xref: /titanic_51/usr/src/uts/common/os/condvar.c (revision b6d5e9b682eacb2ea8d7ac8b6695bc419b680378)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/thread.h>
28 #include <sys/proc.h>
29 #include <sys/debug.h>
30 #include <sys/cmn_err.h>
31 #include <sys/systm.h>
32 #include <sys/sobject.h>
33 #include <sys/sleepq.h>
34 #include <sys/cpuvar.h>
35 #include <sys/condvar.h>
36 #include <sys/condvar_impl.h>
37 #include <sys/schedctl.h>
38 #include <sys/procfs.h>
39 #include <sys/sdt.h>
40 #include <sys/callo.h>
41 
42 /*
43  * CV_MAX_WAITERS is the maximum number of waiters we track; once
44  * the number becomes higher than that, we look at the sleepq to
45  * see whether there are *really* any waiters.
46  */
47 #define	CV_MAX_WAITERS		1024		/* must be power of 2 */
48 #define	CV_WAITERS_MASK		(CV_MAX_WAITERS - 1)
49 
50 /*
51  * Threads don't "own" condition variables.
52  */
53 /* ARGSUSED */
54 static kthread_t *
55 cv_owner(void *cvp)
56 {
57 	return (NULL);
58 }
59 
60 /*
61  * Unsleep a thread that's blocked on a condition variable.
62  */
63 static void
64 cv_unsleep(kthread_t *t)
65 {
66 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
67 	sleepq_head_t *sqh = SQHASH(cvp);
68 
69 	ASSERT(THREAD_LOCK_HELD(t));
70 
71 	if (cvp == NULL)
72 		panic("cv_unsleep: thread %p not on sleepq %p",
73 		    (void *)t, (void *)sqh);
74 	DTRACE_SCHED1(wakeup, kthread_t *, t);
75 	sleepq_unsleep(t);
76 	if (cvp->cv_waiters != CV_MAX_WAITERS)
77 		cvp->cv_waiters--;
78 	disp_lock_exit_high(&sqh->sq_lock);
79 	CL_SETRUN(t);
80 }
81 
82 /*
83  * Change the priority of a thread that's blocked on a condition variable.
84  */
85 static void
86 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
87 {
88 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
89 	sleepq_t *sqp = t->t_sleepq;
90 
91 	ASSERT(THREAD_LOCK_HELD(t));
92 	ASSERT(&SQHASH(cvp)->sq_queue == sqp);
93 
94 	if (cvp == NULL)
95 		panic("cv_change_pri: %p not on sleep queue", (void *)t);
96 	sleepq_dequeue(t);
97 	*t_prip = pri;
98 	sleepq_insert(sqp, t);
99 }
100 
101 /*
102  * The sobj_ops vector exports a set of functions needed when a thread
103  * is asleep on a synchronization object of this type.
104  */
105 static sobj_ops_t cv_sobj_ops = {
106 	SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri
107 };
108 
109 /* ARGSUSED */
110 void
111 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
112 {
113 	((condvar_impl_t *)cvp)->cv_waiters = 0;
114 }
115 
116 /*
117  * cv_destroy is not currently needed, but is part of the DDI.
118  * This is in case cv_init ever needs to allocate something for a cv.
119  */
120 /* ARGSUSED */
121 void
122 cv_destroy(kcondvar_t *cvp)
123 {
124 	ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0);
125 }
126 
127 /*
128  * The cv_block() function blocks a thread on a condition variable
129  * by putting it in a hashed sleep queue associated with the
130  * synchronization object.
131  *
132  * Threads are taken off the hashed sleep queues via calls to
133  * cv_signal(), cv_broadcast(), or cv_unsleep().
134  */
135 static void
136 cv_block(condvar_impl_t *cvp)
137 {
138 	kthread_t *t = curthread;
139 	klwp_t *lwp = ttolwp(t);
140 	sleepq_head_t *sqh;
141 
142 	ASSERT(THREAD_LOCK_HELD(t));
143 	ASSERT(t != CPU->cpu_idle_thread);
144 	ASSERT(CPU_ON_INTR(CPU) == 0);
145 	ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
146 	ASSERT(t->t_state == TS_ONPROC);
147 
148 	t->t_schedflag &= ~TS_SIGNALLED;
149 	CL_SLEEP(t);			/* assign kernel priority */
150 	t->t_wchan = (caddr_t)cvp;
151 	t->t_sobj_ops = &cv_sobj_ops;
152 	DTRACE_SCHED(sleep);
153 
154 	/*
155 	 * The check for t_intr is to avoid doing the
156 	 * account for an interrupt thread on the still-pinned
157 	 * lwp's statistics.
