTED; 1542 mp_cpu_faulted_enter(cp); 1543 cpu_set_state(cp); 1544 } 1545 1546 return (error); 1547 } 1548 1549 /* 1550 * Mark the indicated CPU as a spare, taking it offline. 1551 */ 1552 int 1553 cpu_spare(cpu_t *cp, int flags) 1554 { 1555 int error = 0; 1556 1557 ASSERT(MUTEX_HELD(&cpu_lock)); 1558 ASSERT(!cpu_is_poweredoff(cp)); 1559 1560 if (cpu_is_offline(cp)) { 1561 if (cp->cpu_flags & CPU_FAULTED) { 1562 cp->cpu_flags &= ~CPU_FAULTED; 1563 mp_cpu_faulted_exit(cp); 1564 } 1565 cp->cpu_flags |= CPU_SPARE; 1566 cpu_set_state(cp); 1567 return (0); 1568 } 1569 1570 if ((error = cpu_offline(cp, flags)) == 0) { 1571 cp->cpu_flags |= CPU_SPARE; 1572 cpu_set_state(cp); 1573 } 1574 1575 return (error); 1576 } 1577 1578 /* 1579 * Take the indicated CPU from poweroff to offline. 1580 */ 1581 int 1582 cpu_poweron(cpu_t *cp) 1583 { 1584 int error = ENOTSUP; 1585 1586 ASSERT(MUTEX_HELD(&cpu_lock)); 1587 ASSERT(cpu_is_poweredoff(cp)); 1588 1589 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1590 if (error == 0) 1591 cpu_set_state(cp); 1592 1593 return (error); 1594 } 1595 1596 /* 1597 * Take the indicated CPU from any inactive state to powered off. 1598 */ 1599 int 1600 cpu_poweroff(cpu_t *cp) 1601 { 1602 int error = ENOTSUP; 1603 1604 ASSERT(MUTEX_HELD(&cpu_lock)); 1605 ASSERT(cpu_is_offline(cp)); 1606 1607 if (!(cp->cpu_flags & CPU_QUIESCED)) 1608 return (EBUSY); /* not completely idle */ 1609 1610 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1611 if (error == 0) 1612 cpu_set_state(cp); 1613 1614 return (error); 1615 } 1616 1617 /* 1618 * Initialize the CPU lists for the first CPU. 1619 */ 1620 void 1621 cpu_list_init(cpu_t *cp) 1622 { 1623 cp->cpu_next = cp; 1624 cp->cpu_prev = cp; 1625 cpu_list = cp; 1626 clock_cpu_list = cp; 1627 1628 cp->cpu_next_onln = cp; 1629 cp->cpu_prev_onln = cp; 1630 cpu_active = cp; 1631 1632 cp->cpu_seqid = 0; 1633 CPUSET_ADD(cpu_seqid_inuse, 0); 1634 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1635 cp_default.cp_mach = &cp_default_mach; 1636 cp_default.cp_cpulist = cp; 1637 cp_default.cp_ncpus = 1; 1638 cp->cpu_next_part = cp; 1639 cp->cpu_prev_part = cp; 1640 cp->cpu_part = &cp_default; 1641 1642 CPUSET_ADD(cpu_available, cp->cpu_id); 1643 } 1644 1645 /* 1646 * Insert a CPU into the list of available CPUs. 1647 */ 1648 void 1649 cpu_add_unit(cpu_t *cp) 1650 { 1651 int seqid; 1652 1653 ASSERT(MUTEX_HELD(&cpu_lock)); 1654 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1655 1656 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1657 1658 /* 1659 * Note: most users of the cpu_list will grab the 1660 * cpu_lock to insure that it isn't modified. However, 1661 * certain users can't or won't do that. To allow this 1662 * we pause the other cpus. Users who walk the list 1663 * without cpu_lock, must disable kernel preemption 1664 * to insure that the list isn't modified underneath 1665 * them. Also, any cached pointers to cpu structures 1666 * must be revalidated by checking to see if the 1667 * cpu_next pointer points to itself. This check must 1668 * be done with the cpu_lock held or kernel preemption 1669 * disabled. This check relies upon the fact that 1670 * old cpu structures are not free'ed or cleared after 1671 * then are removed from the cpu_list. 1672 * 1673 * Note that the clock code walks the cpu list dereferencing 1674 * the cpu_part pointer, so we need to initialize it before 1675 * adding the cpu to the list. 1676 */ 1677 cp->cpu_part = &cp_default; 1678 (void) pause_cpus(NULL); 1679 cp->cpu_next = cpu_list; 1680 cp->cpu_prev = cpu_list->cpu_prev; 1681 cpu_list->cpu_prev->cpu_next = cp; 1682 cpu_list->cpu_prev = cp; 1683 start_cpus(); 1684 1685 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1686 continue; 1687 CPUSET_ADD(cpu_seqid_inuse, seqid); 1688 cp->cpu_seqid = seqid; 1689 ASSERT(ncpus < max_ncpus); 1690 ncpus++; 1691 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1692 cpu[cp->cpu_id] = cp; 1693 CPUSET_ADD(cpu_available, cp->cpu_id); 1694 1695 /* 1696 * allocate a pause thread for this CPU. 1697 */ 1698 cpu_pause_alloc(cp); 1699 1700 /* 1701 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1702 * link them into a list of just that CPU. 1703 * This is so that disp_lowpri_cpu will work for thread_create in 1704 * pause_cpus() when called from the startup thread in a new CPU. 1705 */ 1706 cp->cpu_next_onln = cp; 1707 cp->cpu_prev_onln = cp; 1708 cpu_info_kstat_create(cp); 1709 cp->cpu_next_part = cp; 1710 cp->cpu_prev_part = cp; 1711 1712 init_cpu_mstate(cp, CMS_SYSTEM); 1713 1714 pool_pset_mod = gethrtime(); 1715 } 1716 1717 /* 1718 * Do the opposite of cpu_add_unit(). 1719 */ 1720 void 1721 cpu_del_unit(int cpuid) 1722 { 1723 struct cpu *cp, *cpnext; 1724 1725 ASSERT(MUTEX_HELD(&cpu_lock)); 1726 cp = cpu[cpuid]; 1727 ASSERT(cp != NULL); 1728 1729 ASSERT(cp->cpu_next_onln == cp); 1730 ASSERT(cp->cpu_prev_onln == cp); 1731 ASSERT(cp->cpu_next_part == cp); 1732 ASSERT(cp->cpu_prev_part == cp); 1733 1734 /* 1735 * Tear down the CPU's physical ID cache, and update any 1736 * processor groups 1737 */ 1738 pg_cpu_fini(cp); 1739 pghw_physid_destroy(cp); 1740 1741 /* 1742 * Destroy kstat stuff. 1743 */ 1744 cpu_info_kstat_destroy(cp); 1745 term_cpu_mstate(cp); 1746 /* 1747 * Free up pause thread. 1748 */ 1749 cpu_pause_free(cp); 1750 CPUSET_DEL(cpu_available, cp->cpu_id); 1751 cpu[cp->cpu_id] = NULL; 1752 /* 1753 * The clock thread and mutex_vector_enter cannot hold the 1754 * cpu_lock while traversing the cpu list, therefore we pause 1755 * all other threads by pausing the other cpus. These, and any 1756 * other routines holding cpu pointers while possibly sleeping 1757 * must be sure to call kpreempt_disable before processing the 1758 * list and be sure to check that the cpu has not been deleted 1759 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1760 * to keep the deleted cpu structure around. 1761 * 1762 * Note that this MUST be done AFTER cpu_available 1763 * has been updated so that we don't waste time 1764 * trying to pause the cpu we're trying to delete. 1765 */ 1766 (void) pause_cpus(NULL); 1767 1768 cpnext = cp->cpu_next; 1769 cp->cpu_prev->cpu_next = cp->cpu_next; 1770 cp->cpu_next->cpu_prev = cp->cpu_prev; 1771 if (cp == cpu_list) 1772 cpu_list = cpnext; 1773 if (cp == clock_cpu_list) 1774 clock_cpu_list = cpnext; 1775 1776 1777 /* 1778 * Signals that the cpu has been deleted (see above). 