158 	 */
159 	if (lwp != NULL && t->t_intr == NULL) {
160 		lwp->lwp_ru.nvcsw++;
161 		(void) new_mstate(t, LMS_SLEEP);
162 	}
163 
164 	sqh = SQHASH(cvp);
165 	disp_lock_enter_high(&sqh->sq_lock);
166 	if (cvp->cv_waiters < CV_MAX_WAITERS)
167 		cvp->cv_waiters++;
168 	ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS);
169 	THREAD_SLEEP(t, &sqh->sq_lock);
170 	sleepq_insert(&sqh->sq_queue, t);
171 	/*
172 	 * THREAD_SLEEP() moves curthread->t_lockp to point to the
173 	 * lock sqh->sq_lock. This lock is later released by the caller
174 	 * when it calls thread_unlock() on curthread.
175 	 */
176 }
177 
178 #define	cv_block_sig(t, cvp)	\
179 	{ (t)->t_flag |= T_WAKEABLE; cv_block(cvp); }
180 
181 /*
182  * Block on the indicated condition variable and release the
183  * associated kmutex while blocked.
184  */
185 void
186 cv_wait(kcondvar_t *cvp, kmutex_t *mp)
187 {
188 	if (panicstr)
189 		return;
190 
191 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
192 	thread_lock(curthread);			/* lock the thread */
193 	cv_block((condvar_impl_t *)cvp);
194 	thread_unlock_nopreempt(curthread);	/* unlock the waiters field */
195 	mutex_exit(mp);
196 	swtch();
197 	mutex_enter(mp);
198 }
199 
200 static void
201 cv_wakeup(void *arg)
202 {
203 	kthread_t *t = arg;
204 
205 	/*
206 	 * This mutex is acquired and released in order to make sure that
207 	 * the wakeup does not happen before the block itself happens.
208 	 */
209 	mutex_enter(t->t_wait_mp);
210 	mutex_exit(t->t_wait_mp);
211 	setrun(t);
212 	t->t_wait_mp = NULL;
213 }
214 
215 /*
216  * Same as cv_wait except the thread will unblock at 'tim'
217  * (an absolute time) if it hasn't already unblocked.
218  *
219  * Returns the amount of time left from the original 'tim' value
220  * when it was unblocked.
221  */
222 clock_t
223 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
224 {
225 	kthread_t *t = curthread;
226 	callout_id_t id;
227 	clock_t timeleft;
228 	int signalled;
229 
230 	if (panicstr)
231 		return (-1);
232 
233 	timeleft = tim - lbolt;
234 	if (timeleft <= 0)
235 		return (-1);
236 	t->t_wait_mp = mp;
237 	id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, timeleft);
238 	thread_lock(t);		/* lock the thread */
239 	cv_block((condvar_impl_t *)cvp);
240 	thread_unlock_nopreempt(t);
241 	mutex_exit(mp);
242 	swtch();
243 	signalled = (t->t_schedflag & TS_SIGNALLED);
244 	/*
245 	 * Get the time left. untimeout() returns -1 if the timeout has
246 	 * occured or the time remaining.  If the time remaining is zero,
247 	 * the timeout has occured between when we were awoken and
248 	 * we called untimeout.  We will treat this as if the timeout
249 	 * has occured and set timeleft to -1.