1779 */ 1780 cp->cpu_next = NULL; 1781 cp->cpu_prev = NULL; 1782 1783 start_cpus(); 1784 1785 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1786 ncpus--; 1787 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1788 1789 pool_pset_mod = gethrtime(); 1790 } 1791 1792 /* 1793 * Add a CPU to the list of active CPUs. 1794 * This routine must not get any locks, because other CPUs are paused. 1795 */ 1796 static void 1797 cpu_add_active_internal(cpu_t *cp) 1798 { 1799 cpupart_t *pp = cp->cpu_part; 1800 1801 ASSERT(MUTEX_HELD(&cpu_lock)); 1802 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1803 1804 ncpus_online++; 1805 cpu_set_state(cp); 1806 cp->cpu_next_onln = cpu_active; 1807 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1808 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1809 cpu_active->cpu_prev_onln = cp; 1810 1811 if (pp->cp_cpulist) { 1812 cp->cpu_next_part = pp->cp_cpulist; 1813 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1814 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1815 pp->cp_cpulist->cpu_prev_part = cp; 1816 } else { 1817 ASSERT(pp->cp_ncpus == 0); 1818 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1819 } 1820 pp->cp_ncpus++; 1821 if (pp->cp_ncpus == 1) { 1822 cp_numparts_nonempty++; 1823 ASSERT(cp_numparts_nonempty != 0); 1824 } 1825 1826 pg_cpu_active(cp); 1827 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1828 1829 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1830 } 1831 1832 /* 1833 * Add a CPU to the list of active CPUs. 1834 * This is called from machine-dependent layers when a new CPU is started. 1835 */ 1836 void 1837 cpu_add_active(cpu_t *cp) 1838 { 1839 pg_cpupart_in(cp, cp->cpu_part); 1840 1841 pause_cpus(NULL); 1842 cpu_add_active_internal(cp); 1843 start_cpus(); 1844 1845 cpu_stats_kstat_create(cp); 1846 cpu_create_intrstat(cp); 1847 lgrp_kstat_create(cp); 1848 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1849 } 1850 1851 1852 /* 1853 * Remove a CPU from the list of active CPUs. 1854 * This routine must not get any locks, because other CPUs are paused. 1855 */ 1856 /* ARGSUSED */ 1857 static void 1858 cpu_remove_active(cpu_t *cp) 1859 { 1860 cpupart_t *pp = cp->cpu_part; 1861 1862 ASSERT(MUTEX_HELD(&cpu_lock)); 1863 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1864 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1865 1866 pg_cpu_inactive(cp); 1867 1868 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1869 1870 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1871 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1872 if (cpu_active == cp) { 1873 cpu_active = cp->cpu_next_onln; 1874 } 1875 cp->cpu_next_onln = cp; 1876 cp->cpu_prev_onln = cp; 1877 1878 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1879 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1880 if (pp->cp_cpulist == cp) { 1881 pp->cp_cpulist = cp->cpu_next_part; 1882 ASSERT(pp->cp_cpulist != cp); 1883 } 1884 cp->cpu_next_part = cp; 1885 cp->cpu_prev_part = cp; 1886 pp->cp_ncpus--; 1887 if (pp->cp_ncpus == 0) { 1888 cp_numparts_nonempty--; 1889 ASSERT(cp_numparts_nonempty != 0); 1890 } 1891 } 1892 1893 /* 1894 * Routine used to setup a newly inserted CPU in preparation for starting 1895 * it running code. 1896 */ 1897 int 1898 cpu_configure(int cpuid) 1899 { 1900 int retval = 0; 1901 1902 ASSERT(MUTEX_HELD(&cpu_lock)); 1903 1904 /* 1905 * Some structures are statically allocated based upon 1906 * the maximum number of cpus the system supports. Do not 1907 * try to add anything beyond this limit. 1908 */ 1909 if (cpuid < 0 || cpuid >= NCPU) { 1910 return (EINVAL); 1911 } 1912 1913 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1914 return (EALREADY); 1915 } 1916 1917 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1918 return (retval); 1919 } 1920 1921 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1922 cpu_set_state(cpu[cpuid]); 1923 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1924 if (retval != 0) 1925 (void) mp_cpu_unconfigure(cpuid); 1926 1927 return (retval); 1928 } 1929 1930 /* 1931 * Routine used to cleanup a CPU that has been powered off. This will 1932 * destroy all per-cpu information related to this cpu. 1933 */ 1934 int 1935 cpu_unconfigure(int cpuid) 1936 { 1937 int error; 1938 1939 ASSERT(MUTEX_HELD(&cpu_lock)); 1940 1941 if (cpu[cpuid] == NULL) { 1942 return (ENODEV); 1943 } 1944 1945 if (cpu[cpuid]->cpu_flags == 0) { 1946 return (EALREADY); 1947 } 1948 1949 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1950 return (EBUSY); 1951 } 1952 1953 if (cpu[cpuid]->cpu_props != NULL) { 1954 (void) nvlist_free(cpu[cpuid]->cpu_props); 1955 cpu[cpuid]->cpu_props = NULL; 1956 } 1957 1958 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1959 1960 if (error != 0) 1961 return (error); 1962 1963 return (mp_cpu_unconfigure(cpuid)); 1964 } 1965 1966 /* 1967 * Routines for registering and de-registering cpu_setup callback functions. 1968 * 1969 * Caller's context 1970 * These routines must not be called from a driver's attach(9E) or 1971 * detach(9E) entry point. 1972 * 1973 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1974 */ 1975 1976 /* 1977 * Ideally, these would be dynamically allocated and put into a linked 1978 * list; however that is not feasible because the registration routine 1979 * has to be available before the kmem allocator is working (in fact, 1980 * it is called by the kmem allocator init code). In any case, there 1981 * are quite a few extra entries for future users. 1982 */ 1983 #define NCPU_SETUPS 20 1984 1985 struct cpu_setup { 1986 cpu_setup_func_t *func; 1987 void *arg; 1988 } cpu_setups[NCPU_SETUPS]; 1989 1990 void 1991 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 1992 { 1993 int i; 1994 1995 ASSERT(MUTEX_HELD(&cpu_lock)); 1996 1997 for (i = 0; i < NCPU_SETUPS; i++) 1998 if (cpu_setups[i].func == NULL) 1999 break; 2000 if (i >= NCPU_SETUPS) 2001 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2002 2003 cpu_setups[i].func = func; 2004 cpu_setups[i].arg = arg; 2005 } 2006 2007 void 2008 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2009 { 2010 int i; 2011 2012 ASSERT(MUTEX_HELD(&cpu_lock)); 2013 2014 for (i = 0; i < NCPU_SETUPS; i++) 2015 if ((cpu_setups[i].func == func) && 2016 (cpu_setups[i].arg == arg)) 2017 break; 2018 if (i >= NCPU_SETUPS) 2019 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2020 "deregister"); 2021 2022 cpu_setups[i].func = NULL; 2023 cpu_setups[i].arg = 0; 2024 } 2025 2026 /* 2027 * Call any state change hooks for this CPU, ignore any errors. 2028 */ 2029 void 2030 cpu_state_change_notify(int id, cpu_setup_t what) 2031 { 2032 int i; 2033 2034 ASSERT(MUTEX_HELD(&cpu_lock)); 2035 2036 for (i = 0; i < NCPU_SETUPS; i++) { 2037 if (cpu_setups[i].func != NULL) { 2038 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2039 } 2040 } 2041 } 2042 2043 /* 2044 * Call any state change hooks for this CPU, undo it if error found. 2045 */ 2046 static int 2047 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2048 { 2049 int i; 2050 int retval = 0; 2051 2052 ASSERT(MUTEX_HELD(&cpu_lock)); 2053 2054 for (i = 0; i < NCPU_SETUPS; i++) { 2055 if (cpu_setups[i].func != NULL) { 2056 retval = cpu_setups[i].func(what, id, 2057 cpu_setups[i].arg); 2058 if (retval) { 2059 for (i--; i >= 0; i--) { 2060 if (cpu_setups[i].func != NULL) 2061 cpu_setups[i].func(undo, 2062 id, cpu_setups[i].arg); 2063 } 2064 break; 2065 } 2066 } 2067 } 2068 return (retval); 2069 } 2070 2071 /* 2072 * Export information about this CPU via the kstat mechanism. 2073 */ 2074 static struct { 2075 kstat_named_t ci_state; 2076 kstat_named_t ci_state_begin; 2077 kstat_named_t ci_cpu_type; 2078 kstat_named_t ci_fpu_type; 2079 kstat_named_t ci_clock_MHz; 2080 kstat_named_t ci_chip_id; 2081 kstat_named_t ci_implementation; 2082 kstat_named_t ci_brandstr; 2083 kstat_named_t ci_core_id; 2084 kstat_named_t ci_curr_clock_Hz; 2085 kstat_named_t ci_supp_freq_Hz; 2086 #if defined(__sparcv9) 2087 kstat_named_t ci_device_ID; 2088 kstat_named_t ci_cpu_fru; 2089 #endif 2090 #if defined(__x86) 2091 kstat_named_t ci_vendorstr; 2092 kstat_named_t ci_family; 2093 kstat_named_t ci_model; 2094 kstat_named_t ci_step; 2095 kstat_named_t ci_clogid; 2096 kstat_named_t ci_ncpuperchip; 2097 kstat_named_t ci_ncoreperchip; 2098 #endif 2099 } cpu_info_template = { 2100 { "state", KSTAT_DATA_CHAR }, 2101 { "state_begin", KSTAT_DATA_LONG }, 2102 { "cpu_type", KSTAT_DATA_CHAR }, 2103 { "fpu_type", KSTAT_DATA_CHAR }, 2104 { "clock_MHz", KSTAT_DATA_LONG }, 2105 { "chip_id", KSTAT_DATA_LONG }, 2106 { "implementation", KSTAT_DATA_STRING }, 2107 { "brand", KSTAT_DATA_STRING }, 2108 { "core_id", KSTAT_DATA_LONG }, 2109 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2110 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2111 #if defined(__sparcv9) 2112 { "device_ID", KSTAT_DATA_UINT64 }, 2113 { "cpu_fru", KSTAT_DATA_STRING }, 2114 #endif 2115 #if defined(__x86) 2116 { "vendor_id", KSTAT_DATA_STRING }, 2117 { "family", KSTAT_DATA_INT32 }, 2118 { "model", KSTAT_DATA_INT32 }, 2119 { "stepping", KSTAT_DATA_INT32 }, 2120 { "clog_id", KSTAT_DATA_INT32 }, 2121 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2122 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2123 #endif 2124 }; 2125 2126 static kmutex_t cpu_info_template_lock; 2127 2128 static int 2129 cpu_info_kstat_update(kstat_t *ksp, int rw) 2130 { 2131 cpu_t *cp = ksp->ks_private; 2132 const char *pi_state; 2133 2134 if (rw == KSTAT_WRITE) 2135 return (EACCES); 2136 2137 switch (cp->cpu_type_info.pi_state) { 2138 case P_ONLINE: 2139 pi_state = PS_ONLINE; 2140 break; 2141 case P_POWEROFF: 2142 pi_state = PS_POWEROFF; 2143 break; 2144 case P_NOINTR: 2145 pi_state = PS_NOINTR; 2146 break; 2147 case P_FAULTED: 2148 pi_state = PS_FAULTED; 2149 break; 2150 case P_SPARE: 2151 pi_state = PS_SPARE; 2152 break; 2153 case P_OFFLINE: 2154 pi_state = PS_OFFLINE; 2155 break; 2156 default: 2157 pi_state = "unknown"; 2158 } 2159 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2160 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2161 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2162 cp->cpu_type_info.pi_processor_type, 15); 2163 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2164 cp->cpu_type_info.pi_fputypes, 15); 2165 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2166 cpu_info_template.ci_chip_id.value.l = 2167 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2168 kstat_named_setstr(&cpu_info_template.ci_implementation, 2169 cp->cpu_idstr); 2170 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2171 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2172 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2173 cp->cpu_curr_clock; 2174 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2175 cp->cpu_supp_freqs); 2176 #if defined(__sparcv9) 2177 cpu_info_template.ci_device_ID.value.ui64 = 2178 cpunodes[cp->cpu_id].device_id; 2179 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2180 #endif 2181 #if defined(__x86) 2182 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2183 cpuid_getvendorstr(cp)); 2184 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2185 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2186 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2187 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2188 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2189 cpu_info_template.ci_ncoreperchip.value.l = 2190 cpuid_get_ncore_per_chip(cp); 2191 #endif 2192 2193 return (0); 2194 } 2195 2196 static void 2197 cpu_info_kstat_create(cpu_t *cp) 2198 { 2199 zoneid_t zoneid; 2200 2201 ASSERT(MUTEX_HELD(&cpu_lock)); 2202 2203 if (pool_pset_enabled()) 2204 zoneid = GLOBAL_ZONEID; 2205 else 2206 zoneid = ALL_ZONES; 2207 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2208 NULL, "misc", KSTAT_TYPE_NAMED, 2209 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2210 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2211 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2212 #if defined(__sparcv9) 2213 cp->cpu_info_kstat->ks_data_size += 2214 strlen(cpu_fru_fmri(cp)) + 1; 2215 #endif 2216 #if defined(__x86) 2217 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2218 #endif 2219 if (cp->cpu_supp_freqs != NULL) 2220 cp->cpu_info_kstat->ks_data_size += 2221 strlen(cp->cpu_supp_freqs) + 1; 2222 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2223 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2224 cp->cpu_info_kstat->ks_private = cp; 2225 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2226 kstat_install(cp->cpu_info_kstat); 2227 } 2228 } 2229 2230 static void 2231 cpu_info_kstat_destroy(cpu_t *cp) 2232 { 2233 ASSERT(MUTEX_HELD(&cpu_lock)); 2234 2235 kstat_delete(cp->cpu_info_kstat); 2236 cp->cpu_info_kstat = NULL; 2237 } 2238 2239 /* 2240 * Create and install kstats for the boot CPU. 2241 */ 2242 void 2243 cpu_kstat_init(cpu_t *cp) 2244 { 2245 mutex_enter(&cpu_lock); 2246 cpu_info_kstat_create(cp); 2247 cpu_stats_kstat_create(cp); 2248 cpu_create_intrstat(cp); 2249 cpu_set_state(cp); 2250 mutex_exit(&cpu_lock); 2251 } 2252 2253 /* 2254 * Make visible to the zone that subset of the cpu information that would be 2255 * initialized when a cpu is configured (but still offline). 