250 	 */
251 	timeleft = (t->t_wait_mp == NULL) ? -1 : untimeout_default(id, 0);
252 	mutex_enter(mp);
253 	if (timeleft <= 0) {
254 		timeleft = -1;
255 		if (signalled)	/* avoid consuming the cv_signal() */
256 			cv_signal(cvp);
257 	}
258 	return (timeleft);
259 }
260 
261 int
262 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp)
263 {
264 	kthread_t *t = curthread;
265 	proc_t *p = ttoproc(t);
266 	klwp_t *lwp = ttolwp(t);
267 	int cancel_pending;
268 	int rval = 1;
269 	int signalled = 0;
270 
271 	if (panicstr)
272 		return (rval);
273 
274 	/*
275 	 * The check for t_intr is to catch an interrupt thread
276 	 * that has not yet unpinned the thread underneath.
277 	 */
278 	if (lwp == NULL || t->t_intr) {
279 		cv_wait(cvp, mp);
280 		return (rval);
281 	}
282 
283 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
284 	cancel_pending = schedctl_cancel_pending();
285 	lwp->lwp_asleep = 1;
286 	lwp->lwp_sysabort = 0;
287 	thread_lock(t);
288 	cv_block_sig(t, (condvar_impl_t *)cvp);
289 	thread_unlock_nopreempt(t);
290 	mutex_exit(mp);
291 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
292 		setrun(t);
293 	/* ASSERT(no locks are held) */
294 	swtch();
295 	signalled = (t->t_schedflag & TS_SIGNALLED);
296 	t->t_flag &= ~T_WAKEABLE;
297 	mutex_enter(mp);
298 	if (ISSIG_PENDING(t, lwp, p)) {
299 		mutex_exit(mp);
300 		if (issig(FORREAL))
301 			rval = 0;
302 		mutex_enter(mp);
303 	}
304 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
305 		rval = 0;
306 	if (rval != 0 && cancel_pending) {
307 		schedctl_cancel_eintr();
308 		rval = 0;
309 	}
310 	lwp->lwp_asleep = 0;
311 	lwp->lwp_sysabort = 0;
312 	if (rval == 0 && signalled)	/* avoid consuming the cv_signal() */
313 		cv_signal(cvp);
314 	return (rval);
315 }
316 
317 static clock_t
318 cv_timedwait_sig_internal(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int flag)
319 {
320 	kthread_t *t = curthread;
321 	proc_t *p = ttoproc(t);
322 	klwp_t *lwp = ttolwp(t);
323 	int cancel_pending = 0;
324 	callout_id_t id;
325 	clock_t rval = 1;
326 	clock_t timeleft;
327 	int signalled = 0;
328 
329 	/*
330 	 * If the flag is 0, then realtime_timeout() below creates a
331 	 * regular realtime timeout. If the flag is CALLOUT_FLAG_HRESTIME,
332 	 * then, it creates a special realtime timeout which is affected by
333 	 * changes to hrestime. See callo.h for details.
334 	 */
335 	ASSERT((flag == 0) || (flag == CALLOUT_FLAG_HRESTIME));
336 	if (panicstr)
337 		return (rval);
338 
339 	/*
340 	 * If there is no lwp, then we don't need to wait for a signal.
341 	 * The check for t_intr is to catch an interrupt thread
342 	 * that has not yet unpinned the thread underneath.
343 	 */
344 	if (lwp == NULL || t->t_intr)
345 		return (cv_timedwait(cvp, mp, tim));
346 
347 	/*
348 	 * If tim is less than or equal to lbolt, then the timeout
349 	 * has already occured.  So just check to see if there is a signal
350 	 * pending.  If so return 0 indicating that there is a signal pending.
351 	 * Else return -1 indicating that the timeout occured. No need to
352 	 * wait on anything.
353 	 */
354 	timeleft = tim - lbolt;
355 	if (timeleft <= 0) {
356 		lwp->lwp_asleep = 1;
357 		lwp->lwp_sysabort = 0;
358 		rval = -1;
359 		goto out;
360 	}
361 
362 	/*
363 	 * Set the timeout and wait.