2256 */ 2257 void 2258 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2259 { 2260 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2261 2262 ASSERT(MUTEX_HELD(&cpu_lock)); 2263 ASSERT(pool_pset_enabled()); 2264 ASSERT(cp != NULL); 2265 2266 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2267 zone->zone_ncpus++; 2268 ASSERT(zone->zone_ncpus <= ncpus); 2269 } 2270 if (cp->cpu_info_kstat != NULL) 2271 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2272 } 2273 2274 /* 2275 * Make visible to the zone that subset of the cpu information that would be 2276 * initialized when a previously configured cpu is onlined. 2277 */ 2278 void 2279 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2280 { 2281 kstat_t *ksp; 2282 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2283 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2284 processorid_t cpun; 2285 2286 ASSERT(MUTEX_HELD(&cpu_lock)); 2287 ASSERT(pool_pset_enabled()); 2288 ASSERT(cp != NULL); 2289 ASSERT(cpu_is_active(cp)); 2290 2291 cpun = cp->cpu_id; 2292 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2293 zone->zone_ncpus_online++; 2294 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2295 } 2296 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2297 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2298 != NULL) { 2299 kstat_zone_add(ksp, zoneid); 2300 kstat_rele(ksp); 2301 } 2302 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2303 kstat_zone_add(ksp, zoneid); 2304 kstat_rele(ksp); 2305 } 2306 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2307 kstat_zone_add(ksp, zoneid); 2308 kstat_rele(ksp); 2309 } 2310 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2311 NULL) { 2312 kstat_zone_add(ksp, zoneid); 2313 kstat_rele(ksp); 2314 } 2315 } 2316 2317 /* 2318 * Update relevant kstats such that cpu is now visible to processes 2319 * executing in specified zone. 2320 */ 2321 void 2322 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2323 { 2324 cpu_visibility_configure(cp, zone); 2325 if (cpu_is_active(cp)) 2326 cpu_visibility_online(cp, zone); 2327 } 2328 2329 /* 2330 * Make invisible to the zone that subset of the cpu information that would be 2331 * torn down when a previously offlined cpu is unconfigured. 2332 */ 2333 void 2334 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2335 { 2336 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2337 2338 ASSERT(MUTEX_HELD(&cpu_lock)); 2339 ASSERT(pool_pset_enabled()); 2340 ASSERT(cp != NULL); 2341 2342 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2343 ASSERT(zone->zone_ncpus != 0); 2344 zone->zone_ncpus--; 2345 } 2346 if (cp->cpu_info_kstat) 2347 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2348 } 2349 2350 /* 2351 * Make invisible to the zone that subset of the cpu information that would be 2352 * torn down when a cpu is offlined (but still configured). 2353 */ 2354 void 2355 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2356 { 2357 kstat_t *ksp; 2358 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2359 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2360 processorid_t cpun; 2361 2362 ASSERT(MUTEX_HELD(&cpu_lock)); 2363 ASSERT(pool_pset_enabled()); 2364 ASSERT(cp != NULL); 2365 ASSERT(cpu_is_active(cp)); 2366 2367 cpun = cp->cpu_id; 2368 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2369 ASSERT(zone->zone_ncpus_online != 0); 2370 zone->zone_ncpus_online--; 2371 } 2372 2373 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2374 NULL) { 2375 kstat_zone_remove(ksp, zoneid); 2376 kstat_rele(ksp); 2377 } 2378 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2379 kstat_zone_remove(ksp, zoneid); 2380 kstat_rele(ksp); 2381 } 2382 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2383 kstat_zone_remove(ksp, zoneid); 2384 kstat_rele(ksp); 2385 } 2386 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2387 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2388 != NULL) { 2389 kstat_zone_remove(ksp, zoneid); 2390 kstat_rele(ksp); 2391 } 2392 } 2393 2394 /* 2395 * Update relevant kstats such that cpu is no longer visible to processes 2396 * executing in specified zone. 2397 */ 2398 void 2399 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2400 { 2401 if (cpu_is_active(cp)) 2402 cpu_visibility_offline(cp, zone); 2403 cpu_visibility_unconfigure(cp, zone); 2404 } 2405 2406 /* 2407 * Bind a thread to a CPU as requested. 2408 */ 2409 int 2410 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2411 int *error) 2412 { 2413 processorid_t binding; 2414 cpu_t *cp; 2415 2416 ASSERT(MUTEX_HELD(&cpu_lock)); 2417 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2418 2419 thread_lock(tp); 2420 2421 /* 2422 * Record old binding, but change the obind, which was initialized 2423 * to PBIND_NONE, only if this thread has a binding. This avoids 2424 * reporting PBIND_NONE for a process when some LWPs are bound. 2425 */ 2426 binding = tp->t_bind_cpu; 2427 if (binding != PBIND_NONE) 2428 *obind = binding; /* record old binding */ 2429 2430 if (bind == PBIND_QUERY) { 2431 thread_unlock(tp); 2432 return (0); 2433 } 2434 2435 /* 2436 * If this thread/LWP cannot be bound because of permission 2437 * problems, just note that and return success so that the 2438 * other threads/LWPs will be bound. This is the way 2439 * processor_bind() is defined to work. 2440 * 2441 * Binding will get EPERM if the thread is of system class 2442 * or hasprocperm() fails. 2443 */ 2444 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2445 *error = EPERM; 2446 thread_unlock(tp); 2447 return (0); 2448 } 2449 2450 binding = bind; 2451 if (binding != PBIND_NONE) { 2452 cp = cpu[binding]; 2453 /* 2454 * Make sure binding is in right partition. 2455 */ 2456 if (tp->t_cpupart != cp->cpu_part) { 2457 *error = EINVAL; 2458 thread_unlock(tp); 2459 return (0); 2460 } 2461 } 2462 tp->t_bind_cpu = binding; /* set new binding */ 2463 2464 /* 2465 * If there is no system-set reason for affinity, set 2466 * the t_bound_cpu field to reflect the binding. 2467 */ 2468 if (tp->t_affinitycnt == 0) { 2469 if (binding == PBIND_NONE) { 2470 /* 2471 * We may need to adjust disp_max_unbound_pri 2472 * since we're becoming unbound. 2473 */ 2474 disp_adjust_unbound_pri(tp); 2475 2476 tp->t_bound_cpu = NULL; /* set new binding */ 2477 2478 /* 2479 * Move thread to lgroup with strongest affinity 2480 * after unbinding 2481 */ 2482 if (tp->t_lgrp_affinity) 2483 lgrp_move_thread(tp, 2484 lgrp_choose(tp, tp->t_cpupart), 1); 2485 2486 if (tp->t_state == TS_ONPROC && 2487 tp->t_cpu->cpu_part != tp->t_cpupart) 2488 cpu_surrender(tp); 2489 } else { 2490 lpl_t *lpl; 2491 2492 tp->t_bound_cpu = cp; 2493 ASSERT(cp->cpu_lpl != NULL); 2494 2495 /* 2496 * Set home to lgroup with most affinity containing CPU 2497 * that thread is being bound or minimum bounding 2498 * lgroup if no affinities set 2499 */ 2500 if (tp->t_lgrp_affinity) 2501 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2502 LGRP_NONE, B_FALSE); 2503 else 2504 lpl = cp->cpu_lpl; 2505 2506 if (tp->t_lpl != lpl) { 2507 /* can't grab cpu_lock */ 2508 lgrp_move_thread(tp, lpl, 1); 2509 } 2510 2511 /* 2512 * Make the thread switch to the bound CPU. 2513 * If the thread is runnable, we need to 2514 * requeue it even if t_cpu is already set 2515 * to the right CPU, since it may be on a 2516 * kpreempt queue and need to move to a local 2517 * queue. We could check t_disp_queue to 2518 * avoid unnecessary overhead if it's already 2519 * on the right queue, but since this isn't 2520 * a performance-critical operation it doesn't 2521 * seem worth the extra code and complexity. 2522 * 2523 * If the thread is weakbound to the cpu then it will 2524 * resist the new binding request until the weak 2525 * binding drops. The cpu_surrender or requeueing 2526 * below could be skipped in such cases (since it 2527 * will have no effect), but that would require 2528 * thread_allowmigrate to acquire thread_lock so 2529 * we'll take the very occasional hit here instead. 2530 */ 2531 if (tp->t_state == TS_ONPROC) { 2532 cpu_surrender(tp); 2533 } else if (tp->t_state == TS_RUN) { 2534 cpu_t *ocp = tp->t_cpu; 2535 2536 (void) dispdeq(tp); 2537 setbackdq(tp); 2538 /* 2539 * Either on the bound CPU's disp queue now, 2540 * or swapped out or on the swap queue. 2541 */ 2542 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2543 tp->t_weakbound_cpu == ocp || 2544 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2545 != TS_LOAD); 2546 } 2547 } 2548 } 2549 2550 /* 2551 * Our binding has changed; set TP_CHANGEBIND. 2552 */ 2553 tp->t_proc_flag |= TP_CHANGEBIND; 2554 aston(tp); 2555 2556 thread_unlock(tp); 2557 2558 return (0); 2559 } 2560 2561 #if CPUSET_WORDS > 1 2562 2563 /* 2564 * Functions for implementing cpuset operations when a cpuset is more 2565 * than one word. On platforms where a cpuset is a single word these 2566 * are implemented as macros in cpuvar.h. 2567 */ 2568 2569 void 2570 cpuset_all(cpuset_t *s) 2571 { 2572 int i; 2573 2574 for (i = 0; i < CPUSET_WORDS; i++) 2575 s->cpub[i] = ~0UL; 2576 } 2577 2578 void 2579 cpuset_all_but(cpuset_t *s, uint_t cpu) 2580 { 2581 cpuset_all(s); 2582 CPUSET_DEL(*s, cpu); 2583 } 2584 2585 void 2586 cpuset_only(cpuset_t *s, uint_t cpu) 2587 { 2588 CPUSET_ZERO(*s); 2589 CPUSET_ADD(*s, cpu); 2590 } 2591 2592 int 2593 cpuset_isnull(cpuset_t *s) 2594 { 2595 int i; 2596 2597 for (i = 0; i < CPUSET_WORDS; i++) 2598 if (s->cpub[i] != 0) 2599 return (0); 2600 return (1); 2601 } 2602 2603 int 2604 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2605 { 2606 int i; 2607 2608 for (i = 0; i < CPUSET_WORDS; i++) 2609 if (s1->cpub[i] != s2->cpub[i]) 2610 return (0); 2611 return (1); 2612 } 2613 2614 uint_t 2615 cpuset_find(cpuset_t *s) 2616 { 2617 2618 uint_t i; 2619 uint_t cpu = (uint_t)-1; 2620 2621 /* 2622 * Find a cpu in the cpuset 2623 */ 2624 for (i = 0; i < CPUSET_WORDS; i++) { 2625 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2626 if (cpu != (uint_t)-1) { 2627 cpu += i * BT_NBIPUL; 2628 break; 2629 } 2630 } 2631 return (cpu); 2632 } 2633 2634 void 2635 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2636 { 2637 int i, j; 2638 uint_t bit; 2639 2640 /* 2641 * First, find the smallest cpu id in the set. 2642 */ 2643 for (i = 0; i < CPUSET_WORDS; i++) { 2644 if (s->cpub[i] != 0) { 2645 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2646 ASSERT(bit != (uint_t)-1); 2647 *smallestid = bit + (i * BT_NBIPUL); 2648 2649 /* 2650 * Now find the largest cpu id in 2651 * the set and return immediately. 2652 * Done in an inner loop to avoid 2653 * having to break out of the first 2654 * loop. 2655 */ 2656 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2657 if (s->cpub[j] != 0) { 2658 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2659 ASSERT(bit != (uint_t)-1); 2660 *largestid = bit + (j * BT_NBIPUL); 2661 ASSERT(*largestid >= *smallestid); 2662 return; 2663 } 2664 } 2665 2666 /* 2667 * If this code is reached, a 2668 * smallestid was found, but not a 2669 * largestid. The cpuset must have 2670 * been changed during the course 2671 * of this function call. 2672 */ 2673 ASSERT(0); 2674 } 2675 } 2676 *smallestid = *largestid = CPUSET_NOTINSET; 2677 } 2678 2679 #endif /* CPUSET_WORDS */ 2680 2681 /* 2682 * Unbind all user threads bound to a given CPU. 2683 */ 2684 int 2685 cpu_unbind(processorid_t cpu) 2686 { 2687 processorid_t obind; 2688 kthread_t *tp; 2689 int ret = 0; 2690 proc_t *pp; 2691 int err, berr = 0; 2692 2693 ASSERT(MUTEX_HELD(&cpu_lock)); 2694 2695 mutex_enter(&pidlock); 2696 for (pp = practive; pp != NULL; pp = pp->p_next) { 2697 mutex_enter(&pp->p_lock); 2698 tp = pp->p_tlist; 2699 /* 2700 * Skip zombies, kernel processes, and processes in 2701 * other zones, if called from a non-global zone. 2702 */ 2703 if (tp == NULL || (pp->p_flag & SSYS) || 2704 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2705 mutex_exit(&pp->p_lock); 2706 continue; 2707 } 2708 do { 2709 if (tp->t_bind_cpu != cpu) 2710 continue; 2711 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2712 if (ret == 0) 2713 ret = err; 2714 } while ((tp = tp->t_forw) != pp->p_tlist); 2715 mutex_exit(&pp->p_lock); 2716 } 2717 mutex_exit(&pidlock); 2718 if (ret == 0) 2719 ret = berr; 2720 return (ret); 2721 } 2722 2723 2724 /* 2725 * Destroy all remaining bound threads on a cpu. 2726 */ 2727 void 2728 cpu_destroy_bound_threads(cpu_t *cp) 2729 { 2730 extern id_t syscid; 2731 register kthread_id_t t, tlist, tnext; 2732 2733 /* 2734 * Destroy all remaining bound threads on the cpu. This 2735 * should include both the interrupt threads and the idle thread. 