364 	 */
365 	cancel_pending = schedctl_cancel_pending();
366 	t->t_wait_mp = mp;
367 	id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
368 	    TICK_TO_NSEC(timeleft), nsec_per_tick, flag);
369 	lwp->lwp_asleep = 1;
370 	lwp->lwp_sysabort = 0;
371 	thread_lock(t);
372 	cv_block_sig(t, (condvar_impl_t *)cvp);
373 	thread_unlock_nopreempt(t);
374 	mutex_exit(mp);
375 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
376 		setrun(t);
377 	/* ASSERT(no locks are held) */
378 	swtch();
379 	signalled = (t->t_schedflag & TS_SIGNALLED);
380 	t->t_flag &= ~T_WAKEABLE;
381 
382 	/*
383 	 * Untimeout the thread.  untimeout() returns -1 if the timeout has
384 	 * occured or the time remaining.  If the time remaining is zero,
385 	 * the timeout has occured between when we were awoken and
386 	 * we called untimeout.  We will treat this as if the timeout
387 	 * has occured and set rval to -1.
388 	 */
389 	rval = (t->t_wait_mp == NULL) ? -1 : untimeout_default(id, 0);
390 	mutex_enter(mp);
391 	if (rval <= 0)
392 		rval = -1;
393 
394 	/*
395 	 * Check to see if a signal is pending.  If so, regardless of whether
396 	 * or not we were awoken due to the signal, the signal is now pending
397 	 * and a return of 0 has the highest priority.
398 	 */
399 out:
400 	if (ISSIG_PENDING(t, lwp, p)) {
401 		mutex_exit(mp);
402 		if (issig(FORREAL))
403 			rval = 0;
404 		mutex_enter(mp);
405 	}
406 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
407 		rval = 0;
408 	if (rval != 0 && cancel_pending) {
409 		schedctl_cancel_eintr();
410 		rval = 0;
411 	}
412 	lwp->lwp_asleep = 0;
413 	lwp->lwp_sysabort = 0;
414 	if (rval <= 0 && signalled)	/* avoid consuming the cv_signal() */
415 		cv_signal(cvp);
416 	return (rval);
417 }
418 
419 /*
420  * Returns:
421  * 	Function result in order of precedence:
422  *		 0 if a signal was received
423  *		-1 if timeout occured
424  *		>0 if awakened via cv_signal() or cv_broadcast().
425  *		   (returns time remaining)
426  *
427  * cv_timedwait_sig() is now part of the DDI.
428  *
429  * This function is now just a wrapper for cv_timedwait_sig_internal().
430  */
431 clock_t
432 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
433 {
434 	return (cv_timedwait_sig_internal(cvp, mp, tim, 0));
435 }
436 
437 /*
438  * Like cv_wait_sig_swap but allows the caller to indicate (with a
439  * non-NULL sigret) that they will take care of signalling the cv
440  * after wakeup, if necessary.  This is a vile hack that should only
441  * be used when no other option is available; almost all callers
442  * should just use cv_wait_sig_swap (which takes care of the cv_signal
443  * stuff automatically) instead.
444  */
445 int
446 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret)
447 {
448 	kthread_t *t = curthread;
449 	proc_t *p = ttoproc(t);
450 	klwp_t *lwp = ttolwp(t);
451 	int cancel_pending;
452 	int rval = 1;
453 	int signalled = 0;
454 
455 	if (panicstr)
456 		return (rval);
457 
458 	/*
459 	 * The check for t_intr is to catch an interrupt thread
460 	 * that has not yet unpinned the thread underneath.
461 	 */
462 	if (lwp == NULL || t->t_intr) {
463 		cv_wait(cvp, mp);
464 		return (rval);
465 	}
466 
467 	cancel_pending = schedctl_cancel_pending();
468 	lwp->lwp_asleep = 1;
469 	lwp->lwp_sysabort = 0;
470 	thread_lock(t);
471 	t->t_kpri_req = 0;	/* don't need kernel priority */
472 	cv_block_sig(t, (condvar_impl_t *)cvp);
473 	/* I can be swapped now */
474 	curthread->t_schedflag &= ~TS_DONT_SWAP;
475 	thread_unlock_nopreempt(t);
476 	mutex_exit(mp);
477 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
478 		setrun(t);
479 	/* ASSERT(no locks are held) */
480 	swtch();
481 	signalled = (t->t_schedflag & TS_SIGNALLED);
482 	t->t_flag &= ~T_WAKEABLE;
483 	/* TS_DONT_SWAP set by disp() */
484 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
485 	mutex_enter(mp);
486 	if (ISSIG_PENDING(t, lwp, p)) {
487 		mutex_exit(mp);
488 		if (issig(FORREAL))
489 			rval = 0;
490 		mutex_enter(mp);
491 	}
492 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
493 		rval = 0;
494 	if (rval != 0 && cancel_pending) {
495 		schedctl_cancel_eintr();
496 		rval = 0;
497 	}
498 	lwp->lwp_asleep = 0;
499 	lwp->lwp_sysabort = 0;
500 	if (rval == 0) {
501 		if (sigret != NULL)
502 			*sigret = signalled;	/* just tell the caller */
503 		else if (signalled)
504 			cv_signal(cvp);	/* avoid consuming the cv_signal() */
505 	}
506 	return (rval);
507 }
508 
509 /*
510  * Same as cv_wait_sig but the thread can be swapped out while waiting.