2736 * This requires some care, since we need to traverse the 2737 * thread list with the pidlock mutex locked, but thread_free 2738 * also locks the pidlock mutex. So, we collect the threads 2739 * we're going to reap in a list headed by "tlist", then we 2740 * unlock the pidlock mutex and traverse the tlist list, 2741 * doing thread_free's on the thread's. Simple, n'est pas? 2742 * Also, this depends on thread_free not mucking with the 2743 * t_next and t_prev links of the thread. 2744 */ 2745 2746 if ((t = curthread) != NULL) { 2747 2748 tlist = NULL; 2749 mutex_enter(&pidlock); 2750 do { 2751 tnext = t->t_next; 2752 if (t->t_bound_cpu == cp) { 2753 2754 /* 2755 * We've found a bound thread, carefully unlink 2756 * it out of the thread list, and add it to 2757 * our "tlist". We "know" we don't have to 2758 * worry about unlinking curthread (the thread 2759 * that is executing this code). 2760 */ 2761 t->t_next->t_prev = t->t_prev; 2762 t->t_prev->t_next = t->t_next; 2763 t->t_next = tlist; 2764 tlist = t; 2765 ASSERT(t->t_cid == syscid); 2766 /* wake up anyone blocked in thread_join */ 2767 cv_broadcast(&t->t_joincv); 2768 /* 2769 * t_lwp set by interrupt threads and not 2770 * cleared. 2771 */ 2772 t->t_lwp = NULL; 2773 /* 2774 * Pause and idle threads always have 2775 * t_state set to TS_ONPROC. 2776 */ 2777 t->t_state = TS_FREE; 2778 t->t_prev = NULL; /* Just in case */ 2779 } 2780 2781 } while ((t = tnext) != curthread); 2782 2783 mutex_exit(&pidlock); 2784 2785 2786 for (t = tlist; t != NULL; t = tnext) { 2787 tnext = t->t_next; 2788 thread_free(t); 2789 } 2790 } 2791 } 2792 2793 /* 2794 * Update the cpu_supp_freqs of this cpu. This information is returned 2795 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2796 * maintain the kstat data size. 2797 */ 2798 void 2799 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2800 { 2801 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2802 const char *lfreqs = clkstr; 2803 boolean_t kstat_exists = B_FALSE; 2804 kstat_t *ksp; 2805 size_t len; 2806 2807 /* 2808 * A NULL pointer means we only support one speed. 2809 */ 2810 if (freqs == NULL) 2811 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2812 cp->cpu_curr_clock); 2813 else 2814 lfreqs = freqs; 2815 2816 /* 2817 * Make sure the frequency doesn't change while a snapshot is 2818 * going on. Of course, we only need to worry about this if 2819 * the kstat exists. 2820 */ 2821 if ((ksp = cp->cpu_info_kstat) != NULL) { 2822 mutex_enter(ksp->ks_lock); 2823 kstat_exists = B_TRUE; 2824 } 2825 2826 /* 2827 * Free any previously allocated string and if the kstat 2828 * already exists, then update its data size. 2829 */ 2830 if (cp->cpu_supp_freqs != NULL) { 2831 len = strlen(cp->cpu_supp_freqs) + 1; 2832 kmem_free(cp->cpu_supp_freqs, len); 2833 if (kstat_exists) 2834 ksp->ks_data_size -= len; 2835 } 2836 2837 /* 2838 * Allocate the new string and set the pointer. 2839 */ 2840 len = strlen(lfreqs) + 1; 2841 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2842 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2843 2844 /* 2845 * If the kstat already exists then update the data size and 2846 * free the lock. 2847 */ 2848 if (kstat_exists) { 2849 ksp->ks_data_size += len; 2850 mutex_exit(ksp->ks_lock); 2851 } 2852 } 2853 2854 /* 2855 * processor_info(2) and p_online(2) status support functions 2856 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2857 * for use in communicating processor state information to userland. Kernel 2858 * subsystems should only be using the cpu_flags value directly. Subsystems 2859 * modifying cpu_flags should record the state change via a call to the 2860 * cpu_set_state(). 2861 */ 2862 2863 /* 2864 * Update the pi_state of this CPU. This function provides the CPU status for 2865 * the information returned by processor_info(2). 2866 */ 2867 void 2868 cpu_set_state(cpu_t *cpu) 2869 { 2870 ASSERT(MUTEX_HELD(&cpu_lock)); 2871 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2872 cpu->cpu_state_begin = gethrestime_sec(); 2873 pool_cpu_mod = gethrtime(); 2874 } 2875 2876 /* 2877 * Return offline/online/other status for the indicated CPU. Use only for 2878 * communication with user applications; cpu_flags provides the in-kernel 2879 * interface. 2880 */ 2881 int 2882 cpu_get_state(cpu_t *cpu) 2883 { 2884 ASSERT(MUTEX_HELD(&cpu_lock)); 2885 if (cpu->cpu_flags & CPU_POWEROFF) 2886 return (P_POWEROFF); 2887 else if (cpu->cpu_flags & CPU_FAULTED) 2888 return (P_FAULTED); 2889 else if (cpu->cpu_flags & CPU_SPARE) 2890 return (P_SPARE); 2891 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2892 return (P_OFFLINE); 2893 else if (cpu->cpu_flags & CPU_ENABLE) 2894 return (P_ONLINE); 2895 else 2896 return (P_NOINTR); 2897 } 2898 2899 /* 2900 * Return processor_info(2) state as a string. 2901 */ 2902 const char * 2903 cpu_get_state_str(cpu_t *cpu) 2904 { 2905 const char *string; 2906 2907 switch (cpu_get_state(cpu)) { 2908 case P_ONLINE: 2909 string = PS_ONLINE; 2910 break; 2911 case P_POWEROFF: 2912 string = PS_POWEROFF; 2913 break; 2914 case P_NOINTR: 2915 string = PS_NOINTR; 2916 break; 2917 case P_SPARE: 2918 string = PS_SPARE; 2919 break; 2920 case P_FAULTED: 2921 string = PS_FAULTED; 2922 break; 2923 case P_OFFLINE: 2924 string = PS_OFFLINE; 2925 break; 2926 default: 2927 string = "unknown"; 2928 break; 2929 } 2930 return (string); 2931 } 2932 2933 /* 2934 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 2935 * kstats, respectively. This is done when a CPU is initialized or placed 2936 * online via p_online(2). 2937 */ 2938 static void 2939 cpu_stats_kstat_create(cpu_t *cp) 2940 { 2941 int instance = cp->cpu_id; 2942 char *module = "cpu"; 2943 char *class = "misc"; 2944 kstat_t *ksp; 2945 zoneid_t zoneid; 2946 2947 ASSERT(MUTEX_HELD(&cpu_lock)); 2948 2949 if (pool_pset_enabled()) 2950 zoneid = GLOBAL_ZONEID; 2951 else 2952 zoneid = ALL_ZONES; 2953 /* 2954 * Create named kstats 2955 */ 2956 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 2957 ksp = kstat_create_zone(module, instance, (name), class, \ 2958 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 2959 zoneid); \ 2960 if (ksp != NULL) { \ 2961 ksp->ks_private = cp; \ 2962 ksp->ks_update = (update_func); \ 2963 kstat_install(ksp); \ 2964 } else \ 2965 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 2966 module, instance, (name)); 2967 2968 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 2969 cpu_sys_stats_ks_update); 2970 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 2971 cpu_vm_stats_ks_update); 2972 