511  * This should only be used when we know we aren't holding any locks.
512  */
513 int
514 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp)
515 {
516 	return (cv_wait_sig_swap_core(cvp, mp, NULL));
517 }
518 
519 void
520 cv_signal(kcondvar_t *cvp)
521 {
522 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
523 
524 	/* make sure the cv_waiters field looks sane */
525 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
526 	if (cp->cv_waiters > 0) {
527 		sleepq_head_t *sqh = SQHASH(cp);
528 		disp_lock_enter(&sqh->sq_lock);
529 		ASSERT(CPU_ON_INTR(CPU) == 0);
530 		if (cp->cv_waiters & CV_WAITERS_MASK) {
531 			kthread_t *t;
532 			cp->cv_waiters--;
533 			t = sleepq_wakeone_chan(&sqh->sq_queue, cp);
534 			/*
535 			 * If cv_waiters is non-zero (and less than
536 			 * CV_MAX_WAITERS) there should be a thread
537 			 * in the queue.
538 			 */
539 			ASSERT(t != NULL);
540 		} else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) {
541 			cp->cv_waiters = 0;
542 		}
543 		disp_lock_exit(&sqh->sq_lock);
544 	}
545 }
546 
547 void
548 cv_broadcast(kcondvar_t *cvp)
549 {
550 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
551 
552 	/* make sure the cv_waiters field looks sane */
553 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
554 	if (cp->cv_waiters > 0) {
555 		sleepq_head_t *sqh = SQHASH(cp);
556 		disp_lock_enter(&sqh->sq_lock);
557 		ASSERT(CPU_ON_INTR(CPU) == 0);
558 		sleepq_wakeall_chan(&sqh->sq_queue, cp);
559 		cp->cv_waiters = 0;
560 		disp_lock_exit(&sqh->sq_lock);
561 	}
562 }
563 
564 /*
565  * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check
566  * for requests to stop, like cv_wait_sig() but without dealing with signals.
567  * This is a horrible kludge.  It is evil.  It is vile.  It is swill.
568  * If your code has to call this function then your code is the same.
569  */
570 void
571 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time)
572 {
573 	kthread_t *t = curthread;
574 	klwp_t *lwp = ttolwp(t);
575 	proc_t *p = ttoproc(t);
576 	callout_id_t id;
577 	clock_t tim;
578 
579 	if (panicstr)
580 		return;
581 
582 	/*
583 	 * If there is no lwp, then we don't need to eventually stop it
584 	 * The check for t_intr is to catch an interrupt thread
585 	 * that has not yet unpinned the thread underneath.
586 	 */
587 	if (lwp == NULL || t->t_intr) {
588 		cv_wait(cvp, mp);
589 		return;
590 	}
591 
592 	/*
593 	 * Wakeup in wakeup_time milliseconds, i.e., human time.
594 	 */
595 	tim = lbolt + MSEC_TO_TICK(wakeup_time);
596 	t->t_wait_mp = mp;
597 	id = realtime_timeout_default((void (*)(void *))cv_wakeup, t,
598 	    tim - lbolt);
599 	thread_lock(t);			/* lock the thread */
600 	cv_block((condvar_impl_t *)cvp);
601 	thread_unlock_nopreempt(t);
602 	mutex_exit(mp);
603 	/* ASSERT(no locks are held); */
604 	swtch();
605 	if (t->t_wait_mp != NULL)
606 		(void) untimeout_default(id, 0);
607 
608 	/*
609 	 * Check for reasons to stop, if lwp_nostop is not true.