2973 /* 2974 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 2975 */ 2976 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 2977 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 2978 if (ksp != NULL) { 2979 ksp->ks_update = cpu_stat_ks_update; 2980 ksp->ks_private = cp; 2981 kstat_install(ksp); 2982 } 2983 } 2984 2985 static void 2986 cpu_stats_kstat_destroy(cpu_t *cp) 2987 { 2988 char ks_name[KSTAT_STRLEN]; 2989 2990 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 2991 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 2992 2993 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 2994 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 2995 } 2996 2997 static int 2998 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 2999 { 3000 cpu_t *cp = (cpu_t *)ksp->ks_private; 3001 struct cpu_sys_stats_ks_data *csskd; 3002 cpu_sys_stats_t *css; 3003 hrtime_t msnsecs[NCMSTATES]; 3004 int i; 3005 3006 if (rw == KSTAT_WRITE) 3007 return (EACCES); 3008 3009 csskd = ksp->ks_data; 3010 css = &cp->cpu_stats.sys; 3011 3012 /* 3013 * Read CPU mstate, but compare with the last values we 3014 * received to make sure that the returned kstats never 3015 * decrease. 3016 */ 3017 3018 get_cpu_mstate(cp, msnsecs); 3019 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3020 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3021 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3022 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3023 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3024 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3025 3026 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3027 sizeof (cpu_sys_stats_ks_data_template)); 3028 3029 csskd->cpu_ticks_wait.value.ui64 = 0; 3030 csskd->wait_ticks_io.value.ui64 = 0; 3031 3032 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3033 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3034 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3035 csskd->cpu_ticks_idle.value.ui64 = 3036 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3037 csskd->cpu_ticks_user.value.ui64 = 3038 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3039 csskd->cpu_ticks_kernel.value.ui64 = 3040 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3041 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3042 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3043 csskd->bread.value.ui64 = css->bread; 3044 csskd->bwrite.value.ui64 = css->bwrite; 3045 csskd->lread.value.ui64 = css->lread; 3046 csskd->lwrite.value.ui64 = css->lwrite; 3047 csskd->phread.value.ui64 = css->phread; 3048 csskd->phwrite.value.ui64 = css->phwrite; 3049 csskd->pswitch.value.ui64 = css->pswitch; 3050 csskd->trap.value.ui64 = css->trap; 3051 csskd->intr.value.ui64 = 0; 3052 for (i = 0; i < PIL_MAX; i++) 3053 csskd->intr.value.ui64 += css->intr[i]; 3054 csskd->syscall.value.ui64 = css->syscall; 3055 csskd->sysread.value.ui64 = css->sysread; 3056 csskd->syswrite.value.ui64 = css->syswrite; 3057 csskd->sysfork.value.ui64 = css->sysfork; 3058 csskd->sysvfork.value.ui64 = css->sysvfork; 3059 csskd->sysexec.value.ui64 = css->sysexec; 3060 csskd->readch.value.ui64 = css->readch; 3061 csskd->writech.value.ui64 = css->writech; 3062 csskd->rcvint.value.ui64 = css->rcvint; 3063 csskd->xmtint.value.ui64 = css->xmtint; 3064 csskd->mdmint.value.ui64 = css->mdmint; 3065 csskd->rawch.value.ui64 = css->rawch; 3066 csskd->canch.value.ui64 = css->canch; 3067 csskd->outch.value.ui64 = css->outch; 3068 csskd->msg.value.ui64 = css->msg; 3069 csskd->sema.value.ui64 = css->sema; 3070 csskd->namei.value.ui64 = css->namei; 3071 csskd->ufsiget.value.ui64 = css->ufsiget; 3072 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3073 csskd->ufsipage.value.ui64 = css->ufsipage; 3074 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3075 csskd->procovf.value.ui64 = css->procovf; 3076 csskd->intrthread.value.ui64 = 0; 3077 for (i = 0; i < LOCK_LEVEL; i++) 3078 csskd->intrthread.value.ui64 += css->intr[i]; 3079 csskd->intrblk.value.ui64 = css->intrblk; 3080 csskd->intrunpin.value.ui64 = css->intrunpin; 3081 csskd->idlethread.value.ui64 = css->idlethread; 3082 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3083 csskd->nthreads.value.ui64 = css->nthreads; 3084 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3085 csskd->xcalls.value.ui64 = css->xcalls; 3086 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3087 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3088 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3089 csskd->modload.value.ui64 = css->modload; 3090 csskd->modunload.value.ui64 = css->modunload; 3091 csskd->bawrite.value.ui64 = css->bawrite; 3092 csskd->iowait.value.ui64 = css->iowait; 3093 3094 return (0); 3095 } 3096 3097 static int 3098 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3099 { 3100 cpu_t *cp = (cpu_t *)ksp->ks_private; 3101 struct cpu_vm_stats_ks_data *cvskd; 3102 cpu_vm_stats_t *cvs; 3103 3104 if (rw == KSTAT_WRITE) 3105 return (EACCES); 3106 3107 cvs = &cp->cpu_stats.vm; 3108 cvskd = ksp->ks_data; 3109 3110 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3111 sizeof (cpu_vm_stats_ks_data_template)); 3112 cvskd->pgrec.value.ui64 = cvs->pgrec; 3113 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3114 cvskd->pgin.value.ui64 = cvs->pgin; 3115 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3116 cvskd->pgout.value.ui64 = cvs->pgout; 3117 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3118 cvskd->swapin.value.ui64 = cvs->swapin; 3119 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3120 cvskd->swapout.value.ui64 = cvs->swapout; 3121 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3122 cvskd->zfod.value.ui64 = cvs->zfod; 3123 cvskd->dfree.value.ui64 = cvs->dfree; 3124 cvskd->scan.value.ui64 = cvs->scan; 3125 cvskd->rev.value.ui64 = cvs->rev; 3126 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3127 cvskd->as_fault.value.ui64 = cvs->as_fault; 3128 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3129 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3130 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3131 cvskd->softlock.value.ui64 = cvs->softlock; 3132 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3133 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3134 cvskd->execpgin.value.ui64 = cvs->execpgin; 3135 cvskd->execpgout.value.ui64 = cvs->execpgout; 3136 cvskd->execfree.value.ui64 = cvs->execfree; 3137 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3138 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3139 cvskd->anonfree.value.ui64 = cvs->anonfree; 3140 cvskd->fspgin.value.ui64 = cvs->fspgin; 3141 cvskd->fspgout.value.ui64 = cvs->fspgout; 3142 cvskd->fsfree.value.ui64 = cvs->fsfree; 3143 3144 return (0); 3145 } 3146 3147 static int 3148 cpu_stat_ks_update(kstat_t *ksp, int rw) 3149 { 3150 cpu_stat_t *cso; 3151 cpu_t *cp; 3152 int i; 3153 hrtime_t msnsecs[NCMSTATES]; 3154 3155 cso = (cpu_stat_t *)ksp->ks_data; 3156 cp = (cpu_t *)ksp->ks_private; 3157 3158 if (rw == KSTAT_WRITE) 3159 return (EACCES); 3160 3161 /* 3162 * Read CPU mstate, but compare with the last values we 3163 * received to make sure that the returned kstats never 3164 * decrease. 3165 */ 3166 3167 get_cpu_mstate(cp, msnsecs); 3168 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3169 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3170 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3171 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3172 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3173 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3174 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3175 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3176 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3177 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3178 cso->cpu_sysinfo.wait[W_IO] = 0; 3179 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3180 cso->cpu_sysinfo.wait[W_PIO] = 0; 3181 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3182 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3183 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3184 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3185 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3186 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3187 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3188 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3189 cso->cpu_sysinfo.intr = 0; 3190 for (i = 0; i < PIL_MAX; i++) 3191 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3192 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3193 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3194 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3195 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3196 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3197 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3198 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3199 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3200 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3201 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3202 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3203 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3204 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3205 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3206 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3207 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3208 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3209 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3210 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3211 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3212 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3213 cso->cpu_sysinfo.inodeovf = 0; 3214 cso->cpu_sysinfo.fileovf = 0; 3215 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3216 cso->cpu_sysinfo.intrthread = 0; 3217 for (i = 0; i < LOCK_LEVEL; i++) 3218 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3219 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3220 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3221 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3222 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3223 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3224 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3225 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3226 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3227 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3228 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3229 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3230 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3231 cso->cpu_sysinfo.rw_enters = 0; 3232 cso->cpu_sysinfo.win_uo_cnt = 0; 3233 cso->cpu_sysinfo.win_uu_cnt = 0; 3234 cso->cpu_sysinfo.win_so_cnt = 0; 3235 cso->cpu_sysinfo.win_su_cnt = 0; 3236 cso->cpu_sysinfo.win_suo_cnt = 0; 3237 3238 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3239 cso->cpu_syswait.swap = 0; 3240 cso->cpu_syswait.physio = 0; 3241 3242 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3243 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3244 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3245 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3246 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3247 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3248 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3249 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3250 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3251 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3252 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3253 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3254 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3255 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3256 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3257 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3258 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3259 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3260 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3261 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3262 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3263 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3264 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3265 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3266 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3267 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3268 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3269 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3270 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3271 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3272 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3273 3274 return (0); 3275 } 3276