610 	 * See issig_forreal() for explanations of the various stops.
611 	 */
612 	mutex_enter(&p->p_lock);
613 	while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) {
614 		/*
615 		 * Hold the lwp here for watchpoint manipulation.
616 		 */
617 		if (t->t_proc_flag & TP_PAUSE) {
618 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
619 			continue;
620 		}
621 		/*
622 		 * System checkpoint.
623 		 */
624 		if (t->t_proc_flag & TP_CHKPT) {
625 			stop(PR_CHECKPOINT, 0);
626 			continue;
627 		}
628 		/*
629 		 * Honor fork1(), watchpoint activity (remapping a page),
630 		 * and lwp_suspend() requests.
631 		 */
632 		if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
633 		    (t->t_proc_flag & TP_HOLDLWP)) {
634 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
635 			continue;
636 		}
637 		/*
638 		 * Honor /proc requested stop.
639 		 */
640 		if (t->t_proc_flag & TP_PRSTOP) {
641 			stop(PR_REQUESTED, 0);
642 		}
643 		/*
644 		 * If some lwp in the process has already stopped
645 		 * showing PR_JOBCONTROL, stop in sympathy with it.
646 		 */
647 		if (p->p_stopsig && t != p->p_agenttp) {
648 			stop(PR_JOBCONTROL, p->p_stopsig);
649 			continue;
650 		}
651 		break;
652 	}
653 	mutex_exit(&p->p_lock);
654 	mutex_enter(mp);
655 }
656 
657 /*
658  * Like cv_timedwait_sig(), but takes an absolute hires future time
659  * rather than a future time in clock ticks.  Will not return showing
660  * that a timeout occurred until the future time is passed.
661  * If 'when' is a NULL pointer, no timeout will occur.
662  * Returns:
663  * 	Function result in order of precedence:
664  *		 0 if a signal was received
665  *		-1 if timeout occured
666  *	        >0 if awakened via cv_signal() or cv_broadcast()
667  *		   or by a spurious wakeup.
668  *		   (might return time remaining)
669  * As a special test, if someone abruptly resets the system time
670  * (but not through adjtime(2); drifting of the clock is allowed and
671  * expected [see timespectohz_adj()]), then we force a return of -1
672  * so the caller can return a premature timeout to the calling process
673  * so it can reevaluate the situation in light of the new system time.
674  * (The system clock has been reset if timecheck != timechanged.)
675  */
676 int
677 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp,
678 	timestruc_t *when, int timecheck)
679 {
680 	timestruc_t now;
681 	timestruc_t delta;
682 	int rval;
683 
684 	if (when == NULL)
685 		return (cv_wait_sig_swap(cvp, mp));
686 
687 	gethrestime(&now);
688 	delta = *when;
689 	timespecsub(&delta, &now);
690 	if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) {
691 		/*
692 		 * We have already reached the absolute future time.
693 		 * Call cv_timedwait_sig() just to check for signals.
694 		 * We will return immediately with either 0 or -1.
695 		 */
696 		rval = cv_timedwait_sig(cvp, mp, lbolt);
697 	} else {
698 		gethrestime_lasttick(&now);
699 		if (timecheck == timechanged) {
700 			rval = cv_timedwait_sig_internal(cvp, mp,
701 			    lbolt + timespectohz(when, now),
702 			    CALLOUT_FLAG_HRESTIME);
703 
704 		} else {
705 			/*
706 			 * Someone reset the system time;
707 			 * just force an immediate timeout.
708 			 */
709 			rval = -1;
710 		}
711 		if (rval == -1 && timecheck == timechanged) {
712 			/*
713 			 * Even though cv_timedwait_sig() returned showing a
714 			 * timeout, the future time may not have passed yet.
715 			 * If not, change rval to indicate a normal wakeup.
716 			 */
717 			gethrestime(&now);
718 			delta = *when;
719 			timespecsub(&delta, &now);
720 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
721 			    delta.tv_nsec > 0))
722 				rval = 1;
723 		}
724 	}
725 	return (rval);
726 }
727